当前位置: 仪器信息网 > 行业主题 > >

乙酰氨基葡萄糖对照品

仪器信息网乙酰氨基葡萄糖对照品专题为您提供2024年最新乙酰氨基葡萄糖对照品价格报价、厂家品牌的相关信息, 包括乙酰氨基葡萄糖对照品参数、型号等,不管是国产,还是进口品牌的乙酰氨基葡萄糖对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰氨基葡萄糖对照品相关的耗材配件、试剂标物,还有乙酰氨基葡萄糖对照品相关的最新资讯、资料,以及乙酰氨基葡萄糖对照品相关的解决方案。

乙酰氨基葡萄糖对照品相关的资讯

  • 食品安全国家标准审评委员会发布《食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准食品营养强化剂(6S)-5-甲基四氢叶酸,氨基葡萄糖盐》等5项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年6月30日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。 附件:征求意见的食品安全国家标准目录 食品安全国家标准审评委员会秘书处2023年5月6日相关标准如下:序号标准名称制定/修订营养与特殊膳食食品1项1.食品安全国家标准 食品营养强化剂 (6S)-5-甲基四氢叶酸,氨基葡萄糖盐制定食品添加剂2项2.食品安全国家标准 食品添加剂 聚乙烯醇修订3.食品安全国家标准 食品添加剂 氧化亚氮(GB 1886.350-2021)第1号修改单修改单理化检验方法与规程 1项4.食品安全国家标准 食品中蛋白质的测定修订食品产品1项5.食品安全国家标准 乳粉和调制乳粉修订
  • IVIS 视角 | 使用生物发光成像实时监测体内葡萄糖摄取
    在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。今天给大家分享一篇2019年发表在《Nature Methods》杂志上的文章。作者设计了一种生物发光的探针BiGluc,利用该探针即可在体内、体外实时、无创的长期监测葡萄糖的摄取。葡萄糖是大多数生物体能量的主要来源,其异常摄取与许多病理条件有关,如肿瘤、糖尿病、神經退行性疾病、非酒精性脂肪性肝炎等。到目前为止,基于18FDG的正电子发射断层成像(PET)仍然是测量葡萄糖摄取的金标准。还没有光学成像技术能够很好的检测该指标。文章中作者设计了一种可以可视化和定量葡萄糖吸收的光学探针。该探针是基于结合笼状萤光素技术与生物正交‘点击’反应,即可激活的笼状萤光素三芳基膦酯(CLP)与全氟苯基叠氮基修饰的葡萄糖(GAz4)分子之间产生的生物正交点击反应,该反应导致游离萤光素的释放,此时在萤光素酶的存在下,即可产生可量化的生物发光信号,其信号强度与葡萄糖的代谢水平相关。在活体成像中,首先是表达萤光素酶的动物注射CLP, 24小时后注射GAz4,注射后即可使用IVIS 小动物活体成像系统进行成像,如下图所示。图1. BiGluc.探针的设计策略点击查看视频:https://v.qq.com/x/page/y0897ftpwnc.html为了研究BiGluc探针在活体水平的应用,文中使用基因工程鼠FVB-luc+/+【该小鼠通过β-actin启动子广泛的表达萤光素酶】来进行评价。在三组FVB-luc+/+小鼠中,首先尾静脉注射CLP溶液,24h后分别灌胃GAz4(BiGluc组)、GAz4+d-葡萄糖(BiGluc+d-葡萄糖组)或PBS(背景组)。结果显示,d-葡萄糖(1:300 ratio with the GAz4 probe)的竞争能够对BiGluc信号进行抑制,使得信号值下降至背景值。从而成功证明BiGluc探针与天然底物存在竞争(下图a-c)。为了进一步研究BiGluc和d-葡萄糖的在体内的选择性,作者进行了胰岛素耐受性试验。高水平的胰岛素会导致GLUT4易位到细胞膜,随后组织对d-葡萄糖摄取的增加。因此实验中FVB-luc+/+小鼠静脉注射CLP,24h后注射GAz4 结合 PBS溶液(对照组)或者胰岛素,随后进行生物发光成像,结果显示胰岛素处理组小鼠的信号增加了三倍(下图d)。图2. 转基因小鼠(FVB-luc+/+)中d-葡萄糖摄取的成像和定量这些实验结果表明,BiGluc探针可以可靠地用于可视化研究活体水平d-葡萄糖的摄取,并且可以进行定量,从而也提示该探针可用于糖尿病等代谢疾病的研究。同样,该探针可用于肿瘤葡糖糖摄取的研究。葡萄糖转运蛋白,特别是GLUT1,在多种类型肿瘤发展中起着至关重要的作用。实验中使用裸鼠接种4T1-luc或4 T1-luc-GLUT1?/?细胞,肿瘤生长至体积65mm3,所有的动物注射等量的萤光素,以确保肿瘤的大小和萤光素酶的表达量相同。如前所示,进行BiGluc探针成像实验。实验结果表明,与对照组相比,4T1-luc-GLUT1?/?发光强度降低38%。同样文中还研究了BiGluc信号是否可以通过化学抑制GLUT1转运体来调节。众所周知,WZB-117是一种小分子的GLUT1可逆抑制剂,能够在不同的癌症中有效地阻止葡萄糖的摄取。结果显示WZB-117处理组,葡萄糖摄取信号减少50%(下图c,d)。同样文中比较了BiGluc 探针和18F-FDG-PET在肿瘤移植体中的应用效果。结果显示 4T1-luc-GLUT1?/-细胞对葡萄糖的摄取量降低,与BiGluc探针成像结果一致(下图e,f)。图3. 使用BiGluc和18F-FDG探针对肿瘤异种移植模型中d-葡萄糖的摄取进行成像和定量这些结果都证明了BiGluc探针在研究机体葡萄糖摄取中强大的功能。相信这项技术可以广泛应用于药物研发以及监测与葡萄糖摄取异常相关疾病的发生和进展,如癌症、糖尿病和肥胖等。此外,BiGluc技术扩大了生物发光成像技术可检测的生物分子的范围。在未来,利用新的红移萤光素-萤光素酶组合技术可以进一步提高BiGluc探针灵敏度,将进一步扩大其应用范围。文章来源https://www.nature.com/articles/s41592-019-0421-z关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 葡萄糖中钠、钾元素对人体的作用
    什么是钠、钾元素?钠是细胞外液中带正电的主要离子,参与水的代谢,保证体内水的平衡,调节体内水分与渗透压;维持体内酸和碱的平衡;钠对ATP的生产和利用,肌肉运动,心血管功能,能量代谢都有关系,此外糖代谢,氧的利用也需要钠的参与;同时钠可以维持血压正常,增强神经肌肉兴奋性。与钠相对,人体中的钾主要(95%以上)在细胞内部,是细胞液中主要的正离子。钾参与糖类、蛋白质的正常代谢。葡萄糖和氨基酸经过葡萄细胞膜进入细胞合成糖原和蛋白质是必须有适量的钾离子参与;维持细胞内正常渗透压,由于钾主要存在于细胞内,因此钾在细胞内渗透压的维持中起着主要作用;维持细胞内外正常的酸碱平衡,钾代谢紊乱时,可影响细胞内外酸碱平衡。钾和钠一起作用,维持体内水分的平衡和心律的正常(钾在细胞内起作用,钠在细胞外起作用);钾和钠平衡失调时会损害神经和肌肉的机能。 实验 本实验根据中国药典2020年版四部通则0406来进行,采用日立ZA3000原子吸收分光光度计进行测试。实验过程:1.复方乳酸钠葡萄糖注射液中钠元素测定配置0μg/ml,2μg/ml,2.5μg/ml,3μg/ml,3.5μg/ml,4μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 2.葡萄糖氯化钠钾注射液中钠元素测定配置0μg/ml,0.9μg/ml,1.35μg/ml,1.8μg/ml,2.25μg/ml,2.7μg/ml浓度的标准溶液,同时提取注射液样品中的钠元素,标准溶液及样品液制备完成后,上机进行测试。喷入空气-乙炔火焰,在高温火焰中形成的钠基态原子对钠特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钠的浓度成正比。测试结果: 3.复方葡萄糖电解质MG3注射液中钾元素测定配置 0μg/ml,1.5μg/ml,2.25μg/ml,3μg/ml,3.75μg/ml,4.5μg/ml浓度的标准溶液,同时提取注射液样品中的钾元素,标准溶液及样品液制备完成后,上机进行测试。 喷入空气-乙炔火焰,在高温火焰中形成的钾基态原子对钾特征谱线进行吸收,在一定吸光值范围内,其吸光度值和钾的浓度成正比。 测试结果:结论本次实验对注射液中提取的钠、钾元素进行测试。结果表明,日立ZA3000可以对特征波长589nm的钠元素和766.5nm的钾元素进行准确稳定的分析,测试结果不受注射液中其它共存物质的背景影响,方法稳定可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 欧盟发布氢化葡萄糖浆作为食品添加剂的科学意见
    近日,应欧盟委员会的要求,欧盟食品安全局食品添加剂和营养源科学专家组(ANS Panel)发布氢化葡萄糖浆作为食品添加剂的安全性评估意见。  氢化葡萄糖浆属于氢化淀粉水解产物,主要由麦芽糖醇、山梨糖醇和更高分子量的多羟基化合物组成。对所有年龄段的人来说,早餐的谷物食品、饼干和糕点是氢化葡萄糖浆最重要的潜在来源。对此,专家组进行了一系列的小鼠饲喂试验和人体学试验研究。以个人体重级别来分类,专家组评估了来源于所有推荐的食物中氢化葡萄糖浆的每日最高暴露量。其中,成人对氢化葡萄糖浆的暴露最少。  专家组指出,氢化葡萄糖浆饮食暴露的最高水平小于13周小鼠试验得到的无害作用剂量,其所评估的暴露水平是基于氢化葡萄糖浆应用于所有食物中后存在的假设。专家组认为,从推荐的食物用法和用量水平的角度来说,人体试验中服用的剂量和案例中报道的剂量的暴露水平已经接近于肠胃紊乱的剂量。因此,应该考虑添加其他允许使用的多羟基化合物类食品添加剂来起到通便作用。另外,氢化葡萄糖浆现有的毒理学数据不足以建立其每日允许摄入量(ADI),但是基于现有的资料,可以断定氢化葡萄糖浆目前所推荐的用法和用量不存在安全方面的担忧。
  • 一种检测葡萄糖对映体的表面增强拉曼散射光谱策略
    近期,上海师范大学杨海峰教授、刘新玲博士课题组报道了一种用于检测葡萄糖对映体的SERS策略,相关成果以“Chiral Detection of Glucose: An Amino Acid-Assisted Surface Enhanced Raman Scattering Strategy Showing Opposite Enantiomeric Effects on SERS Signals”为题发表在国际化学权威杂志Analytical Chemistry上(DOI: 10.1021/acs.analchem. 2c02340)。 研究背景: 在手性环境中(如人体内),由于分子间手性相互作用的差异性,手性分子和其对映体可表现出不同的性质和功能。因而,手性分子检测是一个非常重要的研究课题。圆二色(CD)光谱是一种常用的手性光谱检测技术,其检测原理是基于手性分子对于左旋和右旋圆偏振光具有不同的吸收系数,使得对映体产生符号相反的CD信号,从而可以直观地区分手性构型(图1)。然而,对于不含生色团的手性分子而言,其CD信号很弱、或者超出仪器检测波长范围。因此,发展灵敏的光谱分析技术用于手性分子构型鉴定和含量测定具有重要意义。表面增强拉曼光谱(SERS)分析方法灵敏度高,SERS信号可以反映出分子间相互作用机制,但是如何将SERS技术优势应用于手性检测仍有待于深入研究。 研究内容: 人体对氨基酸和葡萄糖具有特殊的对映体选择性,分别以L-氨基酸和D-葡萄糖为主,上述手性选择性起因仍是一个未解的科学难题。受此启发,如图2所示,该课题组制备了L-苯丙氨酸(L-Phe)修饰的“核-卫星”金纳米结构作为SERS基底。该基底与D-葡萄糖(D-Glu)混合后,L-Phe的SERS信号强度会增加(“signal on”);反之,L-葡萄糖(L-Glu)会降低L-Phe的SERS信号强度(“signal off”)。若以上述基底的SERS信号为参考,通过差值计算法,则可以获得和CD光谱类似的SERS信号强度差值曲线,即D-Glu和L-Glu表现出符合相反的SERS差值信号,从而直观地区分D-Glu和L-Glu手性构型。根据上述signal on和signal off效应,该方法可以测定葡萄糖对映体过量值(ee)及浓度,并可拓展到唾液中葡萄糖浓度检测(10-8~10-4 mol/L)。 图一示例: 圆二色光谱法区分对映体示意图(来源:Anal. Chem.) 图二示例:用于葡萄糖对映体检测的SERS分析策略示意图(来源:Anal. Chem.) 本研究通过氨基酸和葡萄糖对映体之间的差异化手性相互作用,导致氨基酸的SERS信号变化具有对映体选择性,实现葡萄糖对映体的区分及其含量测定,从而提供了一种基于SERS的手性分析策略。
  • 我国科学家实现二氧化碳到葡萄糖和油脂的人工合成
    此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗? 答案是肯定的! 4月28日,《自然催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)。 这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。 先把二氧化碳变成“食醋” 或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗? 对此,曾杰回应:“经过后续纯化处理,可以食用。” 那么,二氧化碳究竟是如何变成葡萄糖和油脂的? “首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。 至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。 “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。 研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。 不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。 所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。 “我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。 微生物“吃醋”产葡萄糖 得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。 “酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。 “然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。 对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。 “我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。 于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。 于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。 新型催化方式有坚实根基 更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。 同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。 “这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。 对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。 “该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。 同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。 曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。
  • 检测超低浓度葡萄糖 仿生离子通道布满“摄像头”
    记者28日从杭州医学院获悉,该校许秋然研究员团队联合华中科技大学科研人员,研发出一种基于亚微米通道异质膜的固态纳米通道生物传感器,实现了对不同pH值和线性范围为1皮摩/升—0.1微摩/升的超低浓度葡萄糖的无酶检测。相关研究论文近期发表于国际期刊《化学工程杂志》。活体细胞进行新陈代谢,会与周围环境进行物质交换,细胞膜上由特殊蛋白质组成的离子通道,就是这种物质交换的重要途径。在免疫反应、病原体感染等人体生理、病理变化活动中,细胞膜对糖类的识别起到重要作用。通过离子通道对糖类的分析检测,可以深入了解细胞间糖的选择性跨膜吸收和转运,作为生命科学、临床医学等领域研究的关键参数。此前,糖类检测技术均是基于100纳米孔径以下的纳米通道有可识别的电化学信号,但纳米通道空间有限,电阻较高,目标分子响应信号弱。科研人员持续追求高灵敏度、低检测限的糖类检测技术。本次研究中,该团队设计了一种仿生离子通道,选择具有耐高温、良好吸附性和透水性等特性的阳极氧化铝多孔通道膜AAO,作为这一通道的基底;通过聚多巴胺—金纳米颗粒多层组装的方法,在AAO通道内壁上原位生成并固定了大量可调节大小和密度的金纳米颗粒;通过将大量的糖分子探针修饰在金纳米颗粒的表面,制得了具有ICR特性,并对糖类响应良好的亚微米通道孔径的异质膜。“通俗地讲,修饰探针分子,相当于在仿生离子通道墙壁上安装了摄像头。AAO孔径269纳米,具有更大的修饰空间和流体运输通道,可输出更强的目标分子响应信号。”许秋然解释道,具有ICR特性,相当于给摄像头输入识别程序,更易识别细胞中糖类的电化学信号特征。许秋然表示,这一方法具有通用性,可据此研发出检测仪器,糖类检测仅是抛砖引玉,提供一个具体的检测案例。异质膜作为基底具有普适性,可拓展检测范围,通过修饰分子探针,对氨基酸、蛋白质、DNA等物质进行检测,好比给摄像头输入不同的程序,让它识别不同的对象。
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 酵母实现葡萄糖变鸦片 我们如何应对?
    每年,世界著名的合成生物学竞赛iGEM( International Genetically Engineered Machine)都会吸引数以千计来自全球各地的学生,就&ldquo 组装生命系统&rdquo 的创意与技术一较高下。Jerome Sessini/Magnum为了探讨合成生物学给社会安全和人类健康带来的潜在风险,2014年11月,FBI特工爱德华· 尤(Edward You)假设了这样一个场景:如果经过遗传改造的酵母能将糖&ldquo 加工&rdquo 成鸦片,我们该怎么办?曾经的假想现在已经成真。就在2014年iGEM大赛结束一周后,两位专门研究如何用酵母制造鸦片的科学家找到了我们。那时他们还没有发表论文,希望听听我们作为生物技术政策研究人员的意见。他们想知道,如何能在论文中将研究的益处最大化,并且缓和由此带来的风险的尖锐性。如今,加利福尼亚大学伯克利分校的约翰· (John Dueber)、肯高迪亚大学的文森特· 马丁(Vincent Martin)和同事已经将这篇论文公诸于众。经他们改造的酵母具有将葡萄糖转换成吗啡的完整生化反应通路(见&ldquo &lsquo 酿造&rsquo 鸦片的酵母&rdquo );而卡尔加里大学的研究人员更是给这架&ldquo 鸦片机器&rdquo 添上了最后一块零件。我们现有的吗啡都提取自罂粟(Papaver somniferum)。而通过改造酵母,寻找更简单、更可控的生物合成途径,可以帮助我们获得更便宜、成瘾性更低、更安全,以及更有效的镇痛药物。酵母可以自我复制、容易生长、貌不显眼,还能轻易地播撒四方。因此,这一研究还会为鸦片制品的违禁交易提供便利。鸦片制品可以由此实现分散化、本地化生产,普通人可以轻而易举地得到它们。这些年来,合成生物学家利用改造过的酵母、细菌和真核植物,制造了许多&ldquo 友好&rdquo 的物质,例如抗疟疾药物、香氛、调味料、工业化学品和燃料。制造吗啡的酵母菌株,是我们研究出的第一种可以合成管制镇痛药的生物系统;然而,它肯定不会是最后一种可能&ldquo 惹麻烦&rdquo 的生物合成系统。合成生物学界应该和监管者合作,积极评估这类具有&ldquo 两面性&rdquo 的技术的风险与收益。本文列出了一些最需要优先讨论的问题,它们不仅关乎公共卫生与安全,也与合成生物学的前景密切相关。这些问题包括:只允许持有相关执照的机构、获得授权的研究人员和技术人员使用能够合成鸦片制品的酵母菌株;减小这种酵母菌株对鸦片违禁交易市场的吸引力;贯彻灵活、灵敏的监管措施,以应对我们对这一技术在认识上的转变,以及技术本身的变化。&ldquo 酿&rdquo 鸦片的酵母葡萄糖需要经过若干个生物化学反应才能变成吗啡,研究人员花费了7年时间才赋予了酵母合成吗啡的能力。参与这一研究的3个团队分别将罂粟、甜菜根,以及土壤中一种细菌的遗传物质转移到酵母中,使其获得发生其中一个或几个反应的能力。第4个团队则为这条反应链接上了最后一环,在酵母中实现了(S)-网状番荔枝碱[ (S)-reticuline] 到(R)-网状番荔枝碱的转化:一种能够实现&ldquo 葡萄糖&rarr 吗啡&rdquo 全转化的酵母由此诞生。理论上,只要懂得一些基本的发酵操作,任何人都能使用家用的啤酒发酵工具养殖这种酵母。如果你用发酵罐&ldquo 酿&rdquo 出了10g吗啡,只需喝下1~2ml发酵液,你就能摄入一个标准的处方剂量。现有的工程酵母菌株并没有这么高的产能,然而,其他一些相关的商业化发酵产物,已经达到了此种产出率,有些物质的产出率甚至比这还高10倍以上。尽管研究人员的初衷是制造合法的镇痛药,这一新技术还是带来了不少麻烦。生物合成的吗啡要么比现有吗啡具有更高的费-效比(即在成本相等的情况下效果更好)、更为监管者所接受,要么成瘾性更小、更安全。然而,现有的吗啡在制造、管理,以及运输环节上,成本都不高。2001到2007年间,高产罂粟的成功培育使得罂粟制品(又叫&ldquo 罂粟杆浓缩物&rdquo ,一般以大批量形式销售)的成本降低了20%(约为每公斤300~500美元)。合成生物学家、神经科学学家、药物化学家等不同领域从业人员必须通力合作,并且进行旷日持久、所费不赀的临床试验,才能设计出更具商业价值的鸦片类镇痛药。此外,为了防止更多人对鸦片上瘾,全球鸦片制品的供需都处于严格的管控之下。法律保障为了防止罂粟制品流向非法市场,国际社会、各个国家均制定了多种条约与法律。鸦片制造国往往会采用有安保措施的大型设施生产鸦片制品。为了加强安全性,澳大利亚甚至专门选种了一种含有大量二甲氢吗啡的罂粟品种。二甲氢吗啡很难转变成吗啡,直接口服还会导致中毒。我们很难预测全球最大的麻醉品管制机构&mdash &mdash 国际麻醉品管制局(International Narcotics Control Board,INCB))&mdash &mdash 会对这种新型吗啡合成系统作何反应。INCB不大可能因此削减目前鸦片类镇痛药的生产定额,也不大可能对目前合法的鸦片交易模式进行调整。这就阻碍了酵母菌株进入鸦片制造市场。这种新型酵母菌株很可能对鸦片的违禁交易市场产生巨大影响。如今,鸦片有两个主要的非法交易渠道。首先是药物处方。非法交易者会窃取氧可酮(oxycodone)或氢可酮(hydrocodone)等镇痛药处方、开具不合理处方,或将合法处方非法销售出去。其次是毒品犯罪网络。阿富汗、缅甸、老挝、墨西哥等国家非法种植的罂粟制成的海洛因会通过犯罪网络流入市场,并以几十上百倍于成本的价格出售。新型菌株为毒品犯罪网络(特别是对毒品有高需求的北美和欧洲)提供了一个新&ldquo 选项&rdquo 。使用酵母制毒极易掩人耳目。酵母生长迅速、运输方便,不论犯罪组织还是执法机构都很难对这种酵母的流向进行控制。总之,由此带来的&ldquo 分散化&rdquo 与&ldquo 本地化&rdquo 生产,必然会降低非法鸦片制品的生产成本,增加其易得性,对全球的鸦片问题起到持续的恶化作用。目前,全世界有超过1 600万人正在非法使用鸦片制品。理论上讲,有了这种酵母,你只需家用的啤酒酿造工具,就能制造吗啡。(How Hwee Young/EPA/Corbis)四点建议若要对这一研究进行灵活、合理的监管,我们需要克服两个主要障碍。首先,目前我们对&ldquo 工程微生物&rdquo 的监管,主要集中在病原微生物(例如炭疽杆菌和天花病毒)上;酵母本不在监管的范畴中。其次,要实现有效监管,各国与国际的药物监管部门、执法机构需要通力合作,然而他们的行为规范与准则各不相同。公共卫生专家、科学家、监管者和执法机构必须加强沟通与协调。INCB,以及其他研究生物安全与生物安保监管的专业组织,就可以担负起组织这类国际对话的责任。以下四点,是为四个亟待解决的问题敲响警钟。技术层面 我们在设计酵母菌株时,应该尽可能降低它们对犯罪分子的&ldquo 吸引力&rdquo 。例如,我们可以用它制造对毒贩无甚价值的麻醉药(比如二甲氢吗啡);另外,我们可以弱化工程菌株,使其只能在既定的实验室环境内发挥作用,这样一来,一般人就很难利用它在其他地方生产和收集鸦片制品;最后,我们还可以设计需要特殊的营养成分,才能正常生长的酵母菌株。我们已经将以上&ldquo 生物遏制手段&rdquo (methods of biocontainment)应用在了大肠杆菌(Escherichia coli)上。我们也可以给这种菌株打上DNA水标记(DNA watermark)之类的&ldquo 烙印&rdquo ,方便执法机构对其进行识别。加强审查 鉴于犯罪组织可能利用公开的DNA序列制造自己的菌株(尽管这种可能性不大),那些专门提供DNA片段定制服务的公司,也需要提高警惕。制造此种酵母菌株的基因序列必须被列入DNA片段供应商的审查列表。目前,这一审查列表由两个自发性组织&mdash &mdash 国际合成生物学学会(International Association of Synthetic Biology)与国际基因合成联合会(International Gene Synthesis Consortium)&mdash &mdash 负责监管, 而审查的对象仅限于病原体的基因片段。健全安保 我们应该对此种酵母的使用环境进行严格管控,只有经监管者许可、受到控制的场所,才能利用它生产麻醉剂。上锁、安警报、实验室与实验原料监控系统等物理性质的生物安保措施可以防止酵母被盗。实验室的工作人员需要通过安保审查,方能上岗。同样,研究人员要承担相应的权责,不能向未经合法授权的单位或个体提供酵母菌种。法律监管 监管麻醉剂的现有法律,例如《美国管制药物法案》(US Controlled Substance Act)以及其他国家的类似法律,应该将监管触角延伸至此类酵母,保证其产物在生产与销售上的合法性。生物技术的发展日新月异,如果我们能够对这种具有两面性的技术采取有力、有效的监管,就能给以后的类似情况树立榜样。事实上,参与此项研究的生物学家,已经在最关键问题上做出了表率:他们愿意,也正在为他们的&ldquo 造物&rdquo 担负责任。然而,这篇文章的写作对象并不是他们。其他基因组工程师也在沿着这条道路前进。参与研发基因组编辑工具CRISPR/Cas9的科学家已经对学术界和监管机构发出呼吁,对CRISPR/Cas9进行积极的风险评估;而在此之前,我们不能利用这一工具编辑野生动植物基因,或修改人生殖细胞基因组。合成生物学已经日臻成熟,这要求我们必须拿出负责的态度,做出负责的行动。(撰文:肯尼思· A· 奥耶(Kenneth A. Oye) J· 查普尔· H· 劳森 (J. Chappell H. Lawson) 塔尼亚· 布贝拉(Tania Bubela)。
  • CFDA发布《持续葡萄糖监测系统注册技术审查指导原则》
    p style="text-indent: 2em "3月21日,国家食品药品监督管理总局(CFDA)发布了《持续葡萄糖监测系统注册技术审查指导原则》(2018年第56号),旨在加强医疗器械产品注册工作的监督和指导,进一步提高注册审查质量。/pp style="text-indent: 2em "附件:a href="http://img1.17img.cn/17img/files/201803/ueattachment/4780f084-c8b6-4137-ad80-3a57e443a08d.doc"持续葡萄糖监测系统注册技术审查指导原则.doc/a/p
  • 【瑞士步琦】白酒酿造,酒醅中可溶性淀粉转化葡萄糖有多少?
    酒醅中可溶性淀粉转化葡萄糖有多少?酒曲生产需要一定的发酵周期,发酵过程不便调控,因此酒曲的化学成分分析对于制曲生产起着相当重要的作用。衡量大曲质量的优劣主要是根据大曲的水分、酸度、淀粉、发酵力、酯化力、糖化力等理化指标的大小,再辅以感官来进行综合评判。其中大曲糖化力是一个重要指标,是表征大曲将酒醅中可溶性淀粉转化为葡萄糖的能力。检测大曲糖化力的传统方法为斐林试剂法,存在耗时长、样品前处理过程繁琐等不足,因此建立一种快速、高效的大曲糖化力检测方法具有重要意义。本实验采用步琦的近红外光谱仪 NIRMaster 对大曲糖化力的快速检测。近红外光谱技术结合偏最小二乘法检测大曲糖化力 1仪器设备瑞士 Buchi 公司的 NIRMaster 傅里叶变换近红外光谱仪。光谱谱区范围为 4000~10000 cm-1,光谱分辨率为 8 cm-1,扫描次数为 48 次,测量序列个数为 3。 2样品酒厂酿酒周期的现用大曲 200 个 3实验方法3.1大曲糖化力化学方法测定大曲糖化力的化学测定法采用斐林试剂法。大曲中的糖化酶能将淀粉水解为还原糖,还原糖可以将斐林试剂中的二价铜离子还原为一价铜离子,反应终点由次甲基蓝指示。根据还原一定量的斐林试剂所需的还原糖量,可计算大曲样品的糖化酶活力,即 1g 大曲在 35 ℃、pH4.6 条件下,反应 1h,将可溶性淀粉分解为葡萄糖的能力。每个样品的检测均取 2 个平行样。3.2大曲样品的近红外光谱测量方法将大曲样品平铺于培氏培养皿样品杯底部,样品量约占样品杯 2/3,并用样品勺压紧,避免出现缝隙,然后将样品杯放置于测量池上进行测量。 4结果实验数据处理方法采集的光谱数据用 NIRCal 化学计量学分析软件处理和计算。▲ 大曲糖化力化学值与预测值的散点图上图可直观的看出模型的光谱预测值与原始值的相关性较好。其中,建模集的相关系数为 r 为 0.9613,验证集的相关系数 r 为 0.9528;建模集标准偏差 SEC 与验证集标准偏差 SEP 的比值为 29.6099/29.7088=0.9967,模型稳定性较好,具有很好的预测能力。▲ 未知样品含量预测值与化学值的比较模型的验证结果可以看出,大曲糖化力近红外模型预测值的平均相对误差为 5.27 %,说明该近红外模型有较好的预测能力。为考察两种方法检测结果之间的差异性,采用 SPSS 软件对 50 组大曲样品进行差异显著性分析。结果见下表。从分析结果可以看出,在 0.05 水平上,两种方法差值的显著性结果为 0.830,大于 0.05,说明两种方法的检测结果的差异性并不显著,均可以反映大曲糖化酶活力大小,该模型可以用于大曲糖化力的预测。 5讨论本试验采用近红外光谱技术结合偏最小二乘法建立了预测大曲糖化力的定量模型。通过对模型的预测结果与传统方法检测结果的对比分析可以看出,该模型的准确度可以满足实际生产中大曲糖化力的预测。近红外光谱分析具有以下特点:操作简单分析速度较快,适合大批量重复测试测试过程中无需使用化学试剂、无污染样品可以重复使用可用于生产线等在线检测6参考文献王军凯,王卫东,蒋明,韩瑶,等. 近红外光谱技术结合偏最小二乘法检测大曲糖化力[J].酿酒,2018(3):116-118.
  • 出口氨糖类产品须获欧盟食品注册
    日前,欧盟已开始对我国出口的动物源性氨基葡萄糖系列产品提出注册要求,江苏省企业的产品由于未在欧盟注册屡屡遭扣押和退运。  氨糖类产品是从虾蟹壳等原料中提取出来的生物制品,制成保健品后可用于对骨关节的保健。我国上世纪90年代开始规模生产,目前的产业规模已达100亿元,主要分布在江苏、浙江、福建等省,产品主要出口欧美国家和地区,市场份额高达80%至90%。  由于国内食品分类及HS编码分类的问题,该类企业长期未按食品类产品接受检验检疫部门的监管,企业之前也未主动申请出口食品企业备案。但欧盟从2011年起,陆续制修订其动物源性食品法规,对我国出口的动物源性氨基葡萄糖系列产品提出了严格的注册要求。  为此,江苏检验检疫局提醒,欧盟计划于今年11月对中国推荐的出口食品注册企业实施官方检查。此前,出口动物源性氨基葡萄糖系列产品的企业应加强与检验检疫部门的联系,充分掌握国外标准要求,避免盲目生产和出口。同时,企业应按照食品安全管理和欧盟注册要求,改进生产条件,提高管理水平,积极做好对外注册准备。
  • 农产品所系统报道了血糖仪结合信号放大技术定量检测非葡萄糖靶标在食品安全领域的最新进展与挑战
    近日,农产品所肉类加工创新团队在《Journal of Pharmaceutical Analysis》(中科院一区TOP期刊,IF=14.026)在线发表题为“Personal glucose meters coupled with signal amplification technologies for quantitative detection of non-glucose targets: Recent progress and challenges in food safety hazards analysis”的综述文章。该文章系统报道了血糖仪结合信号放大技术定量检测非葡萄糖靶标在食品安全领域的最新进展与挑战。   血糖仪凭借购买成本低、测试量小、操作简单和定量结果可靠的优势,已成为数百万糖尿病患者不可或缺的一部分,也是当下医疗诊断领域最成功的即时检测设备之一。当前研究者们发现通过血糖仪与纳米材料负载多酶标记、核酸扩增、DNA酶催化、响应性纳米材料包封及其他信号放大技术结合,可有效应对食品基质效应、危害物痕量、检测时间长和资源匮乏等快检问题。血糖仪在食品安全危害分析领域展现出巨大潜力。   本文系统报道了基于血糖仪传感策略的基本检测原理,包括目标识别、信号转导和信号输出。根据其结合不同信号放大技术对其进行了分类并讨论了血糖仪在食品安全领域中的未来前景和潜在机遇与挑战,为食品安全领域的现场快速检测提供了有价值的参考。农产品加工与营养研究所为论文第一通讯单位,肉类加工团队硕士研究生贺锋为论文第一作者,杜鹏飞博士为论文共同通讯作者。该研究获得了国家现代农业(肉羊)产业体系建设专项、山东省羊产业技术体系和山东省自然科学青年基金等项目资助。(撰写:杜鹏飞 核稿:刘丽娜)   文章亮点:   1. 血糖仪是检测食品危害物的有效工具   2. 描述了基于血糖仪生物传感策略的原理   3. 讨论了血糖仪在生物传感应用中的优缺点   4. 展望了血糖仪在食品安全领域的未来挑战和前景
  • 全国工具酶标准化工作组发布国家标准《葡萄糖氧化酶活性检测方法》征求意见稿
    国家标准计划《葡萄糖氧化酶活性检测方法》由 SWG11(全国工具酶标准化工作组)归口 ,主管部门为国家标准化管理委员会。 拟实施日期:发布即实施。主要起草单位 福建南生科技有限公司 、夏禾(杭州)生物技术有限公司 、夏禾(深圳)生物技术有限公司 、宁夏夏盛实业集团有限公司 、厦门银祥集团有限公司 、深圳市新产业生物医学工程股份有限公司 、武汉新华扬生物股份有限公司 、廊坊诺道中科医学检验实验室有限公司 、天津博菲德科技有限公司 、广州市进德生物科技有限公司 、山西大禹生物工程股份有限公司 、河北省微生物研究所有限公司 、武汉瀚海新酶生物科技有限公司 、深圳市海拓华擎生物科技有限公司 。主要起草人 黄发灿 、郑登忠 、郑恬烨 、沈涛 、张志刚 。附件:国家标准《葡萄糖氧化酶活性检测方法》征求意见稿.pdf国家标准《葡萄糖氧化酶活性检测方法》编制说明.pdf
  • 苏州市计量测试学会发布《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》等相关规定,由苏州市计量测试学会提出并归口的《人唾液中葡萄糖浓度的测定 离子色谱法》(T/SZJL 4-2023)团体标准已按规定程序审查、审批通过,现予以发布,标准自2023年10月10日起实施。特此公告!苏州市计量测试学会2023年10月08日苏州市计量测试学会关于发布《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准的通知.PDF
  • 苏州市计量测试学会关于《人唾液中葡萄糖浓度的测定 离子色谱法》等2项团体标准的立项公告
    各有关单位:根据《苏州市计量测试学会团体标准管理办法(试行)》的有关规定,学会对《人唾液中葡萄糖浓度的测定 离子色谱法》》、《洁净室服装及织物空气粒子过滤效率检测方法》2项团体标准组织了立项评审会议,经专家评审,符合立项要求,现予以立项。特此公告!同时欢迎与本标准有关的高校、科研机构、技术机构及相关企业单位或个人加入本标准的起草制定工作,有意参与本团体标准起草制定工作的请与学会联系。 联系人及电话:胡学刚 0512-66587060电 子 邮 箱:huxg@szjl.com.cn 苏州市计量测试学会2023年04月17日关于《人唾液中葡萄糖浓度的测定 离子色谱法》团体标准的立项通知.PDF关于《洁净室服装及织物空气粒子过滤效率检测方法》团体标准的立项通知.PDF
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 4月共有68项食品及相关标准正式实施,新增标准62项!
    2023年4月共有68项食品及相关标准正式实施,其中,代替标准6项,新增标准62项,新增标准占标准总数的91.18%。  4月起实施的标准中,国家标准2项(《GB 5749-2022 生活饮用水卫生标准》和《GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法》),地方标准9项,行业标准34项,团体标准23项。这些标准涉及原料标准、农产品加工标准、规范规程标准、检测方法标准等。 该类标准中,涉及到的仪器类别有液相色谱仪、气相色谱仪、液相色谱质谱联用仪、气相色谱质谱联用仪、电感耦合等离子体质谱仪、高效液相色谱-原子荧光光谱仪、核磁共振波谱仪等。值得注意的是,《GB 5749-2022 生活饮用水卫生标准》已于4月1日起正式实施;《GB/T 5750-2023生活饮用水标准检验方法系列标准》也将于将于10月1日正式实施。 2023年4月起实施的食品及相关标准信息序号标准编号及名称实施日期代替标准1GB 5749-2022 生活饮用水卫生标准2023-04-01GB 5749-20062GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法2023-04-013HG/T 6074-2022 水处理剂 一元二氧化氯发生剂2023-04-014HG/T 6071-2022 水处理剂用单过硫酸氢钾复合盐2023-04-015HG/T 6073-2022 水处理剂 聚硫氯化铝2023-04-016HG/T 4672-2022 水处理剂 聚氯化铁2023-04-01HG/T 4672-20147HG/T 4538-2022 水处理剂 氯化亚铁2023-04-01HG/T 4538-20138JB/T 14690-2022 豆油皮加工生产线2023-04-019JB/T 14618-2022 冷藏肉腐败变质实时监测装置2023-04-0110JB/T 14619-2022 生鲜肉营养成分无损检测装置2023-04-0111JB/T 14620-2022 水果品质便携式检测装置2023-04-0112JB/T 14567-2022 直冷式块冰制冰机2023-04-0113QB/T 5633.3-2022 氨基酸、氨基酸盐及其类似物 第 3 部分:L-苏氨酸2023-04-0114QB/T 5633.4-2022 氨基酸、氨基酸盐及其类似物 第 4 部分:L-色氨酸2023-04-0115QB/T 5633.5-2022 氨基酸、氨基酸盐及其类似物 第 5 部分:L-精氨酸及 L-盐酸精氨酸2023-04-0116QB/T 5633.6-2022 氨基酸、氨基酸盐及其类似物 第 6 部分:三甲基甘氨酸及其盐酸盐2023-04-0117QB/T 5633.7-2022 氨基酸、氨基酸盐及其类似物 第 7 部分:γ-氨基丁酸2023-04-01QB/T 4587-201318QB/T 5756-2022 酸面团2023-04-0119QB/T 5758-2022 罐头食品金属容器用易撕盖2023-04-0120QB/T 5759-2022 番茄酱罐头中番茄红素含量测定 高效液相色谱法2023-04-0121QB/T 5761-2022 食品中水苏糖的测定 核磁共振波谱法2023-04-0122QB/T 5776-2022 食用盐中抗结剂柠檬酸铁铵的测定2023-04-0123QB/T 5679-2022 饮用水处理装置能效限定值及能效等级2023-04-0124QB/T 5705-2022 乳制品行业绿色工厂评价要求2023-04-0125QB/T 5791-2022 食用植物油行业绿色工厂评价要求2023-04-0126QB/T 5743-2022 酵母行业绿色工厂评价要求2023-04-0127QB/T 5744-2022 氨基酸行业绿色工厂评价要求2023-04-0128QB/T 5745-2022 淀粉糖行业绿色工厂评价要求2023-04-0129QB/T 5746-2022 山梨糖醇行业绿色工厂评价要求2023-04-0130QB/T 5747-2022 绿色设计产品评价技术规范 淀粉糖2023-04-0131QB/T 5748-2022 绿色设计产品评价技术规范 有机酸2023-04-0132QB/T 5749-2022 绿色设计产品评价技术规范 氨基酸2023-04-0133QB/T 5750-2022 绿色设计产品评价技术规范 酵母制品2023-04-0134QB/T 5751-2022 绿色设计产品评价技术规范 山梨糖醇2023-04-0135QB/T 5752-2022 绿色设计产品评价技术规范 果蔬罐头2023-04-0136QB/T 5753-2022 绿色设计产品评价技术规范 水产罐头2023-04-0137DB61/T 1653-2023 柿饼加工技术规程2023-04-1538DB44/T 2416-2023 火龙果冷链技术要求与操作规范2023-04-2839DB44/T 2415-2023 冷藏运输节能操作规范2023-04-2840DB51/T 3020-2023 蔬菜采后处理与产地贮藏技术规程2023-04-0841DB14/T 2713-2023 小米仓储运输技术规范2023-04-1842DB14/T 2712-2023 小杂粮加工技术规范 小米2023-04-1843DB11/T 1764.21-2022 用水定额 第21部分:屠宰及肉制品加工2023-04-0144DB11/T 1764.12-2022 用水定额 第12部分:饮料2023-04-01DB11/T 1696-201945DB11/T 1047-2022 果品等级 鲜食枣2023-04-01DB11/T 1047-201346T/YNBX 084-2023 铁皮石斛真伪鉴别 高效液相色谱指纹图谱法2023-04-0147T/AHFIA 089-2023 预制菜 速食米线2023-04-0148T/AHFIA 082-2023 预制菜 徽州毛豆腐2023-04-0149T/AHFIA 088-2023 预制菜 炒叶芥菜2023-04-0150T/AHFIA 087-2023 预制菜 药膳芍花鸡2023-04-0151T/AHFIA 086-2023 预制菜 药膳麻椒鸡2023-04-0152T/AHFIA 085-2023 预制菜 药膳参杞牛肉2023-04-0153T/AHFIA 084-2023 预制菜 徽州干锅炖2023-04-0154T/AHFIA 083-2023 预制菜 徽州葛粉圆子2023-04-0155T/AHFIA 081-2023 预制菜 徽州刀板香2023-04-0156T/AHFIA 080-2023 预制菜 徽州臭鳜鱼2023-04-0157T/NXFSA 059-2023 锁鲜枸杞2023-04-0158T/FQIA 008-2022 产品质量鉴定程序规范2023-04-0159T/DZJN 129-2022 净水器用即热水龙头2023-04-0160T/FJHX 0004-2023 灵芝提取物中性三萜及麦角甾醇的测定 高效液相色谱法2023-04-0161T/FJHX 0003-2023 灵芝及其相关产品中β-葡聚糖的测定2023-04-0162T/HATSI 0022-2023 绿色设计产品评价技术规范 次氯酸氧化高电位消毒液2023-04-0163T/ZHCA 106-2023 人参提取物 稀有人参皂苷Rh22023-04-2164T/CNSS 016-2022 限能量膳食营养干预规范2023-04-0165T/CBFIA 07004-2022 清洁生产标准 氨基葡萄糖工业(发酵法)2023-04-0166T/CBFIA 07003-2022 氨基葡萄糖盐(发酵法)2023-04-0167T/CBFIA 07002-2022 N-乙酰氨基葡萄糖(发酵法)2023-04-0168T/CBFIA 13001-2022 温室气体排放核算与报告要求 生物发酵生产企业2023-04-01相关标准请到仪器信息网资料库查询:https://www.instrument.com.cn/download/L_5DBC98DCC983A70728BD082D1A47546E.htm
  • 全国畜牧业标准化技术委员会发布农业行业标准《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》(公开征求意见稿)
    相关附件下载:《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》(公开征求意见稿)编制说明.doc公开征求意见反馈表.doc《蜂产品中果糖、葡萄糖、蔗糖和麦芽糖含量的测定 高效液相色谱法》标准文本(公开征求意见稿).doc
  • 第三十一期质谱沙龙成功举办
    仪器信息网讯 2011年5月29日下午,第三十一期质谱沙龙活动在第二炮兵总医院药学部举行。十多位利用质谱仪器进行科学研究的一线科研人员参加了此次沙龙,仪器信息网亦应邀参加。质谱沙龙由第二炮兵总医院和北京师范大学和AB SCIEX公司共同主办。沙龙现场  本次质谱沙龙由第二炮兵总医院李鹏飞老师主持,共安排了三个与药物代谢相关的研究报告:二炮总医院李鹏飞老师作了题为“氨基葡萄糖检测方法小结及有关问题讨论”的报告 北京师范大学乔晋萍老师作了“LC-MS分析方法在放射性药物研究中的应用”的报告 AB SCIEX公司李立军老师作了题为“QTRAP实战指南之三---- ER的应用”的报告。第二炮兵总医院李鹏飞老师(左),北京师范大学乔晋萍老师(中),AB SCIEX公司李立军老师(右)  李鹏飞老师首先介绍了氨基葡萄糖检测的重要性,着重从血浆样品前处理,色谱质谱条件的选择和优化一直到最后实验结果的分析讨论,与大家分享了整个实验过程的心得和体会以及实验中遇到的问题。乔晋萍老师主要介绍了将液质联用方法用在放射药物(在药物结构中引入放射性核素,根据核素放射不同种类的射线达到对疾病的治疗和诊断)研究,液质联用主要用来进行质量控制以及药物的代谢研究。李立军老师已经作了一系列的Qtrap实战指南,本次沙龙主要讲解的是ER(增强分辨率扫描)的应用,对于使用使用Qtrap质谱仪器的用户来说有很好指导作用。  质谱是药物代谢研究中关键的分析工具,它可以准确识别代谢物,确定代谢发生的位点 但是在研究对象基质越来越复杂、需要检测的对象含量越来越低的情况下,现有的质谱仪器和质谱技术同样面临很大挑战 因此经常性的专题交流就显得尤为必要。本次沙龙在每个报告结束之后,主持人给留出了充足的时间让大家进行广泛深入的讨论 这对于以质谱为主要科研工具的一线科研人员是难得的机会,对于如何更好的发挥质谱仪的潜能,挖掘新的质谱技术和应用有大的帮助和促进作用。
  • 保健食品25种成分检验方法征求意见 色谱挑大梁
    p  日前,市场监管总局发布关于征求《保健食品卫生学理化检验规范(征求意见稿)》意见的公告。本规范规定了保健食品和原料的卫生学技术要求的检验项目及方法,适用于保健食品的注册、复核和备案检验、监督抽验、风险监测及常规检验项目的确定和方法的选择。征求意见截止到2019年7月10日。/pp  征求意见稿给出了《二十五种功效成分和标志性成分检验方法》,涉及了高效液相色谱、气相色谱、紫外/可见分光光度计等分析方法,其中14项采用高效液相色谱分析方法,2项采用气相色谱分析方法。另外,第三部分《十一种溶剂残留的测定》采用的也是气相色谱分析方法。/pp style="text-align: center "strong二十五种功效成分和标志性成分检验方法/strong/pp  一、保健食品中红景天苷的测定./pp  二、保健食品中大蒜素的测定./pp  三、保健食品中芦荟苷的测定./pp  四、保健食品中肉碱的测定./pp  五、保健食品中α-亚麻酸、γ-亚麻酸的测定./pp  六、保健食品中人参皂苷的测定./pp  七、保健食品中原花青素的测定./pp  八、保健食品中核苷酸的测定./pp  九、保健食品中洛伐他汀的含量测定./pp  十、保健食品中植物类功效成分鉴别试验方法./pp  十一、保健食品中槲皮素、山柰素、异鼠李素的含量测定./pp  十二、保健食品中茶氨酸的测定./pp  十三、保健食品中五味子醇甲、五味子甲素和乙素的测定./pp  十四、保健食品中腺苷的测定./pp  十五、保健食品中总皂苷的测定./pp  十六、保健食品中总黄酮的测定./pp  十七、保健食品中壳聚糖脱乙酰度的测定./pp  十八、蚓激酶活性的测定方法./pp  十九、保健食品中总蒽醌的测定./pp  二十、保健食品中10-羟基癸烯酸的测定./pp  二十一、保健食品中绞股蓝皂苷XL IX的测定./pp  二十二、保健食品中氨基葡萄糖的测定./pp  二十三、保健食品中总三萜的测定./pp  二十四、保健食品中虫草素的测定./pp  二十五、保健食品中虫草酸的测定./pp  详细内容请见附件:strongimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "//stronga href="https://img1.17img.cn/17img/files/201906/attachment/b2d5fb12-36d5-408d-8491-964184282a41.doc" title="保健食品卫生学理化检验规范.doc" style="font-size: 12px color: rgb(0, 102, 204) "strong保健食品卫生学理化检验规范.doc/strong/a/p
  • 进展|糖型解析层面的抗体middle-down质谱分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry。本文的通讯作者是罗氏集团的Tilman Schlothauer和Feng Yang。  治疗性单克隆抗体(mAb)分析中翻译后修饰(PTMs)的表征是一个主要的挑战,单个PTM通常采用bottom-up的方法进行分析,但PTM之间的关联性信息丢失 middle-down方法提供了分辨率、位点特异性和蛋白型异质性的良好平衡,其表征工作流程主要依赖于末端片段离子。内部片段离子的纳入提高了序列覆盖率和PTM分辨率,使其成为一种有前途的方法。先前,糖工程单克隆抗体的研究表明,一组有限的高甘露糖、乙酰氨基葡萄糖和糖基化蛋白型不同程度地影响了PTMs的敏感性质,如脱酰胺和氧化。Asn 325的脱酰胺是一种功能相关PTM,在传统bottom-up方法中由于其较短的肽段和较高的亲水性而经常被忽略,目前没有研究调查Asn 297糖型对Asn 325脱酰胺敏感性的影响。在这篇文章中,作者提出了一种纳入内部片段的middle-down工作流程,在糖型解析层面上评估mAb上Asn 325脱酰胺修饰。  图1. 糖型解析的Asn 325脱酰胺的middle-down分析流程。(A) IdeS酶切后的Fc/2序列,及相关的糖基化(Asn 297)和脱酰胺(Asn 325)位点。(B)工作流程示意图,包括样品制备、RP-LC亚基分离、MS1电荷态选择、四极杆糖型分离、MS2内部片段搜索,以及基于提取的单同位素质量离子色谱(未修饰与修饰)的定量策略。  图2. Asn 325脱酰胺鉴定中内部片段SNKAL的定性评价。未修饰(对照)、热应力样品(8w, 40°C)、HC Asn 325 Asp序列突变体的代表性MS2谱图叠加,以及修饰的内部片段离子SDKAL的模拟单同位素质量。*表示未修饰的SNKAL的+1同位素对修饰的SDKAL的单同位素具有足够的分辨率。  本研究使用标准IgG1单抗(G1m17, Km3)和突变体(HC Asn 325 Asp)。对于热应激,标准单抗在40°C的配方缓冲液中孵育2、4和8周。在IdeS酶切之前,将10%的突变单抗插入标准单抗中,生成加标样品。抗体经IdeS酶切、还原后,用标准RPLC流程分析(图1B) 针对Asn 325脱酰胺位点周围的内部片段离子的覆盖率,作者对HCD碰撞能量和捕获气体参数进行了优化。共分配了覆盖Asn 325的7个内部片段离子,根据片段强度和定量精度,与bottom-up分析确定的目标脱酰胺值相比,选择SNKAL作为Asn 325的代表性特征离子。SNKAL对无应力对照组的特异性通过包含Asp 325的序列突变体(N325D)得到证实,该突变体在未修饰的Asn 325的单同位素质量处没有片段离子(图2)。因此,排除了其他片段离子的中性丢失引起的歧义或重叠。Asn 325对照、Asp 325突变体和分离的糖型(G0F、G1F、G2F)的MS2具有高度可比性。修饰后的单同位素质量和未修饰的Asn 325的第一个同位素之间获得了足够的分辨率(图2)。  使用middle-down MS对所有糖型的相对脱酰胺评估与bottom-up分析确定的水平一致(图3)。与热应力持续时间无关,单个糖型(G0F、G1F和G2F)的middle-down脱酰胺评估没有显著差异(图4)。Asp 325突变体的插入实验证实了middle-down策略评估单个糖型脱酰胺水平差异的能力。由于未修饰的Asn 325单抗和Asp 325单抗之间的糖型相对丰度的差异,与总加标量(10%)相比,蛋白型(糖型% ×脱酰胺%)混合的比例不同。因此,在加标样品中,G0F的脱酰胺率低于10%,而由G1F和G2F的脱酰胺率高于10%(图4)。Middle-down脱酰胺评估的精度取决于糖型丰度和脱酰胺水平,单个样本的相对标准偏差范围为2.8%至16.4% (n = 9),样本间中位相对标准偏差为7.4% (n = 16)。总蛋白型丰度和相对标准偏差显示出明显的相关性,并证明了middle-down方法的敏感性,允许在0.2%的相对丰度下评估蛋白型。  图3. middle-down工作流程对Asn 325脱酰胺定量分析的能力评估。在2w、4w和8w热应力(40°C)下,应力样品bottom-up和middle-down(所有糖型)分析的相关性。数据点表示middle-down分析的技术重复的中位数(n = 9, 3天内重复3次)。误差条显示95%置信区间。CTRL显示n = 3时无应力样品的背景水平。  图4. Asn 325脱酰胺的糖型解析水平的middle-down分析。从2w, 4w和8w热应力样品和10% Asp 325加标样品中提取所有糖型和分离糖型(G0F, G1F, G2F)的相对脱酰胺结果。技术重复的中位数和95%置信区间为n = 9时[G2F在2w (n = 4)和4w (n = 8)时除外]。ns =不显著。*表示假定值范围(* 0.05, ** 0.01, **** 0.0001)。  本文引入了一种新的middle-down策略,通过利用HCD碎片的内部碎片离子来分析单克隆抗体Fc中的PTM动力学,将复杂性降低到Fc/2亚基水平,并保留了相关的蛋白质形态完整性,同时获得了bottom-up方法的分辨率和位点特异性,并成功地证明了IgG1抗体的Fc半乳糖基化变体不会影响热应激下Asn 325脱酰胺的程度。  撰稿:夏淑君  编辑:李惠琳  文章引用:Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • 红外光谱品葡萄酒 让口感“有据可循”——珀金埃尔默“红外光谱品葡萄酒”技术获专家点赞
    p  一杯红酒,一盏甘醇,葡萄酒的品鉴既是一门艺术,也是一门科学。葡萄酒的主要成分是水和酒精,除此之外,还含糖和甘油(均为发酵的残留物),酸类物质,包括单宁在内的多酚类物质,以及其他更少量的酯类等。葡萄酒的香气主要来自于其中的酯类,而口感则主要由其他的物质决定。比如,糖类影响其甜度,酸类影响其酸度,多酚类物质产生苦涩感,而甘油赋予了葡萄酒厚度。这些成分及其含量综合决定了葡萄酒的口感。/pp  除了视觉、嗅觉和味觉的体验,科学研究如何从数据上分析葡萄酒组成?红外光谱给出了其特有的品鉴方式!/pp  红外光谱法,基于化合物官能团振动过程中偶极矩变化产生的特征吸收,为不同的化合物提供了特定的红外光谱特征,被形象的称作“指纹图谱”,既可定性,还可定量。譬如,酸类物质的特征官能团是羰基,红外峰在1710cmsup-1/sup左右 多酚类物质的特征官能团是多个共轭苯环,红外峰在1610cmsup-1/sup左右 糖和甘油的特征官能团是C-O,红外峰在1000cmsup-1/sup左右。这些谱峰的吸光度,同其含量成正相关。由此可见,葡萄酒影响口感的化合物都有红外特征,因此可使用红外光谱法分析葡萄酒组成。/pp  BCEIA互动体验区,珀金埃尔默现场演绎了红外光谱分析葡萄酒组成的过程,吸引了很多业内人士围观。实验中,使用移液枪精确将2µ l的葡萄酒滴在Spectrum Two红外光谱仪的ATR附件的金刚石晶体上。约5分钟后,酒精和水挥发完毕,剩余的化合物附着在晶体表面,即可启动扫描程序,采集ATR红外光谱。图1右是某品牌赤霞珠葡萄酒的ATR红外谱图,可以明显的看到其酸类、多酚类、糖和甘油的特征。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 269px " src="https://img1.17img.cn/17img/images/201910/uepic/dea48f7b-ae05-45e4-a60c-1159d81f730b.jpg" title="微信图片_20191024233830.png" alt="微信图片_20191024233830.png" width="600" height="269" border="0" vspace="0"//pp style="text-align: center "strong图1. 左: PerkinElmer Spectrum Two红外光谱仪,将葡萄酒样品滴加在晶体上即可进行检测。右:某品牌赤霞珠葡萄酒的红外光谱图,显示了其酸类、多酚类、糖和甘油等物质的特征/strong/pp  葡萄酒中的各类物质并不是单一的,而是由很多成分组成。譬如,柠檬酸、苹果酸、酒石酸、乳酸等是常见的酸类 白藜芦醇、花青素、槲皮素、原花青素等是常见的多酚类 葡萄糖、蔗糖、果糖等是常见的糖类 而单宁实际上也是一种酸,但具有多酚的结构。这些成分的红外特征又不相同。图2为常见糖类和甘油的红外谱图。虽然他们的主要官能团类似,但具体结构的差异还是体现了特征红外光谱。因此,可通过进一步分析,获得葡萄酒各类成分更细节的组成和含量信息。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 403px " src="https://img1.17img.cn/17img/images/201910/uepic/45d64869-0666-42b4-9942-656698927a1f.jpg" title="22.jpg" alt="22.jpg" width="500" height="403" border="0" vspace="0"//pp style="text-align: center "strong图2. 葡萄酒中主要糖类和甘油的红外谱图/strong/pp  红外光谱法不会对葡萄酒本身的化合物产生干扰,会如实体现其真实的光谱特征。譬如果糖就可以直观的观测到其红外特征,而色谱方法分析时需要将果糖还原成葡萄糖从而无法检测到真实的糖类成分。如图3,在1000cmsup-1/sup左右的糖和甘油的光谱峰区间,只有坤爵桃红葡萄酒有明显的果糖特征,而其他的赤霞珠、西拉、美乐、雷司令等只有甘油的特征,完全符合这些干红葡萄酒的含糖量低的特点。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 403px " src="https://img1.17img.cn/17img/images/201910/uepic/46fe39cf-13fb-4b0f-993c-0ad153606d28.jpg" title="33.jpg" alt="33.jpg" width="500" height="403" border="0" vspace="0"//pp style="text-align: center "strong图3.坤爵桃红葡萄酒的红外谱图体现了其果糖成分的光谱特征,而其他干红葡萄酒则主要是甘油的光谱特征/strong/pp  综上可见,红外光谱法可以体现出影响葡萄酒口感的各种化合物的种类和含量的信息,因此“红外光谱品葡萄酒”是一个切实可行的方法,其将比较主观的品酒师品酒变成谱图显示的红外品酒,更直观也更可量化。/pp  在BCEIA互动展区,有不少专家和观众都对这种方法产生了浓厚的兴趣。大家纷纷反映,这种方法可以将市场上勾兑的劣质酒和假酒同真正的酿造葡萄酒区分开,而不会再良莠不分。北京大学刘锋教授仔细了解了这种方法后,也表示认同,她认为这种方法快速、客观、直接,在葡萄酒品牌保护、葡萄酒质量分级、葡萄酒工艺改进等方面都可以发挥重要作用。甚至,她还提出了可以使用大数据方法将葡萄酒的销售趋势、购买人群同葡萄酒的红外光谱建立联系,从而为企业预期生产安排、精准投放广告、迎合市场口味等方面作为重要参考。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 225px " src="https://img1.17img.cn/17img/images/201910/uepic/c3c42544-b1b0-4123-aaf1-2d2e8cc611c1.jpg" title="4.1.jpg" alt="4.1.jpg" width="300" height="225" border="0" vspace="0"/img src="https://img1.17img.cn/17img/images/201910/uepic/037af2b5-68e0-4de3-8d13-c20045a110f3.jpg" title="4.2.jpg" alt="4.2.jpg" width="300" height="225" border="0" vspace="0" style="max-width: 100% max-height: 100% width: 300px height: 225px "//pp style="text-align: center "图4. 专家对“红外光谱品葡萄酒”技术很感兴趣,纷纷点赞/pp strong 仪器评议专家:/strong/pp  郑国经教授 首钢北京冶金研究院/pp  符斌教授 矿冶总院测试所/pp  高介平教授 矿冶总院测试所/pp  刘锋教授 北京大学/pp  辛仁轩教授 清华大学/pp  周群副教授 清华大学/p
  • 蛋白分析利器-月旭科技助力探索蛋白质人工化学合成的奥秘
    1965年,中国科学家在世界上首次人工合成牛胰岛素,开启了生命化学研究的新时代。过去数十年历尽科研工作者的不断努力,蛋白质的人工化学合成取得了巨大进步。相较于自然界的生物合成,化学合成可创制具有各种精确控制结构及非天然结构的人造蛋白质,对于发展满足我们需求的蛋白质工具和蛋白质产品带来了新机遇。近期科研工作者们在化学合成蛋白领域又取得了新的成果,并应用了月旭科技的相关色谱柱产品,快来随小编一起饱尝科研的饕餮盛宴吧!化学合成大型镜像聚合酶并实现镜像DNA信息存储WELCH据悉,自然状态下的DNA,会经过精巧的进化来存储遗传信息。而手性倒链L-DNA具有相同的信息能力,但耐生物降解,可作为一个健壮的生物正交信息库。在一项新研究中,清华大学生命学院朱听课题组的研究人员们用化学方法合成了一个90kda的高保真镜像Pfu DNA聚合酶,它能够精确组装一个千碱基大小的镜像基因。该实验中首次使用的大型镜像蛋白质全化学合成策略及千碱基长度镜像基因的组装技术,解决了长期制约镜像生物学领域发展的大型镜像生物分子的制备难题。该研究成果以“利用高保真镜像Pfu DNA聚合酶实现生物正交的镜像DNA信息存储”(Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase)为题,于2021年7月29日发表在Nature Biotechnology杂志上。研究成果快览研究人员们用聚合酶在L-DNA中编码路易斯巴斯德1860年的一段话,这段话第一次提出了生物学的镜像世界。为突破全化学合成对蛋白质大小的限制,研究团队通过将嵌合的D-DNA/L-DNA关键分子嵌入到D-DNA存储库中,来实现手性隐写。团队将全长为775个氨基酸的Pfu DNA聚合酶分割为长度为467个氨基酸和308个氨基酸的两个片段分别合成,将其混合后共同复性,使其正确折叠为具有完整功能的90 kDa高保真镜像Pfu DNA聚合酶,为目前已报道最大的全化学合成蛋白质;研究者还利用该高保真镜像聚合酶组装出长达1.5 kb的镜像16S核糖体RNA基因,为目前已报道最长的镜像DNA。此外,他们发现保存在自然环境条件下(当地池塘水中)的微量L-DNA条形码,在1年内仍可扩增和测序;而在相同条件下的D-DNA条形码,在1天后就已经无法扩增。背后原因只有一个:它们的手性不同。在研究中,该课题组利用Ultimate XB-C4 (4.6*250mm, 5μm)来监测反应的进行,并检测肽段产品的纯度。同时用制备柱Ultimate XB-C4和C18 (21.2*250mm, 5μm或10*250mm, 5μm)来分离制备粗品肽段和连接产物。全化学合成富含二硫蛋白质WELCH在生物医学研究中,富含二硫的蛋白质是有用的药物或工具分子,但它们的合成由于折叠的困难而变得复杂。有鉴于此,清华大学的刘磊教授、中国科学技术大学的郑基深教授等研究人员,使用可移除的O-连接的β-N-乙酰葡萄糖胺策略,实现了正确折叠的富含二硫键蛋白质的全化学合成,该研究成果以“Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy”为题,发表于2022年1月3日的JACS杂志上。研究成果快览研究人员描述了一种可移除糖基化修饰(RGM)策略,它可以加速具有多个或甚至链间二硫键的正确折叠蛋白质的化学合成。实验过程中,利用Ultimate XB-C4(120Å或300Å,250mm×4.6mm,5μm)监测蛋白的合成反应,并用半制备柱Ultimate XB-C4和C18(300Å,250mm×10mm,5μm)成功制备得到目标蛋白。该策略包括在Ser/Thr位点引入简单的O-连接的β-N-乙酰氨基葡萄糖(O-GlcNAc)基团,通过稳定其折叠中间体,有效地促进了富含二硫的蛋白质的折叠。折叠后,O-GlcNAc基团可以用β-N-乙酰氨基葡萄糖酶(OGA)被有效地去除,从而获得正确折叠的蛋白质。使用这种策略,该研究组完成了正确折叠的铁调素的合成,这是一种含有四组二硫键的铁调节激素。研究人员首次实现了正确折叠的白细胞介素5(IL-5)的全合成,这是一种26kDa的同型二聚体细胞因子,负责嗜酸性粒细胞的生长和分化。“工欲善其事,必先利其器”,月旭科技专门针对多肽、蛋白类等生物样品方法开发,推出Welch生物样品分析方法开发包,助力前沿的科学研究和日常生产分析制备工作。● 适合蛋白、多肽或其他大分子的方法开发。为了能更好地与键合相发生作用,需使用大孔径(300Å或450Å)的填料。● 不同保留能力的不同选择性键合相,满足各种分子大小的蛋白质、多肽的保留和分离。参考文献1. Ting F. Zhu, et al. Bioorthogonal information storage in l-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nature Biotechnology,2021. Nature Biotechnology | VOL 39 | December 2021 | 1548–1555.2. Lei Liu, et al. Total Chemical Synthesis of Correctly Folded Disulfide-Rich Proteins Using a Removable O-Linked β-N-Acetylglucosamine Strategy. J. Am. Chem. Soc. 2022, 144, 349−357.
  • 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 上海中医药大学通过仪器信息网订购远慕对乙酰氨基酚标准品 对乙酰氨基酚标准品,一般在2-8℃之间冷藏保存(原则上最好保存在15℃以下的阴凉处),但相对于产品运输时,并不是所有产品的运输温度与储存温度一致,冷冻保存的温度在0℃以下。有些产品在运输时有暂时升温的可能性,个别产品特殊要求,我们将冷藏运输。 规格:可定制多种纯度、多种级别、多种包装的产品,详情联系我单位客服; 用途:含量测定 保存:常温,避光 级别:色谱纯、分析纯、化学纯。 贮存:密封阴凉保存。 供货期:最新批次现货供应,周期短,检验结果准确。 应用领域:使用前仔细阅读本说明书,仅供科研使用,不得用于医学诊断。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 可恨!氨基酸注射液居然造假!显微拉曼光谱能否鉴别药品真伪?
    中国法院网讯 食品、药品安全事关人民群众的生命健康和社会的安定稳定。2008年4月至2010年6月,被告人孙同宾在南阳市一租房内,使用购买的葡萄糖注射液,私自加工、制造标示为石家庄四药有限公司复方氨基酸注射液的假药,并销售给南阳市数家医药公司,销售金额共计208824元。法院审理后认为,被告人孙同宾将购买的葡萄糖注射液加工后,假冒复方氨基酸注射液对外销售,销售金额208824元,该行为足以严重危害人体健康,已构成生产、销售假药罪。氨基酸行业发展现状指出,氨基酸主要用于健康保健食品、功能强化食品、动物饲料、食品添加剂、化妆品等行业。如谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义;甘氨酸,可作为鸡饲料营养性添加剂,氮肥工业可用作无毒脱碳剂;丙氨酸,可预防肾结石、协助葡萄糖的代谢,有助缓和低血糖,改善身体能量。我国是氨基酸类原料药的供应国,同时也是氨基酸产品的重要需求国。各个终端随着部分新兴市场的活跃而活跃,可见氨基酸的真假检测就尤为重要。奥谱天成ATR8300-785显微拉曼光谱仪本着可实现微区拉曼光谱的精确定位测量,快速、准确、无损地分析成分和鉴别物质的优势,广泛用于农业及食品鉴定、纳米粒子新材料、生物科学、药品检测、环境检测等领域。本次使用ATR8300-785显微拉曼测试了来自客户的几种氨基酸的样品,如下图,我们可以看出氨基酸的拉曼光谱完美,特殊峰明显,可有效区别出不同的氨基酸种类。结果表明了奥谱天成ATR8300-785显微拉曼在生物医学领域上实实在在的运用。奥谱天成ATR8300显微拉曼光谱是将拉曼光谱仪与显微镜两者的优点结合,使得“所见即所测”成为可能。将入射激光通过显微镜聚焦到样品上,从而可以在不受周围物质干扰情况下,精确获得所照样品微区的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息。ATR8300无光路切换运动部件,所有光学部件均固态装配,工作非常稳定,实现了仪器的完 美地解决了相机成像时光路的损失,实现了相机成像与拉曼信号收集的分离,从而得到最 佳的信号强度。同时,ATR8300使用专门为显微拉曼系统优化的高性能拉曼,无论是灵敏度,信噪比,稳定性等,都是行业领 先水平 ,为拉曼研究提供了强有力的保障。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持!产品信息:货号品名CAS No. B691000N-Butyldeoxynojirimycin Hydrochloride210110-90-0C10H22ClNO410/100mga-葡糖苷酶1和 HIV cytopathicity抑制剂E915000N-Ethyldeoxynojirimycin Hydrochloride210241-65-9C8H18ClNO410/100mgHIV cytopathicity抑制剂C181150N-5-Carboxypentyl-deoxymannojirimycin104154-10-1C12H23NO65/50mg制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶A1875452,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture) C56H63NO1310/100mg4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体B690500N-(n-Butyl)deoxygalactonojirimycin141206-42-0C10H21NO45/50mga-D-半乳糖苷酶抑制剂B690750N-Butyldeoxymannojirimycin, Hydrochloride355012-88-3C10H22ClNO45/50mga-D-甘露糖苷酶抑制剂D236000Deoxyfuconojirimycin, Hydrochloride210174-73-5C6H14ClNO310/100mgalpha-L-岩藻糖苷酶抑制剂M166000D-Manno-&gamma -lactam62362-63-4C6H11NO55/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和M165150D-Mannojirimycin Bisulfite C6H13NO7S1/10mgalpha-甘露糖苷酶抑制剂D4550006,7-Dihydroxyswainsonine144367-16-8C8H15NO51/10mga-甘露糖苷酶抑制剂C665000Conduritol B25348-64-5C6H10O425/250mgb-葡糖苷酶抑制剂C666000Conduritol B Epoxide6090-95-5C6H10O525/250mgb-葡糖苷酶抑制剂A1552502-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate132152-77-3C16H22N2O1025/250mgglucosamidase抑制剂D240000Deoxymannojirimycin Hydrochloride73465-43-7C6H14ClNO410/100mgmammalian Golgi alpha- mannosidase 1 抑制剂M297000N-Methyldeoxynojirimycin69567-10-8C7H15NO410/100mgN-连接糖蛋白高斯过程干扰剂A1584002-Acetamido-1,2-dideoxynojirimycin105265-96-1C8H16N2O41/10mgN-乙酰葡糖胺糖苷酶抑制剂A157250O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate132489-69-1C15H19N3O75/10/100mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂A157252(Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate1331383-16-4C15H14D5N3O71/10mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂M3345154-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester C26H31NO1225mgT2DM糖苷酶抑制剂G4500004-O-&alpha -D-Glucopyranosylmoranoline80312-32-9C12H23NO91/10mg&alpha -葡萄糖苷酶抑制剂D2317501-Deoxy-L-altronojirimycin Hydrochloride355138-93-1C6H14ClNO45/50mg&alpha -糖苷酶抑制剂H942000N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt C8H18ClNO50.5/5mg&alpha -糖苷酶抑制剂H942015N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride C8H18ClNO51/10mg&alpha -糖苷酶抑制剂H942030N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride C8H18ClNO55/50mg&alpha -糖苷酶抑制剂T7952003&rsquo ,4&rsquo ,7-Trihydroxyisoflavone485-63-2C15H10O5200mg/2g&beta -半乳糖苷酶抑制剂A158380O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate351421-19-7C21H24N4O1210/100mg氨基葡萄糖苷酶抑制剂M166505Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal C13H19NO4S2.5/25mg保护的Mannostatin AB682500Bromoconduritol (Mixture of Isomers)42014-74-4C6H9O3Br200mg哺乳类 alpha-葡萄糖苷酶 2 抑制剂K450000Kifunensine109944-15-2C8H12N2O61/10mg芳基甘露糖苷酶抑制剂D2397501-Deoxy-L-idonojirimycin Hydrochloride210223-32-8C6H14ClNO410/100mg酵母葡糖a-苷酶类抑制剂S885000Swainsonine72741-87-8C8H15NO31/10mg可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂T295810[1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone149952-74-9C8H11NO410/100mg苦马豆素和衍生物合成中间体N635000Nojirimycin-1-Sulfonic Acid114417-84-4C6H13NO7S10/100mg葡糖苷酶类抑制剂V094000(+)-Valienamine Hydrochloride38231-86-6C7H14ClNO41/10mg葡糖苷酶抑制剂D4400002,5-Dideoxy-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg葡糖苷酶抑制剂D494550N-Dodecyldeoxynojirimycin79206-22-7C18H37NO410/100mg葡糖苷酶整理剂D4799552,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside111495-86-4C12H13FN2O95/50mg葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖A6532702,5-Anhydro D-Mannose Oxime, Technical grade127676-61-3C6H11NO510/100mg潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺D2365001-Deoxygalactonojirimycin Hydrochloride75172-81-5C6H14ClNO410/100mg强效的和有选择性的d半乳糖苷酶抑制剂D236502Deoxygalactonojirimycin-15N Hydrochloride C6H14Cl15NO45/25mg强效的和有选择性的d半乳糖苷酶抑制剂B445000(2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine105015-44-9C6H13NO410/100mg强有力的和特定的糖苷酶抑制剂M166500Mannostatin A, Hydrochloride134235-13-5C6H14ClNO3S1/10mg强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂A858000N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose86979-66-0C13H16N4O71/10mg人类红细胞单糖运输标签抑制剂C185000Castanospermine79831-76-8C8H15NO410/100mg溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂D4399801,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride114976-76-0C6H14ClNO45/50mg糖蛋白甘露糖苷酶抑制剂A608080N-(12-Aminododecyl)deoxynojirimycin885484-41-3C12H26N2O45/50mg糖苷酶亚氨基糖醇制备用试剂I8663501,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose53167-11-6C8H12O5100mg/1g糖苷酶抑制剂制备试剂A6483002,5-Anhydro-2,5-imino-D-glucitol132295-44-4C6H13NO410/100mg糖水解酶类抑制剂A6483502,5-Anhydro-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg糖水解酶类抑制剂M2570003-Mercaptopicolinic Acid Hydrochloride320386-54-7C6H6ClNO2S500mg/5g糖质新生抑制剂B286255N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin138381-83-6C21H23NO65/50mg脱氧野尻霉素衍生物B286260N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate153373-52-5C25H27NO82.5/25mg脱氧野尻霉素衍生物D245000Deoxynojirimycin19130-96-2C6H13NO410/100mg脱氧野尻霉素抑制哺乳类葡糖苷酶1A172200N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt209977-53-7C11H16NNaO810/100mg细菌、动物和病毒抑制剂C181200N-5-Carboxypentyl-1-deoxynojirimycin79206-51-2C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC181205N-5-Carboxypentyl-1-deoxygalactonojirimycin1240479-07-5C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC645000Conduritol A 牛奶菜醇A526-87-4C6H10O41/10mg C667000Conduritol D牛奶菜醇D4782-75-6C6H10O410mg I8688751,2-Isopropylidene Swainsonine85624-09-5C11H19NO31/10mg 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832
  • ASD | 利用新鲜葡萄浆果的反射光谱测量估算葡萄浆果中的可溶性固形物总含量
    在葡萄栽培与酿酒工业中,可溶性固形物总含量(Total Soluble Solids, TSS)是衡量果实成熟度和品质的关键指标。不同品种的葡萄因其遗传特性和生长环境的差异,其TSS含量存在显著变化。准确估算各品种葡萄的TSS含量,对于预测酒的品质、调整酿造工艺以及确定最佳采收时机均具有重要意义。那么,如何能够准确估算葡萄的TSS含量呢?跟随小编,一起来看看下面这篇论文给出了怎样的答案。摘要 ABSTRACT可溶性固形物总含量(TSS)是决定葡萄最佳成熟度的关键变量之一。在这项工作中,基于漫反射光谱测量,开发了偏最小二乘(PLS)回归模型,用于估算Godello、Verdejo(白葡萄)、Mencía 和Tempranillo(红葡萄)等葡萄品种的TSS含量。为了确定TSS预测的最适合光谱范围,对四个数据集进行了回归模型的校准,其中包括以下光谱范围:400–700 nm(可见光)、701–1000 nm(近红外)、1001–2500 nm(短波红外)和400–2500 nm(全光谱范围)。我们还测试了标准正态变量变换技术。使用留一交叉验证评估了回归模型,评估指标包括均方根误差(RMSE)、决定系数(R2)、性能与偏差比(RPD)和因子数(F)。红葡萄品种的回归模型通常比白葡萄品种的模型更准确。最佳的回归模型是针对Mencía(红葡萄)得到的:R2 = 0.72,RMSE = 0.55 °Brix,RPD = 1.87,因子数 n = 7。对于白葡萄,Godello取得了最佳结果:R2 = 0.75,RMSE = 0.98 °Brix,RPD = 1.97,因子数 n = 7。所使用的方法和得到的结果表明,可以使用漫反射光谱和将反射值用作预测变量的回归模型来估算葡萄中的TSS含量。结果 RESULT葡萄的反射率是使用ASD FieldSpec 4 地物光谱仪进行测量,该仪器可检测350–2500 nm光谱范围内的反射率。葡萄样品(每个葡萄品种60个样品,每个样品有100颗浆果)散布在黑色容器芯中(17 × 17 cm)。从4个不同的数据中获取了100颗浆果的反射数据(在每次测量之前将样品顺时针旋转90°)。然后对反射数据进行预处理,得到4次数据的平均值。图1. 利用ASD地物光谱仪获取光谱数据的流程图2展示了四种葡萄品种的平均反射值范围以及原始数据(图2a)和SNV转换数据(图2b)的TSS反射值。在图2a中,红葡萄品种(Mencía和Tempranillo)具有非常相似的光谱特征。虽然在可见光范围内的反射值相似,但从波长675 nm处可以看出一些差异,最大和最小反射值分别约为895 nm和1080 nm,以及675 nm和960 nm。白葡萄(Godello和Verdejo)的光谱特征与红葡萄不同,但彼此非常相似。Godello和Verdejo在可见光-近红外范围的570 nm、830 nm和890 nm处具有最高的反射值。在这个范围内,反射值呈现轻微差异,尽管它们具有相同的光谱特征。从波长1160 nm开始,四种葡萄品种的反射值是相同的。图2 四种葡萄品种(Mencía、Godello、Tempranillo和Verdejo)采样浆果的平均光谱范围图3 Godello、Mencía、Tempranillo和Verdejo葡萄品种在使用原始数据(实线)和SNV转换数据(虚线)进行PLS回归时加权回归系数在全光谱范围内的分布。对四个品种的酿酒特性进行了交叉验证。黑线表示零相关性,并为了清晰呈现而偏移了3.0单位图4 利用原始光谱反射数据进行每个波长的简单线性相关性葡萄糖度(TSS)相关图。图5 利用原始(a–d)和SNV转换(e–h)反射数据进行的偏最小二乘回归(PLS)的均方根误差(RMSE)值。所有图应用相同的颜色刻度(请参阅右侧图例)。结论 CONCLUSION采用漫反射光谱测量方法,利用偏最小二乘(PLS)回归模型估计了四种葡萄品种(Godello、Verdejo、Mencía和Tempranillo)的总可溶性固形物(TSS)含量。基于所获得的结果,红葡萄品种的TSS含量估算最佳,特别是Mencía。用于TSS预测的最适宜光谱范围是近红外(NIR)范围(701–1000 nm)。在此光谱范围内获得了最高的R2和RPD值,以及最低的RMSE和F值。在所有光谱范围内,对数据进行SNV转换进一步改善了模型的评估指标结果。用于估算TSS的最佳变量(图5)分别位于860 nm处,波长201 nm的Godello;883 nm处,波长232 nm的Mencía;916 nm处,波长230 nm的Tempranillo;以及1055 nm处,波长230 nm的Verdejo。这些最佳点呈现出最低的RMSE值。研究表明,通过光谱测量的反射值,可以迅速、非侵入性地进行现场测量,从而估算TSS含量。
  • 血糖仪检测不准?你是否服用这些药物
    血糖是血液葡萄糖含量的简称。葡萄糖是人体的重要组成成分,也是能量的重要来源。正常人体每天需要很多的糖来提供能量,为各种组织、脏器的正常运作提供动力。所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。血糖不宜过低,也不能过高。当血糖过高的时候,会增加肾小球的滤过压力,甚至会强制破坏肾小球的滤过功能,导致肾单位被破坏。除此之外,对神经、视网膜、心脑血管也有一定程度的损伤。 所以,定期对体内血糖水平进行监测是十分必要的。空腹时,全血血糖的正常值为3.9~6.1mmol/L,可换算为70~110mg/dL,凡是在此范围内的空腹全血血糖值都属于正常情况。长期服用一些药物会导致血糖值出现偏差,造成药物性高血糖。如降压药物、降脂药物、抗病毒药物、抗菌药物、免疫抑制剂、抗精神病类药物、糖皮质激素等。这些药物在用于治疗非血糖相关性疾病时,通过损害胰岛β细胞分泌功能而致胰岛素分泌不足,或降低外周组织对胰岛素的敏感性,进而致血糖升高。另外,服用一些药物短期内不会对血糖造成明显影响,检测时却会误导血糖仪,如对乙酰氨基酚、维生素C、水杨酸、尿酸、 胆红素、甘油三酯、麦芽糖、木糖等。其中,维生素C具有抗氧化作用,会影响血糖的测定,大部分在医院使用的血糖检测设备是通过葡萄糖氧化酶法检测血糖,葡萄糖氧化酶具有氧化的作用,而维生素C具抗氧化的效果,这会减弱葡萄糖氧化酶的氧化效果,从而导致测量值偏低。在日常生活中,血糖监测能够直接了解机体实际的血糖水平,有助于我们判断自身的健康情况,在疾病预防中起到重要作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制