当前位置: 仪器信息网 > 行业主题 > >

聚丙二醇单丁醚标准品

仪器信息网聚丙二醇单丁醚标准品专题为您提供2024年最新聚丙二醇单丁醚标准品价格报价、厂家品牌的相关信息, 包括聚丙二醇单丁醚标准品参数、型号等,不管是国产,还是进口品牌的聚丙二醇单丁醚标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合聚丙二醇单丁醚标准品相关的耗材配件、试剂标物,还有聚丙二醇单丁醚标准品相关的最新资讯、资料,以及聚丙二醇单丁醚标准品相关的解决方案。

聚丙二醇单丁醚标准品相关的论坛

  • 乙二醇单丁醚如何检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗请各位专家给点意见!

  • 水性涂料中乙二醇单丁醚的检测

    我们的水性涂料中含有乙二醇单丁醚,设备有GC-2014C,想要检测其中的乙二醇单丁醚的含量,请问谁有标准的方法,具体怎么做,谢谢,还有乙二醇单丁醚有限定要求吗乙二醇单丁醚属于VOC吗?求助

  • 3-氯-1,2-丙二醇标准曲线问题请教

    3-氯-1,2-丙二醇标准曲线问题请教

    最近在开展食品中3-氯-1,2-丙二醇方法摸索,在对标样进行衍生,并作标准曲线的时候发现有如下问题,请各位大神不吝指教。1、选取5个点作为3-氯-1,2-丙二醇标准样品,质量分别为0.0286ug、0.143ug、0.286ug、0.572ug、1.144ug,在作标准曲线时,在每个标样中分别加入等量的D5-3-氯-1,2-丙二醇,其质量为0.222ug,上述标样中均加入正己烷定容至2mL,然后按标准要求加入40uL的七氟丁酰基咪唑进行衍生反应,后续的步骤严格按标准要求执行;2、衍生结束后,上[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]进行测定,这时候问题出现了,按照上述的内标加入量,D5-3-氯-1,2-丙二醇在各标样的中的量应该是相同的,按理论来说,其在谱图中的峰面积也应该是大致相同的,最起码不会有太大的差别,但实验结果却是内标的峰面积会随着标样浓度的增加而不断的增大,其具体的数值为38845、86170、185376、412975、887632;反观标样3-氯-1,2-丙二醇的峰面积,其实测值与标样浓度值对应增长,成线性关系,具体测定值分别为26801、64667、138047、300758、640761。如果按照外标作标准曲线的话,线性是没问题的,但如果按内标作曲线的话,作出来的曲线压根就没法使用,可以说完全不成线性,这就是我请请教各位同行的问题,你们在用内标作这个项目的时候也会遇到这个问题吗?如果没有,那么你们的内标面积都能保持一致吗?为了各直观的说明这个问题,我把我做的5个标准点谱图按浓度从低到高一并附上以作参考,其中前面的峰为内标,后面的峰为3-氯-1,2-丙二醇。[img=,690,425]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151752487962_2765_1640909_3.jpg!w690x425.jpg[/img][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151752589614_3231_1640909_3.jpg!w690x425.jpg[/img][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151753062214_3758_1640909_3.jpg!w690x425.jpg[/img][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151753121534_1266_1640909_3.jpg!w690x425.jpg[/img][img=,690,425]https://ng1.17img.cn/bbsfiles/images/2019/04/201904151753188554_5523_1640909_3.jpg!w690x425.jpg[/img]

  • 三丙二醇丁醚色谱图

    三丙二醇丁醚色谱图

    如题 柱子HP-5打出来的三丙二醇丁醚色谱图峰型这样跟手一样的 为什么会出现这种情况 柱温200[img]https://ng1.17img.cn/bbsfiles/images/2020/10/202010201337122955_4929_3960401_3.jpg[/img]

  • 探讨:牛奶中的丙二醇从哪儿来?

    探讨:牛奶中的丙二醇从哪儿来?

    [back=transparent][b][size=24px]丙二醇:[/size][/b]丙二醇的分子式为C[sub]3[/sub]H[sub]8[/sub]O[sub]2[/sub],有两种稳定的同分异构体,即1,2-丙二醇和1,3-丙二醇;这种化学物质的基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶,毒性较低。[/back]在化工方面,是生产环氧树脂、聚氨酯树脂、不饱和聚酯树脂的重要原料;在食品领域,可以作为香精、食用色素的高效溶剂[sup][1][/sup]。[size=24px][color=#d82821][b]丙二醇的相关食品问题:[/b][/color][/size]丙二醇被检出不合格的问题,除了牛奶产品,在糕点中超量使用被抽检出不合格的现象也是较为常见的。[align=center][img=,458,238]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011807410794_5318_3169908_3.png!w458x238.jpg[/img](图源网络)[/align][size=24px][color=#d82821][b]牛奶中丙二醇的要求:[/b][/color][/size]在食品领域中,作为食品添加剂的丙二醇应该符合GB 2760-2014 《食品安全国家标准 食品添加剂使用标准》(简称GB 2760)要求,[size=15px][color=#ff2941]具备有三种功能作用,牛奶产品均不可使用[/color][/size]:[align=center][img=,690,291]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011805462875_6989_3169908_3.png!w690x291.jpg[/img][/align][align=left][b][size=18px][color=#ff6600]思考:[/color][/size][/b]《中华人民共和国农业部公告 第2045号》中规定丙二醇可作为粘结剂、抗结块剂、稳定剂和乳化剂在养殖动物的饲料中添加。[/align][align=left]那么,丙二醇是否会由于饲料食用后体内富集带入牛乳中?丙二醇在动物体内是否能完全代谢转化?[/align][size=12px]参考资料:[/size][size=12px][1]1,2-丙二醇 物竞化学品[/size]

  • CNS_18.004_丙二醇

    [align=center][b][font=黑体][color=black]第1章 [/color][/font][font=黑体][color=black]丙二醇的理化性质及限量标准[/color][/font][/b][/align][b][font=仿宋]杨谨怡[/font][/b][font=宋体]丙二醇是一种透明、无色、具黏性及吸湿性的直链脂肪醇液体,广泛应用于食品、药品、化妆品中,据GB2760-2014规定其可用作稳定剂、凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂和增稠剂。[/font][b][font=黑体]1.1[/font][font=黑体]理化性质[/font][/b][font=宋体]丙二醇[PropyleneGlycol(1,2 Propanedio) CNS: 18. 004 INS: 1520]也称1,2-丙二醇,化学式C[sub]3[/sub]H[sub]8[/sub]O[sub]2[/sub],,相对分子质量76.10。[/font][font=宋体]性状与性能:为无色、清亮、透明黏稠液体,无臭,略有辛辣味和甜味,外观与甘油相似,有吸湿性。能与水、醇等多数有机溶剂任意混合。对光、热稳定,有可燃性。可溶解于挥发性油类,但与油脂不能混合。相对密度1. 035~1.039,沸点187.3C,黏度0.056Pa.s (20°C),流动点-56°C;折射率(n,20oC):1.4329;闪点(oC,闭口):98.9;闪点(oC,开口):107;燃点(oC):421.1;燃烧热(kJ/mol,定压):1827.5;燃烧热(kJ/mol,定容):1825.0;燃烧热(kJ/mol,20oC,101.3kPa):1853.1;蒸发热(kJ/kg):538.1;生成热(kJ/mol,20oC):500.3;比热容(kJ/(kgK),20oC,定压):2.48;临界温度(oC):351;临界压力(MPa):5.9;热导率(W/(mK)):0.217714;爆炸下限(%,V/V):2.6;爆炸上限(%,V/V):12.5;体膨胀系数(K-1,20oC):0.000695;体膨胀系数(K-1,55oC):0.000743;蒸气压(kPa,55oC):0.19;常温折射率(n25):1.4314;溶度参((Jcm-3)1/2):29.516;van der Waals面积(cm2mol-1):6.960×109;van der Waals体积(cm3mol-1):46.760;[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]标准燃烧热(焓)(kJmol-1):-1902.55;[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]标准声称热(焓)(kJmol-1):-421.29;液相标准燃烧热(焓)(kJmol-1):-1838.14;液相标准声称热(焓)(kJmol-1):-485.72;液相标准热熔(Jmol-1K-1):189.9。[/font][font=宋体]毒理学数据:LD[sub]50[/sub]:小鼠经口22 ~ 23mg/kg(bw),大鼠经口21.0~33.5mg/kg(bw)。ADI: 0~25mg/ kg(bw) (FAO/WHO, 1994)。 GRAS:FDA-21CFR184.1666。刺激数据眼睛 -兔子:100毫克,轻度。属低毒类。毒性和刺激性都很小。但有溶血性,不宜用于静脉注射。把它添加到食品和饮料中时和乙二醇一样,有引起肾脏障碍的危险。[/font][font=宋体]稳定性:可燃性液体。有吸湿性,对金属不腐蚀。与二元酸反应生成聚酯,与硝酸反应生成硝酸酯,与盐酸作用生成氯代醇。与稀硫酸在170[/font][font=宋体]℃[/font][font=宋体]加热转变成丙醛。用硝酸或铬酸氧化生成羟基乙酸、草酸、乙酸等。与醛反应生成缩醛。1,2-丙二醇脱水生成氧化丙烯或聚乙二醇。[/font][b][font=黑体][color=black]1.2 [/color][/font][font=黑体][color=black]限量标准[/color][/font][/b][font=宋体]使用建议:GB2760—2014规定其使用范围和最大使用量为:糕点,3.0g/kg 生湿面制品,1.5g/kg[sup][1][/sup]。(FAO/WHO,1984) 规定:用于干酪、稀奶油混合物,用量为5g/kg (单用或与其他载体稳定剂合用)。其他使用参考,用于面条中,添加量为面粉的2%~3% 用于豆腐中,用量为300g/kg豆浆。[/font][align=center][b][font=黑体]第2章 [/font][font=黑体]认识与功能应用[/font][/b][/align][b][font=黑体]2.1 [/font][font=黑体]正确认识丙二醇[/font][/b]1、一般情况下丙二醇对人们的肌体是无害的丙二醇是不饱和聚酯、环氧树脂、聚氨酯树脂等物料重要原料之一,在此方面用量大约占丙二醇总量45%,此种不饱和聚酯大量用在涂料及增强性塑料方面。丙二醇具有粘性、吸湿性好的特点,而且无毒,进而在食品、医药、化妆品中有着极其广泛的应用,其在此产品中可以作为吸湿剂、抗冻剂、润滑剂、溶剂等。丙二醇对人体的神经系统有影响并且有一定的刺激性,但是一般情况下影响是很小的,只有当人体每公斤体重摄入剂量高于13.2克才会出现影响。2,丙二醇对皮肤可能产生的副作用:据供应丙二醇的倍特化工了解:一般化妆品中添加丙二醇浓度约在5%以下,一般不会对皮肤造成什么影响,不过需要注意,如果长期且过量使用会对皮肤造成伤害,尤其是敏感皮肤。丙二醇对皮肤可能产生的副作用有以下几种:(1)刺激性:有些人使用时会有主观上的灼热感、刺痛感、痒感。(2)去脂性:丙二醇具有脂溶性溶剂的特性,渗透性很强,溶解力大,过量使用可能会对皮肤造成危害,长期使用高浓度丙二醇,对表皮、皮脂结构会有影响。(3)刺激性皮肤炎:丙二醇对皮肤及粘膜都具有刺激性,浓度越高、越密封的状况下使用,刺激性越大,会引起皮肤发红、起红疹、脱皮刺痒及皮肤粗糙的情形。3、任何产品都要有度的制约才可以发挥最大能效此前就有消息,此物质添加在食品、饮料中的时候,如果一次服用过量、过高之时,就可以引起假寐、肾脏功能性障碍,但是其没有生命危险,在一段时间之后就可以自行缓解。进而化学品对肌体在有些情况下是多少有些伤害的,其区别只是度的大小上面。丙二醇用量过多会引起高渗透压、溶血,中枢神经系统的不良反应等,应严格限制用量,因此化妆品使用者、生产者在此时一定要慎重。[b][font=黑体]2.2[/font][font=黑体]功能[/font][/b]GB2760—2014规定其可用作稳定剂、凝固剂、抗结剂、消泡剂、乳化剂、水分保持剂和增稠剂。[b][font=黑体]2.3 [/font][font=黑体]应用[/font][/b]丙二醇的应用领域及其分布(见图一)[sup][2][/sup]1.用作树脂、增塑剂、表面活性剂、乳化剂和破乳剂的原料,也可用作防冻剂和热载体。2.用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液、溶剂、抗冻剂、增塑剂及脱水剂。3.载体溶剂 湿润剂 保湿剂 抗结剂 抗氧化剂 组织改进剂 表面活性剂 稳定剂 增稠剂 面团调节剂 乳化剂 调味剂 赋形剂 加工助剂。GB2760~96列为食品加工助剂。主要用于各种香料、色素、防腐剂的溶剂,香草豆、焙炒咖啡粒、天然香料等的萃取溶剂。糖果、面包、包装肉类、干酪等的保湿、柔软剂。亦可用作面条、馅芯类的防霉助剂。在豆乳中添加0.006%,可使加热时风味不变,制成洁白有光泽的包装豆腐,油煎则体积膨大。4.丙二醇是杀菌剂米醚甲环唑的中间体。5.作溶剂,可将防腐剂、色素、抗氧化剂等难溶于水的食品添加剂溶解于其中,再加入食品 有较强的吸湿性,对食品有保湿和抗冻作用。我国规定可用于糕点,最大使用量为3.0g/kg.6.丙二醇是不饱和聚酯、环氧树脂、聚氨酯树脂的的重要原料,这方面的用量约占丙二醇总消费量的45%左右,这种不饱和聚酯大量用于表面涂料和增强塑料。丙二醇的粘性和吸湿性好,并且无毒,因而在食品、医药和化妆品工业中广泛用作吸湿剂、抗冻剂、润滑剂和溶剂。在食品工业中,丙二醇和脂肪酸反应生成丙二醇脂肪酸酯,主要用作食品乳化剂 丙二醇是调味品和色素的优良溶剂。丙二醇在医药工业中常用作制造各类软膏、油膏的溶剂、软化剂和赋形剂等,由于丙二醇与各类香料具有较好互溶性,因而也用作化妆品的溶剂和软化剂等等。丙二醇还用作烟草增湿剂、防霉剂,食品加工设备润滑油和食品标记油墨的溶剂。丙二醇的水溶液是有效的抗冻剂。.7.作为药物载体、颗粒药品用剂。可作为化妆品中保湿剂,软化剂,溶剂等。烟草行业中可作为烟用香精、烟草保湿剂、防腐剂等。食品行业中作为香精、食用色素的溶剂、食品包装柔软剂、食品防粘剂等。还可用于生产不饱和聚酯树脂、也是塑料的增塑剂、脱水剂、表面活性剂、固化剂、粘结剂的原料等。还可用于油漆、农药、涂料等行业。[b][font=黑体][color=black]2.4[/color][/font][font=黑体][color=black]“港荣蒸蛋糕丙二醇超标”事件[/color][/font][/b][color=black]2019[/color][color=black]年7月广东省市场监督管理局发布关于10批次食品不合格情况其中就包括了大家所熟悉的港荣蒸蛋糕。港荣的涉事蛋糕属于“糕点”,也就是说,可以使用丙二醇,只要使用量不超过3.0克/公斤就是合规的。而涉事的那个批次产品,最初有媒体报道“超标70%”,(也就是说实际使用量超过了5克/公斤),经查实际值为3.55克/公斤。在食品生产中,0.3%的原料算是较为大量的辅料了,尤其是考虑到蛋糕中的水占了相当一部分,丙二醇在配料时的占比就更高。这个幅度的过量,无法用称量误差来解释——如果不是配方存在问题,就是生产过程的工艺控制存在很大缺陷。对于这种因为配方或者生产工艺控制而导致的“大幅超标”,没有抽检到的产品是什么情况,也就令人生疑。还有媒体报道,该公司今年早些时候还有一款产品在湖北被通报丙二醇超标(检测值为4.81克/公斤),或许并非巧合或者偶然。食品添加剂跟盐不同。盐的毒性虽然比丙二醇要高,但它同时也是人体需要的营养成分,所以我们在饮食中需要“适量摄入”。而丙二醇并不是人体需要的营养成分,虽然毒性更低,但我们还是希望尽量少摄入。作为食品添加剂,限量标准的制定是基于这样的原则:为食品带来足够的好处,同时不增加健康风险。 [/color][align=center][b][font=黑体][color=black]第3章 生产工艺[/color][/font][/b][/align][b][font=黑体][color=black]3.1[/color][/font][font=黑体][color=black]环氧丙烷直接水合法[/color][/font][/b][color=black]环氧丙烷与水在200"C和120 MPa下发生反应,反应产物经蒸发、精馏,得到含量约90%的1,2-丙二醇成品,反应式如下[b][sup]{2}[/sup][/b]:[/color][color=black]工艺过程可简述为:水溶液→蒸发器浓缩2次→含量约为60% 1,2-丙二醇,精馏→1,2-丙二醇和塔底物(一缩二丙二醇*、二缩三丙二醇*等高沸物)[/color][color=black]工艺评价:产品质量高、能耗低,收率高,能实现工业化生产。[/color][b][font=黑体][color=black]3.2 [/color][/font][font=黑体][color=black]以1,2-二氯丙烷为原料法[/color][/font][/b][color=black]该法有两条工艺路线:[/color][color=black]一、1,2-二氯丙烷在弱碱水溶液中直接水解成丙二醇;[/color][color=black]二、二氯丙烷和羧酸盐反应先生成酯酯,酯再水解成丙二醇。[/color][color=black](一)直接水解工艺:把1,2-二氯丙烷、水、碳酸氢钠和十六烷基三丁基溴化磷一起加入反应釜内,在100[/color][color=black]℃[/color][color=black]二氧化碳分压1.0MPa下反应18h,得到80%的丙二醇。控制1,2-二氯丙烷的加料速度,即高温时加料速度快,低温时则慢。实例:在300mL的高压釜内加入60g碳酸钙和150g水,搅拌升温至230[/color][color=black]℃[/color][color=black],以0.03g/(min100g H[sub]2[/sub]O)的速度连续加入二氯丙烷11.5h;在此温度继续搅拌30min,之后急冷至室温,丙二醇收率约95%。控制温度在130-300[/color][color=black]℃[/color][color=black]内,只要相应改变二氯丙烷的投料速度,丙二醇的收率皆可达到95%以上。[/color][color=black](二)两步水解工艺:先将原料在釜式反应器内进行反应,二氯丙烷达到一定转化率后,再打料至一活塞流反应器中继续反应,最后水解成丙二醇。实例:将606kg 二氯丙烷加进2立方米反应釜中,再加入800kg乙酸钠、556kg1,2-丙二醇、10kg乙酸和1kg水,搅拌升温至180[/color][color=black]℃[/color][color=black],4h后冷至120[/color][color=black]℃[/color][color=black],抽出物料,经预热器升温至180[/color][color=black]℃[/color][color=black],以500L/h的速度通过一长400m、内径25mm、容积230L的活塞流式反应器,在第2个搅拌釜中收集产物,冷至室温,分析产物为:44kg二氯丙烷、334kg丙二醇、32kg乙酸钠、44kg乙酸、234kg1,2-二乙酰氧基丙烷、693kg丙二醇单乙酸酯、45kg1-氯丙烯、547kgNaCl和1kg水。[/color][color=black]工艺评价:工艺反应过程复杂,产品质量差且能耗高,成品中残留盐类物。[/color][b][font=黑体][color=black]3.3 [/color][/font][font=黑体][color=black]酯交换反应联产法[/color][/font][/b][color=black]酯交换反应联产法是指碳酸丙烯酯与甲醇进行酯交换反应生产碳酸二甲酯并联产1,2-丙二醇的方法。首先以二氧化碳和环氧丙烷为原料生产碳酸丙烯酯,再以碳酸丙烯酯和甲醇为原料生产碳酸二甲酯(DMC),同时联产1,2-丙二醇。反应式如下[b][sup][3][/sup][/b]:[/color][color=black]工艺评价:产品质量不稳定、能耗高。同时由于联产法生产出的1,2-丙二醇的色度及气味差,会影响1,2-丙二醇的销售、价格和市场。[/color][b][font=黑体][color=black]3.4[/color][/font][font=黑体][color=black]甘油制1,2-丙二醇技术[/color][/font][/b][color=black]在高压氢气(5~10MPa)条件下,使用Pt, Rh和Ru等贵金属催化剂以及Cu和Ni等贵金属催化剂,在高歇高压反应釜内催化丙三醇加氢裂解制备1,2-丙二醇。反应式如下[b][sup][4][/sup][/b]:[/color][color=black]工艺评价: 1, 2-丙二醇选择性低,往往需要较高的H[sub]2[/sub]压力,对反应设备要求高,且产物和催化剂不易分离。[/color][color=black]环氧丙烷直接水合法相比另外3种工艺,在质量、能耗、收率等方面具有明显的优势。经企业实地调研和文献检索显示,目前国内1,2-丙二醇的来源均为采用环氧丙烷直接水合法制备,该法是当今世界丙二醇生产、开发和研制中最为活跃,且能实现大工业化的一种方法[sup][5][/sup]。[/color][align=center][b][font=黑体][color=black]第4章 检测方法[/color][/font][/b][/align][b][font=黑体][color=black]4.1 [/color][/font][font=黑体][color=black]在食品中的检测方法[/color][/font][/b]据GB 5009.251-2016规定用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法测定食品中1.2-丙二醇含量的方法。其中第一法适用于糕点.膨化食品奶油、干酪.豆制品.奶片.生湿面制品,冷冻饮品液体乳.植物蛋白饮料、乳粉.黄油.奶油中1.2-丙二醇含量的测定 第二法适用于糕点、膨化食品、干酪.豆制品、奶片、生湿面制品中1.2-丙二醇含量的测定[sup][6][/sup]。[b][font=黑体]4.1.1 [/font][font=黑体]第一法 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/font][/b]将试样中1.2-丙二醇用无水乙醇提取,提取液过滤后.采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定。保留时间定性,外标法定量。[b][font=黑体][color=black]4.1.1.1[/color][/font][font=黑体][color=black]色谱条件[/color][/font][/b][color=black]色谱柱:键合/交联聚乙二醇固定相石英毛细管色谱柱.60mX0.25mm.0.25 μm.或相当色谱柱[/color][color=black]载气:高纯氮 恒流模式,柱流速1.0 ml./min.[/color][color=black]采用程序升温:柱初始温度 80°C,保持1 min,以20°C /min速率升温至160°C,保持2 min,再以15°C/min速率升温至220°C.保持10 min.[/color][color=black]进样口温度 :230°C;检测器温度 :240°C .[/color][color=black]氢气流量:40 mL./ min;空气流量:350 mL/min.[/color][color=black]进样量:1μL.[/color][color=black]进样方式:分流进样分流比10: 1[/color][b][font=黑体][color=black]4.1.2 [/color][/font][font=黑体][color=black]第二法 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法[/color][/font][/b][color=black]将试样中1.2-丙二醇用无水乙醇提取.提取液过滤后.用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用仪测定,采用选择离子监测扫描模式(SIM).用化合物的保留时间和特征碎片的质荷比定性.外标法定量。[/color][b][font=黑体][color=black]4.1.1.2[/color][/font][font=黑体][color=black]色谱条件[/color][/font][/b][color=black]色谱柱:键合/交联聚乙二醇固定相石英毛细管色谱柱.60mX0.25mm.0.25 μm.或相当色谱柱[/color][color=black]载气:高纯氦 恒流模式,柱流速 1.0 mL./ min.[/color][color=black]采用程序升温:柱初始温度 80°C.保持1 min.以20°C /min速率升温至160°C,保持2 min.再以15°C/min速率升温至220°C.保持5 min.[/color][color=black]进样口温度 :230°C[/color][color=black]检测器温度:240°C[/color][color=black]进样量:1μL。[/color][color=black]进样方式:分流进样,分流比10: 1.[/color][color=black]电离方式:电子轰击源(EI)。[/color][color=black]电离能量:70 eV.[/color][color=black]离子源温度:230°C[/color][color=black]四极杆温度:150°C[/color][color=black]溶剂延迟:8 min[/color][color=black]扫描方式:采用选择离子监测扫描模式(SIM).选择离子m/z31,m/z45,m/z 61,定量离子m/z 45。[/color][b][font=黑体][color=black]4.2 [/color][/font][font=黑体][color=black]在烟草中的检测方法[/color][/font][/b][color=black]丙二醇在烟草中的检测方法可分为高效液相色谱法[sup][7,8][/sup]和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS[sup][9][/sup]法。[/color][b][font=黑体][color=black]4.2.1 [/color][/font][font=黑体][color=black]高效液相色谱法[/color][/font][/b][color=black]在色谱柱: Waters Sugar Pak1钙型阳离子交换柱(6.5X300 mm), Waters Sep Pak Cs固相萃取小柱, Sep-Pak AluminCartridges保护柱 流动相为0. 05 g/LEDTA钙钠水溶液,流速0.5mL/min 柱温85 °C 进样量20μL条件下测定丙二醇。[/color][b][font=黑体][color=black]4.2.2 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS[/color][/font][font=黑体][color=black]法[/color][/font][/b][color=black]由于无烟气烟草制品中1,2-丙二醇、丙三醇、三甘醇等保润剂的含量范围较宽 ,不同厂家品牌产品中的含量差异较大,有的甚至低于传统检测方法(HPLC/RID和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/FID)的检出限。而[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS法具有灵敏度高、定性专属性强、定量准确等特点,适合1,2-丙二醇、丙三醇、三甘醇等多元醇的确证和定量检测,因此,建立了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法同时检测无烟气烟草制品中的1,2-丙二醇、丙三醇、三甘醇的方法。[/color][color=black]其色谱条件为:色谱柱: HP Inno Wax毛细管柱色谱柱(30mx250μmi.d. x0.25 μmd.f.) 进样口温度:250°C [/color][color=black]程序升温:柱初始温度 80°C.保持1 min.以6°C /min速率升温至200°C,保持3 min.再以30°C /min速率升温至230°C.保持3min.[/color][color=black]载气:高纯氦气,流量:0.8 mL/min 进样方式:分流进样,分流比50: 1 进样量:1.0 μL [/color][color=black](2)[/color][color=black]质谱条件:离子源:EI 电离能:70 eV 离子源温度:230°C 四极杆温度:150°C 检测模式:选择离子监测(SIM) 质量扫描范围:20 ~ 350 amu 溶剂延迟:5 min。[/color][color=black]采用计算机Wiley图谱库检索,结合标准样品的保留时间定性,内标工作曲线法定量。[/color][b][font=黑体][color=black]4.3[/color][/font][font=黑体][color=black]在药品中的检测方法[/color][/font][/b][color=black]采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测药品中的丙二醇[b][sup][10][/sup][/b],色谱条件为程序升温,初始温度80°C维持3 min,以10°C /min的升温速率升至230°C,维持3 min 检测器温度为250°C 进样口温度为230°C 分流比为20: 1 [/color][color=black]柱流量1mL/min' 载气为高纯氮气 进样量1 μL。[/color][b][font=黑体][color=black]4.4[/color][/font][font=黑体][color=black]在化妆品中的检测方法[/color][/font][/b][color=black]用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FID)检测化妆品中的丙二醇[b][sup][11][/sup][/b],对检出目标化合物采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]串联质谱法进行确证。[/color][font=宋体][color=black]方法过程为:样品中的丙二醇用无水乙醇振荡提取,在- 10°下,以10000r/min离心5min后进样,经毛细管色谱柱(ZB-624 ,30mX0.32mmX0.25μm)分离,氢火焰离子化检测器测定,外标法定量,并采用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]串联质谱确证。[/color][/font][b][font=黑体][color=black]4.4.1[/color][/font][font=黑体][color=black]色谱条件[/color][/font][/b][font=宋体][color=black]进样口温度:230°C [/color][/font][font=宋体][color=black]色谱柱升温程序:初始温度80°C保持1 min,以20°C /min升至160°C,保留2min 以15°C /min升至230°C,保留5min [/color][/font][font=宋体][color=black]检测器(FID)温度:260°C [/color][/font][font=宋体][color=black]载气:氮气(纯度不小于99 999%) 燃气:氢气(纯度不小于99.99%)、空气(压缩空气) [/color][/font][font=宋体][color=black]气体流量:柱流量2.00 mL/min、氢气40mL/min、空气400mL/min、尾吹气30mL/min [/color][/font][font=宋体][color=black]进样量:1μL [/color][/font][b][font=黑体][color=black]4.4.2[/color][/font][font=黑体][color=black][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]串联质谱串联条件[/color][/font][/b][font=宋体][color=black]载气:高纯氦气 流速:2.0mL/min [/color][/font][font=宋体][color=black]进样方式:分流进样 分流比:50:1 [/color][/font][font=宋体][color=black]进样口温度:230°C 色谱柱升温程序:初始温度80°C保持1 min,以20°C/min升至160°C,保留2 min 以15°C /min升至230°C,保留5 min [/color][/font][font=宋体][color=black]离子源:EI源 电子能量:70eV [/color][/font][font=宋体][color=black]传输线温度:260°C 离子源温度:230°C [/color][/font][font=宋体][color=black]四级杆温度: 150°C 溶剂延迟时间:3 min [/color][/font][font=宋体][color=black]扫描模式:Scan 质量打描范围:50~ 500 m/z[/color][/font][font=宋体][color=black]分流比:50:1[/color][/font][b][font=黑体][color=black]4.5[/color][/font][font=黑体][color=black]总结[/color][/font][/b][font=宋体][color=black]通过以上在4个种类中丙二醇的检测方法可知,现阶段检测丙二醇的普遍方法为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法。[/color][/font][font=宋体][color=black][size=14px]参考文献[/size][size=14px][/size][size=14px][1] 中华人民共和国国家卫生和计划生育委员会. GB2760-2014食品安全国家标准, 食品添加剂使用标准. 北京:中国标准出版社, 2014.[/size][size=14px][/size][size=14px][2] 郑军.1,2丙二醇国内外生产现状及发展前景[J].热固性树脂,2009,24(01):58-62.[/size][size=14px][/size][size=14px][3] 滕文彬. 提高酯交换法联产丙二醇产品质量及收率的研究[D].中国石油大学,2010.[/size][size=14px][/size][size=14px][4] 袁燕平. 生物质甘油制备1,2-丙二醇的研究[D].长沙理工大学,2011.[/size][size=14px][/size][size=14px][5] 喻亮宇. 丙二醇质量标准的修订研究[D].中南大学,2013.[/size][size=14px][/size][size=14px][6] GB 5009.251-2016, 食品安全国家标准 食品中1,2-丙二醇的测定.[/size][size=14px][/size][size=14px][7] 陈章玉,徐若飞,缪明明,张承明,杨光宇.高效液相色谱法测定烟草料液中几种保润成分[J].理化检验(化学分册),2006(12):1049+1051.[/size][size=14px][/size][size=14px][8] 李忠,杨光宇,黄海涛,施红林,刘巍,蒋次清.高效液相色谱法测定烟草料液中的糖、甘油和丙二醇[J].分析化学,2002(06):687-689.[/size][size=14px][/size][size=14px][9] 张杰,李鹏,孙世豪,宋瑜冰,谢剑平,宗永立.[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS法同时检测无烟气烟草制品中的1,2-丙二醇、丙三醇和三甘醇[J].烟草科技,2011(03):36-42.[/size][size=14px][/size][size=14px][10] 马明欣,傅蓉,郭宏伟,姜雯,张亚杰.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定利福霉素钠注射液中丙二醇的含量[J].药物分析杂志,2013,33(10):1752-1755.[/size][size=14px][/size][size=14px][11] 潘强.化妆品中丙二醇含量的检测方法研究[J].福建分析测试,2020,29(02):50-55.[/size][/color][/font][font=黑体][color=black] [/color][/font][align=center][/align][s][s][color=#231F20] [/color][/s][/s]

  • 乙二醇单丁醚和水

    老师们,您好,我在分离乙二醇单丁醚(沸点175)和水体系的溶液,用的是GDX-103色谱柱,汽化室温度200,柱温180,检测器230,辅助温度230,分不出来,后来尝试用程序升温,150保持1分钟,8℃/min,到180℃保持15分钟,还是分不开,老师这有什么解决办法吗

  • 【求助】丙二醇含量测定

    各位好,准备用液相测定纸张样品中的丙二醇含量(丙二醇作为保润剂),还请各位指教。在网上搜到《烟草和烟草制品分析.甘油、丙二醇和山梨醇含量测定.高效液相色谱法》,但是未能下载下来,是德国标准。哪位大侠若有还请帮忙呀,呵呵。

  • 丙二醇的标准

    请问丙二醇有没有国标的,或者是行标,是什么呀,我在网上都找不到的?

  • 求助:食品中1,2-丙二醇新项目开发

    最近在做食品中1,2-丙二醇的新项目开发,用的安捷伦7890a[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],色谱柱按GB 推荐5009.251-2016配置,仪器参数按标准上设置,做糕点和生湿面的加标。提取过程按照标准进行,溶剂试了无水乙醇分析纯和色谱纯,无影响,但做了多次糕点回收85%多点,面回收90%多 有没有做过的老师支下招,再次拜谢

  • 【方法】气相色谱法分离测定环孢素A中乙醇及丙二醇的含量

    目的:建立一个[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件同时分离测定环孢素A中乙醇及丙二醇的含量。方法:以GDX-101为固定相,柱长为2 m,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标。结果:乙醇及丙二醇进样量分别在2.0~6.0 μg,1.0~3.0 μg,其峰面积与浓度呈良好的线性关系,加样回收率分别为99.9%(RSD<0.8%,n=5),101.4%(RSD<1.1%,n=5),精密度良好。结论:此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件可同时测定环孢素A中乙醇及丙二醇的含量,方法简便准确。关键词 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 乙醇 丙二醇 环孢素A山地明(环孢素A)为诺华制药有限公司的产品,是一种免疫抑制剂,用于器官移植和骨髓移植中的抑制排斥现象以及自身免疫疾病。厂方质量标准中乙醇及丙二醇的含量采用石英毛细管柱测定,此种色谱柱在国内使用不普及,我们经多次试验,摸索出一较好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件,适用于国内检测,即以GDX-101为固定相,柱长为2 m,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,氮气为载气,以二甲基亚砜为溶剂,以正丙醇为内标,可同时分离测定环孢素A中乙醇及丙二醇的含量,改进后的方法,乙醇与正丙醇的分离度为3.1,丙二醇与正丙醇的分离度为5.0,符合中国药典1995年版中乙醇量度检查的分离度要求[1],操作简便,结果准确可靠。1 仪器与试药  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:SP-6890  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱:玻璃柱,长2 m,固定相为GDX-101。  乙醇、异丙醇、丙二醇均为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]纯,二甲基亚砜为色谱纯。  样品:环孢素A胶囊(山地明),由诺华公司提供,批号为187MFD0797;241MFD0797;166MFD0797;483MFD0797;477MFD0797。  标准贮备液及内标贮备液:精密称取[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]级的乙醇及丙二醇2.50及1.25 g分置50 mL容量瓶中,加二甲基亚砜至刻度,摇匀,作为标准贮备液;精密量取正丙醇5.0 mL置50 mL量瓶中,加二甲基亚砜至刻度,摇匀,作为内标贮备液。2 试验方法与结果2.1 色谱条件 采用GDX-101为固定相,柱长为2 m,氮气为载气,采用氢离子火焰检测器,进样口温度为210 ℃,检测器为280 ℃,柱温采用程序升温,即初始为165 ℃,保持12 min,以40 ℃。min-1升至280 ℃,并保持20 min,检测器温度为280 ℃,进样量为2 μL。2.2 分离度试验 称取乙醇、丙二醇及正丙醇各50 mg置同一50 mL量瓶中,加二甲基亚砜至刻度,摇匀,进样2 μL,按上述色谱条件试验,记录色谱图,见图1-A,乙醇、丙二醇及正丙醇的保留时间分别为1.15,2.22,7.54 min,计算乙醇与正丙醇及丙二醇与正丙醇的分离度,其分离度分别为3.1和5.0。图1 分离度色谱(A)及样品测定(B)色谱图1.乙醇 2.正丙醇 3.丙二醇 4.二甲基亚砜2.3 线性范围及标准曲线 分别精密量取乙醇和丙二醇标准贮备液1.0,1.5,2.0,2.5,3.0 mL,分别置50 mL量瓶中,并分别加入内标贮备液1.0 mL,使乙醇终浓度为1.0,1.5,2.0,2.5,3.0 mg.mL-1,丙二醇的终浓度为0.5,0.75,1.0,1.25,1.5 mg.mL-1,分别进样2 μL,以乙醇及丙二醇的进样量为横坐标,以它们的峰面积与内标峰面积之比为纵坐标,分别进行线性回归,结果线性关系良好,乙醇、丙二醇回归方程分别为:A=8.935×103C+7.858×102 r=0.998 8A=8.086×103C-1.649×102 r=0.999 92.4 精密度试验 用乙醇与丙二醇浓度分别2.0及1.0 mg.mL-1的溶液,重复进样5次,结果乙醇与丙二醇的RSD分别为0.7%和1.0%,精密度良好。2.5 回收率试验 采用加样回收法,取已知乙醇与丙二醇含量的样品2粒,用二甲基亚砜溶解,置50 mL量瓶中,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,精密量取此溶液4.0,4.5,5.0,5.5,6.0 mL,分别加入乙醇与丙二醇的浓度分别为2.0 mg.mL-1及1.0 mg.mL-1的标准溶液6.0,5.5,5.0,4.5,4.0 mL,混匀,量取混匀后的溶液2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],测定这5份溶液的乙醇和丙二醇含量,计算回收率,乙醇的平均回收率为99.9%(RSD<0.8%,n=5),丙二醇的平均回收率为101.4%(RSD<1.1%,n=5)。2.6 样品的测定 取乙醇和丙二醇标准贮备液2.0 mL,内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为对照品溶液;取环孢素A胶囊2粒,置50 mL量瓶中,用二甲基亚砜溶解,精密加入内标贮备液1.0 mL,并加二甲基亚砜至刻度,摇匀,作为样品溶液;分别量取对照品溶液和样品溶液各2 μL,注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],按上述色谱条件测定,以内标法计算含量,即得;见图1-B。2.7 对比试验结果 取环孢素A样品5批,用改进后的方法测定样品中乙醇和丙二醇的含量,与厂方测定数据相比,结果基本吻合,见表1。表1 乙醇和丙二醇对比试验结果(%) 批号 本法结果 厂方测定数据 乙醇 丙二醇 乙醇 丙二醇 187MFD0797 101.0 106.3 100.5 105.0 241MFD0797 99.2 99.2 100.6 100.6 166MFD0797 101.7 102.7 101.3 103.0 483MFD0797 98.8 96.8 99.3 97.2 477MFD0797 99.1 98.1 98.9 97.7 3 讨论3.1 本法与原厂方方法相比,方法更为简便,条件普及,有利于对样品质量的控制。3.2 原厂方标准在测定乙醇含量时,以正丁醇为溶剂,由于正丁醇的保留时间与丙二醇过于接近,分离度达不到要求,本法采用二甲基亚砜为溶剂,不影响样品的溶解,同时使丙二醇与二甲基亚砜的分离度符合定量分析的要求。3.3 曾用固定相为GDX-401的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]柱进行检测,乙醇与正丙醇得到完全分离,但丙二醇与溶剂峰重叠,分离度达不到要求。3.4 采用程序升温,可使溶剂出峰时间加快,缩短分析时间。王俊秋(北京市药品检验所 北京 100035)庞青云(北京市药品检验所 北京 100035)余立(北京市药品检验所 北京 100035)参考文献1,中国药典.1995.二部:附录44

  • “丙二醇有关物质”,做过的老师们请指点……

    “丙二醇有关物质”,做过的老师们请指点……

    问题:1:一缩二丙二醇、二缩三丙二醇标准品,是否均为异构体的混合物?2: 两者或是在GC里面会高温分解?3:一缩二丙二醇5个峰比较容易分离,但二缩三丙二醇有一大片的峰如何计算??图(此图来自网上,发现跟本人做的一个样):http://ng1.17img.cn/bbsfiles/images/2012/09/201209010925_387787_1659994_3.jpg

  • CNS_20.010_海藻酸丙二醇酯

    CNS_20.010_海藻酸丙二醇酯

    [align=center][font='仿宋'][color=#000000]王诗语[/color][/font][/align][align=center][size=16px]第[/size][size=16px]1[/size][size=16px]章[/size][size=16px] [/size][size=16px]海藻酸丙二醇酯[/size][/align][font='宋体'][size=16px]1.1 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯[/size][/font]海藻酸丙二醇酯( Propylene Glycol Alginate,简称PGA) ,别名藻朊酸丙二酯、藻酸丙二酯、丙二醇藻蛋白酸酯、褐藻酸丙二醇酯,是由部分羧基被丙二醇酯化,部分羧基被碱中和的藻酸类化合物。,海藻酸作为一种天然高分子,主要来源于褐藻植物(如海带、马尾藻、巨藻等),是一种来自海洋的无毒、无害、可生物降解的纯天然材料。海藻酸是由英国化学家于1881年发现的,在其50年后美国Kelco公司将海藻酸盐作为商品销售,1949年,Kelco公司研究出了海藻酸的有机衍生物海藻酸丙二醇酯。[font='宋体'][size=16px]1.2.1 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的理化性能[/size][/font]海藻酸及其海藻酸盐作为食品添加剂具有胶体特性和增稠性、稳定性、乳化性和能形成凝胶的能力,而其衍生物海藻酸丙二醇酯与海藻酸相比,具有更优异的性能,在食品工业中有独特的应用。由于海藻酸中的部分羧酸基被丙二醇酯化,海藻酸丙二醇酯可以溶于水中形成黏稠胶体,其抗盐性强,对钙和钠等金属离子很稳定,即使在浓电解质溶液中也不会盐析。海藻酸丙二醇酯分子中含有丙二醇基,故亲油性大,乳化稳定性好。正因为如此,海藻酸丙二醇酯能有效地应用于乳酸饮料、果汁饮料等低pH值范围的食品和饮料中。PGA 具有较大的分子量,是一种高分子量食品级多糖。黄明丽根据凝胶渗透色谱( GPC) 标准曲线,结合 PGA 洗脱体积,计算得出 PGA 分子量范围为1 900 ~ 2 400 kD[font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]][/size][/font]。PGA的黏度与其浓度之 间存在着半对数线性关系 ( R2 =0. 974 0) 在 pH 2 ~ 10 范围内,PGA 的黏度几乎无变化,但当pH≥11 时,PGA 的黏度下降 PGA 与羧甲基纤维素( CMC)具有良好的增黏效应,但与海藻酸钠之间的效应较复杂[font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]2[/size][/font][font='times new roman'][size=16px]][/size][/font]。PGA 是剪切变稀的假塑性非牛顿流体,浓度越高,触变性越大。PGA 溶液黏度随其质量分数、蔗糖添加量的增加而增加,随 pH 的升高而降低。较低 NaCl( 0. 01 和 0. 10 mol /L) 时 PGA 溶液的黏度降低,NaCl 浓度较高时( 1. 00 mol /L) 溶液的黏度增加。PGA 具有黏弹性,在低频率区域体系以黏性为主,高频率区域体系以弹性为主,G'与 G″的交点受浓度和pH 及温度的影响[font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]3[/size][/font][font='times new roman'][size=16px]][/size][/font]。PGA 除具有胶体性质外,由于其分子中含有丙二醇基,故亲油性大,乳化稳定性好,在食品和饮料的生产中可以被用作为一种性能优良的天然起云剂[font='times new roman'][size=16px][[/size][/font][font='times new roman'][size=16px]4[/size][/font][font='times new roman'][size=16px]][/size][/font]。PGA 溶液的亲脂性可有效地用作奶油、糖浆、啤酒、饮料及色拉油的稳定剂。酯化度越高,PGA 溶液的亲脂性与表面活性越强,因此,当利用PGA 的亲脂性时,应选用高酯化度产品,此外要尽量使用低黏度产品。[font='宋体'][size=16px]1.2.2[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的增稠、乳化、稳定性[/size][/font][font='宋体'][size=16px]增稠、乳化、稳定性作为一种中性大分子多糖,海藻酸丙二醇酯分子中的丙二醇基为亲脂端,可以与脂肪球结合;分子中的糖醛酸为亲水端,含有大量羟基和部分羧基,可以和蛋白质结合。因为海藻酸丙二醇酯分子结构中兼具亲水性和亲油性两种基团,使其具有良好的乳化稳定性,适用于乳制品、人造奶油、咖啡、乳饮料、糖衣、冷冻食品等。[/size][/font][font='宋体'][size=16px]1.2.3[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的耐酸性[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯具有较强的耐酸性,可应用于pH3~5的酸性环境中,能有效应用于乳酸饮料、果汁饮料等低pH值范围的食品和饮料中。海藻酸丙二醇酯的最佳黏度范围为pH2~10。如图2所示,在pH2~10范围内,海藻酸丙二醇酯溶液的黏度不受pH的影响,pH超过10时黏度有所下降。从这点上看,PGA耐酸性强,耐碱性弱,其在中性及偏酸性食品中具有很好的应用。[/size][/font][font='宋体'][size=16px]1.2.4[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的保香性[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的分子结构特点使其能够与大多数香料结合在一起,有效防止风味流失,常用作食品香精的保香剂。[/size][/font][font='宋体'][size=16px]1.2.[/size][/font][font='宋体'][size=16px]5[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的泡沫稳定性[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯有很好的发泡和乳化能力,广泛应用于啤酒泡沫稳定剂中,增加啤酒发泡性能,使泡沫细腻,持久。[/size][/font][font='宋体'][size=16px]1.2.[/size][/font][font='宋体'][size=16px]6[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯的水合物、组织改良性[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯有很好的亲水性能,适用于方便食品、面条等面食制品,可改善面团流变特性,防止面食低温老化。[/size][/font][font='宋体'][size=16px]1.2.[/size][/font][font='宋体'][size=16px]7[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯与其他胶体的协同作用[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯与羧甲基纤维素钠、改性淀粉、海藻酸钠、阿拉伯胶、果胶、[/size][/font][font='宋体'][size=16px]桃胶等具有良好的互溶性,可混合复配使用。在酸性条件下,海藻酸丙二醇酯具有独特的稳定蛋白质的作用。在弱碱性条件下,海藻酸丙二醇酯与蛋白质发生交联反应。当pH8~9并保持较低温度时,可以观察到流变性质的变化,如黏度增大。在40~50 ℃下,海藻酸丙二醇酯与明胶反应,能得到快速凝固的凝胶,这种凝胶在沸水中是不可逆的。[/size][/font][font='宋体'][size=16px]1.2.[/size][/font][font='宋体'][size=16px]8[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯[/size][/font][font='宋体'][size=16px]的产品标准、限量标准、检测标准介绍[/size][/font][font='宋体'][size=16px]产品标准、限量标准[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161555455331_7755_1608728_3.png[/img][font='宋体'][size=16px]:[/size][/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/06/202106161555458405_7109_1608728_3.png[/img][/align]检验方法:A.1警示试验方法规定的一些试验过程可能导致危险情况。操作者应采取适当的安全和防护措施。A.2一般规定本标准所用试剂和水,在没有注明其他要求时,均指分析纯试剂和GB/T6682规定的三级水。试验中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T601、GB/T602和GB/T603的规定制备 试验中所用溶液在未注明用何种溶剂配制时,均为水溶液。A.3鉴别试验A.3.1试剂和材料A.3.1.1乙酸铅溶液:100g/L。A.3.1.2氢氧化钠溶液:100g/L。A.3.1.3硫酸溶液:1→20。A.3.2试验溶液的制备称取约1g试样,加100mL水搅拌溶解,使成糊状液体作为试验溶液A。A.3.3鉴别方法A.3.3.1取5mL试验溶液A,加5mL乙酸铅溶液,应立即凝固成果冻状。A.3.3.2取10mL试验溶液A,加1mL氢氧化钠溶液,在水浴上加热5min~6min,冷却后加1mL硫酸溶液立即凝固成果冻状。A.3.3.3取1mL试验溶液A,加4mL水,激烈振摇则持续产生泡沫。A.4酯化度的测定A.4.1方法提要酯化度的质量分数用100%减去游离海藻酸含量的质量分数、海藻酸钠含量的质量分数及不溶性灰分的质量分数而求得。A.4.2结果计算酯化度的质量分数w1,按式(A.1)计算:w1=100%-(w2+w3+w4)…………………………(A.1)式中:w2———游离海藻酸含量的质量分数,% w3———海藻酸钠含量的质量分数,% w4———不溶性灰分的质量分数,%。A.4.3游离海藻酸含量的测定A.4.3.1试剂和材料A.4.3.1.1氢氧化钠标准滴定溶液:c(NaOH)=0.02mol/L。A.4.3.1.2酚酞指示液:10g/L。A.4.3.2分析步骤称取约0.5g在105℃±2℃干燥4h的试样,精确至0.2mg,加200mL新煮沸并冷却的水溶解,加3滴酚酞指示液,用氢氧化钠标准滴定溶液滴定至粉红色,保持20s不褪色为终点。同时进行空白试验。A.4.3.3结果计算游离海藻酸含量的质量分数w2,按式(A.2)计算:w2=(V1-V2)×c×M 1000×m×100%…………………………(A.2)式中:V1———试样所消耗的氢氧化钠标准滴定溶液的体积,单位为毫升(mL) V2———空白试验所消耗的氢氧化钠标准滴定溶液的体积,单位为毫升(mL) c———氢氧化钠标准滴定溶液的准确浓度,单位为摩尔每升(mol/L) M———海藻酸的摩尔质量,单位为克每摩尔(g/mol)[M(C6H8O6)=176.12] 1000———换算因子 m———试样的质量,单位为克(g)。取两次平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.3%。A.4.4海藻酸钠含量的测定A.4.4.1试剂和材料A.4.4.1.1硫酸标准溶液:c 12H2SO4?è???÷=0.05mol/L。A.4.4.1.2氢氧化钠标准滴定溶液:c(NaOH)=0.1mol/L。A.4.4.1.3甲基红指示液:1g/L乙醇溶液。A.4.4.2分析步骤称取约1g在105℃±2℃干燥4h的试样,精确至0.2mg,置于瓷坩埚内,在电炉上低温炭化至不冒白烟后,转入高温炉,于300℃~400℃炭化2h。冷却后,连同坩埚转入烧杯中,加50mL水,再加20mL硫酸标准溶液,盖上表面皿在水浴上加热1h。冷却后用定量滤纸过滤,(滤液有颜色时,应重新称取试样,进行充分的炭化,重复同样的操作),以60℃~70℃的水冲洗烧杯、坩埚及滤纸上的残留物,直至洗涤液不使石蕊试纸变红(保留带残留物的滤纸B,用于不溶性灰分的测定)。合并洗涤液和滤液,加入2滴甲基红指示液,用氢氧化钠标准滴定溶液滴定至溶液由红色变为黄色为终点。同时进行空白试验。A.4.4.3结果计算海藻酸钠含量的质量分数w3,按式(A.3)计算:w3=(V0-V1)×c×M 1000×m×100%…………………………(A.3)式中:V0———空白试验所消耗的氢氧化钠标准滴定溶液的体积,单位为毫升(mL) V1———滤液和洗涤液所消耗的氢氧化钠标准滴定溶液的体积,单位为毫升(mL) c———氢氧化钠标准滴定溶液的准确浓度,单位为摩尔每升(mol/L) M———海藻酸钠的摩尔质量,单位为克每摩尔(g/mol)[M(C6H7O6Na)=198.11] 1000———换算因子 m———试样的质量,单位为克(g)。取两次平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.3%。A.5不溶性灰分的测定A.5.1分析步骤将A.4.4.2滤纸B置于预先于500℃±50℃灼烧至质量恒定的坩埚中,烘干后在高温炉内以500℃±50℃灼烧至质量恒定。A.5.2结果计算不溶性灰分的质量分数w4,按式(A.4)计算:w4=m1-m0 m×100%…………………………(A.4)式中:m1———残渣和坩埚的质量,单位为克(g) m0———坩埚的质量,单位为克(g) m———试样的质量,单位为克(g)。取两次平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.2%。A.6干燥减量的测定A.6.1分析步骤称取约2g试样,精确至0.2mg,置于预先于105℃±2℃干燥至质量恒定的称量瓶中,于105℃±2℃干燥4h,冷却后称量。A.6.2结果计算干燥减量的质量分数w5,按式(A.5)计算: w5=m-mm1×100%…………………………(A.5)式中:m———干燥前试样的质量,单位为克(g) m1———干燥后试样的质量,单位为克(g)。取两次平行测定结果的算术平均值为测定结果,两次平行测定结果的绝对差值不大于0.5%。[align=center][/align][align=center][size=16px]第[/size][size=16px]2[/size][size=16px]章[/size][size=16px] [/size][size=16px]海藻酸丙二醇酯的应用[/size][/align][font='宋体'][size=16px]2.1[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在酸奶中的应用[/size][/font][font='宋体'][size=16px]酸奶可分为两类,即凝固型和搅拌型,凝固型酸奶直接被发酵成固态,这类产品发酵完成后,需在冷藏的条件出售。如果添加果汁,往往会沉积在凝固型酸奶的底部,而其他的发酵混合物料则处在顶部。搅拌型酸奶在较大的发酵罐中发酵,然后再经过搅拌、冷却、发酵完成后用泵输送到储罐中。凝固型酸奶和搅拌型酸奶有着各自不同的缺点,例如,产品的质地不紧密,或者由于乳清脱水收缩使产品变得平淡无味,尤其是当凝固型酸奶用匙舀出后放置一段时间未能及时食用,其脱水收缩现象更为明显。脱水收缩导致搅拌型酸奶表面粗糙,尽管酸奶中经常添加稳定剂,但是大部分产品还是有沉淀现象发生。在酸奶中加入明胶、卡拉胶、果胶、淀粉等食品添加剂可以防止脱水收缩,但是使用明胶作稳定剂的酸奶被素食者和犹太教规禁用,效果也不太理想;卡拉胶在低pH的酸性乳产品中不很稳定;添加果胶作为稳定剂的酸奶的质地变硬,且生产成本高。添加淀粉使酸奶口感过黏,并且热量偏高。与其他常用的食品添加剂相比,PGA更能适用于酸奶的生产中。它具有如下优点:(1)PGA能够赋予酸奶产品天然的质地口感,即使在乳固形物添加量降低的条件下也能很好地呈现出这种特性;(2)能够有效地防止产品形成不美观的粗糙凹凸表面,使产品的外观平滑亮泽;(3)与所有其他配料完全融合,在发酵期间的任何pH范围内均可应用,并且在温和搅拌的条件下,就容易均匀分散在酸奶中。PGA在分散性和溶解性方面都较优异,在整个加热过程中非常稳定;(4)PGA在酸奶中不仅充当稳定剂的作用,还可以在酸乳中提供乳化作用,又能够使含脂的酸奶平滑、圆润,口感会更好。[/size][/font][font='宋体'][size=16px]2.2 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在调配型酸性含乳饮料中的应用[/size][/font][font='宋体'][size=16px]调配型酸性含乳饮料是指用乳酸、柠檬酸或果汁等将牛奶或豆奶的pH调整到酪蛋白的等电点(pH4.6以下)而制成的一种乳饮料。调配型酸性含乳饮料一般以原料乳、乳粉或豆浆、乳酸、柠檬酸或苹果酸、糖或其他甜味剂、稳定剂、香精和色素等为产品原料,饮料的蛋白质含量应大于1%。沉淀及分层是调配型酸性含乳饮料生产和贮藏过程中最为常见的质量问题,其主要原因在于配方中的稳定剂。如果选用的稳定剂不合适,产品在保质期内达不到应有的效果。大量的研究[/size][/font][font='宋体'][size=16px]结果证实,调配型酸性含乳饮料中最适宜的稳定剂是PGA,及其与其他稳定剂的复合稳定剂。可以和PGA复配使用的稳定剂包括耐酸性CMC、黄原胶、果胶等。总用量一般在0.5%以下,其中PGA用量一般占60%~70%。通过对比优化实验,发现用含PGA为主的复合稳定剂生产出来的产品的稳定性和口感都较好,能满足该类产品的品质要求,贮藏9个月后无沉淀和分层现象出现。[/size][/font][font='宋体'][size=16px]2.3 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在果汁中的应用[/size][/font][font='宋体'][size=16px]果汁很容易分层,往往上层清澈透明,底层为厚厚的果肉沉淀。在果汁中添加少量的PGA就可以改善果肉的稳定性,不会给果汁的滋味和质构带来负面影响。研究发现,PGA对于果汁中的油类成分也能起到稳定作用,这种稳定作用主要在于PGA具有良好的乳化性能。[/size][/font][font='宋体'][size=16px]2.4 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在色拉酱中的应用[/size][/font][font='宋体'][size=16px](1)PGA可赋予色拉酱丰富、柔软的质地和油水互融的乳化效果。PGA在色拉酱中能充分发挥其高效和乳化稳定性,使色拉酱体系更均匀稳定;(2)提供低脂色拉酱类似油脂的特性,其主要原因在于其拥有疏水和亲水基团,具有类似天然脂肪的特性。PGA是唯一拥有疏水基团的水溶性胶体。正是由于PGA拥有一分为二的亲水和疏水基团,所以在色拉酱中是很好的乳化剂;(3)可以提高成品的黏度,应用在低脂色拉酱中可以弥补由于脂肪含量减少而降低的黏度。PGA和其他大部分的胶体协同作用,可使产品拥有讨人喜欢的润滑富丽的外观,不会产生另人讨厌的黏稠或过硬的质地;(4)PGA与其他水溶性胶体如黄原胶不同,能够非常好地释放风味成分,不会抑制色拉酱细腻的风味。[/size][/font][font='宋体'][size=16px]2.5 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在冰淇淋中的应用[/size][/font][font='宋体'][size=16px]冰淇淋以其轻滑细腻的组织、紧密柔软的形体、醇厚持久的风味以及丰富的营养和凉爽的口感深受消费者的喜爱。PGA在冰淇淋中有很好的应用,在冰淇淋中添加PGA,可以明显改善油脂和含油脂固体微粒的分散度及冰淇淋的口感、内部结构和外观状态,也能提高冰淇淋的分散稳定性和抗融化性等。另外,PGA还能防止冰淇淋中乳糖冰晶体的生成。[/size][/font][font='宋体'][size=16px]2.6 [/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在啤酒中的应用[/size][/font][font='宋体'][size=16px]啤酒泡沫是啤酒质量的一项重要指标。啤酒泡沫中含有大量的芳香酯类化合物,它使人们产生饮用的欲望,减少啤酒的苦味,产生缓和味觉的作用,具有像盖子一样的隔绝作用,可防止啤酒液与空气发生氧化反应而发生味道变化,还可减缓二氧化碳的释放速度,产生较多的包裹着二氧化碳的啤酒泡沫,让饮酒者从视觉上觉得啤酒比较清凉可口 另外,啤酒冒泡时细微的沙沙声也会使饮酒者产生愉悦感。高酯化度海藻酸丙二醇酯最典型的应用是作为啤酒泡沫稳定剂使用,一般用量为40~100 mg/kg。当啤酒瓶中残留脂肪性物质时,PGA可以防止由此引起的泡沫破裂现象。加入PGA的啤酒的泡持力明显提高,泡沫洁白细腻、挂杯更持久,而啤酒的口味和贮藏期均不会改变。[/size][/font][font='宋体'][size=16px]2.7[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在面制品中的应用[/size][/font][font='宋体'][size=16px]面食是我国人民的主食之一,随着经济的发展,人们对面食的要求早已超越了单纯的果腹,对面食内在的品质如弹性和韧性的要求越来越高。近几年,PGA 常见应用于面食的制作中,以改善面食性质和质构。杨艳等通过粉质仪测定了 PGA 对面粉粉质特性影响, 经 TPA 全质分析、蒸煮试验和感官鉴评,研究 PGA 添加量对面条硬度、黏着性、拉伸收缩比等指标的影响。结果发 现,PGA 对面条品质改良效果较为明显,其在面条中最适添加量为 0.3% 。蛋糕有着绵软而有弹性的结构,细密而紧韧的组织,滋润而嫩爽的口感,深受广大消费者的喜爱。但是在长期放置过程中,蛋糕会出现结构粗糙、松散干硬、弹性和风味变差等老化现象,使产品质量下降。在一定条件下进行验证试验后发现复配型蛋糕品质改良剂能改善蛋糕面糊比重,提高蛋糕质构特性和感官评分,使蛋糕弹性较好,硬度显著降低,老化程度明显较小,显示蛋糕的品质良好。[/size][/font][font='宋体'][size=16px]2.8[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯在其他食品中的应用[/size][/font][font='宋体'][size=16px]PGA除了在上述几类食品和饮料中能有效应用之外,在番茄酱、酸奶酪、肉类沙司、酱油、乳化香精、糖衣和糖浆等食品或食品半制品中都可以获得很好的应用。[/size][/font][align=center][size=16px]第3章 [/size][size=16px]海藻酸丙二醇酯对不同食品的影响[/size][/align][font='宋体'][size=16px]3.1[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面包品质的影响[/size][/font][font='宋体'][size=16px]评判面包品质好坏的一个重要指标就是面包的质构特性。在面包质构特性中,硬度、弹性、咀嚼性、胶黏性等指标数据可以直观的反映面包品质的优劣。经过大量实验证明,面包质构指标中硬度和咀嚼性于面包品质呈负相关,即面包硬度和咀嚼性数值越大,说明面包吃起来就越硬、缺乏弹性、绵软口感;而面包弹性数值越大,面包吃起来会柔软有筋道,不黏牙,口感好。[/size][/font][font='宋体'][size=16px]3.1.1[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯不同黏度对面包贮藏期咀嚼性的影响[/size][/font][font='宋体'][size=16px]随着贮藏期的延长,面包整体的硬度变化是逐渐增大的,但添加 PGA 对面包硬度的增大有一个相对延缓的作用,尤其是 PGA 黏度在 200 ~ 300 mPa s、300 ~ 400 mPa s 这两个区间延缓效果较为明显,其次是400 ~ 500 mPa s 黏度区间。PGA 黏度过高或者过低,对延缓面包硬度增大的效果不明显。添加合适黏度 PGA 延缓面包硬度和咀嚼性增大的主要原因可能是:PGA 作为一种具有亲水亲油功能的胶体,加入到面包面团中时,可提高面包面团吸水率,加大面包持水性,使面包保湿柔软;PGA 使面包内水分子更多的以稳定状态的结合水的形式存在,较好的降低面包的水分活度;且 PGA 与淀粉分子相互作用形成稳定的复合物,延缓淀粉的老化,从而改善面包口感。[/size][/font][font='宋体'][size=16px]3.1.2[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯不同黏度对面包弹性特性的影响[/size][/font]添加 PGA 可以明显增大面包的弹性,且 PGA 黏度越高,对面包弹性的改善效果越好,面包的弹性越大。在贮藏过程中,添加 PGA 能够延缓面包弹性的降低,当 PGA 黏度在 200 ~ 300 mPa s、300 ~ 400 mPa s 区间时,延缓效果最好且相对较稳定。PGA 黏度过低,对面包弹性的改善效果没有充分体现,PGA 黏度过高(> 400 mPa s)时,在贮藏后期对面包弹性的影响效果下降,面包弹性相对低于添加中间黏度(200 ~ 400 mPa s)PGA制作面包的弹性。[font='宋体'][size=16px]3.1.3[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面包感官评价的影响[/size][/font][font='宋体'][size=16px]当PGA 黏度在 300 ~ 400 mPa s 时面包感官得分最高, 其次是 PGA 黏度在 400 ~ 500 mPa s和 200 ~ 300 mPa s,这说明添加合适黏度的PGA,可以使面包外观、颜色、口感、风味得到一个较好的改善,使面包的总体评分明显提高。在贮藏阶段,面包各方面品质不断下降,但是添加,PGA 可以很好的延缓面包品质的劣变。当 PGA 黏度在 300 ~ 400mPa s 时,面包在第 5 ~ 7d 贮藏期时,仍能保持一个相对较好的口感和风味,面包柔软有弹性,且掉渣少,保湿性好。[/size][/font][font='宋体'][size=16px]3.2[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面条品质的影响[/size][/font][font='宋体'][size=16px]评判面条品质好坏的一个重要指标就是面条的质构特性。在面条质构特性中,硬度、弹性、咀嚼性、胶黏性等指标数据可以直观的反映面条品质的优劣。[/size][/font][font='宋体'][size=16px]3.2.1[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面条全质构([/size][/font][font='宋体'][size=16px]TPA[/size][/font][font='宋体'][size=16px])的影响[/size][/font]在一定浓度范围 内,添加低酯 PGA 能够增大面条硬度、咀嚼性 和胶黏性,而且随浓度升高而变大,这可能是因 为添加适量低酯 PGA,PGA 能够加固面筋蛋白 网络结构强度,改善面团性质,近而提高面条硬 度、咀嚼性和胶黏性;但是当添加低酯 PGA 浓 度在 0.5% 时,面条硬度、咀嚼性和胶黏性又有 下降趋势,这可能是添加低酯 PGA 过多时,会 减少面筋蛋白数量,甚至是破坏面筋蛋白结构, 不利于面筋蛋白网络的形成。添加低酯 PGA 对面条的弹性改善效果不佳,但是高酯 PGA 对面条弹性有较好的改善作用,这很有可能与 PGA 酯化程度有关,需要进一步验证。[font='宋体'][size=16px]3.2.2[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面条淀粉溶出率的影响[/size][/font][font='宋体'][size=16px]淀粉溶出率反映的是面条中面筋蛋白在煮制 过程中造成面汤浑浊的程度,溶出率越小,说明 面汤越清澈,面条品质相对越好。添加低酯 PGA 能够降低面条中淀粉溶出率,随着 添加量的增大,淀粉溶出率呈先下降后轻微上升 趋势,这有可能是因为低酯 PGA 在一定程度上加 固面筋蛋白结构,从而减少淀粉颗粒从面筋网络 中游离出来,因此降低淀粉溶出率;当低酯 PGA 添加量达到一定程度时(0.5%),有可能又会破 坏面筋蛋白结构,使游离淀粉溶出更多。考虑到 PGA 降低淀粉溶出率的程度和稳定性,以及添加 量成本问题,低酯 PGA 的添加量在 0.2% ~ 0.4% 之间淀粉溶出效果达到最佳。[/size][/font][font='宋体'][size=16px]3.2.3[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对面条吸水率的影响[/size][/font][font='宋体'][size=16px]添加低酯 PGA 能够降低面条吸水 率,添加量越大,降低程度在一定范围内越大, 0.4% 时达到最低值,0.5% 时有上升趋势。吸水 率下降有可能是低酯 PGA 在加固面筋蛋白网络结 构的同时,也阻止了水分的进入,从而降低面条 吸水率,这在一定程度上可以保持面条形状和韧 性,避免面条不耐泡,使面条硬度增大、更耐咀 嚼,但也会造成面条不容易煮熟,会增大面条煮 制时间。本试验中面条吸水率最低值为低酯 PGA 添加量在 0.4%,考虑到口感和煮制时间以及成本 问题,实际操作时可适量减少用量。[/size][/font][font='宋体'][size=16px]3.3[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对凝固型酸乳结构的影响[/size][/font][font='宋体'][size=16px]酸乳制品常常出现的黏稠度低、组织状态粗糙、口感差、乳清析出等问题 ,为防止这些不良现象,人们通常在酸乳制品中添加增稠剂.目前广泛应用于酸乳中的增稠剂有明胶、卡拉胶、果胶及淀粉等,使用明胶作稳定剂的酸乳被部分消费者禁用, 效果也不太理想 卡拉胶在低p H 的酸性乳产品中的稳定性还不理想 添加果胶作为稳定剂的酸乳存放时间稍长 ,但产品的质地容易变硬 ,且成本增加 淀粉由于在酸乳中用量很多使得口感过黏 ,并且热量偏高 。但PGA 具有较强的耐酸性,可应用于p H 3 ~5 的酸性环境中,具有很好的乳化能力,能够赋予酸乳产品天然的质地口感,可提高酸乳黏度,防止蛋白质沉淀和乳清上浮。[/size][/font][font='宋体'][size=16px]3.3.1[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对酸乳的酸度、[/size][/font][font='宋体'][size=16px]STS [/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]WHC[/size][/font][font='宋体'][size=16px]率的影响[/size][/font][font='宋体'][size=16px]添加PGA后,酸乳的WHC有不同程度的变化。与对照相比,PGA添加量为0.05%的WHC下降的最多,约为25.6%,添加量为0.10%、0.30%样品WHC也都下降了14.5%左右,只有添加量为0.20%的WHC上升了10.9%。其原因可能是在原料乳中加入PGA,经均质、杀菌及发酵作用后,PGA与原料乳中的钙离子之间发生相互作用,在发酵成熟后形成良好的网状结构,以保持水分。在测定WHC时酸乳受到高速的离心作用,由于稳定剂参与了网状结构的形成,使蛋白质凝块结合紧密,不易被拆散,这样,杀菌前添加稳定剂越多,搅拌后形成的蛋白颗粒越大,于是可结合水的表面积相对减小,持水力有不同程度的降低。当PGA添加量为0.05%的STS值最高为20.75%,添加量0.20%的最少,为10.01%,是对照样品乳清析出量的74.0%。乳清析出的主要原因是受酸乳胶体网络中酪蛋白粒子的重新排布和钙胶体粒子的增溶[/size][/font][font='宋体'][size=16px]作用及不同的酸化速率影响的。添加量为0.05%和0.10%的PGA与蛋白质结合,促使蛋白质粒子重新排布,会造成乳清的严重析出 0.30%的发酵时间较其他2个稍长,酸化速率相对较慢,使酸乳内部结构充分重新排布,从而使结构相对较弱的乳清析出较严重 但添加量为0.20%的虽然也与蛋白质结合,但其可能会抑制钙胶体粒子的增溶作用,而且发酵时间适中,所以其STS值最小。综合WHC和STS可以发现,PGA添加量为0.20%时效果好于其他添加量。[/size][/font][font='宋体'][size=16px]3.3.2[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对酸乳黏度随转速变化[/size][/font][font='宋体'][size=16px]空白对照和添加PGA的酸乳呈现出相同的趋势,即黏度先是达到一个极大值,而后随着转速的增加而先急速下降,然后趋于平缓,具有明显的剪切变稀现象 到达最大转速后,再随转速的增加而缓慢上升至临近结束时显著增大。添加了PGA的酸乳黏度明显增加,且随PGA添加量的不同酸乳黏度的增加幅度也不同,其中[/size][/font][font='宋体'][size=16px]0.20%PGA添加量的酸乳黏度最大,比同转速下未添加PGA的酸乳黏度高出近1倍,0.30%PGA黏度次之,0.10%、0.05%黏度基本相同,这表明PGA在较低的浓度范围内,增稠作用随着浓度的增加而增大,超出这个浓度范围,过多的PGA可能会破坏酪蛋白-磷酸钙的胶体结构,阻断蛋白质之间的相互作用,PGA还可通过氢键和范德华力与乳中的蛋白质作用,这种作用到达一定程度可使蛋白质发生沉淀,于是酸乳的保水性、黏度开始下降。[/size][/font][font='宋体'][size=16px]3.3.3[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯对酸乳质构的影响[/size][/font][font='宋体'][size=16px]添加较低浓度的酸乳较未添加PGA的酸乳硬度低,但随PGA添加量的增加,酸乳硬度呈现上升趋势,在0.30%时趋于平缓。强度的升高说明凝胶要达到同样的形变,所需要施加的压力要更大,这说明添加PGA后,体系的胶凝状态有所增强,内部结构的分子之间排列更加紧密,形成的三维网状结构更加稳定。但酸乳的硬度并不是越高越好,硬度过高会影响酸乳的口感。随着PGA添加量的不断增大,凝胶型酸乳的回复性呈现先稍有升高后下降的趋势,在PGA添加量为0.20%时回复性达到最高,表明酸乳回复性最好,其恢复能力最强。这说明PGA添加量为0.20%时增强了酪蛋白大分子的结合能力,提高体系的凝胶能力,从而能够稳定体系的胶凝状态,增强与外来破坏力的抵抗能力,表现出较强的回复性 而添加过低或过量可能造成原有的凝胶状态不稳定,回复性较差。[/size][/font][align=center][size=16px]第4章 [/size][size=16px]海藻酸丙二醇酯溶液流变特性的影响因素[/size][/align][font='宋体'][size=16px]4.1 pH[/size][/font][font='宋体'][size=16px]值对海藻酸丙二醇酯溶液流变特性的影响[/size][/font][font='宋体'][size=16px]4.1.1 pH[/size][/font][font='宋体'][size=16px]对海藻酸丙二醇酯溶液黏度的影响[/size][/font][font='宋体'][size=16px]随着pH值的增加,PGA溶液的黏度逐渐降低,原因可能是链段之间形成的氢键及范德华力等发生解离,聚集程度减弱,从而使溶液黏度明显减小,此时黏度衰减程度减弱,表明形成的酯键未发生水解,空间位阻仍存在,溶液不易剪切变稀。当pH值达到7(即NaOH添加量为0.20 g,下同)左右后,酯键开始发生水解,空间位阻减弱,使得剪切黏度值进一步降低,但黏度衰减程度增大,解离后的羧酸型链段更易顺着流动方向重新排列,溶液越易剪切稀化。随着温度的升高,PGA溶液黏度持续下降,当到达一定温度后,黏度开始上升,pH值影响黏度开始升高时的温度。[/size][/font][font='宋体'][size=16px]4.1.2 pH[/size][/font][font='宋体'][size=16px]对海藻酸丙二醇酯溶液弹性和黏性的影响[/size][/font][font='宋体'][size=16px]pH值越高,体系的弹性和黏性越弱,表明pH值影响体系的黏弹性能。在pH值较低时,大部分羧基被酯化,增加了分子的空间体积,容易借助静电排斥、空间位阻及其他分子间相互作用形成彼此缠绕的空间网络结构,从而导致体系的黏弹性增强。随着pH值的升高,氢键等作用力发生水解,使得链段密度降低,当pH值进一步升高时,所形成的酯键发生水解,导致黏弹性进一步降低。另外,复合黏度值逐步降低,将该黏度值与稳态流动时剪切速率为6.3 s-1时的黏度值进行对比,动态黏度值与稳态黏度值基本一致,说明溶液中不存在超分子结构。随着温度的升高,PGA溶液的G’’与G’逐步降低,同时pH值影响着黏弹性的温度效应。pH值低于7时,当温度升高至一定温度后,G’开始增加,该温度点随着pH值的增加而增加,当pH值为3.83、5.10、6.36、6.90时,温度分别为86.2、89.4、91.5、92.0 ℃。对于黏弹性比值,黏弹性出现明显降低之前存在一段平台区,此时黏弹性不随温度变化,pH值在3.83、5.10、6.36时分别为70.0~86.2、72.0~89.4、83.1~91.5 ℃。在pH值大于7后,PGA溶液表现出G’’随温度降低,而G’则无明显变化的现象。[/size][/font][font='宋体'][size=16px]4.1.3 pH[/size][/font][font='宋体'][size=16px]对海藻酸丙二醇酯溶液影响的结论[/size][/font][font='宋体'][size=16px]pH值影响PGA溶液的流变特性,溶液pH值的不同使PGA溶液的氢键等作用力发生解离,改变其链段密度,甚至使酯键发生水解,改变空间位阻,从而影响溶液的黏度和剪切稀化性能,影响溶液的G’、G’’、黏弹性比值及复合动态黏度。另外,PGA溶液具有明显的温度依赖性,pH值同样影响溶液的黏度和黏弹性随温度的变化情况。[/size][/font][font='宋体'][size=16px][5][/size][/font][font='宋体'][size=16px]4.2[/size][/font][font='宋体'][size=16px]酯化度对海藻酸丙二醇酯溶液流变特性的影响[/size][/font][font='宋体'][size=16px]4.2.1[/size][/font][font='宋体'][size=16px]应变扫描酯化度对海藻酸丙二醇酯溶液的影响[/size][/font][font='宋体'][size=16px]海藻酸丙二醇酯随着酯化度增加,粘弹性比值即损耗正切值逐步减少。一般而言,损耗正切值越大,体系耗散能量的能力越强,其内耗或内磨擦力越大。酯化度较高的海藻酸丙二醇酯水溶液具有较低的损耗正切值,表明该体系中链段运动的内磨擦阻力较小,但体系的粘性响应仍明显弱于弹性行为。酯化度越高,体系的弹性和粘性越强,表明酯化度影响体系的粘弹性能,可能是因为大部分羧基被酯化,增加了分子的空间体积,容易借静电排斥、空间位阻及其它分子间相互作用形成彼此缠绕的空间网络结构,从而导致体系的粘弹性增强。随着酯化度增[/size][/font][font='宋体'][size=16px]加,复合粘度值逐步增加,将该粘度值与稳态流动时6.3s-1 时的粘度值进行对比,动态粘度值与稳态粘度值基本一致,说明溶液中不存在超分子结构。另外,酯化度同样影响线性粘弹性区域的最高值,酯化度的提高使得剪切稀化指数增强,结构更易受到大振幅的影响,因此,线性粘弹区域减少。[/size][/font][font='宋体'][size=16px]4.2.2[/size][/font][font='宋体'][size=16px]频率扫描酯化度对海藻酸丙二醇酯溶液的影响[/size][/font][font='宋体'][size=16px]在相同的测定频率下体系的 G' 与 G'' 均随阴离子海藻酸丙二醇酯酯化度的增大而增大,即酯化度越高,体系的弹性和粘性越强。在很宽的频率范围内,G' 与 G'' 均具有明显的频率依赖性,不同酯化度的海藻酸丙二醇酯溶液始终 G'G'',表现为明显的以粘性为主的特征,两者不存在相交点。[/size][/font][font='宋体'][size=16px]4.2.3[/size][/font][font='宋体'][size=16px]动态粘度温度扫描酯化度对海藻酸丙二醇酯溶液的影响[/size][/font][font='宋体'][size=16px]随着温度的升高,PGA 溶液粘度持续下降,当到达一定温度后,粘度开始出现上升,不同的酯化度影响粘度开始出现升高时的温度,随着酯化度的提高,粘度开始增加的温度也随着提高。[/size][/font][font='宋体'][size=16px]4.2.4[/size][/font][font='宋体'][size=16px]酯化度对海藻酸丙二醇酯溶液影响的结论[/size][/font][font='宋体'][size=16px]酯化度影响海藻酸丙二醇酯溶液的流变特性。不同的酯化度改变了海藻酸丙二醇酯的空间位阻,从而影响溶液的粘度、剪切稀化性能、特征松驰时间,影响溶液的弹性模量、粘性模量、粘弹性比值、复合动态粘度及线性粘弹性区域。另外,海藻酸丙二醇酯溶液具有明显的温度依赖性,酯化度的改变同样影响着溶液的粘度与粘弹性随温度的变化情况。[/size][/font][font='宋体'][size=16px][6][/size][/font][align=center][/align][align=center][size=21px][color=#000000]参考文献[/color][/size][/align][size=16px][1] [/size][font='宋体'][size=16px][color=#000000]杨瑾,陈坚,李新霞,等. 高效液相衍生化法测定大蒜氨基酸指纹图谱[J]. 新疆医科大学学报,2010,33( 5) : 509 - 511.[/color][/size][/font][size=16px][2] [/size][font='宋体'][size=16px][color=#000000]贾玉山,格根图,董占元,等. 大蒜调控肉牛免疫功能研究[J]. 中国饲料,2004( 9) : 13 - 16.[/color][/size][/font][size=16px][3] [/size][font='宋体'][size=16px][color=#000000]BALASENTHIL S,RAO K S,NAGINI S. Altered cytokeratin expressionduring chemoprevention of experimental hamster buccal pouch carcinogenesis by garlic[J]. J Oral Pathol Med ,2002,31( 3) : 142.[/color][/size][/font][size=16px][4] [/size][font='宋体'][size=16px][color=#000000]李岩,王美惠,吴素琴,等. 黑大蒜提物对高脂血症大鼠血脂的作用、抗氧化活性及对免疫功能的影响[J]. 内蒙古民族大学学报( 自然科学版) ,2014( 2) : 193 - 197.周爱梅,龚翠,曹环,等 .几种新型抗冻剂对鲮鱼鱼糜蛋白抗冻效果研究[/color][/size][/font][size=16px][color=#000000][J].[/color][/size][font='宋体'][size=16px][color=#000000]食品工业科技[/color][/size][/font][size=16px][color=#000000],[/color][/size][size=16px][color=#000000]2010[/color][/size][size=16px][color=#000000],[/color][/size][size=16px][color=#000000]31 [/color][/size][size=16px][color=#000000]([/color][/size][size=16px][color=#000000]11[/color][/size][size=16px][color=#000000])[/color][/size][size=16px][color=#000000]:318[/color][/size][size=16px][color=#000000]-[/color][/size][size=16px][color=#000000]320 393.[/color][/size][size=16px][5] [/size][size=16px][color=#231f20]吴伟都[/color][/size][size=16px][color=#231f20], [/color][/size][size=16px][color=#231f20]朱慧[/color][/size][size=16px][color=#231f20], [/color][/size][size=16px][color=#231f20]王雅琼[/color][/size][size=16px][color=#231f20], [/color][/size][size=16px][color=#231f20]等[/color][/size][size=16px][color=#231f20]. pH[/color][/size][size=16px][color=#231f20]值对海藻酸丙二醇酯溶液流变特性的影响[/color][/size][size=16px][color=#231f20][J]. [/color][/size][size=16px][color=#231f20]乳业科学与技术[/color][/size][size=16px][color=#231f20], 2017, 40(2): 1-4. DOI:10.15922/j.cnki.jdst.2017.02.001.[/color][/size][size=16px][6] [/size][size=16px][color=#231f20]吴伟都[/color][/size][size=16px][color=#231f20],[/color][/size][size=16px][color=#231f20]朱慧[/color][/size][size=16px][color=#231f20],[/color][/size][size=16px][color=#231f20]王雅琼[/color][/size][size=16px][color=#231f20],[/color][/size][size=16px][color=#231f20]李言郡[/color][/size][size=16px][color=#231f20].[/color][/size][size=16px][color=#231f20]酯化度对海藻酸丙二醇酯溶液流变特性的影响研究[/color][/size][size=16px][color=#231f20][J].[/color][/size][size=16px][color=#231f20]饮料工业[/color][/size][size=16px][color=#231f20],2017,20(01):17-20.[/color][/size][align=center][/align][align=center][/align]

  • 【求助】如何测定丙二醇含量

    请教各位高手,我现在要分析一批样品,其中可能含有丙二醇、二甲基乙酰胺、三乙二醇,但是并不知道具体含量,要如何测定?我称量了2g左右的丙二醇对照品用丙酮定容于25mL容量瓶中,进样无丙二醇峰,但是直接进丙二醇对照品就能出风,原因是什么?希望各位高人予以指点,急盼回复!!!

  • 【求助】2010版药典中丙二醇有关物质的气相检查

    2010版药典中辅料丙二醇增加了有关物质的气相检查,其中有杂质一缩二丙二醇、二缩三丙二醇,但据了解,这两种东西均为异构体混合物,我们买了杂质对照品(均为色谱标准品),一缩二丙二醇、二缩三丙二醇均出好几个峰,且有的峰不能完全分离不知怎么理解标准中对其控制的要求?有做过的同仁,望不吝赐教!

  • 丙二醇的区别

    3-氯-1-2-丙二醇与1-2-丙二醇 有什么区别?所说的食品风险监测是哪一种的丙二醇?

  • 食品中的1,2丙二醇

    gb5009.251用标准上的peg20 柱子(60m-0.25mm-0.25μm),按照标准条件乙醇峰和丙二醇峰分离不开,求一个色谱条件。

  • 气象色谱分析一缩二丙二醇?

    有用气象色谱分析一缩二丙二醇的吗?这种物质的沸点到底是多少?在网上查的资料有说是四种异构体的混合物,沸点为90-95℃(sigma官网,一缩二丙二醇标准品MSDS),在另一英文MSDS上说的沸点又是231.9℃ ,两个MSDS上物质的CAS号都相同,既然是同一种物质,纯度都≥99%,为何沸点会不同?请做过的大侠分享一下,分析条件和出峰情况是怎么样的。

  • 【应用数据库有奖问答 7.2(已完结)】聚丙二醇—GPC KF-300使用的液相色谱柱填料是?

    【应用数据库有奖问答 7.2(已完结)】聚丙二醇—GPC KF-300使用的液相色谱柱填料是?

    [b]问题:[b][/b]聚丙二醇—GPC KF-300使用的液相色谱柱填料是?答案:苯乙烯-二乙烯基苯共聚物=======================================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单:莫名其妙(注册ID:moyueqiu)yifan1117(注册ID:yifan1117)大川之子,纵横四海(注册ID:chuangu120)zengzhengce163(注册ID:zengzhengce163)mengzhaocheng(注册ID:mengzhaocheng)[img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021503001389_3749_1610895_3.png!w690x388.jpg[/img][img=,690,388]http://ng1.17img.cn/bbsfiles/images/2018/07/201807021503025171_1875_1610895_3.png!w690x388.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align]方法:HPLC基质:标准品应用编号:102436化合物:聚丙二醇3000,聚丙二醇1000色谱柱:[url=http://www.dikma.com.cn/product/details-5522.html]Dikma GPC KF-300 300 x 8.0 mm, 6 μm[/url]色谱条件:[table][tr][td][b]色谱柱:Dikma GPC KF-300 300 x 8.0 mm, 6 μm (Cat.No: 99308)[/b]流动相:四氢呋喃流速:1 mL/min检测器:RI柱温:30 ℃样品:聚丙二醇3000聚丙二醇1000[/td][/tr][/table]文章出处:迪马科技应用实验室关键字:聚丙二醇3000,聚丙二醇1000,GPC KF-300图谱:[img=,596,577]http://ng1.17img.cn/bbsfiles/images/2018/07/201807020957462612_3011_1610895_3.jpg!w596x577.jpg[/img]

  • 【原创大赛】3-氯-1,2-丙二醇的检测方法探讨

    【原创大赛】3-氯-1,2-丙二醇的检测方法探讨

    3-氯-1,2-丙二醇是丙三醇上的一个羟基被氯原子取代后的化合物,是食品中的污染物,具有致癌性。目前酱油中3-氯-1,2-丙二醇主要来源于水解植物蛋白的副产物,其形成因素主要有蛋白原料的残留脂肪、高浓度的氯离子、大量过剩的酸、高回流温度以及较长的反应时间。2762中规定了酱油里3-氯-1,2-丙二醇的限量为0.4mg/kg。 本次3-氯-1,2-丙二醇(3-MCPD)的检测方法采用GB 5009.191-2016[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱-同位素内标法,样品中加入内标D[sub]5[/sub]-3-氯-1,2-丙二醇(D[sub]5[/sub]-3-MCPD),经硅藻土SPE柱净化,与标准系列溶液一起以七氟丁酰基咪唑衍生后(反应方程式如图1),增强其挥发性,再用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱仪测定,内标法定量。试验过程中遇到一些问题,希望与大家分享交流。[align=center][img=,611,268]http://ng1.17img.cn/bbsfiles/images/2017/08/201708201537_01_2485497_3.png[/img][/align][align=center]图1 衍生反应方程式(上图为3-MCPD,下图为D[sub]5[/sub]-3-MCPD)[/align]1、 色谱条件的确定 由于刚接触[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法,具体的操作流程还不太熟悉。刚开始未进行全扫描采集定性,直接采用SIM扫描,并且还设置了溶剂延迟,衍生后结果均未找到衍生峰。后期用衍生后标准溶液全扫描后发现衍生峰竟在溶剂延迟前出峰,根本就没有采集到。为避免此类事故的发生,由此制定了以下流程。 本法采用HP-5 MS弱极性毛细管柱,采用梯度升温的方法,先对标准溶液的HFBI衍生物进行全扫描质谱采集,将得到的总离子流图(TIC图)提取色谱图,进行定性,找到目标物3-MCPD和内标D[sub]5[/sub]-3-MCPD衍生产物的峰位置。由此可设定溶剂延迟时间以保护灯丝寿命,目标物出峰后的程序升温过程即冲洗柱子将残留在柱子中杂质冲出,这段时间可不进入质谱,以减少对离子源的污染。 然后采用选择离子扫描(SIM)采集,3-MCPD衍生物特征离子:m/z 253(定量离子)、m/z 275、289、291(定性离子);D[sub]5[/sub]-3-MCPD衍生物特征离子:m/z 257(定量离子)、m/z 278、294、296(定性离子)。由得到的峰面积内标法定量,离子丰度比定性。2、 衍生试剂及衍生条件的确定 常用的衍生试剂有七氟丁酰基咪唑(HFBI)和七氟丁酸酐(HFBA),但HFBA产生的副产物七氟丁酸可能会降解氯丙醇衍生物,因此选择HFBA。 前期试验中两次衍生的结果均未找到目标物的衍生峰,找了好久的原因,包括比对定量离子对和定性离子对、探究反应机理、排查标准物质、定容试剂以及衍生试剂,最终发现衍生试剂HFBI和HFBA混淆,误用了HFBA,导致未找到衍生物峰。本实验室两种衍生试剂都有,试验过程中因疏忽大意,将两者混淆,着实给我们一个教训,实验前一定做好准备工作;另外若发现试验出现问题,寻求原因时可从源头开始,从标准品和试剂着手排查原因。3、 线性范围的选择 在日常检验中,经常会有检出量特别大甚至超标的样品,很有可能超出了线性范围,这样标曲就没有意义了。遇到这种情况可有两种解决方案。一是将标曲线性范围扩大,多衍生几个标曲点,确保样品中被检测物含量在线性范围内;二是减小称样量,若称样量少不具有均一性和代表性的话,还可在检测过程中做稀释处理,使样品含量在线性范围内。4、 硅藻土SPE柱 硅藻土具有很好的吸水性,可降低3-氯-1,2-丙二醇在水相中的溶解度。我们选用成品硅藻土SPE柱(Agilent Chem Elut)与自制硅藻土柱(脱脂棉-硅藻土-无水硫酸钠)进行比对。发现回收率相差不太,均在95%~110%之间。从净化效果来看,差异也不大,从节约成本方面综合分析,还是选用自制硅藻土柱。 选用正己烷作为淋洗溶剂,可去除一些脂溶性杂质。最后用乙酸乙酯作为洗脱液将3-氯-1,2-丙二醇全部洗脱。5、 内标法数据分析 将采集的数据定性后确定保留时间,设置内标化合物及其浓度,建立标准曲线的级别和浓度,内标法定量。 在此过程中,若样品中目标物有共流出现象,定量离子有干扰,积分不准确的情况下,①可以重新优化前处理方法-SPE净化;②若其他特征离子没有干扰且灵敏度足够高的情况下,亦可将此离子作为定量离子,重新分析,离子丰度比需在规定范围内。 通过这次试验,让我明白了每一个项目的方法开发、每一批样品的检测都应做好充分准备,包括标准溶液的配制和比对,所用试剂的种类、浓度和有效期,前处理步骤的先后顺序、时间长短以及关键点,检测器、色谱柱、流动相的选择,数据分析的全面性(保留时间、定性离子、定量离子、NIST库);提前查阅文献和资料熟知试验过程及每个步骤的作用和原理,不得有半点马虎,否则做一些无用功,即浪费资源又浪费时间。希望通过这次3-氯-1,2-丙二醇检测中的亲身体会,与大家分享,也告诫一下自己,不断努力,不断提高自身的技术水平。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制