当前位置: 仪器信息网 > 行业主题 > >

微粒粒度标准物质颗粒

仪器信息网微粒粒度标准物质颗粒专题为您提供2024年最新微粒粒度标准物质颗粒价格报价、厂家品牌的相关信息, 包括微粒粒度标准物质颗粒参数、型号等,不管是国产,还是进口品牌的微粒粒度标准物质颗粒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微粒粒度标准物质颗粒相关的耗材配件、试剂标物,还有微粒粒度标准物质颗粒相关的最新资讯、资料,以及微粒粒度标准物质颗粒相关的解决方案。

微粒粒度标准物质颗粒相关的资讯

  • 【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布
    纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准等同采用ISO 19749:2021《Nanotechnologies — Measurements of particle size and shape distributions by scanning electron microscopy》,从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。视具体需求以及仪器性能而定,本标准中涉及到的方法,也适用于更大尺寸的颗粒测量。一、背景纳米颗粒形态多种多样,很多情况下也会存在聚集、团聚的现象,这为SEM的观测与分析带来了较大的挑战。由于不同设备、不同人员的操作习惯以及采用不同分析策略所引起的粒度粒形测量结果的一致性问题也十分值得探讨。现行的相关国家标准大多关注采用SEM手段对特定被测对象的特征进行测量、表征、区分、定义等,具有较强的针对性,但缺乏系统性,特别是对设备性能的计量评定、样品处理及制样过程、图像处理的依据、测量结果的准确性与统计性等技术内容并未给出更为充分的、本质的、系统的说明。二、规范性引用文件本标准在制定过程中,在符合等同采用国际标准的要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括计量学、粒度分析、数理统计、微束分析、颗粒表征、纳米科技等各个专业领域;同时,在一些习惯性表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。三、制定过程本标准涉及的专业领域较为广泛,因此集合了国内相关领域的一批权威代表性机构和企业合作完成。牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。对于标准中的重要技术内容,如SEM性能验证方法、典型样品(宽窄分布颗粒样品)制样方法、比对报告中涉及的颗粒测试及统计方法(算法)等均进行了方法学验证,验证了标准中相关技术操作的可行性。修正了ISO 19749:2021中的一些编辑性错误。四、适用范围本标准适用于各类纳米颗粒及其团聚、聚集体,甚至更大尺寸颗粒的粒度及形状分布测量。前提应将SEM作为一个测量系统进行评定,以确定所用SEM的性能范围,这包括设备自身的扫描分辨力、漂移、洁净度等特性。同时,也取决于观测者所需要的测量准确性。高的测量准确性需要高性能的SEM设备+高精度校准+洁净的样品前处理+匹配的测试参数+足够多的被测颗粒数量+合适的阈值算法,其中每一步都会影响最终的测试结果。因此,根据实际工作中对测试结果准确性、重复性和一致性的需求,可对上述环节进行不同程度的限定。五、主要内容本标准涉及的主要内容覆盖SEM测量颗粒粒度及形状分布的全流程,从一般原理到设备校准,样品制备到测试参数选用,图像采集到数据处理,均给出了较为详细的阐述,并在附录中给出了实用的案例。术语及定义:包括纳米技术的通用术语,图像分析、统计学和计量学专业核心术语、SEM核心术语等。一般原理:概括性地介绍了SEM成像原理及粒度、粒形测量原理。样品制备:较为系统地介绍了典型的粉末及悬浮液从取样、制样到分散的过程,并重点阐述了颗粒在硅基底和TEM栅网上的沉积方法。可根据需求,采用几种不同层次的硅片清洗与处理方法,一方面确保硅片的洁净,另一方面可使其表面带有正电或负电的捕获分子层,以确保颗粒在硅片上的有效分散。必要时采用TEM栅网,可提高颗粒与背底的对比度。考虑样本颗粒数量时,一般而言假设颗粒是对数正态分布的,本标准给出了一个颗粒数与误差和置信区间的计算公式可供参考。SEM设备的评价方法:给出了SEM成像能力的影响因素,包括空间分辨率、漂移、污染、水平垂直范围及线性度、噪声等,具体的验证方法在附件中有较为详细的描述,此外也可依照其他相关的技术规范或标准定期进行校准。图像采集:重点给出了不同粒度测量时放大倍率和像素分辨率的选择策略,取决于实际的测量需求。测量者需要充分考虑要求的误差和放大倍率来计算所需的像素分辨率,当颗粒分布较宽时可能有必要在不同放大倍率下进行拍摄,以兼顾颗粒的测量效率及测量精度。颗粒分析方法:手动分析可能准确率很高,能较好地界定测量区域以及筛选合格的颗粒(例如单分散颗粒体系中去除黏连颗粒),但采用软件自动处理往往更为高效。采用软件处理时,阈值的设定会对颗粒的筛选、粒度的大小产生较为关键的影响,必要的时候可以采用自动处理与手动处理相结合的方式。数据分析:给出了筛选数据可采用的统计学方法(方差分析、成对方差分析、双变量分析等方法)、模型拟合方法的参考,重点讲解了不确定度的来源与计算。结合60 nm颗粒测量结果,阐述了典型的不确定度来源。在上述基础上,给出了测量报告的信息及内容。本文作者: 黄鹭 副研究员; 中国计量科学研究院 前沿计量科学中心 Email:huangl@nim.ac.cn常怀秋 高级工程师; 国家纳米科学中心 技术发展部 Email:changhq@nanoctr.cn
  • 粒度的作用,海岸鸿蒙颗粒标准物质可以助力哪些领域
    在现代工业和科学研究中,颗粒的粒度是影响材料性能的关键因素之一。颗粒标准物质作为确保粒度测量准确性的关键工具,在多个行业中发挥着至关重要的作用。一、制药行业:粒度决定药效在制药行业中,颗粒的粒度对药物的溶解速率、释放特性和生物利用度起着决定性作用。例如,海岸鸿蒙提供的粒度标准物质可以帮助制药企业校准粒度分析仪器,确保药物颗粒大小的一致性,从而提高药物的疗效和安全性。此外,粒度的精确控制还有助于减少副作用,提高药物的稳定性和保质期。二、化工行业:粒度优化性能化工产品的性能很大程度上取决于其颗粒的粒度。例如,催化剂的粒度会影响化学反应的速率和选择性;涂料和塑料的粒度则影响其流动性、干燥时间和最终产品的机械性能。海岸鸿蒙的粒度标准物质用于校准粒度分析仪器,帮助科学家和工程师优化化学反应条件,提高产品性能和生产效率。三、材料科学:粒度塑造特性在材料科学领域,颗粒的粒度决定了材料的机械强度、热导率、电导率等关键性质。海岸鸿蒙的粒度标准物质使研究人员能够精确测量和控制颗粒大小,从而设计和开发具有特定性能的新材料。例如,在金属加工中,通过控制粉末的粒度,可以制造出具有优异机械性能的金属零件。四、环境科学:粒度影响空气质量环境科学中,大气颗粒物的粒度分布对空气质量和人类健康有着重要影响。细颗粒物(PM2.5)等微小颗粒可以深入肺部,对健康造成严重影响。海岸鸿蒙的粒度标准物质用于校准大气颗粒物监测设备,确保空气质量数据的准确性,为制定环境保护政策提供科学依据。五、食品工业:粒度提升食品品质在食品工业,颗粒的粒度影响食品的口感、颜色、保质期和营养成分的释放。例如,面粉的粒度影响面包的质地和口感;巧克力的粒度则关系到口感的细腻程度。海岸鸿蒙的粒度标准物质确保食品加工过程中粒度的一致性,提升食品的品质和消费者的食用体验。六、电子行业:粒度保障显示质量在电子行业,颗粒标准物质用于制造液晶显示器(LCD)的衬垫和光电子器件。精确控制微球的粒度对于保证显示图像的均匀性和精确性至关重要。此外,电子封装材料的粒度也会影响电子器件的散热性能和可靠性。七、纳米技术:粒度激发创新潜力纳米材料的粒度对其光学、磁学和催化性能有着决定性的影响。海岸鸿蒙的粒度标准物质在纳米材料的合成、表征和应用开发中发挥着关键作用。例如,在催化剂设计中,通过精确控制催化剂颗粒的粒度,可以提高其催化活性和选择性。在光学材料中,通过控制颗粒的粒度,可以制造出具有特定光学性质的材料,如光学涂层和光子晶体。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,目前共有200余种颗粒标准物质,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、二氧化硅、金属、胶体金和多元琼脂糖、等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。
  • 【好书推荐】《颗粒粒度测量技术及应用》(第2版)出版
    自然界中很多物质属于颗粒,例如黏土、沙子和灰尘;人类的食物也往往是颗粒,例如谷粒、豆子、盐和蔗糖;很多加工物,例如煤炭、催化剂、水泥、化肥、颜料、药物和炸药也大多属于粉体或颗粒。颗粒学是一门多交叉学科,由多基础科学和大量相关的应用技术组成,涉及化学、物理、数学、生物、医学、材料等若干基础科学,与工艺、工程应用技术密切相关。颗粒(包括固体颗粒、液滴、气泡)与能源、 动力、环境、机械、医药、化工、轻工、冶金、材料、食品、集成电路、气象等行业密切相关,同时也会影响到人们的日常生活。据文献介绍,70% 以上的工业产品都涉及颗粒,近年来经常出现的沙尘暴、冬季大范围的浓雾等都与空气中的颗粒物有关。颗粒粒径和形貌是颗粒的最重要参数。上海理工大学颗粒与两相流测量研究所所长蔡小舒教授及课题组成员长期从事颗粒粒度测量方面的研究和教学工作,先后得到国家自然科学基金重点项目和面上项目、国家 863计划项目、国家 973计划项目、上海市“科技创新行动计划”纳米科技项目等多个项目的支持,开展光散射理论、基于光散射原理的多种颗粒测量方法、基于超声的多种颗粒测量方法、纳米颗粒测量方法、图像法、颗粒在线测量等方面的研究,在颗粒测量基础理论和测量方法及技术方面取得多项成果。《颗粒粒度测量技术及应用》(第一版)左图:蔡小舒教授;右图:《颗粒粒度测量技术及应用》(第一版)《颗粒粒度测量技术及应用》(第一版)是蔡小舒教授等从 20 世纪 80 年代到 2010 年二十多年在颗粒测量理论、方法、技术和应用研究的总结,反映了我国和国际上当时颗粒测量的技术水平。第一版系统介绍了颗粒的基础知识以及颗粒粒径分布的表征方法,全面系统地讨论了有关光散射颗粒粒径测量方面的基础知识,归纳总结基于散射光能测量和透射光能测量的多种颗粒测量方法、纳米颗粒粒度的测量方法以及蔡小舒教授等开展在线颗粒测量应用研究的具体例子。成为从事颗粒测量技术研究和仪器开发的研究人员和工程技术人员的最主要参考书,也是众多涉及颗粒制备与应用的科技人员的重要参考书。时任中国颗粒学会名誉理事长的郭慕孙院士对该书的出版表示肯定,并为该书作序,推荐给从事颗粒研究、加工、应用的科技人员。随着科技的发展,颗粒测量技术也在不断迎来新的挑战、迈向新的高度。颗粒测量方法、技术和仪器有了很大的发展进步,出现了不少新的技术和仪器,远心镜头、液体变焦镜头、各种新型激光光源和发光二极管(LED)光源等光电子技术和计算机技术等硬件技术的发展,以及金属氧化物半导体器件(CMOS)技术的发展推动了各种数字相机技术的飞速发展。颗粒粒度涉及的范围也越来越广泛:▪ 大气环境污染,雾霾使得 PM2.5 成为家喻户晓的名词,新冠病毒的传播更使气溶胶这样的专业词汇得到普及。▪ 纳米颗粒、生物颗粒、微泡、药物颗粒、能源颗粒等新的颗粒应用以及越来越广泛的在线测试需求促进了颗粒测试技术的快速发展。高浓度纳米颗粒粒度测量探针▪ 大数据分析、人工智能算法等手段被引入到测量数据的处理中。众多领域对颗粒测试的需求、软硬件技术的发展等诸多因素,催生出许多新的颗粒测量方法和技术手段。例如,图像测量方法不再局限于对微米级以上颗粒的成像测量,也应用于纳米颗粒的粒度测试;又如,将图像测量方法与光散射等其他方法融合,形成了多种包括气溶胶等在内的在线颗粒测量新方法。纳米颗粒粒度仪 很显然,颗粒测量技术的飞速发展使得 2010 年出版的《颗粒粒度测量技术及应用》一书已不能满足当前颗粒研究者的需要,内容亟需更新。经典再版 全面更新为此,在化学工业出版社的支持下和国家科学技术学术著作出版基金的再次资助下,第二版图书于2023年1月正式出版了。第二版图书在保持上一版结构框架的基础上,对图书内容进行了重新撰写,主要体现在以下几方面:▪ 对部分章节结构作了调整,如将原第 7 章“纳米颗粒的测量”中,有关动态光散射原理的纳米颗粒测量内容并入第 5 章“动态光散射法纳米颗粒测量技术”,有关超声纳米颗粒测量的内容并入第 6 章“超声法颗粒测量技术”,将第 7 章改写成“图像法颗粒粒度测量技术”。▪ 补充了作者团队自第一版出版后 12 年来在光散射理论及测量、超声理论及测量、图像法测量、纳米颗粒测量、多方法融合测量、在线测量等技术及应用的研究成果。▪ 补充修订了与颗粒测量相关的国际标准和国家标准目录等内容。▪ 本书不仅可作为从事颗粒相关研究和应用的科研与工程技术人员的主要参考书,也可供相关专业研究生学习和参考。本书作者深深感谢郭慕孙先生生前的支持和鼓励,谨以本书第二版出版纪念郭慕孙先生逝世10周年。《颗粒粒度测量技术及应用》(第二版)「聚焦颗粒测量技术」「注重技术发展与应用」蔡小舒 苏明旭 沈建琪 等著责任编辑:李晓红书号:978-7-122-42009-1定价:198.00元▲ 长按识别 即可优惠购买本书图书分为四部分。第一部分介绍了颗粒粒度的基本知识;第二部分系统介绍了光散射理论、超声散射理论和图像处理理论等,以及基于上述理论发展的各种颗粒测量技术,其粒度测量范围覆盖了在科学研究及各领域和行业应用涉及的从纳米到毫米粒度范围;第三部分介绍了颗粒粒度测量仪器和应用,并引入其它颗粒测量技术作为补充;第四部分为作者多年来收集的大量物质的折射率和其它物性参数,以及国际和国内有关颗粒测量的标准等资料。本书适合从事颗粒科学研究与应用的科研人员和工程技术人员参考,也可作为高等学校相关学科教师和研究生的教材或参考书。# 目录预览 #第1章 颗粒基本知识 / 0011.1 概述 / 0011.2 颗粒的几何特性 / 0021.2.1 颗粒的形状 / 0021.2.2 颗粒的比表面积 / 0031.2.3 颗粒的密度 / 0031.3 颗粒粒度及粒度分布 / 0041.3.1 单个颗粒的粒度 / 0041.3.2 颗粒群的粒径分布 / 0061.3.3 颗粒群的平均粒度 / 0111.4 标准颗粒和颗粒测量标准 / 0131.4.1 标准颗粒 / 0131.4.2 颗粒测量标准 / 0171.5 颗粒测量中的样品分散与制备 / 0171.5.1 颗粒分散方法 / 0171.5.2 颗粒样品制备 / 0191.5.3 常见测量问题讨论 / 020参考文献 / 022第2章 光散射理论基础 / 0232.1 衍射散射基本理论 / 0232.1.1 惠更斯-菲涅耳原理 / 0232.1.2 巴比涅原理 / 0252.1.3 衍射的分类 / 0262.1.4 夫琅和费单缝衍射 / 0262.1.5 夫琅和费圆孔衍射 / 0282.2 光散射基本理论 / 0302.2.1 光散射概述 / 0302.2.2 光散射基本知识 / 0322.2.3 经典Mie光散射理论 / 0352.2.4 Mie散射的德拜级数展开 / 0522.3 几何光学对散射的描述 / 0562.3.1 概述 / 0562.3.2 几何光学近似方法 / 0572.4 非平面波的散射理论 / 0642.4.1 广义Mie理论 / 0642.4.2 波束因子的区域近似计算 / 0692.4.3 高斯波束照射 / 0702.4.4 角谱展开法 / 071参考文献 / 076第3章 散射光能颗粒测量技术 / 0813.1 概述 / 0813.2 基于衍射理论的激光粒度仪 / 0843.2.1 衍射散射式激光粒度仪的基本原理 / 0843.2.2 多元光电探测器各环的光能分布 / 0863.2.3 衍射散射法的数据处理方法 / 0893.3 基于Mie散射理论的激光粒度仪 / 0933.3.1 基于Mie理论激光粒度仪的基本原理 / 0933.3.2 粒径与光能变化关系的反常现象 / 0963.4 影响激光粒度仪测量精度的几个因素 / 0993.4.1 接收透镜焦距的合理选择 / 0993.4.2 被测试样的浓度 / 1003.4.3 被测试样轴向位置的影响 / 1023.4.4 被测试样折射率的影响 / 1043.4.5 光电探测器对中不良的影响 / 1043.4.6 非球形颗粒的测量 / 1063.4.7 仪器的检验 / 1063.5 激光粒度仪测量下限的延伸 / 1063.5.1 倒置傅里叶变换光学系统 / 1083.5.2 双镜头技术 / 1093.5.3 双光源技术 / 1103.5.4 偏振光散射强度差(PIDS)技术 / 1113.5.5 全方位多角度技术 / 1123.5.6 激光粒度仪的测量上限 / 1143.5.7 国产激光粒度仪的新发展 / 1153.6 角散射颗粒测量技术 / 1203.6.1 角散射式颗粒计数器的工作原理 / 1213.6.2 角散射式颗粒计数器的散射光能与粒径曲线 / 1223.6.3 角散射式颗粒计数器F-D曲线的讨论 / 1243.6.4 角散射式颗粒计数器的测量区及其定义 / 1283.6.5 角散射式颗粒计数器的计数效率 / 1323.6.6 角散射式颗粒计数器的主要技术性能指标 / 1323.7 彩虹测量技术 / 1353.7.1 彩虹技术的原理 / 1363.7.2 彩虹法液滴测量 / 1373.8 干涉粒子成像技术 / 1413.8.1 干涉粒子成像技术介绍 / 1413.8.2 干涉粒子成像法颗粒测量 / 1423.9 数字全息技术及其应用 / 1443.9.1 数字全息技术介绍 / 1443.9.2 数字全息技术的应用 / 146参考文献 / 151第4章 透射光能颗粒测量技术 / 1584.1 消光法 / 1584.1.1 概述 / 1584.1.2 消光法测量原理 / 1584.1.3 消光系数 / 1604.1.4 消光法数据处理方法 / 1634.1.5 消光法颗粒浓度测量 / 1704.1.6 消光法粒径测量范围及影响测量精度的因素 / 1704.1.7 消光法颗粒测量装置和仪器 / 1724.2 光脉动法颗粒测量技术 / 1744.2.1 光脉动法的基本原理 / 1754.2.2 光脉动法测量颗粒粒径分布 / 1784.2.3 光脉动法测量的影响因素 / 1834.3 消光起伏频谱法 / 1854.3.1 数学模型 / 1854.3.2 测量方法和测量原理 / 1884.3.3 消光起伏频谱法的发展现状 / 197参考文献 / 198第5章 动态光散射法纳米颗粒测量技术 / 2025.1 概述 / 2025.2 纳米颗粒动态光散射测量基本原理 / 2045.2.1 动态光散射基本原理 / 2045.2.2 动态光散射纳米颗粒粒度测量技术的基本概念和关系式 / 2075.2.3 动态光散射纳米颗粒测量典型装置 / 2115.2.4 数据处理方法 / 2135.3 图像动态光散射测量 / 2205.3.1 图像动态光散射测量方法(IDLS) / 2205.3.2 超快图像动态光散射测量方法(UIDLS) / 2225.3.3 偏振图像动态光散射法测量非球形纳米颗粒 / 2245.4 纳米颗粒跟踪测量法(PTA) / 2295.5 高浓度纳米颗粒测量 / 231参考文献 / 234第6章 超声法颗粒测量技术 / 2376.1 声和超声 / 2376.1.1 声和超声的产生 / 2376.1.2 超声波特征量 / 2386.2 超声法颗粒测量基本概念 / 2426.2.1 声衰减、声速及声阻抗测量 / 2446.2.2 能量损失机理 / 2486.3 超声法颗粒测量理论 / 2506.3.1 ECAH 理论模型 / 2516.3.2 ECAH理论模型的拓展和简化 / 2626.3.3 耦合相模型 / 2776.3.4 蒙特卡罗方法 / 2836.4 超声法颗粒测量过程和应用 / 2886.4.1 颗粒粒径及分布测量过程 / 2886.4.2 在线测量 / 2986.4.3 基于电声学理论的Zeta电势测量 / 2996.5 超声法颗粒检测技术注意事项 / 3006.6 总结 / 301参考文献 / 301第7章 图像法颗粒粒度测量技术 / 3047.1 图像法概述 / 3047.2 成像系统 / 3057.2.1 光学镜头 / 3057.2.2 图像传感器 / 3087.2.3 照明光源 / 3107.3 显微镜 / 3117.4 动态颗粒图像测量 / 3177.5 颗粒图像处理与分析 / 3187.5.1 图像类型及转换 / 3187.5.2 常用的几种图像处理方法 / 3207.5.3 颗粒图像分析处理流程 / 3237.5.4 颗粒粒径分析结果表示 / 3237.6 图像法与光散射结合的颗粒测量技术 / 3277.6.1 侧向散射成像法颗粒测量 / 3277.6.2 后向散射成像法颗粒测量 / 3307.6.3 多波段消光成像法颗粒测量 / 3317.7 彩色颗粒图像的识别 / 3347.7.1 彩色图像的色彩空间及变换 / 3347.7.2 彩色颗粒图像的分割 / 3367.8 总结 / 338参考文献 / 339第8章 反演算法 / 3418.1 反演问题的积分方程离散化 / 3418.2 约束算法 / 3438.2.1 颗粒粒径求解的一般讨论 / 3438.2.2 约束算法在光散射颗粒测量中的应用 / 3458.2.3 约束算法在超声颗粒测量中的应用 / 3548.3 非约束算法 / 3628.3.1 非约束算法的一般讨论 / 3628.3.2 Chahine算法及其改进 / 3658.3.3 投影算法 / 3678.3.4 松弛算法 / 3688.3.5 Chahine算法和松弛算法计算实例 / 371参考文献 / 372第9章 电感应法(库尔特法)和沉降法颗粒测量技术 / 3759.1 电感应法(库尔特法) / 3759.1.1 电感应法的基本原理 / 3769.1.2 仪器的配置与使用 / 3779.1.3 测量误差 / 3809.1.4 小结 / 3839.2 沉降法 / 3849.2.1 颗粒在液体中沉降的Stokes公式 / 3849.2.2 颗粒达到最终沉降速度所需的时间 / 3869.2.3 临界直径及测量上限 / 3879.2.4 布朗运动及测量下限 / 3889.2.5 Stokes公式的其它影响因素 / 3899.2.6 测量方法及仪器类型 / 3919.2.7 沉降天平 / 3949.2.8 光透沉降法 / 396参考文献 / 399第10章 工业应用及在线测量 / 40110.1 喷雾液滴在线测量 / 40110.1.1 激光前向散射法测量 / 40210.1.2 消光起伏频谱法测量 / 40410.1.3 图像法测量 / 40510.1.4 彩虹法测量 / 40610.1.5 其它散射法测量 / 40810.2 乳浊液中液体颗粒大小的测量 / 41010.3 汽轮机湿蒸汽在线测量 / 41110.4 烟气轮机入口颗粒在线测量 / 41410.5 烟雾在线测量探针 / 41510.6 动态图像法测量快速流动颗粒 / 41710.7 粉体颗粒粒度、浓度和速度在线测量 / 41910.7.1 电厂气力输送煤粉粒径、浓度和速度在线测量 / 41910.7.2 水泥在线测量 / 42110.8 超细颗粒折射率测量 / 42310.9 超声测量高浓度水煤浆 / 42410.10 结晶过程颗粒超声在线测量 / 42510.11 含气泡气液两相流超声测量 / 42610.12 排放和环境颗粒测量 / 42810.12.1 PM2.5测量 / 42810.12.2 图像后向散射法无组织排放烟尘浓度遥测 / 43010.12.3 图像侧向散射法餐饮油烟排放监测 / 43210.13 图像动态光散射测量纳米颗粒 / 43510.13.1 纳米颗粒合成制备过程原位在线测量 / 43510.13.2 非球形纳米颗粒形貌拟球形度Ω测量 / 43810.13.3 纳米气泡测量 / 439参考文献 / 440附录 / 443附录1 国内外主要颗粒仪器生产厂商 / 443附录2 颗粒表征国家标准和国际标准 / 445附录3 国内外标准颗粒主要生产厂商 / 453附录4 液体的黏度和折射率 / 455附录5 固体化合物的折射率 / 458附录6 分散剂类别 / 473
  • 喜讯!微纳公司通过纳米颗粒粒度测试能力的认证!
    根据行业需求,我司参与了“中国合格评定国家认可委员会(CNAS)”与北京粉体技术协会联合组织开展的“纳米颗粒的粒度分析”能力认证项目,我司在全国及国外各大实验室中脱颖而出,在颗粒的粒度分析检测项目中获得中国合格评定国家认可委员会(CNAS)的能力认证。 这次能力认证的成功,证明了我司在纳米颗粒粒度检测方面达到国际先进水平。
  • 【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径
    透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本文将对已实施的GB/T 42208-2022 《纳米技术 多相体系中纳米颗粒粒径测量透射电镜图像法》进行解读。多相体系是指体系内部不均匀的体系,在物理化学中也称为非均相体系、混相体系或者复相体系。而纳米颗粒受尺寸限制往往存在于材料基体中,形成多相体系来增加整个材料特性,这可能关系到后续产品的性能和安全性,因此对多相体系中纳米颗粒的评价尤为重要。透射电镜能作为最直观、准确的设备能够对样品内部进行评价,在多相体系中的纳米颗粒粒径表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。本文件适用于固相多相体系中的粒径测量。考虑到多相体系的多样性,胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件.一、背景纳米材料由于表面效应、量子尺寸效应、体积效应和量子隧道效应等,使材料表现出传统固体不具有的化学、电学、磁学、光学等特异性能。同时,受到尺寸的限制,纳米材料单独使用的场合有限,往往存在于材料基体中,形成多相体系来增加整个材料特性。但是由于纳米颗粒粒径较小、比表面积较大、表面能较大,极易团聚,致使其在多相体系中很难表征和评价。研究多相体系中纳米颗粒的粒度测量,对优化材料结构,改善材料的性能有着极大的促进作用,对推动纳米材料的应用和发展具有重要的意义。多相体系中纳米颗粒不同于单一的纳米颗粒,它对检测方法、样品处理及样品制备都有较高的要求。扫描电子显微镜和原子力显微镜由于成像原理的问题,不利于多相体系中纳米颗粒的测量。因此在本标准发布之前,国内该内容处于空白,本标准聚焦透射电镜的成像原理,对样品制备、图像获取、图像分析、结果表示、测量不确定度等技术内容给出了充分的、系统的说明。二、规范性引用文件和参考资料本标准在制定过程中,在符合GB/T1.1-2020《标准化工作导则 第1部分:标准的结构和编写》国家标准编写要求的基础上,充分参照了现行相关国家标准中的相关术语及技术内容的表述,包括颗粒系统术语、纳米材料术语、微束分析、粒度分析、纳米技术等各个专业领域;同时,在规范表达上,也充分征求了行业专家、资深从业者、用户的意见和建议,力求做到专业、通俗、易懂。 三、制定过程本标准涉及的领域较为专业,因此集合了国内相关领域的一批权威代表性机构合作完成。牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。对于标准中的重要技术内容,如实验步骤、不同多相体系样品的制备方法、图像获取方式、图像分析、数据处理等均进行了实验验证,确定了标准中相关技术的操作可行性。四、适用范围本文件适用于固相多相体系中纳米颗粒的粒径测量和粒径分布。胶体和生物组织中的纳米颗粒,只要样品制备满足透射电子显微镜观察的要求,也适用本文件。 五、主要内容本标准描述了利用透射电子显微镜图像处理和分析技术进行纳米颗粒在多相体系中分散的粒径测量方法的全流程,包含了标准所涉及的术语和定义,TEM的成像原理,不同类型样品的制备方法,详尽的实验步骤,结果表示以及测量不确定度的来源,并在附录中针对不同的样品类型给出了实用案例。术语及定义:即包括了纳米颗粒、分散的术语定义,还包括了TEM中明场相、暗场像、扫描透射电子显微图像和高角环形暗场像等几种成像方式的定义。一般原理:利用透射电镜图像评估纳米颗粒在多相体系中的粒径测量,主要基于透射电子显微镜中电子束穿透样品成像的原理,并对图像进行处理,通常需要借助粒径分析软件进行粒径测量,以避免人为因素的干扰。样品制备:纳米颗粒在多相体系中的分散,由于多相体系材料不同,样品制备方法不同,系统的介绍了纳米复合材料的制备、多相固态金属材料的制备以及多相生物材料的制备方法,这包含了超薄切片技术、离子减薄技术、生物染色技术等。实验步骤:包含了装样、仪器准备、图像获取的全过程。需要注意的是根据多相体系材料及其中纳米颗粒的种类和状态的不同,在测试过程中要明确选用明场、暗场、高角环形暗场等合适的成像技术,并保证有足够清晰度和对比度的透射图像,能够准确识别到图像中的纳米颗粒。除此之外,为了使拍摄所得的图像中包含有足够的样品数量进行粒径测量,需要在不同的位置多次拍摄。具体的过程,本标准在附录A中以镍基高温合金多相体系中纳米颗粒为例,给出了详细过程。粒径测量:多相体系中的纳米颗粒的透射电子显微镜图像通常存在背景亮度不均匀、分散相边界与图像背景灰度差小的特点,因此需要图像处理将样品图像从背景中区分出来。总体目标是将数字显微照片从灰度图像转化为由离散颗粒和背景组成的二值化图像。重点采用阈值算法进行单个颗粒的测量。同时,颗粒粒径测量时测量颗粒数量对测量不确定的影响较大,因此需要确认最少测量颗粒数,这也取决于实际的测量需求。在结果表示方面,实验室可以根据实际需求,只评价纳米颗粒粒径的大小,也可以以纳米颗粒的分布范围为评价目标。在标准的附录中给出了两种分布范围方式。不确定度:对多相体系中纳米颗粒的粒径测量的测量不确定度主要来源包含了样品均匀性、样品制备、图像处理和测量所需的颗粒数不足等。在上述基础上,给出了测量报告的信息及内容。本文作者:常怀秋 高级工程师;国家纳米科学中心 技术发展部Email:changhq@nanoctr.c
  • 关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知
    全国纳米技术标准化技术委员会纳标委字〔2022〕15 号关于联合开展 KLCS-2201“动态光散射法颗粒粒度检测”比对实验的通知各有关单位:经国家标准化管理委员会批准,国家标准制定项目《纳米技术 动态光散射法粒度分析仪技术要求》于 2021 年正式立项,项目批准号 20212956-T-491。为了对标准制定过程中的相关技术参数进行验证,全国纳米技术标准化技术委员会秘书处与中国颗粒学会颗粒测试专业委员会、北京粉体技术协会联合组织开展 “动态光散射法颗粒粒度检测”比对实验,计划编号为“KLCS-2201”,现将具体要求通知如下:一、检测项目本次比对要求使用动态光散射法粒度分析仪测定颗粒的粒度。二、参加单位以能提供颗粒的粒度分析检测项目的单位为主,欢迎各实验室积极参加。三、组织实施本次比对由全国纳米技术标准化技术委员会、中国颗粒学会颗粒测试专委会和北京粉体技术协会联合组织,国家标准项目起草组负责比对实验的具体运作,包括编制作业指导书,制备、分发样品,回收和分析结果,起草结果报告等。四、时间安排2022 年 4 月正式启动;2022 年 5 月分发样品及作业指导书;2022 年 6 月结果回收分析;2022 年 8 月前完成实验结果报告。各参加单位应正确认识比对的目的和意义,客观真实反映检验能力和水平,确保计划取得实效。五、联系信息秘书处联系人:高洁,010-82545672,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;项目组联系人:朱晓阳,电话:13601393948,通信地址:北京市海淀区中关村北一条 11 号国家纳米科学中心;刘俊杰,电话:13661221655,通信地址:北京市朝阳区北三环东路 18 号中国计量科学研究院;高原,电话:13910812410,通信地址:海淀区西三环北路 27 号北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)。全国纳米技术标准化技术委员会中国颗粒学会颗粒测试专业委员会北京粉体技术协会二O二二年四月十八日
  • 海岸鸿蒙承担2024年度中国科学院检验检测实验室能力验证/实验室间比对工作——亚微米颗粒粒度测量项目
    近日,国家计量认证中国科学院评审组发布了《关于开展 2024 年度中国科学院检验检测实验室能力验证/实验室间比对工作的通知》(以下简称通知)通知提到:根据国家市场局《检验检测机构资质认定管理办法》《实验室能力验证实施办法》等相关要求及提升中国科学院检验检测实验室整体技术支撑能力和水平,保障检验检测机构资质认定工作的有效性,国家计量认证中国科学院评审组拟开展2024年度实验室能力验证/实验室间比对工作。北京海岸鸿蒙标准物质技术有限责任公司将承担本年度“亚微米颗粒粒度测量”比对项目。中国科学院检验检测实验室能力验证/实验室间比对工作是证明技术机构检测能力的一种科学有效的技术手段,是保障检验检测机构资质认定工作有效性、验证和提升所级中心及检验检测机构技术能力水平的重要活动。海岸鸿蒙能够承担此次工作,不仅是对我司在颗粒领域长期深耕的积极肯定,也是对今后研发与创新的激励。海岸鸿蒙将积极发挥自身资源和技术优势,做好组织和实施工作,确保承担项目科学、高效完成,同时以此次承担能力验证项目实施工作为契机,继续夯实技术基础,提升创新能力,为检验检测行业的规范化、标准化和高质量发展提供有力的技术支撑。 海岸鸿蒙标准物质北京海岸鸿蒙标准物质技术有限责任公司创办于1996年,总部位于北京,2020年在合肥建立鸿蒙标准技术研究院,是一家集国家标准物质研制、生产和销售于一体的高科技企业,是国家及中关村认定的双高新技术企业。公司拥有核心知识产权30余项,参与制定20余项国家标准,先后通过了CNAS标准物质生产者、ISO9001、ISO14001、OHSAS18001认证。公司自主研制生产的产品万余种,产品涵盖颗粒控制、单元素、容量分析、临床分析、保健品成分分析、食品添加剂及限量物质、农药残留、油液污染、环境检测等系列,有800多种产品被国家市场监督管理总局批准为国家标准物质。其中PM2.5、三聚氰胺、可见异物等百余种标准物质的研制,成功填补了国内的空白,微米、纳米系列粒度标准物质达到国际前沿水平。2022年获批设立博士后科研工作站,拥有高精尖的研究队伍,包含CNAS专家库A级专家、BIPM/CCL及APMP/TCL代表、全国标准化技术委员会委员、国家标准物质专家库专家,硕士、中高级技术职称人员占比50%,为高质量发展提供了强有力的组织与人力资源保障。
  • BCEIA 2023,海岸鸿蒙颗粒标准物质强势吸睛
    九月金秋,桂子飘香,两年之约,如期而至。2023年9月6-8日,第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)于北京中国国际展览中心(顺义馆)圆满落幕。此次会议秉承“分析科学创造未来”的愿景,围绕“生命 生活 健康——面向绿色未来”的主题组织了学术报告会、专题论坛及仪器展览会,共吸引了700余家厂商参展,万余名专业观众现场观摩。自正式入场开始,活动现场人潮汹涌,海岸鸿蒙明亮大气的展台人声鼎沸,各式不同的产品整齐有序地陈列在展台上,观众近距离了解各种标准物质的特点及应用。值得一提的是,海岸鸿蒙凭借在颗粒标准物质领域内的独家技术,引来现场众多关注,工作人员为参观者耐心讲解了颗粒标准物质从研发、生产、质量控制等生产程序,以及在环境监测、医疗制药、计量校准等领域发挥的功能作用。来自国内外的参展观众对颗粒标准物质的应用、特点及在各个领域中的重要性有了极大了解,无不认可海岸鸿蒙的研发实力。海岸鸿蒙自1996年成立,便着手颗粒标准物质的研发,27载深耕令海岸鸿蒙颗粒标准物质的研发已达到国内领先、国际前沿水平。其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、不锈钢、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。可以应用在激光粒度仪、流式细胞仪、微粒分析仪、尘埃粒子计数器、液体颗粒计数器、全自动灯检机等仪器的检定校准、分析测试中,也可用于质量控制及科研工作或输液器的滤除滤检测、药典可见异物检测等。颗粒产品可见异物标准物质中国药典用标准物质据工作人员统计,近半数来到海岸鸿蒙的观众表示颗粒标准物质与他们的研究或工作中有着关联性,并希望能够在未来的工作中使用上国产颗粒标准物质,他们深知使用国产颗粒标准物质对保证工作质量、提高设备准确性和优化性价比的重要之处,面对热情的参观者,海岸鸿蒙展台俨然成为了一个交流和学习的平台。展会期间,神州细胞、天津一方等企业,以及计量行业的专家代表前来交流,交谈中,专家代表们为海岸鸿蒙颗粒标准物质的产品竖起大拇指!相关企业先后在现场预约颗粒标物的培训课程,希望通过培训交流可以更好地了解颗粒标准物质的应用和重要性,提高他们的检测水平和质量保障能力。在我国制定的《计量发展规划(2021-2035年)》中,标准物质研发、推广及应用已经上升为“国家战略”。为满足国内相关企业对颗粒标准物质的应用需求,普及颗粒标准物质的专业知识,实现测量结果的有效溯源和量值统一,助力我国颗粒标准物质行业发展,海岸鸿蒙特开展“颗粒标准物质全国巡回培训班”,帮助更多的企事业及科研单位充分掌握颗粒标准物质的专业知识及具体应用。2023年9月1日-2024年8月31日间,有意者可联系海岸鸿蒙进行课程预约,海岸鸿蒙将进行1对1的精讲培训。此外,仪器信息网、仪器学习网等业界媒体先后来到海岸鸿蒙,围绕着行业未来发展趋势、市场模式变化、产品研发技术、商务合作等话题展开了热烈交谈。经过三天的盛会,BCEIA 2023圆满落幕。本次展会为行业提供了一个国际化的交流与合作平台,推动了领域内的互动与合作,为标准物质行业的未来发展注入了新的活力。此次海岸鸿蒙不仅向业界展示了在标准物质领域技术研发上的雄厚实力,更提高了大众对标准物质行业的认知度。展望未来,海岸鸿蒙将继续深耕标物研发与创新,为各领域提供高质量的标准物质,为行业发展做出更大贡献,助力中国标物崛起。
  • 蔡小舒教授:颗粒粒度及气溶胶在线测量的图像魔法
    p style="text-align: justify text-indent: 2em "说起图像法,大家很自然会联想到相机。对,图像法就是用相机作为传感器测量颗粒粒度。其实,图像法并不是一种新的测量方法,这是一种已有很多年历史的测量方法。早期的相机采用胶片作为传感器,记录被测物体的影像,然后将影像投影到工具投影仪上,在投影仪上用标尺或后期发展的坐标传感器量出被测物体的大小。下图是一种显微投影仪的照片,显微物镜把胶片上的图像投影到屏幕上,在屏幕上量出物体图像的尺寸。对于颗粒样品,则可以直接在显微镜下进行观测测量。很显然,在用胶片作为传感器的时期,图像法是不可能用于在线测量的。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/21f18409-d7be-4568-a7cb-255a0d29561b.jpg" title="图片1.jpg" alt="图片1.jpg"//pp style="text-align: center text-indent: 0em "strong显微投影仪/strong/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "(友情提示:移动端用户下方点击阅读全文,/span/pp style="text-indent: 0em text-align: center "span style="color: rgb(255, 0, 0) "再点击取消即可阅读全文,也欢迎下载APP体验阅读新感受)/span/pp style="text-align: justify text-indent: 2em "图像法作为颗粒粒度测量,尤其是颗粒粒度在线测量的新方法再次出现并得到日益广泛的应用,得益于CCD和CMOS的发明,数码相机的飞速发展,以及光学镜头、光源、计算机技术以及图像处理算法的飞速发展。数码相机的核心是CCD/CMOS传感器,尤其是近年来CMOS技术的发展使其性能得到很大提高,几乎占据了绝大部分的数字传感器。下图是CMOS传感器的照片。在CCD/CMOS传感器中,代替胶片中感光粒子的是按矩阵排列的像素。如果在每个像素前按规律设置红(R),绿(G)和蓝(B)三色滤色片,则可以得到彩色图像。这样CCD/CMOS就将图像自然分解成了成可以用计算机处理的离散信号。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc747ae3-b89b-426c-8014-114e41854faa.jpg" title="图像2.png" alt="图像2.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量装置主要包括:相机、镜头、光源、取样装置等。其中相机是最关键的设备。为得到清晰的被测颗粒的影像边缘,一般在在线测量中采用逆光(背光)照明方式,相机在测量区一侧,光源在测量区另一侧,如图所示。span style="color: rgb(0, 176, 240) "strong由于光的穿透能力不强,因此图像法不能用于高浓度颗粒的直接在线测量(in-line)。对于高浓度颗粒,必须采用取样方式测量(on-line)/strong/span。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/fc188c81-6aa1-4737-96b1-bf330735261e.jpg" title="图片3.jpg" alt="图片3.jpg"//pp style="text-align: center text-indent: 0em "strong图像法在线测量原理示意图/strong/pp style="text-align: justify text-indent: 2em "与图像法静态测量要求不同,在图像法在线测量中,被测颗粒不是静止不动的,而是在运动的,甚至运动速度很高。为得到清晰的颗粒图像,就要“冻结”运动颗粒的影像,这就要求图像的曝光时间要与被测颗粒的运动速度相匹配。对于高速运动的颗粒,要求的曝光时间要短,低速的可以稍长。 曝光时间还与拍摄图像时所用镜头的放大倍率有关,放大倍率大,要求的曝光时间就短,放大倍率小,曝光时间就可以长一些。 曝光时间可以由相机的快门控制,也可以由光源的脉冲宽度控制。目前工业相机的电子快门时间最短可以到1微秒,而作为照明光源的脉冲激光的脉冲宽度可以达到几个纳秒。曝光时间越短,需要的光源强度就越大,这就给光源提出了高的要求。工业相机的电子快门分成滚动快门(rolling shutter)和全局快门(global shutter)2类。span style="color: rgb(0, 176, 240) "为保证曝光时运动颗粒图像不发生畸变,在图像法在线测量中必须采用全局快门/span。/pp style="text-align: justify text-indent: 2em "作为在线测量,图像法装置不能像显微镜那样通过更换不同放大倍率的显微物镜来适应不同大小颗粒的测量,这就希望像素尺寸尽量小,以得到高的图像分辨率。通常,滚动快门的CMOS的像素小于全局快门,目前滚动快门的CMOS的最小像素已达到1.5微米,而全局快门的最小的像素是3.8微米。/pp style="text-align: justify text-indent: 2em "在图像法测量中,相机镜头是关键的设备。图像法能进行在线颗粒测量,很大程度上是依赖于strongspan style="color: rgb(0, 176, 240) "远心镜头/span/strong的发明和发展。用相机拍摄物体,通常图像存在远小近大的现象。而在线测量不能控制被测颗粒一定会处于镜头的焦平面位置,这就会造成颗粒的影像大小与颗粒的真实尺寸不同。远心镜头的出现,很好解决了这个问题。被测颗粒处于不同位置时,远心镜头获得的颗粒图像大小并不会随位置变化而变化。这就使得图像法可以用于颗粒的在线测量。远心镜头有定倍率和工作距离,以及可变放大倍率和工作距离2类,可以根据需要采用其中一种。/pp style="text-align: justify text-indent: 2em "在图像法在线测量中最大问题是被测颗粒不仅存在于测量区中,有些还处于离焦位置,颗粒图像是不清晰的。下图中就同时存在清晰颗粒、离焦程度不大和离焦尺度大的模糊颗粒影像。strongspan style="color: rgb(0, 176, 240) "对于离焦颗粒图像,可以有2种处理方法/span/strong,对于离焦程度大的模糊影像,直接剔除,不予处理。对于离焦程度不大的模糊图像,可以采用图像处理算法来恢复,得到颗粒的粒度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "在图像法在线测量中,一般都需要用取样装置将被测粉体样品从生产工业管路中去出,在取样时,必须采取措施防止颗粒样品发生团聚,如用无油无水的压缩空气分散样品颗粒。下面3个图给出了在在线测量取样中没有对颗粒采取分散措施,分散不足和充分分散后的颗粒图像。可以明显看出充分分散的重要性。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/59590f06-6860-4880-955a-367e24cc5746.jpg" title="图像4.png" alt="图像4.png"//pp style="text-align: justify text-indent: 2em "图像法在线测量不仅可以给出被测颗粒的粒度,还可以得到被测颗粒的形貌参数,这是其它颗粒测量方法不能做到的。/pp style="text-align: justify text-indent: 2em "strong图像法与RGB三波段消光法融合在线测量/strong/pp style="text-align: justify text-indent: 2em "受光学原理和硬件的限制,strongspan style="color: rgb(0, 176, 240) "图像法在线测量下限一般在2-3微米/span/strong。但在工业过程中存在着大量亚微米颗粒中同时存在有少量较大颗粒,并都需要测量其粒度的情况。这时可以strongspan style="color: rgb(0, 176, 240) "将图像法与多波长消光法相结合,用图像法测量较大颗粒的粒度,而用多波长消光法测量亚微米颗粒的粒度/span/strong。/pp style="text-align: justify text-indent: 2em "彩色相机中的CMOS传感器可以认为是RGB三个波段光探测器件,当采用白光作为光源,对获得的图像可以分别用图像处理算法处理其中的大颗粒影像,用多波长消光法处理背景图像中的RGB信息来分别获得大颗粒和亚微米颗粒的粒度。如下图是用彩色相机获得的高速流动中的湿蒸汽两相流图像,其中高速流动的较大水滴的轨迹宽度对应其粒度,而长度对应其速度,背景是较高浓度的小水滴,无法用图像识别。此时,可以分别对如圆圈中的大水滴影像用图像处理算法处理,得到其粒度和速度,而对矩形框内的亚微米颗粒用RGB三波段消光法进行数据处理,得到小水滴的粒度及分布。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/009bf84a-9554-447d-945d-c6bdbe8cb4f2.jpg" title="图片5.jpg" alt="图片5.jpg"//pp style="text-align: center text-indent: 0em "strong同时存在大小颗粒的图像/strong/pp style="text-align: center text-indent: 0em "strong图像法与后向光散射融合测量大气颗粒和排放烟尘浓度/strong/pp style="text-align: justify text-indent: 2em "图像法不仅可以测量成像的颗粒的粒度,还可以strongspan style="color: rgb(0, 176, 240) "与光散射结合测量无法成像的大气中气溶胶颗粒的浓度和排放烟尘的浓度/span/strong。气溶胶是空气中悬浮颗粒与大气构成的体系,悬浮颗粒包括固体颗粒,液体颗粒,生物颗粒等。由于气溶胶颗粒粒度很小,受气流和布朗运动的作用,会在大气中长时间扩散传播,PM2.5就属于气溶胶范畴。下图分别是室内和大空间悬浮的气溶胶颗粒在激光照射下的散射光。strongspan style="color: rgb(0, 176, 240) "该散射光强与悬浮颗粒的粒度、浓度和测量散射角度有关/span/strong。用相机作为传感器,将相机聚焦于激光照射的要测量区域,得到气溶胶后向散射强度后,用米散射理论和相关数学模型进行数据处理,可以得到空间的气溶胶浓度。该方法可以用于烟囱排放烟尘浓度的远距离遥测。如果同时用多个波长的激光进行测量,还可能可以得到悬浮颗粒的平均粒度和分布。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2f6469fd-9884-41c8-9b57-af11b16bc8b0.jpg" title="图像6.png" alt="图像6.png"//pp style="text-align: justify text-indent: 2em "strongimg style="max-width: 100% max-height: 100% float: left width: 125px height: 125px " src="https://img1.17img.cn/17img/images/202002/uepic/01e065bd-c5ef-4e1a-9570-1808f883e70a.jpg" title="蔡小舒_.jpg" alt="蔡小舒_.jpg" width="125" height="125" border="0" vspace="0"/span style="color: rgb(0, 176, 240) "作/spanspan style="color: rgb(0, 176, 240) "者简介:/span/strong曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/p
  • “小贝开讲”之如何快速实现悬浮液、粉体颗粒粒度分布的准确分析
    时间:2018年12月12日 14:00 - 15:00内容简介:作为应用领域最广的粒度分析设备,激光衍射粒度仪有着其它粒度分析设备没有的更宽的测量范围,更高的重复性,更快的测量速度以及更简便的操作。但我们所测样品种类繁多,粒度分布极广,所以如何确保仪器上下限粒度的极限测量?如何确保快速准确区分单峰、多峰样品?如何简化并规范操作流程?这些都是我们关注的焦点。 本讲座将通过对样品的前处理探讨,以及测试过程中对激光粒度仪LS 13 320 XR软硬件设计的详细剖析,为您快速获知任何所测样品的准确粒度分布提供有力保障。主讲人简介:史艳轻产品应用技术专家 贝克曼库尔特生命科学市场部 在粉体制备、颗粒表征以及颗粒特性产品应用领域工作多年,有着丰富的样品颗粒分析和检测经验,现为贝克曼库尔特公司颗粒特性和计数产品专员,负责颗粒产品的技术和应用开发等相关工作。美国贝克曼库尔特公司于1997年由贝克曼公司和库尔特公司合并成立,现已成为世界著名的颗粒分析仪器公司。作为颗粒特性分析领域的先驱和领导者,贝克曼库尔特专注于为全球用户创造卓越的价值。众多应用领域如食品、制药、化工等和国际组织如美国ASTM,国家航空航天局 (NASA)等均将贝克曼库尔特的技术和产品定为标准方法或质量控制的专用仪器。秉承“为全球客户提供富于创新和值得信赖的科学解决方案”的使命,贝克曼库尔特不忘初心,不断创新,致力于为客户提供完整领先的颗粒表征及粒度分析解决方案。
  • 梅特勒托利多:用于测定颗粒粒度分布的筛分易巧称量件上市
    梅特勒托利多:用于测定颗粒粒度分布的筛分易巧称量件上市 -- One Click&trade 一键称量筛分分析解决方案 筛分易巧称量件是可放置在精密天平秤盘上的选配件,用于固定筛堆安全放置在天平正确的位置。 完整的One Click&trade 一键称量筛分分析解决方案 使用天平触摸屏上的One Click&trade 快捷键即可方便的启动方法。使用自动称量侦测,无需接触任何按键,筛子就能被连续称量。LabX在天平上提供了清晰的一步一步的指令,自动保存数据并进行计算。完整的解决方案专为您的流程需求而度身定制。12345一键启动任务筛分回称结果记录存档 通过触摸屏输入样品ID。通过SmartTrac&trade 指导样品称量。声音信号提示下一步筛分。显示分布的百分比。所有数据被自动记录下来。无需任何按键,称量所有空筛。暂停任务,在筛分震动器上完成筛分。自动计算出每个筛子所占质量的权重。更多计算出的结果,例如尺寸d50网格筛子。可随时打印定制的有图形曲线的报告。 详细信息,请访问梅特勒托利多网站:http://cn.mt.com/cn/zh/home/products/Laboratory_Weighing_Solutions/oneclick-weigh/OneClick_Sieve.html
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 【技术指导】油品颗粒度检测标准和内容(便携式颗粒度检测仪)
    得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品颗粒度检测范围和方法油品颗粒度检测,其实就是对油品的磨损性能进行评价。油品颗粒度也是油品污染物的重要检测指标。检测油品的颗粒含量,不仅可以帮助提高使用油品机组的可靠性,还可以延长其使用寿命,减少生产事故的发生,提高生产效率。由此可见油品颗粒度检测的重要性。油品颗粒度检测范围:汽油、柴油、煤油、刹车油等。油品颗粒度检测方法:油品颗粒度分析的方法主要有光学法、电磁法、电容法和显微图像分析法。其中,光学检测法因其检测速度快、灵敏度高和颗粒形状分析能力强,被广泛应用于微小颗粒的计数检测。光阻法是光学检测方法中广泛检测和发展的一种颗粒计数测量方法。油品颗粒度检测标准DL/T 432-2018电力用油中颗粒度测定方法GB/T 30507-2014船舶和海上技术润滑油系统和液压油系统颗粒污染物取样和清洁度判定导则QC/T 29105.3-2013专用汽车液压系统液压油固体颗粒污染度测试方法取样QC/T 29105.4-1992专用汽车液压系统液压油固体污染度测试方法显微镜颗粒计数法JB/T 10560-2017滚动轴承防锈油、清洗剂清洁度及评定方法JB/T 9591.3-2015燃气轮机油系统清洁度测试用显微镜计数法测定油液中固体颗粒污染度SH/T 0573-1993在用润滑油磨损颗粒试验法(分析式铁谱法)QC/T 29104-2013专用汽车液压系统液压油固体颗粒污染度的限值JB/T 9737-2013流动式起重机液压油固体颗粒污染等级、测量和选用JB/T 12895-2016内燃机润滑油污染物颗粒分级和检测方法相关仪器A1030便携式油液污染度检测仪使用方便,用于液压油、润滑油及水乙二醇抗燃液清洁度的现场检测,检测清洁度直观易读,并能帮助维护工程师判断油品污染物的性质,判断污染物的来源,是现代工厂维护的常用检测设备。适应标准:DL432(显微镜对比法) NAS1638(美国航空航天工业联合会制定),ISO 4406(国际标准化组织制定)仪器特点1、可目测5~150μm颗粒污染情况2、颗粒成份一目了然,快速分析污染级3、操作方便,快捷实用技术参数• 显微镜:100倍• 检测颗粒:5μm~150μm• 检测等级:NAS等级00-12,ISO等级1-24• 滤膜:1.2μm、5μm• 精 准 度:±0.5个污染度等级• 小进样量:12.5ml• 环境温度 15℃~55℃• 尺寸:540mm*400mm*340• 重量:10.2kgA1031油液颗粒污染度检测仪是依据GB/T 18854-2002、ISO11171-1999、DL/T432-2007、GJB 420B、NAS1638、ISO4406等标准研制的用于油液中污染粒子的分布大小尺寸及等级检测的仪器。油液颗粒计数器采用光阻法(遮光法)原理研制,适用于液压油、润滑油、抗燃油、绝缘油和透平油等颗粒污染度的检测。可提供快速、准确、可靠、可重复的检测结果及完整的污染监测分析报告。广泛应用于航空、航天、电力、石油、化工、交通、港口、冶金、机械、汽车制造等领域。仪器特点1.采用国际液压标准光阻(遮光)法计数原理。2.高精度激光传感器,测试范围宽,性能稳定,噪声低,分辨率高。3.采用精密注射泵取样方式,可自行设定取样体积,进样速度稳定,取样精度高。4.采用了正负压结合的进样系统,可实现样品脱气,适合不同粘稠度的检品测试。5.内置空气净化系统,保证测试不受污染。6.内置多重校准曲线,可兼容国内外常用标准进行校准。7.内置GJB-420B、NAS1638、ISO4406和ГOCT17216-71等8种常用标准,支持自定义标准测试,并可根据客户需求设置所需标准。8.可采用标准取样瓶或取样杯等多种取样容器,满足不同行业的检测要求。9.彩色触摸屏操作,内置打印机,结构简洁大方,操作简单方便。10.全功能自动操作,中文输入,具有数据存储、打印功能。11.内置数据分析系统,可根据标准自动判定样品等级。12.具有RS232接口,可连接电脑或实验室平台进行数据处理。13.可有偿提供颗粒度计量测试站“中国航空工业颗粒度计量测试站”校验报告。技术参数• 光源:半导体激光器• 粒径范围:0.8um~500um• 检测通道:8通道任意设置粒径尺寸• 分辨力:优于10%• 重复性:RSD2% • 粘度范围:大350mm2/s(cSt)• 取样体积:0.2~1000ml • 取样精度:优于±1%• 取样速度:5mL/min ~80mL/min• 气压舱真空:0.08MPa• 气压舱正压:0.8MPa • 极限重合误差:10000粒/mL• 工作电源:AC220V±10%,50Hz
  • 美国麦克新型颗粒粒形分析仪面世
    美国麦克公司推出颗粒分析新产品:Particle Insight颗粒粒形分析仪  Particle Insight 是一台先进的颗粒粒形分析仪,不仅分析颗粒的粒径,还可以分析选择不同形状的分布区,捕获图像后即刻进行分析,这对分析原材料是非常重要的。此外,Particle Insight能够最终提供多达28种不同的颗粒形状参数,为用户提供了灵活的形状参数来量化颗粒,对最终产品可产生非常关键的影响。  Particle Insight 的另一个重要特点是对无论是水相的还是有机溶液相的所有样品都能进行实时分析,瞬间给出分析结果,快速、即时反馈实验进程。  Particle Insight 广泛适用于工业、生物、地质领域,测量颗粒范围为0.8-300μm。其独特设计的循环抽样模块和光学元件可在很短的时间内统计有效的测量数据,这一特点在以质量控制为目的的许多制造工艺领域是必不可少的。  美国麦克公司现有的三款颗粒分析仪器,分别采用不同的颗粒分析原理,对颗粒粒度及数量进行分析,极大的满足了不及类型用户的需求  Saturn DigiSizer 5200 全自动激光粒度分析仪,采用全米氏(Mie)散射定律,并配有专利技术的样品处理单元(liquid sample handling unit,LSHU)对所分析的样品进行制备。其粒径分析范围为0.02微米至2000微米。由于此仪器配备多达130万个检测元素的专利高精度航天级 CCD检测器,因此Saturn DigiSizer 5200 是目前世界上最先进的全自动激光粒度分析仪。仪器的操作软件为先进的“Windows”软件,可以提供多种多样的数据和图形报告。Saturn DigiSizer 5200适合于各种材料的颗粒大小及分布的分析研究。  SediGraph Ⅲ 5120 全自动Χ-光透射沉降粒度分析仪,是一台集高精度、良好的重复性和快速分析于一身的全自动粒度分析仪。该仪器采用沉降式原理,粒径分析范围为300微米至0.1微米,仪器的操作软件为先进的“Windows”软件。SediGraph Ⅲ 5120可以提供多至十一种分析报告,适合于各种无机材料颗粒大小的分析研究,尤其是非金属矿物,如:高岭土、重钙、轻钙、粘土、泥浆等材料的分析,是高岭土,重钙,轻钙粒径的标准分析仪器。  Elzone II 5390全自动颗粒尺寸与颗粒计数分析仪,是一台快速、准确、具有良好重现性的颗粒大小及颗粒计数分析仪。该仪器采用电敏感区原理作为颗粒分析方法。 可用于分析各种有机和无机颗粒,典型的应用领域包括生物细胞、研磨剂、乳剂、调色剂和墨水、颜料。 与其他检测方法不同的是,运用电敏感区原理可分析不同光学性质,密度,颜色和形状的样品混合物时,Elzone II 5390可实现对样品颗粒的尺寸、数量和浓度的快速准确测量,其测试范围为1200微米至0.4微米。仪器软件采用先进的“Windows”视窗软件,符合中国用户的电脑操作习惯。  Particle Insight 颗粒粒形分析仪的推出,丰富了美国麦克公司颗粒分析仪器,为用户提供更加全面的颗粒分析服务。目前,北京DEMO实验中心有各种颗粒分析仪器,诚挚欢迎广大用户参观测样。详细情况可拨打样品分析DEMO实验中心电话:010-51906026 、010-68489403 如果您需要更详细的资料,请向美国麦克公司中国区办事处索取。 美国麦克仪器公司 地址:北京市海淀区紫竹院路31号华澳中心嘉慧苑1025室[100089] 电话:010-68489371,68489372 传真:010-68489371 E-Mail:miczhuhz@yahoo.com.cn,micling@yahoo.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司上海办事处 地址:上海市静安区新闸路831号丽都新贵15-M[200041] 电话:021-62179208,021-62179180 传真:021-62179180 E-Mail:zhuhongzhen@mic-instrument.com.cn sales@mic-instrument.com.cn -------------------------------------------------------------------------------- 美国麦克仪器公司广州办事处 地址:广州市天河区中山大道华景路华晖街四号沁馥佳苑B3-1301[510630] 电话:020-85560307,020-85560317 传真:020-85560317 E-Mail:fanrun@mic-instrument.com.cn
  • 普洛帝发布最新颗粒度瓶技术引领世界标准
    标签:颗粒度瓶、普洛帝、世界标准[导读]英国普洛帝分析测试集团向全球客户升级颗粒度取样瓶产品技术,专利“5A+清洁灭菌”技术成为本次升级的重点,颗粒度瓶升级后可将粒径精准至0.1微米。2015年4月15日,英国普洛帝分析测试集团向全球客户升级颗粒度取样瓶产品技术,首次应用专利“5A+清洁灭菌”技术在油液颗粒度检测试验中,避免人为二次污染。普洛帝公司自1980年生产颗粒度瓶至今已有35年的历史了,经历了三代的更新,从NAS1638标准的等级控制,到清洁度等级RCL的控制,可适用于不同行业的要求。升级后的产品可接受各类客户的订制要求,按照NAS1638标准从00级别到4级别,ISO4406标准从0/0/0级别到8/8/8级别,GJB420B标准从00级别到2级别,清洁度等级RCL的控制可达到0.1微米不大于100个,是目前世界上最苛刻的指标要求。逐一检测批次抽检法是目前最为重苛刻的监督检测方法,生产中每一个产品需通过跟踪检测,再从成品中进行批次抽检,达到100%的合格率。目前为普洛帝大中国区服务中心特有监测手段。 普洛帝-全球著名的颗粒检测专家 !普洛帝(简称:PULUODY)是全球最大的油液颗粒监测技术提供者,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术的领导者。PULUODY ANDLYSIS & TESTING GROUP LTD.拥有中国区颗粒检测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。
  • 贝克曼库尔特推出全新一代激光衍射粒度分析仪brLS 13 320 XR ——提供快速、准确和可再现的颗粒粒度分析
    中国,上海 —— 2018年10月讯 ——贝克曼库尔特生命科学事业部推出新一代激光衍射粒度分析仪LS 13 320 XR,以满足制药和工业领域质量控制和研究应用的严苛要求。贝克曼库尔特公司已有数十年颗粒表征分析的历史。作为颗粒产品的重要一员,多波长PIDS专利技术(专利号:4953978;5104221)的激光衍射粒度分析仪LS系列一直是业内的翘楚。新一代LS 13 320 XR是一款全自动、高准确性、高分辨率、高重现性以及操作极简的干湿两用粒度分析仪。其采用专利设计的X型对数排布的检测器阵列,可准确记录散射光强信号,获得真实准确的粒度分布。而132枚检测器更能清晰地区分不同粒度等级间散射光强谱图的差异,无需预估样品峰型,无需选择分析模型,便可轻松准确分析多峰样品,粒径测量范围从10 纳米至3,500 微米。在亚微米范围,为了从根本上解决传统方法对亚微米颗粒光强谱图差异区分差的难点,LS 13 320 XR采用偏振光强度差散射(PIDS)专利技术来分析多波长和多偏振下的样品,不仅可以真正实现小至10纳米的颗粒测量,而且还可以直接检测亚微米范围内的多峰分布,获得亚微米范围内更高的分辨率和准确性。ADAPT操作软件,不仅界面更加直观,而且增加了触摸屏技术,非常易于使用,无需操作经验,简单三步轻松获得准确的数据。醒目的导航轮,仅需一步便可完成数据的显示和导出。而为了更迅速的了解样品质量情况,软件可自动对测量结果标注绿色或红色,实现自动合格/不合格管理,直接质控。新一代激光衍射粒度分析仪LS 13 320 XR满足对于粒度测试的需求,适用于各种应用环境,从食品饮料质量控制、工业制造到小分子和生物制药应用领域。贝克曼库尔特生命科学事业部颗粒特性高级市场经理Dave Dunham表示:“在各种严苛环境下,LS 13 320 XR都能为客户提供灵活且优异的性能,我们对其检测结果的准确性和再现性以及最终产品的一致性信心十足!”*本产品仅用于科研,不用于临床诊断。关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部一直致力于改善全世界人类的健康。贝克曼库尔特公司为广大科研、商业实验室的生命科学研究工作者们提供先进的仪器系统、试剂和完善的技术服务与支持,不断促进生物学科研的新技术发展。贝克曼库尔特公司不仅在离心机和流式细胞仪的行业位于前列,而且长期以来一直是生命科学仪器和解决方案的创新者,其产品主要用于前沿的重要研究领域,包括基因组学、蛋白质组学等。欲了解更多信息,敬请访问贝克曼库尔特全球网站www.BeckmanCoulter.com和中文官方网站www.beckmancoulter.cn。© 2018 Beckman Coulter, Inc. 保留所有权利。贝克曼库尔特、个性化标识和贝克曼库尔特产品以及服务标记均系贝克曼库尔特公司在美国和其他国家的商标或注册商标。
  • 从专利申请文献统计看近百年颗粒粒径检测技术演进
    p  strong编者按/strong:让PM2.5无所遁形的颗粒粒径检测技术,已被广泛应用于工业、化学、环境安全等诸多领域。本文作者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/8421654c-8b9f-40df-adeb-ff1dbf5948e4.jpg" title="00.jpg"//pp  2011年底,美国驻华大使馆在新浪微博的官方账号发出一条微博:“北京空气质量指数439,PM2.5细颗粒浓度408.0,空气有毒害??”该微博随即在国内引发了对PM2.5(细颗粒物)的强烈关注,最终PM2.5被纳入到常规空气质量监测体系中。事实上,让PM2.5无所遁形的就是颗粒粒径检测技术,其已被广泛应用于工业、化学、环境安全等诸多领域。笔者利用中国专利文摘数据库(CNABS)和德温特世界专利索引数据库(DWPI),采用分类号 G01N与关键词对2017年7月12日之前的专利申请文献进行了检索,并对颗粒粒径检测方法的各技术分支的发展状况进行了分析和综述,以期对该领域的进一步研究提供一些参考。/pp  strong各项技术并行发展/strong/pp  颗粒粒径或粒度分布的检测方法种类繁多,按照测量原理主要有7类技术分支,包括:筛分法、沉降法、显微图像法、光散射法、电阻法、静电法和超声法。笔者对各技术分支的专利申请量进行统计发现,光散射法的专利申请量最高,其早在20世纪70年代就进入人们的视线,是目前最先进、应用最广的一种颗粒测量技术。此外,排名第二的是显微镜法,尤其是电子显微镜图像分析技术是当前比较流行的分析手段,该方法优势明显,除了可得到颗粒的粒径,还可以对颗粒的结构、形状和表面形貌有一定的直观认识和了解。然后分别是沉降法和筛分法,这两种方法是测量颗粒粒径的传统方法,工艺过程简单、成本较低,且操作便捷、装置结构简单。/pp  在颗粒粒径检测技术演进的过程中,主要的发展趋势有2个方面:检测精确度的提高及检测对象的扩展。上世纪 40年代以前,业内主要是采用筛分法、沉降法和显微镜法。其中筛分法最早的专利出现在1933年,公开号为GB402402A 沉降法则是基于 Stokes重力沉降公式来测定粒径,沉降法的专利早期以国外专利申请为主。显微镜法是唯一可直接观测单个或混合颗粒形状、粒度和分布的方法,早期国内相关专利申请较少,从2010年才开始出现激增态势。此外,将显微镜法和其他粒度测试方法结合于一体的装置,是当前显微镜法的研究热点,如上海理工大学公开号为CN102207443A、CN102207444A的专利申请,就是利用传感器件将多种颗粒粒度测量方法融合在一起。/pp  随着计算机、电子和激光等技术的快速发展,20世纪70年代起,颗粒粒径检测逐渐开始实现检测对象的多元化,光散射颗粒粒度测量仪受到市场欢迎。光散射技术的思想最早由前苏联学者Mandelshtam于1926年提出,随后其应用逐步扩展至界面和胶体科学等领域,并开发出了荧光相关光谱法、X射线光子相关光谱法、动态光散射显微术等。近年来,对动态光散射仪器的应用需求明显增长,相关技术研究主要集中在对动态光散射仪器的局部结构改进和采用各种新技术改造传统装置以扩展新应用等方面。/pp  对于电阻法和基于电阻法发展起来的静电法和超声法,其理论基础的发展目前已趋于成熟。其中电阻法最早为美国Coulter公司创始人Wallace H. Coulter于1953年发明,随后Coulter公司将其商品化,开发出库尔特计数器,Coulter公司此后不断对电阻法进行深入研究,其生产的 Multisizer I全自动粒度分析仪仍是目前较为先进的颗粒测量多功能仪器。而其他公司和个人对于电阻法、静电法和超声法的研究,在1980年之后得到迅速发展,大量相关的专利都是基于Coulter公司技术的改进而来。/pp  总体而言,虽然不同检测方法均有其各自的特点和适应的颗粒类型,各技术之间呈现并行发展的趋势,但整体上呈现出向更快速、更准确以及更加便捷检测的方向发展,各分支的专利申请量也均呈现出上升趋势。/pp strong 两家公司平分秋色/strong/pp  笔者分析了排名靠前的主要申请人的核心专利数量和企业综合实力,发现在颗粒粒径检测领域,a style="color: rgb(0, 176, 240) text-decoration: underline " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100646/"span style="color: rgb(0, 176, 240) "英国马尔文仪器有限公司/span/a(下称马尔文公司)和a style="text-decoration: underline color: rgb(0, 176, 240) " title="" target="_self" href="http://www.instrument.com.cn/netshow/SH100336/"span style="color: rgb(0, 176, 240) "美国贝克曼库尔特公司/span/aspan style="text-decoration: underline color: rgb(0, 176, 240) "(/span下称贝克曼公司)呈现平分秋色的竞争态势。/pp  马尔文公司成立于1963年,早在20世纪80年代,该公司便进行了颗粒粒径测量仪器的技术研发,其最早的研究方向是基于激光技术测定颗粒粒径。随后,该公司研发了利用超声法测量颗粒粒径的相关技术,相关专利包括US5121629A、GB9801667D0、WO2010/041082A2等。在 1980年到2010年间,马尔文公司在颗粒粒径检测的几个主要技术分支上均保持了稳定的专利申请量,在光散射法和超声法检测两个分支的专利申请量最大。/pp  马尔文公司在超声测量方面的主要产品为Ultrasizer MSV超声测量仪,该仪器可根据颗粒粒径与声波衰减之间的关系计算出颗粒粒度分布,同时还可以测出体系的固含量。随后,该公司在初代产品的基础上进行改进,开发出了探头式超声粒度测量仪。近年来,马尔文公司发展迅速,从专利申请分布来看,自2010年至今,该公司提交了50余件关于激光粒度分析的专利申请,这表明该公司可能欲向高精密仪器方向转型。/pp  贝克曼公司于1997年成立,现已成为世界最大的颗粒分析仪器公司,其于1953年制造出了世界上第一台颗粒粒度分析仪,并于1965年对该产品提交了专利申请NL6505468A。/pp  1983年贝克曼公司就进入了中国市场,并在北京、上海等地设立了代表处,此后不断完善专利战略,迅速占领了国内外市场。2000年之后,贝克曼公司进入超声颗粒测量领域,获得了一系列专利权,如公开号为WO0057774A1、US2006001875A1等。2000年至2012年,贝克曼公司在颗粒粒度检测的四个主要分支领域均进行了专利布局,其开发了基于电阻原理的Multisizer 3系列粒度分析仪,基于光脉冲原理的HIAC系列液体颗粒检测仪,基于光脉冲和库尔特原理的Multisizer 4e系列粒度分析仪,以及融合了超声与光散射原理的DelsaMax Pro粒径分析仪和DelsaMax CORE系列产品。其最新的DelsaMax Pro系列产品与马尔文公司的Zetasizer Nano系列产品采用的技术都结合了声学和光学颗粒检测技术,可见两家公司在该领域的竞争态势比较激烈。/pp  笔者认为,今后颗粒粒径检测领域的技术发展将更注重提高测量精度和对颗粒特性的多方面测定等方面,将不同颗粒粒径检测技术进行融合以提高检测性能将成为未来专利布局的热点。(詹雪)/pp(本文仅代表作者个人观点)/p
  • 【转载】颗粒与筛网2020年11月5日标准讨论会会议纪要
    全国颗粒表征与分检及筛网标准化技术委员会部分委员及相关专家于2020年11月5日在苏州召开《液态离心沉降法测定颗粒粒径分布第2部分: 光照离心法》等六项国家标准技术讨论会。标委会秘书长侯长革主持,邓世宁、刘旭峰、张文阁、朱培武、杨正红、温原、窦晓亮和董亮委员以及中国环境科学研究院、福建强纶新材料有限公司、江苏省颗粒学会、南京威普粉体工程有限公司、中国科学院苏州纳米技术与纳米仿生研究所、上海康识食品科技有限公司等24名代表参加会议,高原委员和曹枫委员远程参加会议。会议讨论了《液态离心沉降法测定颗粒粒径分布 第2部分: 光照离心法》、《粒度分析 图像分析法 第1部分:静态图像分析法》、《气溶胶数浓度凝结核计数器法》和《基于单分散球形颗粒尖桩栅栏分布的多分散物质》四项标准计划项目以及《气溶胶粒度分析》和《粉体样品的制备》提案草案,形成以下意见和结论:1.《液态离心沉降法测定颗粒粒径分布 第2部分: 光照离心法》,1个月内整理意见汇总表,2020年12月4日前提交送审稿。项目牵头:邓世宁技术负责:张文阁规则负责:朱培武 2.《粒度分析 图像分析法 第1部分:静态图像分析法》,由于技术原因,本次会议未展开讨论。该项目2020年3月6日立项,周期18个月,建议延期。项目牵头:高原技术负责:杨正红规则负责:朱培武 3.《气溶胶数浓度 凝结核计数器法》,1个月内提交送审稿,拟将标准名称修改为《气溶胶数浓度 颗粒计数器法》。项目牵头:杨文技术负责:杨毅 4.《基于单分散球形颗粒尖桩栅栏分布的多分散物质》,1个月内提交送审稿。项目牵头:张文阁标准负责:窦晓亮规则负责:温原 5.《气溶胶粒度分析》预研工作开展顺利,成效显著,拟向标委会提案。预研牵头:杨毅技术负责:杨文 6.《粉体样品的制备》已完成翻译工作,计划开展相关实验,拟向标委会提案。预研牵头:曹枫技术负责:窦晓亮 7.感谢罗姆(江苏)仪器有限公司对本次会议的支持。 会议于下午17:30结束。【转载】自颗粒与筛网
  • 丰收的2023年 | 颗粒表征技术及仪器国家标准盘点
    2023年,市场监管总局(国家标准委)积极实施《国家标准化发展纲要》、《质量强国建设纲要》加大标准供给力度,以高标准引领高质量发展。市场监管总局数据显示,前三季度新批准发布国家标准1971项,同比增长超过110%。其中,工业领域发布国家标准1660项,占比84.2%。仪器信息网关注到,2023年,我国颗粒学领域标准建设工作成果斐然。多项颗粒表征技术及分析仪器相关国家标准发布或实施,涉及静态光散射法、静态图像法、电泳光散射法、离心沉降法、单颗粒电感耦合等离子质谱法、纳米颗粒跟踪分析法等,由全国纳米技术标准化技术委员会、全国颗粒表征与分检及筛网标准化技术委员会归口管理。本文特将上述标准加以整理,供相关从业者查阅参考。2023年度发布/实施的颗粒表征国家标准标准号标准名称发布日期实施日期GB/T 43196-2023纳米技术 扫描电子显微术测量纳米颗粒粒度及形状分布2023-09-072024-04-01GB/T 42732-2023纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法2023-08-062024-03-01GB/T 42469-2023纳米技术 抗菌银纳米颗粒 特性及测量方法通则2023-03-172023-10-01GB/T 42311-2023纳米技术 吸入毒性研究中呼吸暴露舱内纳米颗粒的表征2023-03-172023-10-01GB/T 42348-2023粒度分析 颗粒跟踪分析法(PTA)2023-03-172023-10-01GB/T 42342.2-2023粒度分布 液相离心沉降法 第2部分:光电离心法2023-03-172023-10-01GB/Z 42353-2023Zeta电位测定操作指南2023-03-172023-10-01GB/T 41949-2022颗粒 激光粒度分析仪 技术要求2022-12-302023-07-01GB/T 42208-2022纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法2022-12-302023-07-01GB/T 41948-2022 颗粒表征 样品准备2022-12-302023-04-01一、《纳米技术 扫描电子显微术测量纳米颗粒粒度及形状分布》本标准牵头单位为中国计量科学研究院,主要参加单位包括国家纳米科学中心、北京市科学技术研究院分析测试研究所(北京理化分析测试中心)、山东省计量科学研究院、卡尔蔡司(上海)管理有限公司、北京海岸鸿蒙标准物质技术有限责任公司、中国检验检疫科学研究院、北京粉体技术协会等。纳米颗粒因尺度效应而具有传统大颗粒所不具备的独特性能,被广泛应用于生物医药、化工、日用品、润滑产品、新能源等领域。而纳米颗粒的粒度形状分布,直接关系到相应产品的性能质量及安全性,需要进行准确的测量表征。扫描电子显微镜(SEM)作为最直观、准确的显微测量仪器之一,在纳米颗粒测量表征中不可或缺。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的颗粒粒径测量的分析评价方法,对于采用不同扫描电子显微镜(SEM)得到的颗粒测量结果一致性评判,具有重要的参考价值。标准解读详见:【标准解读】扫描电子显微术测量纳米颗粒粒度及形状分布 二、《纳米技术 水相中无机纳米颗粒的尺寸分布和浓度测量 单颗粒电感耦合等离子体质谱法》本标准由国家纳米科学中心、珀金埃尔默企业管理(上海)有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、清华大学、中国计量科学研究院、杭州谱育科技发展有限公司,安捷伦科技(中国)有限公司制定。单颗粒电感耦合等离子质谱法(spICP-MS)是一种在非常低的浓度中检测单个纳米颗粒的方法。与传统表征金属纳米颗粒技术相比,使用单台ICP-MS,不需联用设备就可以同时完成纳米颗粒的成分、浓度、粒径、粒度分布和颗粒团聚的检测,这是透射电子显微镜(TEM)、动态光散射(DLS)等纳米粒径表征技术无法完成的,并且此方法可将样品中溶解的纳米颗粒离子与固体纳米颗粒区分开来。本标准是国内首项使用单颗粒电感耦合等离子体质谱方法表征纳米颗粒的国家标准,支撑spICP-MS作为一种普适性方法的推广与应用。标准解读详见:《单颗粒电感耦合等离子质谱法检测纳米颗粒》国家标准解读 三、《Zeta电位测定操作指南》 本标准由山东理工大学 、上海市计量测试技术研究院 、中机生产力促进中心有限公司 、河南中科智能制造产业研发中心有限公司制定。Zeta 电位通常用于研究液体介质中颗粒分散体系的等电点(IEP)和表面吸附,并作为比较不同样品静电分散稳定性的指标。Zeta电位不是可直接测量的量,而是使用适当理论确定的量。此外,Zeta电位不是悬浮颗粒的固有属性,而是取决于颗粒和介质属性,以及它们在界面上的相互作用。介质的化学成分和离子浓度的任何变化都会影响这种界面平衡,从而影响Zeta电位。因此,样品制备和测量过程都会影响测定结果。为了避免zeta电位测量操作问题使测量结果出现误差,需要一个统一的zeta电位测量操作指导原则。本标准发布实施,提供了使用光学电泳迁移法或电声法测定Zeta电位的样品制备和测量过程的操作指南。标准解读详见:ISO颗粒表征专家许人良解读《Zeta电位测定操作指南》国家标准 四、《纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法》本标准牵头单位为国家纳米科学中心,主要参加单位包括国标(北京)检验认证有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)、深圳市德方纳米科技股份有限公司、中国计量大学、北京粉体技术协会等。透射电子显微镜(TEM)具有原子水平的分辨能力,它不仅可以在观察样品微观形态,还可以对所观察区域的内部结构进行表征,成为纳米技术研究与发展不可或缺的工具。特别是TEM配合图像分析技术对多相体系中纳米颗粒粒度进行分析具有一定的优势。本标准从很大程度上完善和补充国内现有标准的不足,给出较为完整的多相体系中纳米颗粒粒径分析评价方法,不仅对于多相体系中纳米颗粒的粒径这种需要探讨体系内部的颗粒测量给出了方案,而且对于不同TEM的颗粒测量结果一致性评判具有重要的参考价值。标准解读详见:【标准解读】透射电镜图像法测量多相体系中纳米颗粒粒径 五、《粒度分析 颗粒跟踪分析法(PTA)》本标准由中国计量科学研究院 、深圳国技仪器有限公司 、太原理工大学 、上海思百吉仪器系统有限公司 、中机生产力促进中心有限公司 、湖州中能粉体材料股份有限公司 、山东理工大学 、仪思奇(北京)科技发展有限公司 、珠海真理光学仪器有限公司 、大昌洋行(上海)有限公司等单位制定。PTA基于激光照射、散射光成像、颗粒识别及定位、单一颗粒跟踪等技术手段,对悬浮液中的颗粒扩散运动进行测量。近年来,学术界在脂质体及其他药物载体、纳米毒理学、病毒、外泌体、蛋白聚集、喷墨墨水、颜料颗粒、化妆品、食品、燃料添加剂及微气泡等工作中开始使用PTA技术进行表征。ASTM已发布了一个标准指南(E2834-12),指导纳米颗粒跟踪分析法NTA测量粒径分布。本标准旨在扩展规范的范围并推进PTA操作的系统化。本标准概述了颗粒跟踪分析法的理论、基本原理及优缺点,同时对仪器配置、测量程序、系统确认和分析报告等进行了描述,数据含义阐述及解释是其中重要内容之一。六、《粒度分布 液相离心沉降法 第2部分:光电离心法》本标准由罗姆(江苏)仪器有限公司 、中机生产力促进中心有限公司 、安徽鼎恒实业集团有限公司 、中国计量大学 、长兴旭日粉体科技股份有限公司制定。尽管过去20年发展了多种颗粒表征新技术,但由于技术的进步(例如多波长特征)以及沉降技术是基于重力或离心场中定向运动(迁移)进行颗粒表征最本初的方法,沉降法在某种程度上重新焕发活力。作为一种分级技术,沉降分析有助于区分具有接近沉降速度的不同颗粒及其相应的等效斯托克斯直径。可以非常精细地分辨粒度分布,这与光谱集成技术相比是一个优势。此外,如果颗粒的扩散通量按沉降通量的顺序排,一些离心技术有助于对颗粒系统进行多维表征,即同时确定多个分布量(例如颗粒大小和密度或形状因子)。GB/T42342《粒度分布液相离心沉降法》是通过离心沉降法加速颗粒在液体中迁移来确定颗粒材料的沉降速度、沉降系数和粒度分布的方法。第1部分给出了离心沉降法的基本原理和指南,第2部分给出了用液相离心沉降法测定颗粒粒度分布的方法。七、《纳米技术 抗菌银纳米颗粒 特性及测量方法通则》本标准由国家纳米科学中心 、中国食品药品检定研究院 、中国医学科学院基础医学研究所制定。银纳米颗粒具有抗菌性能,成为在消费品中应用最广泛的纳米材料之一。银纳米颗粒越来越多地应用于消费品中,以控制产品表面或内部的微生物生长。尽管市面上有很多含银纳米颗粒的抗菌产品,但大多数产品在销售时并未提供纳米颗粒理化性质和抗菌特性的信息。目前,大多数生产商依据实践经验提供特性指标。在参考了纳米技术领域抗菌银纳米颗粒粉体和胶体的其他标准的基础上,本标准提供了银纳米颗粒特性指标及推荐测量方法的指南。本标准中推荐的主要测量方法可用于工业界具体参数确定。本标准总结选取了目前常用的测量方法,因此需要适时更新。八、《纳米技术 吸入毒性研究中呼吸暴露舱内纳米颗粒的表征》 本标准由国家纳米科学中心 、广东粤港澳大湾区国家纳米科技创新研究院制定。纳米颗粒吸入毒理学的一个关注点是确保从业人员和消费者的健康。为了进行纳米颗粒的呼吸毒理学研究,有必要对呼吸舱内纳米尺寸颗粒的浓度、尺寸和分布特征进行监测。监测细颗粒或粗颗粒的传统方法,如称重法,不足以用于纳米颗粒,因为纳米特性参数(如颗粒表面积、颗粒数目等)可能是关键的决定因素,需进行监测。本标准提供了一系列的呼吸暴露舱内纳米颗粒监测方法,既包括差分迁移分析系统(DMAS),用于测量颗粒数量、尺寸、分布、表面积和估算质量浓度;也包括应用透射电子显微镜(TEM)或者扫描电子显微镜(SEM)进行形貌表征;还包括应用X射线能量色散谱(TEM-EDXA)进行化学成分分析。九、《颗粒 激光粒度分析仪 技术要求》本标准由中国计量科学研究院 、珠海真理光学仪器有限公司 、合肥鸿蒙标准技术研究院有限公司 、丹东百特仪器有限公司 、中国计量大学 、济南微纳颗粒仪器股份有限公司 、成都精新粉体测试设备有限公司 、堀场(中国)贸易有限公司 、上海思百吉仪器系统有限公司(马尔文帕纳科) 、大昌洋行(上海)有限公司(MicrotracMRB) 、上海理工大学 、珠海欧美克仪器有限公司等单位制定。激光粒度分析仪是用于测量颗粒大小及其分布的仪器。与其他粒度测量仪器相比,激光粒度分析仪具有粒度测量范围宽、测量速度快、测量重复性好和操作方便等优点。激光粒度分析仪在制造和使用中,制造单位和用户最关心的就是其性能指标。本标准对仪器的重复性、准确性、分辨力和Dso检测下限等提出具体要求,以规范仪器厂家的生产与宣传行为,便于不同实验室之间对粒度结果进行比较,利于用户选择适合自己需要的激光粒度分析仪。十、《颗粒表征 样品准备》本标准由深圳市德方纳米科技股份有限公司 、合肥鸿蒙标准技术研究院有限公司 、山东理工大学 、济南微纳颗粒仪器股份有限公司 、中国科学院过程工程研究所 、华南理工大学 、澳谱特科技(上海)有限公司 等单位制定。颗粒材料在国民经济的众多领域都起着重要的作用。在颗粒材料的研发、制备、生产与应用中,都离不开对颗粒特性的表征。除了需要对各类表征技术及分析仪器进行标准化外,对颗粒表征样品准备过程(包括取样、制样和样品转移等)的标准化也至关重要。适宜和规范的样品准备是得出正确颗粒表征特性的必要条件。本标准用于确立颗粒表征所用样品的准备程序,以指导颗粒测试人员得到正确的待测样品。
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室 陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 【AAV热点应用】Zetasizer精准表征rAAV颗粒粒径及衣壳滴度
    rAAV腺相关病毒载体表征腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一。其直径约为20-26nm,含有4.7kb左右的线状单链DNA。重组腺相关病毒载体(recombination AAV, rAAV)则是在非致病的野生型AAV基础上改造而成的,因其具有:安全性高、免疫原性低;宿主细胞范围广(对分裂细胞和非分裂细胞均具有感染能力);体内表达时间长;血清型众多,且具有组织特异性等特点被广泛用于基因治疗、疫苗等研究、应用领域[1]。在rAAV的生产工艺中,有无团聚体(aggregate),以及衣壳滴度(titer)的高低是重点考察的关键质量属性(CQAs)[2],Zetasizer纳米粒度仪通过对rAAV颗粒的粒径及衣壳滴度的表征,快速实现该CQAs的鉴定。纳米粒度电位仪马尔文帕纳科 Zetasizer Ultra01材料和方法将两种不同生产批次的rAAV分别用缓冲液稀释至合适的浓度,利用Zetasizer Ultra-Red (Malvern Panalytical Ltd.)以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定[3]。样品测试体积为20 µL,rAAV折射率、吸收率分别设置为1.45和0.001,缓冲液的散射光强度测定为80 kcps。02结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们分别对两种批次的rAAV粒度大小及分布进行表征(图1、3)。可以看到,批次1的rAAV只有一个粒径分布峰,其值大小为28.2 nm,说明体系中没有团聚体产生,而批次2的rAAV则呈现出3个粒径分布峰,分别位于28.2、150.9以及430.6 nm,这说明体系中除了rAAV单体,还有团聚体产生。此外,基于MADLS技术得到的颗粒的准确粒径分布图,我们还能得到对应尺寸的衣壳滴度(图2、4)。图1,批次1 rAA的光强粒径分布图图2,批次1的衣壳滴度图3,批次2 rAA的光强粒径分布图图4,批次2的衣壳滴度参考文献1. Mendell J R, Al-Zaidy S A, Rodino-Klapac L R, et al. Current Clinical Applications of in vivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29 (2), 464-488.2. Gimpel A L, Katsikis G, Sha S, et al. Analytical Methods for Process and Product Characterization of Recombinant Adeno-Associated Virus-based Gene Therapies. Molecular Therapy — Methods & Clinical Development, 2021, 20, 740-754.3. Cole L, Fernandes D, Hussain M T, et al. Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics, 2021, 13, 586.
  • 孰优孰劣?纳米粉体粒度检测方法大PK
    p style="text-indent: 2em "编者按:纳米粉体堪称纳米科学技术的奠基石,是介于原子、分子等微观物质与宏观物体之间的一种固体颗粒,又称超微粒子。作为一种亚稳态中间物质,纳米粉体的粒度指标对其性能影响巨大,表面效应、小尺寸效应、量子效应、宏观量子隧道效应等无不受粒度的影响。从粒度划分的角度,纳米粉体一般在1-100nm之间。测量其粒径的方法也多种多样,透射电镜观察法、X射线衍射法、BET比表面测试法,动态光散射法等都很是常见。那么哪种方法才是测量纳米粉体粒度的最优选择呢?国家特种矿物材料材料工工程技术研究中心的秦海青老师等专家对此进行了探讨。/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "在观测纳米粉体粒度的几种方法中,透射电镜透射电镜观察法的缺点主要是由于观察用的粉末极少 ,使得测量结果缺乏统计性,不能全面的表征样品的粒度及分布;而沉降法由于目前技术上的原因而无法准确测量到纳米尺度。因此这里仅通过纳米硅粉的粒度表征,对X射线衍射法、BET比表面测试法,动态光散射法三种方法进行探讨。/pp style="text-indent: 2em "动态光散射法是一种激光粒度仪法,是利用光子相关谱法以及PCS的基本原理,由激光器发出的激光经透镜聚焦后照射到颗粒样品上,在某一固定的散射角下,颗粒的散射光经透镜聚焦后进入光探测器(一般用光电倍增管)。光探测器输出的光子信号经放大和甄别后成为等幅的串行脉冲,再经随后的数字相关器做相关运算,求出光强的自相关函数。根据自相关函数中所包含的颗粒粒度信息,微机即可算出粒度分布。用这种方法测得的粒度值比较接近实际值。/pp style="text-indent: 2em "BET法是通过测定单位质量粉体的表面积并根据相应公式计算出纳米粉体颗粒的平均粒径,用这种方法测量的粒度值与激光粒度仪法所测得的粒度相比略小,这是由于BET法是根据吸附的气体量来表征比表面积的,测量结果与颗粒的的表面状态有关,颗粒的表面缺陷越多吸附的气体越多,从而测量值要小于实际值,由于纳米颗粒表面都不太完整,所以测量值都偏小一些。/pp style="text-indent: 2em "X射线衍射法测量纳米硅粉颗粒尺寸主要是根据谢乐公式。用 X 射线衍射法测量的晶粒尺寸得到的结果是粉体样品中颗粒尺寸最小且不可分的粒子,其平均尺寸的大小即为晶粒度 (以化学键结合的最小粒子),当颗粒为单晶时,测量结果就是颗粒粒度,当颗粒为多晶时,测量结果是组成颗粒的单个晶粒的平均粒度,此时,测量值小于实际值。/pp style="text-indent: 2em "综上所述,BET法与X射线衍射法测试的粒径比激光粒度仪法测试的粒径要偏小。不过每种测试方法都有优缺点,针对不同类型的纳米粉体的种类,要选择与之适合的测试方法,使测试结果更加接近粉体的实际粒度值。/p
  • analytica 2014国际研讨会聚焦微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。  为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。  纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。  除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。  analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。
  • analytica 2014国际研讨会聚焦:微粒物质
    为什么山峦有时候看起来是蓝色的,但是在日出和日落的时候却变成了完全不一样的颜色?为什么一些城市要设置低排放区域?许多类似的问题答案都是:悬浮微粒,也就是在空气中漂浮的细小的固体或液体物质。根据其来源、化学组成、数量和大小的不同,悬浮微粒可以对人体和环境造成不同程度,有时甚至是极度危险的侵害。4月1-3日在慕尼黑国际会议中心(ICM)举行的analytica国际研讨会上,国际知名科学家将就它们所带来的挑战作精彩演讲。  为保护人们免遭微粒物质对身体的损害,不同领域的科学家们对悬浮微粒进行了多年的研究。研究中最大的挑战之一是化学和生化分析,因此,今年的analytica国际研讨会将&ldquo 悬浮微粒和健康&rdquo 列为核心主题。大会第一天(4月1日),罗斯托克大学教授、慕尼黑Helmholtz研究中心化学家Ralf Zimmermann将主持一整天的关于悬浮微粒的讨论。来自德国、澳大利亚、芬兰、英国、加拿大、挪威、瑞士和美国的科学家们一共将作14场演讲,解释悬浮微粒的特征、如何进入人体以及对我们的健康造成什么样的影响。此外,他们还将介绍汽油、海运油料、生物油料和生物物质燃烧的后果,以及所产生的悬浮颗粒中不同纳米粒子的比例。  纳米粒子是指直径100纳米以下的微粒,它们能轻易对人体造成伤害。但是,直径达10微米的花粉也可以引起过敏。除过敏外,微粒物质还能导致哮喘和其他呼吸道及心血管疾病。所有干燥微粒中,有机物质的比例大概为70%,且种类达数百之多。因此,在对它们的处理中分析化学面临严峻的挑战。问题首先在于如何&ldquo 收集&rdquo 这些微粒,而如此收集的微粒的复杂性又如何。我们可以选择色谱分离以及质量光谱分析方法,这些技术现在已经越来越精细。有着极高解析度的基于质量光谱分析的技术和现代在线分析技术仍在用于气体和颗粒相的检测。  除微粒物质外,大会还将推出水质分析、代谢物质和蛋白质组学等方面的内容。因此,analytica国际研讨会将覆盖所有分析类的话题。您可以访问www.analytica.de/conference或www.gdch.de/analyticaconf2014了解最新大会活动。大会入场券已经包含在展会的参观票价中。  analytica 国际研讨会由GDCh (德国化学学会)、GBM (生化与细胞生物学学会) 和DGKL (德国临床化学及实验室药物学会)三大科研机构共同主办。  关于analytica  analytica是分析、诊断、生物及实验室技术领域的国际盛会,每两年在德国慕尼黑召开一届。自1968年品牌创立以来,展会以发展成为全球分析、诊断、生物技术行业和科研及应用行业用户的重要交易平台。展会同期举办的analytica国际研讨会是全球领先的分析学术盛会,为科研界精英讨论化学、生化和实验室药物等问题提供绝佳机会。2012年共有30,481名观众和1,026家展商参加analytica。  更多展会和相关活动信息请访问:www.analytica.de/en  关于analytica China  analytica China(慕尼黑上海分析生化展)是analytica全球网络的一部分。2014年9月24-26日analytica China将在上海新国际博览中心N1、N2、N3馆隆重召开。展会规模将达30,000平方米,预计将吸引超过20个国家及地区约700家中外展商,集中展示包括分析仪器、测试测量、生命科学、生物技术、实验室建设、试剂耗材和通用实验室设备等在内的最新产品及应用,提供全方位的实验室技术解决方案。更多信息,敬请访问展会官网:www.a-c.cn  慕尼黑国际博览集团  慕尼黑国际博览集团是世界领先的展览企业之一。仅在慕尼黑一地,慕尼黑国际博览集团就每年组织近40场展览,涵盖资本货物、消费品及高科技行业等众多领域。每年有超过30,000家展商和近200万观众参加集团在慕尼黑展览中心、ICM-慕尼黑国际会议中心和慕尼黑MOC展览中心举办的展会。慕尼黑国际博览集团举办的领先国际展会均接受独立审计。  此外,慕尼黑国际博览集团还在亚洲、俄罗斯、中东和南非举办展览。集团在欧洲、亚洲和非洲拥有9家分公司,并在60多个国家设有代表处,服务于90多个国家,并形成自己的全球性业务网络。集团在可持续性方面也作出了突出贡献:我们是世界上第一家由TÜ V SÜ D 授予高能效认证的展览企业。
  • 《环境空气 颗粒物质量浓度测定 重量法》国家标准宣贯会预通知
    2020年10月11日,《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)国家标准批准发布,归口于全国颗粒表征与分检及筛网标准化技术委员会,并于2021年5月1日开始实施。《环境空气 颗粒物质量浓度测定 重量法 》(GB/T 39193-2020)规定了环境空气颗粒物滤膜采样称量测定方法,包括原理与方法,仪器和设备,采样与称量,结果计算与表述,测量结果的不确定度评定,质量控制与质量保证。该标准适用于使用滤膜称重的方法测量环境空气的颗粒物质量浓度。为帮助行业用户更准确地理解和使用标准,标准归口单位计划召开《环境空气 颗粒物质量浓度测定 重量法》(GB/T 39193-2020)国家标准宣贯会,全文通知如下SAC/TC168〔2022〕12号《环境空气 颗粒物质量浓度测定 重量法》(GB/T 39193-2020)国家标准宣贯会预通知各有关单位:为加大标准宣贯和实施的力度,帮助用户更准确地理解和使用标准,全国颗粒表征与分检及筛网标准化技术委员会(SAC/TC168,以下简称“标委会”)计划于2022年8月召开《环境空气 颗粒物质量浓度测定 重量法》标准宣贯会。现将有关事项通知如下:⼀、会议内容1. 标准化和环境空气监测主管部门领导及专家报告2. 颗粒表征标准体系和近两年发布新标准介绍 3. 《环境空气 颗粒物质量浓度测定 重量法》(GB/T 39193-2020)国家标准解读;4. 重量法环境空气颗粒物质量浓度测定的意义及应用前景报告;5. 技术交流:有关仪器公司、用户等介绍检测设备及应用案例;6. 答疑与讨论:标准化和环境空气监测主管部门领导及专家解答政策,仪器厂家进行产品与应用咨询;7. 参观百特公司和环境空气监测站。⼆、参加⼈员有关环保、环监部门,各省市环境监测站领导和技术人员,环境空气科研人员,第三方环境监测运维企业,相关仪器生产、采购、检测、检验、使用、管理和维护等单位和个人(负责)均可报名。三、会议时间和地点时间:2022年8月上旬地点:辽宁省丹东市(酒店待定)四、其它事项本次会议由丹东百特仪器有限公司承办。本次宣贯不收取会务费,会议期间食宿统一安排,费用自理。为便于安排有关会务工作,请参加会议的代表务必于2022年7月15日前扫描下方二维码或登录http://isotc24sc4.mikecrm.com/a9UuYno报名。 全国颗粒表征与分检及筛网标准化技术委员会秘书处联系人:李冉、侯长革电 话:010-88301712/010-88301158E-mail:tc168@pcmi.com.cn全国颗粒表征与分检及筛网标准化技术委员会 2022年6月7日
  • 纳米粒度分析仪的原理及应用
    梓梦科技纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 25项粒度细度企业标准汇总 涉及6大行业8种检测方法
    企业标准是企业自行制定,由企业法人代表或法人代表授权的主管领导批准、发布的标准。企业标准的制定得到了国家的大力支持,该标准一般严于国家标准或者行业标准,是一个企业业内实力的侧面体现,对企业的持续性发展具有重要意义。仪器信息网特从网上汇总了粒度、细度相关的企业标准共25项,并进行了整理分析,以飨读者。在不完全统计的25项标准中,粒度标准19项,细度标准6项。其中,由企业制定的国家标准6项,行业标准2项,其余皆为纯粹的企业标准。除了综合性标准外,还包含涉及石油/化工、矿业、建筑、机械、电力、有色金属等6大行业的专项标准。其中,机械行业的粒度、细度检测标准有5项居首位,石油/化工行业有4项,建筑行业有3项,有色金属、矿业、电力各1项。在所搜集的粒度细度检测标准的种类构成中,检测标准18项,仪器标准7项。在18项粒度、细度检测标准中,涉及到的粒度、细度检测方法有筛分法、激光法、沉降法、图像法、电阻法、刮板法、空气透过法、磨耗比测定方法等8种。其中涉及筛分法的检测方法最多,高达11项。值得一提的是,在7项仪器标准中,丹东百特、济南微纳、仪电物光三大激光粒度仪国内生产厂商皆有企业标准出台。具体详情汇总如下:粒度企业标准:(19项)企业名称标准编号标准名称标准类型行业检测方法广西联壮科技股份有限公司GB/T19077-2016粒度分析激光衍射法检测标准-激光法南京邦禾生态肥业股份有限公司广西来宾分公司GB/T24891-2010复混肥料粒度的测定检测标准石油/化工筛分法甘肃瓮福化工有限责任公司Q/WFHG001-2018磷酸二铵(粒度)检测标准(按国标检测)石油/化工筛分法上海仪电物理光学仪器有限公司Q31/0104000005C009WJL激光粒度仪仪器标准-激光法济南微纳颗粒仪器股份有限公司Q/0100JWN001-2018激光粒度仪仪器标准-激光法丹东百特仪器有限公司Q/ASA001-2013粒度分布测量仪仪器标准-激光法、沉降法、图像法烟台德信仪表有限公司Q/0600YDX001-2017在线粒度分析仪仪器标准--丹东华宇仪器有限公司Q/BXC001-2017WLP型平均粒度测定仪仪器标准-空气透过法丹东费氏仪器有限公司Q/XFS001-2017WLP型平均粒度测定仪仪器标准-空气透过法福州赛孚玛尼环保科技有限公司Q/SAV7301.2-2017木屑颗粒粒度试验方法检测标准机械筛分法沈阳聚德视频技术有限公司Q/JD001-2017矿石粒度视觉检测仪检测标准矿业图像法敦化市正兴磨料有限责任公司Q/2481.1-1998固结磨具用磨料粒度组成的检测和标记检测标准机械筛分法浙江高达机械有限公司Q/HGD001-2017GFX型气流式粉体粒度分级机仪器标准电力筛分法湖北鄂信钻石科技股份有限公司Q/ZEX001-2011EXT系列超细粒度结构石墨检测标准-激光法(欧美克)湖州银轴智能装备有限公司JB/T9014.3-1999连续输送设备散粒物料粒度和颗粒组成的测定检测标准机械筛分法金华中烨超硬材料有限公司Q/ZY001-2017高稳定性粗粒度聚晶金刚石复合片检测标准-磨耗比测定方法大连信东高技术材料有限公司GB/T2481.2-2009固结磨具用磨料粒度组成的检测和标记第2部分:微粉检测标准机械沉降法、电阻法中国铝业股份有限公司广西分公司YS/T438.1-2013砂状氧化铝物理性能测定方法第1部分:筛分法测定粒度分布检测标准有色金属筛分法湘乡市安吉利磨料磨具有限公司GB/T2481.1-1998固结磨具用磨料粒度组成的检测和标记第1部分:粗磨粒F4~F220检测标准机械筛分法细度企业标准汇总:(6项)企业名称标准编号标准名称标准类型行业检测方法福建格林春天新材料有限公司GB/T13217.3-2008液体油墨细度检验方法检测标准化工刮板法广西靖西市长鑫检测有限公司/广西壮族自治区建筑科学研究设计院德保检测站/广西来宾福兴建材有限公司GB/T1345-2005水泥细度检验方法筛析法检测标准建筑筛分法山东兴氟新材料有限公司Q/371424KXF003-2016高细度氟化钠检测标准化工筛分法清水天祥建材有限公司Q/1345-2005水泥细度检验方法检测标准建筑-南雄市瑞晟化学工业有限公司Q/RS-WI-PG-009细度测定作业指导书检测标准-刮板法福建上若工程技术有限公司Q/FJSR001-2016水泥细度检验方法筛析法检测标准建筑筛分法
  • 93项!粒度检测国家标准点将录 化工、冶金占小半
    粒度检测行业标准大阅兵已经圆满结束。今天,粒度检测国家标准点将录也如约而至。比行业标准等级更高的各路“英雄豪杰”,又将构成怎样的粒度检测国标江湖呢?待仪器信息网小编为您慢慢道来。本录搜集了粒度、细度检测相关的现行国家标准共91项。其中粒度检测标准73项,细度检测标注18项,其中基础标准共17项,还收录了行业专用的国标54项,含纳了纺织、化工、机械、冶金、矿业、农林、食品、卫生、建材、仪器仪表等10各行业的国家标准。这其中,化工行业的粒度、细度检测国家标准有25项之多,位列翘楚;冶金行业有12项,紧随其后;另外,粒度检测相关国家标准较多行业还有矿业(9项)和机械(6项)。在此之外,本文还列出了即将实施的粒度、细度检测相关国家标准2项。详情汇总见下表:粒度检测国家标准名录:编号名称行业发布机构GB/T10515-2012硝酸磷肥粒度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T11175-2002合成树脂乳液试验方法化工国国家质量监督检验检疫总局GB/T21524-2008无机化工产品中粒度的测定筛分法化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T24891-2010复混肥料粒度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T25266-2010涂料用安德森滴管法测定涂料填充物颗粒粒度的分布化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T32698-2016橡胶配合剂沉淀水合二氧化硅粒度分布的测定激光衍射法化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T5758-2001离子交换树脂粒度、有效粒径和均一系数的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T6288-1986粒状分子筛粒度测定方法化工国家标准局GB/T10558-1989感光材料均方根颗粒度测定方法化工国家技术监督局GB/T10305-1988阴极碳酸盐粒度分布的测定离心沉降法化工中国机械工业联合会GB/T21782.13-2009粉末涂料第13部分:激光衍射法分析粒度化工中国石油和化学工业协会GB12005.7-1989粉状聚丙烯酰胺粒度测定方法化工国家技术监督局GB/T10209.4-2010磷酸一铵、磷酸二铵的测定方法第4部分:粒度化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T12010.6-2010塑料聚乙烯醇材料(PVAL)第6部分:粒度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T2441.7-2010尿素的测定方法第7部分:粒度筛分法化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T30921.6-2016工业用精对苯二甲酸(PTA)试验方法第6部分:粒度分布的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T6406-2016超硬磨料粒度检验机械国家质量监督检验检疫总局;国家标准化管理委员会GB/T2481.1-1998固结磨具用磨料粒度组成的检测和标记第1部分:粗磨粒F4~F220机械国家质量技术监督局GB/T9258.1-2000涂附磨具用磨料粒度分析第1部分:粒度组成机械国家质量监督检验检疫总局;国家标准化管理委员会GB/T9258.3-2000涂附磨具用磨料粒度分析第3部分:微粉P240?P2500粒度组成的测定机械国家质量监督检验检疫总局;国家标准化管理委员会GB/T9258.2-2008涂附磨具用磨料粒度分析第2部分:粗磨粒P12~P220粒度组成的测定机械国家质量监督检验检疫总局;国家标准化管理委员会GB/T2481.2-2009固结磨具用磨料粒度组成的检测和标记第2部分:微粉机械国家质量监督检验检疫总局;国家标准化管理委员会GB/T26294-2010铝电解用炭素材料 冷捣糊中有效粘合剂含量、骨料含量及骨料粒度分布的测定 喹啉萃取法建材国家质量监督检验检疫总局;国家标准化管理委员会GB/T22459.5-2008耐火泥浆第5部分:粒度分布(筛分析)试验方法建材国家质量监督检验检疫总局;国家标准化管理委员会GB/T20966-2007煤矿粉尘粒度分布测定方法矿业国家质量监督检验检疫总局;国家标准化管理委员会GB/T24192-2009铬矿石粒度的筛分测定矿业国家质量监督检验检疫总局;国家标准化管理委员会GB/T29653-2013锰矿石粒度分布的测定筛分法矿业国家质量监督检验检疫总局;国家标准化管理委员会GB/T31313-2014萤石粒度的筛分测定矿业国家质量监督检验检疫总局;国家标准化管理委员会GB2007.7-1987散装矿产品取样、制样通则粒度测定方法-手工筛分法矿业国家标准局GB/T15057.11-1994化工用石灰石粒度的测定矿业中国石油和化学工业协会GB/T7702.2-1997煤质颗粒活性炭试验方法粒度的测定矿业国家技术监督局GB/T30202.2-2013脱硫脱硝用煤质颗粒活性炭试验方法第2部分:粒度矿业国家质量监督检验检疫总局;国家标准化管理委员会GB/T10322.7-2016铁矿石和直接还原铁粒度分布的筛分测定矿业国家质量监督检验检疫总局;国家标准化管理委员会GB/T12496.2-1999木质活性炭试验方法粒度分布的测定林业国家质量技术监督局GB/T5917.1-2008饲料粉碎粒度测定两层筛筛分法农业国家质量监督检验检疫总局;国家标准化管理委员会GB/T13025.1-2012制盐工业通用试验方法粒度的测定食品国家质量监督检验检疫总局;国家标准化管理委员会GBZ/T154-2006两种粒度放射性气溶胶年摄入量限值卫生卫生部GB/T1480-2012金属粉末干筛分法测定粒度冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T3249-2009金属及其化合物粉末费氏粒度的测定方法冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T6524-2003金属粉末粒度分布的测量重力沉降光透法冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T6609.27-2009氧化铝化学分析方法和物理性能测定方法第27部分:粒度分析筛分法冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T6609.28-2004氧化铝化学分析方法和物理性能测定方法小于60μm的细粉末粒度分布的测定-湿筛法冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T6609.37-2009氧化铝化学分析方法和物理性能测定方法第37部分:粒度小于20μm颗粒含量的测定冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T13220-1991细粉末粒度分布的测定声波筛分法冶金国家技术监督局GB/T13247-1991铁合金产品粒度的取样和检测方法冶金国家技术监督局GB11107-1989金属及其化合物粉末比表面积和粒度测定空气透过法冶金中国有色金属工业协会GB/T4195-1984钨,钼粉末粒度分布测试方法(沉降天平法)冶金信息产业部(电子)GB/T20170.1-2006稀土金属及其化合物物理性能测试方法稀土化合物粒度分布的测定冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T13221-2004纳米粉末粒度分布的测定X射线小角散射法仪器仪表国家质量监督检验检疫总局;国家标准化管理委员会GB/T21779-2008金属粉末和相关化合物粒度分布的光散射试验方法综合(标志、包装、运输、储存)国家质量监督检验检疫总局;国家标准化管理委员会GB/T21780-2008粒度分析重力场中沉降分析吸液管法综合(标志、包装、运输、储存)国家质量监督检验检疫总局;国家标准化管理委员会GB/T21865-2008用半自动和自动图象分析法测量平均粒度的标准测试方法综合(标志、包装、运输、储存)国家质量监督检验检疫总局;国家标准化管理委员会GB/T27845-2011化学品土壤粒度分析试验方法综合(标志、包装、运输、储存)国家质量监督检验检疫总局;国家标准化管理委员会GB/T22231-2008颗粒物粒度分布/纤维长度和直径分布综合(标志、包装、运输、储存)国家标准化管理委员会GB/T21782.1-2008粉末涂料第1部分:筛分法测定粒度分布综合(标志、包装、运输、储存)国家质量监督检验检疫总局;国家标准化管理委员会GB/T19077-2016粒度分析激光衍射法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T19627-2005粒度分析~光子相关光谱法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T29022-2012粒度分析动态光散射法(DLS)综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T29025-2012粒度分析电阻法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T16742-2008颗粒粒度分布的函数表征幂函数综合(基础标准)国家标准化管理委员会GB/T15445.2-2006粒度分析结果的表述第2部分:由粒度分布计算平均粒径/直径和各次矩综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T15445.4-2006粒度分析结果的表述-第4部分:分级过程的表征综合(基础标准)国家标准化管理委员会GB/T21649.1-2008粒度分析图像分析法第1部分:静态图像分析法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T15445.1-2008粒度分析结果的表述第1部分:图形表征综合(基础标准)国家标准化管理委员会GB/T26645.1-2011粒度分析液体重力沉降法第1部分:通则综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T26647.1-2011单粒与光相互作用测定粒度分布的方法第1部分:单粒与光相互作用综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T15445.5-2011粒度分析结果的表述第5部分:用对数正态概率分布进行粒度分析的计算方法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T29024.3-2012粒度分析 单颗粒的光学测量方法 第3部分:液体颗粒计数器光阻法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T15445.6-2014粒度分析结果的表述第6部分:颗粒形状和形态的定性及定量表述综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T29024.2-2016粒度分析单颗粒的光学测量方法第2部分:液体颗粒计数器光散射法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T21649.2-2017粒度分析图像分析法第2部分:动态图像分析法综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T29024.4-2017粒度分析单颗粒的光学测量方法第4部分:洁净间光散射尘埃粒子计数器综合(基础标准)国家质量监督检验检疫总局;国家标准化管理委员会GB/T13732-2009粒度均匀散料抽样检验通则综合(基础学科)国家质量监督检验检疫总局;国家标准化管理委员会细度检测国家标准名录:编号名称行业发布机构GB/T34783-2017苎麻纤维细度的测定气流法纺织国家质量监督检验检疫总局;国家标准化管理委员会GB/T17260-2008亚麻纤维细度的测定气流法纺织国家质量监督检验检疫总局;国家标准化管理委员会GB/T2383-2014粉状染料筛分细度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T27596-2011染料颗粒细度的测定显微镜法化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T21990-2008聚氯乙烯(PVC)糊刮板细度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T6753.1-2007色漆、清漆和印刷油墨研磨细度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T13217.3-2008液体油墨细度检验方法化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T1724-1979涂料细度测定法化工国家标准总局GB/T5507-2008粮油检验粉类粗细度测定食品国家质量监督检验检疫总局;国家标准化管理委员会GB/T22427.5-2008淀粉细度测定食品国家质量监督检验检疫总局;国家标准化管理委员会GB/T3520-2008石墨细度试验方法建材国家质量监督检验检疫总局;国家标准化管理委员会GB/T1345-2005水泥细度检验方法筛析法建材国家质量监督检验检疫总局;国家标准化管理委员会GB/T16150-1995农药粉剂、可湿性粉剂细度测定方法农业国家技术监督局GB/T18147.4-2015大麻纤维试验方法第4部分:细度试验方法农业国家质量监督检验检疫总局;国家标准化管理委员会GB/T12729.4-2008香辛料和调味品磨碎细度的测定(手筛法)农业国家质量监督检验检疫总局;国家标准化管理委员会GB/T21867.2-2008颜料和体质颜料分散性的评定方法第2部分:由研磨细度的变化进行评定化工国家质量监督检验检疫总局;国家标准化管理委员会GB/T17473.2-2008微电子技术用贵金属浆料测试方法细度测定冶金国家质量监督检验检疫总局;国家标准化管理委员会GB/T10664-2003涂料印花色浆色光、着色力及颗粒细度的测定化工国家质量监督检验检疫总局;国家标准化管理委员会即将实施的粒度、细度检测国家标准名录:编号名称行业正式实施日期GB/T9258.3-2017涂附磨具用磨料粒度分析第3部分:微粉P240~P2500粒度组成的测定机械2018年7月1日GB/T13531.6-2018化妆品通用检验方法颗粒度(细度)的测定化工2018年9月1日(注:本文只收录了现行和即将实施的粒度、细度检测相关国家标准,标准资料搜寻汇总自网络,仅供读者参考)
  • PSS:把颗粒测试做到“极致”——访美国PSS粒度仪公司全球市场总监Mark Bumiller
    p  “大而全”的企业以综合见长,走的是品牌路线;“小而精”的企业则以特长致胜,靠的是用户口碑。据了解,美国PSS粒度仪公司(Particle Sizing System)的前身是创建于1977年的NICOMP公司,拥有自动单颗粒光学传感专利技术,专注于提供高分辨率自动单颗粒技术系统。作为一家不足百人的颗粒测试仪器公司,PSS自创办至今始终致力于在颗粒测试领域“深耕细作”,擅长于为全球客户解决颗粒测试方面的“疑难杂症”。/pp  近日,仪器信息网编辑有幸采访到了PSS全球市场总监Mark Bumiller,并就PSS发展历程、技术优势及其市场战略进行了交流探讨。/pp style="text-align: center "img title="裁剪后Mark.jpg" src="http://img1.17img.cn/17img/images/201604/insimg/a3570667-cb5c-4882-880c-be78bfd62f85.jpg"//pp style="text-align: center "span style="font-family: 楷体,楷体_GB2312, SimKai "strong美国PSS粒度仪公司全球市场总监Mark Bumiller/strong/span/pp  strong“千方百计”为全球客户解决颗粒测试难题/strong/pp  说到PSS,就不得不提到它的创始人——动态光散射(DLS)理论研究的开创者之一,Dave F. Nicoli博士。/pp  在上个世纪70年代,Nicoli博士基于DLS数学理论发明了Nicomp 380系列仪器,是世界上最早将DLS理论进行商业化的公司之一,其首创的专利Nicomp多峰分布解析粒度方法比传统的高斯分布解析方式更精确,更是解决了多组分复杂体系的粒度解析问题。其后,Nicoli博士研究发明了单颗粒光学传感(SPOS)技术,成功将光消减(也称之为“光阻法”)和光散射两种物理作用进行了结合,利用光消减可获得较大的动态粒径范围,通过光散射可增加对小粒子的灵敏度,因此,SPOS技术具有非常高的精确度和分辨率。“当时市面上只能检测一定浓度的样品,比如每毫升中颗粒数量不得超过10000个才能得到比较可靠的数据,于是Nicoli博士针对高浓度样品又发明了自动稀释系统。”在Mark Bumiller看来,“Nicoli博士是一位天才型的发明家”。/pp  也正是基于这一系列的创新发明,Nicoli博士在1977年创建了NICOMP公司。1986年,PSS现任总裁Kerry Hasapidis加盟并负责商务运作。自此,NICOMP公司开始了飞速发展,并逐步完善了产品销售与售后服务。数年后,“为了方便客户了解公司的主营业务与产品优势,我们决定将NICOMP更改为PSS。”Mark Bumiller补充到。/pp  而对于PSS与安捷伦之间的一段收购渊源,Mark Bumiller告知,当年安捷伦有计划进入颗粒测试领域,并一次性收购了PSS等三家公司。但后来安捷伦的战略计划发生改变,颗粒测试不再是优先拓展领域,因此PSS高层又将公司赎回。“因为我们更喜欢拥有自己的技术型公司,做真正为客户考虑的仪器产品,”Mark Bumiller强调到。/pp  从客户角度出发研制新产品,这是PSS始终坚守的一个原则,也是PSS客户服务的一大特色。对于这一点,Mark Bumiller很是肯定,“我们乐于也擅于为客户解决颗粒测试难题,即使是Nicoli博士也非常愿意呆在实验室为客户做样品分析和仪器改动。”/pp  strong凭“一技之长”在半导体和制药行业打开局面/strong/pp  在谈到产品布局时,Mark Bumiller介绍说,“目前PSS拥有DLS、光阻法、集束光聚焦(后两者均属单颗粒光学传感技术,简称为SPOS)3种传感器以及4种自动稀释专利技术,我们将其自由组合,形成了Nicomp380、AccuSizer780两个系列的粒径测试仪器,检测范围从纳米到微米级,给半导体、制药等行业的用户提供从实验室到生产现场的整体解决方案。”/pp  据了解,AccuSizer780系列不仅可以对颗粒进行常规的粒度测试,还可以对样品颗粒进行计数,并且对于其他光散射或光衍射方法检测不到的极少数大粒子也可以精准地检测出,给出高分辨率的结果,“我们的产品在这一方面是同类仪器中表现最好的,这是PSS最大的独特优势。”Mark Bumiller特别指出。/pp  “当纳米颗粒体系中存在少数大粒子时,这往往是影响产品质量至关重要的因素,而常规的技术手段无法检测到这极少的部分粒子,检测不出就不会了解产品合格率大幅下降的根本原因,特别是在半导体行业,产品的良品率是衡量生产成本、决定企业生存的关键指标,而影响良品率的一个重要原因就是少数大粒子的存在。”Mark Bumiller谈到,“正是因为采用了SPOS、自动稀释、多达512个数据通道的分析手段等专利技术,我们的产品可以有效地区分开相邻峰,分辨出少数大粒子造成的杂峰,这让PSS在半导体、制药、墨水、涂料等行业占据了明显优势。”/pp  为了继续保持这一独特的技术优势,PSS每年的研发支出占到了营业收入的大约20%,“借助于新型传感器和自动稀释技术,PSS解决了高浓度颗粒样品的计数难题。在过去的三年内,我们还成功开发出了两款新型传感器,将AccuSizer780的计数功能下限扩展到了150nm,接下来我们将尝试开发具有更低检测下限的新技术。另外,生产现场的在线检测技术也是我们非常关注的一方面。”/pp  strong中国市场潜力诱人 未来开发策略将更接地气/strong/pp  对于大多数中国用户而言,PSS可以说是一家比较“神秘”的颗粒测试仪器商,品牌亮相频率不高、市场宣传方式低调。Mark Bumiller也承认PSS进入中国市场比较晚,“2011年我们在中国上海成立了PSS中国卓越中心,希望借此贴近中国市场,为客户提供更好的技术支持。”/pp  在谈到与其他颗粒测试品牌的竞争优势时,Mark Bumiller颇为自信地表示,“首先,AccuSizer780是我们的独有产品,在半导体、制药等应用领域已占据优势,几乎没有竞争对手;尽管Nicomp380在市场中存在一些竞争对手,但去年的销售表现已证明它的竞争实力。相比市场占有率,我们更看重用户口碑,因此PSS的销售策略就是用实验数据来说服客户。一般而言,客户在购买仪器时往往比较关注品牌、仪器配置,但我认为,客户更应该关注哪款仪器能够给出最真实的检测数据,这才是选择仪器最重要的依据。”/pp  基于上述优势,再加上用户口碑以及市场战略的发力,2015年成为了PSS全球市场表现最好的一年。“去年我们的全球销售产值增长超过20%,尽管中国市场在销售产值上只贡献了15%,但增速却实现了翻番增长。” Mark Bumiller非常看好中国市场,“2016年PSS全球增长最快的市场肯定是在中国,我期望增速能够达到40%。”/pp  “2015年PSS中国市场增长最大的驱动力来源于制药行业。”不过,Mark Bumiller相信,随着中国半导体行业的发展,技术水平的提升,中国半导体行业市场规模将会不断增大,而且对于高端技术的需求也会越来越多,未来对PSS的业绩贡献可能将与制药行业“分庭抗礼”。/pp  中国市场可观的增长潜力,让Mark Bumiller意识到,“我们应该更多地听取中国客户的一些意见和建议。接下来,PSS将会加强中国市场的品牌宣传工作,考虑到中国客户更习惯搜索和阅读中文文献,我们已安排了专人进行外文应用案例的翻译共享。同时,我们将在中国加大人员投入,增加销售、应用和售后服务力量,也会经常派出总部专家到中国进行现场技术支持 另外,我们还将发展更多的下级经销商和代理商,借助其经销渠道来覆盖全中国。”/pp style="text-align: right "strong编辑:刘玉兰/strong/pp  strong附:Mark Bumiller个人简介/strong/pp  span style="font-family: 楷体,楷体_GB2312, SimKai "现任职务:美国PSS粒度仪公司全球市场总监/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  其他职务: 美国USP 788 和ISO粒度标准的专家委员会成员 国际微粒研究学会理事会成员 美国化学工程师学会粒子技术论坛理事会成员。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  主要工作经历:/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  2013年至今 美国PSS粒度仪公司全球市场总监 美国/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  2010年-2013年 HORIBA科学事业部粒度仪欧洲区经理 法国/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  2007年-2010年 HORIBA科学事业部粒度仪产品美国区副总裁 美国/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  1990年-2007年 英国马尔文仪器公司销售和营销经理、市场部副总裁、商业发展部副总裁 英国/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  1985年-1990年 哈希公司国际销售经理、大客户经理、产品经理 美国/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制