当前位置: 仪器信息网 > 行业主题 > >

左旋异肾上腺素标准品

仪器信息网左旋异肾上腺素标准品专题为您提供2024年最新左旋异肾上腺素标准品价格报价、厂家品牌的相关信息, 包括左旋异肾上腺素标准品参数、型号等,不管是国产,还是进口品牌的左旋异肾上腺素标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合左旋异肾上腺素标准品相关的耗材配件、试剂标物,还有左旋异肾上腺素标准品相关的最新资讯、资料,以及左旋异肾上腺素标准品相关的解决方案。

左旋异肾上腺素标准品相关的资讯

  • 智能所将SERS技术用于复杂环境中肾上腺素的选择性检测
    p  近日,智能所杨良保研究员等利用表面共振增强拉曼光谱(SERRS)技术并结合界面组装的方法,实现了对复杂环境中肾上腺素的选择性检测。相关成果已发表在美国化学会旗下的ACS applied materials & interfaces (2017, 9, 7772-7779)杂志上。/pp  近年来,表面增强拉曼光谱(SERS)技术由于可以进行无损、高灵敏的指纹识别检测而一直备受关注,已经广泛应用于各大基础研究领域。然而真实样品往往存在于复杂环境中,目前SERS技术应用于复杂环境中目标分子的检测面临多个难题,如目标分子快速分离和富集,背景信号的干扰、SERS基底均一性的控制等。/pp  针对以上难题,研究人员将SERRS技术与界面组装相结合用于复杂环境中目标分子的检测。对于一些弱SERS活性的目标分子,通过设计拉曼探针与目标分子结合,使得入射光能量与目标分子中电子能量发生共振耦合,目标分子的拉曼散射光谱的强度将得到进一步增强。因此,SERRS能够实现复杂体系中特定分子的识别,适用于实际样品复杂条件下的选择性检测。然而直接对复杂体系检测,往往存在背景信号干扰和信号重复性差等问题。研究人员通过界面组装的方法,使得复杂体系中的目标分子被贵金属纳米材料表面的拉曼探针捕获后,快速分离并在界面富集,将在界面成膜的贵金属纳米材料用硅片转移,有助于进一步降低背景信号带来的干扰。值得强调的是,贵金属纳米材料倾向于形成规整排列的单层结构,有助于提高SERS基底的均一性,从而进一步改善复杂环境中SERS信号的重复性。该研究为各种复杂体系中的目标分子检测提供了一个新的途径。/pp  该研究工作得到了国家自然科学面上基金(21571180),国家自然科学青年基金(21505138),中国博士后特别资助基金(2016T90590)及中国博士后基金(2015M571950)等项目的支持。/pp  文章链接:a href="http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205"http://pubs.acs.org/doi/abs/10.1021/acsami.6b15205/a /pp  p style="TEXT-ALIGN: center"img title="W020170504391376259648.jpg" src="http://img1.17img.cn/17img/images/201705/noimg/85491f21-d8b4-4dd4-b820-73f6585db53e.jpg"/ /pp style="TEXT-ALIGN: center"strong复杂环境中肾上腺素选择性检测示意图/strong/pp/pp/pp/p/p
  • Cell Reports | 阐释肾上腺素受体的多样性和配体的选择性——α 2型受体晶体结构解析
    人肾上腺素受体是G蛋白偶联受体,是重要的药物靶标。目前已知肾上腺素受体有三类(α1, α2和β)九种亚型(α1A, α1B, α1D, α2A, α2B, α2C, β1, β2和β3)。2007年,β2肾上腺素受体的非激活这是第一个人源G蛋白偶联受体的晶体结构,是G蛋白偶联受体结构解析的重大突破。2011年,β2肾上腺素受体和G蛋白的复合物结构获得解析,该工作获得了2012年诺贝尔化学奖。这些结构的解析极大地推动了人们对G蛋白偶联受体(特别是β肾上腺素受体)机理的理解。然而,三类肾上腺素受体偶联的G蛋白不同:α1, α2和β类分别偶联Gq、Gi和Gs。通过序列比对,也可以发现三类受体的配体结合口袋也有明显区别。对肾上腺素受体下游信号选择的多样性以及配体的亚型选择性的理解,一直受制于缺乏α类受体的三维精细结构。2019年12月3日,上海科技大学赵素文和钟桂生课题组在Cell Reports上共同发表两篇论文,报道了两个α类受体的三个晶体结构,阐释了肾上腺素受体多样性和配体特异性的机理。在“Structural Basis of the Diversity of Adrenergic Receptors”一文中,作者通过解析α2A受体与部分激动剂和抑制剂的复合物结构,辅助细胞信号实验和计算生物学,分析阐明了在肾上腺素受体家族中序列多样性是如何导致功能多样性的。α2A受体的两个结构整体非常相似,而配体结合口袋的多个残基(包括在肾上腺素受体中不保守的F4127.39)则发生了剧烈的构象变化。通过观察结构和突变实验,研究人员解释了影响配体选择性的重要氨基酸F4127.39的功能:F4127.39是配体结构口袋的“盖子”,它与口袋中的另外三个芳香氨基酸一起形成了一个芳香笼来结合配体中的正电基团,使配体结合时空间和能量效应俱佳。突变F4127.39会使α2A受体的完全激动剂和部分激动剂均丧失效力。α2A受体具有双重药理学效应:激动剂浓度较低时,α2A受体主要和Gi偶联;激动剂浓度较高时,与GS的偶联占据更主导的地位。相应地,在临床中,α2A受体部分激动剂的效果比完全激动剂要好,如用于降压的可乐定(Clonidine)和用于ICU镇静(在我国也广泛用于手术麻醉)的右美托咪定(Dexmedetomidine)都是α2A受体的部分激动剂。为了更好地理解α2A受体的部分激活性(partialagonism),研究人员对多个已知的α2A受体完全激动剂和部分激动剂进行了分子对接,他们发现可以用配体与Y3946.55形成氢键与否,来区分α2A受体的部分激动剂和完全激动剂。作者还发现了三个氨基酸(Y3946.55,I13934.51和K14434.56,第一个位于配体结合口袋,后两个位于G蛋白结合口袋)对α2A受体的G蛋白选择性具有重要作用。精心设计的三个突变体Y3946.55N,I13934.51A和K14434.56A,在细胞信号实验中对部分激动剂的刺激均表现出Gi通路的偏好性,而Gs通路的活性遭到削弱甚至完全被抑制。图1:α2A受体中对配体结合(紫色)和G蛋白通路偏好性(红色)起关键作用的残基而在“Molecular mechanism for ligand recognition and subtype selectivity of α2C adrenergic receptor”文章中,作者展示了α2C受体的三维结构,并通过分子对接、功能实验等手段揭示了α2亚型受体的结构特异性,为相关药物研发提供了分子基础。通过将α2C受体与α2A受体的结构进行对比和巧妙的嵌合体设计,作者发现α2C与α2A的结构主要差异存在于胞外域。在α2C受体口袋边沿,D206ECL2-R409ECL3-Y4056.58形成氢键-盐桥互作网络,特异地影响了α2C受体选择性拮抗剂JP1302和OPC-28326的作用。而在α2A受体口袋上方,由Y98ECL1、R187ECL2、E189ECL2和R4057.32形成的互作网络直接遮盖了部分入口,使得JP1302和OPC-28326这些较大的分子可能被阻挡在外。细胞信号实验结果也显示,破坏Y98ECL1-R187ECL2-E189ECL2-R4057.32互作网络并添加D206ECL2-R409ECL3-Y4056.58相互作用得到的α2A嵌合体对JP1302和OPC-28326有着很好响应。图2:α2CAR-RS79948复合物的结构和决定α2肾上腺素受体亚型选择性的胞外域这两篇文章很好地阐述了肾上腺素受体的多样性和α2受体的配体选择性,为基于精细三维结构的下一代α2受体药物开发奠定了基础。在这两篇论文中,均使用珀金埃尔默的EnVision微孔板检测仪对GPCR的cAMP实验进行定量测定。同时,在α2受体的配体结合实验中,珀金埃尔默提供了从放射性受体拮抗剂、耗材(UniFilter GF/B)到放射性微孔板检测仪MicroBeta的整体解决方案。珀金埃尔默为中国科学家药物研发加油助力。扫描下方二维码,或点击文末“阅读原文”,即可查看论文原文。
  • 瘦肉精放倒柔道名将 刺激肾上腺素类属兴奋剂
    在国际和国内反兴奋剂的相关条文中,‘误服’是不被认可的,不存在这个概念。我国对于运动员的食品采购有严格规定,要求采购的时候必须经过安全检验,而且必须通过正规渠道来引进食物。  日前,一条突如其来的消息让所有人震惊,由于在比赛中被查出兴奋剂呈阳性,我国女子柔道运动员佟文将被禁赛两年。她也成为中国第一位被禁赛的奥运冠军选手。  这次“摔倒”佟文的不是对手,而是“瘦肉精”。据佟文教练介绍,佟文可能是去年在外地集训期间,为补充体力吃了很多排骨,致使她误服了兴奋剂。  佟文真是被“瘦肉精”摔倒的?难道在我国有关部门三令五申禁止添加的情况下,肉类中还存在瘦肉精?  中国反兴奋剂中心主任杜利军告诉记者,“瘦肉精”是一种β兴奋剂,学名叫“克伦特罗”,属于肾上腺素类激素。在医学上,克伦特罗能扩张支气管,改善呼吸。运动员服用克伦特罗,可以帮助其改善呼吸机能和肌肉结构。通常耐力型项目的选手会使用,如游泳等。  对于佟文教练的“误服”一说,杜利军说,在国际和国内反兴奋剂的相关条文中,“误服”是不被认可的,不存在这个概念。我国对于运动员的食品采购有严格规定,要求采购的时候必须经过安全检验,而且必须通过正规渠道来引进食物。  其实,瘦肉精不是一种特定的物质,而是一类药物,是指能够促进瘦肉生长的饲料添加剂。任何能够促进瘦肉生长、抑制肥肉生长的物质都可以叫做“瘦肉精”。  使用瘦肉精并不是中国人的首创,20世纪80年代初,美国一家公司偶然发现将其添加到饲料中,可以起到增加瘦肉率的作用,但如果作为饲料添加剂,使用剂量是人用药剂量的10倍以上。虽然这样可以提高瘦肉率,但由于用量大的原因,直到生猪屠宰上市,猪体内的药物残留量依然很大。这些残留物质一旦进入人体,就会使人体渐渐地中毒,因而被禁用。  在中国,通常所说的“瘦肉精”则是指克伦特罗。它曾经作为药物用于治疗支气管哮喘,后由于其副作用太大而遭禁用。瘦肉精在上海曾经引发了几百人的中毒事件。而在台湾地区,由于从美国进口的猪肉里含有瘦肉精,几乎挑起一场政治争端。它们也因而在全球遭到禁用。  医学研究表明“瘦肉精”吸收快,人食用了含有“瘦肉精”的猪肉和内脏,会造成群体性的恶性食物中毒事故。人食用后15~20分钟即起作用,2~3小时血浆浓度达峰值。一般摄入20微克就可以出现症状,食量过大则出现心慌、头痛、震颤等症状,对于高血压、心脏病、甲亢等病患者更能诱发病状,危险性更大,中毒严重的可致人死亡。  “由于瘦肉精的副作用大,我国政府已经明令禁止作为饲料添加剂使用。”中国农业大学食品营养与安全系主任何计国副教授告诉《北京科技报》。  国家虽然禁止在生猪生产过程中添加瘦肉精,但市场上销售猪肉的摊贩告诉记者,顾客还是喜欢瘦肉多的肉,这种肉虽然价格要高一些,但是卖得很快,每天剩下的往往是肥肉较多的肉。  何计国说,既然瘦肉多的好卖,在经济利益的驱使下,一些农户私自在饲料中添加,造成瘦肉精就像“白骨精”一样屡打不绝。  记者发现,对于瘦肉精是否可以添加在饲料中,各国的规定不尽相同。大部分国家采用了和中国一样的禁止添加的政策,但是,在美国、加拿大、新西兰等国,瘦肉精这类物质的使用却是合法的。  1999年底,美国食药局(FDA)批准将盐酸莱克多巴胺添加于猪饲料中。如今,在美洲和亚洲的24个国家,比如美国、泰国等等,均允许使用培林(莱克多巴胺的商品名)提高猪的瘦肉率。不过,这些国家有一个硬性前提:猪肉上市前,培林残余量须低于50ppb,以免造成人体中毒。这个标准相当于允许每千克猪肉中含有50微克培林。  为什么中国不允许在饲料中添加瘦肉精呢?这个问题何计国也曾经向农业部的有关人员提出国。  “美国的生猪大部分是在大型养殖场中饲养,对于瘦肉精的添加量容易控制。但是,我国的生猪生产有很大一部分是农户的散养,对于他们的监管无法做到,所以添加瘦肉精的口子不能开。”农业部的官员这样回答何计国。  对于瘦肉精的检测,国家规定农业部门负责在生猪屠宰前,对生猪的尿液进行逐一检测,检查是否存在瘦肉精 而在流通和销售环节,有关部门采取抽检的方式进行。国家有关部门出台了相关法规,但是在实际执行过程中存在诸多问题。即使极具检测经验的执法人员,光凭肉眼也是区分不开的,只能通过仪器进行检测。  “对于瘦肉精的监管从源头抓起,就是从生猪的饲养环节开始,禁止在饲养环节使用。”何计国说。其实,国内大型养殖场由于国家有关部门监控严格,他们的猪肉还是比较安全的,市民可以放心食用。但是,在农户散养的这块,监控难度比较大。  山东某县畜牧局局长就表示,县级监测站根本做不了饲料的检测,查“瘦肉精”只能去养殖场库房突击检查 产地检疫,只能看看活畜禽的精神状态、测测体温,对“瘦肉精”的检测无计可施。  因为现有的通过仪器检测瘦肉精的方式太慢,检测结果要几个小时才能出来,等结果出来后猪都已经卖掉了。另外,检测费用很高,平均下来每头猪光瘦肉精检测这一项就需要30元左右,这直接导致地方检测部门和养殖户的积极性不高。  对于这一问题,何计国建议可以采用快速、廉价的检测试纸和检测盒替代目前的检测仪器,这样最大的好处是可以降低检测的成本。  “虽然检测试纸和检测盒没有检测仪器准确,但具有快速低廉的优势。”何计国说。科学研究发现,检测试纸和检测盒的检查结果呈假阳性的多,假阴性的少,就是绝对不会放过任何一个添加瘦肉精的生猪,但有可能把没有添加瘦肉精的错误地检测为添加了的。  “有关部门再把通过检测试纸和检测盒检测出来的怀疑添加瘦肉精的生猪,进行仪器检测,最后确定其是否添加,这样可以大大减少仪器检测带来的问题。”何计国说。  虽然国家下大力气检测瘦肉精,但是何计国不无忧虑地说,目前国内已经出现克伦特罗的替代品。由于一种检测仪器和试纸只能针对一种检测目标,现有的检测试纸和检测仪器主要是针对克伦特罗进行检测的,一旦出现替代品,检测仪器和试纸在它们面前将彻底“失灵”。  “如何从根本上杜绝瘦肉精这类物质的使用,将考验我们科学家和政府的智慧。”何计国最后说。
  • 促肾上腺皮质激素ACTH(18-39)抗体现货促销
    【详细说明】:促肾上腺皮质激素ACTH(18-39)抗体【浓 度】:1mg/1ml 抗体来源【宿 主】:兔源、鼠源、其他 克隆:单克隆抗体、多克隆抗体【适 用】:Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Horse, Sheep, Monkey, others。 抗体类型:一抗 研究领域:细胞生物、神经生物学等 【性 状】:促肾上腺皮质激素ACTH(18-39)抗体冻干粉或液体【相关标记】:FITC、Gold 、HRP、PE PE-Cy3、PE-CY5、PE-CY5.5 、PE-CY7 、RBITC 、 Alexa Fluor 350、Alexa Fluor 488 、 Alexa Fluor 555 、Alexa Fluor 647、AP 、APC 、Biotin 、Cy3 、Cy5 、Cy5.5 、Cy7 。【储 存 液】: Preservative: 15mM Sodium Azide, Constituents: 1% BSA, 0.01M PBS, pH 7.4 or PBS with 0.1% sodium azide and 50% glycerol pH 7.3. -20oC, Avoid freeze / thaw cycles.【产品应用】 :Immunohistochemistry (IHC), Flow Cytometry (FACS) , Western Blotting (WB) , ELISA , Immunohistochemistry , Immunohistochemistry (Paraffin-embedded Sections) (IHC (p)) , Immunoprecipitation (IP) , Immunocytochemistry (ICC) ,Immunofluorescence (IF)等。促肾上腺皮质激素ACTH(18-39)抗体ADCY8 腺苷酸环化酶8抗体 (1)IgG :血清中含量最高,因此是最重要的抗感染分子,包括抗菌、抗病毒、抗毒素等。 IgG 还能激活补体,结合并增强巨噬细胞的吞噬功能(调理作用和 ADCC 效应),穿过胎盘,保护胎儿及新生婴儿免受感染。 (2)IgA :分单体和双体两种。前者存在血清中,后者存在于黏膜表面及分泌液中,是黏膜局部抗感染的重要因素。(3)IgM :是分子量最大,体内受感染后最早产生的抗体,具有很强的激活补体和调理作用,因此是重要的抗感染因子,且常用于诊断早期感染。  (4)IgD :主要存在于成熟 B 细胞表面,是 B 细胞识别抗原的受体。 (5)IgE :血清中含量最少的抗体,某些过敏性体质的人血清中可检测到,参与介导 I 型超敏反应和抗寄生虫感染。促肾上腺皮质激素ACTH(18-39)抗体现货促销中,为您推荐相关优质检测抗体:Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Leptin receptor(long) 瘦素受体抗体(长) Anti-Lgr5/GPR49 肠上皮干细胞蛋白抗体 Anti-LH (Mouse Anti-Human Luteinizing Hormone Monoclonal Antibody) 鼠抗人促黄体生成素抗体 Anti-L-HDC (L-Histidine decarboxylase) L-组氨酸脱羧酶抗体 hu, mo, rat, bov, dog, pig, chi Anti-LHRH/GNRH (luteinizing hormone-releasing hormone) 黄体激素释放激素抗体/促性腺激素释放激素抗体 Anti-LIF (leukemia inhibitory factor) 白血病抑制因子抗体 Anti-Lingo-1 Nogo受体作用蛋白抗体 Anti-Livin (Inhibitors of apoptosis proterins Livin) 一种新的凋亡抑制蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 anti-LFABP/FABP-1(Liver Fatty acid binding protein) 肝脏型脂肪酸结合蛋白抗体 Anti-LN (laminin) 层粘连蛋白抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-Lpin1 protein Lpin1 抗体 Anti-LRP/MVP (Lung resistance related protein) 肺耐药相关蛋白抗体 Anti-LRRK2 (Leucine-rich repeat kinase 2) 帕金森氏病致病基因/神经系统新功能基因抗体 Anti-Lumbrokinase 抗蚯蚓纤溶酶抗体/抗蚓激酶抗体 Anti-Lysozyme 溶菌酶抗体 anti-LYVE-1(lymphalic vessel endotheilial hyaluronan receptor 1) 淋巴管内皮透明质酸受体抗体 Anti-M2-PK ( pyruvate Kinase M2) 丙酮酸激酶-M2抗体 Anti-M2-PK (pyruvate Kinase M2) 丙酮酸激酶-M2(小鼠来源抗体) Anti-Integrin αM/CD11b (Mac-1/CR3A)(Integrin-alpha2) 巨噬细胞表面分子/整合素-α2抗体 Anti-ChRM1 (muscarinic acetylcholine receptor) 毒蕈碱型乙酰胆碱受体M1抗体 Anti-MADCAM-1(-Mucosal addressin cellular adhesion molecule-1) 粘膜选址素抗体 Anti-MAG-a/b (Myelin associated glycoprotein L / S -MAG ) 髓鞘相关糖蛋白a/b抗体 Anti-MAG-a/L-MAG (Myelin associated glycoprotein) 髓鞘相关糖蛋白-a抗体 Anti-MAGE-1/HLA-A1 protein (melanoma antigen family A member 1) 黑素瘤抗原-1抗体 Anti-MAPKK1 (MAP kinase kinase 1) 丝裂原活化蛋白激酶激酶1 Anti-MAPKK2 (MAP kinase kinase 2) 丝裂原活化蛋白激酶激酶2抗体 Anti-Maspin (mammary serine protease inhibitor) 抑癌基因抗体 Anti-Matriptase 蛋白裂解酶(一种新的癌基因)抗体 Anti-MBP (Myelin Basic Protein, MBP) 髓鞘碱性蛋白抗体 Anti-MCP-1 (monocyte chemotactic protein1) 巨噬细胞趋化蛋白-1抗体 Anti-M-CSF (Macrophage Colony Stimulating Factors) 巨噬细胞克隆刺激因子抗体 Anti-MDM2 (urine double minute 2) 双微体2癌基因抗体 Anti-Megsin/SER—PINB7 丝氨酸(或半胱氨酸)蛋白酶抑制剂B7抗体 Anti-Melan-A/MART-1 黑色素瘤相关抗原/黑色素-A抗体 Anti-Metal ion transporter 拟南介金属离子转运蛋白抗体 Anti-Mfn1 (Mitofusin1) 线粒体融合蛋白1抗体 Anti-MGMT (O6-methylguanine-DNA methyltransferase) O6甲基鸟嘌呤DNA甲基转移酶抗体 anti-MT(metallothionein) 金属基质硫蛋白抗体 anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(NT) 层粘连蛋白受体1抗体(N端) anti-MGr1-Ag/37LRP(P37-kDa laminin receptor precursor)(CT) 层粘连蛋白受体1抗体(C端) Anti-MICA(MHC class I polypeptide-related sequence A) 一种细胞应激分子抗体 Anti-Midnolin isoform Protein 1 中脑核仁蛋白1抗体 Anti-Midnolin isoform Protein 2 中脑核仁蛋白2抗体 Anti-MIF (Macrophage Migration Inhibitory Factor) 巨噬细胞移动抑制因子抗体 Anti-MIP-1α (macrophage inflammatory protein 1α) 巨噬细胞炎症因子1α抗体 Anti-MIP-1β (macrophage inflammatory protein 1β) 巨噬细胞炎症因子1β 抗体 Anti-MMP-1(matrix metalloproteinases-1) 基质金属蛋白酶-1抗体 Anti-MMP-1(matrix metalloproteinases-1)anti-Mouse 基质金属蛋白酶-1抗体(小鼠) Anti-MMP-13 (Matrix metalloproteinase 13) 基质金属蛋白酶13抗体 Anti-MMP-14(Matrix metalloproteinase-14) 基质金属蛋白酶-14抗体 Anti-MMP-2(Collagenase IV /Gelatinase A/Metallo proteinase-2) 基质金属蛋白酶-2抗体 Anti-MMP-3(matrix metalloproteinase-3/Transin-1/SL-1/Stromelysin-1 precursor) 基质金属蛋白酶-3抗体 Anti-MMP-7(Matrilysin/matrix metalloproteinases-7) 基质金属蛋白酶-7抗体 Anti-MMP-9(matrix metalloproteinase 9) 基质金属蛋白酶-9抗体 Anti-β-2-MG 鼠抗人β2微球蛋白抗体(单抗) Anti-Mo anti-KLH 小鼠抗血蓝蛋白抗体 Anti-MOG (myelin oligo-dendrocyte glycoprotein-MOG) 髓鞘少树突胶质细胞糖蛋白抗体 Anti-Mouse anti-human HAS 鼠抗人血清白蛋白单克隆抗体 Anti-Mouse IgA 兔抗小鼠IgA抗体 Anti-MPO (myeloperoxidase) 髓过氧化物酶抗体 Anti-MRP1(Multidrug Resistanec-Associated Protein 1) 多药耐药相关蛋白1抗体 Anti-MRP2 (multidrug resistance-associated protein2) 多药耐药相关蛋白2抗体 Anti-MRP3(Multidrug Resistanec-Associated Protein 3) 多药耐药相关蛋白3抗体 Anti-MrpL28 (mitochondrial ribosomal protein L28) 线粒体核糖体蛋白L28抗体 Anti-MSH-2 (MutS homolog 2) 错配修复蛋白2抗体 anti-MLH1(Mutl homolog l gene) 错配修复蛋白1抗体 Anti-MSLN (mesothelin) 间皮素抗体 anti-MUC5AC/Mucin 5AC(Gastric Mucin M1) 胃粘液素抗体 Anti-MTR-1A (Melatonin receptor-1A) 褪黑素受体/松果体素受体抗体 Anti-mucin-1/Muc-1/CD227 antigen (Epithelial Membrane Antigen ) 粘蛋白-1/上皮膜抗原抗体 Anti-MyD88 (myeloid differential protein-88) 髓样分化蛋白抗体 Anti-Myelin P0 protein( peripheral myelin prothein Zero MPZ MPP) 外周髓磷脂P0蛋白/P0蛋白抗体 Anti-Myosin (Smooth Muscle) 鼠抗人心肌肌凝蛋白(平滑肌) 单抗 Anti-N-AChR α4 (Nicotinic-Acetylcholine receptor α4) 烟碱型乙酰胆碱受体α4抗体 Anti-N-AChR α7 (Nicotinic-Acetylcholine receptor α7) 烟碱型乙酰胆碱受体α7抗体 Anti-Nanog 胚胎干细胞关键蛋白抗体 anti-Natrexone 抗纳曲酮抗体IgG Anti-NAP1 (nucleosome assembly protein 1) 核小体组装蛋白1抗体 Anti-N-cadherin N-钙粘附分子抗体 Anti-N-coR1 (Nuclear receptor co-repressor 1) 核受体辅助抑制因子抗体 Anti-Nephrin Protein 肾病蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Nestin 巢蛋白/神经上皮干细胞蛋白抗体 Anti-Neurobeachin protein (AKAP550) 蛋白激酶锚定蛋白/激酶固定蛋白抗体 Anti-Neurocan 神经粘蛋白抗体 Anti-Neurofascin-155 神经束蛋白-155 Anti-NF-H(Neurofilament triplet H) 高分子量神经丝蛋白抗体 Anti-NFKBp65(p65 NF-kappa B p65NFKB) 细胞核因子/k基因结合核因子抗体 Anti-NF-L(Neurofilament triplet L) 低分子量神经丝蛋白抗体 Anti-NF-M (Neurofilament triplet M) 中分子量神经丝蛋白抗体 Anti-NF-κBp50(p50 NF-kappa B p50NFKB) 细胞核因子50/κ基因结合核因子50抗体 Anti-NGF-R/p75NTR/CD271(p75 Neurotrophin R) 神经生长因子受体抗体 Anti-NGF-β 神经生长因子-β抗体 anti-NGN3(neurogenin 3 Neurog3) 神经元素3抗体 Anti-NGX6 (nasopharyngeal carcinoma/NPC associated gene 6) 鼻咽癌细胞相关基因6抗体 Anti-NHE1(Na+/H+ Exchanger) 钠氢通道蛋白抗体 Anti-NIK(NF-kappaB-Inducing Kinase) NFkB诱导的激酶抗体 Anti-NIS(Na+/I-symporter) 钠碘转运体蛋白抗体 Anti-NK-1/SuRCtance P Receptor (Neurokinin receptor1 Tachykinin receptor1) P物质受体抗体
  • 基于质谱成像的大鼠肾上腺组织中衍生化皮质酮的分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "摘 要:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)需要应用到特殊的样品前处理方法,从而使目标化合物的可视化分析具有高灵敏度和高分辨率。在分析类固醇激素时,基质辅助激光解吸离子化的效率往往较低。此外,类固醇激素也不能用现有的IMS 前处理方法进行分析。本报告描述了一种组织衍生化方法,借助iMScope iTRIO/i 质谱显微镜实现皮质酮的可视化和高灵敏度、高分辨率的IMS 分析。另外,我们还介绍了一种通过离子阱三级质谱鉴定皮质酮结构异构体的技术。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.研究背景/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)包括直接对组织表面进行质谱分析以检测被成像的目标物质。IMS 是一种分子成像方法,可以显示成像目标物的位置、类型和数量,且无需进行靶向标记。现有的IMS 样品前处理方法主要是将基质溶液喷涂于组织表面,形成直接诱导电离的基质-晶体层。然而,尽管我们已经知道这种方法有助于并在组织表面大量存在的极性的磷脂的可视化分析,但是对于非磷脂分子的可视化却没什么效果。因此,一些研究者认为IMS 技术只能对磷脂进行可视化分析。然而,IMS 其实同样可用于检测与现有的高灵敏度质谱方法相同的那些目标分子,前提是采用适当的样品前处理方法。实现这种可视化的技术包括两步法基质涂敷和组织衍生化方法。我们描述了一种IMS 分析方法,使用这两种技术成功实现大鼠肾上腺组织上的皮质酮的可视化分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.1 两步法基质涂敷/pp style="text-align: justify text-indent: 2em line-height: 1.75em "非常精细的基质晶体可以提高基质辅助激光解吸电离(MALDI)得到的谱图的信噪比(S/N)。因此,在组织表面形成非常精细的基质晶体不仅有助于提高IMS 的S/N,同时也有助于提高成像结果的空间分辨率。然而,IMS 分析的组织样品在测试前通常不清洗,其表面包含大量的盐和污染物。在这种类型的表面上涂敷基质会导致形成的基质晶体聚集,从而在某些区域形成非常薄的基质层。晶体层的这种不均匀性影响了图像的成像质量,使所获得的成像数据十分难以解释,因为目标分子浓度的变化可能仅仅是由于晶体层的不均匀性造成的。为了改善这种情况,我们开发了两步法基质涂敷技术(以下称为两步法)(图1)。两步法的第一步是使用iMLayer 系/pp style="text-align: justify text-indent: 2em line-height: 1.75em "统对基质晶体进行升华,第二步是用基质溶液进行喷涂。使用iMLayer 进行升华会在组织表面产生非常精细的基质晶体。而第二步在基质溶液的喷涂过程中,组织表面的这些细小晶体可以作为基质晶体生长的核心进行外源生长。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/854041eb-dace-41db-92d1-f351db385434.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图 1. 两步法基质涂敷的操作流程/pp style="text-align: justify text-indent: 2em line-height: 1.75em "用扫描电子显微镜捕获图像如图2 所示,我们比较了两步法和传统的直接喷涂法得到的基质晶体的形态。这两幅图像都以相同的放大倍数显示,两步成像法(图2a)得到的晶体比喷雾法(图2b)得到的晶体要精细得多,间距也更密。众所周知,这种非常精细和间距致密的晶体层的形成会使目标分子(包括药物和生物代谢物等化合物)的质谱峰强度增加数十倍sup[1,2]/sup。进行高分辨IMS 分析也需要这样精细的晶体层。当我们想实现高分辨分析(间距≤20μm)时,通过喷涂法会在组织表面形成非常大的基质晶体,这将导致成像结果会直接受这些基质晶体形状的影响和改变sup[3]/sup。基于上述情况,两步法被认为是获得高灵敏度、高分辨率结果的一种必不可少的前处理方法。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e2775274-1fb4-47bd-b926-b5f288e97d45.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图2 基质晶体的扫描电镜图/pp style="text-align: center text-indent: 2em line-height: 1.75em "(a) 两步升华法 (b) 喷雾法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.2 组织衍生化处理/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化是一种进一步提高灵敏度的前处理方法,近年来备受关注。在进行液相色谱测试时,在溶液中衍生化可提高其检测灵敏度sup[4]/sup。在组织切片制备后,将相同的衍生化试剂喷洒在样品上,也可提高IMS 的灵敏度。这种处理方法甚至可以使以前无法检测的分子被检测出来。在本报告中,我们选择一种有效的类固醇检测衍生化试剂吉拉德试剂T 作为衍生化试剂[5],皮质酮([M+H]+: 347.22)与吉拉德试剂T 在室温下快速反应,然后形成衍生化皮质酮([M]+: 460.31)作为检测目标物(图3)。由于三甲胺基团的加入,衍生化的皮质酮表现出更高的离子化效率。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/39921082-faaa-4eae-9f8b-42a3a181427a.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图3. 使用吉拉德试剂T 对皮质酮进行衍生/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.实验方法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化试剂:吉拉德试剂T (购于Sigma-Aldrich),浓度10mg /mL,以20%醋酸水溶液制备。样本组织:将冷冻的大鼠肾上腺切片置于ITO 载玻片上(Matsunami Glass 100Ω,span style="text-indent: 2em "无镁铝硅酸盐涂层)。基质溶液:α-氰基-4-羟基肉桂酸(α-CHCA,纯度≥98%,购于Sigma-Aldrich),浓度10mg /mL,以30%的乙腈、10%的异丙醇和0.1%的甲酸混合物作为溶剂进行配制。显微镜图像采集:在样品预处理前,用iMScope iTRIO/i 显微镜采集样品的光学图像。衍生化试剂喷涂:使用喷笔(GSICreos Procon BOY)将衍生化试剂喷涂于组织表面。喷涂量大约为60μL /组织切片。在喷涂过程中,在确认表面略有湿润的情况下,我们需要对组织表面反复干燥,当衍生化试剂喷涂完成后,样品在室温下放置90 分钟。基质涂敷:衍生化反应完成后,使用α-CHCA 在250℃条件下升华3分钟,以在组织表面形成一层基质薄膜,然后用喷笔将基质溶液喷到组织表面,喷涂量为100μL /组织切片,喷涂方法与衍生化试剂相同,但是衍生化试剂和基质需要采用独立喷笔。IMS 分析:使用iMScope iTRIO /i质谱显微镜。IMS 激光光斑直径选择d = 2 即像素大小约为25μm,d = 1 即像素大小10μm。所有IMS 采用二级质谱进行分析。对每个激光光斑直径对应的激光强度和碰撞能量进行优化,以保证产物离子质谱峰强度最大化。通过对溶液中衍生化的皮质酮标准品的分析,确定最佳实验条件。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f53f3658-d8f1-4846-8eb4-c69f65645f43.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 2em line-height: 1.75em "图4 MS/MS 质谱图的比较。(a) 非衍生皮质酮(前体离子: m/z347.22) (b) 衍生后皮质酮(前体离子: m/z 460.31) 上图:标准物质 下图: 肾上腺组织上的皮质酮/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3 实验结果/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 标准品与组织样品的皮质酮产物离子谱图/pp style="text-align: justify text-indent: 2em line-height: 1.75em "比较皮质酮标准品和组织样品的产物离子质谱图如图4 所示。图4a 显示了未衍生化皮质酮的产物离子谱图。标准品谱图通过测试在ITO 玻璃上滴加10 mg/mL 皮质酮标准品获得。质谱图显示了皮质酮的分子离子峰m/z 347.22,以m/z 347.22 为前体离子,其主要产物离子为m/z329.21。该产物离子是皮质酮脱水产生的。对肾上腺组织进行同样的分析,得到的谱图皮质酮信号。这一结果表明,在未进行衍生化的情况下,无法对皮质酮进行有效成像。图4b 展示了使用衍生化皮质酮进行相同分析的结果。衍生化皮质酮的质谱信号为m/z 460.31,可以将之理解为[M]+。选择m/z 460.31 作为前体离子进行二级质谱分析,得到碎片离子m/z 401.24,如图4b 所示,由三甲胺基团发生中性丢失产生。对组织样品进行分析获得高信噪比的产物离子质谱图,与标准品的谱图完全一致。这些结果表明,组织衍生化是检测皮质酮的有效方法。除了在衍生化皮质酮分析中检测到的m/z 401.24 处的质谱峰外,另一个主要峰值出现在m/z 373.25 处,为丢失-CO 基团的皮质酮。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 肾上腺组织中皮质酮的成像/pp style="text-align: justify text-indent: 2em line-height: 1.75em "根据上述实验条件,我们对大鼠肾上腺组织进行衍生化,获得其质谱成像数据。大鼠肾上腺组织的二级质谱成像结果(前体离子m/z 460.31,产物离子m/z 401.24)如图5 所示。肾上腺为分层结构,包括(由内而外)髓质、网状带、束状带、肾小球带和被膜。使用专为iMScope 设计的成像质谱分析软件,将二级质谱成像结果与光学图像相叠加,显示皮质酮在束状带内积累。对包含髓质、网状带和束状带的区域进行高空间分辨率检测,发现髓质中含有少量皮质酮,皮质酮主要在位于分析区域的最外层的束状带中积累。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/84c3d869-d851-4978-b790-2bed2cd4f5f3.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图5 肾上腺组织的MS/MS 成像结果(m/z 460.31,m/z 401.24)/pp style="text-align: center text-indent: 2em line-height: 1.75em "上图, 标尺: 400μm, 像素大小: 25μm/pp style="text-align: center text-indent: 2em line-height: 1.75em "下图: 标尺: 100μm, 像素大小: 10μm/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.4 在生物组织中应用多级质谱分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "除使用大气压MALDI 源实现高分辨IMS 分析外,iMScope iTRIO/i 还可以被用于多级质谱分析。 双羟孕酮(图6b)是类固醇激素皮质酮的结构异构体。能否对结构异构体进行有效区分对于实现皮质酮分布的精确成像十分重要。使用目前的衍生化法,双羟孕酮的二级质谱也为丢失三甲胺产生的碎片,因此现有的方法无法区分皮质酮的不同结构异构体。但是,iMScope iTRIO/i 可以利用离子阱进行三级质谱分析,从而可以间接确定出成像结果中是否存在结构异构体产生,这也是通过对标准品和组织样品的三级质谱分析比较,所获得的结果。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "然而,常规前处理可能无法产生足够强度的质谱峰来进行组织上的三级质谱分析。在本实验中,我们将两步法基质涂敷和组织衍生化方法相结合,成功地进行了组织上的三级质谱分析,获得了足够强度的三级质谱信号。图7 是由二级碎片离子m/z 401.24 得到的三级质谱结果。虽然质谱图中相对噪音较高,但组织样品上的三级质谱图依然具有较高的信噪比,与标准品获得的主要三级碎片一致(图7 底部)。基于这些发现,图5 所示的IMS结果能够比较准确地展示皮质酮的分布。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4 结论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "本报告介绍了利用两步法基质涂敷和组织衍生化技术的IMS 靶向物质可视化分析技术。我们通过样品前处理方法的发展以及应用仪器的技术创新,实现了IMS 分析灵敏度的提高。我们相信,随着IMS 应用范围的扩大,对更加适合的样品前处理方法的需求也会增加,未来我们将开发多种如此文中所介绍的方法,从而更加深入地挖掘IMS 技术的巨大应用潜力。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "【参考文献】/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[1] Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix/pp style="text-align: justify text-indent: 2em line-height: 1.75em "application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization ef.ciency.span style="text-indent: 2em "J Mass Spectrom. 48, 1285–90, 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[2] Shimma S. Characterizations of Two-step Matrix Application Procedures for Imaging Mass Spectrometry.span style="text-indent: 2em "Mass Spectrum. Lett. 6: 21–25, 2015./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[3] Taira S, Sugiura Y , Moritake S, Shimma S, Ichiyanagi Y , Setou M. Nanoparticle-assisted laser/pp style="text-align: justify text-indent: 2em line-height: 1.75em "desorption/ionization based mass imaging with cellular resolution. Anal. Chem. 88: 4761–6, 2008./pp style="text-align: justify text-indent: 2em line-height: 1.75em "[4] Higashi T, Yamauchi A, Shimada K. 2-Hydrazino-1-methylpyridine: a highly sensitive derivatization r/pp style="text-align: justify text-indent: 2em line-height: 1.75em "eagent for oxoster oids in liquid chromatography–electrospray ionization-mass spectr ometry. J. Chromatogr. Bspan style="text-indent: 2em "2: 214–222, 2005./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[5] Cobice DF, Mackay CL, Goodwin RA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andr ew/pp style="text-align: justify text-indent: 2em line-height: 1.75em "R. Mass Spectr ometry Imaging for Dissecting Steroid Intracrinology within Target Tissues. Anal. Chem., 85,span style="text-indent: 2em "11576–11584. 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bc3e121f-5fd4-4c49-a17c-c362290f17d2.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//ppbr//p
  • Nature突破! | 马秋富团队揭示针灸驱动迷走神经—肾上腺抗炎通路的神经解剖学基础
    针灸治疗疾病的核心机理之一是通过刺激身体特定的部位(穴位)来远程调节机体功能,而经络被认为是达到这种远程效应的重要传输载体。尽管现代解剖学研究尚未明确经络特异性结构基础的存在,但揭示了针刺刺激的远程效应可以通过躯体感觉神经-自主神经反射来实现。这种反射首先是激活来自位于背根神经节 (DRG) 或三叉神经节中的外周感觉神经纤维,随后将感觉信息传到脊髓和大脑,进而激活外周自主神经,最终实现对各种机能的调节。从上世纪70年代开始,就陆续发现此类反射存在躯体区域特异性。2020年哈佛大学医学院马秋富教授团队发表在Neuron的研究结果,揭示了低强度针刺刺激小鼠后肢穴位(如足三里ST36)可以激活迷走神经-肾上腺抗炎通路,而针刺刺激腹部穴位 (如天枢ST25) 却不能诱导出此抗炎通路(详见BioArt报道:Neuron | 马秋富团队报道针刺激活不同自主神经通路调节全身性炎症)。这种躯体区域特异性(或者说穴位部位的相对专一特异性)背后的神经解剖学基础至今尚不清楚。2021年10月13日,马秋富教授团队与复旦大学王彦青教授,中国中医科学院针灸研究所景向红教授团队合作(第一作者为柳申滨博士和王志福博士)在Nature又发表文章A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis,实现了针灸研究的历史性突破,揭示了一类PROKR2-Cre标记的DRG感觉神经元,是低强度针刺刺激激活迷走神经-肾上腺抗炎通路所必不可少的。尤为值得关注的是,根据此类神经的躯体分布特点,可以预测在不同部位低强度电针刺激抗炎的效果,从而为穴位相对特异性的存在提供了现代神经解剖学基础。首先,PROKR2-Cre标记的有髓鞘的神经元主要富集表达于支配四肢节段的DRG中,并且此类神经元特异性支配四肢的深层筋膜组织(如骨膜、关节韧带和肌筋膜等),而不支配皮肤的表皮组织和腹部的主要筋膜组织(如腹膜)。其次,为了研究PROKR2-Cre标记的神经元在针刺诱导迷走神经-肾上腺抗炎通路中的作用,研究团队运用交叉遗传等方法特异性地敲除此类DRG感觉神经元。当敲除这类神经元后,低强度针刺刺激后肢穴位ST36不能激活迷走神经-肾上腺通路,也无法抑制LPS(细菌脂多糖)所诱发的炎症风暴;而敲除此类神经元并未影响高强度刺激后肢穴位ST36和腹部穴位ST25所诱导的交感神经抗炎通路。研究团队进一步运用交叉遗传的方法特异性诱导光敏蛋白CatCh表达于PROKR2-Cre标记的神经元,并用473nm蓝光特异性地激活支配后肢穴位ST36的此类感觉神经纤维。研究发现,激活此类神经纤维能显著诱发迷走传出神经的放电,并且能以迷走神经依赖的方式诱导肾上腺释放儿茶酚胺类神经递质,抑制LPS诱导的促炎细胞因子释放,进而显著提高动物的存活率。这一部分研究结果,几乎模拟了低强度电针刺激后肢穴位ST36的抗炎效果。最后,研究人员根据PROKR2-Cre标记的 感觉神经纤维的组织支配模式准确验证了对低强度电针刺激诱导的抗炎效应结构基础。而与下肢胫骨附近筋膜组织中的密集投射相反,下肢后部的肌肉组织中,包括小腿的腓肠肌和大腿区域的半腱肌,PROKR2-Cre感觉神经纤维支配很少。低强度针刺刺激这些部位未能显著抑制 LPS诱导的炎症反应。奇妙的是,PROKR2-Cre神经纤维很少投射的腓肠肌和半腱肌等部位,正好很少分布传统穴位。进一步研究发现, PROKR2-Cre标记的感觉神经元也密集支配到前肢的深层筋膜组织(如桡骨骨膜),此处为手三里穴区(LI10),进一步通过针尖靠近含有这类神经纤维的桡神经深支,对其进行了双侧低强度刺激,发现针刺刺激此穴位也可通过此类神经元和迷走神经依赖方式,显著抑制LPS诱导的炎症反应。以上研究表明,对于针刺刺激诱导迷走神经-肾上腺抗炎通路,存在躯体部位的选择性(如有效的 ST36 、LI10 和无效的 ST25穴位)、穴位特异性(如ST36 与无效的后肢肌肉中的传统非穴位)。这种穴位的相对特异性与PROKR2神经纤维的部位特异性分布有关。此外,针刺强度、深度、检测结果指标都是影响穴位特异性发挥作用的重要要素。这些发现充实了针灸等体表刺激疗法的现代科学内涵,为临床优化针刺刺激参数,诱发不同自主神经反射,从而治疗特定的疾病(如炎症风暴等)提供了重要的科学依据。据悉,该研究获得了复旦大学王彦青教授、中国中医科学院针灸研究所景向红研究员的支持帮助,福建中医药大学王志福副教授、中国中医科学院针灸研究所宿杨帅博士, 还有杨维、祁鲁、傅鸣洲参与了本研究的工作。
  • 检测技术和标准无可挑剔——“瘦肉精”为何屡打不死
    3月16日在郑州市一家双汇连锁店拍摄的双汇产品。新华社发    你吃过“瘦肉精”吗?  今年315特别行动《“健美猪”真相》在CCTV新闻频道播出后,“瘦肉精”再次成为社会关注焦点。  据不完全统计,1998年以来我国相继发生19起“瘦肉精”中毒事件,中毒人数达1700多人,且有人死亡。据报道,最早的“瘦肉精”中毒事件发生在香港,1998年5月,17人因食用内地供应的猪内脏而致中毒。1999年10月6日,浙江省嘉兴市57人中毒 2000年4月14日,广东博罗县龙华镇30人中毒 2000年10月9日,香港57人中毒 2001年11月7日,广东河源747人中毒 2006年9月上海300多人中毒 2009年2月,广州70多人中毒,这是广州第6次中毒事件。  每公斤猪肉残留几微克就会引起中毒  “瘦肉精”是β-肾上腺素兴奋剂,是一种人体平喘药物。将它添加在饲料里可以提高饲料的利用率、加快动物生长速度、使猪的瘦肉率提高近10%,因此有了“瘦肉精”之称,造成人体中毒的主要是β-肾上腺素兴奋剂中的盐酸克伦特罗和莱克多巴胺。  首都医科大学附属北京朝阳医院副院长沈雁英教授告诉记者:“‘瘦肉精’进入猪体之后存留的时间较长,主要分布于肝脏、肾、肺和肌肉。由于‘瘦肉精’的化学性质稳定,需要加热到172℃才能分解,因此,一般烹饪方式并不能将猪肉和脏器中残留的‘瘦肉精’毒性破坏掉。”  “每公斤猪肉中残留几微克盐酸克伦特罗就能引发人体中毒症状,迅速造成心率过速,同时使细胞内血钾降低导致心律失常,对原有心律失常的病人更易发生心肌梗死。”沈雁英解释,一般情况下猪肝“瘦肉精”的残留是肌肉的200倍,一餐食用含“瘦肉精”的猪肝半斤以上,约15分钟至6小时就会出现中毒症状。人吃了“瘦肉精”残留量较高的猪肉和内脏的中毒症状表现为:面红口渴、皮肤出现过敏性红色丘疹、心情烦躁不安、失眠、手指震颤、足有沉感、严重时不能站立 肌肉颤动伴有疼痛 同时还会出现心动过速,乏力、恶心呕吐、耳鸣、头痛、头晕等系列代谢紊乱和障碍性中毒等症状。  沈雁英认为,“瘦肉精”轻度中毒者不会有大问题,但是对老年人、心率失常、高血压、青光眼、糖尿病、甲状腺机能亢进等疾病患者危害较大。他建议:食用猪肉后一旦出现面色潮红、头痛、头晕、胸闷、心悸、心慌、四肢发抖等症状,应立即把病人送往医院对症抢救,并将吃剩的食品留样,以备检测。如果进食后症状轻微,只要停止进食,平卧,多饮水,静卧半小时后会好转。  我国“瘦肉精”检测标准为零  多年来,我国政府一直把健全饲料法规,严禁在饲料中滥用添加剂作为保证饲料业健康稳定快速发展和保障人民生命健康的重要措施。1997年发布了《关于严禁非法使用兽药的通知》和《允许作饲料药物添加剂的兽药品种及使用规定》,明令禁止使用“瘦肉精”。2000年4月,农业部和国家药品监督管理局联合发出《查处非法生产、销售和使用盐酸克伦特罗等药品的紧急通知》。2001年农业部组织制定的《饲料中盐酸克伦特罗的测定标淮》要求,任何“瘦肉精”在食用动物中均不得检出。2002年2月,农业部会同卫生部和国家药品监督管理局联合出台了《禁止在饲料和动物饮用水中使用的药品目录》,将盐酸克伦特罗和莱克多巴胺等7种“瘦肉精”列为禁用药品,并列入年度例行监测计划。2008年,最高人民检察院、公安部规定新的刑事案件立案追诉标准,对使用“瘦肉精”养殖生猪,以及宰杀、销售此类猪肉的,将以生产、销售有毒、有害食品罪追究刑事责任。  在全球禁止使用“瘦肉精”用于动物食品的背景之下,执行任何“瘦肉精”不得检出标准的有我国和台湾地区、欧盟等,允许莱克多巴胺微量检出的国家和地区有加拿大、美国、联合国粮食及农业组织、世界卫生组织等。  “我国的技术和标准都是与国际接轨的。”天津大学生命科学与工程研究院副院长甘一如教授介绍。对“瘦肉精”主要是在实验室内使用高效液相色谱仪和气相色谱仪对活猪尿液或屠宰后的胴体进行化学检测。“这两种检测方法的优点是检测精确度高,缺点是仪器几十万元一台,难于操作且检测过程烦琐,检测时间长达一两天,等检验结果出来,抽检的同批猪肉或内脏早已成为人们的腹中之物。”  为了方便快捷地对“瘦肉精”进行检测,英国和德国于2005年相继开发出了检测肉品及饲料中“瘦肉精”的酶联免疫吸附检测试剂盒,使用免疫技术,用快速检测加实验室检测的方法检测“瘦肉精”。在我国,近两年也相继开发出类似免疫技术产品,2009年天津大学与上海派坤生物工程有限公司联合研发的胶体金免疫层析法,使用一张试纸,5分钟之内,就能从活猪尿液、猪胴体及熟肉产品中又快又准地检测出盐酸克伦特罗和莱克多巴胺,测定胶体金免疫层析法(中华人民共和国农业部 标准编号:NY/T 933-2005)的行业标准也于当年发布,并用于质检部门进行抽检。现在,消费者用试纸自己也能进行检测,一张试纸只需10元。目前,天津大学正在继续向消费者进行赠送。  不是仅靠技术和标准就能够解决的问题  尽管我国政府三令五申,在技术层面上对“瘦肉精”的检测技术和标准也无可挑剔,然而“瘦肉精”事件却连发不止。记者连线采访的多位专家一致认为,除执法问题和利益趋动外,还有些问题也不可忽视。  由于实验室检测价格昂贵,因此,许多地方轻易不进行检测。另外,目前市场上,使用免疫学技术快速检测“瘦肉精”的试剂质量多种多样。在上海超市或农贸市场,虽然每天都有检测人员对柜台上的猪肉进行常态检测,但他们并不是专业检测人员,使用的试剂也五花八门,其中有的灵敏度较低,没有经过相关部门鉴定,常常造成漏检,让“瘦肉精”含量较低的猪肉走上消费者的餐桌。天津大学与上海派坤生物工程有限公司此前在南方进行的调研发现,许多市场里已经过检测的猪肉,仍能检测出残留的莱克多巴胺。  再有,我国猪的养殖大多为农户分散养殖,与大规模的工业化养殖相比,检测的可控度很低,河南“健美猪”事件中大部分都是分散养殖的猪。  专家们认为,除加强执法外,相关部门还应该在统一快速检测试剂技术标准、检测常态化以及工业化养殖方面下工夫,真正做到从养殖方式、饲料喂养、屠宰、销售到餐桌安全一体化。“我们的目标不是让消费者自己拿着试剂到市场上去自行检测,而是要从源头严格把关,让违法者胆战心惊,让消费者放心。”上海派坤生物工程有限公司总经理高晨昊说。
  • 食品中禁限用药物及环境污染物识别检测技术研究取得最新进展
    针对食品安全和北京市环境污染现状,北京市科委于2012年启动实施了&ldquo 食品中禁限用药物及环境污染物识别检测技术研究&rdquo 课题。目前,该课题在食品中禁限用药物识别检测技术研究和环境污染物识别检测技术研究等方面取得了新的进展。  通过研究,建立了肾上腺素受体激动剂、性激素、精神药品等60种药物的禁限用药物识别谱库,建立了动物肌肉、肝脏、肾脏等动物源性食品中肾上腺素受体激动剂、性激素、精神药品等多种禁限用药物同时定量检测方法,构建了食品中痕量多环芳烃、烷基酚、邻苯二甲酸酯多组分检测技术体系,覆盖了23种多环芳烃、3种烷基酚、17种邻苯二甲酸酯的食品污染物,涉及的食品种类包括烧烤肉制品、食用植物油、水产品三类重点食品。  本课题通过食品中禁限用药物和环境污染物识别检测技术的应用,能够提升重大食品安全突发事件应急处理能力与食品安全日常监管能力,完善首都食品安全风险监管体系,为政府科学决策、快速应对突发食品安全事件提供强有力的技术支持。
  • 食品补充检验方法《植物源性食品中奥克巴胺的检测》解读
    一、目的和依据奥克巴胺也叫章鱼胺,因首次于章鱼唾液中发现而得名,是一种天然的β3-肾上腺素能受体激动剂,具有对-羟苯-β-羟乙胺的化学结构,是去甲肾上腺素的同类物。世界反兴奋剂组织《世界反兴奋剂条例国际标准禁用清单》(WADA清单)中明确将其列为赛内禁用物质。研究表明奥克巴胺在水果、蔬菜、肉、奶和鱼等食品中被检出,然而,目前关于食品中奥克巴胺的研究和监测多关注动物源食品,对植物源食品关注较少。研究发现,奥克巴胺在柑橘类植物源性食品及相关制品中被广泛检出。此外,在某些保健食品或膳食补充剂中可能非法添加奥克巴胺用于减肥。适量的奥克巴胺对人体的健康有益,但过量摄入会引起人体的内分泌紊乱和新陈代谢失衡,引起诸如头痛、恶心、心悸、血压变化、血糖不稳、呼吸紊乱等反应,严重的还会危及生命。目前国内关于奥克巴胺的检测标准仅有GB 5009.208-2016《食品安全国家标准 食品中生物胺的测定》,其仅适用于酒类、调味品、水产品以及肉类,不包含柑橘类水果及其制品等植物源性食品,我国尚无适用植物源性食品中奥克巴胺检测的国家标准,无法满足大型赛事食源性兴奋剂防控及日常监管需求。为避免食用含奥克巴胺浓度较高的柑橘类水果及制品、保健食品或膳食补充剂给运动员带来兴奋剂检出风险,降低对人民群众身体健康的不良影响,北京市食品检验研究院制定了BJS202211《植物源性食品中奥克巴胺的检测》方法。二、在食品监管实际中的应用BJS202211《植物源性食品中奥克巴胺的检测》适用于柑橘类(柑橘、橙子、柚子)及其制品(橘子汁、橙子汁、柚子汁)中奥克巴胺含量的测定,可用于柑橘等植物源性食品中奥克巴胺分布情况、本底含量等情况的系统调研活动,用以在大型赛事过程中加强柑橘类及果汁制品中奥克巴胺的内部控制。该检测方法的制定可为食品安全监管提供技术支撑,对减少运动员兴奋剂检出风险具有重要意义。三、先进性和创新性本次是对《植物源性食品中奥克巴胺的检测 液相色谱-串联质谱法》的首次制定。试样中的奥克巴胺经1%甲酸50%乙腈溶液提取、固相萃取净化后,采用液相色谱-串联质谱仪进行分离和测定,内标法定量。由于食品基质中组分复杂,本方法引用了内标,可使基质效应得以矫正,使其具有更好的适用性,从而极大提高分析结果的准确度、精密度和方法的可靠性。使用的液相色谱-质谱联用技术是近年来广泛使用的检测技术,由于其准确、高效和高灵敏度,符合目前食品安全检测所追求的快速高效的要求。该方法填补了奥克巴胺在植物源食品中无检测方法标准的空白,对柑橘及其制品中奥克巴胺含量的检测,可以建立奥克巴胺的防控规范,避免运动员的误食风险,为供赛食品供应渠道把关筛选工作提供了技术支撑,为大型体育赛事供应食品食源性兴奋剂防控工作提供了技术手段。四、操作注意事项实验操作中需要注意的要点如下:1.称取样品后加入内标,再进行提取净化操作,在前处理步骤之前加入内标可以更好地校正前处理带来的目标物损失;2.由于内标离子(139.193.1)对附近存在较强的基质干扰,在选择色谱柱及流动相条件时,应着重考察此内容;3.试样中奥克巴胺的测定值超曲线范围时,须重新进行测定,建议适量减少称样量,并通过增加提取液、复溶液体积等方式,对样品进行重新测定。在此过程中,要注意对稀释倍数进行准确的计算,使最终溶液中内标含量与标准溶液上样浓度保持一致,使其上机浓度在线性范围内再进行定量。
  • 国家食药监局征求化妆品中禁用物质检测方法
    2012年3月15日,国家食品药品监督管理局保健食品化妆品监管司组织起草了化妆品中替硝唑等禁用物质或限用物质检测方法(征求意见稿),并向社会公开征求意见,详情如下:国家食品药品监督管理局保化司关于征求化妆品中替硝唑等禁用物质或限用物质检测方法意见的函  食药监保化函[2013]127号  各省、自治区、直辖市食品药品监督管理局(药品监督管理局),有关单位:  为进一步加强化妆品安全评价工作,规范化妆品中禁用物质或限用物质检测方法,我司组织起草了化妆品中替硝唑等禁用物质或限用物质检测方法(征求意见稿)。现向社会公开征求意见,请将修改意见于2013年3月31日前反馈我司。  联 系 人:林庆斌  联系电话:010-88330884  传  真:010-88373268  电子邮件:linqb@sfda.gov.cn  附件:1.化妆品中替硝唑等15种禁用硝基咪唑类抗生素的检测方法(征求意见稿)、起草说明及编制说明     2.化妆品中11种二苯酮类紫外线吸收剂的检测方法(征求意见稿)、起草说明及编制说明     3.化妆品中甲氧基肉桂酸乙基己酯等16种紫外线吸收剂及二苯酮的检测方法(征求意见稿) 、起草说明及编制说明     4.化妆品中氟离子、溴酸根、碘离子、氰根的检测方法(征求意见稿)、起草说明及编制说明     5.化妆品中肾上腺素、去甲肾上腺素、异丙肾上腺素的检测方法(征求意见稿)、起草说明及编制说明     6.反馈意见表                   国家食品药品监督管理局保健食品化妆品监管司                          2012年3月15日
  • 复旦学者:PM2.5暴露可引起人体应激激素分泌增加
    p  复旦大学16日披露,该校公共卫生学院教授阚海东课题组在大气细颗粒物(PM2.5)健康危害机制研究中取得新进展,发现PM2.5暴露可引起人体应激激素水平显著上升,并促进机体的脂类氧化以及糖类和氨基酸的代谢。/pp  本研究首次将代谢组学和随机双盲交叉实验设计结合用于PM2.5人体健康研究,结果显示PM2.5可以激活人体下丘脑-垂体-肾上腺轴(HPA轴),引起神经内分泌活动和基础代谢发生改变,进而产生血压升高、炎症反应等一系列变化。/pcenterimg alt="点击进入下一页" src="http://i2.chinanews.com/simg/cmshd/2017/08/16/23ce89cf50fb4892a1d9f810c65a9fca.jpg" width="500" height="332"//centercenter /centerp   据悉,这一发现为防治PM2.5相关的健康风险提供了新的思路。复旦大学方面披露,相关成果发表于《循环》杂志(Circulation)。/pp  目前已有大量流行病学证据证实PM2.5能够对人体的心血管系统造成危害,但其作用机制至今尚未完全明确。对此,阚海东团队采用随机交叉的实验设计,观察志愿者暴露于不同PM2.5水平后的代谢组学差异。/pp  研究发现,不同PM2.5暴露水平下,志愿者小分子血清代谢物出现显著差异,并最终筛选出了97种差异代谢物。受试者暴露于PM2.5后,血清中应激激素(皮质醇、肾上腺素和去甲肾上腺素)显著升高,且伴有糖类、蛋白质代谢和脂类氧化增强等改变。这些变化可能是PM2.5暴露对居民心血管系统产生健康危害的途径之一。/pp  据悉,该研究获得了国家自然科学基金委“中国大气复合污染的成因、健康影响与应对机制联合重大研究计划”的资助。/p
  • 科学家揭示神经损伤后的自发性疼痛产生的新机制
    自发性疼痛是指在没有外界刺激的情况下发生的疼痛。它是慢性疼痛的主要症状。发生机制仍不清楚,仍然难以治疗。近期,来自约翰霍普金斯大学和辛辛那提大学的研究团队利用在体成像技术研究了同步聚集放电引起神经损伤后的自发性疼痛发生机制,证实交感神经-肾上腺素受体通路介导了同步聚集放电和自发性疼痛的产生。该研究成果发表在《Neuron》上,题为:Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain。  研究人员对背根神经节(DRG)神经元进行了在体成像,发现周围神经损伤后异常自发活动的一种独特形式:相邻的DRG神经元聚集同步、偶尔性放电。聚集放电水平与神经损伤诱发的自发性疼痛行为直接相关。研究人员进一步证明了聚集放电由交感神经的活动触发。交感神经在损伤后会传导到DRG,去甲肾上腺素是介导这种独特放电的关键神经递质。交感神经活性和去甲肾上腺素受体对于DRG神经元同步聚集放电和自发疼痛行为至关重要。  这项研究提出了阻断交感神经介导的同步聚集放电可能是治疗自发性疼痛的新手段,为在临床上靶向该通路治疗神经损伤引起的自发性疼痛提供了理论支持和研发方向。   论文链接:  https://www.sciencedirect.com/science/article/abs/pii/S0896627321008345?via%3Dihub
  • 全新上线!曼哈格氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)
    今日,曼哈格和博莱克联合研发生产的蛋白质氨基酸/神经递质/儿茶酚胺检测试剂盒(液相色谱-串联质谱法)隆重推出。本次推出的3套kit是建立在高效液相色谱质谱平台上,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测。检测试剂盒检测指标▣ 20种蛋白质氨基酸Asparagine天冬酰胺proline脯氨酸Histidine组氨酸Tyrosine酪氨酸Serine丝氨酸Methionine甲硫氨酸Glycine甘氨酸Lysine赖氨酸Glutamine谷氨酰胺Valine缬氨酸Arginine精氨酸Isoleucine异亮氨酸Aspartic acid天冬氨酸Leucine亮氨酸Glutamic acid谷氨酸Phenylalanine苯丙氨酸Threonine苏氨酸Tryptophan色氨酸Alanine丙氨酸Cysteine半胱氨酸▣ 12种神经递质Norepinephrine去甲肾上腺素γ-Aminobutyricacid4-氨基丁酸Metanephrine甲氧基肾上腺素Octopamine章鱼胺Epinephrine肾上腺素Tyramine酪胺Dopamine多巴胺Agmatine胍丁胺Serotonin5-羟色胺Methoxytyramine甲氧酩胺Tryptamine色胺Histamine组胺▣ 6种儿茶酚胺Normetanephrine甲氧基去甲肾上腺素Epinephrine肾上腺素Norepinephrine去甲肾上腺素Dopamine多巴胺Metanephrine甲氧基肾上腺素Methoxytyramine甲氧酪胺检测试剂盒产品优势检测试剂盒适用仪器Agilent 1290-6470 LC-MS/MS 以及6430 / 6465 / 6495系列SCIEX QTRAP 6500+ LC-MS/MS 以及4500 / 5500 / 7500系列检测试剂盒技术专利检测试剂盒关于 曼哈格 & 博莱克
  • 赛默飞发布针对减肥产品中左旋肉碱的检测方案
    2014年3月5日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)于近日发布了针对减肥产品中左旋肉碱的检测方案。目前市面上减肥产品琳琅满目,其中有很多产品都以左旋肉碱为主要功能成分。左旋肉碱(L-carnitine,β-羟基γ-三甲铵丁酸)又称肉毒碱或维生素BT,是一种促使脂肪转化为能量的类氨基酸,现已广泛应用在医药、保健和食品等领域,瑞士、法国、美国和世界卫生组织都将其认定为合法的多用途营养剂。 在中国,食品添加剂卫生标准GB2760-1996将左旋肉碱酒石酸盐列为食品营养强化剂,可应用于咀嚼片、饮液、胶囊、乳粉及乳饮料等产品。在化学性质方面,左旋肉碱极性较强,缺少发色基团,定量分析困难。国内外对左旋肉碱的测定主要有酶法、电泳法、电化学法和高效液相色谱法等。高效液相色谱法在这当中具有突出优势,但其中部分方法需要衍生、部分方法则存在灵敏度较低的问题。而鉴于准确性较差,且设备较贵等原因,其它分析方法的应用均非常有限。 赛默飞拥有全面和先进的离子色谱产品,此次发布的离子色谱法可测定水溶液中能电离的物质。在酸性溶液中,左旋肉碱表现为阳离子特性,带正电荷,可用阳离子交换色谱柱实现分离。采用非抑制型离子色谱法来测定左旋肉碱,整套方法具有简单、快速、干扰少、环保等特点。相比常见液相色谱方法,该方法前处理简便、检测快速,用于实际样品的检测无需衍生化,避免了繁琐的操作,节约时间,重复性好。 赛默飞ICS-1100离子色谱下载相关应用文章请点击:http://www.thermo.com.cn/Resources/201403/41538156.pdf 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 国家食品药品监督管理总局关于8批次面膜类化妆品不合格的通告
    近期,在国家食品药品监督管理总局全国范围组织开展面膜类化妆品监督抽检中,发现8批次产品存在非法添加禁用物质、违规使用限用物质等问题。现将有关情况通告如下:  一、不合格产品涉及的生产企业和不合格项目为:标称朗曜日化(上海)有限公司生产的金蔻4合1密集润白修复面膜和3D紧致V脸弹力面膜两种产品,标称上海臻美高科技发展有限公司生产的i尚i膜瓷娃娃0毛孔面膜,标称广州澳谷生物科技有限公司生产的仟佰草茶树清痘控油隐形面膜,标称广州天姿丽化妆品有限公司生产的透明质酸密集补水隐形蚕丝面膜和水感透亮柔嫩细肤蚕丝面膜两种产品,标称广州市白云区美莲葆化妆品厂生产的左旋C焕采驻颜蚕丝面膜,标称(中德合资)肇庆市清秀日化有限公司生产的美白凝肌蚕丝面膜。上述产品均检出含有禁用物质氯倍他索丙酸酯。  氯倍他索丙酸酯属于糖皮质激素类物质,长期使用含有糖皮质激素的化妆品可能导致面部皮肤黑斑、萎缩变薄等问题,还可能出现激素依赖性皮炎,《化妆品卫生规范》(2007年版)规定其为化妆品禁用物质。  二、上述不合格产品的生产企业所在地上海市、广东省食品药品监管部门正在进行核查。国家食品药品监督管理总局要求上海市、广东省食品药品监管局核实后责令企业停产整顿,对已上市销售产品立即采取下架、召回等措施。上海市和广东省食品药品监管部门要对上述企业立案调查,彻底查清不合格产品的批次、数量和流向,并将相关信息通报产品流向地的食品药品监管部门;在查清事实的基础上,对企业违法违规问题依法查处,涉嫌犯罪的移交公安部门追究刑事责任。  三、各地经营上述产品的商业企业应立即停止销售,就地下架封存,并将有关情况报告当地县级以上食品药品监管部门。各地下架封存情况,由省级食品药品监管部门于8月20日前报国家食品药品监管总局。  特此通告。 关于氯倍他索丙酸酯(以下信息来自搜狐媒体平台入驻作者罗志,男,食品药品安全领域科普专栏作者) 以前听说有的面膜里违法添加荧光剂,这个比较好理解,荧光剂可以让使用者的皮肤洁白有光泽。但是这次检出的氯倍他索丙酸酯是个什么东西呢?它究竟给使用者带来什么样的使用体验和不良后果呢?  打开《中华人民共和国药典》,里面对氯倍他索丙酸酯描述得十分清楚:它除了这个名字,还有许多别名,如氯氟甲泼尼松、丙酸氯倍他索、丙酸氯倍米松、特美肤等,其实都是一种物质,属于糖皮质激素家族中的一员。  如果大家对“糖皮质激素”还有点陌生,它的另外一个名字“肾上腺皮质激素”应该就熟悉多了,这是由肾上腺皮质分泌的一类甾体激素。  糖皮质激素可用于一般的抗生素或消炎药所不及的病症,2003年“非典”时期,为抢救生命和控制疫情,糖皮质激素被大量用于非典紧急治疗。虽然短期效果明显,挽救了了患者的生命,但由于激素的过长时间、过大剂量的使用,许多患者因为药物的副作用出现股骨头坏死症状以及肺部功能障碍,很多人丧失劳动能力,生活难以自理,严重者不得不更换股骨头关节。 从以上这个例子上就可以看出,医生们对糖皮质激素这家伙可谓又爱又恨。糖皮质激素具有强大高效的抗炎、抗过敏、抗中毒、抗休克的作用,但考虑其巨大的副作用,在给患者用药时还是慎之又慎。  糖皮质激素的抗炎能力强,这次检出的氯倍他索丙酸酯更可以称之为“糖皮质激素家族中的战斗机”。一组数据可以让大家目瞪口呆:在同等剂量下,其抗炎作用为同为糖皮质激素家族成员的氢化可的松的112.5倍,倍他米松磷酸钠的2.3倍,氟轻松的18.7倍!这做面膜的黑心商人加的料实在够猛,也确实蛮拼的。  临床上,皮肤科的医生会使用氯倍他索丙酸酯乳膏或霜剂,用来治疗银屑病、顽固性湿疹、扁平苔藓、盘状红斑狼疮等疾病,但使用时会明确对患者说明这种药物是不宜长期使用的,以防产生皮质激素的全身作用等其它不良后果。  正因为短期效果明显,有的不法美容院、化妆品厂家将此类激素掺进嫩肤、美白的化妆品中蒙骗消费者,消费者用了后,感觉效果“立竿见影”,发现自己的皮肤变得紧致而白嫩,连痘痘什么都缓解多了,于是坚信这些产品的神奇功效。殊不知长期使用含有糖皮质激素的化妆品可能导致面部皮肤黑斑、萎缩变薄等问题,还可能出现激素依赖性皮炎。国家颁布的《化妆品卫生规范》(2007年版)规定此类物质为化妆品禁用物质。因此,郑重提醒爱美的女性朋友,如果你使用的面膜在极短时间内让你有很明显的美白效果,颜值提高过快了,就要高度怀疑这种产品极有可能是添加了激素类物质的。 天津阿尔塔科技有限公司天津阿尔塔科技有限公司提供质量稳定的高纯度分析检测用有机化学标准参照物纯品,纯品溶液,和各种混标溶液,涵盖食品检测、环境监测、医药研发标准品参照物,兽残、农残标准品参照物等。所有产品都可提供完整的质量检测报告(CoA)、MSDS、储存记录,可溯源。我们致力于以优质的产品、可靠的质量、合理的价格、负责的态度、互相尊敬的关系与广大客户合作共赢。
  • 揭开“瘦肉精”在中国的“前世今生”
    由于目前“瘦肉精”属敏感话题,记者向几位食品检测部门咨询,均无法得到直接答复,但是向专家请教,却了解到“瘦肉精”大致的来龙去脉。据几位专家介绍,以盐酸克伦特罗为代表的“瘦肉精”,早在大规模引进中国之前,就已在国外出现过大面积中毒事故,并被多个国家禁止。  据介绍,作为人体传统平喘药β-肾上腺素兴奋剂,其中盐酸克伦特罗的疗效最为突出。上世纪80年代,美国一家公司意外发现其具有明显的促进生长、提高瘦肉率及减少脂肪的效果,于是盐酸克伦特罗等β-肾上腺素兴奋剂被学者赐名为“营养重分配剂”或“促生长剂”,被国际畜禽科学家广泛研究。  最早向国内介绍“瘦肉精”的是中国农科院畜牧所,1987年一位教授翻译的美国饲料杂志上的《使猪多长瘦肉的新营养分配剂》的论文发表在《中国畜牧兽医》上,对β-肾上腺素兴奋剂进行了介绍。1988年四川饲料所的研究员也摘译了类似文章发在《中国畜牧兽医》上,介绍将人工合成的β-肾上腺素兴奋剂,添加到牛、羊、猪和家禽饲料中可提高动物蛋白质含量约15%,减少脂肪含量约18%。  对盐酸克伦特罗提高瘦肉率作用的研究,原内蒙古农牧学院为国内最早。1989年,他们的实验发现盐酸克伦特罗对胴体瘦肉率都有不同程度的提高作用,但是他们仅关注了药品在肉里的残留问题,对内脏没测出副作用,研究论文发表在《养猪》杂志1989年第4期。  在中国,盐酸克伦特罗真正成为畜牧界的热门研究是在上世纪八十年代末,主要研究其对猪、鸡、鸭和兔的影响,成为农业部的“七五”重点课题之一,目的在于了解它的作用、副作用、怎么用最合理、残留量的测定等。当时,东北农大也加入了这一热门研究,同样也只关注到动物营养及生长效应,忽视了毒副作用和体内代谢的观测。这一时期,我国这方面的研究论文和综述有四五十篇之多。之后,各省主管农业的副省长加入了“瘦肉精”的推广行列。  但在我国研究发端之时,欧共体已经于1988年1月1日起禁止盐酸克伦特罗物质当饲料添加剂使用。随后,盐酸克伦特罗在西方国家陆续引发中毒事件。1989年10月至1992年,西班牙255人中毒 1990年秋季,法国22人中毒 意大利和美国亦因非法使用而出现过中毒事件。1991年,盐酸克伦特罗被美国食品和药物管理局禁止使用在食用动物身上。  但是当年的中毒事件却未被我国相关专家们重视。盐酸克伦特罗从未被任何国家批准为兽用饲料添加剂,是国际畜牧界的违禁品,也未在当时的研究论文和综述里提及。在这期间,几个同行专家曾从研究角度认为不能在畜牧业推广,但影响并不大。  鉴于盐酸克伦特罗在国际上引致的安全性问题,1997年3月,我国农业部下文严禁β-肾上腺素类激素在饲料和畜牧生产中使用,盐酸克伦特罗名列禁单第一位。
  • 又见“瘦肉精”,食品安全如何保障?
    2021年央视315晚会如期举办,曝光了河北沧州青县养殖户在养羊过程中,添加瘦肉精的情况。自2011年瘦肉精事件曝光后,社会各界高度重视,采取了一系列整治措施,谁料时隔10年“瘦肉精”又回到了我们的视野中。什么是瘦肉精呢? 瘦肉精是指能够促进瘦肉生长的饲料添加剂。主要包括克伦特罗,沙丁胺醇,莱克多巴胺等肾上腺素受体激动剂。瘦肉精会在动物组织内形成残留,消费者食用后直接危害人体健康。国家农业部176号、193号和1519号公告规定禁止在食用动物中使用瘦肉精。 食品中瘦肉精分析难点 中华人民共和国农业部公告严禁β-腎上腺素类激素在饲料和畜牧生产中使用。而针对于出口食品,质检系统确定了了更严格的出口判定标准(0.05μg/kg),食品中瘦肉精检测已经进入超痕量时代。因此,使用有效的前处理手段来净化并富集样品在这一检测中显得尤为重要。 而同时检测多种β-腎上腺素类激素,目前最普遍的前处理手段为离线SPE的方法,参考的标准有国标GB/T 22286-2008、行标SN/T 1924-2011等,虽然使用这些标准中的方法能取得满足分析要求的回收率和准确度,但离线操作步骤非常繁琐,耗费大量的人力物力。针对瘦肉精检测,早在2013仪真分析就在其老一代Symbiosis Pico超高压液相-在线SPE色谱联用系统上,采用细粒径MCX柱,使用AB SCIEX Triple Quad质谱系统开发出完整的在线分析动物源食品中瘦肉精的解决方案,帮助客户快速高效检测动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇等的残留量。(了解更多详细信息,请访问仪真分析应用文章《在线 SPE 对食品中瘦肉精分析测试报告》) 分析结果 1. 方法最低定量限图1:基质加标的最低定量限图谱图中红色是克伦特罗最低定量限图谱,RT:5.12min,LLOQ为0.05ug/kg;图中绿色是沙丁胺醇最低定量限图谱,RT:3.39min,LLOQ为0.5ug/kg;图中蓝色是莱克多巴胺最低定量限图谱,RT:4.10min,LLOQ为0.5ug/kg。 2. 方法线性 表2 回归方程、相关系数 3. 方法加标回收率 表3:待测物在不同基质中的加标回收率在线SPE解决方案升级更新为帮助更多用户解决样品前处理问题,仪真分析与德国Axel Semrau公司在优异的Symbiosis系统上进行升级,推出了新一代Chronect Symbiosis超高压液相-在线SPE色谱联用系统,为食品分析用户提供了更为优异的液质分析前处理系统。 瘦肉精分析解决方案——Chronect Symbiosis 超高压液相-在线SPE色谱联用系统全自动在线SPE解决方案特点1、 可选配更多样品前处理模块(如涡旋、离心等),减少人工操作2、 提供多种SPE前处理溶剂(最多13种可选)3、 SPE前处理与液质分析并行运行,最大化节省分析时间4、 独特的小柱更换方式,最大化消除残留5、 SPE小柱可重复利用,节约成本6、 多功能CHRONOS软件,可与多品牌质谱系统无缝对接 目前,新一代Chronect Symbiosis超高压液相-在线SPE色谱联用系统已广泛应用于食品分析领域,为食品分析用户开发了多种应用方案,如食品中草甘膦残留量检测分析、肉类中的兽药抗生素残留检测、梨、番茄、面粉中的中的矮壮素和助壮素分析等。仪真分析长期聚焦食品分析领域,致力于食品解决方案的开发和研究,为餐桌上的一块肉、一杯奶、一颗蛋,我们一直在努力。
  • 【好文】牛奶中左旋咪唑残留量测定的前处理方法
    不敢独享!牛奶中左旋咪唑残留量测定的前处理方法坛墨质检标准物质中心 昨天左旋咪唑的危害及检测目的左旋咪唑作为一种广谱型抗线虫药,药源丰富,被广泛应用于畜禽养殖企业,效果良好。但不合理地使用左旋咪唑会造成动物产品中残留,研究表明,人体摄入过量左旋咪唑可引起畸变、癌变等症状,严重危害人类健康。为此我国农业农村部和国家市场监督管理总局2019年发布的gb 31650-2019《食品安全国家标准食品中兽药最/大残留限量》中明确规定了左旋咪唑在动物靶组织中的残留限量,并且规定泌乳期和产蛋期禁用。本文阐述了如何将左旋咪唑从样品基质中分离提取出来,并经过净化后,转化成高效液相色谱仪可以检测的形式。以提取、净化为重点,依据国标gb 29681-2013,为检测人员和相关领域研究人员提供一定的参考。检测项目:左旋咪唑应用范围:牛奶高效液相色谱法方法原理:试料中残留的左旋咪唑,用碳酸盐缓冲液和乙酸乙酯溶液提取,c18柱净化,甲醇洗脱,高效液相色谱测定,外标法定量。前处理仪器:分析天平(感量0.00001 g和0.01 g);均质机;冷冻高速离心机;电热恒温水浴锅;旋涡混合器;茄形瓶(50 ml);离心管;滤膜(0.45 μm)。检测仪器: hplc-pda 试样的制备与保存取适量新鲜或冷藏的空白或供试牛奶,混合均质。取均质后的供试样品,作为供试试料;取均质后的空白样品,作为空白试料;取均质后的空白样品,添加适宜浓度的标准工作液,作为空白添加试料。试料于零下20 ℃以下保存。前处理方法1.提取称取试料5 g± 0.05 g,于离心管中,加碳酸盐缓冲液5 ml,加乙酸乙酯10 ml,混匀,6000 r/min离心10 min,取上清液于茄形瓶中,再加乙酸乙酯10 ml萃取一次,合并两次上清液,于50 ℃水浴旋转蒸发至干,加碳酸盐缓冲液5 ml溶解残余物,备用。2.净化c18柱(3 ml/500 mg)依次用水3 ml、甲醇3 ml和碳酸盐缓冲液3 ml活化,取备用液过柱,用水3 ml淋洗,用甲醇5 ml洗脱,收集洗脱液,于50 ℃水浴氮气吹干,用流动相1.0 ml溶解残余物,滤膜过滤,供高效液相色谱测定。国标解读及注意事项1.左旋咪唑用甲醇配成1 mg/ml的标准储备液,在2 ℃~4 ℃保存,可使用3个月。2.本方法使用碳酸盐缓冲液提取,乙酸乙酯萃取,c18固相萃取柱净化的方式进行目标化合物的提取净化。3.本方法采用两次萃取的方式,提高目标化合物的回收率。4.为保证固相萃取净化效果,过柱时需要控制流速,使溶液一滴一滴地流下。水淋洗后完全抽干小柱,再进行洗脱。5.左旋咪唑也可以使用液质联用仪进行检测,同时添加相对应的盐酸盐同位素内标,进行回收率的校正。参考文献gb 29681-2013 食品安全国家标准 牛奶中左旋咪唑残留量的测定 高效液相色谱法图1 牛奶中左旋咪唑残留量测定的前处理流程图左旋咪唑标准物质信息表我是一个闪光的标题左旋咪唑标准品信息表本文版权归坛墨质检,未经许可请勿转载 坛墨质检-标准物质中心标准物质业务咨询联系方式北方地区王宏姝:13671388957南方地区汪丽红:13501101929扫一扫,获取更多标物信息——成立于2007年,是一家标准物质/标准样品研发、生产、销售、服务为一体的高新技术企业,是中国cnas标准物质/标准样品生产者认可实验室(注册号:cnas rm0024),并通过iso9001:2015质量管理体系认证。江苏常州公司总部地址:中国常州检验检测认证产业园2号楼7-8层北京分公司地址:北京市经济技术开发区宏达南路五号宏达利德工业园区2号楼4层客服电话:4008-099-669自动传真:010-64338939 010-64339205网 址:www.gbw-china.com邮 箱:gbw@gbw-china.com
  • 2020年兽药残留标准制修订全面启动!
    近日,全国兽药残留专家委员会办公室发布了关于组织申报2020年兽药残留标准制定的通知。该通知中指出,按照农业农村部农业行业(国家)标准制修订工作部署,2020年兽药残留标准制修订工作已全面启动。本次制修订标准共71项,其中制定标准68项,修订标准3项。具体如下:2020年兽药残留标准制修订任务序号推荐司局任务名称类别立项理由实施年度1畜牧兽医局制定《动物性食品中异丙嗪残留量的测定LC-MS-MS》制定立项理由:屠宰环节非法用药,缺少检测方法技术指标:1.适用范围:猪、牛可食组织2.定量限:10ppb以下或尽可能低20202畜牧兽医局制定《禽蛋中维吉尼亚霉素残留量的测定LC-MS-MS》制定立项理由:维吉尼亚霉素作为药物饲料添加剂已退出使用,缺少禽蛋中残留检测方法技术指标:1.适用范围:鸡、鸭、鹅等常见家禽蛋2.定量限:10ppb以下或尽可能低20203畜牧兽医局制定《动物性食品中沃尼妙林、泰妙菌素及8-α-羟基泰妙菌素残留量的测定LC-MS-MS》制定立项理由:缺少泰妙菌素限量配套检测方法,沃尼妙林为同类药物一并列入检测技术指标:1.适用范围:猪、兔、鸡、火鸡可食组织2.定量限:依据GB31650-2019制定20204畜牧兽医局制定《禽蛋中斑蝥黄和β-阿朴-8’-胡萝卜素酸乙酯残留量的测定》制定立项理由:在养殖环节大量添加,缺少检测方法标准技术指标:1.适用范围:鸡、鸭、鹅等禽蛋2.定量限:根据最大残留限量制定20205畜牧兽医局制定《动物性食品中青霉素类药物残留量的测定LC-MS-MS》制定立项理由:参考已有的GB/T21315-2007、GB/T22952-2008、GB/T20755-2006、GB/T29682-2013、GB/T22975-2008、GB/T22952-2008和农业部公告781-11-2006、958-7-2007、1163-5-2009等标准制定技术指标:1.适用于猪、牛、羊、鸡、牛奶和鸡蛋、鱼、虾等可食组织中苄星青霉素、普鲁卡因青霉素等青霉素类药物的检测2.定量限:依据GB31650-2019制定20206畜牧兽医局制定《动物性食品中双甲脒及其代谢物残留量测定LC-MS-MS》制定立项理由:参考农业部1163号公告-3-2009制定技术指标:1.增加靶动物范围牛、羊、猪、水产2.改善优化前处理条件3.定量限:依据GB31650-2019制定20207畜牧兽医局制定《动物性食品中环丙氨嗪及代谢物三聚氰胺残留量的测定LC-MS-MS》制定立项理由:参考GB29704-2013制定,原标准仅有鸡肌肉和肝脏、鸡蛋,限量品种覆盖不全技术指标:1.适用范围:增加羊组织及羊奶的检测2.定量限:依据GB31650-2019制定20208畜牧兽医局制定《动物性食品中糖皮质激素类药物残留量的测定LC-MS-MS》制定立项理由:参考农业部公告1031-2-2008、958-6-2007及GB/T22957-2008、GB/T22978-2008、GB/T20741-2006制定技术指标:1.动物性食品包含猪、牛、羊组织及奶2.依据GB31650-2019制定20209畜牧兽医局制定《动物性食品中氨基糖苷类药物残留量的测定LC-MS-MS》制定立项理由:参考已有的GB/T21323-2007、GB/T22954-2008、22969-2008和农业部公告1163-7-2009、1025-1-2008制定技术指标:1.动物性食品包含该类药物限量标准项下所有靶动物及组织2.定量限:依据GB31650-2019制定202010畜牧兽医局制定《动物性食品中氯苯胍、地克珠利、常山酮等20种抗球虫药物残留筛查LC-MS-MS》制定立项理由:缺少该类药物的多残留筛查方法技术指标:1.药物种类:包含氨丙啉、氯羟吡啶、癸氧喹酯、地克珠利、二硝托胺、乙氧酰胺苯甲酯、常山酮、拉沙洛西、马度米星铵、莫能菌素、甲基盐霉素、尼卡巴嗪、氯苯胍、盐霉素、赛杜霉素、托曲珠利2.定量限:依据GB31650-2019制定202011畜牧兽医局制定《动物性食品中氯羟吡啶残留量测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:动物性食品包括牛、羊、猪、鸡、火鸡及牛奶;2.定量限:依据GB31650-2019制定202012畜牧兽医局制定《动物性食品中苯甲酸雌二醇残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:1ppb或尽可能低202013畜牧兽医局制定《动物性食品中潮霉素B残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:1ppb或尽可能低202014畜牧兽医局制定《动物性食品中卡拉洛尔残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202015畜牧兽医局制定《牛羊奶中氯霉素残留量的测定LC-MS-MS》制定立项理由:参考GB29688-2013,提高前处理回收率,扩大标准适用范围至羊奶等技术指标:1.适用范围:牛奶和羊奶2.定量限:不得过0.3ppb202016畜牧兽医局制定《猪可食组织中烯丙孕素残留量的测定LC-MS-MS》制定立项理由:缺少检测方法标准技术指标:1.适用范围:猪可食性组织2.定量限:不得过1ppb202017畜牧兽医局制定《猪、牛可食性中氟尼辛残留量的测定LC-MS-MS》制定立项理由:缺少限量配套方法技术指标:1.适用范围:猪牛可食组织及牛奶2.定量限:依据GB31650-2019制定202018畜牧兽医局制定《牛、鸡可食组织及牛奶中莫能菌素残留量的测定液相色谱-串联质谱法》制定立项理由:缺少限量配套方法技术指标:1.适用范围:牛、鸡可食组织及牛奶2.定量限:依据GB31650-2019制定202019畜牧兽医局制定《禽蛋中阿维拉霉素残留量的测定》制定立项理由:产蛋期禁用技术指标:1.适用范围:鸡、鸭、鹅蛋等2.定量限:10ppb以下或尽可能低202020畜牧兽医局制定《动物性食品中呋喃苯烯酸钠残留量的测定液相色谱-串联质谱法》制定立项理由:参考GB29703-2013,原标准采用正离子检测模式无法检测到待测物,应采用负离子模式制定技术指标:1.适用范围:畜禽产品、水产品、蛋、奶2.定量限:1ppb以下或尽可能低202021畜牧兽医局制定《动物性食品中玉米赤霉醇、玉米赤霉烯酮、己烯雌酚、己烷雌酚和己二烯雌酚残留量的测定LC-MS-MS》制定立项理由:参考GB/T20766-2006、GB/T20767-2006、GB/T21982-2008、GB/T22963-2008、GB/T22992-2008、GB/T23218-2008和农业部公告1025-19-2008、1077-6-2008制定技术指标:1.药物品种增加己烷雌酚和己二烯雌酚2.定量限:1ppb以下或尽可能低202022畜牧兽医局制定《水产品中间氨基苯甲酸乙酯甲磺酸(MS-222)残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:1ppb以下或尽可能低202023畜牧兽医局制定《牛羊奶和奶粉中氟苯尼考和氟苯尼考胺残留量的测定》制定立项理由:乳畜泌乳期禁用,缺少奶中检测方法技术指标:1.适用范围:牛、羊奶2.定量限:10ppb以下或尽可能低202024畜牧兽医局制定《动物性食品中万古霉素和去甲万古霉素残留量的测定》制定立项理由:万古霉素为禁用品种,缺少检测方法技术指标:1.适用范围:猪、牛、羊、家禽和水产2.定量限:1ppb以下或尽可能低202025畜牧兽医局制定《猪可食性组织氮哌酮及其代谢物氮哌醇残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:猪可食性组织2.定量限:依据GB31650-2019制定202026畜牧兽医局制定《动物性食品中克拉维酸残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.标准适用范围:猪、牛、家禽2.定量限:依据GB31650-2019制定202027畜牧兽医局制定《羊可食组织中地昔尼尔残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.标准适用范围:羊可食性组织2.定量限:依据GB31650-2019制定202028畜牧兽医局制定《牛羊可食性组织及奶中拟除虫菊酯类药物残留量的测定GC-MS》制定立项理由:缺少限量配套检测方法技术指标:1.药物品种:至少包括氰戊菊酯、氟氯苯氰菊酯、氟胺氰聚酯、氟氯氰菊酯、三氟氯氰菊酯、氯氰菊酯、溴氰菊酯2.定量限:依据GB31650-2019制定202029畜牧兽医局制定《牛可食性组织中氟佐隆残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202030畜牧兽医局制定《牛可食性组织及牛奶中咪多卡残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202031畜牧兽医局制定《牛羊可食性组织及牛奶中氯氰碘柳胺残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202032畜牧兽医局制定《牛羊可食性组织中碘醚柳胺残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202033畜牧兽医局制定《牛羊可食性组织及奶中中硝碘酚腈残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202034畜牧兽医局制定《水产品中拟除虫菊酯类药物残留的测定》制定立项理由:缺少限量配套检测方法技术指标:1.所检药物:至少包括氰戊菊酯、氟氯苯氰菊酯、氟胺氰聚酯、氟氯氰菊酯、三氟氯氰菊酯、氯氰菊酯、溴氰菊酯2.定量限:依据GB31650-2019制定202035畜牧兽医局制定《鸡、猪可食组织中越霉素A残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202036畜牧兽医局制定《动物性食品中有机磷类药物残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.所检药物:敌敌畏、倍硫磷、马拉硫磷、辛硫磷、巴胺磷、敌百虫、二嗪农2.适用范围:牛、羊、猪、家禽及奶3.定量限:依据GB31650-2019制定202037畜牧兽医局制定《猪鸡可食性组织及鸡蛋中哌嗪残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:定量限:依据GB31650-2019制定202038畜牧兽医局制定《动物性食品中甲氧苄啶、二甲氧苄啶残留量的测定》制定立项理由:缺少限量配套检测方法技术指标:1.适用范围:牛、猪、家禽、鱼可食组织及牛奶、鸡蛋2.定量限:依据GB31650-2019制定202039畜牧兽医局制定《水产品中硝基咪唑类药物残留量的测定》制定立项理由:参考GB/T21318-2007,改善前处理条件技术指标:1.待检药物:应包括甲硝唑、地美硝唑、替硝唑和洛硝达唑,靶动物应包含常见水产品2.定量限:小于1ppb或尽可能低202040畜牧兽医局制定《水产品中硫醚沙星残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:小于1ppb或尽可能低202041畜牧兽医局制定《水产品种沃尼妙林、泰妙菌素及其代谢物残留量的测定》制定立项理由:水产养殖中非法使用技术指标:1.水产品种类:常见水产品种2.定量限:小于1ppb或尽可能低202042畜牧兽医局制定《水产品中180种药物残留筛查液相色谱-高分辨质谱》制定立项理由:缺少同时检测水产品中多数药物残留的筛查方法,不仅易漏检、且检测时间长耗时耗力技术指标:1.有最大残留限量的药物或禁用药物2.定量限:依据GB31650-2019及禁用规定制定202043畜牧兽医局制定《氯苯胍在鱼组织的最大残留限量》制定立项理由:有其他靶动物限量规定,批准用于鱼但缺少鱼的最大残留限量技术指标:1.查阅并提供ADI;2.暴露评估研究;3.鱼体内残留消除研究;4.限量制定2020-202244畜牧兽医局制定《鸡蛋中地克珠利最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202045畜牧兽医局制定《鸡蛋中氯苯胍最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202046畜牧兽医局制定《鸡蛋中二硝托胺最大残留限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202047畜牧兽医局制定《氨苄西林在鸡蛋中的限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202048畜牧兽医局制定《氟苯尼考在鸡蛋中的限量》制定立项理由:解决产蛋期不能使用药物在蛋中检出的判定问题技术指标:1.ADI分配;2.开展鸡蛋中残留消除研究;3.限量制定202049畜牧兽医局制定《新建立的动物性食品中抗菌类等药物残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202050畜牧兽医局制定《新建立的动物性食品中驱虫类等药物残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202051畜牧兽医局制定《新建立的水产品中禁用药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202052畜牧兽医局制定《新建立的蜂产品中禁用药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202053畜牧兽医局制定《新建类的动物性食品中禁用药残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202054畜牧兽医局制定《新建立的水产品中抗菌类药物等残留检测方法标准验证》制定立项理由:继续推进标准验证工作。说明:1.公开招标验证单位,以项目的形式承担标准验证工作2.将标准验证经费直接拨付验证单位202055畜牧兽医局制定《奶及奶粉中呋喃西林残留量的测定》制定立项理由:奶和奶粉中呋喃西林主要以药物原型残留,已有方法主要是组织中的残留代谢物氨基脲,不适用于奶及奶粉。技术指标:1.适用范围:奶、奶粉中呋喃西林的残留2.定量限:1ppb或尽可能低202056畜牧兽医局制定《动物性食品中酒石酸锑钾残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202057畜牧兽医局制定《动物性食品中汞制剂残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.化合物品种:应包括氯化亚汞、醋酸汞、硝酸亚汞和吡啶基醋酸汞3.定量限:1ppb或尽可能低202058畜牧兽医局制定《动物性食品中毒杀芬残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202059畜牧兽医局制定《动物性食品中杀虫脒残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202060畜牧兽医局制定《动物性食品中硝呋烯腙残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202061畜牧兽医局制定《动物性食品中硝基酚钠残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202062畜牧兽医局制定《动物性食品中锥虫胂胺残留量的测定》制定立项理由:该品种禁止用于食品动物,缺少残留检测方法。技术指标:1.适用范围:所有食品动物、所有可食组织2.定量限:1ppb或尽可能低202063畜牧兽医局制定《鱼可食性组织中水杨酸残留量的测定LC-MS-MS》制定立项理由:该品种禁止用于鱼,无残留检测方法。技术指标:定量限:1ppb或尽可能低202064畜牧兽医局制定《动物源性食品中10种利尿药残留量的测定LC-MS-MS》制定立项理由:2022年冬奥会将检测动物产品中该类药物的残留,目前无检测方法。技术指标:1、检测药物应包括:氯噻嗪、氢氯噻嗪、苄氟噻嗪、坎利酮、乙酰唑胺、4-氨基-6-氯-1,3苯基二硫酰胺、氯噻酮、呋塞米、螺内酯、氨苯蝶啶等;2、动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定。202065畜牧兽医局制定《动物源性食品中肾上腺素及其2种代谢物和多巴胺残留量的测定LC-MS-MS》制定立项原因:注水注药肉检测该类药物残留。技术指标:1、检测药物:肾上腺素及其代谢物(4-羟基-3-甲氧基扁桃酸、3,4-二羟基扁桃酸)、多巴胺;2、动物组织:猪、牛、羊、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定。202066畜牧兽医局修订《GB29709-2013食品安全国家标准动物性食品中氮哌酮及其代谢物残留量的测定高效液相色谱法》修订立项原因:GB29709-2013标准采用紫外检测,外标法定量存在灵敏度不高,干扰大,基质效应强等问题。技术指标:1、检测药物应包括:氮哌酮、氮哌醇;2、动物组织:猪可食组织;3、定量限:根据MRL定202067畜牧兽医局制定《动物性食品中美替诺龙、羟甲烯龙残留量的测定LC-MS-MS》修订立项原因:2019年武汉军运会动物性食品中要求检测美替诺龙与甲烯龙的残留量。技术指标:1.动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;2、定量限:1.0ppb或尽可能低202068畜牧兽医局制定《畜禽可食组织中海南霉素残留量的测定LC-MS-MS》修订立项原因:无此药物的残留检测方法。技术指标:1、检测药物:海南霉素2、动物组织:猪、牛、羊、禽类、蛋、奶等动物源性食品;3、定量限:根据仪器响应值定202069畜牧兽医局制定《牛肉中玉米赤霉醇、群勃龙醋酸酯和醋酸美仑孕酮最大残留限量》制定立项理由:落实中美贸易协定202070畜牧兽医局制定《动物性食品中氧氟沙星、诺氟沙星、培氟沙星和洛美沙星最大残留限量》制定立项理由:氧氟沙星、诺氟沙星、培氟沙星和洛美沙星已停止用于食品动物,缺少动物性食品中检出的执法依据。202071畜牧兽医局制定《蛋鸡产蛋期禁止使用药物最大残留限量》制定立项理由:在蛋鸡产蛋期禁止使用药物,缺少鸡蛋中检出的执法依据。2020
  • 英国发现69种感冒药 不治病反有致命危险
    据英国《星期日电讯报》3月1日报道,英国政府下属的药物安全管理机构日前发现,有69种常用的非处方类儿童感冒药和咳嗽药不仅不管用,而且还可能带来各种副作用甚至是致命危险。  该机构称,要警惕大多数感冒咳嗽药都含有的15种成分,正是这些成分带来了危险的副作用。我国药剂师指出,基本上我国出售的治疗感冒、咳嗽类的西药里面都含有这些成分。  MHRA援引报告称,有至少5名两岁以下儿童因过量服用此类感冒药而死亡,而且有超过100个出现有害反应的严重病例,在有些病例中,有儿童不得不因为药物反应而入院接受治疗。  MHRA称,要警惕大多数感冒咳嗽药都含有的15种成分,正是这些成分带来了危险的副作用。这些成分包括使鼻腔黏膜血管收缩的伪麻黄碱、麻黄素、去氧肾上腺素(新福林)、羟甲唑啉、塞洛唑啉;抗组胺剂——苯海拉明、氯苯那敏、异丙嗪、曲普利啶、抗敏安;抑制咳嗽的右美沙芬、福尔可定以及用于除痰的愈创甘油醚、吐根剂等。  目前,英国药店里出售的大多数感冒咳嗽药都含有这15种成分。MHRA收到的报告显示,服用含有这15种成分的药物后,已有几十人死亡,另有超过3000人出现“有害反应”。  在英国出现的儿童死亡案例中,主要是因为过量使用抗组织胺和麻黄素,前者会导致心律不齐、昏迷;后者会导致心跳加速和血压上升,有关成分常见于治疗伤风咳的药物。  ■专家说法  解放军第306医院药学部副主任药剂师刘刚指出,基本上我国出售的治疗感冒、咳嗽类的西药里面都含有上述15种成分,比如白加黑、新康泰克、感叹号等。  刘刚副主任提醒说,治疗感冒、咳嗽类的西药都主要是针对成人的,儿童用药要慎之又慎,而且尽量不用西药,在临床上使用中药类的更多些。家长若发现子女有伤风咳病征,可以用盐水、蜜糖纾缓病征。  针对感冒药的安全问题,搜狐健康第一时间采访了我国著名的药物不良反应专家、国家卫生部合理用药监测网专家、原海军总医院药剂科主任孙忠实教授。  孙忠实教授指出,在我国市场上销售的感冒药基本都含有上述的三类成分,但是目前还没有收到儿童因为服用感冒药死亡的严重不良反应报告,主要是一些心慌、恶心呕吐以及头疼等的不良反应。、  2岁以下的儿童不要服用止咳和抗感冒药物 易导致死亡  孙教授进一步指出,英国药物安全管理机构发布这个信息其实并不新鲜,其实早在2007年低,美国疾病控制与预防中心曾公布,在2004年和2005年,至少有1500名2岁以下儿童服药后出现惊厥及心血管、呼吸、神经系统副作用。美国食品和药品管理局(FDA)也报告说,从1969年到2006年,接到过54例患者因服用解充血剂而死亡的病例,还收到69例因服用抗组胺药死亡的病例,其中大部分为2岁以下的婴儿。  因此,FDA建议2岁以下的儿童不要服用止咳和抗感冒药物,6岁以下的儿童谨慎使用。同时,强生公司、诺华公司等制药商主动召回其在美国市场上出售的14种非处方药类儿童感冒药。英国的这些数据再一次证实了婴儿服用感冒药的危险,因为这些感冒药和镇咳药通常含用减充血剂、抗组胺剂、镇咳药等成分,2岁以下儿童服用,可能引发致命性并发症,在美国、加拿大、澳大利亚等国家都有这方面的死亡记录。  感冒药中三大类危险成分  对于感冒药中的危险成分,孙教授指出主要为三大类,第一类是减低充血类药物,主要是伪麻黄碱、麻黄碱、去氧肾上腺素(新福林)等,起到收缩血管,减轻鼻塞症状的作用,这类药物主要对心血管系统有影响,造成心悸、心律失常,甚至死亡。第二类是抗阻胺药,主要有苯海拉明等,起到抗过敏作用,减轻打喷嚏、流鼻涕等症状,这类药物严重情况也可以引起死亡。第三类药物是止咳类药物,包括左美沙芬等,也主要是对心脏有影响。  其实上面提到的三类药物,主要的作用就是缓解感冒症状,改善生活质量,并没有抗感冒病毒的作用。感冒本身也是一种自限性疾病,大概一周左右会自愈。因此,孙教授强调,感冒药千万不要长期服用,一般在感冒初期服用2-3天即可,平时要多注意喝水、休息、通风。而对于小儿感冒由于服用药物比不用药危险性更大,建议采取一些物理的方法,比如物理降温、冲洗鼻子、注意通风等方法,也完全可以起缓解症状的作用。  最后,孙忠实教授指出,对于儿童感冒药和止咳药的不良反应问题,国家食品药品监督管理局正在研究中,相信最终也会是禁用和慎用。
  • 2012年诺贝尔化学奖揭晓
    北京时间2012年10月10日下午5点45分,2012年诺贝尔化学奖揭晓,两位美国科学家罗伯特莱夫科维茨(Robert J. Lefkowitz)和布莱恩克比尔卡(Brian K. Kobilka)因“G蛋白偶联受体研究”获奖。二人将均分800万瑞典克朗奖金。  罗伯特莱夫科维茨  布莱恩克比尔卡  罗伯特莱夫科维茨(Robert J. Lefkowitz),美国公民。1943年出生于美国纽约。1966年从纽约哥伦比亚大学获得MD。美国霍华德休斯医学研究所研究人员,美国杜克大学医学中心医学教授、生物化学教授。  布莱恩克比尔卡(Brian K. Kobilka),美国公民。1955年出生于美国明尼苏达州Little Falls。1981年从耶鲁大学医学院获得MD。斯坦福大学医学院医学教授、分子与细胞生理学教授。(克比尔卡《科学》文章: G蛋白偶联受体“停靠站”结构被确定)(《自然》特写文章报道克比尔卡)  细胞表面的聪明受体  每个人的身体就是一个数十亿细胞相互作用的精确校准系统。每个细胞都含有微小的受体,可让细胞感知周围环境以适应新状态。罗伯特莱夫科维茨和布莱恩克比尔卡因为突破性地揭示G蛋白偶联受体这一重要受体家族的内在工作机制而获得2012年诺贝尔化学奖。  长期以来,细胞如何感知周围环境一直是一个未解之谜。科学家已经弄清像肾上腺素这样的激素所具有的强大效果:提高血压、让心跳加速。他们猜测,细胞表面可能存在某些激素受体。但在上个世纪大部分时期里,这些激素受体的实际成分及其工作原理却一直是未知数。  莱夫科维茨于1968年开始利用放射学来追踪细胞受体。他将碘同位素附着到各种激素上,借助放射学,成功找到数种受体,其中一种便是肾上腺素的受体:β-肾上腺素受体。他的研究小组将这种受体从细胞壁的隐蔽处抽出并对其工作原理有了初步认识。  研究团队在1980年代取得了下一步重要进展。新加入的克比尔卡开始挑战难题,意欲将编码β-肾上腺素受体的基因从浩瀚的人类基因组中分离出来。他的创造性方法帮助他实现了目标。当研究人员分析该基因时,他们发现该受体与眼中捕获光的受体相类似。他们认识到,存在着一整个家族看起来相似的受体,而且起作用的方式也一样。  今天这一家族被称作“G蛋白偶联受体”。大约一千个基因编码这类受体,适用于光、味道、气味、肾上腺素、组胺、多巴胺以及复合胺等。大约一半的药物通过G蛋白偶联受体起作用。  莱夫科维茨和克比尔卡的研究对于理解G蛋白偶联受体如何起作用至关重要。此外,在2011年,克比尔卡还取得了另一项突破:他和研究团队在一个精确的时刻——β-肾上腺素受体被激素激活并向细胞发送信号——获得了β-肾上腺素受体图像。这一图像是一个分子杰作,可谓几十年辛苦研究的成果。新闻专题:
  • 315 | 守护食品安全,槽头肉鉴别标准品现货供应!
    今年315晚会曝光某些企业用未经严格处理的槽头肉制作梅菜扣肉预制菜。槽头肉,里面含有较多淋巴结和甲状腺,在日常生活中也被称为淋巴肉。国家《动物防疫法》、《生猪屠宰检疫规范》等法律明令禁止含有‘三腺’的肉类流向市场,而‘三腺’指的是甲状腺、肾上腺和病变淋巴腺,由于它们含有大量的内分泌激素和病原微生物,倘若误食了“三腺”,会对人体造成一定的伤害。 国标GB/T 17236-2019 生猪屠宰操作规程也明确生猪必须去除可视病变淋巴结,摘除甲状腺,才能用于食品生产。本次“315晚会”《梅菜扣肉里的“糟心肉”》案例,引发了公众和市场对肉类产品等领域食品安全问题的高度关注,国务院食安办、公安部、农业农村部、市场监管总局今年将在全国范围内部署开展“严厉打击肉类产品违法犯罪专项整治行动”。图片来源:千图网阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,全力配合总局专项整治活动,由于槽头肉通过加工后,外观、口感与正常的肉品没有太大差别,阿尔塔结合淋巴结产生免疫应答导致炎症反应致使炎症相关代谢物变化的情况常备炎症和免疫相关代谢物标准品,用于槽头肉中炎症和免疫相关代谢物的定量分析,结合化学计量学构建槽头肉判别模型,为槽头肉鉴别提供了一种可靠的方法,为打击槽头肉违法使用提供有力的技术支撑,也为食品安全检测提供保障。相关产品:了解相关检测文献,更多相关产品或定制服务,请联系我们。关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • Neuron︱利用微型化双光子技术揭示“摆烂躺平”背后的神经环路机制
    世上无难事,只要肯放弃。你是否也遇到连绵不断花样百出的工作挑战曾经想要摆烂躺平?社会竞争压力越来越大,打工人是“扶我起来,我还能肝”,还是“大胆躺平,妥妥摆烂”,这成为当下社会讨论的焦点。科学家们试图从科学的角度帮助阐述这个问题。既往研究表明,在充满挑战的情况下,个体可能会锲而不舍以实现期望的结果,甚至每次尝试后会更加努力。但是经过多次重复失败后通常会导致个体放弃或者躺平。哺乳动物的大脑如何在挑战性经历中做出从主动出击到摆烂躺平的决定,仍然是一个未解决的问题。目前的人类影像学资料表明,前额内皮质、扣带皮质、背外侧和腹外侧前额皮质、眶皮质、颞-顶区和前扣带回可能会参与放弃的决策过程。但是,支持这种适应性决策的确切神经解剖学和神经化学基础尚未阐明。2023年6月23日,复旦大学脑科学研究院Nashat Abumaria(那德)老师和顾宇老师团队合作于国际著名期刊Neuron发表题为“A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice”的研究论文。在本研究中,作者发现投射到眶额叶皮层(OFC)内GABA能神经元的去甲肾上腺素能神经元是关键的调节因素。利用微型化双光子成像技术(FHIRM-TPM)和其他在体记录手段,作者发现自由行为小鼠OFC中去甲肾上腺素的减少和α1受体的下调,减少了驱动动作行为所必需的GABA能神经元的数量和活性,从而导致行为转变,促使个体在反复结果不可控的状态中做出从行动模式切换到放弃行动模式的决定。作者首先构建了两种从行动模式到放弃行动模式的小鼠模型。在第一个模型中,将小鼠暴露于3天的足底电击。从第1天到第3天,小鼠行为从跳跃和转圈等行动模式为主逐渐转变为放弃行动模式。在另外一个模型中,将小鼠暴露于3天不可逃脱游泳中,从第1天到第3天,小鼠行为从攀爬和转圈等行动模式为主逐渐转变为放弃行动模式。图1:两种动物模型中小鼠从行动模式到放弃行为模式转换过程作者随后通过药物操作手段排除了血清素、多巴胺等对于该行为模式的调控,并发现去甲肾上腺素能神经元的激活和抑制调节了这种行为转变。作者进一步通过顺行示踪和逆行示踪的手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射。OFC神经元接受蓝斑核去甲肾上腺素能输入;蓝斑核去甲肾上腺素能神经元逆行投射到OFC,主要与抑制性神经元形成连接。光激活OFC去甲肾上腺素能神经元后可增加行动模式,抑制该神经元导致放弃行动模式的发生增多。图2:示踪手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射为了在活体动物细胞水平上提供进一步的探究,作者使用微型化双光子成像技术(FHIRM-TPM)对模式动物自由行为下OFC GABA能神经元的实时活动进行了成像。在实验时间过程中跟踪同一群细胞,发现这群细胞整体钙信号逐渐下降,与从行动模式到放弃行动模式的行为转变一致。GABA能神经元活性的降低不是由于光漂白或其他成像伪影,因为在行为训练的3天内基线荧光信号保持相似(没有下降)。作者通过对细胞水平的详细分析发现,并非所有OFC GABA能神经元都对实验有反应。除了降低细胞的总体活性外,作者观察到在实验时间过程中响应的GABA能神经元百分比逐渐降低。图3:微型化双光子成像揭示行为转变期间OFC中的GABA能神经元活动作者随后利用多通道电极,光遗传学刺激,药物刺激等实验手段进一步验证了该发现,OFC GABA能神经元(接受去甲肾上腺素能输入)通过促进行动模式和防止向放弃行动模式的转变来调节行为转换。长时间接触无法控制的结果会导致去甲肾上腺素浓度逐渐降低和OFC中α1受体的下调,两种因素共同导致维持行动模式所必需的OFC GABA能神经元的数量和活性减少,最终使得行为模式转变为放弃行动模式。在这项研究中,作者建立了两种小鼠在长时间经历不可控结局时的行为转变模型。使用这些模型来定义OFC中去甲肾上腺素、α-1a肾上腺素受体和GABA能神经元活动的释放如何调节这种行为。结合微型化双光子显微镜在细胞水平进一步探究这种适应性决策的确切神经解剖学和神经活动基础机制。这些发现为面对反复失败的个人行为(例如戒烟机制)提供了见解,并为该领域的进一步研究提供了易于操作的模型。希望随着该领域的进一步深入研究,对“躺平摆烂”神经机制的更多认识,或许将帮助我们更科学地设立奋斗目标,更积极有效地应对无法掌控的困难,在更多的挑战中都能百折不挠兵来将挡水来土掩。【参考文献】Li, C., T. Sun, Y. Zhang, Y. Gao, Z. Sun, W. Li, H. Cheng, Y. Gu and N. Abumaria (2023). "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron.
  • 十年了,315“再”爆瘦肉精,猪肉变成了羊肉,不变的是液质的精准
    瘦肉精十年2011年,央视的315晚会,曝光了某食品集团在食品生产中使用了含有瘦肉精的猪肉。受此影响,该加工企业随之陷入了“瘦肉精”漩涡之中。时间来到了2021年,央视315晚会在报道中关注到河北省沧州市青县存在部分经销商贩售瘦肉精羊肉问题。报道提到,央视记者对天一肉联厂当天屠宰的羊肉进行采样并做瘦肉精快速检测条检测,结果呈阳性。晚会播出后,农业农村部不仅立即责成河北省、河南省迅速组织开展查处工作。目前,涉事企业负责人已被控制,当地政府已对问题羊肉进行封存,正在追溯瘦肉精来源。十年的时间,瘦肉精依然屡禁不绝,只不过猪肉换成了羊肉。瘦肉精事件爆发后,网络上骂声、声讨声一片,其实这次事件只是压倒骆驼的最后一根稻草。在此之前,2018年国家食品药品监督管理总局发布有关食品的抽检公告,全国多地畜肉检出瘦肉精“克伦特罗”。农业农村部公布的2020年食用农产品市场监管部门抽检不合格情况显示,在畜禽类食用农产品抽检中,克伦特罗检出83批次,主要从牛肉、羊肉中检出,表明“瘦肉精”问题还是比较突出。何为瘦肉精?“瘦肉精”是指能够促进瘦肉生长的添加剂,主要包括盐酸克仑特罗、莱克多胺、沙丁胺醇等肾上腺素受体激动剂。猪、羊、牛等牲畜摄入后能加速生长,提高瘦肉率,但“瘦肉精”会在动物体内残留,消费者使用后会对健康形成危害。早在2002年,我国就已严禁瘦肉精作为兽药和饲料添加剂。2019年底再次发文公告。但我国各地瘦肉精中毒事件仍然时有发生,为了避免此类事件的发生,十分有必要对饲料和畜禽产品中的瘦肉精开展监测,加强市场监督。瘦肉精的检测A仪器确证从检测角度来说,瘦肉精的国标检测方法十多年依然还是液质的方法,方法国标主要是涉及饲料和动物源性食品,测定所用仪器为液质联用。GB/T 22147-2008饲料中沙丁胺醇、莱克多巴胺和盐酸克仑特罗的测定-液相色谱质谱联用法GB/T 22286-2008动物源性食品中多种β-受体激动剂残留量的测定-液相色谱串联质谱法GB/T 21313-2007动物源性食品中β-受体激动剂残留检测方法-液相色谱-质谱/质谱法为了保证畜产品质量安全,保护人类健康,PerkinElmer建立了QSight LC-MS/MS系统应用于动物源食品中13种β-受体激动剂残留的检测方法。克伦特罗、沙丁胺醇和莱克多巴胺的标准曲线B快速筛查可以参考美正集团瘦肉精快速检测方案:担忧!315再爆瘦肉精,违规使用何时休?检测只是瘦肉精食品安全监管的一个部分,瘦肉精问题的解决更需要监管部门、检测机构、消费者等多方监督和合作,比如瘦肉精源头监控、畜产品追溯体系建设,防止下一个瘦肉精事件对象变成牛肉、兔肉。作为检测方案的提供者,珀金埃尔默将提供从快筛到确证的瘦肉精检测方案,帮助瘦肉精监管体系的完善。更多应用资料下载,请扫描下方二维码。参考文献[1]. 前处理方法参考 GB/T 22286-2008 动物源性食品中多种β-受体激动剂残留量的测定-液相色谱串联质谱法
  • 2012化学诺奖“跨界”医学 其成果为药物研发奠基
    ●罗伯特莱夫科维茨1943年在美国出生,1966年在哥伦比亚大学获得医学博士学位,现任美国霍华德休斯医学研究所和杜克大学医学中心医学和生物化学教授。  ●布赖恩科比尔卡1955年在美国出生,1981年在耶鲁大学获得医学博士学位,现任斯坦福大学医学院医学以及分子和细胞生理学教授。  原标题:化学诺奖“跨界”医学  美国人罗伯特J莱夫科维茨和布赖恩K科比尔卡因为对蛋白受体的研究而获得2012年度诺贝尔化学奖。诺贝尔化学奖评审委员会认定,两名获奖者对G蛋白偶联受体的研究所获成果具有“奠基意义”,揭示了这一类重要受体发挥作用的内在机理。在新闻发布会现场,宣布这一消息后,一名委员会成员10日向新华社驻瑞典首都斯德哥尔摩的一名记者确认,两人获奖成果涉及医学,堪称“跨界”成果。  寻“受体”  莱夫科维茨及其同事的获奖研究始于1968年,针对生物细胞“感知”周围环境的能力,试图解密肾上腺素之类激素物质促生血压升高和心跳加快等生理反应的机理。  这以前,科学界推测,细胞表面包含某种激素“受体”。  在莱夫科维茨的实验室内,研究人员把一种碘同位素附着到多种激素物质上,借助同位素的辐射性状追踪以至揭示多种激素受体,包括β肾上腺素受体。他的研究小组最终在细胞壁内分离出β肾上腺素受体,继而对这种受体发挥作用的机理形成了初步认识。  依照现有理解,人体包含数以10亿计个细胞,由这些细胞构成一个相互作用、精细调适的系统,而每个细胞都包含细小的受体。受体的作用,是让细胞感知所处环境,进而调整并适应环境。  再“挑战”  科比尔卡二十世纪80年代加入莱夫科维茨的研究小组,接受一项挑战,即在人类染色体基因组中确定为β肾上腺素受体“编码”的特定基因。  在包含浩瀚信息的人体基因组中,科比尔卡以创新方式实现了这一目标。  后续研究中,借助对与β肾上腺素受体相关基因的分析,研究人员发现这种受体与促使眼睛具备捕捉光线能力的受体相似。他们意识到,存在一整类受体,不仅形似,发挥作用的机理也相同。  这类受体如今名为G蛋白偶联受体。  诺奖评审委员会在向媒体发布的新闻稿中介绍,大约1000种基因为G蛋白偶联受体“编码”,与人体对光线、味觉和气味的感知以及肾上腺素、组胺、多巴胺和血清素等物质相关。  显“跨界”  评审委员会说,现有所有药物中,大约半数借助G蛋白偶联受体发挥效用。  2011年,科比尔卡实现一项新突破:他主持的研究小组捕捉到β肾上腺素受体的画面,恰逢它由某一种激素激化、向细胞发出“信号”的瞬间。评审委员会说,这一画面,集几十年研究成果为一体,是“分子层面的杰作”。  与莱夫科维茨和科比尔卡的学历以及两人的研究历程吻合,本年度诺贝尔化学奖获奖成果似乎与诺贝尔生理学或医学奖有某种“渗透”,无法界定包含更多化学因素还是更多医学因素。  现场回答新华社记者刘一楠提问时,一名评审委员说,本年度获奖成果确实涉及化学和医学,这种“跨界”现象构成科学“美感”。  审视近些年诺贝尔化学奖,获奖成果相对集中在材料学和生物化学领域 材料学多与物理关联,生物化学多与医学关联。
  • LC-MS/MS在激素检测中的应用——访复旦大学附属中山医院检验科副主任郭玮
    p  span style="font-family: 楷体,楷体_GB2312, SimKai "临床检验由临床实验室将患者的血液、体液、分泌物、排泄物等标本进行定性或定量分析,为临床医学提供一系列实验室检测工作和项目的结果,用于疾病的诊断。近几十年来,有关基础科学飞速发展,新的分析检测的方法和仪器不断涌现,大大推动了临床检验的发展,使临床检验在疾病的预防、诊断和治疗中发挥着越来越大的作用。上海中山医院临床检验在国内始终走在前沿,也是首批采用 LC-MS/MS 技术的国内医院之一。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  此次我们邀请上海中山医院检验科副主任郭玮来和大家谈谈LC-MS/MS技术在激素检测中的应用。/span/pp style="text-align: center "img title="guowei.jpg" style="width: 296px height: 400px " src="http://img1.17img.cn/17img/images/201708/insimg/0bc78a7c-9d06-4f03-ba4c-cb5fe6dcf88c.jpg" height="400" hspace="0" border="0" vspace="0" width="296"//pp style="text-align: center "strong上海中山医院检验科副主任 郭玮/strong/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "/span/pp  strongspan style="color: rgb(84, 141, 212) "目前,中山医院开展的醛固酮检测项目主要针对哪些疾病的临床诊断?/span/strong/pp  strong郭玮:/strong醛固酮是由肾上腺皮质合成的一种甾体激素,作为肾素-血管紧张素系统的主要效应分子,它可以调节离子及水在肾脏的重吸收,对人体血容量和钠钾代谢有着重要影响。血浆醛固酮检测是诊断原发性醛固酮增多症(简称原醛症)的主要参考指标,对鉴别肾上腺皮质增生、肿瘤等相关疾病引起的继发性高血压具有重要价值。/pp  研究表明高血压人群中原醛症患病率大于 5%,这类患者接受常规降压药物治疗的效果往往不理想或难以持续,原醛症在难治性高血压人群中的患病率甚至可高达 17~23%,为他们鉴明病因并采取具有针对性的治疗,可以有效改善预后。美国内分泌协会近年在更新原醛症管理指南时,除建议扩大筛查人群外,不断强调血浆醛固酮/肾素比值在诊断中的地位,也指出了串联质谱技术应用对改进醛固酮检测标准化及准确性的重要价值。/pp  span style="color: rgb(84, 141, 212) "strong在引入 LC-MS 系统进行醛固酮检测之前,中山医院(或业界)主要采用哪种检测方法?在使用之前检验方法的过程中,遇到了哪些困难?/strong/span/pp  引入 LC-MS 系统进行检测之前,醛固酮的检测主要采用放射免疫法,这一方法也是以往认为用于甾体激素测定灵敏而有效的理想方法。但由于甾体激素代谢物在结构上具有很高的相似性,放射免疫法难以避免标本中结构类似物的干扰。/pp  美国内分泌协会的新版原醛症管理指南中也指出:「放射免疫法在检测实际浓度低于 200pmol/L 的血浆醛固酮样本时,结果易产生 50%~100% 不等的高估,主要源自其可溶性代谢产物所引起的交叉反应」。在开展放射免疫法醛固酮检测的过程中,我们也确实遇到过临床表现与检测结果不符的个例,其中可能受到交叉反应的影响。/pp span style="color: rgb(84, 141, 212) "strong LC-MS 系统在醛固酮检测方面具有哪些传统方法所不具有的优势?LC-MS 系统又是如何解决传统醛固酮检测方法所面临的挑战?/strong/span/pp  strong郭玮:/strong中山医院采用的 LC-MS/MS 方法,采用高效液相色谱将待测样本准确分离,再通过串联四极杆质谱进行多反应监测扫描,根据醛固酮特有的离子对对物质含量进行准确的定量,有效提高了检测的灵敏度和特异性,同时准确性显著提升,解决了放射免疫法中无法避免的抗体交叉反应的问题。/pp  并且,应用 LC-MS/MS 技术还可以同时检测多种物质,克服了传统方法一次实验只能检测一种特定物质的局限性。醛固酮的检测前处理经过固相萃取,应用配套的前处理装置,操作简单,重现性与稳定性良好,检测方法的灵敏度和特异性能更好满足临床需求。/pp  strongspan style="color: rgb(84, 141, 212) "截至今年年底,中山医院开展了多少例醛固酮检测?LC-MS 系统为中山医院开展醛固酮检测带来了哪些受益?/span/strong/pp strong 郭玮:/strong截至 2016 年底,中山医院检验科采用 LC-MS/MS 方法进行了数千例次的醛固酮检测,在协助临床诊疗方面取得了不错的反响。随着新指南对放宽原醛症筛查适应征的建议,来自临床科室的送检数量未来还会逐步提高。LC-MS/MS 方法开展至今,其优异的性能表现帮助临床相关科室提升了相关疾病的检测效率与准确性,获得了临床相关科室的广泛认可。/pp span style="color: rgb(84, 141, 212) "strong 除了醛固酮检测,中山医院是否已经开展了别的激素检测项目?/strong/span/pp  strong郭 玮:/strong除了醛固酮检测,中山检验目前还开展了基于 LC-MS/MS 平台的甲氧基肾上腺素类物质、尿儿茶酚胺类物质、维生素 D 检测等项目,年样本检测例次逾千。/pp  span style="color: rgb(84, 141, 212) "strong最近临床实验室自建项目(Laboratory Developed Tests, LDTs)受到了广泛的关注,您对这种方式有哪些理解和看法?LC-MS/MS 技术在 LDTs 的应用前景如何?/strong/span/pp  strong郭 玮:/strong所谓「工欲善其事,必先利其器」,精准医疗的实现离不开新技术手段、新检测项目的发展应用,我们对 LDTs 应持有鼓励态度,注重以临床需求为中心的开发与拓展。但所有医疗决策都需要准确的实验室检测性能作为基础,LDTs 的监管应跟上其发展的步伐。LC-MS/MS 技术无疑是 LDTs 中一个重要的板块,临床应用前景广阔。/pp strongspan style="color: rgb(84, 141, 212) " 一直以来,您对于使用 LC-MS/MS 技术开展临床检验项目非常的重视,这点对于临床实验室建设和医院实力提升有哪些帮助?/span/strong/pp  strong郭 玮:/strong中山检验以「不断提升检测质量、不断改善服务态度」作为质量方针,LC-MS/MS 平台的建设与应用也体现了这一点。结合 LC-MS/MS 技术开展的现有检测项目不仅性能优势明显,也正契合临床科室急需。检验科在不断提升与填补空缺的过程中,开拓了一批「人无我有」、「人有我优」的实验室检测项目,也为相关临床科室提升诊疗水平创造了技术先决 临床学科形成了专业特色病种,加强了学科乃至医院的影响力,吸引了更多患者慕名而来,为我们科室未来的开拓与发展也提供了更多的资源积累与经验总结。检验科与临床科室间是能够形成这种良性互动的,在同步提升、共同发展的同时,也令更多患者切实受益。/p
  • 临床检测中LC-MS/MS应用——访复旦大学附属中山医院检验科副主任郭玮
    p  临床检验由临床实验室将患者的血液、体液、分泌物、排泄物等标本进行定性或定量分析,为临床医学提供的一系列实验室检测工作和项目的结果,用于疾病的诊断。近几十年来,有关基础科学飞速发展,新的分析检测的方法和仪器不断涌现,大大推动了临床检验的发展,使临床检验在疾病的预防、诊断和治疗中发挥着越来越大的作用。上海中山医院临床检验在国内始终走在前沿,也是首批采用LC-MS/MS技术的国内医院之一。我们特别请到检验科郭玮老师来谈谈这项技术在临床检测中的应用和意义。/pp  我们此次就临床检测中的LC-MS/MS应用采访复旦大学附属中山医院检验科副主任郭玮。/pp style="text-align: center "img title="guowei.jpg" style="width: 296px height: 400px " src="http://img1.17img.cn/17img/images/201708/insimg/9b400c47-968c-44cf-8694-0612fb8a056c.jpg" height="400" hspace="0" border="0" vspace="0" width="296"//pp style="text-align: center "strong复旦大学附属中山医院检验科副主任 郭玮/strong/pp  span style="color: rgb(84, 141, 212) "strong面对检验医学领域新技术、新方法的迅猛发展,作为主流临床实验室的检验科面临哪些机遇和挑战?/strong/span/pp  strong郭玮:/strong随着高新技术的日新月异,新的检测方法和新的项目不断涌现,对我们检验科也提出了更高的要求同时也是巨大的发展机遇。包括质谱分析技术、聚合酶链扩增技术、基因测序等新技术平台与检测手段的出现使我们的检测方法发生了翻天地覆的变化,临床检验不再是简单的三大常规,更多高灵敏度和特异性的检测方法在临床上得以推广运用,甚至使我们能够在分子层面对疾病的本质进行认知,也催生了大量对疾病的分层诊断、预后评估及疗效判断更有价值的新项目。应对此类发展趋势,我们科室以国家重点临床检验专科为契机,相继引进了CellSearch循环肿瘤细胞检测系统、高效液相色谱串联质谱分析仪、基因测序仪、荧光原位杂交仪、高效毛细管电泳仪等先进检测系统,使我们检验科的检测结果与报告在临床诊疗工作中扮演了愈发重要的角色,能够为临床医生提供更全面,更有帮助的临床信息。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院为什么会考虑引进LC-MS/MS检测平台?该方法在临床上的推广应用到底有什么意义?/span/strong/pp  strong郭玮:/strongLC-MS/MS方法作为一种新兴的检测平台,已广泛应用于生物医学研究领域。随着技术的不断革新,LC-MS/MS逐渐转向临床实验室检测,为临床内分泌相关疾病诊疗监测提供更具可靠的检测结果。/pp  相比目前市场上广泛使用的商品化免疫学方法,这一方法具有多种目标分析物共检测、抗干扰能力强(嗜异性抗体、自身抗体、交叉反应)、高特异性和灵敏度等优点。参考国外的临床应用,随着质谱技术的发展和管理的完善,LC-MS/MS将会成为未来检测小分子激素的趋势。/pp  span style="color: rgb(84, 141, 212) "strongLC-MS技术相比之前传统检测方法有什么不同或改变?能否举例说明?/strong/span/pp  strong郭玮:/strong从技术上讲,LC-MS相比于传统免疫方法,更加准确可靠,特异性和灵敏度更高。质谱检测技术的检测灵敏度能够达到pg/mL的水平,传统方法受制于标准曲线检测限的原因远达不到该水平。同时质谱法是通过被检测物的荷质比进行精确定量的,与传统的免疫学检测方法相比,特异性更好,准确性更高。例如在进行一些激素水平检测时,由于该类物质在人体内浓度都相对较低,且结构相似的物质较多,传统免疫方法和HPLC方法的敏感性和特异性均无法达到检测要求。而相关激素检测在肾上腺肿瘤的鉴别诊断、前列腺癌患者的激素抑制治疗的效果评价、甲状腺肿瘤的根治治疗中的预后判断方面均具有重要价值。比如说临床上诊断嗜铬细胞瘤,传统方法检测的诊断指标包括血和尿儿茶酚胺(CA)、尿香草扁桃酸等,但均缺乏足够的敏感性和特异性,受多种物质及疾病状态的干扰。而近年来研究发现CA在嗜铬细胞内的儿茶酚-O-甲基转移酶的作用下生成变肾上腺素类物质(MNs),血浆MNs的半衰期较CA长,因此血浆游离MNs的诊断性能更加稳定且直接反应肿瘤细胞状态。血浆游离变肾上腺素类物质对嗜铬细胞瘤因其较高的特异性和敏感性,已成为嗜铬细胞瘤诊治导则中的推荐标志物。/pp  span style="color: rgb(84, 141, 212) "strong目前中山医院检验科使用LC-MS/MS方法主要有哪些方面的检测?他们分别具有怎样的临床应用价值?/strong/span/pp strong 郭玮:/strong目前,我们主要使用LC-MS/MS进行激素类物质的检测,包括血浆间甲肾上腺素类物质、甲氧酪胺、尿儿茶酚胺、17羟α孕酮、25羟基维生素D及治疗药物浓度等的相关检测。我们开展的间甲肾上腺素类激素(MNs)包括间甲肾上腺素(MN)和去甲变肾上腺素(NMN),已有临床研究表明多种内分泌代谢性疾病及精神类疾病都会表现出变肾上腺素类激素异常,如嗜铬细胞瘤、神经母细胞瘤、脑梗死、重症肌无力、进行性肌营养不良、心肌梗死、躁狂性精神病,帕金森病、癫痫等疾病等。北美神经内分泌肿瘤协会2010年就嗜铬细胞瘤,副神经细胞瘤,甲状腺髓样瘤在内的三类肿瘤的诊断和治疗发布导则指出,对于不同检测物质在不同样本中的诊断价值方面,血液中MN和NMN水平在所有组合中具有很好的敏感度和特异性。而维生素D是一种类固醇激素,维生素D家族中最重要的是维生素D2和维生素D3。研究表明,佝偻病、骨质疏松、肿瘤、心血管疾病、糖尿病、高血压等疾病都与维生素D缺乏有关。传统免疫学方法检测不能区分维生素D2和维生素D3,会影响结果准确性。当使用LC-MS/MS检测时,首先使用有机溶剂提取血液中的维生素D,之后使用LC-MS/MS系统对复杂的血样进行色谱分离,根据维生素D2和维生素D3不同的分子量进行特异性质谱检测,从而得到血液中维生素D的含量。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS应用于治疗药物检测,不同检测指标通常应用方法存在一定差异,如何保证在不同时间、不同仪器上的重现性?换句话说,如何保证检测质量?/span/strong/pp  strong郭玮:/strong我们有着严格的实验室管理流程,作为实验室自建项目(LDT),我们科室也制定了相应的LDT规范及质量保证体系。我们对LC-MS/MS的每一种新的方法都进行了相应的性能验证,包括回收率、技术验证等。很多方法都有对应的应用方法和标准品、试剂盒,不同时间、不同仪器上的重现性是有保证的。除此之外,我们也得到厂家工程师专业维护和技术支持,以保证良好运行的检测状态。/pp  span style="color: rgb(84, 141, 212) "strong您如何看待LC-MS/MS技术的今后发展前景,中山检验在这方面有何相应举措?/strong/span/pp  郭玮:LC-MS/MS的迅速发展已受到医药、制剂、科研等多个领域的广泛关注。内分泌领域涉及有关LC-MS/MS方法的文献每年增加超过100篇,随着研究数据的积累,相对于免疫学方法和GC-MS,LC-MS/MS优势显露无疑。目前国际上已经先后将许多激素及小分子的质谱检测方法定义为参考测量程序,并作为检测“金标准”应用于临床。我们科室内部近年来也快速建立起了一支基于质谱检测技术平台的高素质人才队伍,注重硬件与软件并进,转化先进的研究和技术成果,为临床提供更加灵敏、准确及可靠的检验信息,提高肾上腺肿瘤、乳腺癌、前列腺癌以及甲状腺肿瘤的诊疗水平。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院检验科率先在国内检验领域采用质谱等先进检验技术,请问有什么体会?/span/strong/pp  strong郭玮:/strong我们一直致力于推进包括质谱技术在内的一些新技术新方法在临床检测工作中的良性发展,将国际上最先进的临床检验技术与中国实际的临床需求相结合,满足临床对于各类内分泌激素、新生儿代谢性疾病、小分子物质等检测诊断的需求,使临床检验更好地支撑临床诊断与治疗,实现疾病的早期发现,早期诊断,以获得更好的治疗效果,节约医疗资源,真正使患者得到更优质的临床诊疗服务。/pp style="text-align: center"img style="width: 225px height: 300px " src="http://img1.17img.cn/17img/images/201708/insimg/2a376f39-b850-4328-945c-b9bfb58384d8.jpg" title="A1431680066png_small.jpg" height="300" hspace="0" border="0" vspace="0" width="225"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongLC-MS/MS技术在激素检测中的应用/strong/span/ppstrongspan style="color: rgb(84, 141, 212) "目前,中山医院开展的醛固酮检测项目主要针对哪些疾病的临床诊断?/span/strong/pp  strong郭玮:/strong醛固酮是由肾上腺皮质合成的一种甾体激素,作为肾素-血管紧张素系统的主要效应分子,它可以调节离子及水在肾脏的重吸收,对人体血容量和钠钾代谢有着重要影响。血浆醛固酮检测是诊断原发性醛固酮增多症(简称原醛症)的主要参考指标,对鉴别肾上腺皮质增生、肿瘤等相关疾病引起的继发性高血压具有重要价值。/pp  研究表明高血压人群中原醛症患病率大于 5%,这类患者接受常规降压药物治疗的效果往往不理想或难以持续,原醛症在难治性高血压人群中的患病率甚至可高达 17~23%,为他们鉴明病因并采取具有针对性的治疗,可以有效改善预后。美国内分泌协会近年在更新原醛症管理指南时,除建议扩大筛查人群外,不断强调血浆醛固酮/肾素比值在诊断中的地位,也指出了串联质谱技术应用对改进醛固酮检测标准化及准确性的重要价值。/pp  span style="color: rgb(84, 141, 212) "strong在引入 LC-MS 系统进行醛固酮检测之前,中山医院(或业界)主要采用哪种检测方法?在使用之前检验方法的过程中,遇到了哪些困难?/strong/span/pp  引入 LC-MS 系统进行检测之前,醛固酮的检测主要采用放射免疫法,这一方法也是以往认为用于甾体激素测定灵敏而有效的理想方法。但由于甾体激素代谢物在结构上具有很高的相似性,放射免疫法难以避免标本中结构类似物的干扰。/pp  美国内分泌协会的新版原醛症管理指南中也指出:「放射免疫法在检测实际浓度低于 200pmol/L 的血浆醛固酮样本时,结果易产生 50%~100% 不等的高估,主要源自其可溶性代谢产物所引起的交叉反应」。在开展放射免疫法醛固酮检测的过程中,我们也确实遇到过临床表现与检测结果不符的个例,其中可能受到交叉反应的影响。/pp span style="color: rgb(84, 141, 212) "strong LC-MS 系统在醛固酮检测方面具有哪些传统方法所不具有的优势?LC-MS 系统又是如何解决传统醛固酮检测方法所面临的挑战?/strong/span/pp  strong郭玮:/strong中山医院采用的 LC-MS/MS 方法,采用高效液相色谱将待测样本准确分离,再通过串联四极杆质谱进行多反应监测扫描,根据醛固酮特有的离子对对物质含量进行准确的定量,有效提高了检测的灵敏度和特异性,同时准确性显著提升,解决了放射免疫法中无法避免的抗体交叉反应的问题。/pp  并且,应用 LC-MS/MS 技术还可以同时检测多种物质,克服了传统方法一次实验只能检测一种特定物质的局限性。醛固酮的检测前处理经过固相萃取,应用配套的前处理装置,操作简单,重现性与稳定性良好,检测方法的灵敏度和特异性能更好满足临床需求。/pp  strongspan style="color: rgb(84, 141, 212) "截至今年年底,中山医院开展了多少例醛固酮检测?LC-MS 系统为中山医院开展醛固酮检测带来了哪些受益?/span/strong/pp strong 郭玮:/strong截至 2016 年底,中山医院检验科采用 LC-MS/MS 方法进行了数千例次的醛固酮检测,在协助临床诊疗方面取得了不错的反响。随着新指南对放宽原醛症筛查适应征的建议,来自临床科室的送检数量未来还会逐步提高。LC-MS/MS 方法开展至今,其优异的性能表现帮助临床相关科室提升了相关疾病的检测效率与准确性,获得了临床相关科室的广泛认可。/pp span style="color: rgb(84, 141, 212) "strong 除了醛固酮检测,中山医院是否已经开展了别的激素检测项目?/strong/span/pp  strong郭 玮:/strong除了醛固酮检测,中山检验目前还开展了基于 LC-MS/MS 平台的甲氧基肾上腺素类物质、尿儿茶酚胺类物质、维生素 D 检测等项目,年样本检测例次逾千。/pp  span style="color: rgb(84, 141, 212) "strong最近临床实验室自建项目(Laboratory Developed Tests, LDTs)受到了广泛的关注,您对这种方式有哪些理解和看法?LC-MS/MS 技术在 LDTs 的应用前景如何?/strong/span/pp  strong郭 玮:/strong所谓「工欲善其事,必先利其器」,精准医疗的实现离不开新技术手段、新检测项目的发展应用,我们对 LDTs 应持有鼓励态度,注重以临床需求为中心的开发与拓展。但所有医疗决策都需要准确的实验室检测性能作为基础,LDTs 的监管应跟上其发展的步伐。LC-MS/MS 技术无疑是 LDTs 中一个重要的板块,临床应用前景广阔。/pp strongspan style="color: rgb(84, 141, 212) " 一直以来,您对于使用 LC-MS/MS 技术开展临床检验项目非常的重视,这点对于临床实验室建设和医院实力提升有哪些帮助?/span/strong/pp  strong郭 玮:/strong中山检验以「不断提升检测质量、不断改善服务态度」作为质量方针,LC-MS/MS 平台的建设与应用也体现了这一点。结合 LC-MS/MS 技术开展的现有检测项目不仅性能优势明显,也正契合临床科室急需。检验科在不断提升与填补空缺的过程中,开拓了一批「人无我有」、「人有我优」的实验室检测项目,也为相关临床科室提升诊疗水平创造了技术先决 临床学科形成了专业特色病种,加强了学科乃至医院的影响力,吸引了更多患者慕名而来,为我们科室未来的开拓与发展也提供了更多的资源积累与经验总结。检验科与临床科室间是能够形成这种良性互动的,在同步提升、共同发展的同时,也令更多患者切实受益。/pp style="text-align: center "span style="font-family: 宋体,SimSun "strongspan style="color: rgb(255, 0, 0) "LC-MS/MS技术在治疗药物检测中的应用/span/strong/span/ppspan style="color: rgb(84, 141, 212) "strong什么是治疗药物监测?/strong/span/pp  strong郭玮:/strong顾名思义,“治疗药物监测”是监测用于治疗某些疾病的药物浓度,具体是指在使用一些容易产生不良反应的治疗药物时,临床实验室需要检测血液或体液中的药物浓度,临床医生根据检测结果调整给药方案,从而使患者获得最佳的治疗效果,避免不良反应。/pp  strongspan style="color: rgb(84, 141, 212) "治疗药物监测的目的是什么?/span/strong/pp  strong郭玮:/strong目前,精准医疗的概念受到广泛关注。利用治疗药物监测,采用量体裁衣式的治疗方案,指导临床合理用药,则是精准医疗的一种有效的实现形式。首先,由于个体间存在差异,不同个体接受同等剂量的药物治疗而疗效却不一定相同。比如成人,无论性别,身高,体重,说明书一般都推荐服用相同的剂量。那么如果一个身高 180 cm,体重 100 公斤的男性和一个身高 160 cm,体重 50 公斤的女性服用相同剂量的药物,获得的治疗效果却并不相同,这是由于药物体内代谢过程中存在差异,这将直接影响药物的治疗效果,或者产生不良反应。其次,某些药物的有效治疗窗口较“窄”,由于治疗效果与药物在体内的有效浓度密切相关,浓度过高或者过低,均有可能会引起不良反应的发生。/pp  strongspan style="color: rgb(84, 141, 212) "哪些药物推荐进行治疗药物监测?/span/strong/pp strong 郭玮:/strong并非所有的药物或者所有的患者均需要进行治疗药物监测,有下列情况者需进行监测:1、易成瘾性的药物,如免疫抑制剂,精神类药物,抗抑郁药物及抗肿瘤药物。2、应用治疗指数低、安全范围小、不良反应强、无明确判断指标的药物,如地高辛。3、应用具有非线性药代动力学特征的药物和药代动力学个体差异大的药物,如阿司匹林、双香豆素、保泰松等。4、多种药物联合用药时。/pp  综合以上几点,就免疫抑制剂而言,是一类需要定期进行监测的药物,主要用于预防器官移植术后的排斥反应,也可用于治疗自身免疫性疾病。临床常用的免疫抑制剂有环孢霉素、他克莫司、西罗莫司、依维莫司等,剂量不足或者血药浓度过低可能会导致移植物的排斥反应 浓度过高常会引起肝、肾、神经系统、生殖系统的毒性反应,这些药物长期服用会损害胰腺,导致高血糖等危害。/pp  strongspan style="color: rgb(84, 141, 212) " 临床治疗药物监测的主要方法有哪些?/span/strong/pp  strong郭玮:/strong 主要方法包括传统免疫学方法,光谱法和色谱法。色谱法又包括液相色谱紫外检测法和液相色谱串联质谱检测法(LC-MS/MS)。目前,免疫学方法和 LC-MS/MS 方法是主流的检测手段,但从技术上而言,LC-MS/MS 技术相比于免疫学方法,更加准确可靠,特异性和灵敏度也更高。此外,LC-MS/MS 方法能够同时检测多种化合物且不会产生相互干扰。而传统的免疫学方法一次检测只能针对一种药物,且可能存在交叉反应,影响检测结果的准确性。目前,国内外越来越多的实验室已采用 LC-MS/MS 方法替代免疫学方法开展临床治疗药物监测。/pp  strongspan style="color: rgb(84, 141, 212) "为什么 LC-MS/MS 技术相比免疫检测方法具有以上的这些优势?/span/strong/pp  strong郭 玮:/strong这要从两种技术的原理上说起。传统免疫学方法是基于抗原与抗体在体外特异性结合,对样品中的待测物定量的检测。当待测物的分子量很大的时候,如 10kDa,免疫学方法具有极好的特异性。但当待测物分子量 1kDa时,免疫学方法的特异性就会变差,主要原因是交叉反应。由于小分子药物和药物代谢物结构相似,抗体很难区分原型药物和代谢物,会同时与原型和代谢物相结合,造成检测结果偏高。此外,在临床上还有一些联合用药的情况,也就是我们俗称的“鸡尾酒疗法”。免疫学方法一次实验只能检测一种化合物,如果联合用药,一个样本则需要进行多次实验。/pp  相比之下,LC-MS/MS 技术从原理上就突破了这两个限制。在 LC-MS 技术中 LC 主要是分离作用,MS/MS 负责检测部分。样本进样后首先经过液相色谱柱的分离进入到质谱中,在离子源内气化,并发生离子化进入到四级杆质量分析器中,根据被测物的质荷比(m/z)分析,第一个四级杆只允许具有特定质荷比的母离子通过,之后被测物在碰撞室内在碰撞气的作用下发生碎裂,进入到第三个四级杆。第三个四级杆只允许特定质荷比的子离子通过,最后被测物到达检测器进行检测。这一过程具有极高的特异性,能够根据化合物的极性、母离子和子离子的不同进行分析检测。无论待测物分子量大小 LC-MS/MS 方法能够实现特异性检测,解决免疫学方法交叉反应的问题。另外,LC-MS/MS 技术检测速度极快,一个化合物检测通道仅需几个毫秒, 可以同时设置上千个检测通道检测不同化合物,因此一次实验可以同时检测多种药物,没有相互干扰,提高了检测效率。/pp  strongspan style="color: rgb(84, 141, 212) "国外药物浓度监测发展的新趋势有哪些?/span/strong/pp  strong郭 玮:/strong欧美国家采用质谱进行药物浓度监测早于国内大约 10 多年时间。在美国,临床质谱检测技术的快速发展,得益于临床实验室和与质谱公司的大力合作,不仅从技术层面进行创新,而且不断更新升级软硬件设备,完善应用支持服务等。除此以外,美国对于临床质谱管理采用实验室自建方法体系(Labortaory Developed Test,LDT),美国鼓励技术创新,并遵守管理严谨的风格,不断研发临床所需的药物浓度监测项目,通过对其进行严格的方法学验证,保证该技术能够可控地进入临床诊疗工作中,而这种应用模式极大地促进了美国国内质谱技术的快速发展,得到了患者、医院、第三方实验室、保险公司的广泛认可。这几年,质谱在国内临床检验领域也发展很快,我们正在努力推动实验室自建方法体系相关指南的修订,以促进质谱更好地用于临床。/pp  strongspan style="color: rgb(84, 141, 212) "中山医院是如何开展治疗药物监测的?/span/strong/pp  strong郭 玮:/strong中山医院作为上海地区规模最大的临床检验实验室之一,一直致力于推进质谱技术在临床检测工作中的发展。积极开展 LC-MS/MS 进行免疫抑制剂的监测。中山医院应用 LC-MS/MS 质谱系统开发了人体血液中环孢霉素、他克莫司和西罗莫司的体内药物浓度监测的方法,采用极少的血液样本,通过简单的样本前处理即可在 3 分钟同时实现多种免疫抑制剂的检测。我们正在开发和验证精神类药物,抗抑郁药物和抗肿瘤药物的检测项目,服务于临床,并使更多的患者受益。/pp style="text-align: center "span style="color: rgb(255, 0, 0) font-family: 宋体,SimSun "strongspan style="color: rgb(255, 0, 0) "LC-MS/MS技术在新生儿筛查与代谢性疾病检测方面的应用/span/strong/span/ppspan style="color: rgb(84, 141, 212) "strong作为卫生部部属的综合性医院,目前贵医院采用液相色谱串联质谱(LC-MS/MS)开展了哪些临床检验项目?/strong/span/pp  strong郭玮:/strong目前,我们医院主要使用LC-MS/MS进行激素类物质的检测,包括血浆间甲肾上腺素类物质、尿儿茶酚胺、25羟基维生素D及治疗药物浓度等的相关检测。/pp  strongspan style="color: rgb(84, 141, 212) "与传统的免疫学方法相比,LC-MS/MS在哪些项目上的应用突显了其价值?/span/strong/pp  strong郭玮:/strong人体内某些激素、小分子药物含量十分稀少,甚至仅为pmol/L这样低浓度的数量级,通过LC-MS/MS的检测,能准确地得到结果,并且能避免化学结构类似物的干扰。因此,在儿茶酚胺或者类固醇激素的检测上,LC-MS/MS方法发挥了重要作用。传统的免疫学方法因方法学的限制,无法得到准确的结果。此外,LC-MS/MS技术可以一次进样得到多个结果。例如,遗传代谢性疾病筛查或者治疗药物浓度监测。/pp  strongspan style="color: rgb(84, 141, 212) "据您的了解,目前LC-MS/MS在国内医疗机构的应用覆盖范围是怎样的?应用前景如何?/span/strong/pp  strong郭玮:/strong目前,国内大部分的省级妇幼保健院,甚至市级妇幼保健院都在使用LC-MS/MS对新生儿遗传代谢性疾病进行筛查。北京、上海等一线城市的三甲医院,其检验科、药剂科也已经开始逐渐关注LC-MS/MS在临床中的应用。我相信拥有IVD认证的LC-MS/MS会在临床诊疗领域中发挥越来越重要的作用。/pp  span style="color: rgb(84, 141, 212) "strong临床应用上使用LC-MS/MS,医院检验科的人员能够短时间内就掌握这项检测技术?/strong/span/pp  strong郭玮:/strong我觉得任何一个新技术的出现都会带来一些挑战,医院检验科会对人员进行系统性的培训,操作人员也需要通过专业认真的学习和经验的积累,才能正确掌握LC-MS/MS这项技术。我们使用的是Waters的LC-MS/MS系统,厂家也会派应用专家也会对我们的操作人员进行培训,协助方法开发。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS用于遗传代谢性疾病检测,对所得的结果具体怎样进行分析,以及对检测出阳性的指标要如何进行后续的干预呢?此项技术是否真的能很好的应用于临床研究呢?/span/strong/pp  strong郭玮:/strong目前,美国和欧洲大部分的国家和地区已采用LC-MS/MS进行新生儿遗传代谢性疾病筛查,并且已经有十余年的历史了,覆盖率达到90%以上。在国内,北京、上海、浙江等地区也早已开展此类检测项目。在进行遗传代谢性疾病筛查时一般会通过专门的应用软件,分析新生儿(或儿童)血液中氨基酸或者酰基肉碱的含量,确定是否有阳性结果。对于阳性样本会再进行一次复检,之后通过电话通知家长或者就诊医生,及时进行后续的确诊检查,并采取有针对性的治疗措施。/pp  strongspan style="color: rgb(84, 141, 212) "LC-MS/MS对不同检测,其结果要如何确认?临床如何对LC-MS/MS所提供的数据进行疾病分析?/span/strong/pp  strong郭玮:/strong目前,LC-MS/MS在临床中主要用于新生儿遗传代谢性疾病、小分子药物、体内较微量类固醇激素等物质的检测。该技术具有灵敏度高,准确度好的特点。LC-MS/MS方法检测得到的数据仍需要临床医生结合患者相应的临床表现,综合进行判断。/pp  strong郭玮简介/strong/pp  复旦大学附属中山医院检验科副主任、硕士生导师。主要研究方向:肿瘤分子诊断、肿瘤转移复发机制。在国内外统计源期刊发表论文40余篇,主编、参编专著7部。现任中华医学会检验分会第九届委员会青年委员会委员、上海市医学会检验医学分会第九届委员会委员、中华医学会检验分会临床生化学组成员、《检验医学》等多本杂志编委。主持癌变与侵袭原理教育部重点实验室开放课题基金1项、上海市科委基金2项、上海市卫生局基金3项 参与完成“十二五”国家科技支撑计划子课题1项、卫生部医政司课题1项、国家自然科学基金2项、国家科技重大专项课题1项。获上海市医学科技奖二等奖1项。/pp  strong中山医院检验科介绍/strong/pp  复旦大学附属中山医院检验科始建于1940年,经过几代人的共同努力,从单一手工操作的简单化验室发展成为了一个检测设备先进齐全、兼具现代化硬件和软件的医学检验科。特别是近20年来,有了飞速发展与长足进步,2009年成为上海市首家通过ISO15189医学实验室质量与能力认可的实验室,同年成为美国NGSP认证的HBA1c一级参考实验室,2010年获首批国家临床重点检验专科建设项目,相继引进了CellSearch循环肿瘤细胞检测系统、高效液相色谱串联质谱检测平台、基因测序仪、荧光原位杂交仪等先进检测系统及技术平台。近年来先后被欧洲最大的检验集团之一BARC公司以及美国最大的检验集团QUEST公司选择作为全球药物临床试验大中华区中心实验室。目前检验科开展检测项目数超过500项,年工作量超过3500万项次,是上海地区规模最大的临床检验实验室之一。在如此巨大的工作量面前,科室本着“不断提高检测质量、不断改善服务态度”的发展目标,从细节着手,优化检验流程,力求用最短的时间让病人拿到检测报告,TAT时间在行业内首屈一指,实现了门诊患者一天内完成就医的愿望,极大的方便了周边患者,取得了卓越的社会效益,受到多家主流媒体报道。/pp style="text-align: center "img title="A1430981437_small1.jpg" style="width: 600px height: 149px " src="http://img1.17img.cn/17img/images/201708/insimg/a65b3584-14b6-49c8-af4e-a851ef5caf92.jpg" height="149" hspace="0" border="0" vspace="0" width="600"//p
  • 上海安谱科学仪器有限公司倾情推出苯乙醇胺A参考品
    瘦肉精事件自今年3月份的源头事件后就消息不断,农业部表态称违法瘦肉精现象仍未禁绝。近期又爆出了一种新型的瘦肉精:苯乙醇胺A。苯乙醇胺A又称克伦巴胺,是一种人工合成的化学物质。英文名:2-(4-(nitrophenyl)butan-2-ylamino)-1-(4-methoxyphenyl)ethanol,化学命名:2-[4-(4-硝基苯基)丁基-2-基氨基]-1-(4-甲氧基苯基)乙醇,分子式:C19H24N2O4分子量:344.17结构式: 苯乙醇胺A最早是在四川省检测出来的。2010年9月四川省广安市广安区枣山镇畜牧兽医站对某养猪场例行违禁药物监测中,用莱克多巴胺测试卡分别检测母猪、仔猪和育肥猪尿液,发现该场育肥猪尿检呈阳性,之后确认是新型添加物苯乙醇胺A。 苯乙醇胺A是福莫特罗的同分异构体,是美国礼来公司合成莱克多巴胺的副产物,具有同瘦肉精和莱克多巴胺相同的作用和效果,属于&beta -肾上腺素受体激动剂,具有营养再分配作用。2010年11月农业部发布第1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》,2010年12月农业部第1519号,禁止了苯乙醇胺A在饲料和动物饮水中的使用。 现为应广大客户的需求,上海安谱科学仪器有限公司推出苯乙醇胺A参考品适用于农业部1486号公告-1-2010《饲料中苯乙醇胺A的测定高效液相色谱-串联质谱法》货号:CDBO-1100726中文名:苯乙醇胺A(克伦巴胺)参考品规格:10mg/L于甲醇,纯度99%,1mL价格请询。欲了解更多信息,请与我司业务员联系。电话:021-54890099。上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn 技术支持:techservice@anpel.com.cn
  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 进口猪肉多次检出兽药 今起须提供检测报告
    国家质检总局获悉,鉴于从美国进口猪肉中多次检出我国禁用兽药莱克多巴胺残留,质检总局发布警示通告,要求自2013年3月1日起,进口美国肉类的进口商或其代理人在入境口岸报检进口美国猪肉时,应当提供经有资质的检测机构出具的无莱克多巴胺残留的检测报告。  莱克多巴胺与盐酸克伦特罗(俗称瘦肉精)一样,均属于β-肾上腺素兴奋剂,世界上大多数国家未批准将莱克多巴胺作为兽药使用。欧盟早已明确禁止在食用性动物中使用包括莱克多巴胺在内的所有β-肾上腺素兴奋剂类药物,我国也于2002年明确将其列入《禁止在饲料和动物饮用水中使用的药物品种目录》。  目前只有美国、加拿大、巴西等24个美洲和亚太地区国家允许将莱克多巴胺用于食用性动物,主要是为了使猪和牛加快生长并提高瘦肉率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制