当前位置: 仪器信息网 > 行业主题 > >

氧氟沙星纯度标准物质

仪器信息网氧氟沙星纯度标准物质专题为您提供2024年最新氧氟沙星纯度标准物质价格报价、厂家品牌的相关信息, 包括氧氟沙星纯度标准物质参数、型号等,不管是国产,还是进口品牌的氧氟沙星纯度标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧氟沙星纯度标准物质相关的耗材配件、试剂标物,还有氧氟沙星纯度标准物质相关的最新资讯、资料,以及氧氟沙星纯度标准物质相关的解决方案。

氧氟沙星纯度标准物质相关的资讯

  • 阿尔茨海默症诊断标尺-Beta淀粉样肽(A-Beta)纯度标准物质出炉!
    p style="text-indent: 2em "中国计量科学研究院李红梅、冯流星团队近期在Analytical Chemistry,2020,doi.org/10.1021/acs.analchem.0c02381发文,介绍了基于同位素稀释质谱技术的阿尔茨海默症临床诊断标志物(Aβ)纯度标准物质研制方法。冯流星研究员为该论文的第一作者,李红梅研究员为共同通讯作者。/pp style="text-align: center margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/3c6fdaac-2942-41af-8bf7-0a1235c51c2b.jpg" title="1-1.png" alt="1-1.png"//pp style="text-indent: 2em "阿尔兹海默症(Alzheimer' s disease,AD)是不可逆的神经退行性疾病,随着人口的老龄化,AD的发病率越来越高,其致病机理和临床治疗已引起了广泛关注。众多临床研究表明, 血液、脑脊液和脑组织内的β淀粉样多肽(β amyloid peptide ,Aβ)水平异常与AD的病程进展密切相关,Aβ已成为目前研究AD的重要生物标志物之一。然而,临床上由于缺乏Aβ检测的标准物质,导致不同测量系统对Aβ的检测结果偏差较大,难以对AD病的病程进行准确的判断。因此,研制绝对准确的Aβ的定量方法及相关标准物质,对AD的早期诊断及治疗药物研发具有重要意义。/pp style="text-indent: 2em " 针对这一难题,李红梅团队研制了β淀粉样多肽(Aβ)纯品溶液标准物质(GBW09874-09875),采用基于氨基酸水解同位素稀释质谱法和硫元素同位素稀释质谱法的两种独立参考方法对Aβ纯度进行定值,量值准确可靠、不确定度评定合理。该标准物质为Aβ纯度标准物质,位于ISO17511溯源链的顶端,为AD症诊断中Aβ标志物检测参考方法的建立提供溯源源头。/pp style="text-align: center margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/160d2075-9f54-41f7-8217-0ffea64861d7.jpg" title="1-2.png" alt="1-2.png"//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongspan style="font-size: 14px "基于ID-LC-MS和HPLC-ID-ICP-MS两种方法Aβ标准物质定值示意图/span/strong/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 0, 0) font-size: 16px "/span/ppstrongspan style="color: rgb(127, 127, 127) "学者简介:/span/strong/ppspan style="color: rgb(38, 38, 38) "李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者/span/ppspan style="color: rgb(38, 38, 38) "冯流星:研究员,中国计量科学研究院化学所无机化学研究室主任/span/p
  • 常见滴眼液-左氧氟沙星滴眼液抑菌剂测定
    左氧氟沙星滴眼液抑菌剂的含量测定#左氧氟沙星滴眼液简介左氧氟沙星滴眼液是抗生素药物,属于处方药。其主要成分为氧氟沙星的左旋体,抗菌活性约为氧氟沙星的两倍,通过抑制细菌DNA旋转酶(细菌拓扑异构酶耳)的活性,阻碍细菌DNA的复制而达到抗菌作用。左氧氟沙星具有抗菌谱广,抗菌作用强的特点,对大多数肠杆菌科细菌,如大肠埃希菌、克雷伯菌属、沙雷氏菌属、彩杆菌属、志贺菌属、沙门氏菌属、枸橼酸杆菌、不动杆菌属以及铜绿假单胞菌、流感嗜血杆菌、淋病菌等革兰阴性菌有较强的抗菌活性。左氧氟沙星的滴眼液,用于治疗敏感菌导致的眼脸炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎以及用于眼科围手术期的无菌化疗法。# 色谱条件仪器:WiSys 5000;色谱柱:月旭Xtimate C18 (4.6×250mm,5μm)。流动相:三乙胺磷酸溶液(每1000mL水中加入三乙胺4mL和磷酸7mL)/乙腈=35/65;检测波长:214nm;柱温:30 ℃;流速:1.0mL/min;进样量:20μL;参考方法:中国药典2020版第二部-左氧氟沙星滴眼液。#谱图和数据‍总结使用月旭Xtimate C18 (4.6×250mm,5μm)色谱柱可以药典要求下满足左氧氟沙星滴眼液抑菌剂的含量测定要求。订货信息‍
  • 上海市畜牧兽医学会批准发布《猪粪中氧氟沙星残留量的测定 酶联免疫吸附法与液相色谱-串联质谱法》团体标准
    各有关单位:根据《上海市畜牧兽医学会团体标准管理办法》(沪牧医学[2022]第17号)规定,上海市畜牧兽医学会现批准发布《猪粪中氧氟沙星残留量的测定 酶联免疫吸附法与液相色谱-串联质谱法》团体标准。标准于2023年12月21日发布,自2023年12月21日起实施。现予以公告。附件:团体标准编号、名称一览表。上海市畜牧兽医学会2023年12月21日标准发布公告.pdf
  • 左氧氟沙星滴眼液中抑菌剂的含量测定
    左氧氟沙星滴眼液为微黄色至淡黄色或淡黄绿色的澄明液体。适用于葡萄球菌属、链球菌属、肺炎球菌、细球菌属、肠球菌属等所引起的眼睑炎、睑腺炎、泪囊炎、结膜炎、睑板腺炎、角膜炎等眼部疾病。为防止滴眼液在使用和保存过程中被微生物污染,往往会添加适量的抑菌剂,因此,抑菌剂的合理使用和质量控制已成为保障滴眼液安全性、有效性的关键问题之一。月旭科技为大家带来左氧氟沙星滴眼液中抑菌剂的含量测定方案。色谱条件色谱柱:月旭Xtimate C18(4.6×250mm,5μm)。流动相:水相(每1000mL水中加入三乙胺4mL和磷酸7mL):乙腈=35:65;检测波长:214nm;柱温:30℃;流速:1.0mL/min;进样量:20μL。谱图和数据1. 空白溶剂2. 苯扎溴铵对照品溶液3. 供试品溶液满量程图局部放大图结论使用月旭Xtimate C18(4.6×250mm,5μm)色谱柱,在此色谱条件下,可以满足检测要求。产品信息
  • 中国计量院为贵金属纯度鉴定建立了实物溯源标准,助力黄金纯度鉴定
    黄金具有重要的货币属性及装饰与保值功能,在人类几千年的历史中始终是财富和华贵的象征。黄金相关国家标准对杂质元素规定了明确的限量,例如,《金条》(GB/T 26021)对银(Ag)、铜(Cu)等十余种杂质元素进行了限量,《高纯金》(GB/T 25933)规定了更多杂质(21种)的限量要求。由于黄金价格的高昂,时有黄金掺假的报道出现,然而,魔高一尺,道高一丈,纯度计量的完善使贵金属纯度鉴定不再成为难题。中国计量科学研究院针对高纯金属纯度精准测量的需求,在重点研发计划“国家质量基础设施体系(NQI)”重点专项的支持下,综合利用多种高分辨测量手段,通过“地毯式”扫描,测量元素周期表中全部天然杂质元素,建立了基于全杂质扣除的高纯金属纯度测量方法,并在国际计量比对中取得优异成绩。在此基础上,创新研制了金、银、铂等高纯金属纯度国家一级标准物质(GBW02793~GBW02796),纯度定值大于99.999%,达到国际领先水平,为贵金属纯度鉴定建立了实物溯源标准。同时,为了助力黄金检测国家标准GB/T 25933和GB/T 38145的实施,研制金溶液中无机痕量杂质成分分析国家一级标准物质(GBW02797-GBW02800),使标准的使用更加便捷,测量结果更加一致和可靠。纯度计量作为“一双慧眼”,从计量学角度为黄金等贵金属纯度鉴定提供了科学的计量溯源标准,使造假行为无所遁形。
  • 我国发布全球首个泰国香米纯度检验标准
    “泰国香米”品牌鱼龙混杂,购买要多留神。  一直被人们誉为米中贵族的泰国香米,如今却频频陷入“丑闻”漩涡——今年央视“315晚会”曝光泰国假香米事件后,泰国香米质量问题再次受到人们的关注。  日前,国家标准委发布行业标准《泰国茉莉香米品种鉴定及纯度检验方法》。据悉,它由厦门检验检疫局和中国检验检疫科学研究院合作制定,将于今年5月1日起开始执行。  这是目前国际上首个公开发布的泰国香米纯度检验标准。主要涉及泰国茉莉香米品种鉴定和纯度检测的随机扩增多态性DNA技术检测法、感官检验法、水煮检验法等3种方法。  国际通俗称为“泰国香米”的就是泰国茉莉香米,是指由经泰国农业局、泰国农业部和泰国合作社注册的非糯性芳香水稻品种Kao Dok Mali 105或RD15的稻谷经碾磨获得的糙米或精米。泰国香米从1992年开始进入中国市场并逐步垄断国内高档米市场。目前每年输华的泰国香米大约20万吨,且进入中国市场销售的泰国香米价格高达1100美元/吨,较普通大米贵2倍以上,掺混白大米现象日趋严重。  首个纯度检验标准的出台执行,将有效规范进口香米市场。该标准适用性强,包括泰国茉莉香米品种鉴定和纯度检测RAPD及SSP基准检测方法和简便易行的感官检验法及水煮检验法两部分。  据介绍,基准检测方法是通过DNA扩增然后比对是否含有泰国香米特征性基因片断来判断、感官检验法详细描述了泰国香米颗粒特征、水煮检验法利用泰国香米和假香米水煮后的糊化程度判断。  DNA方法检测结果准确,但仪器设备要求高,检测费用高,而感官法和水煮法简单易懂,检测设备简易,检测费用低廉,寻常百姓在家里都能自己初步判断香米真假,感官法和水煮法结合使用可以获得较准确的检测结果。  泰国香米的特有的口感品质深受世界各国消费者喜爱。目前除泰国外,中国、美国、澳大利亚、印度、巴基斯坦、越南等均已种植香稻。但以泰国的产量最高,同时泰国也是全球最大的稻米出口国。泰国的稻田占全国耕地总面积52% 泰国大米出口遍及五大洲100多个国家 其中,泰国香米出口量约为每年110-200万吨,占泰国大米出口总量的20%左右。  中国是泰国香米的最大进口国,泰国香米中掺混白大米的现象趋多问题正引起有关各方高度关注,中央、地方新闻媒体多年来持续报导。据调查,我国的假香米主要是在泰国香米中掺入或全部由泰国巴吞米、泰国普通白大米、越南大米或直接由国产大米冒充。
  • 喜讯!美正检测获得7个国家标准物质定级证书
    美正检测7个国家标准物质,通过国家二级标准物质终审鉴定经过近1年时间的准备,在牛年开年之初,美正检测凭借过硬的技术实力,成功获得7项国家标准物质定级证书。在严格的现场评审过程中,评审组专家教授对美正检测标准物质研发工作予以了高度评价,这也标志着美正检测标准物质研发迈上了新台阶。国家标准物质证书的含金量有证标准物质(Certified Reference Material) (CRM),指附有证书的标准物质,有证标准物质是由标准物质由国务院计量行政部门批准、颁布并授权生产,产品经过国家计量行政部门认证的,定值更加可靠。本次获得的有证标准物质主要应用于环境、食品、农业等领域中磺胺二甲嘧啶、磺胺嘧啶、孔雀石绿、隐色孔雀石绿、氧氟沙星、己烯雌酚、三聚氰胺残留检测,以及分析仪器校准,分析方法评价,操作人员水平考核,测量过程质量控制等,让我们一起来看下清单:美正检测有证标准物质清单产品编号产品名称特性值GBW(E)100620甲醇中磺胺二甲嘧啶溶液标准物质100μg/mlGBW(E)100621甲醇中磺胺嘧啶溶液标准物质100μg/mlGBW(E)100622乙腈中孔雀石绿溶液标准物质100μg/mlGBW(E)100623乙腈中隐色孔雀石绿溶液标准物质100μg/mlGBW(E)100624甲醇中氧氟沙星溶液标准物质100μg/mlGBW(E)100625甲醇中己烯雌酚溶液标准物质200μg/mlGBW(E)10062650%甲醇水中三聚氰胺溶液标准物质1000μg/ml虽然这些检测物质在国家食品安全政策中,药物残留有严格的限量要求,但是因为休药期控制不当,环境、水、饲料影响也会导致食品安全事件发生。近期我们通过的有证标准物质,主要覆盖以下应用领域:磺胺类药物磺胺类药物主要通过输液、口服、创伤外用等用药方式或作为饲料添加剂而残留在动物源食品中。在近15年~20年,动物源食品中磺胺类药物残留量超标现象十分严重,多在猪、禽、牛等动物中发生。本次获得的有证标准物质磺胺二甲嘧啶、磺胺嘧啶为客户进行磺胺类兽残定量检测和方案验证提供准确的标物支持。孔雀石绿孔雀石绿,是一种有毒的三苯甲烷类化学物,既是染料,也是杀真菌、杀细菌、杀寄生虫的药物,对鱼体水霉病和鱼卵的水霉病有特效,现市面上还暂无针对水霉病能够短时间解决水霉病的特效药物,这也是为什么这个产品在水产业禁止这么多年还禁而不止,水产业养殖户挺而走险继续违规使用孔雀石绿的根本原因。我国在农业行业国标中将孔雀石绿列为禁用药物。本次获得的有证标准物质孔雀石绿、隐色孔雀石绿为大家安全食用鱼带来了极大的保证。己烯雌酚己烯雌酚是人工合成的雌激素,主要添加在饲料中,以促进动物的生长。国内外研究表明,己烯雌酚可以破坏机体的遗传物质,导致基因突变,引发肿瘤。由于己烯雌酚的滥用,对动物性食品中己烯雌酚的残留检测引起了国内外的高度重视。本次获得己烯雌酚标准物质为饲料安全保驾护航。氧氟沙星氧氟沙星是一种人工合成、广谱抗菌的氟喹诺酮类药物,在畜牧养殖中广泛用于动物疾病的预防和治疗,对革兰阳性菌、革兰阴性菌、支原体和衣原体均有作用,淡水鱼养殖方面氧氟沙星超标尤其严重。本次氧氟沙星标准物质为肉制品的安全检测提供了标物支持。三聚氰胺三聚氰胺大家一定不陌生,2008年中国奶制品污染事件给行业敲了一个警钟,三聚氰胺是化工原料,不是食品原料,也不是食品添加剂,禁止人为添加到食品中。三聚氰胺可能从环境、食品包装材料等途径进入到食品中,其含量很低。为确保人体健康和食品安全,我国制定了三聚氰胺在食品中的限量值。三聚氰胺标准物质在婴配奶粉的检测中起着极大的作用。最后,美正检测多年来,一直致力于食品检测类标准物质和基体质控样的研发生产,通过了CNAS实验室认可及资质认定,此次7个国家标准物质认证只是开始,我们将继续努力,斩获更多的标准物质认证,为中国食品安全保驾护航!
  • 广西标准化协会批准《甘蔗蔗汁重力纯度测定方法》等8项团体标准
    广西标准化协会批准团体标准《甘蔗蔗汁重力纯度测定方法》等8项团体标准, 现予以公告。附件:广西标准化协会团体标准批准发布表广西标准化协会2023年4月24日
  • 欧盟拟修改规定增甜剂纯度专门标准的第2008/60/EC指号令
    2010年2月23日,欧盟发布通报,拟修改规定增甜剂纯度专门标准的第2008/60/EC指号令。欧洲食品安全局(EFSA) 2007年9月27日评估了纽糖做作为增甜剂及增味剂的安全性并发表了它的意见。本指令草案的目的是修改2008年6月17日有关规定食品用增甜剂特殊纯度标准的第2008/60/EC号指令附件I。纽糖新定代号为E, 既:E 961。
  • 新一代二氧化碳纯度在线监控解决方案
    新一代二氧化碳纯度在线监控解决方案用于测量CO2气体中O2的新解决方案安东帕(Anton Paar)推出了新的二氧化碳纯度监测仪,用于监测发酵产生的二氧化碳气体中的氧气。在线氧气传感器Oxy 5100与集成的压力传感器相结合,可在线监测发酵后加压CO2中的O2含量,带自动压力补偿功能,使二氧化碳纯度监测仪成为紧凑,且精确的独立解决方案。此仪表无需气体调节。而对于非加压的测量点,Oxy 5100和其灵巧的传感器盖在气体调节系统之后即可安装。二氧化碳纯度监测仪的组成:一台Oxy 5100&用于自动压力补偿的压力传感器主要特性功能:• 为了快速启动,独特的Toolmaster™ 技术可确保轻松更换瓶盖。所有必需的校准参数都存储在传感器盖中。盖上盖子后,所有校准参数都会自动传输,并且可以立即开始在线测量。• 内置先进的寿命估算器估算光学帽的寿命,并连续监控剩余寿命(以天为单位)。当需要更换时,Oxy 5100便会提示您。Oxy 5100是作为独立解决方案开发的,用于测量啤酒,CSD和DAW等液体中的溶解氧。安东帕在技术上向前迈进,通过增加气相中的O2浓度来扩大覆盖流体的范围。此外Anton Paar特定的适配器或调节系统还可满足用户的定制化需求。适用行业+啤酒厂和苹果酒制造商在啤酒厂中,发酵产生的二氧化碳(CO2)会被收集和纯化,以提高啤酒的可持续性并确保CO2的自给自足。用于O2在线测量的二氧化碳纯度监测器可提供有效处理和高质量CO2的关键信息。在CO2回收工厂中,将发酵产生的CO2收集,过滤,压缩,干燥并从诸如氧气(O2)和氮气(N2)的气体中纯化。在回收的CO2中,O2含量不应超过〜5ppmv。为了减少O2摄入量,确保啤酒稳定性和较长的保质期,必须对O2含量进行可靠且准确的监控,以确保回收的CO2的高纯度且经济性。测量解决方案+用于CO2回收工厂中的O2监测方案全新的二氧化碳纯度监测仪可进行准确可靠,连续的氧气含量和温度在线监测。如果发酵产生的CO2进入限值以内,全自动的O2监测可提供关键信息,以确保高质量和有效的CO2回收。工艺压力的影响会得到补偿, 测量并不受外来气体和湿度的影响。在去除泡沫之后和压缩之前,可安装二氧化碳纯度监测器(上图)。这样可以避免液体完全覆盖传感器的风险,确保测量结果的准确性。使用Pico 3000的CO2纯度监测仪(VARIVENT法兰直接安装在管线中)二氧化碳纯度监测器由一个Oxy 5100在线溶氧传感器和一个压力传感器组成,二氧化碳纯度监测仪符合国际卫生标准并获得EHEDG认证。特定于应用程序的计算由mPDS 5或Pico 3000评估单元执行。一个mPDS 5最多可以连接8个CO2纯度监控器,结果可以显示并传输到PLC或通过Davis 5数据采集和可视化软件在电脑上读取。另外,也可以将二氧化碳纯度监测仪连接至Pico 3000 RC外壳,以进行远程控制。带有Toolmaster™ 的传感器盖Oxy 5100的所有传感器帽均配备了Toolmaster™ 技术,可自动检测每个帽的所有所需配置和校准参数。无需通过HMI进行手动干预,从而减少了停机时间和人为错误,从而可以快速轻松地更换光学帽。产品优势+可靠,准确的二氧化碳纯度监测仪可实现• 实时在线监测氧气含量• 改善了CO2处理的质量和效率• 检测任何违规行为并实时控制过程• 可预测,快速且容易地更换传感器盖• 选择性测量(不受湿度影响)
  • 珀金埃尔默发布黄金纯度检测解决方案:《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》
    每当我们谈论起黄金,首先想到的是什么?千足金,18K,24K,纸黄金,那群曾经买遍全球的“中国大妈”,还有近期涨落不定的黄金股票和期货̷̷。黄金除了众所周知的金融属性之外,其耐腐蚀、易导电、易成型、储量稀少等特性使之成为地球上最珍贵且用途广泛的金属之一,被广泛用于珠宝、艺术品、电子、医学、航空航天和装饰等领域。实际应用中,不同用途要求使用的黄金纯度不同,美国材料实验协会(ASTM)为此制订了推荐标准“B562-95精炼金标准规格”,规定了精炼黄金的各种纯度规格。珀金埃尔默发布最新黄金纯度检测解决方案——《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》,按照ASTM B562-95标准规定,使用电感耦合等离子体发射光谱仪(ICP-OES)分析黄金纯度。之所以选用Avio ICP-OES,是基于其以下几个优势:Flat Plate™ 等离子技术消耗的氩气显著减少,大大降低操作成本PlasmaShear™ 技术生成一层薄的空气流切断等离子体的顶部,避免样品在轴向观测窗上发生沉积,实现在复杂基质中优异的稳定性,能够长时间分析复杂基体样品,几乎无需维护卓越的光学系统能够稳定且准确地进行即时分析,缩短样品间隔时间,分析速度快欲了解详情,请扫描二维码,获取资料《根据ASTM B562-95标准要求,使用Avio ICP-OES检测黄金纯度》扫描上方二维码即可下载资料
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • 卫计委拟批准纯度99.99%金箔用于白酒
    金箔酒(图片来源:网络)  行业协会称需要了解添加原因和目的  古代文学作品中时有吞金情节的描写,如今,纯度达到99.99%的金箔或许真的可以作为食品添加剂,就此我国开始征求意见。对此,行业协会和专家的态度并不积极。  卫计委  征求意见将金箔用于白酒  记者昨天注意到,国家卫计委官网近日刊登了《国家卫生计生委办公厅关于征求拟批准金箔为食品添加剂新品种意见的函》,函件称,经审核,拟批准金箔为食品添加剂新品种,现已开始征求各相关单位意见并向社会征求意见,时间截止到2月20日。  该函件中显示,允许金箔作为食品添加剂的产品仅为白酒,最大使用量为每公斤0.02克。在生产工艺上,函件中提到,将纯度为99.99%纯金以物理方式将其汽化,使其均匀分散成小分子,再将这些小金分子重新堆栈排列以精准控制分子磊晶堆栈的方式形成食品添加剂金箔。  至于为何在白酒中添加金箔以及添加金箔的好处,函件只字未提。  行业协会  要调查添加的理由和目的  &ldquo 协会方面刚刚收到这份征求意见函。&rdquo 中国食品工业协会、白酒专业委员会常务副会长兼秘书长马勇昨天接受记者采访时表示,&ldquo 但是我还没想明白,白酒中添加金箔能有什么作用。&rdquo 马勇表示,食品添加剂能否获得审批,应该看其是否具备技术的必要性。但是作为纯粮固态发酵白酒,添加金箔没有任何意义和技术必要性。  &ldquo 对于纯粮固态发酵工艺以外的白酒产品,是否有添加金箔的必要性?这些应当组织专家研讨,如果没有明显的技术必要性,那么行业协会肯定会持反对意见。&rdquo 马勇还表示,卫计委发布这种征求意见函,估计是有关方面提出了相关申请,&ldquo 我们还应该看提出申请方的理由和依据是什么,其目的又是什么。&rdquo   市场  白酒添加金箔涨身价  其实添加金箔的白酒在市场上并不新鲜,平时喜欢喝点白酒的赵先生告诉记者,他两三年前在老家就喝过这种添加了金箔的白酒,&ldquo 都是些地方品牌,但是同一品牌添加金箔的价格要达到300多元,而不添加的则仅需几十元钱。&rdquo   赵先生说,销售人员都说这种添加金箔的白酒对身体有保健功能,因为金箔不溶于酒,喝了能调节人体的一些机能 同时喝的时候也要故意摇一摇,&ldquo 金光闪闪,很有面子,但是其实口感也没什么区别&rdquo 。  记者了解到,去年就有媒体报道称,在位于南京的中国金箔艺术馆里有一种价值不菲的高档白酒在销售,这种白酒加入了真金打压而成的金箔,叫做&ldquo 金箔酒&rdquo ,一套礼盒3999元,厂家打出了&ldquo 常饮金箔酒定会让您精力充沛、心旷神怡&rdquo 的广告。报道还引述销售人员的话称,这些金都是处理过的,都能吃,此外公司还有金箔菜、金箔鸭。这些都是振精神、坚骨髓的,排毒的。然而这些产品上并未有保健品的标识。  专家说法  人体必要元素并不包括金  据了解,原卫生部相关部门曾于2011年下发过&ldquo 关于对&lsquo 金箔酒&rsquo 进行卫生监督有关问题请示的批复函&rdquo ,其中明确表示,金箔既不是酒类食品的生产原料,也不能作为食品添加剂使用。我国食品科学领域三院士之一中国工程院院士孙宝国昨天接受记者采访时表示,我国对食品添加剂采取许可管理,食品中使用金箔肯定是违规的。  中国农业大学食品学院营养与食品安全系副教授范志红表示,从营养学的角度看,目前已确定人体必要的元素有20多种,但肯定不包括金。  算金账  一瓶酒添金箔成本2块多  某大型黄金生产商相关负责人告诉记者,按现在制金工艺,0.5克99.99%黄金能够很轻松地打造成面积相当于100元人民币大小的金箔。此次卫计委征求意见稿即便通过,那么500克装白酒添加金箔量最多0.01克,而目前99.99%黄金原料价格也就200多元,也就是说一瓶白酒新增黄金原料成本不过2元多钱。
  • iCMR 2017特邀报告:有机物纯度定值的定量核磁共振法新技术
    p style="TEXT-ALIGN: center"strong第一届磁共振网络会议(iCMR 2017)特邀报告/strong/pp style="TEXT-ALIGN: center"strong有机物纯度定值的定量核磁共振法新技术/strong/pp style="TEXT-ALIGN: center"strongimg title="黄挺.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/7d156904-0e46-4200-8c68-a87e5c61c327.jpg"//strong/pp style="TEXT-ALIGN: center"strong黄挺 研究员/strong/pp style="TEXT-ALIGN: center"strong中国计量科学研究院/strong/pp /ppstrong  报告摘要:/strong/pp  准确测定有机化合物的纯度将从根本上提高有机化学分析的能力。定量核磁共振(qNMR)是对有机化合物纯度定值的重要手段,广泛用于化学计量学有机化合物的纯度测定。/pp  对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。我们近年来建立了五种新的方法来解决这个问题。/pp  (1)扣减杂质的直接qNMR法:应用于缬氨酸的纯度测定,结果的日内RSD=0.050%,八个月的日间RSD=0.071%,为当时文献报告中最高精度。[1]/pp  (2)氢氘交换qNMR法:应用于重要肿瘤标志物hCG蛋白质的特征肽T5肽的纯度测定。与传统的水解反应方法相比,qNMR操作简单,分析时间更短(3天降为1小时),CV小(从0.93%降为0.36%)。首次将qNMR的应用范围扩展至1800分子量的化合物。[1]/pp  (3)采用双信号抑制法的高效液相色谱-核磁共振(HPLC-qNMR):使用非氘代溶剂(CH3CN和H2O)作为HPLC流动相。测定了分子量873的阿维菌素B1a的纯度,排除了其中7个结构非常类似的杂质的干扰,与基于多种仪器的质量平衡法结果一致。偏差不超过1%。该方法具有分离效率高、定性定量能力强、成本低、操作快速、准确度高等特点。[2]/pp  (4)纯化样品的qNMR与HPLC测定法:测定了人C肽(hCP)的纯度,结果与传统方法一致,首次将qNMR的应用范围扩展至3200分子量的化合物。[3]/pp  (5)内标回收率校正-高效液相色谱-定量核磁共振(ISRC-HPLC-qNMR)方法:使用非氘代溶剂作为流动相。应用于阿维菌素B1a的纯度测定。结果表明,即使杂质的NMR峰与主成分不分离,甚至杂质的HPLC峰与主成分只是部分分离,该方法也可以简单且低成本地准确测定杂质的含量。[4]/pp  这些方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。/pp strong 致谢:/strong/pp  国家自然科学基金(21275134),国家科技支撑计划项目(2013BAK10B01)。/pp  strong参考文献:/strong/pp  1. T. Huang, W. Zhang. X. Dai, X. Zhang, C. Quan, H. Li, Y. Yang. Talanta. 125:94-101 (2014)/pp  2. T. Huang, W. Zhang. X. Dai, N. Li, L. Huang, C. Quan, H. Li, Y. Yang. Anal. Meth., 8:4482-4486 (2016)/pp  3. W. Zhang, T. Huang, H. Li, D. Song. Int. J. Pept. Res. Ther. 2017, online published [https://doi.org/10.1007/s10989-017-9620-6]/pp  4. W. Zhang. T. Huang, H. Li, X. Dai, C. Quan, Y. He. Talanta, 172:78–85 (2017)/pp /ppstrong  报告人简介:/strong/pp  黄挺,中国计量科学研究院研究员,2001年于中山大学化学院获得学士学位;2006年于北京大学化学院获得分析化学专业博士学位。同年到中国计量科学研究院化学计量与分析科学研究所工作。近年一直致力于高纯有机物纯化与准确定值、定量核磁共振法、以及有机小分子与生化大分子纯度的化学计量及标准物质研究。通过有机溶剂纯化制备技术研究实现了农残级溶剂的制备,打破了进口垄断。通过将氢氘交换法用于定量核磁共振研究,实现了多肽的定量核磁共振法纯度定值方法,支撑了生化分子的化学计量研究。通过双信号抑制法用于液相色谱-定量核磁共振联用法,实现了复杂有机分子的定量核磁法纯度定值。在2015年赴国际计量局BIPM进行6个月的定量核磁共振合作研究。负责及参与国际比对9项。获得国家奖科技进步奖二等奖1项。获得国家授权发明专利6项、软件著作权2项。发表论文57篇,其中SCI论文22篇。/pp  strong报名地址:/stronga title="" href="http://www.instrument.com.cn/webinar/meetings/iCMR2017/" target="_self"http://www.instrument.com.cn/webinar/meetings/iCMR2017//a/pp /p
  • 《乌索酸纯度的测定液相法》国标颁布
    近日,由宜春学院承担起草的GB/T24773-2009《乌索酸纯度的测定高效液相色谱法》国家标准已由国家标准委正式批准发布,这是宜春继《乌索酸国家标准样品》项目研制成功后,取得的又一项标准成果。  据悉,乌索酸作为一种化学物质在日用化工、功能食品及医药保健方面具有重要用途。宜春学院以天然植物为原料,成功地攻克了乌索酸提取工艺难关,达到了国内领先水平。为促进此项科研成果的推广应用,将科技成果尽快转化为国家标准,宜春质监部门从2005年就开始帮助宜春学院进行省地方标准、国家标准样品和国家标准的立项申报工作,并最终取得成功。  此项国家标准的正式发布实施是该市大力推进实施全市标准化战略的结果。宜春市质量技术监督部门将进一步加大工作力度,推进更多具有行业技术优势的企事业单位参与更高层次的国家标准化活动,争夺技术标准的话语权。
  • LC-MS 和氮气发生器纯度的关系—是时候一探究竟了!
    概述本文阐述了LCMS仪器对氮气的要求,以及设计和选择氮气发生器时应考虑的问题,包括氮气纯度和氮气质量,以及氮气发生器的选择对LC-MS运行的影响。介绍杜瓦罐和钢瓶高纯氮的纯度一般是99.999%,也可采购到更高纯度的氮气,例如GC载气(是的,发生器也可用于提供载气!)纯度高达99.9999%。工业上传统的深冷空分制氮法,以空气为原料,利用液氧和液氮的沸点不同,采用低温蒸馏的方式,使它们分离来获得氮气。氮气是一种惰性气体,无法直接测试,氮气纯度主要指非氧化气体的含量,其中包括氮气和其他惰性气体等。通常我们会看到LC-MS适配的氮气发生器显示纯度在98-99.5%之间,为什么不提供99.999%的纯度呢?为什么所有LC-MS仪器制造商都建议氮气发生器产气的纯度大于95%就足以满足质谱的要求?(本文中所提到的LC-MS用气指的是离子源部分用的雾化干燥气,作为碰撞气用的高纯氮气,耗气量很少,一般由钢瓶提供)让我们先来看看LCMS的技术特点:简单来说,氧气并不会影响LCMS信号强度。事实上无碳氢化合物、无颗粒、干燥的空气是完全可以用于LC-MS分析的。我们选用氮气的原因是,在电离阶段,有机溶剂+氧气+高热+高压会导致爆炸,这不仅是一个巨大的安全风险,而且会对昂贵精密的LC-MS造成极大的损害。纯度实际上只是我们评估氮气的一个参数。仅仅因为一种气体纯度高,并不意味着其中没有像碳氢化合物(实验室溶剂挥发产生的VOC)、邻苯二甲酸酯类、硅氧烷类和其他影响灵敏度和基线的有机化合物,以及水份和会污染离子源的灰尘颗粒等,这些会造成昂贵的仪器清洁、维护和维修的成本。LC-MS离子源部分需要一个低氧环境,且不含颗粒和有机污染物,以防止发生爆炸,减少维护和离子源的清洁操作,以保证仪器本身的性能。接下来让我们看看氮气发生器的技术特点:从氮气发生器生产商的角度来看,有两个看起来一样但实际上是完全不同的概念,即氮气纯度和氮气质量。氮气纯度是指主要是指非氧化气体的含量(因为氮气不能直接测量,一般以氧气的含量来推算)。氮气质量定义了氮气中其他杂质的含量,通常是通过分析氧气、水分、碳氢化合物和其他有机物质的含量,这些物质可以通过分析方法分别进行测试和报告。氮气纯度通过良好的产品设计、生产工艺可实现纯度在98-99.5%之间的氮气。空气由78%的氮气、21%的氧气和1%的其他气体组成。通过分离得到的氮气,纯度要求越高,需要的空气也越多。纯度要求越低,所需空气就越少。而空气消耗与氮气纯度之间的关系不是线性的,详细见下图。尤其是当氮气纯度大于99.5%时,所消耗的空气量呈指数增长。关于氮气发生器原理的文章请点击以下链接(http://www.peakscientific.cn/articles/yuanli/)。毕克用于气相色谱载气的氮气发生器纯度99.9999%,这一纯度通过测量氧残余量、水份和碳氢化合物得出(有趣的是,要想测量这些氮气中的残余物,我们只能利用GC才能做到,其他的仪器设备都无法检测这种量级的残留物杂质)。但如图所示,在这种氮气纯度下,我们需要大约12-14倍的空气量。但因气相色谱仪用气量较少,所以如此高的空气消耗量就不是主要问题。但一般的LCMS离子源部分的氮气用量在24-30l/min,有些仪器高达60l/min,以纯度99.999%为例,我们需要向氮气发生器提供325-750l/min的空气。然而,在纯度为99.5%时,空气消耗量为75-150l/min。因此对氮气发生器的总体成本、尺寸、噪音和功耗都有很大的影响。所以,当使用氮气发生器时,高纯度氮气用于对LCMS离子源供气是不可取的。用户在选购发生器的时候需要注意什么?首先,若看到用于LC-MS离子源部分的氮气发生器宣称氮气纯度可高于99.5%,应有所质疑,因为我们知道,考虑到发生器的尺寸、噪音和成本,这其实是不合理的。客户还应选择信誉可靠的气体发生器生产商,因为如果氧气含量超过4%,那么在工作条件下,爆炸风险很高,而设计不佳的氮气发生器往往不能很好地控制氧含量。另外,过滤系统,特别是除水系统,应是高质量的,并根据使用情况定期更换。这将大大降低LC-MS维护的成本。氮气质量如前文所述,氮发生器选择性地去除氮气以外的其他分子,包括氧气、水份等。分离过程中还有哪些分子未被除去呢?首先是氩气,但由于是惰性气体,不会对LC-MS的灵敏度、离子源污染或爆炸造成任何风险。所以,将其归入氮气含量中是完全没有问题的。但其他的像碳氢化合物、硅氧烷类、邻苯二甲酸酯类、灰尘、溶剂、清洁用化学品(例如地板清洁材料等)等都会污染离子源,并出现在质谱图上。实际上,氮气发生器产生氮气的质量还取决于周边的空气质量。如今的环境污染日益增多,诸如汽车尾气、电站以及化工厂排放、化学制品、食品生产加工、日常工作中使用的溶剂、VOC(想想买新车或家具以及粉刷我们的办公室或公寓时的味道,我们将花费大量的时间和精力来去除这些气味,这些气味通常是VOC释放的)等都将出现在环境空气中。因此,一个好的氮气发生器需要一个完善的去除杂质的过程。 在我以往的经验中,有很多次遇到此类问题。我最美好的记忆是当我在家乡附近的一个食品检测实验室工作时。我的家乡是特伦特河畔伯顿镇,是英格兰中部的一个小镇。它以坐落在特伦特河上而闻名,特伦特河是英国最好的淡水来源之一。正因为如此,它拥有庞大的啤酒酿造业,也以马麦酱而闻名(我叫它英国臭豆腐)。正是这些生产过程,使这个区域周围的空气中总是含有化学物质,这些物质会干扰各种分析测试过程。我记得有一个案例,一位客户在LCMS校准过程中测到了硅氧烷物质,来源不明,经摸索,结果发现实验室有一个新的玻璃隔板,密封玻璃用的密封剂挥发产生了小分子链的硅氧烷,而污染了室内空气。另一个问题是汽车内部制造商试图制造低VOC含量的产品,但是当比较塑料材料释放出的VOC量与周围背景空气时,他们发现环境背景空气VOC含量变化很大,就像风向一样难以预测。那么用户可以从中学习到什么呢?由于氮气分离工艺不能去除这些物质,氮气发生器应具有去除这些杂质的过滤装置,且应根据使用情况定期更换。这将减少离子源的维护和清洗,并防止谱图上出现鬼峰等其他干扰。我们的用户在高质量的分析级溶剂上花费了大量的时间和成本,同样也应该重视气源的质量。希望这篇文章能为用户提供有用的信息。
  • 周大生、中国黄金等贵金属纯度不足 是否足金问XRF
    p style="margin: 0px 0px 10px padding: 0px text-align: left background: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em "黄金作为硬通货,不仅可以作为金融市场的投资理财产品,同时在首饰、工业制造中有着广泛的应用,我国是全球黄金大国,黄金产量连续十二年领跑全球。近一年的金价走势非常喜人,可真实的黄金却让人生忧。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 316px height: 245px " src="https://img1.17img.cn/17img/images/201908/uepic/1de7f49f-3fc6-4d7c-8fd8-7033ca0e8a0c.jpg" title="微信截图_20190814115619.png" alt="微信截图_20190814115619.png" width="316" height="245"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "近日,甘肃省市场监督管理局发布《甘肃省市场监督管理局关于甘肃省2019年第2批工业产品质量省级监督抽查结果通报》,抽查了45家经销企业的50 批 次贵金属首饰及制品。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "结果表明,抽查样品中合格27批次,14批次产品名称或标识不规范,不合格9批次,产品质量抽查合格率82%。不合格9批次产品中,主要是质量偏差、贵金属纯度项目不符合标准要求。strong值得注意的是,周大生、中国黄金、中国珠宝、中国金店等知名品牌上榜。/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/8d9f9a5d-86f4-4957-9844-b59b15dedce3.jpg" title="图片1.png" alt="图片1.png"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "甘肃省市场监督管理局按照《2019年甘肃省贵金属首饰及制品产品质量监督抽查实施细则》(第二批工业产品)及相关产品标准要求,主要对产品名称、质量偏差、贵金属纯度、颜色、透明度、光泽、放大检查、折射率、双折射率、光性特征、多色性、荧光观察、密度、红外光谱分析、紫外光谱分析、摩氏硬度、标识等项目指标进行了检验。strong抽查结果显示,多个产品名称带“足金”二字的金饰并不“足金”。/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "科普时间:黄金的国家质量标准是什么/span/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "国家标准“GB11887-8P”规定:含金量不小于990‰为足金,含金量不小于999‰为千足金。同时对K金的纯度也作了规定,其中8K的含金量不小于333‰,18K的含金量不小于750‰,24K的含金量不小于999‰。/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "目前市场上销售的黄金饰品,分为足金和K金饰品,根据国家标准GB11887中的规定,常见的几种黄金首饰含量为:br/  24K——目前国际黄金价格市场偶见标有24K黄金饰品,根据国家标准,24K金含量理论值应为百分之百,金无赤足,因此严格的讲,24K是不存在的,销售中标有24K金是不正确的,不符合国家标准。br/  千足金——含量为99.9%,俗称三个9。br/  足金——含量为99.0%,以上,俗称二个9。br/  18K——含量为75.0%,K金的颜色有多种,通常有黄、红、白色之分。其中白色K金,实际上是黄金与镍、锌、铜等元素的合金。它不是通常所说的白金饰品。白金是指贵金属铂(Pt)。/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="color: rgb(255, 0, 0) "strong黄金检测仪器:能散型XRF是担当/strong/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "怎么知道足不足金?看色泽?听声音?掂重量?还是把刚买的金项链放在火上烤一烤观察颜色变化?这些大概都是19世纪的做法了。专业的验金方法还是需要依据行业标准,利用科学的仪器和技术手段进行。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "百度百科中对对黄金检测仪的解释:strong黄金检测仪是一种利用能量散射型X射线荧光分析技术(XRF)的智能化无损检测仪器,能准确的检测出黄金、铂金、钯金、K金、K白金等饰品中各种元素含量。/strong/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "X射线荧光(XRF),顾名思义,利用了X射线和荧光技术,当原级X射线照射在待测样品上,产生的次级X射线叫X射线荧光,通过分析荧光的波长和能量对物质进行成分和化学形态的分析。XRF理论上可以测定元素周期表中所有的元素,但是在实际应用中,一般有效的元素测量范围为从铍(Be)到铀(U)的90余种元素。XRF详解见a href="https://www.instrument.com.cn/news/20190619/487247.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "《XRF知多少》/span/a/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strong事实上,除了XRF外,黄金的检测用仪器其他仪器。/strong目前黄金检测标准多为推荐标准。在GB/T 17363.2-2009 黄金制品金含量无损测定方法中,规定使用的仪器为电子探针(或X射线荧光仪、二次离子质谱), GB/T 17362-2008 黄金制品的扫描电镜X射线能谱分析方法中规定的配置为扫描电镜上的X射线能谱仪(XPS),对黄金制品化学成分进行无损定量分析。此外,也有公司利用黄金密度属性测定黄金的含量,相关仪器有黄金纯度测试仪。/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="color: rgb(255, 0, 0) "strong黄金检测仪器一览/strong/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "strong能散型XRF/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/eff86828-4586-45c4-b8e4-324a40e544bb.jpg" title="微信截图_20190814171513.png" alt="微信截图_20190814171513.png"//pp style="margin: 0px 0px 10px padding: 0px background: rgb(255, 255, 255) line-height: 1.5em text-indent: 2em "strong其他仪器/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201908/uepic/1ab8b034-756c-4ade-96b5-6f49894c83e5.jpg" title="啊啊啊.png" alt="啊啊啊.png"//pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "金融市场上,黄金是传说中的“保值神器”,现实生活中,则是我国广大群众尤其是“中国大妈”们喜爱的饰品和收藏品,今曝出中国黄金市场的不合格,值得黄金制品生产企业对质量控制的认真考量。span style="text-indent: 2em " /span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "附:部分黄金检测相关标准/span/pp style="text-indent: 2em margin-bottom: 10px line-height: 1.5em "span style="font-family: 楷体, 楷体_GB2312, SimKai "GB/T 9288 金合金首饰 金含量的测定 灰吹法br/  GB/T 34167-2017 黄金矿业术语br/  GB/T 25933-2010 高纯金br/  GB/T 17363.2-2009 黄金制品金含量无损测定方法 第2部分:综合测定方法br/  GB/T 17363.1-2009 黄金制品金含量无损测定方法 第1部分:电子探针微分析法br/  GB/T 17362-2008 黄金制品的扫描电镜X射线能谱分析方法br/  GB/T 17723-1999 黄金制品镀层成分的X射线能谱测量方法br/  GB/T 17362-1998 黄金饰品的扫描电镜X射线 能谱分析方法br/  GB/T 17364-1998 黄金制品中金含量的无损定量分析方法/span/p
  • 北京第三代半导体产业技术创新战略联盟对《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》等2项团体标准征求意见
    各CASA成员单位:由赛迈科先进材料股份有限公司牵头起草的标准T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》、T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》已形成征求意见稿,为保证标准的科学性、先进性和适用性,现面向CASA成员单位征求意见。 T/CASAS 036—202X《碳化硅单晶生长用等静压石墨构件纯度测定 辉光放电质谱法》规定了采用辉光放电质谱法测定等静压石墨构件纯度的方法,包括术语和定义、试验原理、试验环境、仪器设备、试剂与材料、试样、试验步骤、试验结果及试验报告。本文件适用于单个杂质元素含量范围为0.01mg/kg~5mg/kg的碳化硅单晶生长用等静压石墨构件纯度的测定,所述构件包括碳化硅单晶生长炉中的加热器、坩埚、籽晶托等内部构件。碳化硅粉体合成用加热器、坩埚等石墨热场部件,以及碳化硅外延生长用石墨基材的纯度测定可参考本文件。 T/CASAS 048—202X《碳化硅单晶生长用等静压石墨》描述了碳化硅单晶生长用等静压石墨的技术要求、试验方法、检验规则、标识、包装、运输和贮存等。本文件适用于纯度要求达到5N5(质量分数99.9995%)以上的碳化硅单晶生长用或碳化硅粉体合成用等静压石墨,包括碳化硅单晶生长用加热器、坩埚、籽晶托等内部构件,以及碳化硅粉体合成用加热器、坩埚等石墨热场部件。 请于2024年8月24日前填写《CASA标准文件征求意见表》反馈至联盟秘书处。TCASAS 036 碳化硅单晶生长用等静压石墨构件纯度测定方法 辉光放电质谱法-征求意见稿.pdfCASA标准征求意见表 .docxTCASAS 048碳化硅单晶生长用等静压石墨-征求意见稿.pdf
  • 制备色谱中的良性竞争:纯度、产率、通量的平衡术
    在制备色谱的世界中,一场良性的竞争正在悄然展开,参与者有三位不同的选手,分别是:由于这些参数彼此依赖,所以纯化分离不可能同时优化这三个参数,所以,这并非一场激烈的对抗,而是一场巧妙的平衡术,其中每个角色都在化学家的指挥下为最终的分离纯化目的而努力。 图1:制备色谱三参数关系图下面英诺德INNOTEG为大家介绍下这3个参数1.产品纯度在合成化学中,产品纯度是指合成反应产物中目标化合物的纯净度或纯度程度。这是一个衡量所得产物中所含杂质和未反应起始物的量的指标。在实验室里,红外、紫外、核磁这些仪器,都要求样品达到足够的纯度,才能得到准确的结果。除此之外合成多肽的过程中可能会产生各种杂质,例如未反应的氨基酸、副产物等。纯化步骤有助于有效去除这些杂质,保证其活性和功能的稳定性。同时,通过纯化,可以降低反应的变异性,提高实验的重复性和可重复性。2.产品产率产品产率指的是纯化得到的目标物与初始样品中目标物的比值。高产率表示分离和纯化过程较为高效,少量目标化合物丢失或被废弃。低产率可能暗示着分离步骤存在问题,导致目标化合物的损失。在色谱制备中,产率的提高通常需要优化分离条件、调整溶剂体系、选择适当的柱材料和调整流速等因素。综合考虑这些因素有助于最大程度地保留目标化合物,并提高纯化过程的效率。3.制备通量制备通量是对整个色谱制备纯化工艺的评价,尤其是成本方面的考量。这是个复杂的评价过程,主要是对成本(物料成本、时间成本、人力成本)、安全性、一致性等多个方面考量。通量的高低直接关系到整个制备过程的效率和成本效益。下面小编为大家展示三种常见的色谱图 ● 色谱图1图中所显示的制备液相分离能有非常高的通量,但两个化合物分离得不好。每个化合物都可能得到一些高纯度的产物,但是回收率,即产率却相当低。● 色谱图2图中各个峰都得到了良好分离,两个化合物的纯度和产率都很高,但是通量/实验效率非常低。● 色谱图3该图是优化的制备液相结果,对所有三个参数进行了平衡考虑。色谱峰基本上达到了基线分离,得到了较高纯度和产率,通量也尽可能大。由此结果可知,分离的目的在于保证产品纯度和收率的前提下,尽可能的提高分离效率。实现色谱分离纯化的更佳效能还有其他方式?在色谱分离和纯化中,优化参数应根据具体的实验目的和合成要求来选择。这种差异化的优化有助于在不同的实验场景中实现更佳的效能和经济效益。除此之外,先进的纯化设备在日常实验室应用中也非常重要,英诺德INNOTEG EasyPrep中高压制备色谱,替代传统手动过柱,贴心的自动化体验、多方位的实时监测、智能提升纯化效率,是您实验室的得力助手!● 英诺德INNOTEG EasyPrep MP系统是一款整合了泵、检测器、收集器等几大部件功能为一体的快速纯化制备色谱系统,能对化合物进行分离、检测和收集;● 全自动的工作站控制,帮助您从繁琐的样品制备过程中解放出来,提高工作效率;● 英诺德INNOTEG EasyPrep产品涵盖中、高压制备,满足不同的应用需求;● 提供配套的Flash柱,多种规格Flash C18柱、Flash Silica柱、Flash C8柱、Flash HILIC柱、Flash AQ C18柱可选,使整个过程更加便捷。应用场景药物化学、精细化工、生物工程、植物化学、有机合成、及生命科学等领域。中压制备优势特点介绍:1. 溶剂通道:二元、四元可选;四元中压制备可以实现正反相直接切换;2. 适配4g-800g正、反相层析柱;3. 采用高精度计量泵,耐受溶剂腐蚀,寿命长,精度高;4. 实时压力监测、超压保护功能,保障实验室安全;5. 支持多种容器收集;支持全收集、峰收集、时间收集等多种模式,并实时峰 -管对应;6. 12.1英寸大屏显示,触摸屏操作;采用全自动工作方式,只需要输入相应方法参数,系统自动切换梯度比例、分析、收集;7. 支持在线添加、修改梯度,支持手动拖拽运行梯度曲线。支持在线修改流速;8. 可将实验图谱批量生成PDF实验报告;9. 可设置开机后一键式自动清洗;支持色谱柱吹干,实验完成后可干燥色谱柱。如果您对英诺德INNOTEG EasyPrep中高压制备色谱产品感兴趣,欢迎致电400 006 9696咨询。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多项奖项。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 世界最高纯度无机试剂:杰帝贝柯ULTREX II产品系列
    J.T.Baker,百年历史创造传奇品质,继1970s年代与NASA(美国宇航局)联合推出用于分析月球样品微量元素的超高纯试剂系列&mdash &mdash ULTREX超高纯酸之后,J.T.Baker再次凭借最先进的生产工艺和绝对无尘封装条件,推出了ULTREX II系列产品&mdash &mdash 世界上最高纯度的酸&盐。ULTREX II系列产品具有极低的金属杂质,适合用于要求最严格的ICP-MS法、ICP-OES/AES法和石墨炉原子吸收法(GFAA)痕量元素分析。ULTREX II产品经过分析,高达65种痕量元素在ppt范围,技术规范中50种元素低于10ppt且代表性元素总杂质不超过500ppt。ULTREX II产品均在100级环境下采用惰性、预沥滤氟聚合物瓶包装以保证酸产品的纯度。ULTREX II产品,每个包装瓶均附有实际批号和分析证书。J.T.Baker超高纯无机产品包含:ppm级别的BAKER ANALYZED ACS试剂,ppb级别的BAKER INSTRA-ANALYZED试剂,另有AAS原子吸收标准溶液、单元素ICP等离子标准溶液,及多元素等离子标准溶液产品,以及适合EPA合同实验室计划(CLP)的等离子标准溶液。J.T.Baker所有标准溶液均可溯源到NIST(美国标准技术研究院)。关于J.T.Baker   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国MallinckrodtBaker Inc的全资子公司。MallinckrodtBaker Inc拥有的J.T.Baker和Mallinckrodt 两大品牌有130多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法鸡新城疫活疫苗-2023.10.2359禽用灭活疫苗中非法添加禽腺病毒Ⅰ群全病毒抗原检测方法禽用灭活疫苗-2023.10.2360禽用灭活疫苗中非法添加禽流感病毒抗原检测方法禽用灭活疫苗禽流感病毒抗原2017.6.12农业部公告第2538号61清瘟败毒片中非法添加三磷酸核苷竞争性抑制剂(GS-441524)检查方法清瘟败毒片三磷酸核苷竞争性抑制剂(GS-441524)2024.6.19农业农村部公告第801号参考自农业农村部官方网站:http://www.xmsyj.moa.gov.cn/zcjd/202403/t20240321_6452006.htmhttp://www.xmsyj.moa.gov.cn/gzdt/202406/t20240619_6457458.htm
  • 第十五届全国青年分析测试学术报告会 化学计量与标准物质报告集锦
    p  strong仪器信息网讯/strong 2018年7月26-27日,由中国分析测试协会青年学术委员会主办的“第十五届全国青年分析测试学术报告会”在安徽合肥成功召开。会议开设生命科学、环境与食品安全、化学计量与标准物质三个专题的分会报告。以下是化学计量与标准物质专题报告集锦。/pp style="text-align: center "span style="text-align: center "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/cbdda643-ef84-48ff-817a-2a7596e09e31.jpg" title="李晓敏.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李晓敏主持26日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/34410dce-148a-49b6-8707-66c8584ca95c.jpg" title="黄挺.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 黄挺/strong/pp style="text-align: center "strong报告题目:定量核磁共振新方法在有机物纯度定值中的应用/strong/pp  对于纯度较低或者分子量大于500的化合物,由于杂质峰可能与主要组分的峰不完全分离,因此qNMR具有较大的误差风险。课题组近年来建立了扣减杂质的直接qNMR法等五种新的方法来解决这个问题。方法消除了杂质峰对qNMR测定结果正确度的潜在影响,将进一步推动qNMR成为国际计量体系的基准定值方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403f4915-1093-42dd-a1a9-3796d3d34a47.jpg" title="周剑.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 周剑/strong/pp style="text-align: center "strong报告题目:桔皮素纯度标准物质研究/strong/pp  报告介绍桔皮素纯度标准物质的研究,如:采用反相硅胶纯化后旋蒸,采用烘箱及冷冻干燥法干燥,进行标准物质原料纯化。采用液相色谱面积归一化法、定量核磁法和差示扫描量热法进行标准物质定值。采用液相色谱面积归一化法、定量核磁法实现标准物质的不确定度评定。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/8513fb74-8dac-4a14-8509-9433815ea134.jpg" title="李明.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李明/strong/pp style="text-align: center "strong报告题目:基于元素分析法的肽纯度定值技术/strong/pp  课题组建立了基于元素分析的肽纯度定值技术。采用元素分析仪测量肽中氮、硫等元素,扣减相关结构杂质中氮、硫等元素含量,根据氮、硫等元素在肽分子中的分子个数及肽分子量等信息,可完成肽的纯度测量 并根据样品准备和仪器分析过程中产生的A类不确定度和B类不确定度进行评价,最终建立元素分析法对肽纯度定值的计量学方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2eeb44ff-a79b-46c4-9e02-7ecee5223374.jpg" title="李海斌.jpg"//pp style="text-align: center "strong中国疾病预防控制中心职业卫生与中毒控制研究所 李海斌/strong/pp style="text-align: center "strong报告题目:疾控领域标准物质研究介绍/strong/pp  报告介绍了课题组开展的疾控领域标准物质研究工作,包括食品和水4种放射性标准物质研制及相关规范、食品和水4种放射性标准物质研制及相关规范、环境卫生领域10种标准物质与应用技术规范研究、公共营养监测中4种标准物质的研制。并从标准物质制备、取样、均匀性检验、稳定性检验、标准物质定值方面介绍冻干牛血中铬成分分析标准物质研究路线。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/aa7924f4-1298-43dd-824f-c261eb1272da.jpg" title="孙鹏.jpg"//pp style="text-align: center "strong北京海光仪器有限公司 孙鹏/strong/pp style="text-align: center "strongHGA100固体测汞仪在土壤及沉积物中的应用/strong/pp  海光公司于2017年推出自主研发的HGA-100直接进样测汞仪,仪器配置自动进样器,具有电子天平数据接口,减轻实验员劳动强度,减少人为误差 实现了直接进样测量功能,简化前处理过程,提高了检测效率和分析准确度,适用于环境、食品等目标物的分析检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3c082797-4f8b-48d9-bfa4-760c2e4e98c6.jpg" title="汪斌.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 汪斌/strong/pp style="text-align: center "strong报告题目:质量控制图在标准物质稳定性评估中的应用探索/strong/pp  报告以化妆品中的铅的含量稳定性监测数据为例,利用平均值-极差质量控制图对数据进行分析,并与数据正态分布检验、可疑值分析、线性趋势分析进行综合比较。通过分析可以发现,质量控制图是观察数据异常的一个非常直观的技术手段,可以与趋势分析方法相结合作为稳定性监测数据分析的补充。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b499cf53-948a-41bc-9a2c-dd3812d50e8e.jpg" title="李明2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所李明主持26日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/fb0ce8fe-5238-49c8-8aaa-2ace99827b70.jpg" title="周鑫.jpg"//pp style="text-align: center "strong style="text-align: center "中国测试技术研究院化学研究所 周鑫/strong/pp style="text-align: center "strong报告题目:环境空气监测用VOCs气体标准物质的研制和分析/strong/pp  VOCs是环境监测行业最受关注的污染物之一,而VOCs混标更是从业人员急需的,中国测试技术研究院研发出来多种VOCs标准物质,包括满足美国TO-14A和我国HJ644-2013规定的42组分VOCs标准气体、满足HJ759-2015规定的67组分VOCs标准气体和56组分臭氧前体物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/74a08535-33d8-4259-afb6-a83867442bf9.jpg" title="李晓敏2.jpg"//pp style="text-align: center "strong中国计量科学研究院化学所 李晓敏/strong/pp style="text-align: center "strong报告题目:食品基体中污染物残留多组分准确定值方法研究/strong/pp  报告从分析物、前处理、定量、质量控制等角度介绍食品基体中污染物残留多组分准确定值方法研究。分析物应该关注多组分性质差异、定性确认及有效分离,前处理关注基质特点、化合物极性和机构,定量可采用同位素内标法,质量控制应留意溯源性、过程空白等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/45b469f4-f3e7-4afd-bca8-b7ee5eaafe0d.jpg" title="戴红军.jpg"//pp style="text-align: center "strong广州德标智能化工程有限公司 戴红军/strong/pp style="text-align: center "strong报告题目:用安全呵护生命,实验室气体安全隐患与规范操作处理/strong/pp  广州德标智能化工程有限公司成立于2004年,是德国哈锐斯设备(中国)有限公司的控股公司,致力于实验室安全改造及建设。报告回顾几个典型的气体泄漏事故案例,强调实验室气体安全隐患与规范操作处理。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/9583d270-326a-48bc-88cd-1c5bb5ff7859.jpg" title="杨梦瑞.jpg"//pp style="text-align: center "strong农业科学院农业质量标准与检测技术研究所 杨梦瑞/strong/pp style="text-align: center "strong报告题目:全蛋液中恩诺沙星残留分析基体标准物质研究/strong/pp  实验采用分散固相萃取(QuEChERS)法作为样品前处理方法,并系统优化并提取剂与净化剂等条件 采用液相色谱-同位素稀释质谱法,8家实验室联合定值,采用已有的纯度标准物质实现量值溯源,得到全蛋液中恩诺沙星基体标准物质定值结果。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/a8e1bec5-afb5-4ff3-a95b-91476b9e57e2.jpg" title="李先江.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 李先江/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法(GC-MS)测定鸡蛋中氟虫腈及三种代谢物残留/strong/pp  课题组首次建立了基于蛋白沉淀、液相萃取、液液反萃取、固相萃取的前处理方法,和气相色谱三重四级杆质谱的检测方法,实现了对鸡蛋集体中氟虫腈和代谢物的有效检测。实际鸡蛋样品分析结果表明,氟虫腈砜含量最高,证明了氧化为氟虫腈在鸡蛋中的主要代谢通路。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1783000a-c463-4090-97fe-888e7269a46d.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所冯流星主持27日上半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/3e55056a-69bf-4d3b-8b1f-039fef9dee8c.jpg" title="张见营.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 张见营/strong/pp style="text-align: center "strong报告题目:脉冲-辉光放电质谱定量分析稀土元素/strong/pp  -辉光放电质谱(GDMS)可以同时分析元素周期表中74种元素,具有固体直接分析 同时完成常量、微量、痕量、超痕量元素分析 检出限低(定量检出限 1ppd)等优势。脉冲模式的优点则有样品消耗少,可溅射时间长 稳定性更好,测量重复性更好 更适用于半导体测量的优点。报告重点介绍了将脉冲-辉光放电质谱定量分析技术用于稀土元素检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/2fa3b574-6cee-48b6-8a4d-31312bfdba99.jpg" title="叶金.jpg"//pp style="text-align: center "strong国家粮食局科学研究院 叶金/strong/pp style="text-align: center "strong报告题目:粮油中真菌毒素高通量自动化分析方法的研究/strong/pp  实验将样品提取液中的真菌毒素被特异性的吸附在磁珠表面,通过自动化仪器内置磁棒吸磁、转移、洗涤,最后使目标毒素释放在洗脱液中,即完成了样品前处理过程,直接上机进行检测,全部处理时间小于30分钟。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1e8a82ef-32f7-4b5e-a4f9-098372777ae3.jpg" title="赵亚娴.jpg"//pp style="text-align: center "strong环境保护部标准样品研究所 赵亚娴/strong/pp style="text-align: center "strong报告题目:气相色谱-质谱法测定土壤中六溴联苯和多溴二苯醚不确定度研究/strong/pp  研究采用ASE、多层酸碱硅胶层析柱净化的前处理方法,通过优化离子源温度、电压等质谱条件,以13C标记PBDEs同位素作为定量内标,建立同时测定土壤样品中的PBBs和PBDEs的GC-EI/LRMS和GC-NCI/LRMS方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/f7828755-1615-4892-8cf9-028dd5bfbd11.jpg" title="宋善军.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 宋善军/strong/pp style="text-align: center "strong报告题目:多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用/strong/pp  多溴二苯醚不易降解,具有疏水性、生物积累性和生物毒性,可直接或通过食物链的传递富集到人体内,会对甲状腺、肝组织、神经系统和免疫系统造成影响,并具有致癌作用。报告介绍多种色谱质谱联用技术在十溴二苯醚检测及标准物质研制中的应用,包括HPLC-UVD、GC-NCI-MS、GC-ICPMS、HPLC-ICPMS、GC-EI-MS等方法。/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/403d1943-b093-47bc-af1f-25a882c43684.jpg" title="宋善军2.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所宋善军主持27日下半段的专题报告/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/c2ebb063-e5e0-4e51-a166-e973873d0100.jpg" title="肖鹏.jpg"//pp style="text-align: center "strongspan style="text-align: center "中国计量科学研究员化学所 肖鹏/span/strong/pp style="text-align: center "strong报告题目:B型利钠肽在临床检验中的意义及其标准物质的研制/strong/pp  研究发现,BNP 1-32 native MS分析的最大优势是无需引入还原试剂,不产生衍生杂质,但CIO碎裂效果不理想 课题组后期会继续开展二硫键的在线碎裂工作,并同时结合其他类型质谱检测手段和离子碎裂模式。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/ec208cc6-f1d6-4304-85f4-f44c0174e01b.jpg" title="张鹏辉.jpg"//pp style="text-align: center "strong中国测试技术研究院化学所 张鹏辉/strong/pp style="text-align: center "strong报告题目:乙腈中16组分多环芳烃溶液标物制备技术研究/strong/pp  多环芳烃是分子中含有两个以上苯环的碳氢化合物,包含萘、蒽、菲、芘等150余种化合物。有些多环芳烃还含有氮、硫和环戊烷。唱的具有致癌作用的多环芳烃多为四到六环的稠环化合物。报告介绍了乙腈中16组分多环芳烃溶液标物制备技术研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/b6379f3f-eb70-48be-bc10-78c48acf154a.jpg" title="冯流星.jpg"//pp style="text-align: center "strong中国计量科学研究员化学所 冯流星/strong/pp style="text-align: center "strong报告题目:稀土溶液标准物质的研制/strong/pp  实验选择Dy、Ho、Er、Tm、Sc五种稀土溶液标准物质为研制对象,采用高纯稀土氧化物为原料,经LA-ICP-MS及XRD对纯度进行分析后,分别制备成浓度为1000μg/mL的稀土溶液标准物质。采用准确、可靠并能溯源的EDTA络合滴定法进行量值核对、均匀性及稳定性检验。对标准物质的不确定度进行了全面的评定。/p
  • 转基因植物标准物质研究进展
    转基因植物标准物质研究进展日期:2012-05-17 作者:董莲华 赵正宜 李亮 隋志伟 王晶 来源:《农业生物学报》.-2012,(2).-203-210 点击:107  近年来,随着转基因技术的飞速发展,转基因作物及其产品大量涌现。但是由于转基因作物及其产品对人体健康和生物多样性的影响未经过长期检验,所以一直以来其安全性都受到社会各界的关注。为了保护消费者对转基因产品的知情权、选择权和健康权,各国都建立了多种方法对转基因植物及其产品中的转基因特征分子进行检测,以期对转基因植物从源头到餐桌进行全程监控。目前,由于各国对于转基因产品的标识有不同的要求,有些国家规定必须标明转基因成分的含量,并且各个国家对所标识转基因含量的要求不尽相同,为了解决贸易争端等问题,转基因产品的定性、定量检测成为关键。但是,由于缺乏国际普遍认同的标准,所以检测结果不可比的问题尤为突出。转基因检测标准的制定是解决转基因产品检测结果不可比的根本。转基因检测标准包括标准检测方法和标准物质。而转基因标准物质在保汪转基因检测结果可比和可溯源方面起着重要作用。标准物质是具有高度均匀性、良好稳定性和量值准确性的一种测量标准。因此转基因生物标准物质的使用可以保证转基因产品检测缔果的有效和可比。 国外尤其是欧美国家自上个世纪起就已经开始转基因检测标准和标准物质相关研究。目前我国制定了一些急需的转基因安全检测标准和规范(GB/T19495.3~5-2004,NY/T719.l~719.3-2003,NY/T720.1~720.3-2003,NY/T 72l.1~721.3-2003),但是,转基因生物标准物质的缺乏,已成为制约我国转基因生物检测技术应用与发展的一个土要技术瓶颈。本文将对国内外转基因植物标准物质的研究现状及相关技术进行综述,以期为我国转基因植物标准物质研制和相关研究提供参考。1 转基因植物标准物质种类 目前国内外研制的转基因植物标准物质上要自基体标准物质(Gancberg et al.,2007;Trapmann et al.,2004a;Trapmann et al.,2004b)和核酸分子标准物质(Corbisier et al.,2007;AOCS 0306-A(http.//WWW.aocs org/LabServices))。基体标准物质是与被测样品具有相同或相近基体的实物标准,是给被测物质赋值的最有效的标准物质。目前所研制的基体标准物质根据存在形式不同主要有种子标准物质(AOCS 0304-B(http//WWW.aocs.org/yech/crm))和种子粉末标准物质(Trapmann et al.,2004b)。核酸分子标准物质是含有已知量值(目标基因拷贝数或含量)的植物基因组DNA或质粒DNA分子,目前已有的核酸分子标准物质主要有基因组DNA分子标准物质(Fluka69407(http//www. sigmaaldrich.com/etc/medialib/docs/Fluka/Datasheet/69407dat. Par. 0001 File.tmp/69407dat.pdf);AOCS 0306-A)和质粒DNA分子标准物质(Corbisiei et al.,2007),而基因组DNA分子标准物质主要有叶片DNA(AOCS 0306-A;AOCS 0208-A2(http://WWW aocs. org/tech/crm);AOCS 0306-H(Http://WWW. aocs org/tech/crm))和种子DNA(F1uka 69407)分子标准物质两种。每种类型的标准物质在制备、保存和使用中都有其优缺点。具体见表1略。 由表1略可知,基体标准物质由于具有与待测物相同司或相近的基体效应,而且可以用于核酸和蛋白两个水平的检测,应用相对较。但是其纯度和均匀性不容易保证,使用不方便、价格昂贵,而且原材料获得以及复制难度较大。核酸分子标准物质可以解决均匀性问题,其中质粒分子标准物质还有容易获得和使用方便等特点(Allnutt et al.,2006),但是因为其PCR扩增效率与基因组DNA的扩增效率可能存在差异,使用质粒分子标准物质对转基因产品定量时须谨慎。基因组DNA分予标准物质虽然不存扩增效率差异,但因为纯度难以控制,所以复制比较难,价格最高。2 转基因标准物质制备过程中关键点2.1 转基因基体标准物质 转基因植物基体标准物质的研制技术关键包括候选物品种纯度鉴定、标准物质均匀性研究,标准物质定值和不确定度评价等技术研究。基体标准物质候选物纯度鉴定非常关键,因为这直接关系到转基因成分含量的准确性,在目前所有基体标准物质研制报告中,都提供了该标准物质候选物纯度及鉴定方法(Clapper and Cantrill,2009;Trapmann et al.,2010a)。纯度鉴定分遗传背景纯度和基因型纯度鉴定。遗传背景纯度鉴定一般是标准物质候选物供应商(目前国际上主要的供应商为拜尔公司、先正达公司和孟山都公司)通过田间性状筛选、分子水平和蛋白水平的纯度检测完成。分子水平检测技术一般采用定性PCR(聚合酶链式反应)、荧光定量PCR、Southem杂交等技术。蛋白水平检测技术包括Western杂交和免疫试纸条法等(Trapmann et al.,2004b)。基因型纯度检测方法一般采用PCR、Invader(亲染探针法)和SNP Wave技术检测等位基因的纯合或杂合(Eijk et al.,2004;Twyman et al. 2005)。此外,标准物质生产者还要对标准物质候选物进行转化体特异性检测,如对转基因玉米NK603标准物质候选物进行转化体特异性鉴定时要排除转基因玉米其它的转化体(GA21、MON863和MON810)(Trapmann et a.,2005a)。不同的转化体特异性纯度鉴定水平依赖于该转化体特异性定量PCR方法的检测限(Limit of Detection,LOD),由于每个转化体特异性方法的检测限不同,因此对每种转化体的转基因标准物质候选物可检测的纯度水平不一致,如对转基因玉米GA21可鉴定纯度99.935%(LOD=0.065%,Trapmann et al.,2004c),对转基因玉米NK603可鉴定纯度99.970%(LOD=0.030%,Trapmann et al.,2005a)对转基因玉米TCl507可鉴定纯度99.960%(LOD=0.040%,Trapmann et al.,2005b),对转基因土豆EH92-527-1可鉴定纯度99.980%(LOD=0.020%,Trapmann et al.,2011)。 基体标准物质均匀性研究目前主要采用实时荧光定量PCR(Trapmann,et al.,2011)和金标记中子活化法(Trapmana et al.,2010a,b,c)。采用荧光定量PCR方法进行均匀性检验是通过测定目标基因与内标准基因的比值这一特性量值来考察瓶间与瓶内的一致性。利用这种方法进行均匀性检测的优点是测定的量值与标准物质特性量值一致,但缺点是PCR方法精密度低,从而导致均匀性检验对标准物质量值不确定度贡献较大。采用金标记中子活化法进行均匀性检测优点是灵敏度高,重复性好,但缺点是该方法的成本比较高。2.2 转基因植物质粒分子标准物质 转基因植物质粒分子标准物质的研制技术关键包括目标序列和内标准基因序列的选择和扩增、质粒分子标准物质定值和适用性验证等,其中对于质粒分子的定值和适用性验证是质粒分子标准物质研制的技术难点。内标准基因序列的选择一般取决于转基因检测时常用的基因,研制的玉米中常用的内标准基因有adh(Alcoholdehydrogenase,乙醇脱氢酶)、zSSIIB(淀粉合成酶基因)和hmg(High mobilitygroup,高迁移率族蛋白基因),转基因玉米Mon810质粒分子标准物质ERM-AD413的内标准基因为adh基因片段(Corbisier et al.,2007);报道的转基因玉米质粒分子pNK603和pUC57-Btll则选择zSSIIB基因作为内标准基因(董莲华等,201la;董莲华等,2011b)。水稻中常用的内标准基因有REB4(Starch branching enzymes,淀粉分枝酶基因)、SPS(Sucrose phosphate synthase,蔗糖磷酸合成酶)、GOS9和PLD(Phospholipdase D磷脂酶基因)(Ding et al.,2004;Wang et al.,2010)。Cao等(2011)在构建转基因水稻TT51-1质粒标准分子时选择了PLD基因作为标准基因。大豆中常用的内标准基因是Lectin(凝集素基因),棉花中常用的内标准基因是Sad(Steroyl-ACP desatuTase,硬脂酰-ACP脱饱和酶)(Yang et al.,2005)。 目标基因的选择可以是启动子或终止子基因序列,可以是转入的功能基因序列,也可以是转化体特异性边界序列基因(即一部分来源于植物基因组,一部分来源于转入的外源基因)。目前研究最多的是选择边界序列作为外源基因进行构建质粒分子,如Cao等(2011)构建的转基因水稻TT51-l质粒分子目标基因为3′端边界序列,Taveniers等(2005)等构建的Btl76和GA21质粒分子也选择了3′端边界序列作为目标基国。2.3 转基因植物基因组分子标准物质 转基因植物基因组分子标准物质的研制技术关键包括候选物纯度鉴定、基因绸DNA纯化和定值。对候选物纯度鉴定与和转基因基体标准物质研制中的候选物纯度鉴定一样关键,因为纯度直接决定了量值的准确性。基因组DNA的纯化同样至关重要,PCR抑制因子的存在会严重影响后续PCR的扩增,从而影响对待测样品的赋值。目前,基因组DNA纯度一般以A260/A280和A260/A230这两个比值的大小来进行评价:A260/A280比值要求在1.8~2.0之间,而A260/A230比值则要求2.0。PCR抑制因子的存在与否,可通过倍比稀释PCR扩增后比较测定的Ct值与推测Ct值之差进行确定(ENGL,2008)。3 转基因标准物质量值确定方法 基体标准物质定值方式目前主要有两种:第一是重量法,即以制备时的重量配比给标准物质进行赋值,单位一般为g/k或者以%表示,采用重量法进行量值时其不确定度来源主要包括称量引入的不确定度和标准物质的纯度引入的不确定度。目前欧洲标准物质和标准方法研究院(Institute for Reference Materials and Measuremnents,IRMM)所制备的转基因标准物质大部分都是使用这一方法进行量值(Trapmann et al.,2004a;TraPmann,et al.,2010b;Trapmann et al.,2004c;Trapmann et al.,2005a)。第二是采用定量PCR方法对目标基因与内标准基因的拷贝数进行测定,以拷贝数的百分数(%)表示。由于PCR方法为相对定量,而且精密度低,所以使用该方法进行量值时标准物质的不确定度较大。在IRMM最新发布的标准物质研制报告(Andade et al.,2011)采用了荧光定量PCR方法对转基因玉米NK603标准物质进行量值。 此外,数码PCR(digital PCR)技术是新发展起米的可应用于转基因检测及标准物质定值的方法,因为数码PCR技术不需要外标而可以进行绝对定量,因此在标准物质定值方面有很大的发展前景(Bhat etal,2009),如在BIPM组织的关键比对CCOM-K86中,有证据表明数字PCR对转基因盲样测定的结果与定量PCR测定结果一致(Corbisier et al.,2011),但该方法测定结果的不确定度和溯源途径还有待于进一步研究。最新出现的Droplet digital PCR(ddPCR)技术(Markey et al.,2010)也是一种不依赖于外标的绝对定量方法,用于转基因含量的测定和目标基因的绝对定量方面具有良好的发展满力。 对于转基因基因组和质粒分子标准物质的量值与基体标准物质不同,除了需要明确转基因成分含量外,还要明确DNA浓度。目前,对转基因基因组或质粒DNA标准物质浓度量值IRMM采用紫外分光光度法,还可用PicoGreen荧光染料法,但是这些方法在标准物质量值溯源性方面都不能满足要求(Haynes et al.,2009)。最近发展的超声波-高效液相色谱(董莲华等,2011c)和超声波一同位素稀释质谱法可以解决核酸浓度定量测定的溯源性问题。此外电感耦合等离子体发射光谱技术(ICP-OES)也是溯源清晰的核酸浓度定定量方法(English et al.,2006)。用于转基因成分含量或拷贝数量值确定的方法主要是荧光定量PCR方法。荧光定量PCR方法是发展起来比较成熟的转基因定量方法(Ronning et al.,2003;Holst-Jensen et al.,2003;Cankar et al.,2006),但由于该方法是依赖于外标的相对定量,且重复性较差,难以成为标准物质定值的绝对方法。目前对于质粒分子标准物质的量值方式还没有合理的模式,因为质粒分予标准物质不同于基体含量标准物质,首先质粒分子本身的量值为目标基因和内标准基因的比值,而这一比值可以通过基因测序法来确定,也可通过定量PCR方法来确定。通过测序方法对标准值进行确定,其不确定度基本可以忽略(董莲华等,201lb),而通过PCR方法进行定值,不确定度需要考虑PCR过程中的影响因素,一般不确定度都较大(董莲华等,2011b1)。 此外,质粒分子作为标准物质是要用于转基因成分含量检测的,检测对象是基因组DNA,因为分子大小差异可能会导致PCR扩增效率有差异,因此对质粒分子标准物质定值还要充分考虑质粒和基因组可替代性问题。可替代性是指标准相对于未知样品的行为。一般观点认为,质粒DNA与基因组DNA是否可以替代主要取决于PCR过程中两者产生的标准曲线,具体反应在两者标准曲线的斜率(与PCR扩增效率相关)、截据和线性相关系数。但笔者认为这些参数中最关键的是两者标准曲线的斜率,其次是截据,线性相关系数只是反应标准曲线自身的线性,该参数更多的是取决于标准曲线制备过程中的梯度稀释。如果斜率和截据这两个参数之间没有显著差异,那么两者基本就可以替代(Taverniers et al.,2009)。但是如果斜率没有差异,截据存在差异,不能简单的认为两者不可以替代,这种情况F可经过实际样品验证,如果两者对于已经标准值的物质或者有证标准物质进行定量测定的结果一致,也可以证明两者是可以替代的(董莲华等,2011a;董莲华等,2011b)。或者通过大量实验找出质粒分子与基因组分子扩增之间的系数,也是解决这一问题的方法。4 国内外转基因标准物质研究现状与展望 目前国际上主要由IRMM、美国油料化学会(American Oil Chemists’Society,AOCS)和Sigma公司等专业机构进行转基因标准物质的研制和销售。国外对转基因标准物质的研制多集中在基体标准物质,目前仅有一个质粒分子标准物质(MON810)申请了有证标准物质(Corbisier et al.,2007),具体见表2略。国内目前仅有一种转基因大豆粉二级标准物质(GB/W100042/43),还没有有证质粒分子标准物质。但是我国目前批准的转基因标准品已有20种,这些转基因标准也具有明确的量值,它们与标准物质的区别在于转基因标准品的研制以应用为首要目标和出发点,对溯源性并不关注,因此其溯源途径尚不明确。而转基因标准物质除了以应用为目的具有明确的量值和不确定度外,对量值的溯源性也要声明。我国自2009年启动转基因生物新品种培育重大专项以来,研制的转基因标准物质涉及的国内外16个转化体30多个基体和质粒分子标准物质,分别由中国计量科学研究院、上海交通大学、中国农科院油料所研制。目前的这些标准物质正在进行有证申报。预计这些转基因标准物质将很快能够服务于我国的进出口贸易和出入境检验检疫等,从而有效的避免贸易争端。5 展望 转基因标准物质的使用将有效地解决转基因检测不可比的问题,从而避免国际贸易争端。然而,只有转基因标准物质的量值得到国际互认,才可真正有效地避免贸易争端,消除贸易壁垒。而要达到国际互认最简便有效地方式是通过国际比对或各国协同定值。具有国际互认量值的标准物质才能够更好的服务于进出口贸易检测。此外,未来的转基因标准物质研制应以简单实用为主,由于基体标准物质会受其原材料的限制,而质粒分子标准物质自身的特点决定了其应用的广泛性和使用的方便性。况且,如果将多个转化体特异性检测片段同时构建在同一个质粒分子上,可达到一个标准物质进行多个转化体检测应用的目的,这样既可提高标准物质的利用率,又可节约成本,应是未来的转基因标准物质研制的发展方向。 作者单位:(中国计量科学研究院,北京 100013) 文章采集:caisy 注明:国家科技支撑项目(No.2008BAK41B01)和转基因生物新品种培育重大专项(No.2008ZX08012-003)。
  • 【仿制药一次性评价中标准物质的选择与使用】培训火热报名中
    仿制药一致性评价中的有关物质研究,关键点在于“杂质谱比较”。任何影响药物纯度的物质统称为杂质,药品中的杂质按其理化性质一般分为三类:有机杂质、无机杂质及残留溶剂。 在研究过程中就涉及到针对有机杂质检测的相关标准物质的选择和使用,本次培训,将围绕仿制药一次性评价中标准物质的选择与使用开展。 我国是个仿制药大国,却不是仿制药强国,低水平仿制扎堆现象严重,部分仿制药存在质量不高、疗效较弱等问题。仿制药和原研药,一样的药品,杂质含量、生物利用度、副作用可能都有差别,临床上的安全性和有效性也会不同,所以必须进行药物一致性评价,才能提高药品的安全性和有效性,保障药品的质量。 为此,CATO分析标准品本期培训将针对杂质含量这一块做出细致的讲解,明确在仿制药一致性评价中关于杂质这块的相关规定及实验研发的注意事项。同时,重点讲解在此过程中如何正确的选择标准物质及其使用方法。培训安排07.30 14:00 - 07.30 15:00本次培训直播将在仪器信息网网络讲堂进行扫码进入报名链接(马上扫码报名)报名成功将会收到提示短信 培训互动参与直播互动,我们将抽取3名客户送出智能液显保温杯一个!!繁忙工作之余,也要注意养生哦~~
  • 标准品和高纯试剂的区别
    标准品,国内和国际上有很多叫法,不同体系的称呼也不同,这里只是遵循国际上常规的称呼,即用RM即Reference Materials作为标准品的统称。在ISO体系中有参考物质(RM)和认证参考物质(CRM)两种计量的标准物质。根据ISO Guide 30规定, 参考物质/标准物质是含有一种或多种特定属性值并且足够均匀和稳定的物质,专用于测量过程,评价测量方法或给材料赋值的材料或物质。认证参考物质的特点是通过可计量的有效程序指定一个或多个属性,并连同一证书,提供指定属性的值,相关的不确定度,以及计量的可追溯性的声明。认证参考物质和参考物质的相同点和不同点主要见下表:标准品是按照ISO 17034:2016《标准物质/标准样品生产者能力认可准则》来指导生产,那么什么是ISO 17034?• ISO 17034是标准物质/标准样品生产者能力认可的国际标准。• 从原材料选择、生产、质量控制、运输和储存到售后实行质量监管。• 生产:原材料选择和纯化,生产计划和控制;• 描述:检测方法、不确定度、溯源性;• 批次稳定性评估;• ISO Guide 34 从2016年11月已经正式更名ISO 17034。试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。1.优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度zui高,杂质含量zui低,适合于重要jing密的分析工作和科学研究工作,使用绿色瓶签。2.分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。3.化学纯(CP),又称三级试剂,≥99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)瓶签。4.实验试剂(LR:Laboratory reagent),又称四级试剂。纯度远高于优级纯的试剂叫做高纯试剂(≥99.99%)。高纯试剂是在通用试剂基础上发展起来的,它是为了专门的使用目的而用特殊方法生产的纯度zui高的试剂。它的杂质含量要比优级试剂低2个、3个、4个或更多个数量级。因此,高纯试剂特别适用于一些痕量分析,而通常的优级纯试剂就达不到这种jing密分析的要求。除对少数产品制定国家标准外(如高纯硼酸、高纯冰乙酸、高纯氢氟酸等),大部分高纯试剂的质量标准还很不统一,在名称上有高纯、特纯(ExtraPure)、超纯、光谱纯等不同叫法。[1]高纯试剂通常应用于色谱使用的色谱纯试剂、光谱使用的光谱纯试剂,此外,电路、液晶等领域都有各自行业标准的高纯试剂。但是高纯试剂通常不使用在分析纯试剂使用的领域,如配制标准溶液、滴定剂等,高纯的单质例外。也就是说高纯试剂不是一个计量学概念的物质,而标准品是在计量学范畴内的。高纯试剂遵循的生产标准是ISO9001。不同行业使用的高纯试剂有各自的标注方式,通用的标注是用9的数目来表示。例如,纯度为99.999%,含五个九则表示为5N;纯度为99.995%,含四个九一个五,表示为4.5N。高纯试剂不需要确定不确定度,溯源性,主要是对试剂的纯度和杂质的控制,没有计量学的要求,所以标准品的生产在jing准方面,要求会更高。月旭提供的A2S在生产有机标准品方面已经通过ISO9001, ISO Guide 34 (现ISO17034)资质认证,目前可以提供高品质纯品型标准品、单标溶液、混标溶液,并且可以为客户提供混标个性化定制服务,如GB2763、GB23200系列多农残查混标定制,欢迎大家咨询选购!
  • 第五届 标准物质技术与应用,圆满结束!
    仪器信息网与《化学试剂》编辑部联合举办的“第五届 标准物质技术与应用”会议已于6月15日圆满结束!本次会议就标准物质、标准样品的最新技术进展、热点领域的应用等大家关心的话题进行了探讨,为相关专家、用户搭建了有效的交流平台。本次会议荣幸邀请到中国计量科学研究院、四川省食品检验研究院、中国农业科学院、生态环境部环境发展中心、中国测试技术研究院、艾吉析科技(上海)有限公司等,共8位专家出席。会议内容涉及食品、环境、能源、化工等专业领域,会议刚开场就达到了会议高潮,报告内容干货满满,现场赢得网友好评连连!参加本次会议的用户行业分布为:参加本次会议的用户单位分布为:再来一起回顾下报告的精彩内容吧! 马联弟(中国计量科学研究院 标准物质研究与管理中心 ):讲解了标准物质的概念、用途和作用进行了讲解,分析了国内标准物质的研究、生产、供应现状等。余晓琴(四川省食品检验研究院):主要解析抽检中典型项目可能出现误判或结果准确度影响的一些实际案例,强化过程质量控制的重要性。薛晓峰(中国农业科学院蜜蜂研究所):介绍了我国特色农产品标物的特点与研究进展,重点讲解了蜂产品基体标准物质的研究经验。赵鹏(艾吉析科技(上海)有限公司):基于溶液型混标的应用现状,介绍了Dr. Ehrenstorfer混标产品的特点及应用。李晓敏(中国计量科学研究院):介绍了食品中化学污染物残留的特点,相关标准物质的检测方法评价、检测结果赋值、实验室质量控制等问题。黄挺(中国计量科学研究院):结合国家计量技术规范《JJF1855-2020纯度标准物质定值计量技术规范——有机物纯度标准物质》以及个人经验,介绍有机纯度标准物质研制与定值技术中的关键内容与注意事项。李宁(生态环境部环境发展中心标样所):梳理了现有环境大气质量标准、排放标准等情况,介绍了环境标准气体的量值溯源性及质量控制,环境标准气体在环境监测的应用中选择和使用的注意事项。周鑫(中国测试技术研究院化学研究所):介绍了标准物质在油气井示踪测试中的研究以及在天然气组分分析、含硫化合物测定中的应用。 点击链接,可观看部分回放视频。https://www.instrument.com.cn/webinar/meetings/referencematerial2022/ 标准物质是化学分析中是获得有效结果的重要保障,是化学分析的基石,让我们一起期待“第六届 标准物质技术与应用”会议的召开吧!特别感谢美正、艾吉析对本次会议的大力支持!关于网络讲堂:仪器信息网网络讲堂成立于2010年,整合科学仪器行业仪器原理、应用及方法开发、维修与保养等内容机构,以“音频+PPT”直播模式与行业用户实时在线交流。迄今为止,我们组织在线研讨会已覆盖环境、生命科学、制药、食品、材料等热点领域,仪器方面涉及质谱、光谱、色谱、电镜、核磁等热门仪器,为近350万用户传递知识。我们的定位:捕捉行业热点、跟踪仪器最新技术,深度解读行业政策、法规、标准等内容。网络讲堂官网:https://www.instrument.com.cn/webinar/相关会议合作,请联系:王老师 13269891028
  • ACCSI2013:标准物质和标准品试剂沙龙
    仪器信息网讯 2013年4月19日,中国科学仪器行业最高级别的峰会——“2013中国科学仪器发展年会(ACCSI 2013)”在京召开。此次会议由中国仪器仪表行业协会、中国仪器仪表学会分析仪器分会、仪器信息网主办,我要测协办。 会议同期,主办方还举办了标准物质和标准品技术沙龙,《化学试剂》编辑部总编刘昉主持,邀请了来自科研院所,企业单位等各行业30多位专家共同探讨标准品的技术发展和市场需求。《化学试剂》编辑部总编刘昉主持全国化学试剂信息站李建华  全国化学试剂信息站李建华说:“有检验的地方就有标准物质,随着环境、药品、食品、建材、能源、临床医学、钢铁冶金、有色金属等呈现出越来越强的检测需要,与之相对应的标准物质和标准品也越来越引起人们的关注。”中国计量科学研究院国家标准物质研究中心研究员张庆合  中国计量科学研究院国家标准物质研究中心研究员张庆合谈到,计量所使用的标准物质主要作用是溯源和传递,而溯源可以通过国际比对来实现。国家有色金属及电子材料测试中心副主任刘英  国家有色金属及电子材料测试中心副主任刘英指出,现在很多分析仪器使用相对法测样,而这其中需要标准物质进行量值溯源,因此随着各种分析仪器的发展,标准物质也在快速地发展中。因为我们中心涉及最多的是有色金属,所以会使用很多固体标准样品。另外,中心也会使用大量的标准溶液,主要研究热点是农残和临床试剂;此外,我们中心还结合国家纳米材料的发展,审定了一些纳米尺度的标准物质。国家环保局标样所徐鹏  国家环保局标样所徐鹏谈到,我们所涉及的标准样品主要应用于水质、空气,有机污染物,土壤,生物等方面,目前环保部需要的标准样品主要针对环境监测。中国检验检疫科学研究院检测技术与装备研究所齐小花  中国检验检疫科学研究院检测技术与装备研究所齐小花说:“我们涉及的标准样品主要应用于卫生检疫、食品、消费品、化学品等,其中食品检测是我们业务的主要方面,但是目前遇到一个问题,在进行检测的时候,标准样品在试剂盒和机体里表现出的性质并不一样,因为机体的环境更加复杂,所以将来如果我们能研制出在机体里使用的标准样品,这会对研究工作更加实用。军事医学科学院李海静  军事医学科学院李海静说:“我们所涉及的标准品主要应用于氨基酸、脂肪酸、糖类等,目前遇到一个问题是,从国外购买的标准样品包装剂量很少,只能用一次,在进行下一批次的检测时,需要用另外的标准样品,这不同批次之间就会有一些差异,导致数据不准。”中国食品药品检定研究院于婷  中国食品药品检定研究院于婷谈到了关于药品,生物制品,体外检测试剂相关的标准试样的现状。天津光复精细化工研究所张贵珠国药集团化学试剂有限公司副总经理顾小焱西格玛奥德里奇(上海)贸易有限公司高级产品经理高珏天津科密欧化学试剂有限公司李玉华北京益利精细化学品有限公司韩廷梅天津化学试剂研究所李铜 此外,来自标准品企业的代表也就标准物质的技术和市场情况发表了自己的观点。会议现场
  • 色谱分离技术制造高纯度益生元
    日前,广东江门量子高科生物股份有限公司(以下简称量子高科)采用色谱分离技术成功产出纯度达95%以上的高纯度益生元,各项技术指标均达到国际领先水平。  在国内率先采用色谱分离技术,成功实现纯度达到95%以上的高纯度低聚果糖的工业化生产,在国内尚属首创。量子高科的高纯度低聚果糖色谱项目的投产成功,标志着我国益生元产业的高纯度低聚果糖的核心技术的“瓶颈”宣告打通,不仅填补了中国益生元产业的技术空白,还打破了国外的垄断局面,替代进口产品满足国内市场需求,大大推动我国益生元行业的发展进程,同时对全国功能食品行业的发展产生积极作用。  量子高科在引进、消化和吸收世界最先进的益生元技术基础上,通过自主创新,投资建成了国内第一套千吨级采用色谱分离技术制造高纯度益生元的生产系统,生产流程通过PLC(可编程逻辑自动控制器)控制,生产线的运行流程和技术规范都在全自动化模式下进行,最大化减少人员接触产品,更进一步提高产品的卫生和安全性。整个生产系统不仅流程全封闭、全循环,而且产量高、能耗低,绿色环保。与过往从55%纯度的低聚果糖中再次提取精制而取得高纯度低聚果糖的生产工艺相比,不仅简化了操作工序,缩短了生产时间,还保证了产品的品质,确保与国际先进水平同步。今年11月,工程主工艺系统设备安装完毕,经过1个多月的系统调试,工艺装置全部达到设计要求。12月,工厂全部工艺流程打通,投料试产,日前以色谱分离技术成功生产出优质的高纯度低聚果糖产品。  量子高科首创的高纯度低聚果糖色谱项目的成功,对益生元行业的发展是一大推进。开发高纯度低聚果糖产品在生理学功能、营养研究及加强农产品综合利用、延长农业产业链、提高产品附加值方面都具有非常重要的意义。
  • 《做好标准物质标准品,更好地为食品和环境安全服务》  —常州市市长丁纯一行莅临坛墨质检调研指导!
    10月11日上午,常州市市长丁纯、市委副书记蔡俊,副市长梁一波,市政府秘书长杭勇,发改、科技、工信、公安等市级机关部委办局等一行参观考察坛墨质检科技股份有限公司。坛墨质检于2007年成立于北京,是一家专业研发标准物质标准品的高科技企业,获得了中国CNAS标准物质/标准样品生产者能力认可,并通过ISO9001质量管理体系认证。目前拥有各类产品近3万个,成功申报标准物质500多个。主要服务于国家出入境检疫检验系统、食药监系统、各省市环境监测站、第三方检测机构以及科研院所等。2018年6月坛墨质检公司总部迁至常州,成立“坛墨质检科技股份有限公司”,注册资本5000万元。建立现代化的标准物质常州研发服务中心5400㎡,购置专业的研发/分析仪器二百多余套。坛墨质检科技股份有限公司总经理方燕飞女士就坛墨质检的发展情况、公司定位、企业价值观和企业愿景等方面内容向丁市长等领导做了详细汇报。丁纯市长对坛墨质检的公司定位、企业价值观、企业使命给予充分的肯定和鼓励! 坛墨质检科技股份有限公司总经理方燕飞女士向丁纯市长等领导介绍公司情况。丁纯市长一行领导详细参观了标准物质领域目前国内专业、智能的冷冻仓库。 2-8度冷藏库 零下18度冷冻库坛墨质检冷库总长度是40米,共1200立方米丁纯市长重点参观了坛墨质检公司的系列研发实验室坛墨质检公司的有机标准物质研发实验室。丁纯市长参观坛墨质检公司的同位素标记研发实验室。坛墨质检实验室配备有排风、全新风、恒温恒湿等系统,技术参数完全满足CNAS对检验检测实验室的要求。稳定同位素稀释质谱法是国际公认的痕量残留检测的“金标准”,但所使用的稳定同位素相关产品长期被国外垄断,从而使得我国农兽药残留检测技术应用受到了很大限制。坛墨质检为了填补了国内空白,改变进口产品垄断国内市场供应现状。目前,坛墨质检公司已研发出上百种国内食品安全、环境监测领域所急需同位素标记标准品,技术水平处于国际先进地位,并有多个产品已申请发明专利,其中1个产品在短短7个月就获得发明专利授权。由于该类产品国内无其他研发企业,使得我们形成了“技术高新专有,产品需求迫切,市场前景广阔”的产业链格局,满足了我国食品安全、环境监测领域迫切的溯源需求,能产生巨大的经济效益和社会效益丁纯市长表示,标准物质行业具有十分广阔的发展前景,希望坛墨质检进一步加快科研成果产业化的步伐,持续保持高速增长,企业要用新产品、新技术努力提升核心竞争力,掌握行业话语权。坛墨质检环境检测类标准物质标准品坛墨质检食品安全检测标准物质标准品坛墨质检拥有一支年轻富有创造力的专业团队,常州总部目前拥有员工150人,其中技术团队超过60人,2019年申报专利近20项,目前已获授权专利3项,其中发明专利1项。
  • 市场监管总局公布2021年新批国家标准物质 一级345项
    根据《中华人民共和国行政许可法》《中华人民共和国计量法》《中华人民共和国计量法实施细则》《标准物质管理办法》有关规定,市场监管总局2021年新批准国家一级标准物质345项、国家二级标准物质1774项,现予以公布。(更多详见附件)2021年新批准国家标准物质目录(一级标准物质)序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次1.证字第2514GBW07139锰矿石成分分析标准物质(I)湖南省地质测试研究院2021年第1批2.证字第2515GBW07140锰矿石成分分析标准物质(II)湖南省地质测试研究院2021年第1批3.证字第2516GBW07352沉积物中多环芳烃成分分析标准物质(JSH)国家地质实验测试中心2021年第1批4.证字第2517GBW07353沉积物中多环芳烃成分分析标准物质(JXL)国家地质实验测试中心2021年第1批5.证字第2518GBW07354沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质国家地质实验测试中心2021年第1批6.证字第2519GBW07355沉积物中多环芳烃和有机氯农药成分分析标准物质国家地质实验测试中心2021年第1批7.证字第2520GBW07499高演化沉积岩岩石热解和总有机碳分析标准物质(GZZJ-1)国家地质实验测试中心2021年第1批8.证字第2521GBW07500高演化沉积岩岩石热解和总有机碳分析标准物质(GZZJ-2)国家地质实验测试中心2021年第1批9.证字第2522GBW07536土壤(黑龙江漠河)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批10.证字第2523GBW07537土壤(内蒙古牙克石)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次11.证字第2524GBW07538土壤(黑龙江牡丹江)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批12.证字第2525GBW07539土壤(内蒙古锡林郭勒)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批13.证字第2526GBW07540土壤(内蒙古额济纳)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批14.证字第2527GBW07541土壤(新疆阿勒泰)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批15.证字第2528GBW07542土壤(新疆哈密)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批16.证字第2529GBW07543土壤(新疆和田)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批17.证字第2530GBW07544土壤(新疆且末)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批18.证字第2531GBW07545土壤(西藏阿里)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批19.证字第2532GBW07546土壤(西藏改则)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批20.证字第2533GBW07547土壤(西藏那曲)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批21.证字第2534GBW07548土壤(西藏日喀则)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批22.证字第2535GBW07549土壤(西藏林芝)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次23.证字第2536GBW07550土壤(甘肃嘉峪关)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批24.证字第2537GBW07551土壤(青海格尔木)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批25.证字第2538GBW07552土壤(河南安阳)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批26.证字第2539GBW07553土壤(山东菏泽)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批27.证字第2540GBW07554土壤(陕西汉中)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批28.证字第2541GBW07555土壤(河南南阳)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批29.证字第2542GBW07556土壤(江苏宜兴)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批30.证字第2543GBW07557土壤(四川雅安)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批31.证字第2544GBW07558土壤(四川简阳)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批32.证字第2545GBW07559土壤(重庆涪陵)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批33.证字第2546GBW07560土壤(江西九江)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批34.证字第2547GBW07561土壤(浙江龙泉)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次35.证字第2548GBW07562土壤(贵州铜仁)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批36.证字第2549GBW07563土壤(湖南邵阳)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批37.证字第2550GBW07564土壤(贵州安顺)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批38.证字第2551GBW07565土壤(江西赣州)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批39.证字第2552GBW07566土壤(福建漳州)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批40.证字第2553GBW07567土壤(云南保山)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批41.证字第2554GBW07568土壤(广东梅州)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批42.证字第2555GBW07569土壤(云南玉溪)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批43.证字第2556GBW07570土壤(广西百色)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批44.证字第2557GBW07571土壤(广西梧州)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批45.证字第2558GBW07572土壤(广东花都)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批46.证字第2559GBW07573土壤(海南文昌)成分分析标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次47.证字第2560GBW07731南极玄武岩成分分析标准物质国家地质实验测试中心2021年第1批48.证字第2561GBW07732南极凝灰岩成分分析标准物质国家地质实验测试中心2021年第1批49.证字第2562GBW07733锂辉石成分分析标准物质(LHL)国家地质实验测试中心2021年第1批50.证字第2563GBW07734锂辉石成分分析标准物质(LHH)国家地质实验测试中心2021年第1批51.证字第2564GBW07735锂辉石成分分析标准物质(LHS)国家地质实验测试中心2021年第1批52.证字第2565GBW07736黑色页岩贵金属成分分析标准物质(I)河南省岩石矿物测试中心、国家地质实验测试中心2021年第1批53.证字第2566GBW07737黑色页岩贵金属成分分析标准物质(II)河南省岩石矿物测试中心、国家地质实验测试中心2021年第1批54.证字第2567GBW07738铋矿石化学物相分析标准物质(GBSI-1)安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心)、国家地质实验测试中心2021年第1批55.证字第2568GBW07739铋矿石化学物相分析标准物质(GBSI-2)安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心)、国家地质实验测试中心2021年第1批56.证字第2569GBW07740铋矿石化学物相分析标准物质(GBSI-3)安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心)、国家地质实验测试中心2021年第1批57.证字第2570GBW07741铋矿石化学物相分析标准物质(GBSI-4)安徽省地质实验研究所(国土资源部合肥矿产资源监督检测中心)、国家地质实验测试中心2021年第1批58.证字第2571GBW07742硅藻土成分分析标准物质(JL)山东省地质科学研究院、国家地质实验2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次测试中心59.证字第2572GBW07743硅藻土成分分析标准物质(YN)山东省地质科学研究院、国家地质实验测试中心2021年第1批60.证字第2573GBW07744硅藻土成分分析标准物质(ZJ)山东省地质科学研究院、国家地质实验测试中心2021年第1批61.证字第2574GBW07890稀土矿石成分分析标准物质(1)湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心)、国家地质实验测试中心2021年第1批62.证字第2575GBW07891稀土矿石成分分析标准物质(2)湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心)、国家地质实验测试中心2021年第1批63.证字第2576GBW07892稀土矿石成分分析标准物质(3)湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心)、国家地质实验测试中心2021年第1批64.证字第2577GBW07893稀土矿石成分分析标准物质(4)湖北省地质实验测试中心(国土资源部武汉矿产资源监督检测中心)、国家地质实验测试中心2021年第1批65.证字第2578GBW07894黝铜矿成分分析标准物质(YTL)国家地质实验测试中心2021年第1批66.证字第2579GBW07895黝铜矿成分分析标准物质(YTH)国家地质实验测试中心2021年第1批67.证字第2580GBW07896钛矿石成分分析标准物质(金红石贫矿)中国地质科学院地球物理地球化学勘查研究所、国家地质实验测试中心2021年第1批68.证字第2581GBW07897钛矿石成分分析标准物质(金红石富矿)中国地质科学院地球物理地球化学勘查研究所、国家地质实验测试中心2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次69.证字第2582GBW07898钛矿石成分分析标准物质(钛铁矿)中国地质科学院地球物理地球化学勘查研究所、国家地质实验测试中心2021年第1批70.证字第2583GBW07899钛精矿成分分析标准物质(钛铁矿)中国地质科学院地球物理地球化学勘查研究所、国家地质实验测试中心2021年第1批71.证字第2584GBW07965黄土成分分析标准物质(1)陕西省地质矿产实验研究所有限公司、国家地质实验测试中心2021年第1批72.证字第2585GBW07966黄土成分分析标准物质(2)陕西省地质矿产实验研究所有限公司、国家地质实验测试中心2021年第1批73.证字第2586GBW07967黄土成分分析标准物质(3)陕西省地质矿产实验研究所有限公司、国家地质实验测试中心2021年第1批74.证字第2587GBW07968黄土成分分析标准物质(4)陕西省地质矿产实验研究所有限公司、国家地质实验测试中心2021年第1批75.证字第2588GBW07969土壤界限含水率标准物质(LWC-1)江苏省地质调查研究院、国家地质实验测试中心2021年第1批76.证字第2589GBW07970土壤界限含水率标准物质(LWC-2)江苏省地质调查研究院、国家地质实验测试中心2021年第1批77.证字第2590GBW07971土壤界限含水率标准物质(LWC-3)江苏省地质调查研究院、国家地质实验测试中心2021年第1批78.证字第2591GBW07972土壤界限含水率标准物质(LWC-4)江苏省地质调查研究院、国家地质实验测试中心2021年第1批79.证字第2592GBW07973土壤界限含水率标准物质(LWC-5)江苏省地质调查研究院、国家地质实验测试中心2021年第1批80.证字第2593GBW07974土壤碳形态标准物质(HLJ)国家地质实验测试中心2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次81.证字第2594GBW07975土壤碳形态标准物质(LT)国家地质实验测试中心2021年第1批82.证字第2595GBW07976土壤碳形态标准物质(HYZ)国家地质实验测试中心2021年第1批83.证字第2596GBW07977土壤碳形态标准物质(JZ)国家地质实验测试中心2021年第1批84.证字第2597GBW07978土壤成分分析标准物质(HLJFJ)中国地质科学院地球物理地球化学勘查研究所2021年第1批85.证字第2598GBW07979土壤成分分析标准物质(HBXT)中国地质科学院地球物理地球化学勘查研究所2021年第1批86.证字第2599GBW07980土壤成分分析标准物质(HNSZY)中国地质科学院地球物理地球化学勘查研究所2021年第1批87.证字第2600GBW07981土壤成分分析标准物质(HNWN)中国地质科学院地球物理地球化学勘查研究所2021年第1批88.证字第2601GBW07982土壤成分分析标准物质(SXWN)中国地质科学院地球物理地球化学勘查研究所2021年第1批89.证字第2602GBW07983土壤成分分析标准物质(XJAKS)中国地质科学院地球物理地球化学勘查研究所2021年第1批90.证字第2603GBW07984土壤成分分析标准物质(NXPL)中国地质科学院地球物理地球化学勘查研究所2021年第1批91.证字第2604GBW07985土壤成分分析标准物质(GSGT)中国地质科学院地球物理地球化学勘查研究所2021年第1批92.证字第2605GBW07986土壤成分分析标准物质(NMBNM)中国地质科学院地球物理地球化学勘查研究所2021年第1批93.证字第2606GBW07987土壤(浙江龙游)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次94.证字第2607GBW07988土壤(江西赣州)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批95.证字第2608GBW07989土壤(广西梧州)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批96.证字第2609GBW07990土壤(江苏宜兴)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批97.证字第2610GBW07991土壤(天津蓟县)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批98.证字第2611GBW07992土壤(广西百色)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批99.证字第2612GBW07993土壤(河北玉田)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批100.证字第2613GBW07994土壤(河北丰润)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批101.证字第2614GBW07995土壤(天津静海)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批102.证字第2615GBW07996土壤(山东菏泽)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批103.证字第2616GBW07997土壤(吉林镇赉)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批104.证字第2617GBW07998土壤(吉林白城)酸碱度标准物质中国地质科学院地球物理地球化学勘查研究所2021年第1批105.证字第2618GBW02527稀土发火合金成分分析标准物质1#山东非金属材料研究所(国防科技工业应用化学一级计量站)2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次106.证字第2619GBW02528稀土发火合金成分分析标准物质2#山东非金属材料研究所(国防科技工业应用化学一级计量站)2021年第2批107.证字第2620GBW02529稀土发火合金成分分析标准物质3#山东非金属材料研究所(国防科技工业应用化学一级计量站)2021年第2批108.证字第2621GBW02795高纯铟纯度标准物质中国计量科学研究院2021年第2批109.证字第2622GBW02796高纯铂纯度标准物质中国计量科学研究院2021年第2批110.证字第2623GBW04137辉长岩铷、锶、钐、钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质中国地质科学院地质研究所2021年第2批111.证字第2624GBW04138斜长角闪岩铷、锶、钐、钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质中国地质科学院地质研究所2021年第2批112.证字第2625GBW04139橄榄岩铷、锶、钐、钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质中国地质科学院地质研究所2021年第2批113.证字第2626GBW04140榴辉岩铷、锶、钐、钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质中国地质科学院地质研究所2021年第2批114.证字第2627GBW04141花岗岩铷、锶、钐、钕元素含量及87Sr/86Sr、143Nd/144Nd标准物质中国地质科学院地质研究所2021年第2批115.证字第2628GBW04330茶叶中锶-90标准物质中国疾病预防控制中心辐射防护与核安全医学所2021年第2批116.证字第2629GBW04507甲醇中苯乙烯单体碳同位素标准物质中国地质科学院水文地质环境地质研究所2021年第2批117.证字第2629GBW04508甲醇中苯乙烯单体碳同位素标准物质中国地质科学院水文地质环境地质研究所2021年第2批118.证字第2630GBW04509正己烷中正十六烷单体碳同位素标准物质中国地质科学院水文地质环境地质研究所2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次119.证字第2630GBW04510正己烷中正十六烷单体碳同位素标准物质中国地质科学院水文地质环境地质研究所2021年第2批120.证字第2631GBW0451197Mo浓缩同位素稀释剂标准物质中国计量科学研究院2021年第2批121.证字第2632GBW04512100Mo浓缩同位素稀释剂标准物质中国计量科学研究院2021年第2批122.证字第2633GBW04624铜同位素溶液标准物质中国计量科学研究院2021年第2批123.证字第2634GBW06203乙酰苯胺元素含量标准物质中国计量科学研究院2021年第2批124.证字第2635GBW06204二苯并噻吩元素含量标准物质中国计量科学研究院2021年第2批125.证字第2636GBW06205溴化钾中溴含量标准物质中国计量科学研究院2021年第2批126.证字第2637GBW08428聚乙烯中无机成分分析标准物质(PE-B)中国计量科学研究院2021年第2批127.证字第2638GBW08429聚乙烯中无机成分分析标准物质(PE-L)中国计量科学研究院2021年第2批128.证字第2639GBW08430聚乙烯中无机成分分析标准物质(PE-M)中国计量科学研究院2021年第2批129.证字第2640GBW08431聚乙烯中无机成分分析标准物质(PE-H)中国计量科学研究院2021年第2批130.证字第2641GBW08432聚氯乙烯中无机成分分析标准物质(PVC-B)中国计量科学研究院2021年第2批131.证字第2642GBW08433聚氯乙烯中无机成分分析标准物质(PVC-L)中国计量科学研究院2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次132.证字第2643GBW08434聚氯乙烯中无机成分分析标准物质(PVC-M)中国计量科学研究院2021年第2批133.证字第2644GBW08435聚氯乙烯中无机成分分析标准物质(PVC-H)中国计量科学研究院2021年第2批134.证字第2645GBW08685水中氯酸根溶液标准物质中国计量科学研究院2021年第2批135.证字第2646GBW08686水中高氯酸根溶液标准物质中国计量科学研究院2021年第2批136.证字第2647GBW08687三价铁溶液标准物质中国计量科学研究院2021年第2批137.证字第2648GBW08688锗单元素溶液标准物质中国计量科学研究院2021年第2批138.证字第2649GBW08689钛单元素溶液标准物质中国计量科学研究院2021年第2批139.证字第2650GBW09309霜类化妆品中铅、镉、砷成分分析标准物质中国计量科学研究院2021年第2批140.证字第2651GBW09876药用空心胶囊中铬元素成分分析标准物质中国计量科学研究院2021年第2批141.证字第2651GBW09877药用空心胶囊中铬元素成分分析标准物质中国计量科学研究院2021年第2批142.证字第2651GBW09878药用空心胶囊中铬元素成分分析标准物质中国计量科学研究院2021年第2批143.证字第2652GBW10182马铃薯粉中镉、铬、铅成分分析标准物质(低中中)中国计量科学研究院2021年第2批144.证字第2653GBW10183马铃薯粉中镉、铬、铅成分分析标准物质(中低高)中国计量科学研究院2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次145.证字第2654GBW10184马铃薯粉中镉、铬、铅成分分析标准物质(高高低)中国计量科学研究院2021年第2批146.证字第2655GBW10185大米粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批147.证字第2656GBW10186河北小麦粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批148.证字第2657GBW10187山东小麦粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批149.证字第2658GBW10188玉米粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批150.证字第2659GBW10189小米粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批151.证字第2660GBW10190黄豆粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批152.证字第2661GBW10191绿豆粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批153.证字第2662GBW10192大白菜粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批154.证字第2663GBW10193菜花粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批155.证字第2664GBW10194黄瓜粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批156.证字第2665GBW10195苦瓜粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次157.证字第2666GBW10196韭菜粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批158.证字第2667GBW10197香菇粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批159.证字第2668GBW10198黑木耳粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批160.证字第2669GBW10199红薯粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批161.证字第2670GBW10200土豆粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批162.证字第2671GBW10201辣椒粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批163.证字第2672GBW10202生姜粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批164.证字第2673GBW10203枸杞粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批165.证字第2674GBW10204红枣粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批166.证字第2675GBW10205黑芝麻粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批167.证字第2676GBW10206核桃粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批168.证字第2677GBW10207香蕉粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次169.证字第2678GBW10208苹果粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批170.证字第2679GBW10209甜橙粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批171.证字第2680GBW10210三文鱼冻干粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批172.证字第2681GBW10211新西兰奶粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批173.证字第2682GBW10212澳大利亚奶粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批174.证字第2683GBW10213黑龙江奶粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批175.证字第2684GBW10214红茶粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批176.证字第2685GBW10215普洱茶粉成分分析标准物质北京化工大学、坛墨质检科技股份有限公司2021年第2批177.证字第2686GBW11213原油中硫元素含量标准物质中国计量科学研究院2021年第2批178.证字第2687GBW11214原油中镍元素含量标准物质中国计量科学研究院2021年第2批179.证字第2688GBW11215原油中钒元素含量标准物质中国计量科学研究院2021年第2批180.证字第2689GBW12048聚苯乙烯微球粒度标准物质(15µm)中国石油大学(北京)2021年第2批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次181.证字第2690GBW12049聚苯乙烯微球粒度标准物质(30µm)中国石油大学(北京)2021年第2批182.证字第2691GBW12050聚苯乙烯微球粒度标准物质(60µm)中国石油大学(北京)2021年第2批183.证字第2692GBW12051聚苯乙烯微球粒度标准物质(120µm)中国石油大学(北京)2021年第2批184.证字第2693GBW12052二氧化硅微球粒度标准物质(10µm)中国石油大学(北京)2021年第2批185.证字第2694GBW12053玻璃微珠粒度分布标准物质中国石油大学(北京)2021年第2批186.证字第2695GBW1362037℃黏度标准物质(1.5)中国计量科学研究院2021年第2批187.证字第2696GBW1362137℃黏度标准物质(3)中国计量科学研究院2021年第2批188.证字第2697GBW1362237℃黏度标准物质(5)中国计量科学研究院2021年第2批189.证字第2698GBW1362337℃黏度标准物质(8)中国计量科学研究院2021年第2批190.证字第2699GBW1362437℃黏度标准物质(10)中国计量科学研究院2021年第2批191.证字第2700GBW1362537℃黏度标准物质(20)中国计量科学研究院2021年第2批192.证字第2701GBW1362637℃黏度标准物质(30)中国计量科学研究院2021年第2批193.证字第2702GBW13982一维铬纳米光栅标准物质同济大学、中国计量科学研究院2021年第2批194.证字第2703GBW13983一维硅纳米光栅标准物质同济大学、中国科学院上海应用物理研究所、中国计量科学研究院2021年第2批195.证字第2952GBW06350氢中一氧化碳、二氧化碳和甲烷混合气体标准物质中国计量科学研究院2021年第6批196.证字第2953GBW06351氢中一氧化碳气体标准物质中国计量科学研究院2021年第6批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次197.证字第2954GBW06352氢中二氧化碳气体标准物质中国计量科学研究院2021年第6批198.证字第2955GBW06353氢中甲烷气体标准物质中国计量科学研究院2021年第6批199.证字第2956GBW06354氢中二氧化碳和甲烷混合气体标准物质中国计量科学研究院2021年第6批200.证字第2957GBW06355氢中氦、氩和氮混合气体标准物质中国计量科学研究院2021年第6批201.证字第2958GBW06356氢中氦气体标准物质中国计量科学研究院2021年第6批202.证字第2959GBW06357氢中氩气体标准物质中国计量科学研究院2021年第6批203.证字第2960GBW06358氢中氮气体标准物质中国计量科学研究院2021年第6批204.证字第2961GBW06359氢中氩和氮混合气体标准物质中国计量科学研究院2021年第6批205.证字第2962GBW08806空气中一氧化碳气体标准物质中国计量科学研究院2021年第6批206.证字第2963GBW08807氮中一氧化氮、二氧化硫、一氧化碳混合气体标准物质中国计量科学研究院2021年第6批207.证字第2964GBW08808氮气中乙烯、乙炔、乙烷、丙烯、丙烷、异丁烷、1-丁烯、正丁烷、顺-2-丁烯、反-2-丁烯、异戊烷、1-戊烯、正戊烷、异戊二烯、顺-2-戊烯、反-2-戊烯、2,2-二甲基丁烷、环戊烷、2,3-二甲基丁烷、2-甲基戊烷、3-甲基戊烷、1-己烯、正己烷、甲基环戊烷、2,4-二甲基戊烷、苯、环己烷、2-甲基己烷、2,3-二甲基戊烷、3-甲基己烷、2,2,4-三甲基戊烷、正庚烷、甲基环己烷、2,3,4-三甲基戊烷、甲苯、2-甲基庚中国计量科学研究院、中国测试技术研究院化学研究所2021年第6批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次烷、3-甲基庚烷、正辛烷、乙苯、邻二甲基苯、间二甲基苯、对二甲基苯、苯乙烯、正壬烷、异丙基苯、丙基苯、3-乙基甲苯、4-乙基甲苯、1,3,5-三甲基苯、2-乙基甲苯、1,2,4-三甲基苯、正癸烷、1,2,3-三甲基苯、间二乙苯、对二乙苯、正十一烷、正十二烷57组分挥发性有机物混合气体标准物质208.证字第3692GBW06119二甲基砜纯度标准物质中国计量科学研究院2021年第11批209.证字第3693GBW06120尼泊金乙酯纯度标准物质中国计量科学研究院2021年第11批210.证字第3694GBW06121正丙醇纯度标准物质中国计量科学研究院、国药集团化学试剂有限公司2021年第11批211.证字第3695GBW06122异丙醇纯度标准物质中国计量科学研究院、国药集团化学试剂有限公司2021年第11批212.证字第3696GBW06123正丁醇纯度标准物质中国计量科学研究院、国药集团化学试剂有限公司2021年第11批213.证字第3697GBW06124异丁醇纯度标准物质中国计量科学研究院、津标(天津)计量检测有限公司2021年第11批214.证字第3698GBW06125叔丁醇纯度标准物质中国计量科学研究院、津标(天津)计量检测有限公司2021年第11批215.证字第3699GBW06126仲丁醇纯度标准物质中国计量科学研究院、津标(天津)计量检测有限公司2021年第11批216.证字第3700GBW06127叔戊醇纯度标准物质中国计量科学研究院、津标(天津)计量检测有限公司2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次217.证字第3701GBW06128甲基叔戊基醚纯度标准物质中国计量科学研究院、佛山西陇化工有限公司2021年第11批218.证字第3702GBW06129二异丙基醚纯度标准物质中国计量科学研究院、佛山西陇化工有限公司2021年第11批219.证字第3703GBW06130甲基叔丁基醚纯度标准物质中国计量科学研究院、佛山西陇化工有限公司2021年第11批220.证字第3704GBW06131乙基叔丁基醚纯度标准物质中国计量科学研究院、佛山西陇化工有限公司2021年第11批221.证字第3705GBW06132尿素化肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批222.证字第3706GBW06133磷酸氢二铵化肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批223.证字第3707GBW06134氯化钾化肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批224.证字第3708GBW06135高氮磷低氯复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批225.证字第3709GBW06136高氮低氯复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批226.证字第3710GBW06137高钾硫基复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批227.证字第3711GBW06138高钾中氯复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批228.证字第3712GBW06139高磷低氯复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次229.证字第3713GBW06140平衡型硫基复合肥成分分析标准物质天津农学院、津标(天津)计量检测有限公司2021年第11批230.证字第3714GBW07581土壤中六价铬(程序定义量)成分分析标准物质核工业二四〇研究所、河北省地质实验测试中心(国土资源部保定矿产资源监督检测中心、河北省金银珠宝饰品质量监督检验站)、北京金标世纪科技有限公司2021年第11批231.证字第3714GBW07582土壤中六价铬(程序定义量)成分分析标准物质核工业二四〇研究所、河北省地质实验测试中心(国土资源部保定矿产资源监督检测中心、河北省金银珠宝饰品质量监督检验站)、北京金标世纪科技有限公司2021年第11批232.证字第3714GBW07583土壤中六价铬(程序定义量)成分分析标准物质核工业二四〇研究所、河北省地质实验测试中心(国土资源部保定矿产资源监督检测中心、河北省金银珠宝饰品质量监督检验站)、北京金标世纪科技有限公司2021年第11批233.证字第3714GBW07584土壤中六价铬(程序定义量)成分分析标准物质核工业二四〇研究所、河北省地质实验测试中心(国土资源部保定矿产资源监督检测中心、河北省金银珠宝饰品质量监督检验站)、北京金标世纪科技有限公司2021年第11批234.证字第3714GBW07585土壤中六价铬(程序定义量)成分分析标准物质核工业二四〇研究所、河北省地质实验测试中心(国土资源部保定矿产资源监督检测中心、河北省金银珠宝饰2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次品质量监督检验站)、北京金标世纪科技有限公司235.证字第3715GBW07586富稀土深海沉积物(印度洋-1)成分分析标准物质自然资源部第一海洋研究所2021年第11批236.证字第3716GBW07587富稀土深海沉积物(印度洋-2)成分分析标准物质自然资源部第一海洋研究所2021年第11批237.证字第3717GBW07588富稀土深海沉积物(印度洋-3)成分分析标准物质自然资源部第一海洋研究所2021年第11批238.证字第3718GBW07589富稀土深海沉积物(太平洋-1)成分分析标准物质自然资源部第一海洋研究所2021年第11批239.证字第3719GBW07590富稀土深海沉积物(太平洋-2)成分分析标准物质自然资源部第一海洋研究所2021年第11批240.证字第3720GBW07591氯化物型卤水标准物质青海省地质矿产测试应用中心、国家地质实验测试中心2021年第11批241.证字第3720GBW07592氯化物型卤水标准物质青海省地质矿产测试应用中心、国家地质实验测试中心2021年第11批242.证字第3720GBW07593氯化物型卤水标准物质青海省地质矿产测试应用中心、国家地质实验测试中心2021年第11批243.证字第3720GBW07594氯化物型卤水标准物质青海省地质矿产测试应用中心、国家地质实验测试中心2021年第11批244.证字第3721GBW08690硅单元素溶液标准物质中国计量科学研究院2021年第11批245.证字第3722GBW08691锡单元素溶液标准物质中国计量科学研究院2021年第11批246.证字第3723GBW08692硒单元素溶液标准物质中国计量科学研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次247.证字第3724GBW08693铂单元素溶液标准物质中国计量科学研究院2021年第11批248.证字第3725GBW08694铟单元素溶液标准物质中国计量科学研究院2021年第11批249.证字第3726GBW08695锑单元素溶液标准物质中国计量科学研究院2021年第11批250.证字第3727GBW08696钯单元素溶液标准物质中国计量科学研究院2021年第11批251.证字第3728GBW08697铷(Rb)单元素溶液标准物质中国计量科学研究院2021年第11批252.证字第3729GBW08698钕(Nd)单元素溶液标准物质中国计量科学研究院2021年第11批253.证字第3730GBW08699镨(Pr)单元素溶液标准物质中国计量科学研究院2021年第11批254.证字第3731GBW08700磷(P)单元素溶液标准物质中国计量科学研究院2021年第11批255.证字第3732GBW09116HER2基因组DNA标准物质中国计量科学研究院2021年第11批256.证字第3732GBW09117HER2基因组DNA标准物质中国计量科学研究院2021年第11批257.证字第3732GBW09118HER2基因组DNA标准物质中国计量科学研究院2021年第11批258.证字第3732GBW09119HER2基因组DNA标准物质中国计量科学研究院2021年第11批259.证字第3732GBW09120HER2基因组DNA标准物质中国计量科学研究院2021年第11批260.证字第3733GBW09121GJB2基因组DNA标准物质中国计量科学研究院、国家卫生健康委科学技术研究所2021年第11批261.证字第3734GBW09122耳聋GJB2基因质粒DNA标准物质中国计量科学研究院2021年第11批262.证字第3734GBW09123耳聋GJB2基因质粒DNA标准物质中国计量科学研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次263.证字第3734GBW09258耳聋GJB2基因质粒DNA标准物质中国计量科学研究院2021年第11批264.证字第3735GBW09259耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批265.证字第3735GBW09260耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批266.证字第3735GBW09261耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批267.证字第3735GBW09262耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批268.证字第3735GBW09263耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批269.证字第3735GBW09264耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批270.证字第3735GBW09265耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批271.证字第3735GBW09266耳聋12SrRNA基因质粒DNA标准物质中国计量科学研究院2021年第11批272.证字第3736GBW09267耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批273.证字第3736GBW09268耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批274.证字第3736GBW09269耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批275.证字第3736GBW09270耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次276.证字第3736GBW09271耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批277.证字第3736GBW09272耳聋SLC26A4基因质粒DNA标准物质中国计量科学研究院2021年第11批278.证字第3737GBW09273硫代芬太尼盐酸盐纯度标准物质上海市刑事科学技术研究院、上海原思标物科技有限公司、中国计量科学研究院2021年第11批279.证字第3738GBW09274对氟芬太尼盐酸盐纯度标准物质上海市刑事科学技术研究院、上海原思标物科技有限公司、中国计量科学研究院2021年第11批280.证字第3739GBW092754-氟丁酰芬太尼纯度标准物质上海市刑事科学技术研究院、上海原思标物科技有限公司、中国计量科学研究院2021年第11批281.证字第3740GBW09276异丁酰芬太尼纯度标准物质上海市刑事科学技术研究院、上海原思标物科技有限公司、中国计量科学研究院2021年第11批282.证字第3741GBW09277邻氟芬太尼盐酸盐纯度标准物质上海市刑事科学技术研究院、上海原思标物科技有限公司、中国计量科学研究院2021年第11批283.证字第3742GBW09278炔诺孕酮纯度标准物质中国医学科学院药物研究所2021年第11批284.证字第3743GBW09279屈螺酮纯度标准物质中国医学科学院药物研究所2021年第11批285.证字第3744GBW09280米非司酮纯度标准物质中国医学科学院药物研究所2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次286.证字第3745GBW09281扁桃酸纯度标准物质中国医学科学院药物研究所2021年第11批287.证字第3746GBW09282醛固酮纯度标准物质国家卫生健康委临床检验中心、中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批288.证字第3747GBW09283冰冻人血浆醛固酮标准物质国家卫生健康委临床检验中心2021年第11批289.证字第3747GBW09284冰冻人血浆醛固酮标准物质国家卫生健康委临床检验中心2021年第11批290.证字第3747GBW09285冰冻人血浆醛固酮标准物质国家卫生健康委临床检验中心2021年第11批291.证字第3748GBW09286塞克硝唑纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批292.证字第3749GBW09287氟甲喹纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批293.证字第3750GBW09288洛硝哒唑纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批294.证字第3751GBW09289麻保沙星纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批295.证字第3752GBW09290氯吡脲纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次296.证字第3753GBW092912,4-二氯苯氧乙酸纯度标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)2021年第11批297.证字第3754GBW09292胰岛素(人)纯度标准物质中国计量科学研究院、广东省计量科学研究院2021年第11批298.证字第3755GBW10216羊肉粉中克伦特罗残留分析标准物质中国农业科学院农业质量标准与检测技术研究所(农业农村部农产品质量标准研究中心)、山东省农业科学院2021年第11批299.证字第3756GBW10226镉污染(富硒)大米粉无机成分分析标准物质北京北方伟业计量技术研究院2021年第11批300.证字第3757GBW10227河南小麦粉无机成分分析标准物质北京北方伟业计量技术研究院2021年第11批301.证字第3758GBW10228红豆粉无机成分分析标准物质北京北方伟业计量技术研究院2021年第11批302.证字第3759GBW10229旱芹菜成分分析标准物质北京北方伟业计量技术研究院2021年第11批303.证字第3760GBW10230圆白菜成分分析标准物质北京北方伟业计量技术研究院2021年第11批304.证字第3761GBW10231菠菜成分分析标准物质北京北方伟业计量技术研究院2021年第11批305.证字第3762GBW10232洋葱成分分析标准物质北京北方伟业计量技术研究院2021年第11批306.证字第3763GBW10233油菜成分分析标准物质北京北方伟业计量技术研究院2021年第11批307.证字第3764GBW10234茉莉花成分分析标准物质北京北方伟业计量技术研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次308.证字第3765GBW10235杨树叶成分分析标准物质北京北方伟业计量技术研究院2021年第11批309.证字第3766GBW10236豫烟叶成分分析标准物质北京北方伟业计量技术研究院2021年第11批310.证字第3767GBW10237绿茶(高山茶)成分分析标准物质北京北方伟业计量技术研究院2021年第11批311.证字第3768GBW10238豆粕中46种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批312.证字第3769GBW10239花生粕中49种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批313.证字第3770GBW10240蛋白粉中41种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批314.证字第3771GBW10241德国奶粉中26种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批315.证字第3772GBW10242牛肉粉中40种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批316.证字第3773GBW10243猪浓缩饲料中51种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批317.证字第3774GBW10244鸡浓缩饲料中51种元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批318.证字第3775GBW10245紫菜粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批319.证字第3776GBW10246海带粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批320.证字第3777GBW10247金针菇粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次321.证字第3778GBW10248银耳粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批322.证字第3779GBW10249藕粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批323.证字第3780GBW10250山楂粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批324.证字第3781GBW10251三七粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批325.证字第3782GBW10252珍珠粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批326.证字第3783GBW10253黄鱼粉中元素成分分析标准物质北京北方伟业计量技术研究院2021年第11批327.证字第3784GBW11216轻质原油水分标准物质中国计量科学研究院2021年第11批328.证字第3784GBW11217轻质原油水分标准物质中国计量科学研究院2021年第11批329.证字第3784GBW11218轻质原油水分标准物质中国计量科学研究院2021年第11批330.证字第3784GBW11219轻质原油水分标准物质中国计量科学研究院2021年第11批331.证字第3784GBW11220轻质原油水分标准物质中国计量科学研究院2021年第11批332.证字第3785GBW13627假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批333.证字第3785GBW13628假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批序号标准物质定级证书号标准物质编号标准物质名称研制单位发布批次334.证字第3785GBW13629假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批335.证字第3785GBW13630假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批336.证字第3785GBW13631假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批337.证字第3785GBW13632假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批338.证字第3785GBW13633假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批339.证字第3785GBW13634假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批340.证字第3785GBW13635假塑性非牛顿流体黏度标准物质中国计量科学研究院2021年第11批341.证字第3787GBW13984异辛烷密度标准物质中国计量科学研究院2021年第11批342.证字第3788GBW13985十三烷密度标准物质中国计量科学研究院2021年第11批343.证字第3789GBW13986PAO润滑油密度标准物质中国计量科学研究院2021年第11批344.证字第3790GBW13987超纯水密度标准物质中国计量科学研究院2021年第11批345.证字第3791GBW13988氟油密度标准物质中国计量科学研究院2021年第11批2021年新批准国家标准物质目录(一级标准物质).pdf2021年新批准国家标准物质目录(二级标准物质).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制