当前位置: 仪器信息网 > 行业主题 > >

亚硝基甲胺盐钠标准品

仪器信息网亚硝基甲胺盐钠标准品专题为您提供2024年最新亚硝基甲胺盐钠标准品价格报价、厂家品牌的相关信息, 包括亚硝基甲胺盐钠标准品参数、型号等,不管是国产,还是进口品牌的亚硝基甲胺盐钠标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合亚硝基甲胺盐钠标准品相关的耗材配件、试剂标物,还有亚硝基甲胺盐钠标准品相关的最新资讯、资料,以及亚硝基甲胺盐钠标准品相关的解决方案。

亚硝基甲胺盐钠标准品相关的资讯

  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 欧标委发布橡胶奶嘴及安抚奶嘴检测新标准 将LC-MSn作为亚硝胺和亚硝基物质的替代性分析方法
    欧洲标准化委员会(CEN)针对中弹性体或橡胶奶嘴及安抚奶嘴中释放的亚硝胺和亚硝基物质发布了EN 12868:2017。与之冲突的国家标准将于2017年7月前撤销。  1993年4月,欧盟(EU)发布了93/11/EEC指令,限制弹性体或橡胶奶嘴及安抚奶嘴中释放的亚硝胺和亚硝基物质。该指令也规定了检测此类物质的基本原则以及分析方法。  1999年8月,CEN发布了EN 12868:1999,将其作为符合93/11/EEC指令要求的标准方法。该标准提供了详细的橡胶奶嘴和安抚奶嘴中亚硝胺和亚硝基物质的提取及分析流程。  2016年10月,CEN审批通过了弹性体或橡胶奶嘴及安抚奶嘴中亚硝胺和亚硝基物质相关的新标准EN 12868:2017。  EN 12868:2017对1999版进行了更改,主要体现在:  ——重新定义了“正-亚硝胺”和“即用产品”   ——更改了“弹性体”和“橡胶”的定义   ——要求进行两次迁移测试和两次测定   ——更改程序,包括亚硝化的温度,并规定了测试中弹性体样本和橡胶的最低样品量   ——将N-亚硝基二异丁胺(NDiBA,CAS号 997-95-5)归为奶嘴中的可识别的亚硝胺,这一规定与测试和校准标准相关   ——提供n-亚硝胺校准液的气相色谱法(GC)以及用热能分析仪(TEA)检测仪分析得到的的保留时间用于辅助分析(附件B)   ——将液相色谱-质谱联用(LC-MSn)作为亚硝胺和亚硝基物质的替代性分析方法。技术设置见本标准的附件D。  EN 12868:2017或其之前的版本以及玩具安全标准EN 71-12都是检测亚硝胺和亚硝基物质,应注意的是,两种方法的提取和分析程序存在差异。
  • 亚硝胺成致癌“隐型杀手” 水质标准亟待出台
    p  由于具有高致癌性、高检出率以及在我国可能被纳入水质检测标准,饮用水中的亚硝胺类消毒副产物得到了国内外研究人员的空前关注。/pp  “我们从全国23个省、44个大中小城市和城镇、共155个点位采集了164个水样,包括出厂水、用户龙头水和水源水。研究中测试了当前已知的全部9种亚硝胺类消毒副产物,其中NDMA(亚硝基二甲胺)的浓度最高。”清华大学环境学院国家环境模拟与污染控制重点实验室陈超副研究员12日告诉科技日报记者,其课题组今年的一项重点研究工作就是关于全国饮用水系统中亚硝胺类消毒副产物的普查。该结果已于日前在市政和环境领域顶尖期刊《水研究》上发表,“饮用水中的亚硝胺问题有紧迫性,需要尽快研究和进行工程改造!”陈超呼吁。/pp strong 饮用水亚硝胺检出率不容忽视/strong/pp  在过去三年中,陈超及其团队分别测试了44个城市供水系统中的亚硝胺类消毒副产物及其前体物。在已检测的全部水样中,出厂水和龙头水中的NDMA平均浓度分别为11ng/L和13ng/L,水源水中的NDMA生成潜能平均为66ng/L。他表示,与美国环保局在2012年公开的一项大规模普查数据相比,亚硝胺在中国出厂水和龙头水中的检出率是美国的3.6倍。而西欧国家的饮用水亚硝胺浓度比美国还低。/pp  在课题组检测的长江三角洲地区的近10个供水系统中,出厂水和龙头水中的NDMA平均浓度分别为27ng/L和28.5ng/L,水源水中的NDMA生成潜能为204ng/L。/pp  陈超表示,在已经鉴别出的700多种消毒副产物中,亚硝胺是健康风险最大的消毒副产物类别之一,特别是NDMA。/pp  strong与消化道癌症密切相关/strong/pp  医学界在50年代就发现亚硝胺是一类强致癌物,当时主要研究食品、烟草和工业污染中的亚硝胺。饮用水中的亚硝胺类消毒副产物研究始于20世纪末。“前期的流行病学研究表明,亚硝胺与中国某些区域的消化道癌症密切相关。”陈超说,他们此次监测到这些区域的自来水受到来自工业废水的严重的亚硝胺污染。同时,今年南京大学某课题组在华东地区江苏省多座城市的水源水中也发现了严重的亚硝胺污染。/pp  “据报道,根据毒理学试验结果,NDMA终生饮用的百万分之一致癌风险浓度是0.7ng/L,据悉美国环保署正力图制定的美国亚硝胺浓度标准,其限值可能在百万分之一至万分之一致癌风险浓度的范围之内。”陈超透露。/pp strong 中国尚无饮用水亚硝胺水质标准/strong/pp  陈超说,目前已经有部分发达国家和地区建立了饮用水中NDMA的标准。“世界卫生组织在2008年提出了100ng/L的推荐值,加拿大,澳大利亚都有了国家标准,分别是40ng/L、100ng/L 加拿大安大略省、美国麻省和加州的标准更严,分别是9ng/L、10ng/L、10ng/L。”/pp  “不难看出,我们的饮用水中亚硝胺检出情况比这些地方都严重。”陈超说,但是我国饮用水水质标准中还没有这一个项目。/pp  一旦将亚硝胺纳入标准,进行大范围的监测是否困难呢?陈超表示,亚硝胺监测是有一定困难,要测试水中ng/L量级的微量亚硝胺,需要使用气相色谱或者液相色谱再加上串联质谱,监测设备两三百万一台,每个水样的测试成本也较高。不过他也表示国内已有十几家自来水公司有该设备,还需要进一步开发检测方法。清华大学等少数高校和科研院所已经建立了亚硝胺的检测能力,目前大型自来水公司的水质是有保障的。/pp  strong人口密、污染重的区域风险更高/strong/pp  记者从报告看到,亚硝胺风险高的水样主要来自两个区域——华东区和华南区。检出龙头水中最高值达到19ng/L。/pp  在人口密集的其他区域,如华北和华中,虽然水源水中NDMA生成潜能浓度不高,但其龙头水平均浓度达到12ng/L和18ng/L。“原因也许与不同的水处理工艺有关,采用臭氧活性炭深度处理或者彻底的折点氯化,大部分亚硝胺前体物比较容易被游离氯氧化分解,可有效降低超标风险。但一旦水源受到污染,使用传统工艺的自来水厂对亚硝胺的控制效果有限。”陈超说道。/pp  值得关注的是,长江三角洲地区既是中国经济最发达、人口最密集的区域,也是亚硝胺浓度最高的区域,NDMA浓度分别为27ng/L和29ng/L。/pp  “我们在该区域的某县城检出了全国出厂水和龙头水中NDMA的最高浓度,是44个城市中唯一超过世界卫生组织100ng/L标准的。”陈超说,那些龙头水中检出高浓度NDMA的城市很可能是其水源受到来自工业和生活污水的NDMA前体物污染。/p
  • 饮用水中亚硝胺检测标准待出台,First Standard® 推出9种亚硝胺混标
    近日来,据央广等多家媒体报道,清华大学环境学院国家环境模拟与污染控制重点实验室陈超课题组,对全国饮用水系统中亚硝胺类消毒副产物进行普查发现,中国是世界上亚硝胺检出情况最多样的国家,其中亚硝基二甲胺(NDMA)的浓度最高。流行病学研究表明,亚硝胺与消化道癌症密切相关,它也被认为“像极了当年空气污染中被忽视的PM2.5。” 陈超呼吁:“饮用水中的亚硝胺问题有紧迫性,需要尽快研究和进行工程改造!”。亚硝胺是一类新型的饮用水消毒副产物,其中NDMA是亚硝胺类消毒副产物的典型代表,是氯化胺时重要的消毒副产物。NDMA易溶于水,不会生物积累、吸附、生物降解或挥发,常规水处理难以将其去除。世界卫生组织在2008年就提出了饮水中NDMA为100ng/L的推荐值,加拿大、澳大利亚都有国家标准,分别是40ng/L、100ng/L;美国麻省和加州的标准更严,都是10ng/L。但中国迄今没有饮用水亚硝胺水质标准。事实上,建立亚硝胺水质标准是防患于未然,饮用水涉及所有人,对特殊敏感人群如儿童、孕妇和免疫缺陷的人群,更应考虑亚硝胺的潜在危害。First Standard推出9种亚硝胺混标,为饮用水中亚硝胺检测标准出台做好准备。订货号名称英文名称CAS#1ST50013-2000M 9种亚硝胺混标,2000ppm9 Nitrosamines Mix Solution, 2000ppm组分1ST4920N-亚硝基二甲胺 (NDMA)N-Nitroso-dimethylamine62-75-91ST4910N-亚硝基乙基甲基胺 (NEMA)N-Nitroso-methyl ethylamine10595-95-61ST4908N-亚硝基吡咯烷 (NPYR)N-Nitrosopyrrolidine930-55-21ST4914N-亚硝基哌啶 (NPIP)N-Nitrosopiperidine100-75-41ST4918N-亚硝基吗啉(Nmor)N-Nitrosomorpholine59-89-21ST4909N-亚硝基二乙胺 (NDEA)N-Nitroso-diethylamine55-18-51ST4911N-亚硝基二正丙胺 (NDPA)N-Nitroso-di-n-propylamine621-64-71ST4913N-亚硝基二正丁胺 (NDBA)N-Nitroso-di-n-butylamine924-16-31ST4916N-亚硝基二苯胺(NDPhA)N-Nitroso-diphenylamine86-30-6相关阅读:亚硝胺致癌 莫让水中“PM2.5”成饮水安全隐患http://star.news.sohu.com/20161015/n470324550.shtml亚硝胺成致癌“隐型杀手” 水质标准亟待出台http://finance.ifeng.com/a/20161014/14936633_0.shtml 你知道吗?消毒副产物的研究历程水的消毒历程中曾有各种副产物被发现1974年,美国人发现用Cl2消毒不仅可以引起嗅觉和味觉上的反应,还可以产生三氯甲烷。1976年,美国环保署调查发现总三氯甲烷(TTHMs)存在于氯消毒后的饮用水中1983年,Christman等发现卤乙酸(HAAs)普遍存在于氯化消毒后的饮用水中。1983年发现臭氧消毒副产物溴酸盐1989年发现消毒副产物卤代呋喃酮1990年发现消毒副产物卤乙腈(HANs)1997和2000年先后发现卤代硝基甲烷消毒副产物。1998年发现消毒副产物亚硝基二甲胺2000年发现二氧化氯消毒副产物2002年发现卤乙酰胺(HAcAms)消毒副产物2006年前后发现UV消毒副产物 饮用水的消毒方法物理方法包括加热、紫外线等化学方法如加氯、臭氧等生物方法如膜过滤法其中加氯消毒法在饮用水消毒工艺中比较常用。 天津阿尔塔科技有限公司同时提供其它亚硝胺混标,如有任何标准品需求请您联系我们
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • 岛津推出食品接触类橡胶制品中N-亚硝胺检测解决方案
    橡胶制品广泛应用于国防、工农业、服务行业等各个领域,在人们日常生活中也经常使用。从食品领域中的高压锅垫圈、各种玻璃瓶盖密封垫、生产各种液体调味品用的抽吸橡胶管等,生活用品中涉及到的乳胶手套、热水袋、球杆套、运动用球类、塑胶跑道等,计生用品中的安全套等到许多儿童用具如婴儿奶嘴、吸嘴、橡皮球、儿童车中的扶手、皮球、气球、巴比娃娃、橡皮擦、橡皮泥等等,橡胶制品比比皆是。 1982年,美国消费者产品安全委员会透露市场上的婴儿橡胶奶嘴和抚慰品可能含有致癌的N-亚硝胺类化合物。2001年从德国市场上随机抽选的16种乳胶玩具气球的样品中,有81%的样品N-亚硝胺及N-亚硝基化合物的迁移量超过限定标准;2003年从市场上随机抽选的l4种样品中,有93%的产品N-亚硝胺的迁移量超过限定标准。同年,荷兰市场上57个气球样品在1小时内迁移至人造唾液中的物质中全部检测出N-亚硝基二甲胺及其前体,60%的样品中检测出N-亚硝基二丁基胺及其前体,其余还检测出N-亚硝基二乙胺、N-亚硝基二苄胺等。最高的N-亚硝胺含量达630&mu g/kg ,N-亚硝基化合物达5700&mu g/kg,仅有一个样品符合限量标准。2004年,德国的研究人员对德国市场上的32种乳胶避孕套中亚硝胺及亚硝基化合物的含量进行了检测,发现有29种避孕套中亚硝胺及亚硝基化合物的含量超过限量标准,含量为10~660&mu g/kg,是食物中亚硝胺暴露量的1.5~3倍。 N-亚硝胺是一类具有N-亚硝基官能团的化合物,其分子结构为: 目前在已发现的130多种N-亚硝胺类化合物中,80%以上的都是强致癌物。实验表明,N-亚硝胺类化合物对40种不同的动物显示出致癌作用,包括猿、猴等哺乳类动物,以及鸟、鱼和两栖类动物。 N-亚硝胺化合物的前体物硝酸盐、亚硝酸盐和胺类,广泛存在于人类生活环境和食品中,它们经过化学或生物途径合成多种多样的N-亚硝胺化合物,既可以在环境中外源性合成,又可以在体内进行内源性合成,无论是在气相或液相条件下,胺类和亚硝化试剂均可被催化而合成致癌性的亚硝胺。因此,N-亚硝胺化合物以微量成分分布于大气、水、土壤、食品、烟草、化工产品、农药和药物等人类环境介质中。 绝大多数橡胶制品都是通过高温硫化最终成型。在硫化过程中,仲胺基硫化促进剂和硫磺给予体分解后会释放出出仲胺,与空气或配合剂中的氮氧化物在酸性条件生成N-亚硝胺。 在特定的使用环境下,这些N-亚硝胺类化合物被释放出,从而有可能对人体产生巨大的危害。 近年来国际上对某些促进剂在橡胶加工过程中易产生有害N-亚硝胺问题日益重视,有关N-亚硝胺化合物的生成、影响等研究成为全球橡胶促进剂研究领域的热点。我国在N-亚硝胺的研究中也做出了大量的努力。一方面,开发不产生N-亚硝胺物质的硫化促进剂,大力提倡并逐步使用不生成亚硝胺的促进剂代替现有生成亚硝胺的促进剂。但是,目前可用的不生成亚硝胺的促进剂品种非常有限。另一方面,积极开发制定N-亚硝胺的检测方法,并于2009年出台了橡胶制品中的N-亚硝胺的标准检测方法GB/T 24153-2009,规定了N-亚硝胺限量值。但是该标准测试对象为橡胶弹性体,没有区分出普通橡胶和食品接触类橡胶。而国外欧盟标准BS EN 12868和美国标准ASTM F1313-90都针对了婴儿橡胶奶嘴及抚慰品,都严格规定了该类产品中N-亚硝胺的总含量不得超过&le 10&mu g/kg。 目前,国家正在制订与体皮肤长期接触的橡胶制品和口腔等身体部位接触的橡胶制品中N-亚硝胺的含量和释放量,对橡胶制品会进行更严格的划分。相对于原有的GB/T 24153-2009,未来新的国标会参照欧盟标准BS EN 12868和美国标准ASTM F1313-90,降低N-亚硝胺的限量值。因此,制订合适的分析方法,降低方法的检出限以适应新的国标是当务之急。 针对当前国标GB/T 24153-2009和未来几年可能发布的有关N-亚硝胺迁移含量的国标,岛津公司提供了GC/MS法测定橡胶制品中N-亚硝胺类化合物的解决方案。方案以及检测方法包括:1. GC/MS法测定橡胶奶嘴中的N-亚硝胺2. GC/MS法分析橡胶奶嘴中的12种N-亚硝胺类化合物及其前体物的迁移含量 在检测方法中所应用的GCMS-QP2010 Ultra是岛津公司新一代高性能气相色谱质谱联用仪,是当前扫描速度最快的单四极杆GCMS。它能在高速扫描的同时保证仪器的高灵敏度。它适用于成分复杂的样品的分离及检测或痕量化合物的检测。 了解详情,请点击下载最新解决方案:《食品接触类橡胶制品中N-亚硝胺的检测》 参考资料【相关法规及政策】 1993年欧盟委员会就规定了婴儿橡胶奶嘴及抚慰品中释放的亚硝胺含量的限定标准(93/11/EEC),指令规定婴儿橡胶奶嘴中N-亚硝胺类总迁移限量&le 10&mu g/kg,N-可亚硝胺化物质残留量&le 100&mu g/kg。 1994年,德国政府通过再次立法,限定橡胶硫化和储存工作环境中,N-亚硝胺的最大浓度1&mu g/m3。 1999年,欧洲标准协会出台了婴儿橡胶奶嘴及抚慰品中迁移出亚硝胺及亚硝基化合物的检测方法标准BS EN 12868,方法规定该类产品中N-亚硝胺的总含量不得超过&le 10&mu g/kg。 1999年,美国材料与试验协会ASTM F1313-90规定了婴儿橡胶奶嘴上8种挥发性亚硝胺含量,每种N-亚硝胺的含量不得高于&le 10&mu g/kg,N-亚硝胺类化合物的总含量不得高于20&mu g/kg。 2001年10月欧盟发表的《未来化学品政策战略白皮书》,已将可产生N-亚硝胺类化合物硫化剂DTDM(二硫化吗啉)和某些秋兰姆类促进剂(如TMTD等)列入限期淘汰的化学品。 2007年2月22日德国联邦食品、农业和消费者保护部向世界贸易组织贸易技术委员会发布修订《有关由天然橡胶或合成橡胶制成的玩具、气球德国第l4号法令》的TBT通报,规定了在天然橡胶或合成橡胶气球中亚硝胺和可亚硝化物质的最高允许限量。 2008年国际标准委员会起草了ISO/CD 29941号检测避孕套中亚硝胺迁移量的标准方法,此草案的出台为避孕套中亚硝胺迁移量的检测制定了标准依据。 同年,德国对有关3岁以下儿童用气球及橡胶玩具所含亚硝胺的现行国家标准进行修订,即对《德国商品法》中的相关标准作出了修改。 2009年最新发布的国家标准GB/T 24153-2009规定橡胶和弹性体材料中12种N-亚硝胺,每种含量不得超过0.5 mg/kg。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • “货期更快”不是口号,CATO美国标准品在筹建亚洲区国际级实验室
    在CATO美国标准品的全球化进程中,亚洲市场一直扮演着重要角色。在全球经济发展的背景下,亚洲市场以中国为首一直占领着推动全球经济增长的较大份额。随着经济不断的发展,各种社会问题频发,食品、工业品、环境、药物等领域的检测需求在不断攀升,市场也对标准品也提出了更高的要求。而CATO美国标准品作为国际上知名的产品,也因此受到亚洲市场的高度认可。自2016年在中国搭建亚洲运营中心后,在亚洲市场的攻势一发不可收拾。CATO的工业品检测标准品、食品检测标准品、农药残留检测标准品、兽药残留检测标准品、环境检测标准品、药物杂质检测标准品、天然提取物等产品,被广泛应用于政府机构、检测机构、实验室、高等院校以及医药、化工、食品等行业,同时也收到了用户对品种、货期、混标开发等方面的建议。责任CATO美国总部对亚洲市场有着很高的期待,要想成为标准品行业上不折不扣的领 袖,也意味着必须正视和解决用户提出的建议。对此,CATO美国总部正式决定,CATO亚洲运营中心(广州佳途科技有限公司)将进行战略性调整,作为第 1个海外区域总部,并在原已取得CNAS和美国CPSC认可,日本玩具协会ST授权,同时也通过了CCC、CQC、QS、FDA、ISO Guide 34等多个认证体系的大中华区实验室进行能力扩容,逐步实现研发与生产功能,引入国际上顶 尖的科研人才,使其达到国际级别的实验室。从而实现“因亚洲而改变”的策略方针,为亚洲市场研发专 供产品,以及本土化生产让货期更快。优势食品、农残、兽残、工业消费品以及环境等领域将是CATO未来的重点发展方向。目前,CATO在这几个领域上也具备了不少优势的产品,如DHNUP,多溴联苯和多溴二苯醚混标,黄曲霉毒素系列等。这些产品在市场上很少有品牌在销售,客户可选择的少,即使有,货期也很漫长。针对这些客户痛点,CATO研发出稀有产品,并且在亚洲市场备足库存,弥补检测领域上的缺口。值得一提的是,CATO的食品类检测标准品已能满足2019年国家食品安全监督抽检计划检测项目的90%以上。在这里,列举一些主要的标准品:? 黄曲霉毒素系列8种? 邻苯系列35种? 偶氮系列30种? 四环素类药物有25种? 青霉素类药物有30种? 磺胺类药物有25种? 喹诺酮类药物有44种? 咪唑与苯并咪唑类药物有60种? 荧光增白剂20种? 硝基呋喃药物及其代谢物有19种? 大环内酯类抗生素有18种? 其他类抗生素有8种? 甾体激素类有65种? β-受体激素/瘦肉精类有35种? 孔雀石绿与结晶紫有6种? 其他兽药标准品有56种 展望未来,CATO亚洲运营中心不再依附美国总部,而是以亚洲区总部的形象面向客户,并且以研发为导向,除了以建立行业高标准为目标以外,也将联动中国、韩国、日本等国的高校及科研机构的优势研究力量,支持和参与检测领域上的国际合作,为亚洲区的经济发展保驾护航。
  • 化学品实施严格限制前欧盟公布玩具安全标准最新清单
    2013年6月29日,欧盟《官方公报》公布了根据第2009/48/EC号玩具安全指令制订的最新欧洲玩具安全协调标准清单。这份清单包含香港玩具制造商应熟习的全新标准,其中一些更严格的化学品限制定于2013年7月20日生效,时间十分紧迫。  玩具安全指令只制订关于玩具的基本安全规定,包括有关物理及机械特性、可燃性、化学特性、电气特性和卫生等方面的特定安全规定。  进一步和更具体的技术细节由欧洲标准委员会(CEN)和欧洲电工技术标准委员会(CENELEC)以协调标准的方式制订。  协调标准的参考编号及名称均会在欧盟《官方公报》上公布。香港玩具生产商和进口商符合这些标准,就视为符合指令的要求。只要准确地遵循及应用这些标准,涉及的玩具就可在欧盟各地发售,不受阻碍。  为追上科技发展,欧洲委员会授权CEN或CENELEC在有需要时制订新的标准。  2013年6月29日的《官方公报》刊出根据第2009/48/EC号指令制订的新标准名称及参考编号清单(即过去没有在欧盟官方公报刊登的标准):  EN 71-3:2013玩具安全-第三部分:若干类元素的迁移  EN 71-5:2013玩具安全-第五部分:实验套装以外的化学玩具(套件)  EN 71-12:2013玩具安全-第十二部分:N-亚硝胺和N-亚硝基胺物质  EN 62115:2005/ A11:2012/AC:2013(涉及电动玩具安全)  根据第2009/48/EC号指令制订的欧洲协调标准完整清单(包括上述标准和《官方公报》过往曾刊出其名称的标准),可在以下网址的官方公报通告中查阅:  http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2013:0187:0010:0011:EN:PDF  至于上面列出的新标准,其中3项与玩具所含的化学品有关。《EN 71-3:2013:若干类元素的迁移》是新的欧洲标准,订明铝、锑、砷、钡、硼、镉、三价铬、六价铬、钴、铜、铅、锰、汞、镍、硒、锶、锡、有机锡和锌从玩具材料及玩具部件中迁移的规定和测试方法。该标准跟以前的版本有很大的不同,详见其附件A。  EN 71-5:2013订明实验套装以外的化学玩具所用的物质及材料的规定和测试方法。这些物质和混合物是:  根据适用于危险物质和危险混合物的欧盟法例列为危险者   若过量可能会损害使用玩具的儿童健康,而又未被欧盟法例列为危险的物质和混合物   化学玩具带有的其他化学物质和混合物。  EN 71-12:2013订明N-亚硝胺和N-亚硝基胺物质的规定和测试方法:  由合成橡胶制造,并拟由36个月以下的儿童使用的玩具和玩具部件(气球和牙胶就是合成橡胶制玩具的例子)   由合成橡胶制造,并拟放入口中的玩具和玩具部件   由36个月以下的儿童使用的手指画颜料。  上述最后一个新的标准名称和参考编号与电气安全有关,涉及的玩具至少有一项功能需使用电力。纳入该标准范围内的玩具例子有积木套装、实验玩具套装、功能玩具(具有成人用设备或装置的类似功能)和视频玩具(具有屏幕及操纵杆或键盘等操控工具的玩具 额定电压在24伏以上的单独屏幕并不视为玩具的一部分)。使用电力作辅助功能的玩具也纳入该标准范围内(内部有灯泡的洋娃娃房屋就是这种玩具的一例)。  香港玩具制造商应仔细研究上述标准的技术规定(以及与其玩具贸易有关的其他标准),确保符合相应的限制和规定。有关标准可从CEN/CENELEC的成员国机构取得(并非免费)。这些机构的联络资料可参阅以下网址:  http://www.cen.eu/cen/Members/Pages/default.aspx  http://www.cenelec.eu/dyn/www/f?p=WEB:5:2674496228372243  向欧盟出口产品的香港玩具业界应明白,第2009/48/EC号指令主要集中于移除玩具所含的有害物质,特别是可放入儿童口中,或含有可能在无意中被儿童摄入的元素的玩具。其他主要方面则是电动或机械性安全,以及防燃等。  此外,香港生产商若有意在欧洲地区销售玩具(即纳入指令范围内的任何玩具),必须在标签上附有CE标记,显示符合适用的规定。玩具在投放市场前,即玩具在欧盟市场内任何地方首次供货前,必须附有CE标记。  香港玩具商可在以下网址查阅由欧洲委员会公布的有关第2009/48/EC号指令的解释性指引文件:  http://ec.europa.eu/enterprise/sectors/toys/files/tsd-guidance/tsd_rev_1-6_explanatory_guidance_document_en.pdf
  • 9种亚硝胺混标现货供应!更多亚硝胺混标可预订
    水中亚硝胺的检测近期引起人们关注,First Standard迅速推出9种亚硝胺混标,配合实验室老师开展相关项目,9种亚硝胺混标目前现货供应,随订随发!除饮用水之外,地下水,食品,玩具,化妆品,卷烟中都可能含有亚硝胺,相关标准及First Standard对应产品见下,详情请查看阿尔塔科技公司网站。订货信息产品名称适用标准适用范围1ST50013-2000M9种亚硝胺混标, 甲醇溶液, 2000ppmEPA 8270C Semi Volatile Organic Compounds by GAS Chromatography/MASS Spectrometry (GC/MS)水,土壤,固体废弃物GC/MS 方法测定水中半挥发性有机物1ST50028-2000L7种亚硝胺混标, 二氯甲烷溶液, 2000ppmEPA 521 Determination of Nitrosamines in Drinking Water by Solid Phase Extraction and Capillary column GAS Chromatography with Large Volume Injection and Chemical Ionization Tandem Mass Spectrometry (MS/MS)饮用水大体积固相萃取-毛细管气相色谱-化学电离串联质谱法测定饮用水中亚硝胺化合物1ST50030-2000L4种亚硝胺混标-1, 二氯甲烷溶液, 20000ppmHJ 809-2016水质 亚硝胺类化合物的测定 气相色谱法地表水、地下水、工业废水和生活污水1ST50029-200M3种亚硝胺混标, 甲醇溶液, 200ppmGB/T 5009. 26食品中亚硝胺类的测定酒类1ST50035-500L4种亚硝胺混标-2, 二氯甲烷溶液, 500ppm肉及肉制品、蔬菜、豆制品、茶叶等1ST50031-200M12种亚硝胺类混标, 200ppmEN 12868: 1999 Method for Determining the Release of N-Nitrosamines and N-Nitrosatable Substances from Elastomer or Rubber Teats and Soothers橡胶制品,儿童玩具GB/T 24153-2009橡胶及弹性体材料 N-亚硝基胺的测定1ST50034-1000L4种亚硝胺混标-3, 二氯甲烷溶液, 1000ppmGB/T 23228-2008烟草卷烟主流烟气总粒相物中烟草特有N-亚硝胺的测定气相色谱-热能分析联用法1ST4924-100L内标:N-戊基-(3-甲基吡啶基)亚硝胺 (NNPA)YC/T184-2004烟草及烟草制品烟草特有N-亚硝胺的测定1ST50032-100M10种亚硝胺混标, 甲醇溶液, 100ppmGB/T 29669-2013化妆品中N-亚硝基二甲基胺等10种挥发性亚硝胺的测定气相色谱-质谱/质谱法膏霜、散粉、唇膏
  • 《食品中亚硝酸盐限量》等38项食品安全国家标准向社会公开征求意见
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品安全国家标准 食品中亚硝酸盐限量》等38项食品安全国家标准和修改单(征求意见稿),现向社会公开征求意见。请于2023年3月20日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。附件:征求意见的食品安全国家标准目录           食品安全国家标准审评委员会秘书处2023年2月10日征求意见的食品安全国家标准目录序号标准名称制定/修订污染物标准1项1.食品安全国家标准 食品中亚硝酸盐限量修订食品产品2项2.食品安全国家标准 发酵酒及其配制酒修订3.食品安全国家标准 果冻(GB 19299-2015)第1号修改单修改单营养与特殊膳食食品7项4.食品安全国家标准 食品营养强化剂 血红素铁制定5.食品安全国家标准 食品营养强化剂 L-蛋氨酸(L-甲硫氨酸)制定6.食品安全国家标准 食品营养强化剂 乙二胺四乙酸铁钠修订7.食品安全国家标准 食品营养强化剂 L-赖氨酸天门冬氨酸盐制定8.食品安全国家标准 特殊医学用途婴儿配方食品通则修订9.食品安全国家标准 婴幼儿谷类辅助食品修订10.食品安全国家标准 婴幼儿罐装辅助食品修订生产经营规范1项11.食品安全国家标准 食品中二噁英及多氯联苯污染控制规范制定食品添加剂2项12.食品安全国家标准 食品添加剂 叶黄素修订13.食品安全国家标准 食品添加剂 植物炭黑修订食品相关产品2项14.食品安全国家标准 食品用消毒剂通用安全要求修订15.食品安全国家标准 食品接触材料及制品用添加剂使用标准(GB 9685-2016)第1号修改单修改单理化检验方法与规程18项16.食品安全国家标准 食品中三价铬和六价铬的测定制定17.食品安全国家标准 食品接触材料及制品 氟迁移量的测定制定18.食品安全国家标准 食品中双酚A、双酚F和双酚S的测定制定19.食品安全国家标准 食品中氟的测定制定20.食品安全国家标准 食品中脲酶的测定制定21.食品安全国家标准 食品中酵母β-葡聚糖的测定 制定22.食品安全国家标准 食品中渗透压的测定制定23.食品安全国家标准 食品中甲醛的测定修订24.食品安全国家标准 食品中锑的测定修订25.食品安全国家标准 食品中左旋肉碱的测定修订26.食品安全国家标准 食品中丙酸及其盐的测定修订27.食品安全国家标准 食品中总酸的测定(GB 12456-2021)第1号修改单修改单28.食品安全国家标准 食品中胡萝卜素的测定(GB 5009.83-2016)第1号修改单修改单29.食品安全国家标准 食品中多种磷酸盐的测定修订30.食品安全国家标准 食品中酸价的测定修订31.食品安全国家标准 食用盐指标的测定修订32.食品安全国家标准 食品接触材料及制品 氯乙烯、1,1-二氯乙烯和 1,1-二氯乙烷的残留量和迁移量的测定修订33.食品安全国家标准 食品中脱氧雪腐镰刀菌烯醇及其乙酰化衍生物的测定(GB 5009.111-2016)第1号修改单修改单微生物检验方法与规程 5项34.食品安全国家标准 食品用菌种安全性评价程序制定35.食品安全国家标准 食品微生物学检验 大肠菌群计数修订36.食品安全国家标准 食品微生物学检验 诺如病毒检验修订37.食品安全国家标准 食品微生物学检验 单核细胞增生李斯特氏菌检验修订38.食品安全国家标准 食品微生物学检验 大肠埃希氏菌计数修订
  • 食品安全国家标准审评委员会秘书处发布《食品接触材料及制品 N-亚硝胺类化合物迁移量和释放量的测定》等21项食品安全国家标准(征求意见稿)
    各有关单位:根据《食品安全法》及其实施条例规定,我委组织起草了《食品接触材料及制品 N-亚硝胺类化合物迁移量和释放量的测定》等21项食品安全国家标准(征求意见稿),现向社会公开征求意见。请于2024年2月10日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交反馈意见。附件:征求意见的食品安全国家标准目录食品安全国家标准审评委员会秘书处2023年12月7日(信息公开形式:主动公开)附件序号标准名称制定/修订食品添加剂 1项 1.食品添加剂 黄原胶修订生产经营规范 3项 2.食品生产通用卫生规范修订 3.保健食品良好生产规范修订 4.镀锡薄钢板罐装食品中锡污染控制规范制定食品相关产品 1项 5.食品接触用涂料及涂层修订理化检验方法与规程 11项 6.食品中多元素的测定修订 7.食品中纽甜的测定修订 8.食品中对羟基苯甲酸酯类化合物的测定修订 9.食品接触材料及制品 N-亚硝胺类化合物迁移量和释放量的测定制定 10.食品接触材料及制品 2,2,4,4-四甲基-1,3-环丁二醇迁移量的测定  制定 11.食品接触材料及制品 4,4’-联苯二酚和1,1’磺酰基二(4-氯苯)迁移量的测定制定 12.理化检验 总则 制定 13.食品中爱德万甜的测定制定 14.食品中抗坏血酸棕榈酸酯的测定制定 15.食品中二苯醚的测定制定 16.乳品中糠氨酸的测定制定微生物检验方法与规程 1项 17.空肠弯曲菌和结肠弯曲菌检验修订毒理学检验方法与规程 1项 18.神经发育毒性试验  制定食品产品 3项 19.巴氏杀菌乳修订 20.高温杀菌乳制定 21.灭菌乳修订声明:
  • USP亚硝胺新通则1469大局已定,来了解一下吧
    美国药典(USP)拟定新通则1469NITROSAMINE IMPURITIES,用于对制药行业可能存在亚硝胺杂质进行风险评估和控制。该标准的目的是为控制亚硝胺杂质、消除或减少亚硝胺杂质在药物产品中的存在提供一种基于科学的方法。目前该通则已结束修订,预计今年下半年正式出版。 建议相关的原料药/制剂/辅料生厂商和供应商、合同制生产组织、药品检测和监管机构、QA/QC专家参考该通则。 USP1469与FDA亚硝胺杂质指南基本一致,并且都主张采用基于风险的方法进行评估。USP1469确定的应在药品中检测的六种亚硝胺包括:N-亚硝基二甲胺(NDMA)、N-亚硝基二乙胺(NDEA)、N-亚硝基二异丙胺(NDIPA)、N-亚硝基乙基异丙胺(NEIPA)、N-亚硝基二丁胺(NDBA)和N-亚硝基甲基氨基丁酸(NMBA)。USP 清单与 FDA 清单的不同之处在于 FDA 清单中的化合物N-亚硝基甲基苯胺(NMPA)不在 USP 清单中。 与FDA一样,USP1469要求对潜在的亚硝胺进行风险评,在风险评估中应充分考虑可能引入亚硝胺的所有潜在来源,包括:原料药工艺过程:原料、试剂、溶剂、加工助剂等原料药降解物溶剂降解物来自于原料、溶剂(回收溶剂)、试剂、催化剂的杂质来自于中间体和中间体生产带来的杂质来自于水、辅料、加工助剂的杂质制剂加工或包装材料引入或产生的杂质 亚硝胺杂质的产生机理 此外USP1469还遵循 FDA 指南,确保药物中的亚硝胺杂质每日摄入量不超过可接受摄入量(Acceptable Intake,简称AI)。FDA 规定 NDMA 和 NMBA 的AI为 96 ng/day,NDEA、NMPA、NIPEA 和 NDIPA 的AI为 26.5 ng/day。再结合药品活性成分的每日最大服用剂量(Maximum Daily Dose,简称MDD)确定亚硝胺杂质的在该药品中的(浓度)限度(AI/MDD)。 通则要求单个亚硝胺杂质不超过AI对应的限度,同时对检出浓度超过LOQ但不超过AI对应限度的多个杂质需咨询权威机构。笔者注:建议参考FDA的要求。 为了帮助供应商更好地检测亚硝胺杂质,USP1469提出了四种分析方法,生产商可以使用这些方法来检测其产品中是否存在亚硝胺。 与EP 2.5.42仅限于原料药不同,USP 1469适用于原料药以及制剂,同时要求生厂商对辅料、制剂生产工艺、包装系统做评估。下表简单列出二者的差异,供读者参考。 岛津可以为客户提供USP1469通则中的所有4种方法: 关于USP1469方法2,原文“Procedure 2: Quantitation of NDMA, NDEA, NDIPA, and NEIPA in selected sartans by GC–MS”,其实看接下来的条件,我们发现分析条件:“Injector: Headspace”,“Acquisition mode:multiple reaction mode (MRM)”,顶空进样+MRM质谱模式,其实是HS+GC-MS/MS。 应用案例1岛津海外应用工程师参考USP1469方法2,对氯沙坦中的亚硝胺杂质进行了研究,在第二法适用的4种亚硝胺(NDMA、NDEA、NDiPA、NEiPA)进行了扩充,增加NDBA、NDPA和NMPrZ。设定MDD为880mg/day,计算代表性的亚硝胺杂质限度,如下表: 使用岛津HS-20和GC-MS/MS对方法进行研究,考察线性、准确度(回收率)、LOQ等参数,结果如下:实验结果表明,岛津仪器性能超越了USP1469通则方法的要求,并且扩充了方法的适用范围,可以为制药企业风险评估提供精准的帮助! 应用案例2参考1469方法3,使用岛津三重四极杆液质联用仪对奥美沙坦制剂中的六种亚硝胺(NDMA、NDEA、NDIPA、NDBA、NEIPA和NMBA)进行检测。 0.1ng/mL亚硝胺的MRM质量色谱图 数据展示:0.1 ng/mL 标准溶液的MRM色谱图如上图(该浓度是FDA要求的定量限值的 1/10)。在0.1 - 10 ng/mL浓度范围内的线性系数0.99,该浓度范围内的精密度在80 - 120%,结果优异。 更多应用信息请联络岛津工作人员!
  • 自来水中亚硝酸胺类物质检测方案
    我们对自来水消毒早就习以为常。消毒可以杀死水中病原体,防止疾病传染,何乐而不为?而默默无闻的自来水消毒问题,最近却站到了舆论的风口浪尖。 是什么让媒体各执一词、争锋相对?起因是清华大学环境学院国家环境模拟与污染控制重点实验室课题组发表了一项关于我国城市自来水消毒副产物的普查测试报告,涵盖全国23个省、44个大中小城市和城镇、共155个点位,采集164个水样,包括出厂水、用户龙头水和水源水。结果显示:其中含有健康风险很大的消毒副产物,致癌物质亚硝基二甲胺(NDMA)浓度最高。 起底消毒副产物类别消毒类副产物即亚硝胺类物质,即含有亚硝基功能团的一类物质,是自来水处理中较为常见的氯消毒副产物。若水源含有二甲胺,一旦与消毒剂氯胺反应,就会形成二甲基亚硝胺。 目前,国际癌症研究机构把“亚硝胺”列为B类致癌物,对动物具有强致癌性,而对人类为可疑性致癌物。虽然,亚硝胺是一种危险的化学物质,但不应抛开剂量讨论毒性。 是否一定致癌?含有亚硝胺类物质的自来水就一定会致癌吗?其实这取决于NDMA浓度是否超标。世界卫生组织提出,饮水NDMA含量的推荐值为100ng/L,而该课题组采集的44个水样中,仅有一个城市含量超标。 精准检测亚硝胺类物质是前提对于水质检测问题不管哪种观点,都需精准的检测亚硝胺类物质检测都是必要的。对此,沃特世提倡联用Waters ACQUITY UPLC I-Class系统与Xevo TQ-S micro检测自来水中的亚硝胺类物质NDMA含量。 富集净化方案使用Oasis HLB SPE小柱富机集净化水样。 UPLC-MS分析采用ACQUITY UPLC I-Class系统和ACQUITY UPLC HSS T3色谱柱进行色谱分析。采用Xevo TQ S-micro质谱仪电离,以配备RADAR的MRM进行采集。使用MassLynx软件的IntelliStart™ 功能自动优化电离参数和离子对,IntelliStart自动参数调谐功能可以确定最优电离参数,提升易操作性,减少用户之间的差异。 本研究分析的8种N-亚硝胺的基质加标标准品(加标浓度为法规限值50 μg/kg)的示例色谱图仪器控制、数据采集和结果处理利用MassLynx软件控制ACQUITY UPLC I-Class系统和Xevo TQS-micro,并进行数据采集。使用TargetLynx™ 应用软件执行数据定量分析。 配备TargetLynx的MassLynx质谱软件 应用优势:1)使用LC-MS整体解决方案,包括SPE小柱富集净化水样,可分析非挥发性和挥发性亚硝胺,且无需进行衍生化。2)通过缩短运行时间提高样品通量和减少溶剂用量。3)可定量分析浓度在法规限值50 μg/kg以下的N-亚硝胺。4)可利用RADAR™ 数据采集软件挖掘出更多未知物。 有关该方案的中文版完整应用纪要,请至Waters.com搜索关键词"720005664zh"进行查阅及下载。
  • 食品安全专家分析打不败的三聚氰胺 称妥协出标准
    食品安全问题何以无解?  —— 专访国家食品安全风险评估专家委员会主任委员陈君石院士  食品安全问题已成为困扰中国的一个包袱。政府目前正集中精力对付此事,可惜阴影不散。7月,“三聚氰胺”死灰复燃,再现江湖,青海省一家乳制品厂的产品被检测出“三聚氰胺”超标500余倍,举国哗然,说明食品安全工作异常艰巨,随时可能出现反复风险。在此前后,一些疑似食品安全与卫生事件接连发生,我们的食品供应环境愈发显得扑朔迷离。  困局难破,食品安全症结何在?中国面临的情况究竟有多么棘手?本刊记者就此问策于中国工程院陈君石院士。陈院士是一位权威的食品安全专家,他的主要工作是旨在帮助政府更好地提高监管效率。  打不败的三聚氰胺  《南风窗》:三聚氰胺超标奶粉屡次重出江湖。政府官员表态说“要一查到底,要坚决打击”,为什么又无法令行禁止?  陈君石:政府不可能知道2008年产生了多少非法添加三聚氰胺的奶粉,怎么可能掌握所有这些信息?当时三聚氰胺主要问题是出现在婴幼儿配方奶粉上。国家质检总局的统计,我们差不多有200家生产婴幼儿配方奶粉的企业。美国有多少?只有4家。那普通奶粉企业有多少家?不知道。我相信政府也不掌握这个情况。不仅是政府不好发现问题,小企业本身就会出问题,这些小企业的素质就摆在那儿的。  国家质检总局有一个论点,就是说我们大型食品企业虽然少,但市场占有率非常高,这是事实。但几十万小型企业的市场占有率虽然低,出点问题就够了,用不着都出问题。我们必须看到,这些中小型企业尽管所占份额不多,他们生产的东西我是不吃的,你也是不吃的,要进北京的大超市也是进不来的,但是很多老百姓还在吃,很多地方都在吃。这是我们社会发展的必然阶段。这绝不意味着政府不该监管,消费者要求政府加强监管是天然合理的,但你也得考虑切合不切合实际。只有生产者依法生产、依法养殖、依法种植,我们的问题就少了。  《南风窗》:大家的困惑,是2008年“三鹿事件”中当事人依法该抓的抓了,该枪毙的也枪毙了,怎么事情到现在还没完?究竟哪里出了问题?  陈君石:食品安全问题不会随着我们的经济发展、社会进步就不见了,它会和我们长期同时存在。我们有两亿多的农户,在分散地从事食用农产品的生产,食用的,或作为食品加工原料的粮食、蔬菜、水果等,大多是两亿多农户用分散的生产方式生产出来的,就我们对于农民的文化知识、素养和守法意识的了解,市场上买回来的蔬菜,要农药残留百分之百不超标,这是不可能的,也是不现实的。现在检测样品的数量,不能说太少啊。在瘦肉精的兽药残留上,农业部早有规定,瘦肉精是不许用的,但你知道养猪有多么分散么?非常分散的,现在政府一声令下,所有养猪户都不用瘦肉精了?我绝不是为政府推卸责任。监督两亿多的农户,你要有多少监督员去监督啊。  另外一个背景,我们有50万左右的中小型食品生产企业。10万元以下就盖个厂房,员工10个人以下,你说这些食品生产、加工企业,还不包括餐馆,他们的素质,你就拍拍脑袋想想,使用食品添加剂都不超标,糖精都合格,防腐剂使用都合格?这也是不现实的。  什么时候这两个背景得到根本性改变,我们的生产就比现在要安全得多了,也就是说三聚氰胺这种事情基本上就不会有了,也不可能没有被销毁。因为显然现在是没有被销毁啊。你想想,我这个乳品企业本来就不太大,好容易生产出来了那么几十或几百吨超标奶粉,我能舍得把它销毁么?我往农民家里头一放,过一段又卖给别的企业了。政府查得过来么?  《食品安全法》的出炉是很重要的一件事情,但绝不是一个法就能改变整个基本状况,实施这个法比不实施好,但是不能说问题就不再出现了。三聚氰胺问题没有了,出来一个四聚氰胺,这也没什么奇怪的。当然是不该有的,但现在是市场经济,这是能够杜绝的么?  食品安全是与非  《南风窗》:今年的海南“豇豆事件”,武汉市农业局最先曝光出来,三亚市农业部门对此“特别的不理解”,认为不应该这样做,据说按照通常做法,这种情况只限于内部通告,曝光出来“于国于民都无益”。两个部门掐出一个“潜规则”。您怎么看这个现象?要曝光还是不要曝光?  陈君石:这个豇豆事件,应该不是太奇怪的事情。我不认为是普遍存在潜规则。假如他们说的整个行业是这样的,那肯定是不对的。“豇豆”被查处有非法使用的农药残留,当然要曝光,但问题要讲清楚,‘我们已经处理了,并未对消费者造成危害’。另外,媒体老喜欢说“毒豇豆”,在我们医学上这个毒字是不能随便用的,毒的就是说吃了要中毒的。其实这个所谓的“毒豇豆”,吃了也不会中毒,因为含量没有那么高。你要光说这个豇豆不合格,不说“毒豇豆”,消费者的神经不会崩得那么紧。  《南风窗》:今年的“农夫山泉”事件,也有人指是潜规则作祟。三亚工商局也承认了错误,您怎么看这个问题?  陈君石:检验是不应该出错的,但你知道我们有多少检验机构啊?这是全世界独一无二的。我们是分段的监管,检验机构也分散在各个部门,而且现在检验机构是越来越多,工商局本来是没有实验室的,现在也要有了,因为管流通环节啊。这些实验室跟我们食品生产企业一样,他们的素质,有很棒的,有中不溜的,当然也有很差的。  海南的这次检验肯定是有问题的。假如这个事情没有什么背景的话,技术上发生点差错也是可以理解的。任何工作都会出错,当然它绝对不应该出错,而且是代表政府出的报告,是作为执法依据的。  《南风窗》:工商局作为一个政府职能部门,怎么可以出错呢?你是监管者啊,这样一来,叫大家怎么对你有信心?  陈君石:起码他有一点没有做到,就是复查。这个是有规定的。曝光以前,应该复查,这个环节是必须的,因为谁也不能保证第一次检测就是对的。这个事件,先不管他技术水平怎么样,就是工作程序就没有对头,这个责任是逃不了的。就是工商局的责任。(没了下文)当然了,应该有所交待,咱们都讲透明度。  《南风窗》:“五常香米”最近也是闹得人心惶惶,本来就没有那么多产量,厂家往普通米里掺香精,以次充好。  陈君石:假如真的是加了香精,那这是个弄虚作假的问题,不等于食品安全问题。香精是可以食用的。我不赞成把假冒伪劣的食品和不安全的食品划等号,我承认假冒伪劣食品中有一部分确实是不安全的食品,但绝大部分假冒伪劣食品不构成安全问题。假鸡蛋,吃了没问题。五常的香米,也是。  假冒伪劣不等于不安全食品,我这个观点到目前为止是失败的。没有一个政府官员愿意接受。他们认为打假是食品安全工作中很重要的一个事情,所以农业部去打假,卫生部去打,司长要去打假,部长也要去打假。  《南风窗》:就是说我们在用对付食品安全问题的精力和投入去对付假冒伪劣食品,杀鸡用了牛刀?  陈君石:假冒伪劣跟食品安全问题的处理和对待,完全不是一回事儿。你划等号以后,一是无形中夸大了食品安全问题的数量,本来没有这么多问题,你假的也算进来,问题就多了。第二,处理打假是谁的责任?处理食品安全又是谁的责任?打击假冒伪劣食品主要是地方政府的责任,充其量工商部门应该介入,农业部、卫生部有他们的职能,应该集中力量去管好职能范围内的食品安全问题,我觉得卫生部去打假就是不务正业。  妥协出标准  《南风窗》:食品安全标准现在清理整合进展怎么样?  陈君石:我们有横向的标准,比如污染物的标准,添加剂的标准,农、兽药残留的标准等,纵向的有乳和乳制品的标准,肉和肉制品的标准等,多得不得了,不可能一天之内全部按《食品安全法》完成清理,出台新标准。  现在第一个乳和乳制品标准已出台了,第一套66个标准公布了。多么艰苦啊,从2008年末就开始了,国务院直接指令的,乳和乳制品的标准一定要先清理整顿。讨论了一年多,开了不知道几十次的会。我要说60次可能还少了,仅仅是专家会。还有不同层次的会,因为不是一家说了算,我们很复杂,是分段管理。  现在出一个标准就难得不得了。标准是一个妥协的产物,一定是的。不同的人有不同的观点,不同的部门有不同的观点,到最后只能有一个标准,怎么不妥协呢?不妥协就出不来标准了。妥协就是折中,你让一步我也让一步。  《南风窗》:打架怕是难免的。  陈君石:讨论必然打架。今年年初成立了国家食品安全标准审评委员会,就打破了原来的食品卫生标准体系、质量标准体系,全打乱了,这么一个多部门组成的审评委,下面分了十几个专门委员会,一类标准由一个分委员会来评审。这个机构已经成立,而且开始运作。除了乳和乳制品66个标准,今年年底以前还有几个要出台,大概都是横向的标准,就是适用于各类食品的,食品添加剂、农药、兽药残留、污染物等,横向标准打架可能性会少一些,影响面又大,就把它放在前面了。本来计划是在两年之内把所有标准都清理整顿完毕,但是很多专家认为太冒进了,做不到。  总而言之,我的意思是说这不是一个很快的事情。现在叫做食品安全标准,也就是与食品安全无关的质量指标应该不纳入,这件事情本身就不容易。我是管质量的,我愿意放弃么?这次媒体最为关注的乳和乳制品标准,生乳蛋白质含量从2.95%倒退到2.8%,这个指标跟安全性没多大关系。有什么必要制定生鲜奶的蛋白质标准?我作为企业,愿意收购什么样的就收购什么样的,让企业决定不好么?收购来2.8%的和3%的做出来的奶粉都一样,只是价格和成本不一样,从安全角度来讲没区别。可是,管生鲜奶的部门就坚持要设这个标准。最后就妥协了。  还有脂肪,干嘛要定乳的脂肪标准?现在很多人愿意吃脱脂奶了。但是这次我们的标准中就规定了。《食品安全法》明文规定的是安全标准,但跟安全无关的质量指标,原来是存在的,现在要把它拿掉,你说难不难?  《南风窗》:您参加会议,有提什么建议?  陈君石:我去听听,也讲了几句话,结果遭到某些专家的攻击。我就是说,这个蛋白质、脂肪标准不是安全指标。那可不得了,这些专家搞了多少年的乳制品,就说你可不要把我们这个乳制品行业给毁了。我有这么大能量么?这其实不是我一个人的观点,只不过别人讲得比较含蓄。  监管部门思想不端正  《南风窗》:您怎么评价我们的食品安全监管状况?  陈君石:中国食品安全的监管力度,表现在监督员之多,监督频率之高,抽检样品之多,是全世界独一无二的。我们现在看重终端产品抽查,这是最落后的监管模式。到这个时候了你来管他,没用了。食品安全监管,开始全世界都是做终端监管,后来发现不解决问题,还得从过程抓起,先进国家现在主要都是过程监督,监督企业的生产过程。  《南风窗》:过程监管在中国行不行得通?  陈君石:难度很大。我们有50多万中小企业啊,放到美国也没办法过程监督。那么多的企业,大的本来不太需要监督 小的,也监督不过来。这要一步一步来。首先要思想端正,现在监管部门思想上并不端正。你看QS这个标准,本来是“质量安全”,摇身一变,变成中文说是“生产许可”。生产许可就是一个过程许可,我许可你生产,是监督生产过程,不保证你产品合格。可是现在QS贴在了每一个产品的包装上,这不是一个笑话么?  本来应该放弃国家担保企业产品的质量。政府干嘛要保证你这个产品质量啊?但在终端产品包装上还贴上了,变成政府对你每个产品都负责任,政府都许可?但这是政府规定,必须贴上,不贴就不许卖。所以说这是矛盾。  历史上,QS和免检是一个性质,都是国家来担保。这本来是企业的责任,企业是食品安全第一责任人,《食品安全法》写得非常清楚,政府干嘛去包?本来过程监督是响当当的事情,政府发个证书就完了,如果出了不合格的产品,我就狠狠地罚你。  生产许可证仅仅是第一步,然后要有生产的规范,监督员进厂检查,要看他遵不遵守规范,而不仅仅是抽样检查。但是,企业按不按规范,我怎么知道,我就看你的生产记录,我突然来了,你不可能重新编一个记录吧?国外就是这样的。所以这个过程监督比抽样检查要先进得多,更科学,也更省劳动力。  过程监督最大的阻碍,还是认识问题,我们已习惯于终端产品抽检为主,如果真的减少终端产品抽检,很多实验室就没有活干了。
  • 解密“N-二甲基亚硝胺”,浅谈基因毒性杂质
    2018年中旬,长春长生的疫苗案还未彻底了结,缬沙坦原料药事件让N-二甲基亚硝胺(NDMA)又一次上了热搜。 时至今日,风波犹存,欧盟范围内对所有沙坦类药物进行审查。之后EMA通报,分别在印度药企Hetero Labs和Aurobindo Pharma生产的氯沙坦及厄贝沙坦原料药中,同样发现了含量极低的亚硝胺类化合物。美国FDA 仍在继续评估含缬沙坦的药物,并将获得的新信息持续更新「召回范围内的药物清单」和「不在召回范围内的药物清单」。 “治病”?“致病”!众所周知,药品是特殊的商品,它可以预防、治疗、诊断人的疾病。近年来,多种新药例如PD1/PD-L1免疫抑制剂的问世,让攻克癌症不再是梦想。 同时,药品的副作用及其安全性很大程度上决定其使用效果,有时不仅不能“治病”,还可能“致病”,甚至危及生命安全,所以药品生产商和监管部门对药品追溯和管理承担着不可或缺的责任。 揭开“基因毒性杂质”真面目NDMA是亚硝胺化合物的一种,而亚硝胺化合物、甲基磺酸酯、烷基-氧化偶氮等又均为常见的基因毒性杂质。基因毒性杂质(或遗传毒性杂质, Genotoxic Impurity, GTI)一般指能直接或间接损伤细胞DNA,产生致突变和致癌作用的物质,具有致癌可能或者倾向。 基因毒性杂质向来受到了严格的监控,2006年爆发甲磺酸奈非那非(维拉赛特锭)事件后,欧洲药品管理局( EMA)随即颁布了《基因毒性杂质限度指南》,人用药品注册技术要求国际协调会议(ICH)与美国食品与药品监督管理局( FDA)出台了相应的法规,中国国家食品药品监督管理总局也密切跟踪国际药品质量控制技术要求,不断完善现有药典收载技术指南,包括方法学验证、药品稳定性评价指导原则以及药品基因毒性杂质评价技术指南等。 药物合成、纯化和储存运输(与包装物接触)等过程中,多个环节均有产生或有可能产生基因毒性杂质。在工艺研究中采用“避免-控制-清除(ACP)”的策略能够最大限度减少基因毒性杂质对原料药物的影响,从而快速灵敏的监测分析手段变得尤为重要。 这时候,飞飞在此!今天赛默飞借助全新一代LC-QQQ技术,让我们一起助力“解密N-二甲基亚硝胺”。 赛默飞针对药品中基因毒性杂质液质检测解决方案 飞飞芳基磺酸酯类基因毒性解决方案Thermo Scientific™ 全新液相色谱三重四极杆质谱TSQ Fortis™ 平台建立了检测8种磺酸酯类的方法(苯磺酸酯类3个、对甲苯磺酸酯类3个、1,5-戊二醇单苯磺酸酯、 1,5-戊二醇二苯磺酸酯)。本方法灵敏度高、专属性强、稳定性好,可以满足各药企对此类基因毒性杂质的检测要求,可为基因毒性杂质风险监控提供有效的技术支持。结果如下:图1. 8种芳基磺酸酯提取离子流图(点击查看大图) 图2. 部分化合物标准曲线图(点击查看大图) 可以看出实验建立了三重四极杆液质联用仪(TSQ Fortis)分析8种芳基磺酸酯类的检测方法。实验结果表明,基于Thermo Scientific™ TSQ Fortis™ 建立的检测方法不仅具有优异的灵敏度和线性范围,同时具备良好的重现性。本方法可用于芳基磺酸酯类基因毒性化合物的日常分析检测。 飞飞N-亚硝基类基因毒性解决方案Thermo Scientific™ TSQ Fortis™ 针对基因毒性物质10个N-亚硝基化合物建立了稳定灵敏的分析方法。该方法在电喷雾离子化(ESI)条件下即可进行有效检测分析,试验结果优异,该方法稳定,快速,满足日常微量基因毒性物质N-亚硝胺类化合物的分析要求。图3. 10个N-亚硝基化合物的色谱图(5ng/mL)(点击查看大图) 图4. 部分化合物标准曲线图(点击查看大图) 从上图中可以看出建立的方法灵敏,快速和稳定性,色谱峰形良好,同时具备优异的重现性,可以满足药品中日常分析N-亚硝基类基因毒性杂质的检测要求。 飞飞总结语此次的应用案例就分享到这里了,不过难道只有这些?不!后续赛默飞更会带来应对基因毒性杂质的多平台解决方案,令“NDMA们” 无所遁形,敬请期待!扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax柱,符合USP通则中621色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气 @ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 岛津中国率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案
    2019年3月1日,美国食品和药物管理局(FDA)在官网发布血管紧张素II受体阻滞剂(ARBs)药物氯沙坦的自愿召回公告,涉及到印度Hetero Labs Ltd.生产的87批氯沙坦钾片,而导致该召回的主要原因是发现其中含有N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质。由于NMBA是已知动物和潜在人类的致癌化学物质,是继N?亚硝基二甲胺(NDMA)和N?亚硝基二乙胺(NDEA)之后上市ARBs药物中检测到的第三种亚硝胺类遗传毒性杂质。此后,FDA相继公布了Teva Pharmaceuticals和Vivimed Life Sciences Pvt Ltd等制药公司自愿召回涉及氯沙坦钾的63批药品,其原因为检出含有NMBA。同时,加拿大卫生部(HC)及英国卫生部(DHSC)也在官网上发布了氯沙坦类药物的召回公告。直至2019年6月12日,Teva Pharmaceuticals仍在扩大自愿召回7批检出NMBA氯沙坦钾片,可见药物中的遗传毒性杂质仍受到公众及药品监管机构的高度关注。  在FDA已公布的ARBs药物亚硝胺杂质限度表中,NMBA的日允许摄入量最大值为0.96ppm。 FDA评估了暴露于9.82ppm水平NMBA相比于终生暴露于0.96ppm NMBA的服药水平,表明6个月的暴露量不会存在患癌风险。N-亚硝基-N-甲基-4-氨基丁酸(NMBA)N-Nitroso-N-methyl-4-aminobutyricacid(NMBA)CAS. 61445-55-4  因此,为了确保患者在缓冲期可获得氯沙坦类药物,FDA不反对含NMBA低于9.82ppm的氯沙坦保持销售。该过渡缓冲期FDA设为6个月,直至生产企业提供亚硝胺杂质符合要求的氯沙坦药物来填补市场。目前,关于氯沙坦钾中NMBA的检测方法尚未见公开报道,为及时应对市场检测需求,岛津中国率先推出了基于LC-MS/MS技术的检测方法,该方法操作简单,灵敏度高,适用性强,可有效用于氯沙坦钾中NMBA的分析检测。 1、 实验部分 1.1 仪器: LCMS-8050三重四极杆质谱仪联用仪,含有:LC-30AD×2输液泵,DGU-20A5R在线脱气机,SIL-30AC自动进样器,CTO-30A柱温箱,CBM-20A系统控制器,LCMS-8050三重四极杆质谱仪,LabSolutions(Version 5.82 SP1)色谱工作站。 1.2 分析条件: 液相色谱条件质谱条件 1.3 标准品溶液:取NMBA标准贮备液,以纯甲醇逐级稀释为0.5、1、2、5、10、20、50、100 ng/mL的八个不同浓度的混合标准工作溶液。 1.4 样品溶液:取氯沙坦钾三批原料药(符合EP9.0)0.1 g于10 mL容量瓶中,加甲醇适量,超声1 min至全部溶解,放冷至室温,用甲醇定容待测。 2、 结果 2.1标准品色谱图图1. NMBA标准品色谱图(100 ng/mL)(黑色-总离子流;粉色-MRM147.15/117.10;蓝色-MRM147.15/87.10;棕色-MRM147.15/44.10) 2.2 线性关系及检出定量限图2. NMBA标准曲线检出限(LOD)0.5 ng/mL(MRM147.15/117.10),定量限(LOQ)1.0 ng/mL (MRM147.15/117.10) 2.3 精密度实验:10 ng/mL标准溶液为样本连续进样,日内及日间保留时间相对标准偏差低于0.1%,峰面积低于1.10%。 2.4 加标回收实验 取0.1 g氯沙坦钾样品于10 mL容量瓶中,加入NMBA标准品溶液(相当于50、100、200 ng NMBA标准品),按照1.4中的方法进行处理,上机分析。加标的氯沙坦钾溶液色谱图(以200 ng加标量为例)见图3。三个平行样品的低中高平均回收率分别为98.04%,94.40%,95.61%。 图3 NMBA加标量为200 ng时氯沙坦钾溶液色谱图 2.5 检测结果:三批样品中NMBA均低于最小检出限(LOD)。 3、 结论   本工作建立了使用LCMS-8050三重四极杆质谱联用仪测定氯沙坦钾原料药中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)杂质的方法,在0.5~100 ng/mL浓度范围内线性关系良好,检出限和定量限分别为0.5 ng/mL和1.0 ng/mL。使用此方法对三批次氯沙坦钾原料药进行了测定,结果为NMBA未检出。本方法简单、快速、灵敏、准确,可有效用于氯沙坦钾原料药中NMBA的分析检测。
  • 新国标扩项,标准起草人主讲!GB 5009.26-2023亚硝胺的测定标准解读和技术关键点
    2023年9月6日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》,新国标将于2024年3月6日正式实施。新国标相比2016版在检测方法上做了较大的修改和调整。为帮助相关检测单位了解新国标中样品前处理和气相色谱-质谱/质谱法等技术关键点,顺利开展新国标扩项工作,中国认证认可协会检测分会拟于12月20日举办《食品中N-亚硝胺类化合物的测定》标准解读及相关应用公益培训。该活动由纳鸥科技承办,特邀《GB 5009.26-2023 食品中N-亚硝胺类化合物的测定》标准起草人徐敦明研究员和色谱检测领域相关资深老师主讲。主办方:中国认证认可协会检测分会协办:纳鸥科技时间:2023年12月20日 14:00-16:30(公益培训,不收取任何费用)培训内容主讲人简介专题一:《GB 5009.26-2023食品中N-亚硝胺类化合物的测定》标准解读和技术关键点 (12月20日 14:10-15:00)徐敦明(实验室主任/研究员,厦门海关技术中心) 厦门海关技术中心研究员,博士生导师,国家重点研发计划专项首席专家,福建省高层次人才,厦门市第十、十二批拔尖人才,受聘第二届食品安全国家标准审评委员会委员,海关总署科技委专业委委员。长期从事食品安全研究与检测、食品安全科普,专业于食品安全因子分析。近年,主持参与35项与食品安全相关的国家及省部级科技项目,主持参与28项国家标准、行业标准的制修订。发表学术论文60余篇,撰写专著6部,授权专利10项,获各类科技进步奖17项、省标准贡献奖4项。专题二:液相色谱溶剂效应原理剖析及在食品检测中的应用(12月20日 15:10-16:00)张新华(总经理/技术总监,谱宁科技) 张新华先生在液相色谱领域深耕近20年,毕业于同济大学硕士,2005毕业后开始从事液相色谱相关工作,于某知名上市公司工作,负责液相色谱相关产品的生产、研发和售后服务。2011年进入Sigma-Aldrich中国工作,同年创办上海谱宁科技。这些年进行了近千个样品的液相色谱方法开发和方法调整,对液相色谱分析中的峰形问题有着丰富的经验和独到的见解,并将多年的经验进行总结后凝结成产品。专题三:让检测效率翻倍,HMR-Lipid在农兽残检测中的应用(12月20日 16:00-16:30)刘少桐(技术支持经理,纳鸥科技) 现任北京纳鸥科技有限公司技术支持经理,主要负责样品前处理的售前&售后技术支持工作,以及SPE和QuEChERS样品前处理方法开发、优化以及相关应用等;食品质量与安全专业,曾就职于长春海关技术中心,在农药残留、兽药残留、真菌毒素等分析检测具有丰富经验。
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 赛默飞发布烟草中低水平挥发性亚硝胺的检测方法
    中国上海,2011年11月23日 ——全球科学服务领域的领导者赛默飞世尔科技(以下简称:赛默飞)于14日发布了一种综合性方法,利用三重四极杆GC-MS/MS检测烟草中低水平挥发性亚硝胺(VNA)。新方法可帮助环境实验室、烟草公司和政府机构有效分离VNAs,同时降低检测限,提高特异性,也可分析烟草中的其他污染物,比如农药。应用文献“Lower Detection Limits of Volatile Nitrosamines in Tobacco by Triple Quadrupole GC-MS/MS(采用三重四极杆GC-MS/MS分析烟草中挥发性亚硝胺获得更低检测限)”中详细说明了这个方法,下载网址www.thermoscientific.com/vna。挥发性亚硝胺是可在烟草烟雾以及烟草调制和加工中形成的一类化合物。经证实,这些化合物对人体健康有害;烟草中发现的两种VNA,即N-亚硝基二乙胺(NDEA)和二甲基亚硝胺(NDMA),已经被法规机构列为人体致癌物。因此,必须完整监测这些化合物,以便维护人类健康并遵守日益严格的法规。赛默飞的这种新方法对于其他传统技术是一个强大的替代方法,它将气相色谱与三重四极杆质谱仪联用,获得1ng/mL的检测限,满足政府和法规部门制定的越来越严格的检测限要求。这个方法还提高了同一类污染物的特异性,同时可分析烟草中的其他有机污染物和化学品,包括农药。新方法采用Thermo Scientific TSQ Quantum XLS三重四极杆GC-MS/MS系统的定时选择反应监测(t-SRM)模式进行GC-MS/MS分析。这个独特的功能使方法设置十分简单,同时用户可在仪器自动确定最佳SRM时间参数时运行样品。更多有关采用最新赛默飞GC/MS-MS方法检测烟草中VNA的信息,或者需要应用文档,请拨打热线电话800 810 5118或400 650 5118,发邮件至analyze@thermofisher.com或访问www.thermo.com.cn/gcms。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们致力于帮助我们的客户使世界更健康、更清洁、更安全。公司年销售额接近 110 亿美元,员工约37000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制行业。借助于Thermo Scientific 和 Fisher Scientific 两个首要品牌,我们将持续技术创新与最便捷的采购方案相结合,为我们的客户、股东和员工创造价值。我们的产品和服务有助于加速科学探索的步伐,帮助客户解决在分析领域所遇到的各种挑战,无论是复杂的研究项目还是常规检测或工业现场应用。 欲了解更多信息,请浏览公司网站:www.thermofisher.com,中文:www.thermofisher.cn。
  • 我国消化道癌症高发或与喝水有关,饮用水中亚硝胺是美国3.6倍
    p  清华大学环境学院国家环境模拟与污染控制重点实验室陈超副研究员所在课题组从全国23个省、44个大中小城市和城镇、共155个点位采集了164个水样,包括出厂水、用户龙头水和水源水。研究中测试了当前已知的全部9种亚硝胺类消毒副产物,其中NDMA(亚硝基二甲胺)的浓度最高。该课题组于日前在市政和环境领域顶尖期刊《水研究》上发表研究成果并呼吁,“饮用水中的亚硝胺问题有紧迫性,需要尽快研究和进行工程改造!”/pp  由于具有高致癌性、高检出率以及在我国可能被纳入水质检测标准,饮用水中的亚硝胺类消毒副产物得到了国内外研究人员的空前关注。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201610/noimg/e65a338b-3bf1-4b3c-b2d4-ab50fa7f769f.jpg" title="1.jpg"//pp  strong饮用水亚硝胺检出率不容忽视/strong/pp  在过去三年中,陈超及其团队分别测试了44个城市供水系统中的亚硝胺类消毒副产物及其前体物。在已检测的全部水样中,出厂水和龙头水中的NDMA平均浓度分别为11ng/L和13ng/L,水源水中的NDMA生成潜能平均为66ng/L。他表示,与美国环保局在2012年公开的一项大规模普查数据相比,亚硝胺在中国出厂水和龙头水中的检出率是美国的3.6倍。而西欧国家的饮用水亚硝胺浓度比美国还低。/pp  在课题组检测的长江三角洲地区的近10个供水系统中,出厂水和龙头水中的NDMA平均浓度分别为27ng/L和28.5ng/L,水源水中的NDMA生成潜能为204ng/L。/pp  陈超表示,在已经鉴别出的700多种消毒副产物中,亚硝胺是健康风险最大的消毒副产物类别之一,特别是NDMA。/pp  strong与消化道癌症密切相关/strong/pp  医学界在50年代就发现亚硝胺是一类强致癌物,当时主要研究食品、烟草和工业污染中的亚硝胺。饮用水中的亚硝胺类消毒副产物研究始于20世纪末。“前期的流行病学研究表明,亚硝胺与中国某些区域的消化道癌症密切相关。”陈超说,他们此次监测到这些区域的自来水受到来自工业废水的严重的亚硝胺污染。同时,今年南京大学某课题组在华东地区江苏省多座城市的水源水中也发现了严重的亚硝胺污染。/pp  “据报道,根据毒理学试验结果,NDMA终生饮用的百万分之一致癌风险浓度是0.7ng/L,据悉美国环保署正力图制定的美国亚硝胺浓度标准,其限值可能在百万分之一至万分之一致癌风险浓度的范围之内。”陈超透露。/pp  strong中国尚无饮用水亚硝胺水质标准/strong/pp  陈超说,目前已经有部分发达国家和地区建立了饮用水中NDMA的标准。“世界卫生组织在2008年提出了100ng/L的推荐值,加拿大,澳大利亚都有了国家标准,分别是40ng/L、100ng/L 加拿大安大略省、美国麻省和加州的标准更严,分别是9ng/L、10ng/L、10ng/L。”/pp  “不难看出,我们的饮用水中亚硝胺检出情况比这些地方都严重。”陈超说,但是我国饮用水水质标准中还没有这一个项目。/pp  一旦将亚硝胺纳入标准,进行大范围的监测是否困难呢?陈超表示,亚硝胺监测是有一定困难,要测试水中ng/L量级的微量亚硝胺,需要使用气相色谱或者液相色谱再加上串联质谱,监测设备两三百万一台,每个水样的测试成本也较高。不过他也表示国内已有十几家自来水公司有该设备,还需要进一步开发检测方法。清华大学等少数高校和科研院所已经建立了亚硝胺的检测能力,目前大型自来水公司的水质是有保障的。/pp  strong人口密、污染重的区域风险更高/strong/pp  记者从报告看到,亚硝胺风险高的水样主要来自两个区域——华东区和华南区。检出龙头水中最高值达到19ng/L。/pp  在人口密集的其他区域,如华北和华中,虽然水源水中NDMA生成潜能浓度不高,但其龙头水平均浓度达到12ng/L和18ng/L。“原因也许与不同的水处理工艺有关,采用臭氧活性炭深度处理或者彻底的折点氯化,大部分亚硝胺前体物比较容易被游离氯氧化分解,可有效降低超标风险。但一旦水源受到污染,使用传统工艺的自来水厂对亚硝胺的控制效果有限。”陈超说道。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201610/noimg/1efa7f3e-0f90-4da9-9611-cc22260466ea.jpg" title="1.jpg" style="width: 500px height: 485px " width="500" vspace="0" border="0" hspace="0" height="485"//pp  值得关注的是,长江三角洲地区既是中国经济最发达、人口最密集的区域,也是亚硝胺浓度最高的区域,NDMA浓度分别为27ng/L和29ng/L。/pp  “我们在该区域的某县城检出了全国出厂水和龙头水中NDMA的最高浓度,是44个城市中唯一超过世界卫生组织100ng/L标准的。”陈超说,那些龙头水中检出高浓度NDMA的城市很可能是其水源受到来自工业和生活污水的NDMA前体物污染。/ppbr//p
  • 应用丨N-二甲基亚硝胺检测前处理解决方案
    亚硝酸盐在腌肉中转化为亚硝酸,极易生成致癌性物质:N-亚硝胺类化合物。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。N-二甲基亚硝胺广泛存在于啤酒、肉制品及鱼类腌制品等食品和环境中,可溶于水、乙醇、乙醚、二氯甲烷,用于制造二甲基肼,是国际公认的毒性较大的污染物,具有肝毒性和致癌性。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次增加QuEChERS-气相色谱-质谱/质谱法(第二法),QuEChERS方法相较于其他前处理方法操作更简单,更容易实现批量前处理,试剂使用量更少,更环保。 样品前处理步骤提取 干制品称取5g于50mL离心管(RC-50004M,50mL尖底) 加入5mL水,振荡混匀(鲜样品称取10g置于50mL离心管中) 加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈 MTV3000多管涡旋混合仪2500rpm,涡旋振荡2min,置于-20℃冰箱冷冻20min 取出后加入1颗陶瓷均质子(RC-5003C)以及提取盐包(RC-50106M,内含4g硫酸镁和1g氯化钠) 置于V20垂直振荡器,1300rpm振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 上清液待净化净化 量取5mL水加入15mL净化管(RC-15164M含有150mgHLB-2粉末或RC-15165M,含有1gHolipid) 置于MTV 3000多管涡旋混合仪,2500rpm 涡旋混匀,立即加入5mL待净化上清液涡旋振荡1min 取出置于冷冻离心机,9000r/min,10℃离心5min 待除水除水 取上述待除水净化液加入15mL除水净化管中(RC-15166M,含有1.6g硫酸镁和0.4g氯化钠) 置于MTV3000多管涡旋混合仪,2500rpm涡旋振荡2min 置于冷冻离心机中,转速9000r/min,10℃离心5min 取上层有机相经0.22μm微孔滤膜过滤后 上机测定前处理仪器及耗材推荐Raykol V20垂直振荡器 振荡方式:垂直振荡 振荡速度:500-1800rpm 振幅:32mm样品数量:50mL*20,15mL*38,100mL*10,2mL*52等,96孔板*6,可定制 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等 预约启动,预约时间0-840minRaykol MTV3000多管涡旋混合仪 振荡方式:偏芯振荡 振荡速度:最高速度3000rpm 操作简单,适配各种管架 7寸彩色触摸屏,实时显示速度、工作时间及倒计时等耗材RC-50004M50mL螺口尖底管,PP材质,25支/包,2包RC-50106M萃取盐包:4g MgSO4+1g NaCl,50/盒RC-5003C陶瓷均质子,用于50mL萃取管,100个/瓶RC-15164M15mL净化管:150mg HLB-2,25支/盒RC-15165M15mL净化管:1g Holipid,25支/盒RC-15166M15mL净化管:400mg NaCl+1600mg MgS04, 50支/盒
  • 英国食品标准局对燃脂物质2,4-二硝基苯酚采取措施
    英国食品标准局(FSA)近日意识到,被称为DNP的2,4-二硝基苯酚(2,4-Dinitrophenol)物质,仍被健身领域的一些人和试图减肥的人使用。  DNP是一种工业化学品,对人类健康是及其危险的。根据其摄入量,急性中毒的迹象可能包括发热、脱水、恶心、呕吐、烦躁、皮肤发红、出汗、头晕、头痛、呼吸加速、心跳加速以及心跳不规则,可能导致昏迷甚至死亡。长时期摄入低含量的该物质也可能导致白内障和皮肤损伤,影响心脏、血液和神经系统。  FSA正在采取行动打击DNP非法销售,同时提高消费者对其使用危险性的意识。特别是:  • 该机构正与警察和地方当局合作,杜绝DNP非法出售给消费者,重点关注杜绝互联网销售。FSA将向地方当局提供相关支持,包括财政援助以完成这项工作。  • FSA提醒相关公司,包括网络贸易商,任何被发现向消费者供应DNP产品的个人或公司将交予法院进行刑事制裁。  FSA负责人Rod Ainsworth称,让消费者充分了解DNP的危险性是十分重要的。我们一直在努力提高人们对DNP的危险性的意识,鼓励民众在购买到含有DNP的产品时,应及时向FSA报告。若有人向你提供DNP,不应该接受,应立即联系FSA或地方当局。  任何人获悉非法销售DNP的信息应立即报给至:FoodIncidents@foodstandards.gsi.gov.uk。
  • 赛默飞推出TSQ 8000 Evo检测橡胶及弹性体材料中11种亚硝胺
    2015年1月23日,上海——赛默飞近日推出TSQ 8000 EVO检测橡胶及弹性体材料中11种亚硝胺的应用方法,助力亚硝胺检测分析,帮助客户实现快速检测和定性定量,并轻松搞定样品。N-亚硝基化合物是一类很强的化学致癌物质,包括亚硝胺和亚硝酰胺两大类物质,通常泛称为亚硝胺。超过 300 多种 N-亚硝基化合物在一种或多种动物身上显示出具有致癌作用,并且 40 多种动物包括灵长类都是易于感染 N-亚硝基化合物而引起癌症,而且这类强致癌物质在实验动物体上诱导出的肿瘤在形态学特点与生化特点上都与相应的人体器官上发现的肿瘤相似。美国环境保护局(USEPA)认为 N-亚硝基二甲胺(NDMA)在极低的浓度(0.7 ng/L)下就会致癌,已将其列为优先控制污染物。许多国家及国际组织都对相应制品中 N-亚硝基胺的检测制定了严格的标准,如中国出台了 GB28482-2012 《婴幼儿安抚奶嘴安全要求》;欧盟《玩具安全新指令》(2009/48/EC)中,对其中的 N-亚硝基胺含量及迁移量有着极为严格的规定。同时,与该指令配套的欧盟协调标准 EN71-12 要求至少检测 13 种 N-亚硝基胺,包括脂肪族亚硝胺、脂环族亚硝胺及芳香族亚硝胺等。针对以上需求赛默飞提出基于串接气质联用TSQ 8000 Evo 的解决方法。本文以 TSQ 8000 Evo 为平台建立了橡胶及弹性体材料中 11 种 N-亚硝基胺 GC-MS/MS 检测方法,结合赛默飞特有的TraceFinder软件系统进行数据采集、数据分析和报告输出,实现了数据的快速采集及数据结果的智能处理。为 N-亚硝基胺的痕量检测提供了强而有力的技术支持。应用下载链接:http://www.thermo.com.cn/article6946.html ---------------------------------------------------------------------关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 被忽视的水中“PM2.5” 饮用水亚硝胺阴影待解
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201611/insimg/142960c5-3a9c-45c5-b744-309560f81e44.jpg" title="107685.jpeg@660x440.jpg" style="width: 600px height: 400px " width="600" vspace="0" border="0" hspace="0" height="400"//pp style="text-align: center "自来水厂沉淀池。饮用水中的亚硝胺,过去一直被认为是水处理过程中可接受的“消毒副产物”。但作为2A类致癌物,亦有人担心,其长时间富集的病变作用。(视觉中国/图)/pp  span style="color: rgb(0, 176, 240) "strong“它像极了当年空气污染中被忽视的PM2.5。”/strong/span/ppspan style="color: rgb(0, 176, 240) "strong  多数学者认为其不会影响安全,但亦有人担心,饮水长时间富集,可能产生一些病变。/strong/span/ppspan style="color: rgb(0, 176, 240) "strong  “尽管亚硝胺在水里含量极低,但饮用水太重要了,涉及所有的人群,特别是要考虑敏感人群,比如儿童、孕妇和免疫缺陷的群体。”/strong/span/pp  历时3年多,覆盖全国23个省、44个大中小城市和城镇,从出厂水、用户龙头水到水源水,针对饮用水中亚硝胺浓度和种类的科研调查,是迄今为止国内最大最全面的一次。/pp  “调查结果出乎我意料:一是种类那么多,二是浓度比想象的高。”负责上述饮用水调查的清华大学环境学院副教授陈超告诉南方周末记者,他从事亚硝胺类消毒副产物研究已近十年,但人们最近才开始关注和重视饮用水中的亚硝胺。/pp  由清华大学环境学院国家环境模拟与污染控制重点实验室主持的这项全国调研报告,一系列颇有价值的数据正陆续被公之于众:/pp  “中国是世界上亚硝胺检出情况最为多样的国家,在水中检测出9种亚硝胺类物质,其中亚硝基二甲胺(NDMA)的浓度最高。”/pp  “中国的出厂水和龙头水中的亚硝胺检出情况要比美国严重,出厂水和龙头水中NDMA的平均浓度分别为11和13ng/L(纳克每升),水源水中的亚硝胺前体物(母体物质)平均为66ng/L,除了NDMA之外的亚硝胺在中国的检出率是美国的数十倍。”/pp  “在全国范围内,长三角地区有最高的亚硝胺风险,出厂水和龙头水中的平均浓度分别为27和28.5ng/L,其中水源水中的亚硝胺前体物为204ng/L。”/pp  国际癌症研究署(IARC)把亚硝胺列为2A类致癌物,即人类很可能致癌,该类致癌物对人类致癌性证据有限,但实验动物致癌性证据充足。/pp  目前,美国的两个州和加拿大的安大略省在饮用水卫生标准中规定了亚硝胺类(NDMA)的最高浓度,但中国并未将其纳入饮水标准。/pp  不过形势看来并不太过悲观。美国加州的指导值是10ng/L,加拿大卫生部的指导值40ng/L。而世界卫生组织(WHO)的限制则要宽得多,达100ng/L。/pp  “按WHO的标准,我国只有少量水样超标。但如果用美国加州标准则有26%的出厂水和29%的龙头水超标。”陈超说。/pp  相比中国饮用水中的亚硝胺类物质含量,在证据不足的情况下,大多数学者认为,“不会影响饮用水安全”。/pp  不过,亦有不同意见。“癌症高发的致病原因很多,亚硝胺物质只是一个,但水每天都在不断地饮用,长时间富集的话可能产生一些病变。”中国科学院生态环境研究中心博士王万峰说。这或许正是美国环境保护署力争将亚硝胺纳入标准的一个主要原因。/pp  “它像极了当年空气污染中被忽视的PM2.5。”一位课题组成员说,“建议开展更加系统的水质调查来更好地评估中国供水系统中的亚硝胺风险。”/pp  strong亚硝胺何来/strong/pp  饮用水中的亚硝胺,过去一直被认为是可接受的“消毒副产物”。消毒是保证饮用水安全最重要的一步。一直以来,环境学家都认为,与消毒不充分可能引起的风险相比,消毒副产物带来的健康风险小,不能为控制消毒副产物而牺牲消毒效果。/pp  饮用水处理,需要使用氯胺二次消毒,因而会产生亚硝胺的前体物,之后再与二氯胺反应便会形成亚硝胺。“由于亚硝胺前体物难以彻底去除,加上当前消毒手段有限,很难在实际生产过程中避免亚硝胺的生成。”陈超解释。/pp  1989年,加拿大安大略省的自来水中被首次检出亚硝基二甲胺。随后,美国在整个供水系统中都开始发现亚硝胺的踪迹。这引起了其他一些发达国家,如澳大利亚、英国、德国和日本等国的重视,开始了全面的跟踪调查。/pp  一些地区开始对亚硝胺的浓度设定限额。美国环保局确定NDMA为B2类致癌物质。其单位致癌风险对应浓度为0.7ng/L,远远低于受控消毒副产物三氯甲烷6μg/L的致癌风险浓度。同时,美国环保局已经将包含NDMA在内的6种亚硝胺消毒副产物列入国家非受控污染物监测法令。/pp  科学界一直在企图寻找一种可代替氯的消毒剂,但至今没有发现。“你很难再找到一种消毒剂像氯一样廉价又相对安全。”同济大学环境科学与工程学院教授高乃云说。/pp  和西方主要由消毒剂产生不同,中国还存在另一个重要原因:饮用水水源污染加重。陈超团队的检测显示,原水中就已出现较高浓度的有机氮——作为亚硝胺生成前体物,这将导致出厂水亚硝胺浓度的升高。/pp  “这主要和大量的工业废水和生活污水有关,我国的污水处理率比欧美低得多。”陈超说,他们分析了水源中亚硝胺的来源,发现来源中有多种药物,包括常见的胃药雷尼替丁。/pp  报告写道:中国的地下水污染已经成为一个紧迫问题。氨氮、亚硝酸盐、硝酸盐等污染物在地下水源中十分普遍,特别是那些被农田和工业环绕的地下水源地。管网水中,亚硝酸盐的存在会发生亚硝胺化反应从而导致NDMA的生成。/pp  “水源保护是我们的瓶颈。”陈超说。/pp  公益机构中国水危机的报告显示,中国每年产生近700亿吨废水(不含农业源)。近年监测调查显示,中国主要河流、湖泊,均存在一定程度的有毒有害有机污染物污染,仅长江和松花江流域就检测出107种有毒有害有机污染物。——而保障中国饮用水安全,就必须克服这一障碍:将世界上最复杂的水源水,变为符合世界上最先进水质标准的安全饮用水。/pp  不过,研究了几十年饮用水处理的高乃云强调,现在的饮用水水质相比过去已有了质的飞跃,“现在水里能生成消毒副产物的前体物,已经大大减少。”/pp  strong研究少,评估难/strong/pp  “清华做了啊!”在听到清华教授做了相关的研究后,南开大学环境科学与工程学院副教授郭晓燕感慨说——她几年前未完成的课题终于有人接续。/pp  和欧美相比,中国对饮用水中的亚硝胺关注很晚,大规模调查极少,通过饮水暴露导致的健康影响研究也很不充分。/pp  郭晓燕从2008年开始关注中国饮用水中亚硝胺类物质的问题。2009年,她负责国家自然科学青年基金项目《地表水和饮用水中NDMA及其它亚硝胺类污染物的降解方法和机理研究》,但这个项目仅在实验室研究其降解方法和机理。/pp  要真正深入,必须去实地调研,2010年,郭晓燕向有关部门申请实际水体中亚硝胺检出物的相关课题,但过程并不顺利。“一开始他们非常看好这个课题,后来担心公众恐慌,这个项目基本就解体了。”/pp  相比环境领域,医学研究开始得更早些。多位学者都有论述:长期摄入不洁,特别是亚硝胺被检出的饮用水,很可能是促成居民消化道肿瘤高发的重要致病因素。中国医学科学院基础医学研究所教授、中国疾控中心原副主任杨功焕和她的团队曾用八年时间完成了《淮河流域水环境与消化道肿瘤死亡图集》,首次证实了癌症高发与水污染的直接关系。/pp  1996年,长春地质学院汤洁等人在广西调研发现,在肝癌高发县扶绥,居民饮用的塘水中含有严重污染的亚硝胺。他们采样的8份塘水都含有亚硝胺,且属于肝癌高发点,另16份河溪水及深井水则没有检出。“可以看出亚硝胺含量与肝癌死亡率呈平行关系,也首次证实了重病村中塘水存在致癌物”。/pp  而在1995年,广西肿瘤研究所涂文升等人对广西某肝癌高发区食物及饮用水中二甲基亚硝胺调查也发现,该区域内14个饮用水样中检测出5个含二甲基亚硝胺,而且这5个饮用水样都是塘水,与文献报道饮用塘水(或宅沟、泯沟水)的肝癌发病率和死亡率均明显高于饮用其它水源水的结果相吻合。/pp  “这可能只是一种相关性,需要更多的研究证明。”清华大学饮用水安全研究所刘文君教授说,风险评估也是动态变化的。但他承认,低浓度的消毒副产物风险评估很难进行。“目前没有这类物质的标准评估程序。”/pp  尽管没有直接证据表明亚硝胺化合物对人类致癌,但多个流行病学调查资料表明,人类某些癌症,如胃癌、食道癌、肝癌、结肠癌和膀胱癌等可能与亚硝胺有密切关系。其致癌机制研究显示,亚硝胺可引起食管上皮细胞相关癌基因抑癌基因发生改变,大大促进癌变。/pp  “动物实验结果很明确,但人群中数据不足,我们正在做相关实验。”长期研究消毒副产物健康影响的华中科技大学同济医学院教授鲁文清告诉南方周末记者,他们正在和清华合作,利用之前的调查结果分析饮用水中亚硝胺对人生殖能力的影响,初步调查将会在一年后结束。但这将会是一个长期的过程,因为“需要相当大的数据和规模才有意义”。/pp  strong过于超前的目标?/strong/pp  但在众多学者看来,对饮用水中的亚硝胺制定标准是一个“过于超前”的目标。将一项指标纳入水质标准,需要有足够的毒理学数据和充分的科研成果。/pp  “我们的水质标准是需要不断修改,如果这一类消毒副产物,已升级到比较重要的地位,那就要立标准。如果没有纳入,说明现在可能威胁还不大,或证据不充分。”年过八旬的清华大学环境学院教授王占生是水质标准领域的权威,他曾为提高水标准奔走多年。/pp  “我们的毒理学数据很少,基本上是参考国外的。有人会觉得,美国都没有全面设限,我们为什么要着急(纳入标准)?”陈超说,他们曾建议过有关部门可以纳入考虑。/pp  清华大学环境学院教授余刚则建议,“从科学角度来说,所有的消毒副产物都应该有标准,但并不是全国都要采用,而应该重点设立在水污染严重的地区。”/pp  设标准难,执行更难。中国现行的水质标准堪称世界最严,但检测手段却捉襟见肘。2012年7月,中国实施新饮用水标准,需要检测的水质指标从35项增至106项,被称为水质标准的历史性突破。/pp  但并非所有水厂都有检测106项指标的能力。“现在很多水厂连42项都测定不了,它怎么去测106项?”王占生抱怨,国内现在连106项检测指标都没有做好,还去提标准之外的指标,有点“脱离实际”。/pp  检测成本也是拦路虎。参与清华这项调查的硕士生贝尔说,亚硝胺类物质通常不能直接进行仪器检测,需要进行样品预处理。他们调查处理的水样,每一个样品的检测花费就高达500元到1000元。/pp  而想要真正去除或控制这类复杂污染物,水厂需要采用深度处理包括膜处理技术。“如果都上深度处理技术,一吨水的投资会上涨200元,比常规处理投资高出三分之一,运行成本每吨要增加0.2元,即水费可能要涨2毛钱。”陈超计算过,这将会是一笔不菲的费用。/pp  成本倒挂的水价,已让水厂亏损严重,想要水厂主动改善处理技术、加大投资,并不乐观。/pp  争论同样出现在美国。美国水工业协会就一直持续反对将亚硝胺加入标准,理由是,“亚硝胺的来源那么多,为什么单单要限制水中的?”/pp  但美国环保署的回答是,“尽管亚硝胺在水里含量极低,但饮用水太重要了,涉及所有的人群,特别是要考虑敏感人群,比如儿童、孕妇和免疫缺陷的群体。”/pp  和空气污染指数一样,国家环保部正在计划发布城市的水质排名。届时,环保部将按月度、季度、年度公布全国338个地级以上城市中排名前十及后十的名单。根据6月出台的《城市水环境质量排名技术规定》(征求意见稿),今后,和空气质量指数(AQI指数)对应,城市水质指数(CWQI指数)也将走进公众视野。/pp  但这并没有亚硝胺类指标的身影,课题组成员担心PM2.5的问题会重现,“万一国外机构再到中国检测怎么办?”/p
  • 815项国家标准拟废止 含大量仪器检测标准
    5月18日,国家标准委发布关于对《钢铁及合金化学分析方法变色酸光度法测定钛量》等815项拟废止国家标准征求意见的通知,其中涉及大量仪器检测标准,包括原子吸收分光光度法、气相色谱法、气相色谱-质谱联用法、分光光度测定方法等。  征求意见截止时间为2017年6月19日。  部分内容如下:中文名称归口单位名称GB/T4071-1983光致荧光粉测试方法工业和信息化部(电子)GB/T4072-1983阴极射线致荧光粉测试方法工业和信息化部(电子)GB/T15555.9-1995固体废物镍的测定直接吸入火焰原子吸收分光光度法环境保护部GB/T15555.2-1995固体废物铜、锌、铅、镉的测定原子吸收分光光度法环境保护部GB/T15555.6-1995固体废物总铬的测定直接吸入火焰原子吸收分光光度法环境保护部GB/T6276.1-2008工业用碳酸氢铵的测定方法第1部分:碳酸氢铵含量酸碱滴定法全国肥料和土壤调理剂标准化技术委员会GB/T6276.2-2010工业用碳酸氢铵的测定方法第2部分:氯化物含量电位滴定法全国肥料和土壤调理剂标准化技术委员会GB/T6276.3-2010工业用碳酸氢铵的测定方法第3部分:硫化物含量目视比浊法全国肥料和土壤调理剂标准化技术委员会GB/T6276.4-2010工业用碳酸氢铵的测定方法第4部分:硫酸盐含量目视比浊法全国肥料和土壤调理剂标准化技术委员会GB/T6276.5-2010工业用碳酸氢铵的测定方法第5部分:灰分含量重量法全国肥料和土壤调理剂标准化技术委员会GB/T6276.6-2010工业用碳酸氢铵的测定方法第6部分:铁含量邻菲啰啉分光光度法全国肥料和土壤调理剂标准化技术委员会GB/T6276.7-2010工业用碳酸氢铵的测定方法第7部分:砷含量二乙基二硫代氨基甲酸银分光光度法全国肥料和土壤调理剂标准化技术委员会GB/T6276.8-2010工业用碳酸氢铵的测定方法第8部分:砷含量砷斑法全国肥料和土壤调理剂标准化技术委员会GB/T6276.9-2010工业用碳酸氢铵的测定方法第9部分:重金属含量目视比浊法全国肥料和土壤调理剂标准化技术委员会GB/T223.55-2008钢铁及合金碲含量的测定示波极谱法全国钢标准化技术委员会GB/T20127.6-2006钢铁及合金痕量元素的测定第6部分:没食子酸-示波极谱法测定锗含量全国钢标准化技术委员会GB/T20127.7-2006钢铁及合金痕量元素的测定第7部分:示波极谱法测定铅含量全国钢标准化技术委员会GB/T223.57-1987钢铁及合金化学分析方法萃取分离-吸附催化极谱法测定镉量全国钢标准化技术委员会GB/T223.48-1985钢铁及合金化学分析方法半二甲酚橙光度法测定铋量全国钢标准化技术委员会GB/T223.16-1991钢铁及合金化学分析方法变色酸光度法测定钛量全国钢标准化技术委员会GB/T6155-2008炭素材料真密度和真气孔率测定方法全国钢标准化技术委员会GB/T15750-2008压电陶瓷材料性能测试方法老化性能的测试全国海洋船标准化技术委员会GB/T3389-2008压电陶瓷材料性能测试方法性能参数的测试全国海洋船标准化技术委员会GB/T7739.11-2007金精矿化学分析方法第11部分:砷量和铋量的测定全国黄金标准化技术委员会GB/Z26083-2010八辛氧基酞菁铜分子在石墨表面吸附结构的测试方法(扫描隧道显微镜)全国纳米技术标准化技术委员会GB/T11114-1989人造石英晶体位错的X射线形貌检测方法全国频率控制和选择用压电器件标准化技术委员会GB/T21198.2-2007贵金属合金首饰中贵金属含量的测定ICP光谱法第2部分:铂合金首饰铂含量的测定采用所有微量元素与铂强度比值法全国首饰标准化技术委员会GB/T15403-1994大豆制品甲酚红指数的测定全国饲料工业标准化技术委员会GB/T8381.5-2005饲料中北里霉素的测定全国饲料工业标准化技术委员会GB/T8381.8-2005饲料中多氯联苯的测定气相色谱法全国饲料工业标准化技术委员会GB/T8381-2008饲料中黄曲霉毒素B1的测定半定量薄层色谱法全国饲料工业标准化技术委员会GB/T14634.4-2002灯用稀土三基色荧光粉试验方法电传感法粒度分布测定全国稀土标准化技术委员会GB/T15917.3-1995金属镝及氧化镝化学分析方法对氯苯基荧光酮-溴化十六烷基三甲基胺分光光度法测定钽量全国稀土标准化技术委员会GB/T16480.3-1996金属钇及氧化钇化学分析方法氟量的测定全国稀土标准化技术委员会GB/T16484.17-1996氯化稀土、碳酸稀土化学分析方法碳酸稀土中水分量的测定全国稀土标准化技术委员会GB/T15679.3-1995钐钴永磁合金粉化学分析方法钙量的测定全国稀土标准化技术委员会GB/T15679.1-1995钐钴永磁合金粉化学分析方法钐、钴量的测定全国稀土标准化技术委员会GB/T15679.2-1995钐钴永磁合金粉化学分析方法铁量的测定全国稀土标准化技术委员会GB/T15679.4-1995钐钴永磁合金粉化学分析方法氧量的测定全国稀土标准化技术委员会GB/T16481-1996稀土元素微波等离子体炬发射光谱(MPT-AES)标准谱表全国稀土标准化技术委员会GB/T3856-2005单向纤维增强塑料平板压缩性能试验方法全国纤维增强塑料标准化技术委员会GB/T21131-2007环境烟草烟气可吸入悬浮颗粒物的估测用紫外吸收法和荧光法测定粒相物全国烟草标准化技术委员会GB/T27525-2011卷烟侧流烟气中苯并[a]芘的测定气相色谱-质谱联用法全国烟草标准化技术委员会GB/T23354-2009卷烟滤嘴总植物碱截留量的测定光度法全国烟草标准化技术委员会GB/T27524-2011卷烟主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定气相色谱-质谱联用法全国烟草标准化技术委员会GB/T27523-2011卷烟主流烟气中挥发性有机化合物(1,3-丁二烯、异戊二烯、丙烯腈、苯、甲苯)的测定气相色谱-质谱联用法全国烟草标准化技术委员会GB/T23358-2009卷烟主流烟气总粒相物中主要芳香胺的测定气相色谱-质谱联用法全国烟草标准化技术委员会GB/T23226-2008卷烟总粒相物中总植物碱的测定光度法全国烟草标准化技术委员会GB/T28971-2012卷烟侧流烟气中烟草特有N-亚硝胺的测定气相色谱-热能分析仪法全国烟草标准化技术委员会GB/T23357-2009烟草及烟草制品水分的测定卡尔费休法全国烟草标准化技术委员会GB/T23225-2008烟草及烟草制品总植物碱的测定光度法全国烟草标准化技术委员会GB/T21134-2007烟草及烟草制品不溶于盐酸的硅酸盐残留物的测定全国烟草标准化技术委员会GB/T21132-2007烟草及烟草制品二硫代氨基甲酸酯农药残留量的测定分子吸收光度法全国烟草标准化技术委员会GB/T21135-2007烟草及烟草制品空气中气相烟碱的测定气相色谱法全国烟草标准化技术委员会GB/T8156.4-1987工业用氟化铝化学分析方法EDTA容量法测定铝量全国有色金属标准化技术委员会GB/T8156.2-1987工业用氟化铝化学分析方法电量法测定水分含量全国有色金属标准化技术委员会GB/T8156.5-1987工业用氟化铝化学分析方法火焰发射光度法测定钠量全国有色金属标准化技术委员会GB/T8156.7-1987工业用氟化铝化学分析方法邻二氮杂菲光度法测定铁量全国有色金属标准化技术委员会GB/T8156.8-1987工业用氟化铝化学分析方法硫酸钡重量法测定硫酸根量全国有色金属标准化技术委员会GB/T8156.6-1987工业用氟化铝化学分析方法钼蓝光度法测定硅量全国有色金属标准化技术委员会GB/T8156.9-1987工业用氟化铝化学分析方法钼蓝光度法测定磷量全国有色金属标准化技术委员会GB/T8156.3-1987工业用氟化铝化学分析方法蒸馏-硝酸钍容量法测定氟量全国有色金属标准化技术委员会GB/T8156.1-1987工业用氟化铝化学分析方法重量法测定湿存水量全国有色金属标准化技术委员会GB/T8156.10-1987工业用氟化铝中硫量的测定X射线荧光光谱分析法全国有色金属标准化技术委员会GB/T17086-1997车间空气中2-丁氧基乙醇的溶剂解吸气相色谱测定方法卫生部GB/T17084-1997车间空气中2-甲氧基乙醇的溶剂解吸气相色谱测定方法卫生部GB/T17089-1997车间空气中N,N-二甲基苯胺的溶剂解吸气相色谱测定方法卫生部GB/T17088-1997车间空气中N-甲基苯胺的溶剂解吸气相色谱测定方法卫生部GB/T16031-1995车间空气中氨的纳氏试剂分光光度测定方法卫生部GB/T16100-1995车间空气中苯胺的盐酸萘乙二胺分光光度测定方法卫生部GB/T16045-1995车间空气中苯的热解吸气相色谱测定方法卫生部GB/T16044-1995车间空气中苯的溶剂解吸气相色谱测定方法卫生部GB/T16043-1995车间空气中苯的直接进样气相色谱测定方法卫生部GB/T16054-1995车间空气中苯乙烯的热解吸气相色谱测定方法卫生部GB/T16053-1995车间空气中苯乙烯的溶剂解吸气相色谱测定方法卫生部GB/T16052-1995车间空气中苯乙烯的直接进样气相色谱测定方法卫生部GB/T16116-1995车间空气中吡啶的巴比妥酸分光光度测定方法卫生部GB/T17070-1997车间空气中苄基氯的气相色谱测定方法卫生部GB/T17071-1997车间空气中苄基氰的气相色谱测定方法卫生部GB/T16064-1995车间空气中丙醇的直接进样气相色谱测定方法卫生部GB/T17069-1997车间空气中丙酸的气相色谱测定方法卫生部GB/T16059-1995车间空气中丙酮的溶剂解吸气相色谱测定方法卫生部GB/T16058-1995车间空气中丙酮的直接进样气相色谱测定方法卫生部GB/T16099-1995车间空气中丙烯腈的热解吸气相色谱测定方法卫生部GB/T16097-1995车间空气中丙烯腈的溶剂解吸气相色谱测定方法卫生部GB/T16098-1995车间空气中丙烯腈的直接进样气相色谱测定方法卫生部GB/T17092-1997车间空气中丙烯酸乙酯的溶剂解吸气相色谱测定方法卫生部GB/T16024-1995车间空气中臭氧的丁子香酚-盐酸副玫瑰苯胺分光光度测定方法卫生部GB/T16092-1995车间空气中滴滴涕的气相色谱测定方法卫生部GB/T16120-1995车间空气中敌敌畏的溶剂解吸气相色谱测定方法卫生部GB/T16123-1995车间空气中碘甲烷的1,2-萘醌-4-磺酸钠分光光度测定方法卫生部GB/T17075-1997车间空气中丁醇的溶剂解吸气相色谱测定方法卫生部GB/T16065-1995车间空气中丁醇的直接进样气相色谱测定方法卫生部GB/T16040-1995车间空气中丁二烯的直接进样气相色谱测定方法卫生部GB/T16060-1995车间空气中丁酮的直接进样气相色谱测定方法卫生部GB/T16121-1995车间空气中对硫磷的溶剂解吸气相色谱测定方法卫生部GB/T17072-1997车间空气中对硝基苯胺的溶剂解吸气相色谱测定方法卫生部GB/T16051-1995车间空气中二甲苯的热解吸气相色谱测定方法卫生部GB/T16050-1995车间空气中二甲苯的溶剂解吸气相色谱测定方法卫生部GB/T16049-1995车间空气中二甲苯的直接进样气相色谱测定方法卫生部GB/T16111-1995车间空气中二甲基甲酰胺的气相色谱测定方法卫生部GB/T16028-1995车间空气中二硫化碳的二乙胺分光光度测定方法卫生部GB/T16079-1995车间空气中二氯甲烷的直接进样气相色谱测定方法卫生部GB/T16086-1995车间空气中二氯乙烷的直接进样气相色谱测定方法(PEG20M)卫生部GB/T16085-1995车间空气中二氯乙烷的直接进样气相色谱测定方法(ApiezonL)卫生部GB/T16112-1995车间空气中二硝基苯的气相色谱测定方法卫生部GB/T16115-1995车间空气中二硝基氯苯的盐酸萘乙二胺分光光度测定方法卫生部GB/T16025-1995车间空气中二氧化硫的盐酸副玫瑰苯胺分光光度测定方法卫生部GB/T17066-1997车间空气中二乙胺的气相色谱测定方法卫生部GB/T16072-1995车间空气中酚的4-氨基安替比林分光光度测定方法卫生部GB/T16073-1995车间空气中酚的溶剂解吸气相色谱测定方法卫生部GB/T16030-1995车间空气中氟化氢及氟化物的离子选择电极测定方法卫生部GB/T16108-1995车间空气中锆及其化合物的二甲酚橙分光光度测定方法卫生部GB/T16012-1995车间空气中汞的冷原子吸收光谱测定方法卫生部GB/T16013-1995车间空气中汞的双硫腙分光光度测定方法卫生部GB/T16022-1995车间空气中钴及其化合物的火焰原子吸收光谱测定方法卫生部GB/T16077-1995车间空气中光气的紫外分光光度测定方法卫生部GB/T17073-1997车间空气中环己酮的溶剂解吸气相色谱测定方法卫生部GB/T16042-1995车间空气中环己烷的溶剂解吸气相色谱测定方法卫生部GB/T16041-1995车间空气中环己烷的直接进样气相色谱测定方法卫生部GB/T16076-1995车间空气中环氧氯丙烷的直接进样气相色谱测定方法卫生部GB/T16075-1995车间空气中环氧乙烷的热解吸气相色谱测定方法卫生部GB/T16074-1995车间空气中环氧乙烷的直接进样气相色谱测定方法卫生部GB/T16110-1995车间空气中黄磷的气相色谱测定方法卫生部GB/T16122-1995车间空气中甲拌磷的溶剂解吸气相色谱测定方法卫生部GB/T16048-1995车间空气中甲苯的热解吸气相色谱测定方法卫生部GB/T16047-1995车间空气中甲苯的溶剂解吸气相色谱测定方法卫生部GB/T16046-1995车间空气中甲苯的直接进样气相色谱测定方法卫生部GB/T16063-1995车间空气中甲醇的热解吸气相色谱测定方法卫生部GB/T16062-1995车间空气中甲醇的直接进样气相色谱测定方法卫生部GB/T16117-1995车间空气中甲基对硫磷的气相色谱测定方法卫生部GB/T17064-1997车间空气中甲硫醇的气相色谱测定方法卫生部GB/T16057-1995车间空气中甲醛的酚试剂(MBTH)分光光度测定方法卫生部GB/T17068-1997车间空气中甲酸的气相色谱测定方法卫生部GB/T16118-1995车间空气中乐果的气相色谱测定方法卫生部GB/T16119-1995车间空气中乐果的盐酸萘乙二胺分光光度测定方法卫生部GB/T16055-1995车间空气中联苯-苯醚的紫外分光光度测定方法卫生部GB/T16037-1995车间空气中磷化氢的钼酸铵分光光度测定方法卫生部GB/T16011-1995车间空气中硫化铅的火焰原子吸收光谱测定方法卫生部GB/T16027-1995车间空气中硫化氢的硝酸银比色测定方法卫生部GB/T17077-1997车间空气中硫酸二甲酯的溶剂解吸液相色谱测定方法卫生部GB/T16026-1995车间空气中硫酸及三氧化硫的氯化钡比浊测定方法卫生部GB/T16093-1995车间空气中六六六的气相色谱测定方法卫生部GB/T16090-1995车间空气中氯丙烯的直接进样气相色谱测定方法卫生部GB/T16029-1995车间空气中氯的甲基橙分光光度测定方法卫生部GB/T16091-1995车间空气中氯丁二烯的直接进样气相色谱测定方法卫生部GB/T16101-1995车间空气中氯化苦的盐酸萘乙二胺分光光度测定方法卫生部GB/T16109-1995车间空气中氯化氢及盐酸的硫氰酸汞分光光度测定方法卫生部GB/T16078-1995车间空气中氯甲烷的直接进样气相色谱测定方法卫生部GB/T16089-1995车间空气中氯乙烯的热解吸气相色谱测定方法(DNP)卫生部GB/T16087-1995车间空气中氯乙烯的直接进样气相色谱测定方法(DNP)卫生部GB/T16088-1995车间空气中氯乙烯的直接进样气相色谱测定方法(PEG6000)卫生部GB/T16018-1995车间空气中锰及其化合物的火焰原子吸收光谱测定方法卫生部GB/T16017-1995车间空气中锰及其化合物的磷酸-高碘酸钾分光光度测定方法卫生部GB/T17087-1997车间空气中钼的等离子体发射光谱测定方法卫生部GB/T16103-1995车间空气中钼及其化合物的硫氰酸盐分光光度测定方法卫生部GB/T16056-1995车间空气中萘的溶剂解吸气相色谱测定方法卫生部GB/T16021-1995车间空气中镍及其化合物的火焰原子吸收光谱测定方法卫生部GB/T16023-1995车间空气中铍的桑色素荧光光度测定方法卫生部GB/T17065-1997车间空气中偏二甲基肼的气相色谱测定方法卫生部GB/T16010-1995车间空气中铅的火焰原子吸收光谱测定方法卫生部GB/T16008-1995车间空气中铅的石墨炉原子吸收光谱测定方法卫生部GB/T16009-1995车间空气中铅的双硫腙分光光度测定方法卫生部GB/T16107-1995车间空气中氢氧化钠的火焰光度测定方法卫生部GB/T16106-1995车间空气中氢氧化钠的酸碱滴定测定方法卫生部GB/T16033-1995车间空气中氰化氢及氢氰酸盐的异菸酸钠-巴比妥酸钠分光光度测定方法卫生部GB/T16039-1995车间空气中溶剂汽油的热解吸气相色谱测定方法卫生部GB/T16038-1995车间空气中溶剂汽油的直接进样气相色谱测定方法卫生部GB/T16081-1995车间空气中三氯甲烷的溶剂解吸气相色谱测定方法卫生部GB/T16080-1995车间空气中三氯甲烷的直接进样气相色谱测定方法卫生部GB/T17090-1997车间空气中三氯乙烯的气相色谱测定方法卫生部GB/T17078-1997车间空气中三硝基苯酚的高效液相色谱测定方法卫生部GB/T16113-1995车间空气中三硝基甲苯的气相色谱测定方法卫生部GB/T16034-1995车间空气中三氧化二砷及五氧化二砷的二乙氨基二硫代甲酸银分光光度测定方法卫生部GB/T17067-1997车间空气中三氧化二砷原子吸收光谱测定方法卫生部GB/T16019-1995车间空气中三氧化铬、铬酸盐、重铬酸盐的二苯碳酰二肼分光光度测定方法卫生部GB/T16020-1995车间空气中三氧化铬的火焰原子吸收光谱测定方法卫生部GB/T16035-1995车间空气中砷化氢的二乙氨基二硫代甲酸银分光光度测定方法卫生部GB/T16094-1995车间空气中四氟乙烯的直接进样气相色谱测定方法卫生部GB/T16083-1995车间空气中四氯化碳的溶剂解吸气相色谱测定方法卫生部GB/T16082-1995车间空气中四氯化碳的直接进样气相色谱测定方法卫生部GB/T17063-1997车间空气中锑及其化合物的火焰原子吸收光谱测定方法卫生部GB/T16104-1995车间空气中钨或碳化钨的硫氰酸钾-三氯化钛分光光度测定方法卫生部GB/T16105-1995车间空气中五氧化二钒的N-肉桂酰-邻-甲苯羟胺分光光度测定方法卫生部GB/T16036-1995车间空气中五氧化二磷的钼酸铵分光光度测定方法卫生部GB/T17062-1997车间空气中锡及其无机化合物的火焰原子吸收光谱测定方法卫生部GB/T16102-1995车间空气中硝基苯的盐酸萘乙二胺分光光度测定方法卫生部GB/T16084-1995车间空气中溴甲烷的直接进样气相色谱测定方法卫生部GB/T16032-1995车间空气中氧化氮的盐酸萘乙二胺分光光度测定方法卫生部GB/T16016-1995车间空气中氧化镉的火焰原子吸收光谱测定方法卫生部GB/T16015-1995车间空气中氧化锌的火焰原子吸收光谱测定方法卫生部GB/T16014-1995车间空气中氧化锌的双硫腙分光光度测定方法卫生部GB/T16114-1995车间空气中一硝基氯苯的盐酸萘乙二胺分光光度测定方法卫生部GB/T16096-1995车间空气中乙腈的溶剂解吸气相色谱测定方法卫生部GB/T16095-1995车间空气中乙腈的直接进样气相色谱测定方法卫生部GB/T16071-1995车间空气中乙醚的直接进样气相色谱测定方法卫生部GB/T17074-1997车间空气中乙醛的溶剂解吸气相色谱测定方法卫生部GB/T17081-1997车间空气中乙酸丙酯的溶剂解吸气相色谱测定方法卫生部GB/T16068-1995车间空气中乙酸丙酯的直接进样气相色谱测定方法卫生部GB/T17082-1997车间空气中乙酸丁酯的溶剂解吸气相色谱测定方法卫生部GB/T16069-1995车间空气中乙酸丁酯的直接进样气相色谱测定方法卫生部GB/T17079-1997车间空气中乙酸甲酯的溶剂解吸气相色谱测定方法卫生部GB/T16066-1995车间空气中乙酸甲酯的直接进样气相色谱测定方法卫生部GB/T17083-1997车间空气中乙酸戊酯的溶剂解吸气相色谱测定方法卫生部GB/T16070-1995车间空气中乙酸戊酯的直接进样气相色谱测定方法卫生部GB/T17080-1997车间空气中乙酸乙酯的溶剂解吸气相色谱测定方法卫生部GB/T16067-1995车间空气中乙酸乙酯的直接进样气相色谱测定方法卫生部GB/T17076-1997车间空气中异丁醇的溶剂解吸气相色谱测定方法卫生部GB/T16287-1996食品中淀粉的测定方法酶-比色法卫生部GB/T16286-1996食品中蔗糖的测定方法酶-比色法卫生部GB/T7604-1987矿物绝缘油芳烃含量测定法中国电力企业联合会GB/T29566-2013蚊类对杀虫剂抗药性的生物学测定方法中国检验检疫科学研究院GB/T29567-2013蝇类对杀虫剂抗药性的生物学测定方法微量点滴法中国检验检疫科学研究院GB/T16257-2008纺织纤维短纤维长度和长度分布的测定单纤维测量法中国纤维检验局GB/T6098.2-1985棉纤维长度试验方法光电长度仪法中国纤维检验局GB/T4298-1984半导体硅材料中杂质元素的活化分析方法中国有色金属工业协会
  • 阿尔塔科技2300多种有机标准品现货库存!要速度,更要质量!
    买即发!要速度,更要质量!自配标准品浓度误差大,准确度低?采购周期长迟迟不能到货?混标溶液配制费时费力还苦于不知如何选择溶剂?不用担心,天津阿尔塔科技为您排忧解难,First Standard现推出一批现货库存产品,覆盖市场上热卖产品,即买即发!助您马上开始实验!以下为部分现货产品混标* 2015药典质谱法153种农药混标溶液,100ppm* 181种兽药混标,100ppm* 51种农业部例行监测农药混标,10ppm* 41种糖皮质激素混标,100 ppm* 9种硝基呋喃药物混标溶液,100ppm* 4种硝基呋喃类内标溶液,100ppm* 19种磺胺类混标溶液,100ppm* 19种喹诺酮类混标, 100ppm* 17种氨基酸混标(不同浓度)* 14种醛酮dnph混标,10 μg /ml* 15种voc混标溶液(不同浓度)* 4种亚硝胺混标, 500ppm单标* 农药2,4-滴溶液, 100ppm* 除草剂敌草胺溶液,100ppm* 甲草胺溶液,100ppm* 食品检测用邻苯二甲酸酯系列溶液,1000ppm* 维生素a, b1,b2,e,k3系列溶液,100ppm* 食品中色素检测用色素系列溶液诱惑红、新红、柠檬黄、靛蓝,100ppm更多现货库存单请咨询联系阿尔塔科技有限公司或点击这里下载附件,提供活动代码:mcx1707,即可领取该活动专享礼品PS:库存数量时时变动,请及时和销售人员联系获得最新消息
  • 《水产加工品中亚硝酸盐的测定》标准通过验收
    近日,由中国水产科学研究院南海所主持的《水产加工品中亚硝酸盐的测定》广东省渔业地方标准在广东省广州市通过专家审定。  该标准是在充分参阅相关文献工作基础上,收集了国内外亚硝酸盐测定方法的有关资料,在此基础上经过反复讨论、试验和比较制定出标准制定的实施方案。标准在制订过程中,根据现有的检测方法和资料收集情况,筛选适合水产加工品中亚硝酸盐的检测方法并对检测数据、实验方法进行综合分析,并作了充分的试验,广泛征求和采纳了国内相关领域专家学者、生产企业的意见和建议,所制订的标准科学、合理。  标准的制订和实施,有利于水产品检测部门与卫生管理部门对水产加工品中亚硝酸盐进行检测监控,有利于技术监督管理部门管理监督,提高水产品质量安全,促进企业提高产品质量意识,使人民群众可以吃到放心安全的食品。  审定专家组查阅了相关文件,听取了汇报,一致同意标准通过审定。
  • 《食品安全国家标准食品中农药最大残留限量》等107项国标发布(附编号名称)
    根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品中农药最大残留限量》(GB 2763-2016)等107项食品安全国家标准。其编号和名称如下:  GB 2763-2016(代替GB 2763—2014)食品安全国家标准 食品中农药最大残留限量  GB 23200.1-2016食品安全国家标准 除草剂残留量检测方法 第1部分:气相色谱-质谱法测定 粮谷及油籽中酰胺类除草剂残留量  GB 23200.2-2016食品安全国家标准 除草剂残留量检测方法 第2部分:气相色谱-质谱法测定 粮谷及油籽中二苯醚类除草剂残留量  GB 23200.3-2016食品安全国家标准 除草剂残留量检测方法 第3部分:液相色谱-质谱/质谱法测定 食品中环己酮类除草剂残留量  GB 23200.4-2016食品安全国家标准 除草剂残留量检测方法 第4部分:气相色谱-质谱/质谱法测定 食品中芳氧苯氧丙酸酯类除草剂残留量  GB 23200.5-2016食品安全国家标准 除草剂残留量检测方法 第5部分:液相色谱-质谱/质谱法测定 食品中硫代氨基甲酸酯类除草剂残留量  GB 23200.6-2016食品安全国家标准 除草剂残留量检测方法 第6部分:液相色谱-质谱/质谱法测定 食品中杀草强残留量  GB 23200.7-2016食品安全国家标准 蜂蜜、果汁和果酒中497种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.8-2016食品安全国家标准 水果和蔬菜中500种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.9-2016食品安全国家标准 粮谷中475种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.10-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中488种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.11-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中413种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.12-2016食品安全国家标准 食用菌中440种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.13-2016食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.14-2016食品安全国家标准 果蔬汁和果酒中512种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.15-2016食品安全国家标准 食用菌中503种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.16-2016食品安全国家标准 水果和蔬菜中乙烯利残留量的测定液相色谱法  GB 23200.17-2016食品安全国家标准 水果和蔬菜中噻菌灵残留量的测定液相色谱法  GB 23200.18-2016食品安全国家标准 蔬菜中非草隆等15种取代脲类除草剂残留量的测定 液相色谱法  GB 23200.19-2016食品安全国家标准 水果和蔬菜中阿维菌素残留量的测定液相色谱法  GB 23200.20-2016食品安全国家标准 食品中阿维菌素残留量的测定液相色谱-质谱/质谱法  GB 23200.21-2016食品安全国家标准 水果中赤霉酸残留量的测定液相色谱-质谱/质谱法  GB 23200.22-2016食品安全国家标准 坚果及坚果制品中抑芽丹残留量的测定液相色谱法  GB 23200.23-2016食品安全国家标准 食品中地乐酚残留量的测定液相色谱-质谱/质谱法  GB 23200.24-2016食品安全国家标准 粮谷和大豆中11种除草剂残留量的测定 气相色谱-质谱法  GB 23200.25-2016食品安全国家标准 水果中噁草酮残留量的检测方法  GB 23200.26-2016食品安全国家标准 茶叶中9种有机杂环类农药残留量的检测方法  GB 23200.27-2016食品安全国家标准 水果中4,6-二硝基邻甲酚残留量的测定 气相色谱-质谱法  GB 23200.28-2016食品安全国家标准 食品中多种醚类除草剂残留量的测定气相色谱-质谱法  GB 23200.29-2016食品安全国家标准 水果和蔬菜中唑螨酯残留量的测定液相色谱法  GB 23200.30-2016食品安全国家标准 食品中环氟菌胺残留量的测定气相色谱-质谱法  GB 23200.31-2016食品安全国家标准 食品中丙炔氟草胺残留量的测定气相色谱-质谱法  GB 23200.32-2016食品安全国家标准 食品中丁酰肼残留量的测定气相色谱-质谱法  GB 23200.33-2016食品安全国家标准 食品中解草嗪、莎稗磷、二丙烯草胺等110种农药残留量的测定 气相色谱-质谱法  GB 23200.34-2016食品安全国家标准 食品中涕灭砜威、吡唑醚菌酯、嘧菌酯等65种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.35-2016食品安全国家标准 植物源性食品中取代脲类农药残留量的测定液相色谱-质谱法  GB 23200.36-2016食品安全国家标准 植物源性食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.37-2016食品安全国家标准 食品中烯啶虫胺、呋虫胺等20种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.38-2016食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.39-2016食品安全国家标准 食品中噻虫嗪及其代谢物噻虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.40-2016食品安全国家标准 可乐饮料中有机磷、有机氯农药残留量的测定气相色谱法  GB 23200.41-2016食品安全国家标准 食品中噻节因残留量的检测方法  GB 23200.42-2016食品安全国家标准 粮谷中氟吡禾灵残留量的检测方法  GB 23200.43-2016食品安全国家标准 粮谷及油籽中二氯喹磷酸残留量的测定气相色谱法  GB 23200.44-2016食品安全国家标准 粮谷中二硫化碳、四氯化碳、二溴乙烷残留量的检测方法  GB 23200.45-2016食品安全国家标准 食品中除虫脲残留量的测定液相色谱-质谱法  GB 23200.46-2016食品安全国家标准 食品中嘧霉胺、嘧菌胺、腈菌唑、嘧菌酯残留量的测定气相色谱-质谱法  GB 23200.47-2016食品安全国家标准 食品中四螨嗪残留量的测定气相色谱-质谱法  GB 23200.48-2016食品安全国家标准 食品中野燕枯残留量的测定气相色谱-质谱法  GB 23200.49-2016食品安全国家标准 食品中苯醚甲环唑残留量的测定气相色谱-质谱法  GB 23200.50-2016食品安全国家标准 食品中吡啶类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.51-2016食品安全国家标准 食品中呋虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.52-2016食品安全国家标准 食品中嘧菌环胺残留量的测定气相色谱-质谱法  GB 23200.53-2016食品安全国家标准 食品中氟硅唑残留量的测定气相色谱-质谱法  GB 23200.54-2016食品安全国家标准 食品中甲氧基丙烯酸酯类杀菌剂残留量的测定气相色谱-质谱法  GB 23200.55-2016食品安全国家标准 食品中21种熏蒸剂残留量的测定 顶空气相色谱法  GB 23200.56-2016食品安全国家标准 食品中喹氧灵残留量的检测方法  GB 23200.57-2016食品安全国家标准 食品中乙草胺残留量的检测方法  GB 23200.58-2016食品安全国家标准 食品中氯酯磺草胺残留量的测定液相色谱-质谱/质谱法  GB 23200.59-2016食品安全国家标准 食品中敌草腈残留量的测定气相色谱-质谱法  GB 23200.60-2016食品安全国家标准 食品中炔草酯残留量的检测方法  GB 23200.61-2016食品安全国家标准 食品中苯胺灵残留量的测定气相色谱-质谱法  GB 23200.62-2016食品安全国家标准 食品中氟烯草酸残留量的测定气相色谱-质谱法  GB 23200.63-2016食品安全国家标准 食品中噻酰菌胺残留量的测定液相色谱-质谱/质谱法  GB 23200.64-2016食品安全国家标准 食品中吡丙醚残留量的测定液相色谱-质谱/质谱法  GB 23200.65-2016食品安全国家标准 食品中四氟醚唑残留量的检测方法  GB 23200.66-2016食品安全国家标准 食品中吡螨胺残留量的测定气相色谱-质谱法  GB 23200.67-2016食品安全国家标准 食品中炔苯酰草胺残留量的测定气相色谱-质谱法  GB 23200.68-2016食品安全国家标准 食品中啶酰菌胺残留量的测定气相色谱-质谱法  GB 23200.69-2016食品安全国家标准 食品中二硝基苯胺类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.70-2016食品安全国家标准 食品中三氟羧草醚残留量的测定液相色谱-质谱/质谱法  GB 23200.71-2016食品安全国家标准 食品中二缩甲酰亚胺类农药残留量的测定气相色谱-质谱法  GB 23200.72-2016食品安全国家标准 食品中苯酰胺类农药残留量的测定气相色谱-质谱法  GB 23200.73-2016食品安全国家标准 食品中鱼藤酮和印楝素残留量的测定液相色谱-质谱/质谱法  GB 23200.74-2016食品安全国家标准 食品中井冈霉素残留量的测定液相色谱-质谱/质谱法  GB 23200.75-2016食品安全国家标准 食品中氟啶虫酰胺残留量的检测方法  GB 23200.76-2016食品安全国家标准 食品中氟苯虫酰胺残留量的测定液相色谱-质谱/质谱法  GB 23200.77-2016食品安全国家标准 食品中苄螨醚残留量的检测方法  GB 23200.78-2016食品安全国家标准 肉及肉制品中巴毒磷残留量的测定气相色谱法  GB 23200.79-2016食品安全国家标准 肉及肉制品中吡菌磷残留量的测定气相色谱法  GB 23200.80-2016食品安全国家标准 肉及肉制品中双硫磷残留量的检测方法  GB 23200.81-2016食品安全国家标准 肉及肉制品中西玛津残留量的检测方法  GB 23200.82-2016食品安全国家标准 肉及肉制品中乙烯利残留量的检测方法  GB 23200.83-2016食品安全国家标准 食品中异稻瘟净残留量的检测方法  GB 23200.84-2016食品安全国家标准 肉品中甲氧滴滴涕残留量的测定气相色谱-质谱法  GB 23200.85-2016食品安全国家标准 乳及乳制品中多种拟除虫菊酯农药残留量的测定气相色谱-质谱法  GB 23200.86-2016食品安全国家标准 乳及乳制品中多种有机氯农药残留量的测定气相色谱-质谱/质谱法  GB 23200.87-2016食品安全国家标准 乳及乳制品中噻菌灵残留量的测定荧光分光光度法  GB 23200.88-2016食品安全国家标准 水产品中多种有机氯农药残留量的检测方法  GB 23200.89-2016食品安全国家标准 动物源性食品中乙氧喹啉残留量的测定液相色谱法  GB 23200.90-2016食品安全国家标准 乳及乳制品中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱法  GB 23200.91-2016食品安全国家标准 动物源性食品中9种有机磷农药残留量的测定 气相色谱法  GB 23200.92-2016食品安全国家标准 动物源性食品中五氯酚残留量的测定液相色谱-质谱法  GB 23200.93-2016食品安全国家标准 食品中有机磷农药残留量的测定气相色谱-质谱法  GB 23200.94-2016食品安全国家标准 动物源性食品中敌百虫、敌敌畏、蝇毒磷残留量的测定液相色谱-质谱/质谱法  GB 23200.95-2016食品安全国家标准 蜂产品中氟胺氰菊酯残留量的检测方法  GB 23200.96-2016食品安全国家标准 蜂蜜中杀虫脒及其代谢产物残留量的测定液相色谱-质谱/质谱法  GB 23200.97-2016食品安全国家标准 蜂蜜中5种有机磷农药残留量的测定 气相色谱法  GB 23200.98-2016食品安全国家标准 蜂王浆中11种有机磷农药残留量的测定 气相色谱法  GB 23200.99-2016食品安全国家标准 蜂王浆中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.100-2016食品安全国家标准 蜂王浆中多种菊酯类农药残留量的测定 气相色谱法  GB 23200.101-2016食品安全国家标准 蜂王浆中多种杀螨剂残留量的测定 气相色谱-质谱法  GB 23200.102-2016食品安全国家标准 蜂王浆中杀虫脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.103-2016食品安全国家标准 蜂王浆中双甲脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.104-2016食品安全国家标准 肉及肉制品中2甲4氯及2甲4氯丁酸残留量的测定液相色谱-质谱法  GB 23200.105-2016食品安全国家标准 肉及肉制品中甲萘威残留量的测定 液相色谱-柱后衍生荧光检测法  GB 23200.106-2016食品安全国家标准 肉及肉制品中残杀威残留量的测定 气相色谱法  特此公告。  国家卫生计生委  农业部 食品药品监管总局  2016年12月18日
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制