当前位置: 仪器信息网 > 行业主题 > >

杂散光滤光片标准物质

仪器信息网杂散光滤光片标准物质专题为您提供2024年最新杂散光滤光片标准物质价格报价、厂家品牌的相关信息, 包括杂散光滤光片标准物质参数、型号等,不管是国产,还是进口品牌的杂散光滤光片标准物质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合杂散光滤光片标准物质相关的耗材配件、试剂标物,还有杂散光滤光片标准物质相关的最新资讯、资料,以及杂散光滤光片标准物质相关的解决方案。

杂散光滤光片标准物质相关的资讯

  • 滤光片分光型高光谱相机的发展现状及趋势
    高光谱相机可将成像技术与光谱探测技术相结合,在对目标空间特征成像的同时,可以对每个空间像元形成多个窄波段实现连续的光谱覆盖,不同光谱信息能充分反映地物内部的物理结构、化学成分的差异。与传统的空间二维成像相比,高光谱相机可以同时获取目标的空间和光谱信息,在一定的空间分辨率下,能够获取宽谱段范围内地物独有的连续特征光谱,对地物的精准识别和探测具有显著优势,目前已成为对地遥感重要的前沿技术手段,在农、林、水、土、矿等资源调查与环境监测等领域具有重要的应用价值。随着滤光片镀膜技术的飞速发展,极大地促进了滤光片分光型高光谱相机的研制,目前基于滤光片分光原理的高光谱相机以大幅宽、高空间分辨率、高光谱分辨率和轻小型的优势成为高光谱遥感载荷的重要组成部分,在微纳卫星高光谱星座组网中获得广泛应用。据麦姆斯咨询报道,近期,中国科学院长春光学精密机械与物理研究所刘春雨研究员课题组在《红外与激光工程》期刊上发表了以“滤光片分光型高光谱相机发展现状及趋势”为主题的文章。刘春雨研究员主要从事光学系统设计、光电系统总体设计等方面的研究工作。高光谱成像原理示意图这项研究主要对滤光片分光型的高光谱相机进行了综述,介绍了国内外典型滤光片分光型星载高光谱成像载荷,以及地面在研的滤光片分光型高光谱成像系统,并分析了这些系统的技术方案、性能指标及应用前景,阐述了基于滤光片分光原理的高光谱相机的技术特点和优缺点,最后展望了滤光片分光型高光谱相机的发展趋势。滤光片轮高光谱相机是以滤光片轮为分光元件,通过转动滤光片轮获得不同波段的光谱图像,从而完成复色光到单色光的分光。滤光片轮高光谱相机的关键器件是滤光片轮,可以根据观测波段的不同替换相应谱段范围的滤光片轮,光路结构简单,谱段更换灵活。随着光谱成像技术的发展,探测波段数目越来越多,滤光片轮已无法满足宽谱段高分辨率的观测,因此越来越多地被用于多光谱探测中。可调谐滤光片高光谱相机以可调谐滤光片为分光元件,根据调谐方式的不同主要分为液晶可调谐滤光片(Liquid Crystal Tunable Filter,LCTF)高光谱相机、声光可调谐滤光片(Acousto-Optic Tunable Filter,AOTF)高光谱相机、MEMS可调谐FP腔滤光片(MEMS Tunable Fabry–Perot Cavity Filters)高光谱相机。楔形滤光片型高光谱相机也被称为渐变滤光片型高光谱相机,可以实现在光谱区和空间区的连续取样,它的设计理念是将一个楔形多层薄膜介质作为滤光片,并将其安装在紧靠着二维阵列探测器的位置,使探测器的若干像元与渐变滤光片的某一光谱带相互对应。根据渐变滤光片各波段与探测器像元之间的对应关系,渐变滤光片高光谱相机又可以分为线性渐变型和滤光片阵列型。线性渐变滤光片结构及分光示意图量子点又称为“纳米晶”,是一种无机材料,自身稳定性高,其半径小于大块的激子波尔半径。将不同种类的量子点集成一起,则可以实现不同波段的同时探测,量子点光谱仪(CQD)就是以此为原理研制的。传统概念上的光谱仪配置了高精度的光学和机械元件,体积笨重、造价昂贵、结构复杂,应用领域严重受限,量子点光谱仪的出现突破了上述局限,为微型光谱仪的推广提供了新思路。近红外量子点光谱仪原理图总的来看,滤光片分光型的高光谱相机正处于起步阶段,其光谱分辨率还无法与高精度的光栅色散分光方式相比拟,因此提高系统的光谱分辨率和能量利用率将成为镀膜型高光谱相机总的发展方向,尤其是随着镀膜技术以及量子点等新材料的发展,基于镀膜型的高光谱相机的光谱分辨率和能量利用率已得到了大幅提高,研发成本也有望进一步降低;此外,滤光片与探测器的结合也将进一步提高系统的光谱分辨率,甚至可以与高精度的光栅色散分光相媲美,因此,滤光片和探测器晶元的结合也是镀膜型高光谱相机的一大发展趋势。不难看出,滤光片型高光谱相机的发展将推动高光谱成像领域的颠覆性发展,并由此带动微纳卫星高光谱遥感技术的发展,为未来微纳高光谱卫星星座组网在轨业务运行,更好地服务于国民经济奠定技术基础。该项目获得国家自然科学基金(41504143)、中国科学院科研装备研制项目(YJKYYQ20190044)、安徽省自然科学基金(1908085 ME135)、中国科学院青年创新促进会(2016203)的支持。
  • IDEX Health & Science 推出流式细胞仪滤光片
    纽约州罗彻斯特市,2023 年 2 月 27 日——IDEX Health & Science (IH&S) 推出了专为流式细胞术应用设计的新 Semrock 品牌的 Nanopede&trade 系列滤光片。 "我为我们的流式细胞术和荧光检测客户感到兴奋,” 应用科学家 Elizabeth Bernhardt 博士说, “因为 Nanopede 跨越光谱的方式为他们的仪器提供了方便性,以满足现在和未来的荧光标记改革。”流式细胞仪通过散射光测量和荧光标记检测细胞。在光谱流式细胞术中,使用离散的背靠背(光谱相邻)滤光片收集整个光谱中的荧光。然后将光子合并,以便光谱分解可以分辨出哪些荧光标记存在于被询问的细胞中。因此,光谱流式细胞术需要在离散步骤中覆盖 UV、可见光和 NIR 的滤光片,这可能导致需要平衡仪器成本和光学滤光片性能。IDEX Health & Science 了解这些需求,我们很自豪地宣布推出我们新的 Semrock 品牌滤光片系列,该系列涵盖 20 nm 全宽半高 (FWHM) 步长的可见光谱。Nanopede 系列中的前十款滤光片在设计时就考虑到了您的应用,这只是我们不断发展的流式细胞术产品线的开始,以适应快速发展的流式细胞术市场。我们的团队了解每台流式细胞术仪器都是不同的,与我们合作定制滤光片以满足您的特定应用需求。
  • 新品发布悌可光电推出欧美伽光学无人机专用滤光片
    近日欧美伽光学推出针对无人机专用滤光片。随着人工智能、传感技术和控制系统的技术的成熟,近年来无人机行业飞速发展。从传统的娱乐航拍,迅速发展出农业植保,测绘,智能电力检测、外卖快递等,行业也由消费电子扩展至智慧农业、石油与天然气,水利,林业、快递运输多个领域。 举例农业用检测滤光片:在现代农业中,无人机技术的应用越来越广泛,专为农作物测绘而设计的无人机滤光片成为农田管理的得力助手。这款产品配备了专用光学滤光片,飞行高度和相机透镜的精妙搭配保证了获取清晰高效的农田数据,让监测和分析变得如此轻松。滤光片选取最佳波长,根据作物光谱反射率,可以匹配任何品牌的无人机,帮助用户精准监测作物生长状态,健康状况一目了然。现在我们来看看 用于农作物检测的滤光片示例下面的滤光片示例通过使用4个单独的滤光片/相机组合来计算作物的NDRE值,并计算NDRE的比率。这里涉及到的特定波段的比率和差异可以用于许多植物指数的计算。 农作物监测滤光片——红色波段(red)在叶绿素A/B重叠区域的中心,而红色边缘波段(red edge)在反射率曲线的上升边缘的中心。 优化用于农作物监测的光谱性能如何选取最佳波长的滤光片,取决于你所监测的作物的光谱反射率,以及在健康(和患病)植物中存在的叶绿素、类胡萝卜素和花青素的比例。不仅每种健康植物类型都有独特的色素比例,且当植物受到压力时,这些色素的比例也会发生变化。类胡萝卜素和花青素在压力期间都会上调——这就是为什么当作物干燥或受到压力时,叶子会变成黄色、红色或棕色。农作物无人机监测的注意事项1.光源—由于通常使用太阳作为光源,所以光强度可能随云层的变化而变化。云、雾霾和尘埃也会影响太阳光谱的光谱分布,优先散射较低的波长。虽然光谱变化不是造成误差的主要因素,但测量系统需要一个中性(即白色)反射的测试目标进行校准,以获得最佳的测量结果。 2.信号来源植物中常见的色素包括主要的叶绿素A和B,它们赋予植物绿色,但也包括不同数量的类胡萝卜素和花青素。反射光谱在波长被吸收的位置下降。反射率信号-水合作用、叶绿素含量和其他色素含量(花青素和类胡萝卜素)的组合会影响植物反射率的光谱。在压力的作用下类胡萝卜素和花青素表达上升,叶绿素表达下降,将使作物变黄和棕色。同时也会反应在反射率光谱和植物指数上。热成像-可以用来制作在9-14微米波长范围内的作物的温度分布图。水合作用和蒸腾作用良好的植物比那些干燥和热胁迫的植物更冷。阳光不是测量的严格必要条件,但它可以与反射率同时进行,因为可以探测到红外波长。3.无人机的飞行高度和相机上的透镜-决定了图像的视野和分辨率。高度和视场还决定了信号进入成像滤光片的入射角。随着入射角的增加,滤光片的响应区域通常会转移到更低的波长,边缘也变得不那么陡峭。4.光谱滤光片-一般通过对应的带通滤光片:蓝色、绿色、红色、红色边缘和近红外进行标准化差异(示例如下)。另一种选择是使用线性可变带通滤波器,它的带通随滤光片一维方向的变化而变化,可以提供类似“彩虹”的滤光效果。这种滤光片在相机上产生光谱,从而实现高光谱成像。这款无人机农业用检测滤光片的推出,为农业生产带来了全新的技术。随着农业现代化进程的不断推进,无人机技术在农业领域的应用越来越广泛,为农业检测提供了更为便捷、高效的农田管理工具。无人机滤光片的问世,不仅提升了农作物监测和分析的精准度,也使农业生产更加智能化、科技化。可以通过使用这款滤光片,及时了解农田的情况,有效掌握作物的生长情况,为农田的精细化管理提供重要依据。欧美伽光学提供多种无人机适用类型滤光片详细请咨询!
  • 海洋光学推高透光率低杂散光全息光谱
    海洋光学(Ocean Optics – www.oceanopticschina.cn) 推出像差校正全息凹面衍射光栅光谱仪 – Torus 系列。该光谱仪具有透光率高、杂散光更低、热稳定性好的特点,可用于液体、固体等的吸收、荧光测量。Torus 可见波段光谱仪(360nm-825nm),杂散光水平:在400nm 处,约0.015%,较平面光栅等微型光纤光谱仪更低。  平场光学设计及全息凹面光栅用于光的色散:Torus 光栅的凹面用于光的反射及汇聚 光栅刻线用于光的色散 光栅的环形设计用于像差校正,提高衍射效率。  Torus 并且具有较高的光学分辨率(1.6nm FWHM,25um 狭缝)和优良的热稳定性(在0-50℃范围内,波长漂移更小,峰型保持基本一致)。  Torus 系列光谱仪可以通过 USB 接口与计算机进行交互控制,可以根据客户需要更改狭缝、滤光片及其它配件来优化配置 也可以通过 C-mount 接口与显微镜等配合使用。与海洋光学的其它光学配件一起,使您的测量更方便,更灵活。  Torus 通过海洋光学的 Spectrasuite 光谱操作软件来进行操作与分析,并且可用于 Windows, Macintosh,及 Linux 操作平台。并且还与海洋光学的 OmniDriver,SeaBreeze 软件开发平台相兼容。
  • 3i流式简讯|IDEX推出全新流式细胞仪滤光片
    仪器信息网讯 近期,IDEX Health & Science (IH&S) 推出了专为流式细胞术应用设计的新 Semrock ® 品牌的 Nanopede™ 系列滤光片。 流式细胞仪通过散射光测量和荧光标记检测细胞。在光谱流式细胞术中,使用离散的背靠背(光谱相邻)滤光片收集整个光谱中的荧光。然后将光子合并,以便光谱分解可以分辨出哪些荧光标记存在于目标检测细胞中。因此,光谱流式细胞术需要在离散步骤中覆盖 UV、可见光和 NIR 的滤光片,这就需要平衡仪器成本和光学滤光片性能。 应用科学家 Elizabeth Bernhardt 博士表示:"我为我们的流式细胞术和荧光检测客户感到兴奋,因为 Nanopede 跨越光谱的方式为他们的仪器提供了方便性,以满足现在和未来的荧光标记改革。IDEX Health & Science 了解这些需求,我们很自豪地宣布推出我们新的 Semrock 品牌滤光片系列,该系列涵盖 20 nm 全宽半高 (FWHM) 步长的可见光谱。Nanopede 系列中的前十款滤光片在设计时就考虑到了上述应用,以适应快速发展的流式细胞术市场。”
  • 抗疫情!北京加班生产8000片PCR检测用滤光片驰援武汉
    p style="text-indent: 2em "span style="text-indent: 2em "滤光片是新型冠状病毒检测设备中的关键部件。从前天开始,北京专门生产滤光片的企业接到的订单累计增加到8000余片,几乎全部运往武汉。为了保障供应,明天(2月3日),该企业的镀膜车间将提前复工,实现24小时不间断生产。/spanbr//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 289px " src="https://img1.17img.cn/17img/images/202002/uepic/00159dd4-06b1-4289-b9f7-768735ae0f40.jpg" title="1.jpg" alt="1.jpg" width="450" height="289" border="0" vspace="0"//pp style="text-indent: 2em "光冷抛光车间,工作人员在进行抛光作业,只有平整度达到要求的滤光片才能进入到下一个生产环节。span style="color: rgb(127, 127, 127) "(文中图片由新京报记者 李木易 摄)/span/pp style="text-indent: 2em "span style="text-indent: 2em "大年初四,京仪博电公司接到一个特殊的订单:一家苏州企业要定向向武汉地区捐献检测新型冠状病毒使用的荧光PCR检测仪,急需1000片新型冠状病毒检测滤光片。为了确保滤光片能够及时安装进检测设备,该公司决定提前复工,留守在北京的技术人员全员到岗加班生产滤光片。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 307px " src="https://img1.17img.cn/17img/images/202002/uepic/d14a0db4-d584-4a7e-9d53-4ce86cd1563b.jpg" title="2.jpg" alt="2.jpg" width="450" height="307" border="0" vspace="0"//pp style="text-indent: 2em "工作人员在进行胶合作业,滤光片从制作基础片到成型、胶合、检测、测试,大约需要10个小时。/pp style="text-indent: 2em "今天上午,在该公司的生产车间里,记者看到这种对于检测新型冠状病毒起着至关重要作用的滤光片,它呈圆形,厚度为20毫米和25毫米两种,直径为5毫米。技术人员在各个岗位分别对其加工。在光冷抛光室,两位技术人员站在仪器旁一边用小刷子在滤光片上刷上抛光液,一边随时关注着滤光片的打磨效果,只有平整度达到要求的滤光片才能进入到下一个生产环节。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 292px " src="https://img1.17img.cn/17img/images/202002/uepic/e059b362-d556-4a33-abe1-b18b2469b3b9.jpg" title="3.jpg" alt="3.jpg" width="450" height="292" border="0" vspace="0"//pp style="text-indent: 2em "留守在北京的技术人员全员到岗加班生产滤光片。企业接到的订单累计增加到8000余片,几乎全部运往武汉。/pp style="text-indent: 2em "成型后的滤光片将进入到胶合的环节。在这个环节,技术人员要用酒精对滤光片进行擦拭,确保没有任何灰尘和异物,然后进行胶合。技术人员告诉记者,一片滤光片从制作基础片到成型、胶合、检测、测试,大约需要10个小时。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 300px " src="https://img1.17img.cn/17img/images/202002/uepic/a06a9cc8-4f4e-46c1-a6f8-254f7fa20c4f.jpg" title="4.jpg" alt="4.jpg" width="450" height="300" border="0" vspace="0"//pp style="text-indent: 2em "出厂前,工作人员利用分光光度计检测滤光片的质量。/pp style="text-indent: 2em "不过10个小时的工期显然远远不足以满足当下疫情防控的需求。因此技术员们决定使用前期存储的基础片进行加工。这样一来,原本生产1000片需要1个月,现在仅需要7天便可完成。/pp style="text-indent: 2em "随着疫情的蔓延,来自全国的滤光片订单骤然增加。京仪博电公司经理李建华告诉记者,截至2月1日,用于新型冠状病毒检测的滤光片的订单累计超过8000片,这些滤光片几乎全部将运往武汉。他坦言:“目前公司的基础片已经全部消耗殆尽,因此必须扩大复工,镀膜车间将从明天起24小时不间断生产,以确保滤光片能按时交付。”记者了解到,镀膜车间为自动化生产车间,对人工需求不大,因此可以实现不间断生产。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 303px " src="https://img1.17img.cn/17img/images/202002/uepic/8f8d8153-9081-4a6b-bc6b-d6a1fef05989.jpg" title="5.jpg" alt="5.jpg" width="450" height="303" border="0" vspace="0"//pp style="text-indent: 2em "工作人员在快递箱上贴上“疫区急需货物,请加急处理”的标签。/pp style="text-indent: 2em "为了让这些重要的滤光片能够及时送抵检测仪器生产企业,技术人员特意在快递箱上贴上“疫区急需货物,请加急处理”的标签。记者注意到,这些标签大大小小,几乎把快递箱贴满了。技术人员告诉记者:“特殊时期,快递物流公司特意交代我们把这提示条贴上。快递员看到提示条,就会优先将这些保障物资送往目的地。”/ppbr//p
  • 如何测试镜头杂散光 Veiling Glare
    适用于各类镜头VGI杂散光测试 可信赖的测试数据 蓝菲光学(Labsphere)是公认的积分球校准光源的领导者之一。我们的固态可调光源是为满足传感器和材料研究、开发、生产测试和照明的高性能要求而设计的。VGI测试,有两种国标,分别是JB/T8248.4-1999机械行业标准,GB10988-2009质监局国标。两个标准里都要求使用积分球来测试杂散光。国际标准为ISO9358-1994. GB10988-2009为质检总局和国标委员会发布的标准,标准中提到了多种检测方法,首推积分球方法。杂散光系数:该标准中,定义为在均匀亮度的扩展视场中放置一个黑斑,经被测样品成像后,其像中心区域上的光照度与移去黑斑放上白斑后在像面上同一处的光照度之比。VGI以百分比表示。 配置说明 主球:大视场均匀光源白光积分球,球内壁Spectraflect 97%高漫反射率涂层用于实现匀化效果光学环境选配一:3000K-6000K LED色温可调 照度大于5000lux光学环境选配: 卤钨灯宽光谱,3000K/大于5000lux高精度直流电源&照度监控功能背景:配置固定光阱或者黑色吸光黑箱模拟暗背景滑动导轨:用于移动相机用于不同位置测试相机:12位2448 px x 2048px 千兆网口转USB口 符合标准 GB 10988-2009ISO9358-1994JBT8248ISO18844杂散光测试系统简介本系统是针对镜头的杂散光系数定制的杂散光测试系统,系统符合GB/T10988 标准的测试要求,可以实现客户自行对产品进行杂散光测试和检验。系统采用积分球均匀光源、黑色光阱积分球、导轨系统、相机配置。均匀光源可以按照国标大于1000:1 的亮度对比度,可以保证测试结果准确度,使用专利技术的大视场均匀光源结构。主积分球与光阱积分球分离,样品及导轨置于光阱积分球开口,光阱对面的开口放置客户指定灯具,或者使用亮度均匀光源积分球。旋转相机及镜头,使光源的像位于视场的某个位置,然后拍照,得到的图像供软件分析图像的灰度值。经过分析给出报告。计算结果为照度比 可以实现3000-7000K色温,台阶色温可调的白光LED光谱,光谱范围380-780nm也具备380-1000nm的包含红外光谱的入射光。客户可以根据自己需求挑选入射光种类。入射光主动反馈控制*镜头夹具(选配)规格参数
  • HORIBA |“光谱技术在半导体领域中的应用”Q&A集锦——拉曼、椭圆偏振、光学光谱
    10月30日HORIBA举办了2017 Optical School系列在线讲座第五场——光谱技术在半导体领域中的应用,涉及:拉曼、椭圆偏振、光学光谱和辉光放电,四种光学光谱技术,为大家带来满满的知识技能包。课上同学们积留言互动,那么针对这三种光学光谱技术,大家都有哪些疑问呢,我们一起来看一看。光学光谱1. 什么是CCD TE制冷?CCD探测器的制冷方式一般分为两种:热电制冷(TE)和液氮制冷(LN2)。热电制冷就是通过帕尔贴效应,将热量从芯片带走;液氮制冷是通过液氮气化吸收热量来降低温度。2. 5K和10K的低温是怎么实现的。采用低温恒温器,闭循环低温恒温器或消耗液氦型低温恒温器可以实现5K和10K的低温,将样品放置在低温恒温器中测量。3. PL Mapping测量的是什么?相对宏观测试而言,微观尺寸的光致发光光谱更能表征样品的性质,并且能够展现更多的细节信息,在进行显微测量时,我们对整个样品表面进行扫描,得到所有测量点的光致发光光谱,这个过程称为Mapping。4. MicOS的PL和拉曼光谱仪测试的PL谱是一样的吗?原理上是一样的,都属于光致发光光谱,区别在于:MicOS光谱仪所采用的光谱仪焦距长度跟拉曼光谱仪不一样,光谱分辨率也不一样;拉曼光谱仪主要是为了拉曼测试而设计,它的探测器CCD通常覆盖到1000nm左右,有些型号的拉曼光谱仪不能拓展光谱范围到近红外波段,而MicOS可以灵活方便地拓展光谱范围从紫外到近红外(200-1600nm)。5. 激光测试固体光谱时需要滤光片吗?推荐加滤光片,因为激发激光的能量很强,激发样品的同时,部分激发光会通过反射与信号光一起进入探测系统,可能产生杂散光,为了避免干扰,建议加入滤光片将激发光滤除。因为信号光能量较低,波长比激发光长,所以只需要加入截止波长在激发光和信号光之间的滤光片即可。此外,如果激发光的二级衍射光与信号光波长重叠的话,那么也需要加入滤光片将激发光波长滤除从而消除激发光的二级衍射光。6. 这里的PL发光和寿命测量与荧光光谱仪测得荧光光谱和寿命有什么区别?荧光也是一种光致发光,但是荧光光谱仪通常用氙灯作为激发光源,能量比较低,对于宽带隙材料可能无能为力,定制化光致发光系统用激光作为激发光源,可以成功激发大部分样品。此处提到的寿命测试功能与HORIBA荧光光谱仪的寿命功能原理相同,并无区别,不过MicOS中测量荧光寿命是在显微下测量的,而荧光光谱仪通常是在宏观光路中测量的。7. 使用光纤导入光谱仪(iHR550)时,狭缝的宽度对分辨率还会有影响吗?采用光纤导入信号光到iHR550光谱仪时,一般会采用光纤适配器将光纤连接到光谱仪,此时狭缝宽度对光谱分辨率的影响需要分两种情况讨论:(1)如果光纤出来的信号光光斑通过光纤适配器耦合到光谱仪狭缝上是小于狭缝宽度,那么狭缝宽度的变化对光谱分辨率无影响;(2)如果光纤出来的信号光光斑通过光纤适配器耦合到光谱仪狭缝上是大于狭缝宽度,那么狭缝宽度的变化对光谱分辨率有影响,狭缝越大分光谱分辨率越低。8. 光栅的刻线密度怎么去选择?光栅刻线密度的选择主要考虑两个因素:分辨率和光谱范围。相同焦长光谱仪配置的光栅刻线密度越高,光谱分辨率越高,但是所能使用的长波长范围越窄;光栅刻线密度越低,光谱分辨率越低,但是低刻线密度光栅能覆盖的长波长越长;所以要综合平衡考虑,一块光栅覆盖范围不够可以选择多块光栅以拓展光谱范围。9. MicOS激光照射到样品上的光强和光斑大小?MicOS的激光光斑照射到样品上的光强与所采用的激光器功率大小相关,所采用激光器功率越高照射到样品的光强越大。激光照射到样品的光斑大小与耦合方式(光纤耦合还是自由光路耦合)以及所采用的物镜倍率相关,如采用100倍物镜,采用光纤耦合激光,光斑小于10um;采用自由光路耦合激光,光斑小于2um。拉曼光谱1. 用532nm激光测试的深度为多少?(实验中测试不到厚度为100nm薄膜的Raman光谱)总体来说,入射深度与激光器的波长和材料本身消光系数相关。激光越偏红光,其入射深度越深;消光系数越小,入射深度越深。所以,532 nm针对不同材料的入射深度不一样,一般来说,对单晶硅的入射深度约为1微米。厚度不到100 nm的薄膜需要考虑使用325 nm激光器检测。2. 老师,实际测试比如石墨烯,532,633,785测试D,G,2D频移和相对强度都不一样,这是什么原因呢?可以考虑的原因:三个激光器是否校准好;激光器的能量是否合适,是否某一个激光能量过高将样品破坏。一般石墨烯测试,激光能量的选择建议从低到高尝试;考虑机理方面解释,激光和样品的是否有耦合效应。墨烯测试,推荐532 nm激光器。3. HORIBA提供拉曼与SEM联用的改装服务吗?我们实验室对这个比较干兴趣,想了解一下我们的电镜可不可以改装?国内和国外都有已经完成的案例。若有需求,请进一步联系!4. 我们处理拉曼光谱的时候有时候要使用归一化的方法,这个对结果分析会有影响吗?归一化一般不会对结果分析产生影响。归一化操作是对光谱中所有的拉曼峰等比例的放大和缩小,不会影响峰的位置和形状。若还有担心,可以考虑提高光谱的信噪比。5. 半高宽和强度是怎么成像的?若使用的是Labspec 6软件,至少有两种成像方法可以实现半高宽和强度成像。夹峰法:用线夹住需要成像的峰,在Analysis中,进入 Map characterization中选择对应的Height, area, position, width进行成像。分峰拟合法:对所需成像的峰进行分峰拟合后,直接选择各参数成像。夹峰法,目前多同时可以做三个峰的成像;分峰拟合理论上可以实现所有峰的成像。6. 如何用325nm激光器测拉曼光谱,PL和BPF这两块滤光片怎么用?使用325nm测试和其它的激光器测试类似,需要注意的是:激光器稳定半小时,软件中勾选紫外测试,使用紫外物镜,激光光斑进行聚焦。PL和BPF滤光片都是为了滤去激光器的等离子体线,PL和BPF分别针对测试PL和拉曼。7. 老师,做拉曼成像的时候勾选SWIFT,老是提示不兼容是怎么回事?可以考虑:是否工作在单窗口的模式下;成像区域的选择是否是长方形;控制盒上的开关是拨到SWIFT模式下。8. 100nm薄膜测试不到信号(532nm激发)答案见问题一。9. 老师,可不可以用显微共聚焦拉曼测重金属的浓度?重金属的浓度目前还没有用拉曼直接测试的好方法。但有间接的方法:加入指示剂,通过指示剂间接测试重金属的浓度;做成传感器(DNA/蛋白/小分子等为传感元件),以拉曼信号为输出。10. 老师您好,树脂样品532nm激光器基线上飘严重,降低hole值仍然,切换785nm后基线下飘,这个是荧光引起的吗,应如何调节或者加激光器呢?荧光背景干扰的可能性比较大。缩小Hole只能抑制荧光,不能消除荧光。建议先利用532 nm做个PL光谱看一看。降低激光能量;更换测量点;若荧光背景还是比较高,可以考虑选用紫外和更红外激光器试一试。椭圆偏振1. 请问在测试的时候起偏器不动但是检偏器旋转吗?在UVISEL系列椭偏仪中,起偏器和检偏器均保持固定,由相位调制器PEM起到调制偏振光的作用,没有机械转动的干扰,保证了仪器对椭偏角测试的高精度。2. 为什么可以测SIGe的组分?研究表明SiGe合金的含量与介电方程的实部有关,介电方程实部是通过椭偏仪分析得到的,因此在进行了大量标准样品与实部的关系推导后,可以根据未知含量样品的介电方程实部推算出合金含量。3. 要测试膜厚度,需要这个样品是透明的吗?样品可以是不透明的硅基底或透明的玻璃基底等,待测试薄膜需要是光学透明的,以便椭偏仪分析反射之后的偏振光信号。4. 不转怎么测椭偏角?UVISEL系列椭偏仪采用PEM相位调制技术,调制器虽然保持静止,但其内部光学元件的双光轴相位以50KHz高频发生变化,从而实现偏振光的调制。5. 椭偏仪的入射角是可调的吗?是固定几个值还是连接可调?入射角是连续可调的,但通常测试使用55-75度,主要与样品的布儒斯特角相近即可。例如,大多数半导体样品的布儒斯特角在70度附近,玻璃等样品在55度附近。6. 测SiGe的组分与测带隙宽度有关吗?没有7. 椭偏仪可以测不透明的样品吗?无法用肉眼判断样品是否光学透明,一般来说肉眼看到透明的样品,可透过可见光,而有些样品如SOI中的顶层硅薄膜,可见不透过,但仍然可以使用椭偏测试分析,因为其对近红外透过。8. 可以测碳纳米管吗?可以测试均匀的CNT薄膜,由于光斑大小限制不能测试单根纳米管9. 是相位调制器每变一下,收集一组光强吗?那请问相位改变一个周期内会采集多少组数据来计算psi 和delta。是的,通常8-16点HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • HORIBA | 平时使用仪器遇到这些困惑,你怎么办?——拉曼/荧光/椭圆偏振光谱仪
    使用光谱仪器时,如何巧妙制样?针对不同的样品,测试方法有哪些区别?仪器测试结果如何分析解读…11月13日,HORIBA的资深工程师们,就拉曼、荧光、椭圆偏正光谱仪器日常使用技巧,为大家分享了自己多年的宝贵(xue)经(lei)验(shi)。分享过程中,同学们也纷纷提出自己的问题,不知道是否也有你的困惑,我们一起看看吧:荧光光谱1.为什么样品信号之前的背景光平台不是平的?在进行磷光寿命测试时,前端的小段曲线是由光源产生的,即激发光还没有完全消失,就开始了样品信号采集,后边部分属于光源消失后磷光衰减的信号,进行寿命拟合的时候只要选择后边尾部即可。2.问水拉曼峰怎么测?1)开启仪器;2)将标准盛有三重去离子水的比色皿放入样品仓;3)打开软件,选择Spectra——emmission功能;4)点击Run进行信号采集即可。参数详见如下:激发波长350nm,水拉曼峰值,峰值波长397nm。实验条件:激发波长350nm,带宽5nm,0.5nm步进,发射波长扫描范围365~450nm,带宽5nm,积分时间1s;样品要求:必须是超纯水,三重蒸馏水或去离子水,HPLC级(18.2 MΩ,10ppb 溶解有机碳)或相同水质的水样。用4mL石英荧光比色皿3.ms量级荧光寿命如何测量?配置SpectrLED、Delta-HUB和相应的探测器,使用磷光寿命测试功能即可进行ms级的磷光寿命测量。具体测量及拟合方法可以联系我们应用工程师。4.薄膜样品怎么测量?将薄膜及其载玻片固定在固体样品支架上,即可进行稳瞬态荧光测试,但是有的薄膜样品散射较强,为了避免杂散光的干扰,一般需要使用相应的滤光片,另外Horiba提供前置测量附件,可以有效避免杂散光的干扰。5.用HORIBA的荧光光谱仪测荧光寿命,是用上升沿还是下降沿拟合寿命的?对于荧光寿命,拟合时上升下降沿的信号都要用到,对于磷光寿命,仅用下降沿部分拟合即可。具体拟合步骤及要点可与工程师联系。椭圆偏振1.请问老师,这个可以测量颗粒物表层吸附物质的厚度吗?纳米级别,烟尘颗粒由于椭偏光斑在微米至毫米尺度,无法分析离散态的纳米级别颗粒表层2.老师您好,请问衬底是石英片,可以测膜的厚度吗?可以,只要薄膜光学透明即可使用椭偏测试拉曼光谱1.CLS那个没看懂?简单的来说,CLS是数据统计的分析方法。夹峰法是以单个谱峰的峰强、峰面积、峰位的特性为拉曼成像依据。而CLS是以整张光谱或者某段光谱为依据,赋予不同的颜色。适用于已知混合物的拉曼成像。2.细胞的那个是这么做的呀?详细请见文章ACS Appl. Mater. Interfaces, 2017, 9 (7), pp 5828–5837,文章的拉曼部分在北京DEMO实验中心完成的,欢迎讨论。3.用JobinYvonLabRam HR800仪器,325 nm 的激光测薄膜光致发光,有时PL谱的曲线有波动,就是线一抖一抖的,请问能怎么改善呢?能测到发光峰,但是曲线上有很多小的正弦波。两个方面:一个需要标准样品测试,检验仪器本身是否有问题。另一个方面,考虑薄膜的厚度问题,是否刚好发生多次反射。之前有经历,特定的玻璃片上测样品,也有小正弦波,更换玻璃片之后就没有了。4.那请问如果是贴壁细胞呢 直接光斑扫描?贴壁细胞,做完封片,可以直接通过平台移动实现细胞成像。5.指甲油有要求吗?指甲油不要涂到样品上?指甲油本身有很好的拉曼信号,不能直接涂到样品上,建议选择亮色,这样能够看清楚指甲油的本身分布。若样品量比较大,建议选择大号的盖玻片,操作相对简单。6.请问G/D的物理意义G峰为石墨烯的特征峰,归属于sp2碳原子的面内振动,出现在1580 cm-1附近,该峰能够表征石墨烯的层数。D峰为石墨烯的无序振动峰,出现在1350 cm-1附近处,表征石墨烯中的结构缺陷或边缘。所以G/D峰,可以反映石墨烯的层数和缺陷分布。7.测细胞必须要涂指甲油吗?不是必须,封片的好处是减缓水份蒸发。8.老师,做矿物的话激光波长用多少合适大多数矿物532 nm激光比较合适,对于有荧光背景的,考虑红光激发。9.半導體異物量測方式?測試過532,633,785 laser量測都只有螢光訊號,異物大小約1~3um若异物在表层,可以考虑325 nm尝试下。若还是不行是否可以考虑用PL成像来区别异物。10.如何衡量石墨烯条带的边缘质量?见问题6,G/D比值成像及D峰成像都是不错的选择。11.鲁老师,请问罗丹明溶液633直接测拉曼,如何计算光斑内有效分子数?影响影子的计算方法我们在上一次的报告中有提到。详细可参见Phys. Chem. Chem. Phys., 2015,17, 21149-21157。文章是用XploRA仪器实现的,欢迎讨论。12.样品中有水,可以用3D得到水分布吗样品若是半透明的,可以实现水的分布的3D. 常见的地质样品,包裹体中的水分可以用3D表征。这是一篇文章,里面用拉曼证明了油水凝胶中的水分分布,你可以参考下。Nature Communications 8, Article number: 15911 (2017) doi:10.1038/ncomms15911。文章的拉曼部分在北京DEMO实验室完成的,欢迎讨论。13.请问测拉曼时荧光效应太强,背底太高可以怎么改善?一般是某些样品会出现,跟样品有关系,可是又需要样品的拉曼数据抑制荧光背景的方法:更换不同的激发波长;长时间激光照射光漂白;数值处理等。目前有效的是更换不同的激发波长测试。14.请介绍一下实时在线原位拉曼技术?在线原位技术是一个比较宽泛的命题,常见的有有机化学合成在线检测,高温高压在线检测,锂电池在线检测,电化学在线检测。若大家都有兴趣,我们可以专门利用一次讲座交流。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 2012年下半年仪器新品盘点:分子光谱
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  分子光谱仪包括紫外可见、分子荧光、拉曼光谱、红外光谱、光谱图像技术等,是实验室中常用的分析工具。随着硬件和软件技术的进步,分子光谱仪器技术也在不断的进步,目前已经成为解决各种分子分析技术难题的有效手段。其应用领域也在不断扩展,特别是在食品安全、药品检测和生命科学以及各种现场快速分析中发挥着日益重要的作用。  分子光谱仪器技术发展趋势主要是小型化并增加其稳定性,从实验室分析走向现场检测 研究分析方法,拓宽其应用领域,也是当前分子光谱重要的发展方向。除了技术的进步之外,操作的简单、便捷要求也带来了仪器的智能化发展,大的彩色触摸屏及平板电脑的加入也增加了用户的操作体验性。  2012年上半年的分子光谱新品已经有十几款,2012年下半年的新品也层出不穷,紫外可见分光光度计最多。其中,北京普析通用仪器有限责任公司T10双光束紫外可见分光光度计杂散光指标超过了千万分之四,居世界领先水平,打响了国产紫外的品质战。  另外,为了满足生物样品的测试需求,多款超微量紫外产品相继推出,该类产品具有用量少,操作简单,一般四五秒就能出结果等特点。各大仪器厂商也比较看重微量紫外的市场,之前有赛默飞的NanoDrop Lite紫外分光光度计,广州德菲科学仪器有限公司的Implen超微量紫外可见分光光度计P-Class/P-330/P-360,北京思百可技术有限公司的晶芯NanoQ微型分光光度计,英国Biochrom公司(大昌华嘉代理)超微量-双光束紫外/可见分光光度计Libra-S60-Biodrop,上海元析仪器有限公司B-500超微量紫外可见分光光度计等。下半年英国柏点(BioDrop)推出柏精、柏触、柏偶等三款超微量蛋白核酸分析仪,韩国美卡希斯推出超微量分光光度计(Optizen),美谱达推出NanoGenius超微量DNA分析仪,天美也推出了S系列小型紫外可见分光光度计。  拉曼光谱仪可以提供快速、简单、可重复的定性定量分析,在化学、物理学、生物学和医学等各个领域都有广泛的应用,并且和红外光谱互补提供更多的分子结构信息。必达泰克、海洋光学等相继推出了新型的拉曼光谱仪,在这些仪器中高灵敏度、高分辨率、更快的测量速度始终是仪器厂商追求的目标。当前,国家对拉曼光谱仪的研发支持力度较大,天津港东、卓立汉光也相继推出了拉曼光谱仪产品。  仪器信息网对公开发布的各类分子光谱产品进行了整理汇总,详细情况如下:  紫外可见分光光度计普析T10双光束紫外可见分光光度计  该款仪器在220nm杂散光达到千万分之四,满足高吸光度样品的测试需求;双单色器光栅同步驱动正弦机构的设计,全波段的波长准确度±0.2nm、波长的重复性≤0.1nm;仪器样品池光斑大小连续可变,光谱带宽为0.1nm~5.0nm连续可调,可满足不同用户的使用需求;光学系统具备氮气吹扫功能,扩展波长范围至180nm;仪器设有开放式仪器应用平台,UVWIN紫外软件工作站功能强、界面友好,并且使用Wi-Fi可实现远程控制。北京普源精电科技有限公司 Ultra-3000(Ultra3300,3400,3660)系列紫外-可见分光光度计  该系列产品在上海慕尼黑生化展上展出,属于中端产品,比较轻,携带方便。Ultra3000系列紫外-可见分光光度计具有超低杂散光≤0.03%T;光学分辨率高达0.5nm,带宽4档可调;内置多种测量方法(生物);7英寸TFT彩屏WVGA(800×480),防水键盘设计,支持数字、中文、英文输入,并且支持U盘存储和打印,以及UltraUV工作站。韩国美卡希斯智能双光束紫外可见分光光度计(Optizen Alpha)(上海谱元仪器有限公司代理)上市时间:2012年10月  这是一款超智能的光度计,支持多语种界面, 并且可以实现标准普通话语音向导;支持Wi-Fi/蓝牙数据存取,Email现场数据传输 支持Google云打印;方便数据格式转换(PDF,Excel等);可方便外接鼠标和键盘;方便通过USB口U盘存取备份数据,可驱USB打印机(支持PCL模式)。韩国美卡希斯最新超微量分光光度计(Optizen)(上海谱元仪器有限公司代理)上市时间:2012年10月  该仪器为两用型光度计,既可超微量测试,也可实现通用光度计所有功能。仪器标配超微量测试单元实现超微量解决方案,最小测试容量低至0.5uL 八联样品架可实现通用光度计的所有功能 7英寸大屏彩色触摸屏,嵌入式工控计算机,正版windows Ce操作系统带2G标准内存,可扩展至8G,4个USB口和3个 232口。超微量蛋白核酸分析仪-柏精(Ultra low volume spectrometer)上市时间:2012年10月  2012年10月,英国柏点(BioDrop)公司在上海发布了三款超微量蛋白核酸分析仪:柏精、柏触、柏偶。该系列产品光程准确度高,没有移动的部件,内置采样点光程固定在0.5mm±5µ m 操作快速,开机仅点击4次屏幕,4秒内完成DNA样品的检测;单机版机器配有大型、高分辨、电容彩色触摸屏,而且USB端口易于电脑连接和数据输出。  柏精拥有一个独特的内置超微量采样点,而且该采样点使用简单,仅需0.5µ L以上的样品至采样点中间,然后开始测量;柏触特别为革新的柏池度身设计,并提供一个磁性加样平台,加样轻松。而且内置广泛的生命科学测量方法;柏偶有两种测量模式:一个独特的超微量测量专用的采样点和一个10mm比色皿槽用于传统的光谱分析活拓展的柏池125超微量分析。天美S系列紫外可见分光光度计  S系列紫外可见分光光度计是上海天美科学仪器有限公司推出的最新的小型分光光度计产品,配备彩色触摸屏和直观的菜单导航系统,方便客户使用,具有体积小、波长精度高,单色性好,杂散光低等优点,杂散光≤0.5%。MAPADA NanoGenius超微量DNA分析仪  0.2µ L样品量,独特设计的样品架,可以测试少量DNA,蛋白质;测量快速,一个步骤,一次动作 允许测量光谱范围190-1100nm;整个测量过程无光损失,保证结果准确性 便于清洁,无需特殊材料擦拭,只需玻璃擦布或棉棒进行简单清洁;此外,还可拓展完成定量测试、波长扫描,动力学,多波长等功能。  此外,日立在上海慕尼黑期间还展出了双光束分光光度计UH5300,用先进的无线平板终端iPad操作仪器;光源品质保证期长达7年,采用最高水平上午氙灯实现卓越的基本性能 标配自动6池塔轮,根据样品仓开、关状态启动智能化测试功能,缩短测试时间;此外,用户购买UH5300之后,可像购买电脑一样自行安装。  荧光分光光度计(分子荧光)HORIBA高精度荧光寿命测试系统DeltaPro  该款仪器采用模块化设计,具有超宽荧光寿命测试范围(25ps-1s),可以满足荧光、磷光寿命测定要求 配备多种脉冲半导体光源,包括DeltaDiode、NanoLED和SpectraLED,用户可以根据自己的需求选择不同的光源;其中,最新设计DeltaHub计时模块,死时间极短(10ns),无需再校准 另外,大样品仓设计可加载搅拌和控温装置 皮秒检测模块标准配置为250-850nm,可升级至1700nm。  光纤光谱仪海洋光学QE65Pro  新一代科研级光谱仪,具有高灵敏度和低杂散光(0.08%在600nm处 0.4%在435nm处)。QE65Pro的核心是Hamamatsu FFI-CCD探测器,具有高量子效率(90%)和低etalon效应。由于提供了多种光栅和光具座组件,QE65Pro通过配置可用于一些列的应用。该款仪器是QE65000的改良版,具有热稳定性设计吗,光谱仪波长稳定性进一步提升,触发功能可实现光谱仪和其他设备之间的精确计时和同步,并具有可更换狭缝设计,增加了使用便捷性。必达泰克ExemplarPlus(BTC655)  2012年5月份,必达泰克推出了“智能”微型光谱仪Exemplar™ 。10月份,又推出了一款高性能的智能光谱仪Exemplar Plus,该款仪器采用Unfolded Czerny-Turner光路设计,长焦距工作距离,并集成了高灵敏度的TE致冷薄型背照式CCD探测器(BT),提高了量子效率,增大了动态范围,使其在整个190-1100nm的光谱范围内均可提供卓越的数据质量。而且仪器内置快门,允许在光照条件下进行暗噪声扫描,具有优异性能和优良的信噪,光谱分辨率最低可至0.1 nm。  激光拉曼光谱(RAMAN)必达泰克i-Raman Plus(BWS465)上市时间:2012年10月  该款仪器板载数据处理系统,可在系统内部进行数据智能处理;致冷温度更低,灵敏度更高,适用于微弱拉曼信号的检测;采用高性能拉曼专业滤光片,最低检测波数可达65cm-1;配备有先进的化学计量学软件BWIQ,是定性定量分析的最佳方案。  此外,必达泰克于上半年3月份还推出了具有防水功能的手持式拉曼光谱仪NanoRom。此防水功能使得客户在进行仪器消毒和清洗的过程中非常方便,不用担心损坏仪器。海洋光学新一代拉曼系统——ACCUMAN  自称是目前市场上性能最好的便携式现场检测的拉曼小巨人,其核心光谱仪QE65000曾被美国国家航空航天局用于确定月球中水的存在。同时,ACCUMAN也是唯一一款采用制冷背照式面阵CCD的便携式拉曼系统,能够加强原本微弱的拉曼信号,降低噪声,将检测速度提高到15秒以内。检测结果可以和大型拉曼仪器媲美,即使是非常相似的化学物质,包括相似的水合物和同分异构体也能被区分出来。海洋光学Apex785拉曼光谱仪  Apex是一款小型模块化光谱仪,拥有极高的分辨率和出色的灵敏度。该仪器采用独一无二的光学设计和虚拟高通量狭缝技术(HTVS),解决了灵敏度和分辨率之间的冲突问题。Apex较高的分辨率能够更好地分辨拉曼光谱,解析精细光谱结构。其高灵敏度可实现更短的积分时间、更快的测量速度和更低的激光激发功率,以使样本降解程度降至最低。  高光谱成像仪高光谱成像仪(Hyperspectral Imaging Camera)上市时间:2012年9月  该款仪器采用专利的二维色散元件、同步高光谱成像(SHI)技术,一次拍摄采集所有的光谱和图像信息;可在3ms内同时采集样品各点的光谱和图像信息的高光谱成像仪;与传统的高光谱成像仪不同,它无需做扫描和切换滤光片,对动态和静态事件都适用;手持式、无任何运动组件的稳定可靠设计非常适合在野外和工业质量控制环境使用;并且配备有功能强大的VerdeTM专用软件。  2012年上半年仪器新品盘点:分子光谱  了解更多质谱产品请访问仪器信息网光谱专场  了解更多新品请访问仪器信息网新品栏目  关于申报新品  凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 越早申报的新品,将获得更多的展示机会。
  • 微型光谱仪的结构解析
    光谱仪究其实质是一个“分光”仪器,现在有几种方式来实现分光功能。主流的方式是用光栅作为色散部件,将不同波长的光在空间上分开,用阵列探测器接收并输出光谱。另一种方式是用干涉仪调制入射光,用单元探测器接收被调制了的光,并输出光强随时间变化的曲线,再用傅里叶变换还原光谱,这就是傅里叶光谱仪。  由于在UV-VIS-NIR波段,硅CCD, CMOS阵列的工艺成熟,性价比好,再加上无移动部件,可靠性好,因此,几乎无一例外地使用光栅色散,阵列探测器检测的方式。只是在波长大于900nm的近红外波段,硅材料实在无法胜任,才采用InGaAs线列探测器,但是,至少在现阶段InGaAs线列探测器还是太贵,于是才有人尝试采用傅里叶光谱技术,转动光栅技术,美国德州仪器公司的DLP(Digital Light Procession)技术,其核心是用MEMS技术制造一个微镜陈列,可以用集成电路芯片组驱动每一个微镜的方向,这样就可以用单元InGaAs探测器,使近红外波段的微型光谱仪成本下降。另一种思路是怎么把光谱仪做得更小,更便宜,干脆不用光栅分光,虽然性能不一定那么好,但是对于有些应用也许就足够了,这基本上就是用滤光片加线列探测器的方法。  就采用光栅分光技术的微型光谱仪而言,其性能主要决定于三个方面,光学设计,光栅的选择,探测器的选用。  光学设计又与采用的光栅种类有关,现用的光栅有反射光栅和透射全息光栅两大类,采用不同光栅的光谱仪光学设计方案有所不同。现在的主流是反射光栅,这是由于制造工艺相对成熟,因此价格也相对低一些的原因,采用反射光栅,又要做得体积小,采用折叠光路的设计就很自然了,因此,交叉光路Czerny-Turner 结构(Crossed Czerny-Turner)成为市场最流行的设计 另一类是透射全息光栅,它的主要优点是光栅效率高,导致光学系统的光通量大,对于一些测量比较微弱的光的应用,或者快速动态过程分析,不允许长的积分时间,就倾向于选择透射光栅,当然,价格相对会贵一些。  以下我们就分析典型的交叉光路的Czerny-Turner 结构光谱仪(如图所示)。图 典型的交叉光路Czerny-Turner光谱仪结构。1为SMA 905接头,2为入射狭缝,3为长通滤光片(可选),4为准直反射镜,5为反射光栅,6为汇聚反射镜,7为柱形汇聚透镜(可选),8阵列探测器,9为线性可变滤光片阻挡高阶衍射光进入探测器,10为探测器的石英玻璃窗口,取代普通BK7玻璃窗口,用于工作在小于340nm的紫外波段光谱仪(可选)  -用光纤将待测光束通过标准的SMA905接头接入光谱仪。  -待测光束通过狭缝进入光谱仪,狭缝就是成像系统中的“物”,通常为矩形,根据应用的要求,狭缝的宽度可选,较宽的狭缝允许更多的光子进入光学系统,即系统的光通量较大,但这是以损失分辨率为代价。典型的狭缝宽度在5um-200um之间,高度为1mm。  -从狭缝出射的光是发散的,我们希望入射光束的传播方向是可控的,不要散射到不该去的地方,导致杂散光太大,通过准直光学部件,通常是反射镜,将其变为平行光束。  -光栅作为色散元件:这是对光谱仪性能有决定性影响的元件,不同波长的光被衍射到空间不同的方向。光栅的参数包括刻线密度,闪耀角度等,都会影响到光谱仪的性能指标,包括分辨率,波长范围,光栅效率曲线等。  -反射镜作为光束汇聚器件,将光栅分光后不同波长狭缝的“像”汇聚到阵列探测器不同的像元上。每个像元会接收到波长范围很窄的光子(15 nm to 0.02 nm,取决于光谱仪的结构)  众所周知,狭缝的宽度会影响到光谱仪的分辨率和响应率,  -探测器阵列:探测器是实现光电转换的重要器件。线阵探测器上的每一个象元的读出数据对应于一个特定的波长范围,在紫外,可见光,短波近红外波段,硅CCD是目前使用最多的探测器,其性价比最好,探测器本身的噪声对光谱仪信噪比的影响。只有在900nm-2500nm的近红外波段才使用InGaAs线列探测器。  -模-数转换电路ADC (Analog-to-Digital Converter):探测器读出电路给出的是电压模拟信号,通过ADC把模拟信号转换为数字信号,将每个像元输出的电压转换为一个特定的数字,这个读数被称为“counts”  ADC器件性能的重要指标是它输出的数字是用多少位二进制数字来表示。一个12位的模数转换电路可以将满量程光强度用0-4096(212)个counts来表示。相应的,同样的满量程光强度,如果用16位的模数转换电路其输出则是用0-65535(216)个counts来表示。由此可见ADC器件的位数反映了光谱仪在垂直方向的“分辨率“。(如图xxx所示)ADC的位数越高其输出的读数就可以越”准确“地描述光谱的强度。  因此,对于一个采用2048个像元的线列探测器和12位模数转换器件的光谱仪,每条光谱曲线会输出2048个波长和对应光强的数据对,每个光强的数据用一个12位数字表示。这些数据是光谱的原始数据。图 ADC的位数和垂直方向“分辨率“的关系示意图  -光谱仪内还包括以微处理器为中心的一些电路,主要包含两部分功能。一方面,产生光谱仪CCD或CMOS探测器所需的控制时序,使探测器按用户设定的工作模式工作 另一方面,实现与PC机的通信,如从探测器中读出数据并传送到PC端。这些电路的性能,譬如,模拟电路的噪声水平、处理器的主频、缓存的大小和通信接口的速度,都会对光谱仪的整体性能有重要影响。
  • 辽宁成功研发新型冠状病毒检测用滤光器件,已为全国紧急配套供应件近3000套
    p style="text-align: justify text-indent: 2em "抗击疫情的“战场”上,辽宁科技工作者也在与疫情“赛跑”。2月5日,记者从辽宁省科技厅了解,针对全国新型冠状病毒检测迫切需求,辽宁省科技厅组织协调沈阳仪表科学研究院利用春节假期,全力开展新型冠状病毒检测用荧光干涉滤光片系列产品的设计、制造、检测和应用等专项技术研究,成功开发2019-nCoV荧光定量PCR核酸检测仪器用高性能荧光干涉滤光片,并迅速将科研成果投入到疫情防控前线。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202002/uepic/d458bbe8-9a8c-421c-b8fc-7b1e42da01c5.jpg" title="a06a9cc8-4f4e-46c1-a6f8-254f7fa20c4f.jpg" alt="a06a9cc8-4f4e-46c1-a6f8-254f7fa20c4f.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: justify text-indent: 2em "据了解,高性能荧光干涉滤光片是实时荧光RT-PCR核酸检测设备的核心元器件,其性能直接决定病毒定量检测的精度和可靠性。截至目前,沈阳仪表科学研究院已为湖北省以及上海、西安、杭州、深圳等地区新型冠状病毒检测仪器紧急配套供应新型滤光器件近3000套,以辽宁的科技硬核力量助力全国新型冠状病毒检测和疫情防控。/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em text-align: justify "众志成城,抗击疫情。防控新型冠状病毒感染的肺炎疫情,全国在行动,仪器及检测人也在行动!仪器信息网作为科学仪器行业的专业门户网站,充分发挥科学仪器行业专业媒体资源优势,整合科学仪器及检验检测多方资源,第一时间推出a href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(84, 141, 212) "span style="margin: 0px padding: 0px "strong style="margin: 0px padding: 0px "“抗击新冠疫情,仪器人在行动”/strong/span/a专题,全力支援疫情抗击工作。br style="margin: 0px padding: 0px "//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-indent: 2em text-align: justify "strong style="margin: 0px padding: 0px "/strong/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "a href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(102, 102, 102) text-decoration-line: none "img src="https://img1.17img.cn/17img/images/202002/uepic/a767565f-df49-479b-8f08-ac6296a275ee.jpg" title="ae723130-0e56-4376-8be7-ad82428ada84.jpg" alt="ae723130-0e56-4376-8be7-ad82428ada84.jpg" style="margin: 0px padding: 0px border: 0px max-width: 100% max-height: 100% "//a/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal text-align: center "span style="margin: 0px padding: 0px color: rgb(84, 141, 212) "a href="https://www.instrument.com.cn/zt/xxgzbd" target="_blank" style="margin: 0px padding: 0px color: rgb(84, 141, 212) "点击图片查看专题详情/a/span/p
  • 如何精准找出CIS影像晶片缺陷?透过量子效率光谱解析常见的4种制程缺陷!
    本文将为您介绍何谓量子效率光谱,以及CIS影像晶片常见的4种制程缺陷。SG-A_CMOS 商用级图像传感器测试仪相较于传统光学检测设备可以提供更精细的缺陷检测资讯,有助于使用者全面了解CIS影像晶片的性能表现。量子效率光谱是CIS影像晶片的关键参数之一,可以反映CIS影像晶片对不同波长下的感光能力,进而影响影像的成像质量。1. 什么是CIS影像晶片的量子效率光谱?CIS影像晶片的量子效率光谱是指在不同波长下,CIS晶片对光的响应效率。物理上,光子的能量与其波长成反比,因此,不同波长的光子对CIS影像晶片产生的响应效率也不同。量子效率光谱可以反映传感器在不同波长下的响应能力,帮助人们理解传感器的灵敏度和色彩还原能力等特性。通常,传感器的量子效率光谱会在可见光波段范围内呈现出不同的特征,如波峰和波谷,这些特征也直接影响着传感器的成像质量。2. Quantum Efficiency Spectrum 量子效率光谱可以解析CIS影像晶片内部的缺陷,常见的有下四种:BSI processing designOptical Crosstalk inspectionColor filter quality and performanceSi wafer THK condition in BSI processing3. 透过量子效率光谱解析常见的4种制程缺陷A. 什么是BSI制程?(1) BSI的运作方式BSI全名是Back-Side Illumination.是指"背照式"影像传感器的制造工艺,它相对于传统的"正面照射"(FSI, Front-Side Illumination)影像传感器,能够提高影像传感器的光学性能,特别是在各波长的感光效率的大幅提升。在BSI制程中,像素置于矽基板的背面,光通过矽基板进入感光像素,减少了前面的传输层和金属线路的干扰,提高了光的利用率和绕射效应,进而提高了影像传感器的解析度和灵敏度。(2) 传统的"正面照射"(FSI, Front-Side Illumination)图像传感器的工作方式FSI 是一种传统的图像传感器制程技术,光线透过透镜后,从图像传感器的正面照射到图像传感器的感光面,因此需要在感光面(黄色方框, Silicon)的上方放置一些电路和金属线,这些元件会遮挡一部分光线,降低图像传感器的光量利用率,影响图像的品质。相对地,BSI 技术是在感光面的背面,也就是基板反面制作出感光元件,让光线可以直接进入到感光面,这样就可以最大限度地提高光量利用率,提高图像的品质,并且不需要额外的电路和金属线的遮挡,因此也可以实现更高的像素密度和更快的图像读取速度。(3) 为什么BSI工艺重要?BSI工艺是重要的制造技术之一,可以大幅提升CIS图像传感器的感光度和量子效率,因此对于低光照环境下的图像采集有很大的帮助。BSI工艺还可以提高图像传感器的分辨率、动态范围和信噪比等性能,使得图像质量更加优良。由于现今图像应用日益广泛,对图像质量和性能要求也越来越高,因此BSI工艺在现代图像传感器的制造中扮演着重要的角色。目前,BSI 技术已成为图像传感器的主流工艺技术之一,被广泛应用于各种高阶图像产品中。(4) 量子效率光谱如何评估BSI工艺的好坏如前述,在CIS图像芯片的制造过程中,不同波长的光子对于图像芯片的感光能力有所不同。因此,量子效率光谱是一种可以检测图像芯片感光能力的方法。利用量子效率光谱,可以评估BSI工艺的好坏。Example-1如图,TSMC使用量子效率光谱分析了前照式FSI和背照式BSI两种工艺对RGB三原色的像素感光表现的差异。结果表明,BSI工艺可以大幅提高像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。上图 TSMC利用Wafer Level Quantum Efficiency Spectrum(量子效率光谱)分析1.75μm的前照式FSI与背照式BSI两种工艺对RGB三原色的像素在不同波长下的感光表现差异。由量子效率光谱的结果显示,BSI工艺可以大幅提升像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。(Reference: tsmc CIS)。量子效率光谱的分析可以帮助工程师判断不同工艺对感光能力的影响,并且确定BSI工艺的优势。(5) 利用量子效率光谱分析不同BSI工艺工艺对CIS图像芯片感光能力的影响Example-2 如上图。Omnivision 采用Wafer Level Quantum Efficiency Spectrum量子效率光谱分析采用TSMC 65nm工艺进行量产时,不同工艺工艺,对CIS图像芯片感光能力的影响。在1.4um像素尺寸使用BSI-1工艺与BSI-2的量子效率光谱比较下,可以显著的判断,BSI-2的量子效率较BSI-1有着将近10%的量子效率提升。代表着BSI-2的工艺可以让CIS图像芯片内部绝对感光能力可以提升10%((a)表)。此外,量子效率光谱是优化CIS图像芯片制造的重要工具。例如,在将BSI-2用于1.1um像素的工艺中,与1.4um像素的比较表明,在蓝光像素方面,BSI-2可以提供更高的感光效率,而在绿光和红光像素的感光能力方面,BSI-2的效果与1.4um像素相似。另外,Omnivision也利用量子效率光谱分析了TSMC 65nm工艺中不同BSI工艺工艺对CIS图像芯片感光能力的影响,发现BSI-2可以提高近10%的量子效率,从而使CIS图像芯片的感光能力提高10%。将BSI-2工艺用于1.1um像素的制造,并以量子效率光谱比较1.4um和1.1um像素。结果显示,使用BSI-2工艺的1.1um像素,在蓝色像素方面具有更高的感光效率,而在绿色和红色像素的感光能力方面与1.4um像素相近。这个结果显示,BSI-2工艺可以在保持像素尺寸的前提下提高CIS图像芯片的感光能力,进而提高图像质量。因此,利用量子效率光谱比较不同工艺工艺对CIS图像芯片的影响,可以为CIS制造优化提供重要参考。上图 Omnivision采用了Wafer Level Quantum Efficiency Spectrum量子效率光谱,以分析TSMC 65nm工艺在量产时,不同工艺工艺对CIS图像芯片感光能力的影响。通过这种光谱分析技术,Omnivision能够精确地判断不同工艺工艺所产生的量子效率差异,并进一步分析出如何优化CIS图像芯片的感光能力。因此,Wafer Level Quantum Efficiency Spectrum量子效率光谱分析是CIS工艺中一项重要的技术,可用于协助提高CIS图像芯片的质量和性能。(Reference: Omnivision BSI Technology.)B. Optical Crosstalk Inspection(1) 什么是Optical Crosstalk?CIS的optical cross-talk是指光线在图像芯片中行进时,由于折射、反射等原因,导致相邻像素之间的光相互干扰而产生的一种影响。(2) 为什么Optical Crosstalk的检测重要?在CIS图像芯片中,optical crosstalk是一个重要的问题,因为它会影响图像的品质和精度。optical crosstalk是由于像素之间的光学相互作用而产生的,导致相邻像素的光信号互相干扰,进而影响到像素之间的区别度和对比度。因此,降低optical cross-talk是提高CIS图像芯片品质的重要目标之一。(3) 如何利用QE光谱来检测CIS 的Crosstalk?量子效率(QE)光谱可用于检测CMOS图像传感器(CIS)的串音问题。通过测量CIS在不同波长下的QE,可以检测CIS中是否存在串音问题。当CIS中存在串音问题时,在某些波长下可能会观察到QE异常。在这种情况下,可以采取相应的措施来降低串音,例如优化CIS设计或改进工艺。缩小像素尺寸对于高分辨率成像和量子图像传感器是绝对必要的。如上图,TSMC利用45nm 先进CMOS工艺,来制作0.9um 像素用于堆叠式CIS。而optical crosstalk光学串扰对于SNR与成像品质有着显著的影响。因此,TSMC采用了一种像素工艺,来改善这种optical crosstalk光学串扰。结构如下图。结构(a)是控制像素。光的路径线为ML(Microlens)、CF (Color Filter)、PD(Photodiode, 感光层)。而在optical crosstalk影响的示意图,如绿色线的轨迹。光子由相邻的像素单元进入后,因为多层结构的折射,入射到中间的PD感光区,造成串扰讯号。TSMC设计结构(b) “深沟槽隔离(DTI)" 技术是为了在不牺牲并行暗性能的情况下抑制光学串扰。由(b)可以发现,DTI所形成的沟槽可以隔离原本会产生光学串扰的光子入射到中间的感光Photodiode区,抑制了串扰并提高了SNR。像素的横截面示意图 (a) 控制像素 (b)串扰改善像素。Wafer Level Quantum Efficiency Spectrum of two different structure CISs. 在该图中,展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。蓝光通道和红光通道反应略微下降,但是通过新开发的颜色滤光片材料,绿光通道的量子效率得到了提升。利用Wafer Level Quantum Efficiency Spectrum技术可以直接证明光学串扰的抑制现象。对于不同的CIS图像芯片,可以通过量子效率光谱测试来比较它们在不同波长下的量子效率响应,进而分辨optical crosstalk是否得到抑制。上图展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。C. Color filter quality inspection(1) 什么是CIS 的Color filter?CIS的Color filter是一种用于CIS图像芯片的光学滤光片。它被用于调整图像传感器中各个像素的光谱响应,以便使得CIS图像芯片可以感测和分离不同颜色的光,并将其转换为数字信号。Color filter通常包括红、绿、蓝三种基本的色彩滤光片。而对于各种不同filter排列而成的color filter array (CFA),可以参考下面的资料。最常见的CFA就是Bayer filter的排列,也就是每个单元会有一个B、一个R、与两个G的filter排列。Color filter在CIS图像芯片中扮演着非常重要的角色,其质量直接影响着图像的色彩再现效果。为了确保Color filter的性能符合设计要求,需要进行精确的光谱分析和质量检测。透过率光谱可以评估不同Color filter的光学性能 量子效率光谱可以检测Color filter与光电二极管的匹配程度。只有通过严格的质量检测,才能保证CIS芯片输出优质的图像。图 Color filter 如何组合在“Pixel"传感器中。一个像素单位会是由Micro Lens + CFA + Photodiode等三个主要部件构成。Color filter的主要作用是将入射的白光分解成不同的色光,并且选择性地遮挡某些色光,从而实现对不同波长光的选择性感光。(2) 为什么Color filter的检测重要?在CIS图像芯片中,每个像素上都会有一个color filter,用来选择性地感光RGB三种颜色的光线,从而实现对彩色图像的捕捉和处理。如果color filter的性能不好,会影响像素的感光度和光谱响应,进而影响图像的品质和精度。因此,优化color filter的性能对于提高CIS图像芯片的品质至关重要。Color filter 的检测是十分重要的,因为color filter 的品质和稳定性会直接影响到CIS 图像芯片的色彩精确度和对比度,进而影响整个图像的品质和清晰度。如果color filter 存在缺陷或不均匀的情况,就会导致图像中某些颜色的偏移、失真、色彩不均等问题。因此,对color filter 进行严格的检测,可以帮助制造商确保其性能和品质符合设计要求,从而提高CIS 图像芯片的生产效率和产品的可靠性。(3) 如何利用QE光谱来检测CIS 的Color filter quality?CIS的Color filter通常是由一种称为“有机色料"(organic dyes or pigments)的物质制成,这些有机色料能够选择性地吸收特定波长的光,以产生所需的颜色滤波效果。这些有机色料通常是透过涂布技术将它们沉积在玻璃或硅基板上形成彩色滤光片。量子效率(QE)光谱可以测量CIS在不同波长下的感光度,从而确定Color filter的品质和性能。正常情况下,Color filter应该能够适当地分离不同波长的光,并且在光学过程中产生较小的串扰。因此,如果在特定波长下的量子效率比预期值低,可能是由于Color filter的品质或性能问题引起的。通过对量子效率 (QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。TSMC利用Wafer Level Quantum Efficiency Spectrum晶片级量子效率光谱技术,对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。如上图,TSMC的CIS工艺流程利用Wafer Level Quantum Efficiency Spectrum的光谱技术,针对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。晶圆级量子效率光谱显示了三种不同Color filter材料(Green_1, Green_2和Green_3)的特性。透过比较这三种材料,可以发现:(1) 主要绿色峰值位置偏移至550nm(2) 绿光和蓝光通道的optical crosstalk现象显著降低(3) 绿光和红光通道的optical crosstalk现象显著增加。通过对量子效率(QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。以确保滤光片材料的特性符合设计要求,并且保证图像的品质和精度,提高CIS图像芯片的可靠性和稳定性。D. Si 晶圆厚度控制(1) 什么是Si 晶圆厚度控制?当我们在制造BSI CIS图像芯片时,需要使用一种称为"减薄(thin down)"的工艺来将晶圆变得更薄。这减薄后的晶圆厚度会直接影响CIS芯片的感光度,因此晶圆的厚度对图像芯片的感光性能和质量都有很大的影响。为了确保图像芯片能够正常工作,我们需要使用"Si 晶圆厚度控制"工艺来精确地控制晶圆的厚度。这样可以确保我们减薄出来的晶圆厚度能够符合设计要求,同时也可以提高图像芯片的产品良率。BSI的流程图。采用BSI工艺的CIS图像芯片,会有一道重要的工艺“减薄"(Thin down), 也就是将晶圆的厚度减少到一定的程度。(2) Si 晶圆厚度控制工艺监控中的量子效率检测非常重要在制造CIS芯片时,Si 晶圆厚度控制工艺的控制对于芯片的感光度有着直接的影响。这种影响可以透过量子效率光谱来观察,确保减薄后的CIS芯片拥有相当的光电转换量子效率。减薄后的晶圆会有一个最佳的厚度值,可以确保CIS芯片拥有最佳的光电转换量子效率。使用450nm、530nm和600nm三种波长,可以测试红色、绿色和蓝色通道的量子效率。实验结果显示了不同减薄厚度的CIS在蓝光、绿光、红光通道的量子效率值的变化。减薄厚度的偏差会对CIS的感光度产生直接的影响,进而影响量子效率的值。因此,量子效率的检测对于Si 晶圆厚度控制工艺的监控至关重要,以确保制造的CIS芯片具有稳定和一致的质量。下图显示了在不同减薄厚度下CIS图像芯片在蓝、绿、红三个光通道的量子效率值变化。蓝光通道的量子效率值是利用450nm波长测量的,当减薄后的厚度比标准厚度多0.3um时,其量子效率值会由52%下降至49% 当减薄后的厚度比标准厚度少0.3um时,蓝光通道的量子效率只略微低于52%。红光通道的量子效率值是利用600nm波长测量的,发现红光通道的表现在不同厚度下与蓝光通道相反,当减薄后的厚度比标准厚度少0.3um时,红光通道的量子效率显著地由44%下降至41%。在较厚的条件(+0.3um)下,红光通道的量子效率并没有显著的变化。绿光通道的量子效率值是以530nm波长测量的,在三种厚度条件下(STD THK ± 0.3um),绿光通道的量子效率没有显著的变化。利用不同的Si晶圆厚度(THK)对CIS图像芯片的量子效率进行测试,测试波长分别为600nm、530nm和450nm,并且针对红色、绿色和蓝色通道的量子效率进行评估。结果显示,在绿光通道方面,Si晶圆厚度的变化在±0.3um范围内,530nm波段的量子效率并未有明显变化。但是,在红光通道方面,随着Si晶圆厚度的下降,量子效率会有显著的下降。而在蓝光通道450nm的情况下,量子效率会随着Si晶圆厚度的下降而有显著的下降。这些结果表明,Si晶圆厚度对于CIS图像芯片的量子效率有重要的影响,且不同通道的影响程度不同。因此,在制造CIS图像芯片时需要精确地控制Si晶圆厚度,以确保产品的质量和性能。
  • 中智科仪逐光IsCMOS像增强相机拍摄激光诱导等离子体羽流
    1、应用背景   等离子体是区别于固体、液体和气体的第四种物质聚集状态。在高能环境下,原子的外层电子摆脱原子核的束缚成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离,这种电离气体就是等离子体,通常由带电离子、自由电子、基态/激发态分子原子和自由基等粒子组成。等离子体在自然界中广泛存在,如太阳、恒星、星际物质、闪电等都是等离子体。   激光诱导等离子体(Laser-Induced Plasma, LIP)是通过激光与物质相互作用产生的一种高温、高密度的等离子体状态物质。当高能量的激光脉冲照射到物体表面时,会使得物质迅速加热并部分或完全电离,形成等离子体。伴随形成的等离子体羽流的演化过程具有超高速、持续时间短(一般几百纳秒)、强自发光背景和小空间尺度的特点,这使得其观测变得具有挑战性。   本次实验采用中智科仪的逐光IsCMOS像增强相机(TRC411),拍摄了激光诱导等离子体羽流的形貌演化过程。基于逐光IsCMOS像增强相机的纳秒级快门门控、高精度的时序同步技术和变延迟序列推扫功能,记录了等离子体羽流的完整演化过程。 2、实验方案   实验设备:   中智科仪逐光IsCMOS像增强相机,型号:TRC411-S-HQB-F F2UV100大通量紫外镜头。   实验室所用激光器为镭宝Dawa-200灯泵浦电光调Q纳秒Nd:YAG激光器,波长1064nm,重复频率1-20Hz。采用激光器Q-out输出触发TRC411相机的方式,对相机Gate通道进行变延迟序列推扫,寻找相机与激光器的同步时刻。   实验流程:   1.实验材料被激发的等离子体羽发光在200nm-500nm左右,因此在镜头前端安装一个430nm的带通滤光片,屏蔽掉1064nm的激发激光和其他杂散光。需要注意观察成像画面中是否有强反射材料,比如样品台的光滑金属反光面或螺丝帽等,为了防止这些强烈反射面的反射光对相机造成损害,需要使用黑色电工胶带将它们遮挡或覆盖。   2. 激光器的Q-out触发输出接到示波器,测得同步输出的TTL信号电平为5V@1MΩ,频率与激光输出频率匹配,均为5Hz。TRC411相机可接受的最大外触发信号电平为5V,保守起见,在触发线末端加入了6dB衰减器,将激光器Q-out输出电平减半。   3. 由于等离子体的发光强度较大,无法确定所使用的滤光片的衰减倍率是否足够,因此首先将镜头光圈调至最小,设置增益为1800,Gate时间13ns(对应光学门宽3ns)。   软件参数设置如下表:   4. 对Gate通道进行变延迟序列扫描,最终找到Gate延时起止时刻在700ns至1100ns之间时,可以捕获到等离子体的发光信号。   软件参数设置界面: 3、实验结果   序列采集SEQ曲线:   根据曲线可以看到实验材料被激发的等离子体发光持续时间约为400ns。   高功率纳秒脉冲激光激发产生的完整等离子体羽形貌演变过程: 4、结论   中智科仪逐光IsCMOS像增强相机具有短至纳秒级的快门,超短的门控可以屏蔽背景噪声,提高信噪比。相机内置的高精度时序控制器可以确保相机与脉冲激光器的同步工作,在确定的延迟捕获等离子体信号。相机的变延迟序列扫描功能可以使相机快速拍摄不同延迟时刻的等离子体信号,获得完整的等离子体演化过程。诸多优势展示了TRC411相机在等离子体诊断方面的重要应用价值。   免责说明:中智科仪(北京)科技有限公司公众号发布的所有内容,包括文字和图片,主要基于授权内容或网络公开资料整理,仅供参考。所有内容的版权归原作者所有。若有内容侵犯了您的权利,请联系我们,我们将及时处理。 5、解决方案   由中智科仪自主研发生产的逐光IsCMOS像增强相机采用高量子效率低噪声的2代Hi-QE以及第3代GaAs像增强器,光学门宽短至500皮秒 全分辨率帧速高达98幅/秒 内置皮秒精度的多通道同步时序控制器,由SmartCapture软件进行可视化时序设置,完全适合时间分辨快速等离子现象。   1. 500皮秒光学快门   以皮秒精度捕捉瞬态现象,并大幅降低背景噪声。   2.超高采样频率   逐光IsCMOS相机目前全分辨率下可达98帧,提供高速数据采集速率,同时可提供实验效率。此外设置使用其中16行的区域下,可以达到1300帧以上。   3.精准的时序控制   逐光IsCMOS像增强相机具有三路独立输入输出的时序同步控制器,最短延迟时间为10皮秒,内外触发设置可实现与激光器以及其他装置精准同步。   4. 创新“零噪声”技术   得益于单光子信号的准确识别,相机的暗噪声及读出噪声被完全去除。
  • Ocean SR2 最新一代模块化光谱仪
    Ocean SR2 是最新一代模块化光谱仪的先锋,光谱仪具有出色的信噪比和高速光谱采集能力,是光学滤光片和重铬酸钾标准物吸光度等应用的理想选择。缘 起当下全球制造业开启“工业4.0”进程,我国亦提出了“工业2025”计划,工业自动化行业将在中国制造业的未来发展中占有举足轻重的地位,未来仍将保持较快的发展速度。随之而来的是制造业对仪器和设备的要求也越来越高,如:半导体、生物制药等行业一直在寻求更高性能的小型光谱仪。自海洋光学推出光纤光谱仪的概念后,传统小型光纤光谱仪发展迅速,但近年来小型光纤光谱仪进入了瓶颈期,由于核心器件性能的影响,光谱仪在信噪比、采集速度、分辨率等方面未有较大进步。“灯 塔” 引 路作为小型光纤光谱仪的发明者,海洋光学推出的USB2000+和Flame系列光谱仪,应用广泛且颇受好评,一直是学术界和制造业的宠儿。探索的脚步从未停止。海洋光学深知市场动态和需求,为此开启了“灯塔”项目,致力于新一代光纤光谱仪的研发,旨在从根本上提升小型光纤光谱仪的性能。继承了上一代光谱仪集成便捷、应用广泛、性能稳定的优势,同时取得了多项突破性进展。系列首款SR2,更高、更快、更强全“芯”设计——从光路设计,电路设计到核心探测器,都是全新的独立设计与选择。“步步高升”——提供了远超上一代光谱仪的信噪比(380:1)与动态范围(3400:1)并提高了分辨率水平。“唯快不破”——积分时间有了重大突破,由毫秒级到现在的10微秒积分时间。“自强不息”——特别添加板载平均的功能,可在光谱仪内部直接计算出多次采集的平均值,再输出结果。在峰形对称性上表现更好,同时提升了在紫外段的杂散光抑制水平,可获取更精确的数据。此外,SR2的光谱平均性、热稳定性等也得到进一步优化,在激光表征、等离子体检测、 DNA、蛋白质等生物分子的吸光度测量等应用表现出色。为更多用户和新兴领域,如半导体,智能制造,生物制药等解决更多科研与生产的问题。
  • 新品推荐|动态范围2500000:1!滨松OPAL光谱仪问世,超越常规!
    滨松借助独特的探测器技术、F/2.2大口径光学系统、极低杂散光设计,成功开发了一种新型光谱仪——滨松0PAL-Luxe 光谱仪。在 200 nm 至 900 nm 的光谱范围内达到2,500,000:1 的极高动态范围,比常规科研级光谱仪高2~3个数量级,满足强弱光谱信号同时测试的需求。产品特点2,500,000:1 动态范围F/2.2 相对口径200nm -900nm覆盖0.9nm光谱分辨率±0.1nm光谱准确度应用激光测试等离子体光谱薄膜测量吸光度测量颜色测量光化学拉曼光谱测试示例图1:激光测试图2:全息滤光片OD值的测量(532nm) 图3:薄膜厚度测量 图4:氮化镓的光致发光测量
  • 电子光学品牌PIXELTEQ推出用于多光谱成像的缩微成像滤光器
    美国佛罗里达州的拉哥于2016年2月2日传来消息,英国豪迈的电子光学品牌PIXELTEQ(pixelteq.com)推出了缩微成像滤光器,其缩微成像光学涂层结合了显微光刻法专利技术和最先进的涂层专利技术,帮助创造了简便且具有性价比的光学设备,可应用于生物医学、安防、航空航天、精细农业和机器视觉等领域。PIXELTEQ的缩微成像滤光器。PIXELTEQ公司的技术使多个电介质、金属和颜料的图案结构能在单一基质上获得滤波阵列涂层。到位的标准化流程为模仿玻璃和半导体晶片奠定基础,且优化了PIXELTEQ获取客户需求的流程、减少了产品投放市场的时间。该公司的高技术性能使其产品可以满足各种市场需求,不管是高精准度、低容量的装置还是高容量的消费者导向产品。PIXELTEQ公司的营销和销售副总裁马尔科?史尼克斯(Marco Snikkers)说:“凭借数十年的经验和努力,我们的专利薄膜涂层流程不断完善。我们能肯定我们是唯一只专注于缩微成像技术的光电公司”。去年,PIXELTEQ公司花费了数百万美元用于发展并升级了生产设施,其缩微成像滤光器的产出已翻两倍。到目前为止,PIXELTEQ是全球市场上专注于缩微成像技术性能的唯一光电企业。欲了解更多信息,请访问www.pixelteq.com,发送电子邮件至info@pixelteq.com,或拨打电话+1-727-545-0741。关于PIXELTEQ和英国豪迈:PIXELTEQ公司提供OEM光谱传感和成像产品、缩微成像滤光器、自定义的电子光学设备,可应用于航空航天、生物医学、工业制造、科研和安全等领域。在每台多光谱设备的核心,都有一个为特定应用而制造的像素级滤光器阵列。为了推动薄膜涂层、缩微成像和光电集成的综合知识技能,PIXELTEQ的专家们与客户合作,通过高产能的OEM方式快速来进行原型制作,从而提供专业的设计帮助和定制的解决方案。PIXELTEQ是英国豪迈(Halma)的子公司,隶属于豪迈的环境与分析事业部。1894年创立的英国豪迈如今是全球安全、医疗、环保产业的投资集团,伦敦证券交易所的上市公司,富时指数的成分股。集团在全球有5000多名员工,近50家子公司,在中国的上海、北京、广州、成都和沈阳设有代表处,并在多地建立了工厂和生产基地。业务合作联系人:曲盛滨(Jerry Qu)PIXELTEQ中国区商务拓展经理电话:010-51261868邮箱:jerry.qu@pixelteq.com
  • 微型光谱仪之荧光检测
    pstrong  1、技术简介/strong/pp  当常温物质经入射光照射,吸收光能后进入激发态,并且立即激发并发出出射光,那么这种出射光就被称之为荧光。荧光测量是利用灵敏的探测器和高效率的滤光片,将检测样本发出的微弱信号光和高强度的激发光区分出来,并通过探测器对区分出来样本的微弱信号进行检测。/pp style="TEXT-ALIGN: center"img title="1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/11b65588-0ce5-42b6-987e-0bce221488ca.jpg"//pp style="TEXT-ALIGN: center"strong图1 激发荧光原理图/strong/pp style="TEXT-ALIGN: center"img title="2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/41d8cfdc-78b6-4d8e-a895-6de1a119f3da.jpg"//pp style="TEXT-ALIGN: center"strong图2 发射荧光能级图/strong/pp style="TEXT-ALIGN: center"img title="3.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/d4ff43db-3d01-4622-a467-ebd934c94704.jpg"//pp style="TEXT-ALIGN: center"strong图3 激发波长和发射波长重叠现象/strong/ppstrong  2、应用说明/strong/pp  荧光激发光谱可以通过有效的荧光激发波长来进行表现,并能够得到荧光转化效率。利用稳定可靠的激发源和发光二极管作为激发光,虽然大多数情况下,激发波长和物质的发射波长会发生重叠,但当一个短波长的激发光在一点激发物质,我们就能在物质发散的其他位置观察到比激发光更长波长的光,以此区分出长波为荧光发射波长,短波段为激发波。/pp  荧光光谱学分析对于调查性研究和分析性科学的应用是一个主要的工具。/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  自然环境:宝石鉴定分析,矿石分析,叶绿素分析,原油残留等 /span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  法医鉴定:指纹和血液检测,分析纤维组织和其他物质 /span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  荧光体温度测量;/span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  基础研究:激光诱导荧光研究分子的电子结构和相互作用,燃烧,等离子,以及流体的浓度 /span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  生物:分子检测,细胞进程,细胞分类 /span/strong/ppstrongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #548dd4"  医学诊断:分析癌症细胞,葡萄糖测定,DNA测序,细胞计数,凝胶电泳。/span/strong/pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img title="5.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/6371a89f-fb2d-40f3-8969-4d1a2eee695b.jpg"//pp style="TEXT-ALIGN: center"strong图4 深海水母的荧光/strong/pp style="TEXT-ALIGN: center"  img title="4.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/74d71648-cbe9-45f0-8129-28ee48afe4ef.jpg"//pp style="TEXT-ALIGN: center"strong图5 荧光色素标记的癌变细胞/strong/ppstrong  3、典型产品和配置/strong/pp  荧光检测配置:/pp  3.1 光谱仪:鉴于荧光较为微弱的特性,通常需要高灵敏度光谱仪进行检测,这类光谱往往采用背照减薄型CCD,部分还带有CCD制冷,以保证信噪比。/pp  3.2 反射镜: 将更多发散的荧光耦合到光纤内。/pp  3.3 聚光透镜:光纤出射的发散光,通过聚光透镜可以形成平行光,使得入射光效率提高。/pp  3.4激发光源:激发光源的选择具有多样性,比如LED光源、激光等等。使用LED的中心波长最好接近激发光源波长 所选择激光的强度要能被光谱仪检测到,才能保证发射荧光被检测到。如果使用带宽光源(即连续光谱光源),需要添加单色滤光片滤出单色光。/pp  3.5 滤光片:带通滤光片是窄化激发光源的最简单选择,该滤光片由长通和短通两块滤光片组成,通过调节短通滤光片的位置,可以实现单色激发光。如果荧光物质的激发波长未知,客户可使用可调线性滤光片,可以设置带宽20nm到100nm不等的单色波作为激发波长,还可以单独使用长通和短通滤光片,设置起始波长和截止波长。/pp style="TEXT-ALIGN: center"img title="6.1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/d11c1f9d-f05d-422d-8a02-f104790cc3a1.jpg"//pp style="TEXT-ALIGN: center"img title="6.2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/6b09a049-a558-4d4e-9b9b-42402ab2e91e.jpg"//pp style="TEXT-ALIGN: center"strong图6 带通滤光片光谱图/strong/pp  3.6 采样附件(光纤、荧光反射探头、比色皿卡槽等):模块化的荧光测量系统的优点在于使用单个激发光源和检测器的情况下,获得数据具有建议性、高效性、即时性。通过改变光纤的连接位置,可以实现0° , 90° 和180° 的不同收光角度进行不同形式的光学测量。使用荧光反射探头,可以直接接触样品表面测量高浓度的液体样品、固体或者粉末,获取样品的荧光散射光。/pp  比色皿卡槽,更换其中的透镜可以提高样品荧光的聚集。使用比色皿,可以简便高效率地实现nmol浓度物质的荧光测量。使用配有4通道的比色皿卡槽,由于使用空间耦合的方式,具有高耦合效率。/pp style="TEXT-ALIGN: center"img title="7.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/588ade66-fe63-4529-bf99-a30bb84073ca.jpg"//pp style="TEXT-ALIGN: center"strong图7 比色皿卡槽/strong/pp  3.7光谱仪控制软件:专用软件可以让使用者更好地使用光谱仪进行各种应用。当使用光谱仪控制软件进行荧光测量时,经常使用到两种测量模式:QuickView mode(快速扫描)和Relative Irradiance mode(相对辐射)。/pp style="TEXT-ALIGN: center"img title="8.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/d29ee139-461e-46ea-8b7f-9683b1c0c73b.jpg"//pp style="TEXT-ALIGN: center"strong图8 荧光检测典型配置图/strong/pp style="TEXT-ALIGN: center"典型产品:高性能微型光谱,激发光源,样品支架/ppstrong  4、应用文章/strong/pp  4.1 纳米晶体的多个发射峰,成像和定量分析/pp style="TEXT-ALIGN: center"img title="9.1.jpg" style="HEIGHT: 237px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/a99e78dc-f64e-4c77-87f2-4ebcd29e2761.jpg" width="450" height="237"//pp style="TEXT-ALIGN: center"img title="9.2.jpg" style="HEIGHT: 208px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/9d9d1668-15cd-48d8-b8a5-ee6835e5042b.jpg" width="450" height="208"//pp style="TEXT-ALIGN: center"strong图9 上转换材料荧光光谱/strong/pp style="TEXT-ALIGN: center"img title="10.jpg" style="HEIGHT: 226px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/44789453-8aff-44da-ad90-72ce287c3713.jpg" width="450" height="226"//pp style="TEXT-ALIGN: center"strong图10 不同的光源测量核壳量子点发射光谱/strong/pp  4.2 不同受力情况下压电陶瓷光谱检测/pp style="TEXT-ALIGN: center"img title="11.jpg" style="HEIGHT: 333px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/c2e7a5d3-7f7f-4ef1-a613-892c6da48d9d.jpg" width="450" height="333"//pp style="TEXT-ALIGN: center"strong图11 不同受力情况下压电陶瓷光谱/strong/pp  4.3 测量内嵌蛋白荧光的标准光谱工具 /pp style="TEXT-ALIGN: center"img title="12.jpg" style="HEIGHT: 326px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/a858bf4f-40aa-48f8-af89-bd46a3704407.jpg" width="450" height="326"//pp style="TEXT-ALIGN: center"strong12 牛血清白蛋白荧光光谱(0.1 mg/mL)/strong/pp style="TEXT-ALIGN: center"img title="13.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/e2ad070d-3baf-4e2c-9062-5480abbc5bb5.jpg"//pp style="TEXT-ALIGN: center"strong图13 溶解酶吸光度光谱(0.1 mg/mL)/strong/ppstrong /strong 4.4 硫酸奎宁的荧光检测/pp style="TEXT-ALIGN: center"img title="14.1.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/7abd0f2f-b5c5-4ec6-bea4-da1a380c3e99.jpg"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"img title="14.2.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/6117e637-b2a4-40ec-ac92-2b80ba87a745.jpg"//pp style="TEXT-ALIGN: center"图14 硫酸奎宁荧光光谱/ppstrong /strong 4.5 切削油的荧光检测/pp style="TEXT-ALIGN: center"img title="15.jpg" src="http://img1.17img.cn/17img/images/201612/insimg/7c89b306-207d-46b4-973d-3779feb2c989.jpg"//pp style="TEXT-ALIGN: center"strong图15 不同样品切削油荧光光谱/strong/pp  4.6 使用色氨酸荧光进行溶菌酶的构象分析/pp style="TEXT-ALIGN: center"img title="16.jpg" style="HEIGHT: 256px WIDTH: 450px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201612/insimg/568ad720-d392-4b53-be35-33970c1f5cce.jpg" width="450" height="256"//pp style="TEXT-ALIGN: center"strong图16 磷酸盐缓冲剂天然和变性溶菌酶荧光光谱/strong/pp style="TEXT-ALIGN: right" (内容来源:海洋光学)/p
  • 突破大口径相机杂散光测量瓶颈,打破国外技术封锁——访金燧奖获奖单位西安光机所
    近期,由中国光学工程学会、辽宁省科学技术协会主办的全国光电测量测试技术及产业发展大会暨辽宁省第十七届学术年会在大连成功召开。会议同期举办首届“金燧奖”中国光电仪器品牌榜颁奖典礼。仪器信息网作为大会独家合作媒体参与了本次会议,并采访了金燧奖银奖获奖单位代表中国科学院西安光学精密机械研究所(以下简称“西安光机所”)李朝辉研究员。西安光机所的获奖项目为“大口径光学系统杂散光测试设备”,该系统采用一种离轴反射式光路,大大拓展了测量口径,可为大口径相机的高精度杂散光测试提供技术保障。该成果实现了怎样的创新突破,解决了怎样的实际问题?面向的主要用户有哪些?该成果当前的产业化情况如何,取得了怎样的经济效益或社会效益,未来的市场前景如何?随着技术的进步和产业的发展,未来还将对相关技术提出哪些技术需求和挑战?有哪些发展建议?更多内容请观看视频: 首届“金燧奖”中国光电仪器品牌榜由中国光学工程学会联合多家单位于2022年发起,旨在积极面向国家重大战略需求,进一步突出企业的创新主体地位,促进关键核心技术攻关,突破卡脖子技术。本届“金燧奖”重点围绕分析仪器、计量仪器、测量仪器、物理性能测试仪器、环境测试仪器、医学诊断仪器、工业自动化仪器等7个类别进行广泛征集,得到了社会各界积极的参与和热情的响应。经过严格评审,71个优秀仪器产品脱颖而出,遴选出金奖10项、银奖16项、铜奖28项、优秀奖17项。这些产品都是我国自主研发、制造、生产的专精特新的高端光学仪器,较好地展现了我国在高端科学仪器中的自主核心竞争力,提升了民族品牌在激励市场竞争中的自信心,鼓舞了国产厂商的攻关热情。
  • 如何校准照度计?选对校准光源是关键
    图1 用于光密箱内照度计校准光源照度计在使用前必须进行校准,以确保它们给出正确的结果。然而,在许多测试中,存在背景光。任何数量的背景光都可以到达传感器并影响校准数据。因此,客户要求 Labsphere (蓝菲光学)提供一个均匀校准光源,以防止背景辐射影响到校准。解决方案图2 Labsphere(蓝菲光学)用于光密箱内照度计校准光源标准的 Labsphere(蓝菲光学) HELIOS V系列系统虽具有单个光源但动态范围出色,且可以满足了客户的光谱要求。将 Labsphere(蓝菲光学)积分球和框架朝下旋转到一个定制的密封暗箱中,在那里测试客户的照度计。带 90° 旋转镜的外置卤素灯用于微调灯泡亮度的手动衰减器校准硅探测器,可准确测量亮度带有快门滑块、针孔滑块和人眼滤光片的滤光片选择器 定制的不透光黑匣子外壳照度计安装平台高度可调密封的磁性检修门拉丝索环馈通,允许照度计的电缆在没有杂散光进入的情况下退出暗箱HELIOSense 软件用于控制和监控系统门打开,露出一个带有插槽平台和锁定夹,用于固定客户的照度计。两个小 L 型手柄可以转动来解锁平台,然后平台轻松向上滑动到测试位置。L 形手柄锁定平台到位,门关闭后,可以开始测试了。产品特点图3 可见波段光谱辐亮度图4 系统均匀性99.3%暗箱可防止任何背景辐射在测试过程中到达传感器,最大限度地提高校准的准确性具有 99.3% 的面均匀性和 99.3% 的角度均匀性,确保每次测试都能获得准确的结果Labsphere 与客户密切沟通,使客户能够收到与其内部组件相匹配的系统使用 Labsphere 的 HELIOSense 软件可以轻松实现组件控制以及实时数据收集和可视化提供完整的校准报告,包括光谱辐射、亮度、均匀性和色温
  • 岛津重磅推出新品紫外分光光度计UV-1900
    岛津新品紫外分光光度计UV-1900 紫外吸收光谱的产生源于电子的跃迁。动态化学反应过程中发生的电子跃迁如何进行监控?透过光或者反射光的颜色能否进行量化表征?超微量检测的同时是否会牺牲准确度?质量监控能否在数据源头就自动进行评价筛选?岛津公司最新推出的紫外可见分光光度计UV-1900将逐一为您进行解答。 快速化学反应动力学过程监测纳米粒子在盐溶液的作用下,会发生粒子聚集过程。UV-1900超高速扫描模式对这个快速化学反应过程的进行了监测。 超高速数秒钟完成全光谱扫描。上图为NaCl盐溶液加入后,在不同时间t下监测到的金(左)和银(右)纳米粒子吸收光谱变化图 色彩量化表征人类眼睛实际看到的颜色与物质对光的吸收,透射或者反射性质有关。通过紫外光谱的色度分析,可对色彩进行更直观和准确的量化。UV-1900联合使用LabSolutions UV-Vis和色度分析软件,可对彩色封口胶纸进行色度分析。 色彩一键分析 彩色封口胶纸 色度分析 超微量样品超微量测试的难题是如何同时兼顾准确度。UV-1900采用岛津专利的LO-RAY-LIGH光栅成功抑制了系统中的杂散光,为弱信号测试提供强大的支持。下图是使用超微量池NanoStick(3μL)对λ-DNA进行测试的结果。校准曲线浓度范围在25-500(ng/μL)之间,相关系数达到0.9999。 超微&精准 质量监控过程的数据评价UV-1900使用LabSolutions软件,可以通过设定判断函数,直接对测量的结果进行筛选评价。下图测试对象为U-340带通滤光片,结果显示,在预先设定的评价标准下,该滤光片质量合格(PASS)。 自动筛选最小值(短波长)最小值(长波长)平均值综合判定评价值判定评价值判定评价值判定PASS65.2PASS41.8PASS71.5PASS 最后隆重登场的是岛津紫外可见光谱大家族的新成员。承载六十多年来光谱研发制造技术,超高的性能,用户友好的触摸屏设计,UV-1900在这个盛夏一触即发,给您带来全新体验。 特点介绍: 超大彩色触摸显示屏,标配手写笔 超高扫描速度,轻松追踪化学反应过程 高测光重复性,降低测量结果差异,更准确地定量检测低浓度样品 超低杂散光,采用岛津专利技术的LO-RAY-LIGH衍射光栅成功抑制系统杂散光 高级法规合规性,满足各类药典要求及法规指南 多种语言随意切换 安全控制功能设置 丰富可选的附件,轻松应对各类样品 更多详情请登录岛津公司官网(https://www.shimadzu.com.cn)关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 奥谱天成(厦门)光电有限公司邀请您参观“美国西部光电展Photonics West”
    奥谱天成(厦门)光电有限公司将于2019年2月5号-7号由美国国际光电学工程协会(SPIE)主办的“美国西部光电展Photonics West”,欢迎您莅临展台(3412) 由美国国际光电学工程协会(SPIE)主办的美国西部光电展Photonics West已经成为北美最大的光学领域贸易博览会,也是光电子行业全球数一数二的知名展览会。国际光学工程学会成立于1955年,是当今世界上光学及光电子 领域最具权威的机构,旨在推动光学技术在各交叉学科间的应用。其学会由全球170多个国家和地区的180000名专业顶尖人士构成,每年在北美、欧洲、亚 洲及南太平洋地区主办25个国际性论坛及展览活动。 美国西部光电展是目前全球最大的光电领域盛会,共包含生物医学光电展SPIE BiOS Expo、激光应用技术展、微型及纳米技术 展、泛光电技术展等主题展。展会亮点:▼北美最大最具影响力的光学领域贸易博览会,展馆面积达到 40000 平方米。 ▼汇集了全球各地 1250 家参展企业,超过 20000 人次参加了展览会。 ▼该展会只允许专业观众进馆参观,主要包括:研究机构、高科技公司、激光及光电子司、医疗技术的专家、物理学家、化学家、具有一定资质的工程师、系统开发商、业内服务提供商。 ▼同期还将举行由 SPIE 主办的多场学术交流会,学术气氛胜过世界同类展览会 。主营产品:ATR8300-1064_(Mapping)自动聚焦自动扫描显微近红外拉曼成像光谱仪ATR8300系列将显微镜及拉曼光谱仪两者的优点结合。显微拉曼检测平台使得“所见即所测”成为可能,可视化的精确定位拉曼检测平台,使得观测者可以检测样品上不同表面状态的拉曼信号,并可在计算机上同步显示所检测位置的微区形态,极大便利了拉曼微区检测。ATR8300高配版可以全自动对焦、全自动扫描,一键操作,可以进行批量实验、均匀性扫描等,无需等待,且可以获得高可靠性的扫描成像拉曼数据;ATR8300配备专门为拉曼系统设计的物镜,使得激光光斑接近衍射极限,再通过300万相机将焦点信息准确直观的显示在电脑上。克服了普通的拉曼系统中收集拉曼信号的焦面稍高于或稍低于实际最佳焦面的问题,从而提高拉曼光谱质量。ATR8300无光路切换运动部件,所有光学部件均固态装配,工作非常稳定,实现了仪器的完美地解决了相机成像时光路的损失,实现了相机成像与拉曼信号收集的分离,从而得到最佳的信号强度。同时,ATR8300使用专门为显微拉曼系统优化的高性能拉曼,无论是灵敏度,信噪比,稳定性等,都是行业领先水平,为拉曼研究提供了强有力的保障。ATR3110-1064高灵敏度,高分辨率1064nm近红外拉曼光谱仪 ATR3110-1064是激发波长为1064nm的便携拉曼光谱仪,是在科研领域享有盛名的ATR3110系列产品的一员。ATR3110-1064配备了激发波长为1064nm的激光器和高消光比的拉曼滤光片组,并采用了高灵敏度的InGaAs阵列检测器,更低的TE制冷温度,从而获得更佳的信噪比和更高的动态范围。由于1064nm的低荧光特性,ATR3110-1064避免了荧光干扰,适合检测大量的高荧光样品,例如燃料、印油、石油类、生物样品等。ATR3110-1064的光谱覆盖200~2600cm-1,光谱分辨率为13cm-1.体积小,重量轻,功耗低的设计特点,使ATR3110-1064无论在任何地方都可以提供实验室级的拉曼检测。非常适合实验室科学研究。优越的可靠性和重复性(温度、长时间)使检测结果准确可靠,优良的低杂散光条件使光谱仪具有广泛的应用,特别适合深色样品、有色样品、荧光样品、生物样品、细菌、燃料、石油样品、植物油、药品、爆炸物等样品的测量。ATR3000-便携式拉曼光谱识别仪 ATR3000便携式拉曼光谱仪,适合野外作业。显著的可靠性使检测结果准确可靠。优良的低杂散光条件使光谱仪具有广泛的应用,特别是在生化分析仪、食品安全、制药工程等。该多功能软件促进了应用中的光谱分析过程。通过互联网访问的远程实验,使测试项目更容易。
  • 卓立汉光:立足光电优势,紧跟热点市场
    “100家国产仪器厂商”专题:访北京卓立汉光仪器有限公司  为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了北京卓立汉光仪器有限公司(以下简称“卓立汉光”),卓立汉光营销部副理赵士国先生热情接待了仪器信息网到访人员。  北京卓立汉光仪器有限公司是一家集光学、精密机械、电子、计算机技术于一体的高科技企业。卓立汉光于1999年7月注册成立,成立初期发展很快,2001年产值就达到了2000万。从2001年到2005年卓立汉光经历了从粗放型创业走向正规化管理的转型,2005年开始,经过调整后卓立汉光的发展逐渐走向正轨,当年10月在同行业中率先通过了ISO9001质量管理体系SGS国际认证。目前,卓立汉光的产品得到了国内业界广泛认可,近几年更是走出国门,受到国外客户的青睐与好评。卓立汉光营销部副理赵士国先生(中)与仪器信息网编辑合影  经验加创新,提高光机产品与光谱仪器市场竞争力  赵士国先生介绍说:“卓立汉光现有员工140余人,其中从事研究开发工作的人员占员工总数的37%,包含了光机电和软件等各方面经验丰富的专业人才,并且保持了老、中、青相结合的研发团队——形成了经验加创新、创新不离经验的技术开发模式。2008年我们与中国科学院大连化学物理研究所成立了‘现代仪器联合实验室’,进一步提高了卓立汉光的科研力量。目前,我们拥有多项专利技术,形成了光谱仪器和光机产品两大系列产品。”  “2003年卓立汉光推出国内第一套量产型三光栅光谱仪全自动单色仪,通过持续开发,卓立汉光的光谱应用系列产品已经拥有了多种规格的光谱仪及光谱仪组件,包括:多种光源、各种探测器、样品室、数字采集器、光子计数器及连接附件。一直以来我们都可提供光谱仪应用系统订制服务,按照客户的应用需求及资金预算提供详细仪器配置,同时还可以帮助客户研发相应的软件程序。近十年来我们已经为国内的科研院所及高技术企业配置开发了多套光谱仪测量系统。”光电探测器光谱响应度测量系统  赵士国先生谈到:“目前公司的光机产品如电控位移台、手动位移台、光学调整架等已经形成产品系列化、规格多元化,国内多家科研单位、激光加工设备厂商、光纤设备厂商都在使用卓立汉光的产品。光机产品是卓立汉光成立之初就开始发展的产品,目前在技术和质量上在行业内都具有一定的领先优势。现在我们主要是通过研发新产品,提高产品的性能和质量来提高竞争力。”MC600系列电移台控制箱  自主研发新型产品,降低用户对进口产品的依赖  “随着公司的发展,根据自己在光电领域的独特优势,卓立汉光结合市场发展需求,积极研发新型产品,如拉曼光谱仪、太阳能电池检测光谱测量系统、高速LED光学特性分析摄谱仪等,不仅丰富了国内同类产品市场,还降低了用户对进口产品的依赖。”  (1)紫外共振拉曼光谱仪,填补国内空白  “由于卓立汉光在光谱仪器方面的产品研发、生产、市场推广能力被各界高度认可,及与大连化物所多年的友好合作关系,大连化物所选择卓立汉光作为合作伙伴将其自主研发的紫外共振拉曼光谱仪产业化。该产品的产业化将直接替代进口并进而逐渐形成我国在紫外共振拉曼光谱仪产业中的竞争优势地位。我们不但在产能和价格方面有了主动权,也在产品普及方面获得了先机,否则我们只能做OEM产品。”UVRaman100紫外共振拉曼光谱系统  关于该仪器的市场应用前景,赵士国先生谈到:“目前每年全球对科研级紫外激光拉曼光谱仪的需求量约为60套左右,而能够生产的厂家却很少,卓立汉光在生产高性能谱仪方面具有较强的技术优势,同时具有很大的价格优势。因此,我们计划首先切入并占领国内科研市场,而后再通过我们在国外的代理商,逐步打入国外科研领域。”  (2)太阳能电池测量系统,突破太阳能产业发展瓶颈  赵士国先生表示:“目前,由于太阳能光伏电池产业的迅猛发展,使得太阳能电池产品的种类和性能变化非常快,但与之相适应的太阳能电池测试技术却没有能够立即跟上,尤其是在新兴的多结太阳能电池测试领域。卓立汉光结合自身在光谱测量领域的技术优势,研发了太阳能电池光谱响应度、反射比和量子效率测量系统,该系统中采用了多结电池测试技术、直流光谱响应测试技术、信号分离与放大等技术及创新性的引入多色偏置光光路、将直流测量技术与斩波器调制技术结合,确保了产品的优异性能。目前,产品已经远销到日本、韩国、新加坡等地,包括在国内我们都取得了不错的成绩。”太阳能电池QE/IPCE(量子效率)测量系统  (3)高速LED光学特性分析摄谱仪,满足LED快速生产的实际需求  “此外,卓立汉光还最新研制了高速LED光学特性分析摄谱仪。由于半导体芯片及生产工艺的限制,使得目前生产出来LED(尤其是白光LED)存在光色、电性参数分布不均匀等问题,因此快速、准确的测量LED光色电参数,然后根据测量结果进行分类已成为LED生产中重要的环节。卓立汉光研发的高速LED光学特性分析摄谱仪采用了多项创新技术,如:采用了吸收阱设计,可有效吸抑制系统所产生的杂散光,与现有技术相比,可使系统的杂散光降低一个数量级 采用绝对计量单位标定的标准灯进行系统校正 为了符合LED 宽广的强度范围系统采用的中心滤光片为可更换式并且由系统光色计算核心自动切换。”高速LED光学特性分析摄谱仪  提升品牌知名度,开拓国外市场  谈到卓立汉光未来的发展规划,赵士国先生表示:“第一是要把固有的产品做好,进一步提升产品质量和服务,提升品牌知名度,履行提供‘终身保固’的承诺,让客户能真正‘付有所值’ 第二是在发展过程中发现新的应用领域,依托光谱技术开发新的产品来丰富我们的产品线 第三,主动开拓国外市场。”  “事实上我们的产品是从2006年开始真正走出国门的,这也和我们的理念有关,国外的市场要么不去,去了就要留下好的口碑。在我们有真正拿的出手的东西,并且通过了相应的国际认证后,才开始正式进军国外市场,否则匆匆忙忙出去,后续难以有好的发展。2009年我们的出口业务收入已经达到七八百万,收入主要来自于光谱仪系列产品。目前,光谱产品国外市场收入占30%左右,将来我们的目标是希望国内外市场各占50%。”技术部工作场所机加工车间光谱仪装配调试车间光机产品装配车间严格质检装配/生产/质检车间掠影  附录:北京卓立汉光仪器有限公司  http://www.instrument.com.cn/netshow/SH100487/  http://www.zolix.com.cn/index_0.html
  • 2022分子光谱仪器新品盘点:在应用中寻找创新
    对科学仪器产业而言,“创新”至关重要。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”等科研计划等。2021年11月,北京“十四五”规划也指出要支持开展关键仪器设备研发,支持挖掘一批服务于重大科技基础设施的定制化科学仪器和设备,重点突破研发新一代光谱等关键技术。不断高攀的前沿研究是创新,差异化的产品发展也是创新。仪器性能指标、使用体验、应用方法等处处体现“创新”的力量。当前,随着各种光谱技术成熟度的提升,更多产品的研发目标转向了更实用、更专用、更简单,着力于帮助客户解决实际问题,同时提升使用体验。在此基础上,很多厂商推出了专用化仪器,以及用于过程分析的仪器新品,这在2022年,“科学仪器优秀新品”评选活动中体现得尤其明显。据不完全统计,2022年,20余台光谱新品申报“科学仪器优秀新品”评选活动,其中分子光谱产品占比70%,包括红外光谱、拉曼光谱、紫外可见分光光度计等,以下从几个方面对部分仪器进行简单的概述。特别说明,本文盘点的仪器仅限申报2022年度“科学仪器优秀新品”评选活动并审批通过的部分产品。鉴于篇幅限制,不能面面俱到,仅根据文章需要选择部分进行综述,如未提及还请谅解。(1)专用化当前,越来越多的仪器正在走向专用化。基于不同行业或领域开发的专用化仪器不仅可以针对性地解决问题,而且可以提高通用仪器的利用率,同时也是仪器向更宽市场拓展的一个重要途径。珀金埃尔默 LactoScope 300 FT-IR乳成分分析仪佛山市南华仪器股份有限公司 NHG-3200一氧化碳、二氧化碳红外线气体分析仪自第一代红外光谱的商品化仪器问世以来,红外光谱仪已经经过了七八十年的发展,仪器技术已经相对成熟。相较于前期仪器性能方面的提升,近年来红外光谱仪器新品在兼顾高性能的同时,在专用化方面也展现了越来越实用的价值。比如,2022年5月份,珀金埃尔默推出了两款红外光谱仪新品:LactoScope 300 FT-IR乳成分分析仪和LQA 300 多功能液体分析仪。这两台仪器在仪器设计时充分考虑了分析效率和使用者的体验。两款仪器在45秒内即可给出分析结果,其中前者每小时可以分析60个样品,后者每小时可以检测多达80个样本。在软件操作方面, ResultsPlus操作软件允许数据自动导出到外部系统。此外,基于NetPlus远程网络管理软件,用户可以从任何地方访问结果,可以从一台计算机访问站点上的所有仪器,在同一时间配置它们;2022年5月份,佛山市南华仪器股份有限公司推出了NHG-3200一氧化碳、二氧化碳红外线气体分析仪。该仪器基于不分光红外吸收法原理,采用该公司与国外同步的先进技术及关键零部件组装而成,并配备了微处理器。北京鉴知技术有限公司 RS1500DI 药品快速鉴别仪北京卓立汉光仪器有限公司 SPM300系列半导体参数测试仪随着拉曼光谱技术的不断完善,其应用领域也在不断的拓展,并在各个领域体现其应用价值,其中专用化的仪器发展一直吸引着大家的眼球。2022年1月份,北京鉴知技术有限公司推出RS1500DI 药品快速鉴别仪,该产品实现了1064nm波长拉曼的小型化和多功能集成化,具备显微成像功能,通过实时观察样品实现更准确的识别,尤其适用于微量样品及成分分布不均匀的复杂样品,可无损检测编织袋、信封、棕色试剂瓶、彩色塑料瓶等多种包装内的原辅料样品,更贴近客户现场快速检测需求;2022年8月份,北京卓立汉光仪器有限公司推出了基于拉曼光谱的SPM300系列半导体参数测试仪,该产品具有非接触、无损检测、特异性高优点,可以对半导体材料进行微区分析,空间分辨率< 800nm (典型值),也可以对样品进行扫描从而对整个面进行均匀性分析。(2) 过程分析随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术逐渐深入生产过程中,市场也在不断增长。过程分析技术通过测量关键过程参数来分析和控制制药过程中的关键质量属性,以提高生产过程的效率,进而获得高质量的产品并改善最终产品的整体性能。赛默飞 Ramina 过程分析仪作为一类非常有潜力的过程分析技术,拉曼已经在实际应用中显现出了非常诱人的前景,越来越多的拉曼仪器厂商已经开始注重过程分析技术的开发。其中,2022年4月份,赛默飞推出了Ramina 过程分析仪,这是一款紧凑型的便携式拉曼光谱仪,结合实时定量软件实现在线监控,其一体化的系统专为注重时效的客户而设计,多种探头结合镀金设计灵活应用于不同在线场景。客户无需进行样品制备,即可实现实时、无损和直接地分析,具备可快速部署,简单易用及扩展性强的特点。天津市能谱科技有限公司 iCAN 8 Online 在线红外光谱仪虽然红外光谱仪已经相对比较成熟,但是其发展却从未停滞。通过原位透射测量反应过程中物质的中红外区域光谱的变化,实时跟踪分析反应体系中有关物质的浓度随时间变化的实况,从而帮助实时了解反应起点/终点、转化率、中间体、反应机理和路径的完整信息。同时可以帮助测量结晶过程的关键操作条件溶液浓度和过饱和度,对于研究结晶过程机理,实时测量结晶过程条件,优化结晶过程,开发结晶工艺具有非常重要的帮助。2022年11月份,天津市能谱科技有限公司推出了iCAN 8 Online 在线红外光谱仪。据介绍,该仪器采用在线进样器、在线可控温流通池、高度稳定的角镜特殊干涉仪在线红外光谱仪设计,以及信号处理核心算法,拥有出色的信噪比以及高稳定性。此外,仪器采用室温检测器,无需担心低温冷却检测器的液氮供应,使用方便。(3) 高性能兼易用性随着应用需求的拓展,光谱技术也在不断的发展,兼顾高性能指标的同时,越来越多的仪器厂商从实际应用需求出发,将创新的重点更多放在仪器的重复性、操作的便捷性、附件的多样化等方面。岛津 IRXross傅立叶变换红外光谱仪2022年7月份,岛津推出了IRXross傅立叶变换红外光谱仪,该仪器兼顾性能和易操作性,可以为多种应用需求提供优化的统一解决方案。其中,55000:1的信噪比(S/N)指标仅次于岛津旗舰机型IRTracer-100;0.25cm-1光谱分辨率水平,可进行气体精细光谱结构的高分辨测量,0.25cm-1光谱分辨率水平,可进行气体精细光谱结构的高分辨测量。此外,仪器采用改进型的密闭干涉仪设计,多层防潮镀层分束器,以及易观察和更换的干燥剂盒,确保仪器内部干燥。对特殊高湿地区的用户,还提供完全防潮的样品仓光学窗片由用户自动更换。上海美谱达仪器有限公司 Master系列紫外/可见分光光度计产品珀金埃尔默LAMBDA365+紫外/可见光谱仪日立UH4150AD+紫外可见近红外分光光度计作为一类比较成熟、应用非常广泛的分析仪器,紫外/可见分光光度计几乎已经遍布了各大实验室。尽管如此,紫外/可见分光光度计仪器厂商一直坚持在应用中寻找创新,在创新中提升性能,特备是在操作的简便性、仪器的重复性等方面下功夫,进一步拓展仪器的使用范围。2022年1月,上海美谱达仪器有限公司推出Master系列紫外/可见分光光度计产品。据介绍,该系列产品采用国内首创的脉冲氙灯光源,具有超长灯源寿命(寿命长达10万小时)。从操作上来说,仪器采用冷光源设计,无需预热开机即可使用;即用即测,避免长时间照射对生物样品产生光降解等特点。其中,M7采用固定1.8nm带宽设计,满足绝大部分用户的使用需求;M8采用1nm带宽,满足药典规范21CFR要求,制药行业首选产品;M9采用5档带宽可调,多种带宽满足研发部门的多样性要求,快速分辨样品的最佳检测方法。2022年5月,珀金埃尔默推出了LAMBDA365+紫外/可见光谱仪,该仪器通过简化的工作流更快获得结果,适用于各种应用。仪器采用符合兼具速度和性能的高标准设计,可提供0.5 nm至20 nm的可变光谱带宽能力,其创新的双光束光学器件可提供低噪音和杂散光的高质量数据,以便从大量应用中得到可重复的准确结果。2022年7月,日立推出UH4150AD+紫外可见近红外分光光度计,在延续UH4150 系列产品的基础上,该仪器提升了其在近红外区域光谱特性测量性能,在近红外区配置高灵敏度的 InGaAs 检测器。此外,该仪器采用了灵敏度更高的光电倍增管,可以依据样品的光学特性灵活选择检测器的切换波长。凭借紫外可见近红外区宽的测光范围,该产品适合评价近红外型光学元件,如自动驾驶等的传感设备LiDAR等光学元件及智能手机摄像头的滤光片、人脸识别滤光片等。不仅如此,还有多款仪器新品值得大家关注:上海北裕分析仪器股份有限公司 HGMA390型气相分子吸收光谱仪2022年7月,上海北裕分析仪器股份有限公司发布HGMA390型气相分子吸收光谱仪。仪器采用氘灯作光源,样品几乎无需预处理,色度和浊度对分析过程无影响;而且测定速度极快,单个样品耗时不超过1分钟。仪器主要满足用户对水质氨氮、 总氮、 硫化物、 硝酸盐氮、 亚硝酸盐氮、 凯氏氮测定的需求。北京鉴知技术有限公司 ST50S/ST90S/ST100S 透射成像光纤光谱仪2022年11月,北京鉴知技术有限公司推出了 ST50S/ST90S/ST100S 透射成像光纤光谱仪,仪器采用一体式光路结构设计,体积更加紧凑,同时保证了更高的抗振性和波长稳定性;采用自研的大光圈、零像差镜头,完全匹配光纤的数值孔径,搭配VPH透射式体全息相位光栅,衍射效率为传统光栅1.5~2倍。北京卓立汉光仪器有限公司 显微荧光寿命成像系统RTS2-FLIM2022年8月份,北京卓立汉光仪器有限公司推出SPM900系列少子寿命成像测试仪。该仪器在显微镜上加载少子寿命测试模块,对于微小型器件的研究及质量控制十分重要。系统主体包括显微镜主体、激光光源、光子计数检测器、单色仪及自动XY样品台等部分,可实现微区单点少子寿命测量和少子寿命成像检测。2022年12月份,北京卓立汉光仪器有限公司推出 显微荧光寿命成像系统RTS2-FLIM。该仪器多波长激光器可选,多波长激光器耦合,可同时获得PL mapping图像和FLIM图像,近红外光谱范围拓展。
  • 微型光谱仪之拉曼检测
    1、技术简介  光照射到物质上发生弹性散射和非弹性散射。弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。拉曼效应是光子与光学支声子相互作用的结果。拉曼光谱分析法是基于印度科学家C.V. Raman所发现的拉曼散射效应,对于入射光频率不同的散射光谱进行分析,得到分子振动能级与转动能级结构,并作为分子结构和组成研究的一种分析方法,研究图谱的整体特性,可以鉴别物质。图1 C.V. Raman  散射物分子处于原来电子基态,振动能级图如下图所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态,虚能级上的电子立即跃迁到下能级而发光,即为散射光。图2 散射物分子振动能级图  假设散射物分子回到初始的电子态,则有三种情况。因而散射光中既有与入射光频率相同的谱线称为瑞利线,也有与入射光频率不同的谱线称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。图3 拉曼激发原理图  拉曼光谱检测采用单色激光器照射待测样本,并用光谱仪检测该样本发出的反射拉曼散射光谱,再由计算机对样品发散光谱进行处理分析以计算该样本的组成、含量或属性。图4 拉曼检测原理图  2 、应用说明  拉曼光谱检测技术作为一种新的物质结构鉴定的分子光谱方法,在近几年里得到了非常迅速的发展。拉曼光谱可以表征材料,作为一种快速检测方法,借助检测物的“拉曼指纹图谱”,应用于鉴别,过程处理。与传统的快速现场检测方法相比,拉曼光谱方法具有无需样品前处理,无需破坏样品,检测速度快等优点。但由于拉曼技术本身具有的检测面积小、局部光功率过高等特点,使得拉曼技术在检测混合物、光敏感或热敏感样品时存在很大限制,影响了拉曼技术的实际应用范围。这就需要使用者根据实际检测物质本身的特点,衡量各项参数的平衡,来设计拉曼光谱系统,对于系统而言,选择正确的激光波长,考虑拉曼位移范围和分辨率之间平衡,选择合适的拉曼光谱仪,实现对物质的辨析。  针对特殊的样品测试选择合适的拉曼系统,基于栅格环绕扫描技术,利用其拉曼信号的高信噪比,高灵敏度、高分辨率,更低的激光能量值。将拉曼光谱检测应用在非均一性、不均匀的样品检测中 更低更平均的激光能量,避免了测试样品的损坏。基于单点聚焦技术,利用其拉曼测试系统和细微系统整合的优越性,显微聚焦和测试焦点更好地实现匹配,针对液体和粉末样品,提供不同的激光通道和瓶装测试。  安防检测:违禁品检测,毒品鉴别   基础研究:碳纳米管、石墨烯物质检测   医学诊断:临床医疗、癌症检测与诊断,药物成分分析。  食品安全:农药残留分析,添加剂检测。  3 、典型产品和配置  拉曼光谱检测配置:  1. 光谱仪:  手持式拉曼系统:栅格环绕扫描技术 小巧、手持、便携性 两节5号电池可以工作长达11小时 通过扣除背景的算法更有效地提高了测试结果与数据库的匹配。  手持式拉曼系统:栅格环绕扫描技术 可以测试瓶装等样品 激光测试聚焦可调节 激光、探头、检测器一整套解决方案,并且易使用。  高灵敏度测量的拉曼显微系统:空间光耦合技术并不需要再配置使用显微镜 单点无偏差聚焦技术 配有样品瓶测试基座,提高不同样品检测的灵活性。  3. 拉曼探头  4. 激发光源  5. 采样附件(探头支架等)  6. 光谱仪控制软件  典型配置  典型产品:高灵敏度光谱仪,激发光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 小型光谱仪违禁品检测的应用 图5 小型违禁物光谱检测设备  4.2 便携式拉曼光谱系统用于毒品鉴别   罂粟碱、伪麻黄碱图6 毒品光谱图  4.3 农药残留及非法添加剂的检测 图7 谷物农药残留光谱图  4.4 药物成分分析图8 药物成分光谱图  4.5 制药行业原辅料的检测。图9 透过无色玻璃瓶得到乙醇的拉曼图谱图10 透过棕色玻璃瓶得到苯甲醇和苯酚的拉曼图谱  4.6 碳纳米管、石墨烯等物质的检测图11 碳纳米管、石墨烯等物质光谱图(来源:海洋光学)
  • 丹东百特研制成功国内首台三光束激光粒度仪
    经过多年的准备和一年多的奋力攻关,国内首台三光束激光粒度仪&mdash &mdash Bettersize2000激光粒度仪在丹东百特研制成功。经测试,该系统的动态测试范围达到0.01-2000微米,平均重复性误差小于1.5%,实际测试多种国际国内颗粒度标准物质,平均准确性误差(D50)小于1.35%。与几种进口激光粒度仪进行样品平行测试比较,结果偏差小于进口仪器之间的偏差。上述测试结果表明,Bettersize2000三光束激光粒度仪的主要技术指标达到了国内外现有同类仪器的先进水平。为中国高端粒度仪器用户增添了新的选择。
  • 微型光谱仪之反射检测
    1、技术简介  光在两种物质分界面上改变传播方向又返回原来物质中的现象,叫做光的反射。正是因为光在物体表面发生的反射,我们的眼睛才能感知到周围的世界的颜色与景象。反射是通过光入射到物体表面后在不同波长段的反射率差异引起。光谱仪获得的反射光谱信息就像人眼所见到的视觉内容一样,但是光谱信息更为数据化、更客观。反射测量可以测试物体的颜色,或者通过判定物体的反射光谱差异进行多样品的筛选和品控。 镜面 粗糙表面图5.1 反射原理图  2、 应用说明  由于某些检测样本的特殊性,不能完全依赖于化学方法进行检测,反射光谱模型作为一种迅速、高性价比的检测方法,可以作为化学分析方法在其他应用领域的替代方案,甚至可以直接用来测试粉末状样品。反射光谱检测方法不能判定是否适用于被测目标样本的原有模样,所以还是需要尝试多次对照测试它们的反射光谱,提高光谱数据的准确性。  化学分析的方法可以用来提高最低检出限,并确定掺杂成分,但是光学的方法可以进行预先的快速查看与筛选。将反射光谱检测与化学计量学相结合,利用可见光和近红外漫反射光谱提供快速、无损的检测。在实际检测中,可以分析不同的样本之间的差异。数学上来说,主成分包含在了定义的所有波长多维空间的范围内。主成分使我们能够获得多维数据集和重要维度,然后从无意义的噪音中分离出有意义的信息。  食品安全:香料检测,香蕉成熟度分析,芒果与鳄梨区分检测等   自然环境:水体汞污染监测,农作物分析等  3 、典型产品和配置  颜色检测配置:  1. 光谱仪  2. 光源  3. 积分球:积分球可以180° 收集样品表面的反射光,所以它能尽可能多地收集样品表面的反射光。反射式积分球还能使用在弯曲表面,或者颜色测量。它能将样品表面发射的光很好地在积分球内部进行匀化,然后再耦合到光谱仪。反射光通过圆形的入射光孔径进入积分球,然后经过分球内壁涂抹的特殊涂层材料的均匀反射。图2 积分球示意图  4. 反射探头:当需要快速测量样品或者应用在样品表面非常小的采样点时,反射探头既可以测量镜面反射,也可以测量漫反射,而且可以基于光源和光谱仪的配置不同,选择不同类型的扩大波长范围的反射探头。探头的发射光和反射光是同一方向的,接收到的光是反射光的一部分,所以使用反射探头测量反射光谱是一种相对测量。图3 反射探头  5. 采样附件(光纤、滤光片、透反射支架、动态样品台等):透反射支架用来固定反射探头的标准配件,同时也可以用于透射测量。使用透反射支架,可以有效地减少光源对样品的过度加热,对于生物样品或者有机样品,还有那些低熔点的样品非常重要 动态样品台,基于样品台旋转或者直线移动来对样品进行测量,并获得测量的平均信号。这种测量方式避免了结果的多样性,提高了样品测量的均一性结果,特别是对于谷物、种子和土壤类等不均一的样品,是比较理想的选择。 图4 反射支架和样品台  6. 准直透镜:在做反射测量时,准直透镜可以使用在光纤的末端来准确地固定入射光和反射光的角度。镜面发射或者漫反射都可以使用这样的测量方式,但是我们需要固定夹具来对测量系统进行固定。准直透镜必须预先调焦来避免光束的发散,来保证获得更好的光谱。  7. 光谱仪控制软件图5 反射检测典型配置  典型配置  典型产品:高灵敏度光谱仪,光源,滤光片,积分球,透反射支架,动态样品台,准直透镜  4 、应用文章  4.1 香料掺假检测图6 不同香料检测光谱  4.2 香蕉成熟度检测图7 不同成熟度香蕉光谱图  4.3 芒果与鳄梨区分检测图8 芒果与鳄梨检测光谱  4.4 基于SPR快速检测花生过敏源图9 过敏源光谱  4.5 无人机智能农业检测 图10 无人机农业检测光谱图  4.6 农作物成分检测图11 农作物成分光谱图  4.7 水体汞污染监测图12 水体检测光谱图(来源:海洋光学)
  • 近红外光谱三个问题的思考——伟创英图总工韩熹写在全国第六届近红外光谱学术会议圆满闭幕之后
    p span style="font-family: 楷体, 楷体_GB2312, SimKai " 全国第六届近红外光谱学术会议日前在武汉圆满闭幕,与会代表、参展厂商和论文水平等都达到了历史新高,可以说是我国近红外光谱技术发展史上影响深远的一届盛会。北京伟创英图科技有限公司总工程师韩熹也积极参加了此次会议,期间,他认真听取了各位专家和同行的报告、会下也进行了多方交流。会议报告精彩纷呈,让他受益匪浅 而且,即使会议结束仍然思绪万千,连夜写下此篇感想。/span/pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "img src="http://img1.17img.cn/17img/images/201604/insimg/0c046401-c4ce-4aaf-a832-07379962b3e5.jpg" title="韩熹近照1.jpg"//span/pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "北京伟创英图科技有限公司总工程师韩熹/span/strong/pp  strong思考近红外光谱的三个问题/strong/pp  在本次会议上,杨辉华博士提出“在研究学者之间、在仪器制造企业之间,应该更加透明化、更加开放化的进行交流,闭关自守,不利于技术发展”,本人深表同意。因为,在多个报告中都有涉及研究院校通过采购一些光谱仪模块、测样附件模块,自行组建实验平台开展研究,从中我看出了一些的问题。我赞赏这种探索精神,但由于院校派团队往往偏重理论研究、算法研究以及应用研究,对于硬件的了解深度不够,使得研究过程、研究结果存在诸多变数。/pp  本次会议的交流环节中,我选择性的提出三个问题,这三个问题本身是我原定大会口头报告中会涉及到的(临会前,进行了一项手术,术后连续输了11天液,才最终得到大夫同意出差来武汉)。我得到的答复基本在预料当中,都不够“完美”。究其原因,是对于仪器硬件的理解层面不够深,问题不在他们,是因为没有仪器制造企业与他们紧密合作。我说的“仪器制造企业”,不是指进口仪器的国内办事处或者代理商,因为他们的角色也仅仅是被培训者。我说的“紧密合作”,不是“商业合作”,是当剥离利益关系之后,从技术层面解析仪器,而不是简单的培训说明。/pp  以下,我以伟创英图仪器产品为实体,从仪器制造企业角度,阐述一些我的思考与解决方案,希望对企业、学者有所帮助。/pp  span style="color: rgb(255, 0, 0) "strong问题一:离散波长型近红外光谱分析仪的研制思考/strong/span/pp  作为互联网型企业投身近红外光谱分析仪的研制与商业化,广州讯动给我的触动最大,从情感上,我非常支持他们。离散波长型近红外光谱分析仪,通常可以分为滤光片型和激光型。研制思路:选择特定领域样品,通过波长筛选算法获得特征波长(潘涛老师报告内容,我个人很想了解具体算法实现),选择对应的滤光片或者激光器,获得特征波长下的单色光,实现分光目的。/pp  该技术路线要求筛选出的特征波长数量不宜过多,波长不宜过大,因为非制冷型InGaAs探测器在成本和结构复杂度方面优势明显。我认为需要思考的技术问题:当筛选后的特征波长数量较少时(12以下),每一个特征波长都充当着“关键先生”的角色,受到整机成本控制要求,内置的激光器需要具备低成本、小型化特点,在波长准确性与重复性上存在短板,问题即来自元器件固有问题,也包括实际使用环境因素(温度、湿度等)的影响,存在X轴方向的左右飘忽不定,“关键先生”有可能是“不靠谱先生”。此外,降低仪器成本的目的是可以大批量推广应用,但是台间差异性问题也随之而来。不同批次采购的激光器,相同标称波长下的激光器可能存在差异,即准确性达标的前提下,分属左偏移和右偏移两类。当然,我们可以在仪器出厂前进行仪器标准化标定,来降低台间差异性。但是,实际用户环境因素与标定环境不一致,导致激光器自身的变化(X轴和Y轴两个方向),该变化甚至有可能是非线性变化。/pp  从实际应用角度考虑,其实也无需过分紧张,毕竟此类仪器目的在于满足实际快检需求,而不是与大型实验室仪器比拼性能指标。因此,我认为通过在仪器内部集成标准物质,以及挖掘多台仪器在不同环境下(模拟用户现场)的标准物质谱图的函数关系,有助于仪器的批量推广。此外,有报告提出“仪器台间差异性问题不大”,我要指出的是,这个结论的得出是有前提的。此类仪器价格往往超过30万,内部结构复杂,光学模块需要严格生产工艺下确保一致性,并且内置各种校准定标模块。可谓应了一句老话:只要有钱,很多问题就不叫问题。/pp  strongspan style="color: rgb(255, 0, 0) "问题二:谱图、模型入网的可靠性确认工作的思考/span/strong/pp  本次会议,多个报告提出谱图、模型的网络化管理,但是我认为,现阶段对于谱图、模型在入网前的可靠性确认工作还很薄弱。/pp  企业管理者通过制定严格的操作流程,以及仪器自检功能,来提高谱图测量可靠性。但是,例如,近些年重大安全事故仍然不断出现,可见并非是没有严格的制度,而是没有严格的执行。因此,通过在仪器功能上进行合理设计,有助于降低人为误差(惰性或者疏忽造成的)。通过对市面主流近红外光谱分析仪的调研,本人发现,很多企业用户往往依赖于仪器自身的自检功能,认为仪器自检通过,就可安心测样。殊不知,仪器自检也有很多门道在其中,也有行业潜规则,通过输入高级密码或者更改配置参数,就可以调整仪器自检评判结果指标阈值,甚至忽略部分仪器自检项目,达到表观上的仪器自检合格。企业用户在仪器自检合格后,就会开展连续样品测量。在这期间,往往仪器只会对重大硬件故障进行报警,而不会针对仪器性能变化做出反馈。此时此刻,本人认为,用户测量是“失去保护”的。/pp  伟创英图在这方面做出的努力可以分为两方面:透明化仪器自检项目的流程与指标计算公式,为用户提供与内置校准模块同材质的外置校准模块,用户可自行开展实验,论证仪器自检结果的真实性。此外,仪器软件自检运行过程中,会显示自检流程所涉及的全部谱图与评判结果,而非简单的显示合格与否。/pp  动态校准技术的引入,仪器内置标准滤光片,用户在进行每一次样品测量时,都会自动进行标准滤光片测量,由于近红外光谱测量本身具有快速性,因此多出的动态校准流程,不会为用户增加过多时间负担。由于每次样品测量,在谱图数据结构中,都会保存标准滤光片谱图,利用该谱图可实现对当次样品谱图的实时校准,包括X轴与Y轴。此外,在谱图、模型入网时,系统通过匹配性对比每张谱图数据结构中的标准滤光片谱图与参照谱图,评判当前谱图测量时仪器是否处于正常状态,从而达到谱图可靠性确认的目的。/pp strongspan style="color: rgb(255, 0, 0) " 问题三:高速运行模式下的近红外谱图测量稳健性思考/span/strong/pp  近两年,本人有幸参与了两套果品分选在线近红外光谱分析系统的研制,在去年的BCEIA展会上展示了一套果品在线模拟装置,在2016年还将有一套果品分选系统上线。从上述项目实施过程中,本人提出“高速运行模式下的近红外谱图测量稳健性研究”的课题研究方向,希望能有专业的研究院校团队可以介入,将该项研究得更加透彻,该项研究会对未来在线近红外光谱测量技术的发展具有促进作用。在这里,我仍旧保持一种开放的形态,与大家分享伟创英图的果品分选系统的设计思想。首先,关于定位问题,我们放弃传统“同步齿轮+接近开关”这种定位方式,其原因包括:适用局限性(只适合固定在传送带上的托盘,不适合独立游走型托盘),定位托盘不具有标识性(只能表示有无托盘,不能识别具体托盘编号)。我们目前采用的NFC近场通讯技术(之前采用RFID技术),我们为每一个托盘(无论是固定在流水线上还是独立游走型的托盘)内置一个NFC芯片(选用抗金属类型)。利用该芯片的存储区,为每一个托盘进行唯一标识,并且负责存储检测分析、评价分级结果。其次,我们支持多端测量技术,即在线上可以先后部署不同类型的分析单元,例如:称重单元(果品称重,由于每个托盘都有独立的NFC芯片,在其存储区会记录每一个托盘独有的自重信息,提高果品称重准确性)、近红外光谱分析单元(评判果品品质,糖度、酸度、硬度等)、成像分析单元(评判果品有无疤痕、是否对称美观等)。/pp  具体分选流程如下:在分析单元前、后各部署一套NFC识别模块(读、写),当果品到达分析单元时,前置NFC识别模块高速响应读取到托盘NFC芯片信息,表示托盘已然就位,通知分析单元开始测量分析,测量分析结果会在果品到达后置NFC识别模块时,写入对应的NFC芯片存储区。由于NFC芯片存储区空间有限,实际写入可以是分级等级或者测量结果编号,后期通过测量编号可以进行检索查询。当果品通过全部分析单元,到达分选通道时,分选通道会通过读取NFC芯片存储区内容,来判断当前果品是否允许进入当前通道,从而实现分选目的。/pp  上述流程是2016年公司新上线的果品分选系统的核心设计思想,在这之前,我开发的分选软件部署在主控电脑,软件需要照顾各个环节。现如今,我将原先的集中处理改为分散处理,甚至部分节点不与主控电脑关联,采用独立的Arduino模块实现控制。针对近红外光谱测量这部分,我选择具有高速测量功能的USB4000光谱仪(海洋光学),该光谱仪可实现最低10微秒/次的高速测量(USB2000+最低测量速度是3800微秒/次),我即不采取单平均次数测量,也不采取多平均次数测量,而是单平均次数下的多次测量。该方式的优点在于,我可以对得到的多次测量谱图进行人为算法干预,筛选得到能够真正表征果品信息的谱图,再计算平均谱图,提高谱图测量稳健性。从实验数据来看,不同果型(苹果)最终有效谱图数量存在些许差异,有效谱图数量在6-8张不等(每秒测量5颗状态下)。由于单平均次数下的多次测量,意味着需要进行多次谱图数据传输,目前是利用OminiDriver中提供的高速扫描方法来实现。我最终希望的解决方案是将我的筛选方法可以嵌入到光谱仪底层程序上,而这一想法的实现,就需要借助国产近红外光谱仪厂商(复享光学)的支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/c5e8274b-d3c3-475f-8ae2-f5a9ab849cc8.jpg" title="多用途智能近红外光谱分选系统.jpg"//pp style="text-align: center "strong多用途智能近红外光谱分选系统/strong/pp  上边谈到的三点思考与我的想法,其实很多地方都需要国产近红外光谱分析仪制造企业的支持才可实现,但很可惜,目前此类企业实在太少。每年近红外相关文章很多,但是仪器研制类别的很少。全国研究院校知名近红外学者很多,但是从事仪器制造方面的很少。当无力改变现状时,我们就更应该开放与包容。/pp  我再次表明我们的一个态度,就是愿意为研究院所无偿提供实验平台建设、样机制造、商品转化等方面的建议,也愿意分享我们使用过的一些进口近红外光谱仪的心得体会,目前我们掌握的近红外光谱仪模块包括:JDSU、TI NIRscan、Insion、USB2000+、USB4000、Maya、STS、无锡微奥MEMS-FTNIR等。/pp  strong十数载不变初心、耐寂寞终有所报/strong/pp  说起来,韩熹进入近红外光谱领域已经有十多年了,回想自己十数载近红外光谱分析仪研制与应用之路,不禁感叹到,十数载不变初心、耐寂寞终有所报 青春虽已不再,但不变初心。2004年,韩熹毕业于首都师范大学应用化学系,随后加入北京英贤仪器有限责任公司。从那时起,韩熹便与近红外光谱分析结缘。/pp  英贤仪器实现了近红外光谱分析仪的国产化、量产化,打破了当时进口近红外光谱分析仪的市场、价格的双垄断,让国人第一次近距离的接触到近红外光谱分析技术。当时陆婉珍院士、袁洪福教授、褚小立博士给予英贤仪器大量的技术指导意见。在日前召开的全国第六届近红外光谱学术会议上,姚建垣先生(英贤仪器公司总经理)向陆婉珍奖励基金捐赠十万元,姚总说要懂得“报恩”。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/4cc288b5-faed-4395-81d1-690ef6e8ec71.jpg" style="float:none " title="陆婉珍院士给予英贤仪器大量技术指导.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/563b8b3a-a48b-40b0-b45d-ea3178925b06.jpg" style="float:none " title="袁洪福教授、褚小立博士给予英贤仪器大量的技术指导意见.jpg"//pp style="text-align: center "strong陆婉珍院士、袁洪福教授等对国产近红外光谱分析仪研制企业给予大力支持/strong/pp  2007年,英贤仪器并入聚光科技(杭州)股份有限公司,成立近红外光谱分析事业部,开始着手研制全系列近红外光谱分析仪产品,包括:便携型、通用型和在线型近红外光谱分析仪以及CM-2000化学计量学软件。当时公司的目标,就是研制出可产业化的高精度、高稳定性近红外光谱分析仪。“事实证明,我们做到了,而且做得很好。直到如今,聚光科技的近红外光谱分析仪仍旧是国产近红外光谱分析仪的领军代表,且没有之一。”韩熹说到。br//pp  2012年,在聚光科技服务满五年后,韩熹离开了聚光科技,但是,他并没有离开近红外光谱事业。经过历时一年多的筹备,韩熹等人于2014年4月成立北京伟创英图科技有限公司,沿着定制化、专用型近红外光谱分析仪的研制与产业化继续前行。此时,姚建垣先生已经退休,当他看到这些曾经的“孩子”已然成家,但对近红外光谱分析事业的热情不减,他决定不计报酬,继续陪他们走一程。/pp  姚建垣先生曾经对韩熙谈过他的创业艰辛,也分享过他的应变之策。对于制造企业,研制与销售近红外光谱分析仪不会一夜暴富,不要有投机心理,踏踏实实做产品。对于技术应用、研究学者,要能“耐得寂寞,顶得压力”。/pp  作为业界“新瓶装老酒”的伟创英图,拥有十数载的仪器研制、量产化经验,非常愿意为研究院所无偿提供实验平台建设、样机制造、商品转化等方面的建议。韩熹说,“我们曾经走过的错路、弯路,不希望你们重蹈覆辙,我们的经验与技巧希望能加速你们研究成果的商品转化。”br//ppbr//p
  • 年底现货大促销 化学发光凝胶成像系统
    上海山富科学仪器有限公司作为提供生命科学专业性仪器的公司,从事生物成像类仪器研发多年。 在黄山市经济开发区拥有占地15亩标准厂房与生产车间,生产部通过ISO9001:2008质量体系认证,医疗器械生产许可证,拥有凝胶成像两项技术专利成果,CE认证,08年开始对外的出口如今我司的产品遍布全球各大洲。 910 化学发光凝胶成像系统,现参加年终现货大促销,促销时间:2011年12月5日-2012年1月20日。价格从11万6直降3万元整,支持试用二周。确保您满意产品的最终成像效果,凡是在年底促销期间提交试用的客户,优惠价格都能保留到年后实际采购,如有意者欢迎随时与我司联系,踊跃参加促销活动。 910 化学发光凝胶成像是入门级别,能够兼容普通的荧光凝胶成像。使用变焦镜头。目前使用west blotting的用户越来越多,而传统的压片过程存在很多弊端。费时费力而且实验成本也大。910化学发光可以完成快速成像,无需暗室与胶片,无需显影与定影。短短几分钟也能得出灵敏度与压片相媲美的影像结果。910可以完成5分钟的持续曝光。对于west blotting在压片过程中肉眼可见的样品,或者压片时间小于2分钟的样品都可以拍摄出来。专业的化学发光软件,帮助您更好的定量目标蛋白。传统的胶片显影的动态范围窄,不适用于蛋白的精确定量分析,使用化学发光得到的图片能够提供宽的动态范围,进行精确的定量分析。技术参数 摄像头:进口高分辨率低照度数码制冷CCDCCD尺寸:2/3英寸(10.2mm*8.3mm) SONY ICX285 冷却方式:半导体制冷冷却温度:-35℃ 有效像素:1392*1040 采集位数:16bit像素尺寸:6.45&mu m*6.45&mu m像素合并:1*1,2*2,4*4动态范围:三个数量级灵敏度:20pg双链DNA电动变焦镜头:日本进口电动6倍变焦 F1.0 2/3英寸大口径高通透镜头照明模式:透射紫外,透射白光,反射白光激发光源:312nm紫外透照台;均匀冷光源白光透射板;LED反射白光灯;紫外反射选配滤光片数量:6位电动控制自动滤光片轮滤光片:标配590nm超多层镀膜螺旋型标准滤光片透射面积:紫外:21*26cm 白光:20*28cm外形尺寸:430*430*620mm主要特点 1 910采用密封条设计,确保暗箱的绝对密封,拍摄时不受环境光源的任何影响。2 910采用进口2/3大尺寸CCD可以制冷-35℃,确保微弱的化学发光捕捉。3 电动6位的滤光轮,为将来更多应用预留了空间。4 保留了紫外透照的设计,在可以做化学发光的同时也兼容普通的凝胶成像。化学发光凝胶全系列 型号 910920950采集系统进口高分辨率低照度数码制冷CCD进口高分辨率低照度数码制冷CCD进口高分辨率低照度数码制冷CCDCCD尺寸10.2*8.3mm 10.2*8.3mm15.2/*15.2mm冷却方式半导体制冷三级制冷三级制冷冷却温度-35℃-55℃-60℃有效像素1392*1040 145万1392*1040 145万2048*2048 420万像素尺寸(um V*H)6.45*6.456.45*6.457.4*7.4采集位数16 bit16 bit16 bit像素合并1*1,2*2,4*41*1,2*2,4*41*1,2*2,4*4接 口USB 2.0USB 2.0USB2.0镜 头 2/3英寸 日本进口电动6倍变焦镜头 F1.02/3英寸 日本进口定焦镜头 17mm F0.952/3英寸 日本进口定焦镜头 25mm F0.95暗 箱化学发光专用密封暗箱,确保适用于微弱光源长时间曝光下显影滤光片数量6位电动控制自动滤光片轮标配滤光片590nm超多层镀膜螺旋型标准滤光片选配滤光片537nm红色滤光片,460nm蓝色滤光片,699nm滤光片照明模式透射紫外,透射白光,反射白光反射白光反射白光软件ChemShot化学发光专用软件,全中文界面,支持Win2000/XP,集图像采集、编辑、分析和数据库管理功能为一体。尺寸(mm)(W*D*H)430*430*620430*430*620430*430*620重量32kg32kg32kg认证CECECE 上图为910,曝光2分钟图像。使用western blot 曝光标签,以及ECL染色剂,左边第一个点为AB原液混合,后面各点是分别等比例稀释结果。一共可见6个点,第七个点隐约可见。 软件功能简介 ChemiShot全功能控制分析软件,能对DNA/RNA,蛋白质电泳图像、荧光及化学发光成像,各种杂交膜图像、克隆计数、放射自显影、酶标板点杂交图像进行拍摄和分析; 可自动识别条带及其左右边界,自动生成峰值曲线图、数据表; 可进行分子量、百分比、含量计算并生成分子量数据库; 所有数据表均能保存为Excel格式和打印; 一 图像采集编辑功能: 1 中文界面,Windows操作系统。(也可提供英文界面) 2 可通过软件进行缩放、聚焦、光圈、透射紫外灯及反射灯的全自动控制 3 实时显示图像 4 通过软件控制选取不同滤镜 5 多种格式存储图像 6 可连接其它输入设备。 7 灰度调整:调节图像黑白对比度、亮度和灰度系数,达到最佳照片效果。 8 图像旋转:图像可左右,上下旋转。 9 图像反转:图像可黑白转换。 10 添加文字:可在图像上添加中英文。 11 可打印图像、图谱曲线、图表及数据报告。 二 电泳条带分析功能:1 可自动或手动识别泳道,并能手动调整泳道边框,增删泳道,实现泳道的精确分离。 2 可去除背景,以达到最佳的分析效果 3 泳道(Lane)密度扫描:可同时进行多泳道密度扫描,自动辨别电泳条带,同时绘出扫描曲线。 4 分子量计算:输入Market泳道已知分子量(bp值),就可计算出其它泳道分子量(bp值)。 5 数据分析结果:可计算出每根条带的迁移率。 6 分析结果的数据可以用 Excel 文件形式输出。 三 图像数据库功能: 1 可以导入导出多种格式的图像文件 2 可以添加删除数据库图像文件 3 可以在数据库内按采集时间,图像类型进行检索 4 可以根据不同人员建立不同数据库保存图像,便于使用与管理 5 分析结果的数据以及所有图像能复制、粘贴、打印,具有与Excel、Word、画图、剪切板、PhotoShop的连接功能 6 无需借助其它软件即可进行加注文字、箭头、矩形框等,并可对已加注的历史图像反复修改。 更多详情,请登录我司网站了解更多。www.shbiotech.com该活动最终解释权归上海山富所有。------上海山富科学仪器有限公司联系电话:021-65550736 65558758 传真:021-65522489上海市曲阳路851弄沪办大厦9号楼506室www.shbiotech.com
  • 国产紫外打响品质战 进军高端市场——访北京普析通用仪器有限责任公司紫外可见分光光度计研发团队
    紫外可见分光光度计(UV),自1940年由美国Beckman公司研制成功并于1945年推出商品化仪器之后,已发展成为世界实验室中使用最多、覆盖面最广的一类分析仪器,据了解全球市场有几十亿人民币的规模,而国产UV产品占的比例相对较少。  这样一类量大面广的分析仪器当然是国内外众多仪器厂商的必争之地,目前UV的生产厂商有很多,国外的主要有PerkinElmer、岛津、Agilent、Beckman、Hitachi等,国内主要有普析、瑞利、上海光谱、尤尼柯、上海精科、上海棱光、上海天美等,竞争异常激烈。其中,北京普析通用仪器有限责任公司(简称普析)于2012年8月31日下午在北京世纪金源大饭店召开了“普析T10双光束紫外可见分光光度计技术鉴定会”,正式揭开国产高端UV产品——T10的“神秘面纱”。  那么高端的UV产品能为用户带来什么样的实际体验?目前UV领域国内外的竞争态势怎样?基于此,仪器信息网编辑采访了北京普析通用仪器有限责任公司开发系统总监孙金龙先生、分子光谱产品总监刘景会先生、软件技术总监何乃文先生、分析中心主任郑清林先生、电子技术总监强伟峰先生、光学技术总监赵跃鹏先生等组成的研发团队,共同为大家解析高端UV的重要指标,并探讨国产UV产品未来发展之路。北京普析通用仪器有限责任公司开发系统总监孙金龙先生高端UV产品重要技术参数解析  每一款UV仪器的说明中都会标有很多技术指标:杂散光、波长、带宽、光度准确度、波长准确度、稳定性等。用户在采购仪器时也会对这些指标“货比三家”,那么对于UV产品来说大家最关注的指标是什么?它们又能给用户带来什么样的便利和体验?普析技术研发团队为大家解析了其中最重要的几个指标。  超低杂散光意味着更宽的测量范围  杂散光既难给出确切的定义, 又难进行准确的测量。人们常将杂散光定义为在单色器额定通带之外的透射辐射能量与总的透射能量之比。它是UV产品的一个非常关键的技术指标,也是UV分析误差的主要来源, 直接限制被分析测试样品浓度的上限。现在市面上UV产品的杂散光有十万分之几、百万分之几、千万分之几等,这些数值在应用方面有着怎么样的具体体现?对此,孙金龙先生给了我们一个比较通俗的解释。  孙金龙先生介绍说,“通俗的讲,杂散光和噪声决定了仪器的测量范围,杂散光决定能测多高的吸光度,杂散光越低,测的水平就越高,噪声则影响测量的下限。目前通过查新结果来看,之前全球杂散光水平最好的是岛津UV3600和2700的千万分之五,PerkinElmer的Lambda 950达千万分之七。而T10在220nm的时候杂散光是千万分之四,在360nm 的时候是千万分之二”。  从应用方面来说,“超低的杂散光主要用于样品浓度非常高同时又没有办法被稀释的情况下,比如固体薄膜材料及粉末等样品等。其中在滤光片、薄膜太阳能电池的检测过程中,吸光度能达到5-6Abs,超出了常规仪器的测量范围。但是T10的动态范围为±8 Abs,能很好的满足要求。另外在生物制药、生命科学领域中,一些核酸蛋白样品不能稀释,测量范围也比较宽,亦需要光度范围较大的紫外产品”。此外,“还有一个应用领域是标定,T10属于研究级的仪器,动态范围足够宽,可以对低水平分光光度计进行标定,并可以用于校准计量用标准物质,如紫外滤光片、杂光滤光片、重铬酸钾标准溶液等”。  光谱带宽连续可调确保测量结果更准确  所谓光谱带宽是(Spectral Band Width,SBW)是指从单色器射出的单色光最大强度的1/2处的谱带宽度,表征仪器的光谱分辨率。美国T. Owen教授在研究光谱带宽对分析误差的影响后, 指出UV光谱带宽非常重要。紫外可见分光光度计的光谱带宽( SBW)/ 自然带宽(NBW) ≤0.1 时( 自然带宽即试样吸收带的半高度的宽度),该仪器可满足99%的试样的分析, 并且分析准确度可达99.5%。  研究级UV产品一般采取可调带宽的方式,比如安捷伦的cary 300在0.2~4.0nm范围内,0.1nm间隔自动调节 PerkinElmer的Lambda 950光谱带宽在0.05~5nm之间可调 普析最近推出的T10能在0.1nm~5nm之间以0.1nm的间隔连续任意调整。对于可调带宽的意义,孙金龙先生是这样解释的,“一般的仪器只提供一个或者几个固定的带宽,有五档或六档的,但是没有选择最优带宽的可能性,也就没办法给样品提供一个准确的最适合的带宽。连续可变光谱带宽的功能可以帮助用户快速筛选出最佳的光谱带宽,从而确定最佳的实验条件,节省用户的实验条件筛选时间,大大提高工作效率,确保用户可在最精确的光谱带宽下测试,数据更加准确可靠”。T10双光束紫外可见分光光度计UV产品研发将转战细分市场 关注用户体验  UV产品自问世以来,更新换代的速度非常快,也曾经历了一个快速增长的发展阶段。不过,目前大部分专家认为,UV产品的市场增长缓慢,并且大部分是设备更新部分。面对如此的市场现状,仪器厂商的UV产品研发该何去何从?  创造细分市场 走“专用化”道路  传统UV产品的应用范围极其广泛,随着技术的进步以及行业的细分,对仪器专用化的要求也越来越多。对此,孙金龙先生介绍说,“从常规的应用上来讲,紫外产品的市场是平稳的,但是有些市场是需要创造的,比如专用化的细分市场。”郑清林先生也介绍说,“高端紫外产品的市场本身就不是很大,这就需要针对生物材料、临床诊断等不同的方向进行一些细分,目前我们也正在研究开发一些专用的附件和软件”。  为了应对细分市场的需求,普析在应用开发方面也做了很多的工作,孙金龙先生介绍到,“普析具有一个庞大的应用团队,不只是在本部,全国的分公司也都在创建分析中心,我们认为不仅是紫外,所有的产品都不能只靠传统意义上的仪器本身去竞争,而应该追细分的行业市场。而且摆脱竞争的唯一办法就是找到这些小行业,为他们定制适合需求的仪器,那样一定会得到行业的认可”。  信息技术提供人性化的操作体验  随着信息化的发展,操作的便捷性和体验性也是仪器的一个重要的发展方向。对于通用的UV产品来说,操作的体验性也是吸引用户眼球的一个重要的因素。普析新产品T10就是抓住用户的这一心理,为传统的UV产品配备了平板电脑。  对此,何乃文先生介绍到,“T10产品跟用户打交道最多的就是触摸屏,我们结合现在的信息化形式,在软件方面做了很多工作,由鼠标键盘扩展到平板电脑,今后还会开发一些其它的方式通过远程来操作,实现操作的便捷性。同时由于平板电脑操作体验性和网络性比较强,我们会充分利用互联网资源为客户提供服务和支持”。不过,“鉴于目前信息化的兼容问题,配备平板电脑的产品将于明年年中推向市场”,何乃文先生补充到。国产UV需提高品质力争全球市场份额  随着科技的进步,UV产品的性能不断提高,但是价格持续下降,虽然对用户来说十分利好,但是对制造商非常不利。面对日益激烈的竞争,特别是国内越演越烈的“价格战”,国产仪器厂商该如何应对?  高端产品是未来国际竞争的“突破口”  谈到现在国内紫外产品愈演愈烈的 “价格战”, 孙金龙先生介绍说,“我们认为不能一味的追求低价竞争,这样争下去也只能是恶性循环。除了中国之外,全球还有很大的市场,要竞争的话就要走出国门,所以,我们希望通过T10开辟一条走出国门的通道。”对此,刘景会先生也介绍说,“希望T10的研制和推出能填补国内研究级紫外的空白,更希望主要指标如杂散光等超过国外同类产品,达到国际领先,成为国外高端紫外产品的有力的竞争对手,使国产高端仪器产品走向世界,推动行业发展,树立中国制造民族品牌的良好形象。”  高端的产品当然需要高端的品质,不过价格也是需要考虑的一个很重要的方面,据介绍,普析目前正在努力实现相关部件的国产化以降低成本,预计今年年底之前就能大规模的批量销售。另外,T10对于普析本身来说,不仅仅是一款新产品,更是UV产品全面升级的技术平台。孙金龙先生还介绍说,“我们希望该产品推出之后,经过几年的时间将其中的关键模块往其它的紫外产品上补充,对老的产品进行全面的升级。所以以后会大量的用T10中的关键模块来覆盖中档,包括经济型的仪器,提升整个紫外产品线的品质”。  国产UV厂商需协力提高仪器品质  对于UV产品的市场现状,据刘景会先生介绍,“保守的估计UV的全球市场有几十亿人民币的规模,PerkinElmer、岛津、Agilent、Beckman、Hitachi等大公司占大部分,中国也只能在其它的20%的份额中占据一个小分量。目前,国内UV规模化的生产厂家有40多个,如果要算上一些小规模的厂商,将近100家,但是存在打‘价格战’的无序竞争现象,大部分走低端路线,不利于行业的发展”。  孙金龙先生也谈到,“纵观国内实验室的高端紫外产品,几乎没有一个是我们国产的,甚至于科研工作人员发文章也需要进口的仪器作为最主要的检测仪器。近年来,国内的仪器厂商都在努力的缩小同国外的差距,特别是作为整个分析仪器中通用设备的紫外产品,不管从经验还是技术上国产厂商都有了一定的积累,也该是做品质的时候了。我们认为在性能方面做好了市场自然会做出选择,而且我们也坚信仪器这个行业早晚会像家电行业一样会得到广大用户的青睐”。采访现场采访编辑:叶建  附录:北京普析通用仪器有限责任公司  http://www.pgeneral.com   http://pgeneral.instrument.com.cn/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制