当前位置: 仪器信息网 > 行业主题 > >

苄基乙基甲酰氨基腺苷

仪器信息网苄基乙基甲酰氨基腺苷专题为您提供2024年最新苄基乙基甲酰氨基腺苷价格报价、厂家品牌的相关信息, 包括苄基乙基甲酰氨基腺苷参数、型号等,不管是国产,还是进口品牌的苄基乙基甲酰氨基腺苷您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基乙基甲酰氨基腺苷相关的耗材配件、试剂标物,还有苄基乙基甲酰氨基腺苷相关的最新资讯、资料,以及苄基乙基甲酰氨基腺苷相关的解决方案。

苄基乙基甲酰氨基腺苷相关的资讯

  • EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用
    EZ7300 ATP(三磷酸腺苷)在线分析仪在发电厂对优化杀菌剂加药方案的应用哈希公司哈希EZ7300 ATP(三磷酸腺苷)在线分析仪是一个全自动化的微生物检测系统,符合国际认可的ASTM D4012-81标准方法。传统的用于评估饮用水和工业用水中的细菌安全的方法由于采样频率、菌种筛选和操作不当、污染等限制,通常需要较长的反应时间。等到分析结果出来了,水已经被使用了。哈希为现有的检测方法提供了一个替代方案。哈希EZ7300 ATP(三磷酸腺苷)在线分析仪使用生物荧光法来测量ATP的含量,从而获得快速且准确的结果。该在线分析仪可以自动进行采样、分析和数据处理,可在0-250 ng/mL ATP (或者 0-500 pM ATP)的范围内快速对水中微生物负荷进行反馈。影响电厂冷却塔杀菌剂投加方案的主要因素有两个。首先,是排放许可证的要求,会对投加药剂的速度或时间有要求,第二,需要根据水中的微生物负荷来制定投加药剂的方案,且该方案会根据水的来源和是否需要循环利用而不同。印第安纳州一个发电厂的操作员需要实时信息来优化杀菌剂加药方案。操作员需要这些数据来确定否间歇加药或连续加药(氯胺浓度较低)哪种加药方式更有效且更具成本效益。减少冷却水回路和冷却塔中的总微生物负荷,减少生物膜的形成以及大型冷却塔军团杆菌爆发的相关风险也是必要的。发电厂对哈希EZ7300 ATP(三磷酸腺苷)在线分析仪进行为期2个月的试验,清楚地证明了连续监测的优势,间歇使用杀菌剂的数据显示与不使用杀菌剂相比,间歇使用杀菌剂对ATP水平和微生物负荷有显著影响。在试验之后,工厂订购了一台仪表并对两路水流进行连续监测,从而优化杀菌剂的剂量并降低潜在风险。其姊妹电厂也订购了一台EZ7300用于监测供水系统的微生物负荷。END
  • 滴定仪在2020年版《中国药典》的应用—腺苷含量的测定
    7月2日,国家药品监督管理局、国家卫生健康委发布公告,正式颁布2020年版《中华人民共和国药典》。新版《中国药典》将于今年12月30日起正式实施。2020年版《中国药典》共收载品种5911种,其中,新增319种,修订3177种,不再收载10种,品种调整合并4种。 一、腺苷简介腺苷作为天然核苷酸,是机体代谢的中间产物,也是体内重要活性成分之一。腺苷做成的注射液1989年美国首次上市。腺苷(Adenosine, AD)即腺嘌呤核苷,是机体RNA的代谢产物,属于生物小分子化合物,它是一种内源性核苷,能参与血管神经舒张活动,具有抗心律失常的功效。在中枢神经系统中,它对神经传递的调节及对抵抗缺血性与疾病性神经伤害等方面具有重要作用。 二、腺苷含量的测定方法2020年版《中国药典》中新增了腺苷及腺苷注射液,腺苷含量的测定依据电位滴定法(通则0701),冰醋酸作溶剂,用高氯酸标准滴定溶液滴定至终点。 三、使用电位滴定仪测定腺苷的含量(1)仪器:雷磁ZDJ-5B自动电位滴定仪(2)电极:231-01pH玻璃电极、217-01双盐桥参比电极(外填充液为乙醇制氯化锂)(3)试剂:氯化锂、乙醇、醋酸酐、高氯酸标准滴定溶液等(4)样品:5’-氯-5’-脱氧腺苷(5)测定流程如下:油咖喱滴定曲线 (6)依据滴定终点计算出样品中腺苷的含量 四、仪器及配套电极 ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果; ● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。231-01 pH玻璃电极● 测量范围:(0-14)pH● 温度范围:5-60℃● 外壳材料:玻璃● 敏感膜:玻璃球泡● 外形尺寸:12×120mm● 接插件:BNC(Q9型)217-01 双盐桥参比电极● 温度范围:5-55℃● 参比类型:饱和甘汞双盐桥式● 外壳材料:玻璃● 外形尺寸:12×120mm● 接插件:U型插片
  • 【文献速递】肿瘤免疫治疗:靶向腺苷-A2AR代谢途径负反馈的特制纳米光热免疫抑制剂
    近日,同济大学医学院李永勇教授课题组证明了免疫抑制代谢物腺苷的增加在光热疗法(PTT)诱导的免疫原性细胞死亡(ICD)过程中起到负反馈调节作用,会严重抑制抗肿瘤免疫治疗的效果。在此基础上,该团队开发了一种具有强大抗肿瘤免疫效果的纳米系统,能够抑制原发肿瘤和异位肿瘤的生长,并减少其转移。相关研究成果已发表在国际知名期刊《Advanced Science》(IF: 16.806)。△ 图1国际知名期刊《Advanced Science》(IF: 16.806)肿瘤免疫治疗中,利用针对抗细胞毒性T淋巴细胞相关蛋白4(CTLA-4)和程序化细胞死亡蛋白1(PD-1)的免疫检查点抑制剂(ICB)治疗癌症,已在多种类型的肿瘤治疗中表现出显著疗效。但是,它们在实体瘤中效果有限。肿瘤微环境(TME)是肿瘤周围的细胞环境。研究发现,在TME中存在抑制免疫细胞的物质,其会导致肿瘤细胞逃脱免疫细胞的杀伤,影响ICB的治疗癌症效果。随着越来越多的难治性实体瘤患者出现,有必要对TME内的分子抑制机制有更深入的了解,开发更加有效的治疗手段。腺苷是TME中产生肿瘤免疫抑制的重要物质之一。由ATP分解,在TME中的含量是正常组织中的17倍,通过与免疫细胞和癌细胞上的腺苷2A受体(A2AR)结合,抑制免疫细胞的功能和免疫活性,使得肿瘤细胞逃脱免疫细胞的杀伤。已发现阻断腺苷-A2AR通路可增加TME中的NK细胞成熟,改善DC交叉呈递功能,并减少Tregs和MDSCs的肿瘤聚集。ICD是一种细胞死亡模式,通过促进抗原呈递细胞(APC)激活和触发抗原特异性CD8+T细胞反应,来增强抗肿瘤免疫反应。目前已经开发了多种组合策略,如PTT诱导的ICD、光动力疗法(PDT)诱导的ICD和化疗诱导的ICD。之前的研究表明,ICD效应不足以产生强大的抗肿瘤免疫。这意味着负反馈机制存在,就像在抗肿瘤免疫治疗中一样。考虑到ATP的显著升高是ICD的一个基本特征,可以假设腺苷-A2AR通路在ICD中起着关键的免疫抑制调节作用。基于上述背景,研究人员开展的实验发现PTT治疗导致肿瘤组织中腺苷的显著上调,这表明腺苷-A2AR途径起着平衡作用。在此基础上,研究人员开发了一种负载A2AR抑制剂SCH58261的聚多巴胺(PDA)纳米颗粒(NPs)载体,以实现肿瘤特异性递送和PTT增强的ICD免疫治疗。同时,为了增加A2AR拮抗剂的肿瘤积累,研究人员设计了一种酸响应的可拆卸PEG壳(PPDA)。当到达酸性肿瘤环境时,PEG壳被释放出来,呈现出负载抑制剂的PDA,其模仿贻贝的粘附性并将其粘连到肿瘤组织上,实现在肿瘤的滞留和聚集。代谢检查点A2AR的阻断降低了肿瘤浸润性免疫细胞中腺苷的代谢应激,并增强了ICD介导的有效抗肿瘤免疫反应(方案1)。该策略通过平衡腺苷的负反馈,为改善ICD免疫治疗提供了新的见解。△ 图2方案一:一种通过使用TME响应性PPDAIn(载有抑制剂SCH58261的PPDA)NPs阻断代谢检查点A2AR来增强ICD免疫治疗功效的策略。M1,M1型巨噬细胞。iDC,未成熟的树突状细胞。文章中,评估标记FITC的纳米材料在活体的分布代谢和肿瘤靶向情况,使用了博鹭腾多模式动物活体成像系统AniView100拍摄。△ 图3材料尾静脉注射后 24 小时后,主要器官和肿瘤的离体荧光图像(H)和荧光信号的定量分析(I)。论文链接https://doi.org/10.1002/advs.202104182广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了活体成像、分子影像、蛋白凝胶预制及印迹处理系统、发光检测四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 中科院PLOS发表RNA编辑新成果
    7月28日,来自中科院上海生命科学研究院植物生理生态研究所李轩研究组、上海巴斯德研究所郝沛研究组以及密歇根州立大学王红兵教授,在国际著名遗传学期刊《PLOS Genetics》发表一项合作研究,题为“The Landscape of A-to-I RNA Editome Is Shaped by Both Positive and Purifying Selection”。这项研究通过对多生物物种RNA编辑事件的系统发现和分析,首次揭示了RNA编辑表观遗传学位点的系统进化规律,以及其在动物神经功能和神经发育中发挥的主要作用。 自从20年前第一次被发现以来,RNA编辑已经成为多种生命形式的遗传编码变异的重要来源。RNA编辑的一个突出机制是,前体mRNA分子中腺苷的去氨基。脱氨基的事件,即A-to-I编辑,将特殊的腺苷(A)转换为肌苷(I)。在翻译中,肌苷被解码为鸟苷(G),从而导致密码子的变化,往往会引起蛋白质产物中的氨基酸替换。除了遗传再编码,A-to-I编辑已知也影响可变剪接,修改microRNA,和改变microRNA靶位点。A-to-I RNA编辑机械的主要组成部分,是作用于RNA(ADAR)家族酶的所谓的腺苷脱氨酶,ADAR酶作用于底物分子内的双链RNA(dsRNA)。关于底物靶向和编辑活性调节的细节,还是较少的;但是,有证据表明A-to-I编辑是共转录的,并且ADAR靶位点倾向于某些非随机的序列模式,并且很大程度上依赖于双链RNA的三级结构。 A-to-I RNA编辑生成的遗传变异,可扩展转录组的多样性和复杂性,它作为一个重要的机制可帮助支持关键的生物学功能。由于ADAR突变而缺乏A-to-I RNA编辑的动物模型,可导致小鼠胚胎或出生后致死,或在果蝇中显示神经缺陷。以前的研究在人类、小鼠、猴和果蝇中记录了许多A-to-I编辑靶基因。报道的编辑靶标情况,包括神经受体、离子转运蛋白和免疫反应受体。虽然多年来,科学家们都知道某些关键基因上A-to-I RNA编辑的例子,但是从进化的角度看,A-to-I编辑如何使转录组和蛋白质组多样化,以及到了何种程度,还是完全没有表征的。我们对于RNA编辑本身在进化中如何受到选择性力量的限制,还知之甚少。关于A-to-I RNA编辑提供的适应潜能,有各种不同的观点。 新一代测序技术和Model Organism ENCyclopedia Of DNA Elements (modENCODE)项目,成为模式生物的一种前所未有的资源,像果蝇和秀丽隐杆线虫,使得我们能够进行多基因组规模分析,以比较进化中的RNA编辑模式。 为了探讨RNA编辑的全景以及表征进化过程中施加在A-to-I编辑上的选择性限制,该研究小组基于modENCODE资源构建了一项研究,涉及这七种果蝇,它们有相应的参考基因组和转录组测序数据可用。该研究还补充了来自其他资源的数据,包括NCBI Sequence Read Archive (SRA)、NCBI Gene Expression Omnibus (GEO)、FlyBase和FlySNPdb数据库。 利用果蝇属作为一个模型系统——其代表了大约4500万年的进化时间,研究人员共确定了9281个A-to-I RNA编辑事件。通过与前人的研究成果,以及来自果蝇组织/发育样本或ADAR突变体的数据进行比较,并进行大规模阵列为基础的验证性实验,研究人员验证了这些事件。 通过系统发育分析,研究人员基于编辑位点的保守性,将A-to-I RNA编辑事件归类为三种不同类型。第一类位点发生在单基因家族基因上 第二类发生在多基因家族基因上,但位点不保守 第三类发生在多基因家族基因上,且位点保守。对这三类位点及其基因进行选择分析发现,第一和第二类位点均受到纯化选择(负选择)影响,而只有第三类位点受到正选择压力。重要的是,发现第三类位点高度富集于神经系统的元件和功能中。通过对这三类编辑位点进行不同组织、不同发育时期以及动物变态发育过程中的分布及变化分析,第一次发现了A-to-I RNA编辑在动物发育、交配(mating)等生理过程中动态变化的证据,进一步支持了三类不同编辑位点的重要功能。这些结果都指向神经系统功能,说明了RNA编辑表观遗传作用的适应性主要通过神经系统功能实现。神经系统功能是检验有益RNA编辑位点主要标准。以上发现,揭示了由RNA编辑表观遗传机制引入的编码可塑性,而产生一类新的二分变异。在二倍体有性生殖系统中,它是维持基因表达杂合性的一个重要机制,对克服等位杂合子分离有不可替代的优势。
  • 上海市净水技术学会《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》 团体标准项目立项
    各有关单位:根据《上海净水技术学会标准管理办法》,我学会对《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》项目开展了团体标准立项审查,拟同意该团体标准项目立项,并于2023年3月30日至4月7日进行公示。截至目前,公示已毕,未受理疑义反馈,故《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》正式立项,请项目编制组根据立项审查相关意见启动团体标准编制工作。联系人:阮辰旼手机:13585990831邮箱:rcm@jsjs.net.cn上海市净水技术学会2023年4月10日
  • 深圳先进院开发出新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。图1.G-Flamp1探针在体外和培养细胞内的表征图2.不同刺激下果蝇Kenyon细胞中cAMP信号的变化图3.运动过程中小鼠皮质神经元内cAMP信号的变化图4.巴甫洛夫条件反射任务中小鼠NAc脑区cAMP信号的变化该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。 研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 上海市净水技术学会立项《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》 团体标准项目
    各有关单位:根据《上海净水技术学会标准管理办法》,我学会对《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》项目开展了团体标准立项审查,拟同意该团体标准项目立项,现对该项目予以公示。公示期为2020年3月30日至4月7日。在公示期内,对公示项目有异议的单位或个人,可将意见反馈至我学会秘书处。提出异议的单位或个人需签署真实姓名、所在单位、联系方式和依据,凡匿名提议、超出期限提议的不予受理。联系人:阮辰旼手机:13585990831邮箱:rcm@jsjs.net.cn上海市净水技术学会2023年3月30日
  • 上海市净水技术学会发布团团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法(征求意见稿)》
    各有关单位和专家:团体标准《水中微生物含量的测定 三磷酸腺苷(ATP)生物发光法》已完成征求意见稿,现予征求意见。请将意见和建议于 2024年2月7日前反馈至学会秘书处。意见征询期:2024年1月31日~2月7日联系单位:上海市净水技术学会联系地址:上海市杨树浦路855号1楼 邮编:200082联系人: 阮辰旼 13585990831(同微信)邮箱:50706127@qq.com 附件:1、团体标准征求意见稿2、团体标准编制说明3、团体标准征求意见反馈表团体标准征求意见反馈表.docx征求意见稿-水中微生物三磷酸腺苷(ATP)的测定 生物发光法-红头文带附件完整20240131.pdf
  • 北大药学院案例分享 | MST技术助力新型RNA编辑系统开发
    Part 1研究背景RNA的A-to-I编辑是一种普遍发生于细胞中的转录后修饰。在RNA上,依赖腺苷脱氨酶(ADAR)介导的腺苷脱氨作用可以通过引导RNA和外源性ADAR酶实现对RNA特定位点的A-to-I编辑,从而通过纠正突变的RNA来实现疾病治疗。然而,外源性ADAR融合蛋白的异位表达会增加脱靶编辑的风险,故利用内源性ADAR蛋白的A-to-I的编辑策略更有发展前景。Part 2研究内容2023年北京大学药学院汤新景教授开发出一种新颖且便捷的光触发位点特异性RNA编辑系统,并将研究成果发表在Cell Chemical Biology上。为了开发内源性ADAR蛋白的A-to-I可控的编辑策略,作者设计了一种末端有胆固醇修饰的反义寡核苷酸(3’-笼式arASO):由一段2’-OMe修饰的可编程反义域、用于与靶mRNA杂交的硫代磷酸修饰的3’端和位于5’端的用于招募ADAR蛋白的工程化GluR2 R/G基序组成,这种设计能通过招募内源性的ADAR蛋白来实现位点特异性的RNA A-to-I编辑。并且,作者通过2D细胞和3D肿瘤球的实验验证了3’-笼式arASO在的光触发A-to-I编辑能力。图1:3’-笼式arASO编辑UAG终止密码子,启动EGFP表达Part 3MST技术应用为了研究3’-笼式arASO抑制位点特异性的机制,作者使用MST技术检测了3’-笼式arASO与蛋白和核酸的互作:ADAR1-p150是主要的RNA单碱基编辑器。MST技术确定了3’-笼式arASO与ADAR1-p150的结合亲和力与arASO与ADAR1-p150蛋白的亲和力接近,表明胆固醇修饰并不会对其在5’端的ADAR-招募结构域造成明显影响。图2:MST技术检测ADAR1-p150与3’-笼式arASO/arASO亲和力MST技术检测3’-笼式arASO与不配对的腺苷的单链靶RNA(ssRNA)的结合亲和力检测结果表明,3’-笼式arASO在没有光刺激的情况下与ssRNA(AC错配)的结合亲和力比其阳性对照的结合亲和力低17.4倍,但在给予光照后,其亲和力恢复到与阳性对照组相当的水平(左图)。这表明,在3’-笼式arASO的反义结合域3’端的胆固醇修饰阻断了其与ssRNA(AC错配)的结合。而胆固醇修饰对arASO与完全配对的ssRNA的结合亲和力没有影响(右图)。图3:MST技术检测结果说明胆固醇修饰阻断了3’-笼式arASO与靶RNA的结合从而抑制其位点特异性编辑。https://doi.org/10.1016/j.chembiol.2023.05.006IF: 8.6 Q1Part 4技术优势MST技术可应用于不同样品类型的亲和力检测,不论是蛋白和核酸,还是核酸和核酸。此外,亲和力检测时无需固定,即使核酸的极性较强,也不会出现黏附等问题。MST亲和力检测时间短,只需要10min即可完成,无需担心核酸降解。
  • 食品添加剂6-苄基腺嘌呤等检测国标通过评审
    近日,江门检验检疫局承担制定的“进出口食品添加剂6-苄基腺嘌呤的检测方法”和“进出口食品添加剂蔗糖聚丙烯醚的检测方法”两项国家标准顺利通过了国家认监委、国家标准委和中国检科院等部门的专家评审。  由于此前国内外均无相关标准,江门检验检疫局这两项国家标准的顺利通过评审为今后我国对进出口食品添加剂6-苄基腺嘌呤、蔗糖聚丙烯醚的检测提供了保证。这也是江门局首次承担国家标准的制定,填补了该局国家标准制修订工作的空白,为继续参与国家标准的制修订打下了良好的基础,标志着该局的科研能力迈上了一个新的台阶。
  • 地球外首次发现“生命”? 日本从小行星样本发现20种氨基酸
    据日本《朝日新闻》6月6日报道,“隼鸟2号”所带回砂土发现生命起源物质。朝日新闻官网报道说,研究人员从日本宇宙航空研究开发机构(JAXA)的“隼鸟2号”探测器带回地球的“龙宫”小行星砂土中发现了20多种氨基酸。该报在采访有关人士时获悉了这一消息。氨基酸是(构成)蛋白质的材料,这一发现或有助于论证生命起源物质来自太空的可能性。2020年12月,装有“龙宫”小行星砂土的“隼鸟2号”密封舱返回澳大利亚,内部大约有5.4克砂石。去年6月,JAXA研究团队宣布向世界各国研究机构分发砂土,正式启动分析。在初步分析阶段,研究人员已经发现其中含有碳和氮等构成有机物的物质,是否存在可作为蛋白质材料的氨基酸一直备受关注。构成人体蛋白质的氨基酸有20种。据有关人士介绍,其中(在砂土中)确认了存在不能在体内产生的异亮氨酸和缬氨酸等。除了作为胶原蛋白材料的甘氨酸之外,还存在作为提鲜成分而为人所知的谷氨酸。有观点认为,46亿年前刚诞生的地球上也曾存在大量前述氨基酸。然而,之后地球有一段时期被岩浆覆盖,一度失去氨基酸。有一种假设认为,地球冷却后飞来的陨石可能再次带来了氨基酸。这次研究结果可能会补充论证前述假设。此前研究人员也曾从在地面上发现的陨石中检测出氨基酸。但是,由于这些陨石与地球的土壤和空气已有接触,所以无法否定地球的氨基酸在陨石飞抵后混入其中的可能性。这次,“隼鸟2号”从在地球和火星轨道附近运行的“龙宫”小行星带回砂土,研究人员以不让砂土与外界空气接触的形式进行分析,可以说首次确认了太空中存在构成生命起源的物质。
  • 新型安全高效的单碱基编辑系统—TaC9-CBE
    近十年来,以 CRISPR 系统为代表的基因编辑技术迅猛发展,在包括农业、畜牧业和生物医药等各个领域的基础科研和应用中不断涌现出耀眼成果。2020年 CRISPR 技术因其强大的功能和影响力摘得诺贝尔化学奖。然而,随着研究的深入,其引起的 DNA 双链断裂和高脱靶效应等一系列副反应也逐渐走入人们的视野,CRISPR 技术的安全性开始备受关注。单碱基编辑技术以其高效和精确的基因编辑能力,成为目前最有希望治愈各种遗传疾病的明星工具。由 gRNA 与 Cas9-脱氨酶形成 RNP 复合物,gRNA 引导复合物结合在基因组目标位点,Cas9 负责解开 DNA 双链,并将靶向链切断,脱氨酶对非靶向单链 DNA(ssDNA)上的碱基进行脱氨,细胞修复过程中实现碱基转换。然而,单碱基编辑工具被发现具有明显的脱靶编辑效应,主要包括 Cas9 非依赖的 DNA 和 RNA 脱靶效应和 Cas9 依赖的 DNA 脱靶效应。通过对脱氨酶的修饰可大大降低蛋白对核酸链的非特异结合,从而最大限度地减少 Cas9 非依赖的脱靶效应。但由于 Cas9 蛋白本身存在的 Cas9 依赖性脱靶,人们依然对其临床应用的安全性表示担忧。尽管目前已有多种方法尝试解决这一问题,但都无法在保持目标效率的同时解决 Cas9 依赖性脱靶问题。2022年3月,中国科学院广州生物医药与健康研究院赖良学研究员与五邑大学邹庆剑副教授团队合作,首次将腺苷脱氨酶与转录激活因子样效应子(TALE)融合,开发了一种新型腺嘌呤碱基编辑系统——TaC9-ABE。该新型碱基编辑系统可以完全消除Cas9依赖性脱靶,而不影响任何靶向编辑效率。相关成果以:Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to the target site 为题在线发表在 Cell Discovery 期刊上。TaC9-ABE单碱基编辑技术原理近日,该团队再次证实将 TALE 技术与 Cas9 技术结合起来,同样可以实现更加安全高效的胞嘧啶碱基编辑系统——TaC9-CBE。相关成果以:Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE 为题于在线发表在 Molecular Therapy 期刊上。TaC9-CBE单碱基编辑技术原理在 TaC9-ABE 和 TaC9-CBE 碱基编辑系统中,研究人员将脱氨酶与 nCas9 分离,脱氨酶与 TALE 连接,nCas9 与 gRNA 结合,由 TALE 和 gRNA 分别将两个效应器引导到 DNA 靶位点,同时发挥作用,实现靶位点的 A to G 或 C to T 的突变。如果 nCas9 被 gRNA 带到错误的位点,由于没有脱氨酶的存在,碱基转换就不能发生;同理,如果脱氨酶被 TALE 引导至错误的位点,由于没有 nCas9 的存在,不能形成单链 DNA,脱氨酶发挥不了作用,碱基转换也不能发生,这样就彻底地排除了发生 Cas9 依赖性脱靶的可能性。研究结果证实,TaC9-碱基编辑系统在保证高效但碱基编辑的同时,对 gRNA 依赖的脱靶位点以及 TALE 依赖的脱靶位点进行深度测序均未检测到脱靶现象。图3.各种CBE编辑器的Cas9依赖脱靶测试这项研究为基因编辑动植物的培育和人类遗传性疾病的基因治疗提供了一个安全的单碱基编辑工具。TaC9-ABE 论文中,中国科学院广州生物医药与健康研究院博士研究生刘洋和蓝婷、五邑大学周小青博士和广东工业大学博士研究生周继曾为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员和五邑大学邹庆剑副教授为论文的共同通讯作者。TaC9-CBE 论文中,广东工业大学博士生周继曾、中国科学院广州生物医药与健康研究院博士生刘洋、硕士生魏愈惠和五邑大学硕士生郑淑文为论文共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、五邑大学张焜教授和邹庆剑副教授为论文的共同通讯作者。论文链接:https://www.nature.com/articles/s41421-022-00384-4https://doi.org/10.1016/j.ymthe.2022.04.010
  • 生命来自太空 美首次在彗星尘埃中检测发现氨基酸
    《新科学家》杂志网站8月17日报道称,美研究人员第一次在彗星尘埃样品中发现了甘氨酸——一种结构最为简单的氨基酸。该发现证实,早期地球生命的部分构成元素来自于太空。  氨基酸对生命来说至关重要,它是构成蛋白质分子的基本单位。过去曾在陨石上发现过氨基酸,表明这种化合物有可能存在于星际空间。而在冰冷的彗星上发现氨基酸,这还是第一次。  研究人员是在对美宇航局“星尘号”飞船带回的彗星尘埃样品进行分析后发现氨基酸的。“星尘号”飞船于1999年2月发射,主要目的是探测维尔特二号彗星和它的彗发成分组成。它于2004年1月飞越维尔特二号彗星,飞越彗星时从彗星彗发收集到彗星尘埃样品,并拍摄了详细的冰质彗核图片。2006年1月,“星尘号”返回舱成功地在地球着陆。  在2008年,研究人员就在该样品中发现了多种氨基酸,以及含氮的有机化合物——胺类物质,但是当时没有弄清楚,这些物质究竟是源于彗星还是来自于地球污染。为此,研究人员花了近两年时间寻找答案。由于样品太少,研究工作非常艰苦。实际上,除了甘氨酸这种最简单的氨基酸外,这些样品材料均不足以用来追踪任何化合物。在只有大约十亿分之一克的甘氨酸中,研究人员检测出相对丰富的碳同位素。与地球上的甘氨酸相比,样品中甘氨酸含有更多的碳13,从而证明它们源于太空。  科学家们对地球生命的起始之谜一直存有浓厚兴趣。以往的研究认为,在地球早期历史中,曾有小行星和彗星撞击地球,而新的发现表明这些星体携带着氨基酸。这也使人们不得不产生联想——或许生命源于太空。正如美国宇航局戈达德航天中心的科学家杰米艾尔希拉所言,“我们不知道生命是如何开始的,但这个发现有助于我们了解地球原始时期的面目”。  艾尔希拉表示,目前所研究的样品仅来自彗星彗发,而彗核则可能会含有更复杂的氨基酸混合物和更高水平的氨基酸形式。  报道称,要想得到彗核样品,只能寄望于欧空局的“罗塞塔”彗星探测器。该探测器于2004年3月2日升空,预计在2014年抵达“丘留莫夫-格拉西缅科”彗星,在其彗核上着陆并探测,获取有关太阳系形成和生命起源的信息。如果一切顺利,“罗塞塔”将成为人类首个近距离绕彗星运行、进而投放登陆器在彗星表面着陆的探测器。
  • 氨基糖苷类抗生素检测新方案 样本富集净化新选择——AGs免疫亲和柱!
    氨基糖苷类化合物(AGs)是由两个或两个以上氨基糖通过糖苷键与氨基环醇骨架连接而成的碱性低聚糖抗生素。这类抗生素包括:链霉素、新霉素、卡那霉素、庆大霉素、壮观霉素等。他们共同特点是水溶性好、性质稳定、抗菌谱较广,又因其价格低廉,在兽药领域应用广泛。AGs存在一定程度的耳毒性、肾毒性和神经肌肉阻滞作用。目前世界多个国家和组织建立了AGs在动物源食品中的相关限量标准,我国GB 31650-2019规定AGs在动物源食品中的限量如下所示:AGs检测方法及制约因素AGs分子中因富含氨基和羟基而呈强极性,其分子中缺少发色团和荧光团,反相色谱保留较差,因此动物源食品中 AGs的检测比其他抗生素更为复杂。目前 AGs的检测方法主要有免疫分析法、高效液相色谱-质谱/质谱法(HPLC-MS/MS)、液相色谱-串联质谱法(LC-MS-MS),其中免疫分析法方便快速更适合定性筛查检测,HPLC-MS/MS、LC-MS-MS定量准确、灵敏度高更适合确证检测。在乳及乳制品中,GB/T 22969-2008《奶粉和牛奶中链霉素、双氢链霉素和卡那霉素残留量》,虽然只规定了链霉素、双氢链霉素和卡那霉素3种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法,但GB 31650-2019《食品中兽药最大残留限量》中还规定了其他氨基糖苷类药物包含大观霉素、安普霉素、庆大霉素、新霉素等,这些项目也是实验室对乳及乳制品安全检测过程的必检项目。目前HPLC-MS/MS、LC-MS-MS方法可对多种AGs进行同时检测,但是一次性不能对多种氨基糖苷类药物富集净化是提高检测效率的主要制约因素之一!在动物组织中,GB/T 21323-2007《动物组织中氨基糖苷类药物残留量的测定 高效液相色谱-质谱/质谱法》规定了动物组织中大观霉素、潮霉素B、双氢链霉素、链霉素、丁胺卡那霉素、卡那霉素、安普霉素、妥布霉素、庆大霉素和新霉素10种氨基糖苷类药物残留量的高效液相色谱-串联质谱测定的确证方法。但此检测AGs的方法前处理过程使用C18富集净化,检测限仅为20-100μg/kg。美正氨基糖苷类免疫亲和柱美正通过多年的积累,开发出一种使用氨基糖苷类免疫亲和柱前处理的方法,解决了动物源性食品中氨基糖苷类抗生素检测过程中前处理富集净化的难点。使用氨基糖苷类免疫亲和柱的前处理方法,可以将动物源食品中11种氨基糖苷类抗生素进行一次性特异性富集净化,能够更好地消除基质干扰,既提高了前处理富集净化效率又提高了分析的准确度和灵敏度。药物种类壮观霉素潮霉素B双氢链霉素链霉素丁胺卡那霉素卡那霉素安普霉素妥布霉素庆大霉素新霉素巴龙霉素产品特点特异性强:免疫学原理,对样本中AGs选择性高、特异性结合能力强;操作简单:可穿透式柱塞,使用便捷;性能优异:AGs加标回收率80-120%,准确度高样本类型动物源性食品,包括乳制品、动物组织及水产品等。药物残留类免疫亲和柱免费试用!美正在药物残留检测领域有更多的前处理富集净化方法,值美正十五周年之际,意向用户可对我司药物残留类免疫亲和柱进行免费试用。
  • 《氨基酸分析仪检定规程》宣贯会在西安成功举办
    2011年7月11日至14日,《氨基酸分析仪检定规程》宣贯会在西安飞鹿酒店成功举办,本次会议由全国物理化学计量技术委员会主办,天美(中国)科学仪器有限公司和日立高新技术公司协办。来自全国主要省市计量系统和部分日立氨基酸分析仪用户共计50多人参加了本次会议。 在会议上,全国物理化学计量技术委员会各位专家主要做了《氨基酸分析仪检定规程》内容讲解、《氨基酸分析仪检定规程》编制说明和《氨基酸分析仪检定规程》的不确定度评定等报告,使得与会者对检定规程的编制背景、目的、重要性及主要检定参数设置的意义有了更进一步的认识。氨基酸分析仪检定规程起草人、全国物理化学计量技术委员会专家--马康做报告氨基酸分析仪检定规程起草人、全国物理化学计量技术委员会专家&mdash 赵敏做报告 由全国物理化学计量技术委员会特邀的北京市营养源研究所唐华澄和叶颖慧两位专家做了《氨基酸分析仪和氨基酸分析系统的测试评价---L-8900和835型氨基酸分析仪的应用和体会》的报告,报告按照检定规程的要求,详尽的介绍了几个主要参数的比较,加深了与会者对氨基酸分析和检定规程的认识。北京市营养源研究所叶颖慧专家做报告 作为《氨基酸分析仪检定规程》的参加起草单位和本次会议的协办单位,天美(中国)科学仪器有限公司在会议上主要做了《氨基酸分析仪原理和操作》、《氨基酸分析仪的应用技术》、《针对&ldquo 皮革奶&rdquo 的解决方案》的报告,日立高新技术公司做了《日立氨基酸分析系统---柱前衍生法和柱后衍生的介绍和比较》的报告,提供了日立LCU柱前衍生的应用研究以及L-8900的柱后衍生解决方案,开阔了与会者对氨基酸分析仪的认识。氨基酸分析仪检定规程参加起草单位,天美(中国)科学仪器有限公司副总裁夏奕生做报告 在会议现场,天美公司利用放置在会场的L-8900型氨基酸分析仪为参会的各位专家演示了部分检定项目,使得各位专家对检定项目和检定过程有了更进一步的认识和理解。
  • 微流控电泳技术检测药物中对乙酰氨基酚(扑热息痛)和维生素C
    醋氨酚【对乙酰氨基酚,退热净(一种替代阿司匹林的解热镇痛药);扑热息痛(APAP)】广泛应用于止痛剂和解热镇痛药,用于退热、止头痛和其它轻微的疼痛等。由于药物中APAP的过量会引起暴发性肝病或肾坏死和其他毒副作用,所以药物中APAP的定量检测非常重要。 APAP水解主要生成对氨基苯酚(pAP),在医药制剂中可以作为降解产物或作为合成中间体。 据报道,抗坏血酸(维生素C)对APAP引起的肝中毒具有保护作用。 Micrux微流控系统很好的分离和检测了醋氨酚(APAP)、抗坏血酸(AA)、对氨基苯酚(pAP)提供了简单、经济、精确的分析方法,非常适合于医药厂家检测药物的稳定性、药物分析和质量控制。相关资料可以在雷迪美特中国有限公司资料中心下载。 或电:400-628-2898 Email:analysis@126.com!
  • 沃特世超高性能色谱柱应对氨基糖苷类抗生素药物分析监测难点
    氨基糖苷类抗生素分析难点:氨基糖苷类抗生素是一类含有氨基糖苷键的抗生素,抗菌谱广,对需氧革兰阴性杆菌具有强大的抗菌活性,临床应用广泛。该类抗生素由氨基糖与碱性1,3-二氨基肌醇以苷键结合而成,1,3-二氨基肌醇为碱性多元环己醇结构,因此氨基糖苷类抗生素均具有碱性强,极性大的特性。目前大多数氨基糖苷类化合物的液相色谱检测时均使用了高比例的三氟乙酸作为流动相,当采用这些溶剂作为流动相时色谱工作者经常发现色谱柱柱效下降非常厉害,色谱峰重现性差,柱寿命短等方面问题。 2010年版《中国药典》方法摘录:硫酸依替米星:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min硫酸庆大霉素C组分: 0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min硫酸卡那霉素:0.2mol/L 三氟乙酸-甲醇 92:8 ;流速0.6mL/min硫酸西索米星:0.3mol/L三氟乙酸-甲醇-乙腈 96:3:1;流速0.5mL/min硫酸奈替米星有关物质:0.2mol/L 三氟乙酸-甲醇 84:16 ;流速0.5mL/min 沃特世公司解决方案:沃特世(Waters)公司第二代杂化颗粒XBridgeTM系列色谱柱产品,通过在硅胶颗粒合成过程中引入有机的亚乙基桥结构,使其具有行业领先的化学稳定性,pH范围1~12,同时提高了色谱柱产品的耐受性及机械强度,使用该系列色谱柱产品的可以帮您解决氨基糖苷类抗生素的色谱分析问题 利用沃特世XBridge C18 色谱柱分析硫酸庆大霉素C组分所得色谱图及检测结果:
  • Mol Cell|北大伊成器课题组开发新型RNA编辑技术RESTART
    2022年12月14日,北京大学伊成器课题组在Molecular Cell杂志在线发表了题为CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons的研究论文,首次报道了名为RESTART(RNA Editing to Specific Transcripts for Pseudouridine-mediAted PTC-ReadThrough)的新型RNA单碱基编辑技术。该技术利用改造的guide snoRNA,招募细胞内源的假尿苷合成酶复合物,在RNA特定位点处实现高效、准确地尿苷(U)到假尿苷(Ψ)的编辑。在mRNA的无义突变位点精准引入假尿苷修饰,将提前终止密码子转换成ΨAA、ΨAG或ΨGA,以实现提前终止密码子的通读及功能蛋白的全长表达。无义突变(Nonsense mutation)是基因序列中编码氨基酸的密码子突变成终止密码子(TAA,TAG,TGA)的单碱基突变。无义突变产生提前终止密码子(Premature termination codon,PTC),导致翻译提前终止,产生较小、不具功能的蛋白产物。根据人类基因突变数据库(Human Gene Mutation Database, www.hgmd.org)的统计,无义突变占据了超过20%的疾病相关单碱基突变。目前有多种潜在的技术可用于治疗无义突变疾病,但仍存在局限性。例如:(1)CRISPR/Cas9依赖的DNA碱基编辑技术可实现精准的碱基修复,但是仍存在安全性问题。细菌来源的Cas蛋白可能会引发人体免疫反应;并且一旦出现基因组水平上的脱靶,将会是永久性的。此外编辑元件尺寸较大,使药物的体内递送受到限制。(2)RNA碱基编辑技术是在RNA水平上进行的,不会对基因组序列进行永久改变,因此安全性较高。但是,RNA编辑工具的脱靶效应仍存在安全隐患。因此,领域内亟需拓展新型RNA编辑工具,开发更加特异和安全的RNA编辑器。图一、RESTART技术原理研究表明,RESTART技术具有广泛的适用性。在多种不同组织来源的细胞系以及人的原代细胞——例如支气管上皮细胞和皮肤成纤维细胞中,RESTART都可以介导高效和精准的编辑。在对疾病无义突变修复和蛋白功能恢复的诸多应用尝试中,RESTART的高效性均得到了充分验证,反映了该技术在疾病治疗中的巨大潜力。例如,RESTART成功恢复了来源于Hurler综合征小鼠的α-L-艾杜糖醛酸酶缺陷细胞中IDUA蛋白的功能。该技术为无义突变疾病的治疗和RNA假尿苷修饰的基础研究都提供了一种全新的工具。传统的RNA编辑技术主要是通过脱氨反应(如A-to-I或者C-to-U)实现碱基编辑,其产生的脱靶会在RNA上引入突变,从而存在安全隐患。与这些技术不同,假尿苷修饰不会改变碱基互补配对,不会影响密码子的编码信息;RESTART产生的少量脱靶也不会影响RNA的稳定性和蛋白的翻译。此外,RESTART系统是由人源的snoRNA和修饰酶衍生而来的,理论上可以避免免疫原性。因此RESTART是一个高效且安全的潜在治疗技术。综上,RESTART技术作为一种可编程的不依赖CRISPR的RNA假尿苷编辑技术,拓展了RNA编辑的策略,可通过高效编辑mRNA上的无义突变位点介导翻译通读和蛋白功能的恢复,并且具有较好的安全性,展现了良好的疾病应用前景。在递送方面,RESTART适用于装载至腺相关病毒(AAV)等载体中进行递送;并且guide snoRNA可以通过体外转录和体外合成等多种方式制备,未来也可以与小RNA递送体系,例如GalNAc3进行偶联。除此之外,RESTART技术也将推动假尿苷修饰领域的研究,为该领域基础研究和无义突变疾病治疗领域都提供有利的工具。北京大学生命科学学院伊成器教授为该论文的通讯作者,课题组博士后宋靖慧(已出站)、博士生董利婷、孙含笑、罗楠、博士后黄强为共同第一作者。该工作得到农业部项目、科技部重点研发计划、国家自然科学基金等项目资助以及北大-清华生命联合中心、蛋白质与植物基因研究国家重点实验室等的支持。北京大学高性能计算平台,生命科学学院仪器中心及凤凰工程等多个平台对本项目提供了重要的技术支撑。原文链接:https://www.cell.com/molecular-cell/fulltext/S1097-2765(22)01100-5
  • 数字化改革“成绩”⑩丨安吉县农村人居环境智能巡查应用
    为深入践行“绿水青山就是金山银山”理念,进一步提高乡村治理成效,持续完善安吉县农村人居环境的长效管理,继续保持整洁、干净、有序的农村环境,安吉县农业农村局运用数字化手段,委托浙江森特信息(托普云农全资子公司)开发了安吉县农村人居环境智能巡查应用,让人居环境长效管理有了新抓手,统筹推进县域人居环境的整治和提升。 用智慧遥感手段,将地理信息数据采集和处理能力,融合人工智能、新型测绘、物联网等技术手段,形成多时相、多尺度、多专题的动态分析展示平台,打造“天上看、网上查、地上管”的闭环监管链条。 一、需求分析 巡查手段传统,效率低 巡查问题点难找、整改信息不同步是乡村人居环境整改的痛点。美丽乡村长效管理督查一直以来都有各乡镇(街道)反映,部分督查通报反馈的问题不对等。网格员找不到需要整改点,整改后信息无法做到及时同步。 数据支撑少,考核评价难 目前参与督查的人员一是时间、精力难以保证,二是考核打分时往往会有感情分值,对乡镇(街道)、村(社区)考核的标准、评价掌握难以统一。所以目前各乡镇(街道)、村(社区)的实际长效管理情况、垃圾分类、公共设施等环境情况很难客观、公正地得以反映。 二、改革创新 依托“安吉县人居环境智能监管系统”,健全了长效管理、垃圾产生量上报、问题点位整改反馈等方面机制。 建立闭环的巡查整改反馈流程 建立巡查员、村、乡镇三级的巡查整改机制。当巡查员发现问题点后,通过“安吉人居环境智慧巡查应用”上报问题点,同时信息会流转到所在行政村,网格员根据应用中的位置信息导航前往问题点,完成现场整改和拍照加文字方式的信息反馈,解决了以往巡查问题点难找、整改信息不同步的问题。 建立长效管理数字督查,提高考核结果公正性 通过建立人居环境智能巡查应用,将安吉县187个行政村(农村社区)区域划分进行明确划分,系统自动对各区域工作进度和整改完成率等进行汇总统计并自动生成报表,提供查询、定位、量算、标会、对比等辅助工具,大大减少人工工作量和提高工作效率。后期还可以通过遥感督查和人工督查手段相结合的方式,辅助相关职能部门对各乡镇(街道)进行考核赋分。 三、应用成效 利用数字技术安吉打造出美丽乡村“智慧监管”新模式。目前安吉人居环境智慧巡查应用注册用户近500人,实现使用对象全覆盖,运用无人机巡查、点位打卡巡查等方式,将农村人居环境地理数据的空间分布和定位,实现了数据有迹可循,让考核过程更加透明,解决村级治理中环境污染、区域空心化、垃圾处理等难点问题,不仅有效减少工作人员工作量,还有助于实现乡村治理的智慧化、公开化,实现90%的垃圾不出村。 安且吉兮,诗意栖居。接下来,浙江森特信息(托普云农全资子公司)将持续助力安吉县农业农村局以提升农村人居环境为基础、产业发展为核心、数字赋能为引擎、改革发展为动力、共同富裕为目标,在生态宜居、产业兴旺、数字赋能、乡村治理、乡风文明、共同富裕上做标杆!
  • 像安吉丽娜· 朱莉的乳腺癌基因检测在苏州将很快实现
    p  两年前,好莱坞女星安吉丽娜· 朱莉根据a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "癌症基因检测/span/a的结果,做了全乳腺切除和乳房再造的手术,一时之间关注无数。记者从苏大附二院获悉,年底前,相同的乳腺癌易感基因检测也将率先在该院开展。/pp  据媒体报道,朱莉早前通过基因检测技术,发现母亲把突变的BRCA1基因遗传给了她,这使得她罹患乳腺癌和卵巢癌的风险都大大提升,为了降低风险,她做了相关手术。BRCA1基因究竟是啥?江苏省抗癌协会乳腺癌专业委员会常务委员、苏州市医学会外科学分会甲状腺乳腺学组组长、苏大附二院普外科主任医师蒋国勤告诉记者,这是乳腺癌易感基因1,除它以外,BRCA2即乳腺癌易感基因2也与乳腺癌发病有着密切关系。/pp  “这两个基因都是抑癌基因,可产生抑制肿瘤细胞的蛋白。”蒋国勤解释说,正常人体每天都有大量的细胞更新,这个过程中会产生少量的癌细胞,但这些癌细胞很快就会被抑癌基因抑制,或是被免疫系统识别而杀死,不会形成肿瘤。BRCA1/2蛋白就是属于这个防线的一部分,如果它们突变,抑癌功能就可能丢失,乳腺癌等肿瘤发病率就会升高。/pp  因此,如果BRCA1/2检测结果是阳性,市民就可以通过手术、药物预防等一些手段,帮助降低患乳腺癌风险。而乳腺癌易感基因检测十分简单,通过唾液检测,就能得到结果。/pp  如今,很多人都已经了解,家族遗传是患乳腺癌的高危因素之一,那么是否乳腺癌患者家属都应该做基因检查呢?蒋国勤表示,一般来说,一级亲属(姐妹或母女)中有两位发生单侧乳腺癌或卵巢癌,其中一位在50岁以下,或有一位患上双侧乳腺癌,就建议做BRCA1/2的基因检测,以了解体内有无基因突变。/pp  如果检查结果为阳性,可以对乳房进行预防性切除。不过蒋国勤指出,即使切除乳房或乳腺,也不能保证绝对不会再患癌,只是降低了患癌风险。/pp  据苏州市疾控中心统计,去年我市乳腺癌新发病例1421例,发病率为42.51/10万,乳腺癌成为我市发病率最高的女性肿瘤。乳腺癌易感基因检测的开展将在一定程度上有助于降低我市乳腺癌发病率。/p
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 中石化资本公司领投西安吉利新材
    近日,中石化资本公司作为领投方完成对西安吉利电子新材料股份有限公司的新一轮投资。西安吉利新材是一家专业从事电子级特种气体、湿电子化学品、水处理药剂的研发、生产、销售和运输的陕西省专精特新企业,也是中国领先的湿电子化学品综合解决方案提供商。该公司拥有4家研发机构、7个产能基地,能够满足光伏行业对电子化学品全品类、一站式的采购需求,致力于成为电子行业战略新材料领导者。资本公司对西安吉利新材的新一轮投资,将有效促进双方发挥各自优势,在湿电子化学品领域开拓市场、发展客户、共同研发等方面进行战略合作,助力集团公司增强在湿电子化学品领域的竞争力及话语权。
  • 两会声音——基因编辑立法箭在弦上
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "基因编辑婴儿事件让两会上基因编辑立法的呼声更高。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "“现阶段基因编辑在什么上能做,在什么上不能做,应该是法律要规范和解决的关键问题。”全国人大代表、山西医科大学第二医院血液科主任杨林花说,如果因为某个不良事件,将所有关于基因编辑的工作都叫停,那是不可取的。/spanbr//pp style="text-align: justify "  基因编辑仅仅是一种工具,不能因为它砍坏了一棵树就放弃它,而应善加利用得到整片森林。杨林花忧心,如果“一刀切”造成整个领域研究的停滞,未来我国新型医疗技术和产品的研发或许又会落后于其他国家很多年。/pp style="text-align: center "strong基因编辑法规制度建设正稳步推进/strong/pp style="text-align: justify "  “应用上不太成熟的新兴技术一定要严格标准、依法管控,规范科研和临床行为。”全国人大代表、中国工程院院士、山东省肿瘤医院院长于金明在接受科技日报记者采访时也表示,基因编辑研究与临床应用相关立法很有必要。/pp style="text-align: justify "  此前,相关法规制度的建设正稳步推进。2月26日,国家卫健委发布《生物医学新技术临床应用管理条例(征求意见稿)》向全社会公开征求意见。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/121c6ccf-adbc-4e2d-acaa-6676ea08bc37.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: justify "  杨林花介绍,基因编辑被业界称为“神剪”,用它在体细胞中将突变基因剪掉,替换为正常基因。目前比较明确的单基因遗传病完全有可能就会被治好,CAR-T在国外也已经被批准临床了。/pp style="text-align: justify "  杨林花认为,对包括基因编辑技术等立法应体现对生殖细胞的基因编辑的管控,而对体细胞基因编辑、免疫细胞等的基因编辑(CAR-T治疗)应鼓励其规范应用。/pp style="text-align: justify "  在国家卫健委的征求意见稿中,将生物技术进行了分级,基因编辑被列为高危生物技术,将采用相应的管理。但并未对该技术的应用范围进行更细化的分类。/pp style="text-align: justify "  善加利用,意味着更细化、更多角度的法条、规则。“分级管理的思路是正确的。”于金明说。除了技术上的分级,还可以对试验申请单位实施分级:例如一个研究单位临床数据可信度一直非常高、有威信度高的专家参与,评级高一点 而如果经验不足、水平有限,需要降低评级,通过严格审查督促基因编辑临床试验的规范。/pp style="text-align: center "strong立法前要充分吸纳专业意见/strong/pp style="text-align: justify "  如何做到在制定法律时,制定更细化、更有适应性的条款?/pp style="text-align: justify "  “我对从事立法工作的专家说,一定要邀请这个行业资深的专家来参与法律的制定。”杨林花说,法律是“准绳”,必须要根据实际情况“划线”,需要充分地调研。/pp style="text-align: justify "  立法委员会掌握专业的生物学知识是非常必要的。人们对基因认知的深度也会左右“准绳”的位置。例如,人们最初认为对细胞线粒体DNA的编辑,不会遗传,但后来的研究表明,线粒体DNA的编辑也会遗传,进入人类基因库。因此基因编辑立法也会包括对线粒体基因的编辑。/pp style="text-align: justify "  “这个技术本身没有这么简单,催生出的研究领域就更加复杂,让专业的人参加,从专业角度上进行把关,帮助法律逐步完善、更符合实际,既规范了研究应用,又发挥了基因编辑工具的优越性。”杨林花说。/pp style="text-align: justify "  此外,也应该在广泛争取医学科研人员专业意见的基础上再出台,他们如果有合理的建议应该吸纳。杨林花表示:“征求意见截止前,我一定会抽出时间好好看一下征求意见稿,并提出自己深思熟虑的意见。”/pp style="text-align: center "strong伦理制度是立法“着力点”/strong/pp style="text-align: center "strong全国统管可能有难度/strong/pp style="text-align: justify "  没有把好“伦理关”是基因编辑婴儿事件最受诟病的地方。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/91468831-2eee-4e1e-a7dc-17e731bbd5d1.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: justify "  “现在有些伦理委员会的成员设置有些没有做过临床试验或基本知识的人也在内。没有科研基础的人员进入伦理委员会,不了解审查的内容究竟是什么,把关就有问题。”杨林花说,虽然对伦理委员会的设置有成员组成规定,但各地掌握的政策并不严格。/pp style="text-align: justify "  按照现在的法规,通过伦理审查,就能进行医学探索的临床研究,那么谁来监督伦理审查是否合规、合法呢?/pp style="text-align: justify "  为此,在国家卫健委的征求意见稿中规定,由省级人民政府卫生主管部门完成低风险生物技术临床的学术审查和伦理审查,而高风险的将由省级初审后,交由国务院卫生主管部门60天内完成审查。/pp style="text-align: justify "  杨林花认为,如果全国的所有相关实验都要上报,可操作性就没有保障了。“全国目前约有100多家公司在做CAR-T,按每个公司相关项目计算,短时间完成审查工作也有一定困难。”杨林花说,CAR-T还仅仅是基因编辑应用中一个很细分的领域,全国会有多少的相关临床研究,全部由国家一级进行伦理审查,60天如何完成审核任务。/pp style="text-align: justify "  相关专家表示,政府部门应转变思路,坚持“放管服”,着力进行监督和检查工作。/pp style="text-align: right "strongspan style="color: rgb(127, 127, 127) "科技日报记者 张佳星/span/strong/p
  • 农业用基因编辑植物评审细则(试行)
    各有关单位:   为更好指导农业用基因编辑植物安全评审工作,扎实做好安全管理,我办制定了《农业用基因编辑植物评审细则(试行)》,现予印发。   农业用基因编辑植物评审细则(试行)   一、分子特征   (一)靶基因编辑情况。提供覆盖编辑位点的PCR扩增测序或全基因组测序等资料,对于采用全基因组测序的,还应提供在编辑位点的覆盖度分析资料。相关数据应能够说明基因编辑植物中靶基因编辑情况。   (二)载体序列残留情况。提供全基因组测序及其在转化载体上的覆盖度分析等资料。相关数据应能够说明基因编辑植物中载体序列残留情况。   (三)脱靶情况。提供预期脱靶位点的PCR扩增测序或全基因组测序等资料,应采用生物信息学等方法分析预期脱靶位点,对于采用全基因组测序的,还应提供在预期脱靶位点的覆盖度分析资料。相关数据应能够说明基因编辑植物的脱靶情况。   二、环境安全   (一)可能直接改变物种关系的基因编辑植物,如抗病虫、耐除草剂性状。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   3.对生态系统群落结构和有害生物地位演化的影响。   4.抗病虫基因编辑植物还应提供对可能影响的非靶标生物的室内生物测定。   5.耐除草剂基因编辑植物还应提供对至少3种其他常用(非目标)除草剂耐受性的测定。   (二)其他基因编辑植物,如抗逆(抗旱、耐盐碱、抗冻、抗高温等)、品质改良、生理性状改良(养分高效利用、生育期改变、高产等)。应提供以下资料:   1.目标性状和功能效率评价。   2.生存竞争能力,包括株高、覆盖率、繁育系数、落粒性以及种子数量、重量和发芽率等。   三、食用安全   (一)可能改变关键成分的基因编辑植物,如品质改良、高产等。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.最大可能摄入水平对人群膳食模式影响评估。   3.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质的表达量及其与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   4.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质的表达量;(2)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(3)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(4)新蛋白质毒理学试验。   5.若上述数据资料(1—4项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   (二)不改变关键成分的基因编辑植物,如抗病虫、耐除草剂、抗逆(抗旱、耐盐碱、抗冻、抗高温等)、生理性状改良(生育期改变、养分高效利用等)。应提供以下资料:   1.关键成分分析(包括营养素、功能成分、抗营养因子、内源毒素、内源过敏原等)。   2.基因编辑导致某种蛋白质表达量显著增加的,还应提供该蛋白质与已知毒蛋白质、抗营养因子和致敏原氨基酸序列相似性比较。   3.基因编辑导致产生新蛋白质的,还应提供:(1)新蛋白质与已知毒蛋白、抗营养因子和致敏原氨基酸序列相似性比较;(2)新蛋白质体外模拟胃液蛋白消化稳定性、热稳定性试验;(3)新蛋白质毒理学试验。   4.若上述数据资料(1—3项)表明目标性状可能增加食用安全风险,还需提供大鼠90天喂养试验。   四、评审程序   上述分子特征、环境安全和食用安全评价都可在中间试验阶段进行,若中间试验阶段获得的数据资料表明目标性状不增加环境安全风险,经评价合格后可直接申请安全证书。   若中间试验阶段获得的数据资料表明目标性状可能增加环境安全风险,需开展环境释放或生产性试验,经安全评价合格后方可申请安全证书。环境释放或生产性试验应在试验植物的主要适宜生态区进行。申请生产应用安全证书,应在每个主要适宜生态区至少设一个试验点。 农业用基因编辑植物评审细则(试行).pdf
  • 精准基因编辑时代到来!华人科学家重排原子精准编辑基因!
    p  当我们在谈论生命时,我们谈论的都是化学分子。DNA也好,蛋白质也罢,正是这些生物大分子发生的原子重排,才催生出无数生化反应,为地球带来生命。/pp style="text-align: center "img title="001.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/c0bbe2b5-3415-4594-bc51-72b794f474de.jpg"//pp style="text-align: center "strong  本研究的主要负责人David Liu教授(图片来源:Broad研究所)/strong/pp  今日,Broad研究所的华人学者David Liu教授公布了一项了不起的研究!他的团队开发了一种“碱基编辑器”,能在细胞内用简单的化学反应,使DNA的一种碱基进行原子重排,让它变成另一种碱基。与CRISPR-Cas9等流行的基因编辑手段不同,这种技术无需使DNA断裂,就能完成基因的精准编辑。这项研究发表在了顶尖学术期刊《自然》上。/pp style="text-align: center "img title="002.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/25395cd0-f659-4486-b95c-07cbee1c729a.jpg"//pp style="text-align: center " strong 将近一半的致病变异来源于C-G组合到A-T组合的改变(图片来源:《自然》)/strong/pp  要看懂这项研究,我们先来看看DNA本身。我们知道,DNA的双螺旋结构由4种碱基:腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤(G)组成。它们A和T配对,C和G配对,就像字母一样,编写了人类的遗传信息。然而由于化学结构的问题,C这个字母不大稳定,容易出现自发的脱氨突变,把原本的好好的C-G组合,变成A-T组合。据估计,每天人类的每个细胞里都会出现100-500次这样的突变。而人类已知的致病单碱基变异,高达一半属于这种突变。/pp style="text-align: center "img title="003.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/3079c9ad-aff8-4c2e-b7ab-54dc17de1cbe.jpg"//pp style="text-align: center "strong  合适的脱氨反应能将腺嘌呤转变为结构类似于鸟嘌呤的肌苷(图片来源:《自然》)/strong/pp  换句话说,如果我们能定点修复这些基因突变,把A-T变回C-G,就有望从根源上纠正人类的许多遗传疾病。这正是Liu教授团队的研究思路。在实验室中,他们观察到了一个很有意思的现象——腺嘌呤(A)在出现脱氨反应后,会变成一种叫做肌苷的分子,而它与鸟嘌呤(G)的结构非常接近,也能成功骗过细胞里的DNA聚合酶。简单的几轮DNA复制后,A-T组合就能变回C-G。/pp  但科学家们遇到一个棘手的问题——自然界中并没有能够在DNA中催化腺嘌呤进行脱氨反应的酶。/pp  如果没有现成的道路,那就开辟一条!在人体中,科学家们发现了一种叫做TadA的酶,它能催化转运RNA上的腺嘌呤(A),使它脱氨。尽管催化的对象不同,但Liu教授的团队认为它有足够的应用潜力。于是,利用演化的力量,科学家们对TadA进行了改造。他们将编码TadA的基因引入大肠杆菌内,并寄希望于这种酶能在大肠杆菌快速的繁衍中,突变出催化DNA腺嘌呤的能力。/pp style="text-align: center "img title="004.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/77d2e2cb-4181-4432-b16c-f701f36c851b.jpg"//pp style="text-align: center " strong 本研究中,碱基编辑器的作用机理(图片来源:《自然》)/strong/pp  同时,科学家们也想到,DNA上的腺嘌呤特别多,总不能把他们全都转化为鸟嘌呤吧。因此,特异性地对某个碱基进行催化,是这套系统迈入实际应用的关键。Liu教授想到了自己的实验室邻居张锋教授,这名华人学者以CRISPR基因编辑技术而闻名于世。如果我们借助CRISPR-Cas9系统的精准,但不让它切开双链DNA,或许就能定点对腺嘌呤进行原子重排,让它变成另一种碱基。为此,科学家们在筛选TadA酶的过程中,也同样引入了一套切不动DNA的特殊CRISPR-Cas9系统,用于精准定位。/pp  功夫不负有心人!这套系统虽然极为复杂,但在经历了漫长的7代筛选后,Liu教授团队终于开发出了一款全新的“碱基编辑器”,其核心正是能有效针对DNA的TadA酶。无论是在细菌里,还是在人类细胞中,这款编辑器都能顺利发挥作用。在人类细胞里,它的编辑效率超过了50%!/pp style="text-align: center "img title="005.JPEG" src="http://img1.17img.cn/17img/images/201710/insimg/e1500d56-ca99-4809-932c-2bd6c898751f.jpg"//pp style="text-align: center " strong 这套系统能有效用于人类细胞(图片来源:《自然》)/strong/pp  尽管这套系统利用了CRISPR-Cas9系统,但科学家们在这篇论文里指出,他们开发的技术与CRISPR-Cas9系统各有千秋。在矫正单碱基突变方面,它比CRISPR-Cas9系统更为有效,也更“干净”。它几乎没有引起任何随机插入和删除等突变,在全基因组里的脱靶效应也要好于CRISPR-Cas9技术。要知道,这可是人们对CRISPR-Cas9技术安全性的最大担忧之一。/pp  先前,研究人员们也同样开发了编辑其他碱基的方法。目前,Liu教授的团队已经有了把C变成T,把A变成G,把T变成C,以及把G变成A的工具。诚然,这些工具目前距离人类临床应用还有不小的距离。但要知道,它只涉及碱基的原子重排,无需让DNA双链断裂,从而降低了基因治疗过程中的风险。此外,许多遗传病都是单基因突变,用这些工具进行治疗也显得更为有的放矢。/pp  我们感谢Liu教授的团队为我们带来如此令人兴奋的基因编辑新工具。毫无疑问,基因编辑的时代已经到来,你准备好迎接冲击了吗?/pp  参考资料:[1] Programmable base editing of AT to GC in genomic DNA without DNA cleavage/pp /p
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 默克Supelco® 液相色谱柱全产线应用案例
    拥有300多年历史的默克公司,作为较早进入色谱产品研究和生产的厂家,从1969年推出色谱柱产品以来,一直不断推陈出新。不仅如此,随着对Sigma-Aldrich的收购,两大品牌强强联手,默克现拥有丰富的液相色谱柱产品,每个系列色谱柱各具特色。 Supelco液相色谱柱全产线 Supel™ Carbon系列是一款新型石墨化碳基质的色谱柱,填充单分散全多孔石墨化碳填料,采用石墨极性保留效应(PREG)机理,允许反相条件下,提高极性和带电化合物的保留,有助于几何异构体分离。色谱柱粒径2.7 µm,孔径200 Å,比表面积155 m2/g,可与任意溶剂兼容,pH耐受范围宽1-14,耐温上限250摄氏度,耐压上限700bar,适于U/HPLC分析。此前,我们分享了如何采用Supel™ Carbon液相色谱柱对维生素D2/D3代谢物和 苯甲酸异构体进行分析。那除此之外,Supel™ Carbon还能分析哪些化合物呢?本期就为大家揭晓其在核苷、氨基酸分析中的广泛应用。 应用案例1:非衍生法检测12种核苷类化合物核苷类化合物是核酸的组成部分、抗逆转录病毒药物的活性药物成分、某些疾病的生物标记物,结构相近,极性非常大,在常规反相色谱柱上很难保留,给检测带来很大挑战。在非衍生条件下,采用新型石墨化碳基质的Supel™ Carbon系列色谱柱可同时识别12种核苷化合物,为客户提供更好的分析方法。 序号化合物名保留时间 (min) 1ß-假尿苷 (25 µg/mL)5.34623-甲基胞苷甲基硫酸酯 (100 µg/mL)5.7913胞嘧啶核苷 (50 µg/mL)5.9824尿嘧啶核苷 (25 µg/mL)7.32852' -O-甲氧基胞苷 (20 µg/mL)8.28365-甲基胞苷 (100 µg/mL)9.30771-甲基腺苷 (25 µg/mL)9.53085-甲基尿苷 (50 µg/mL)11.6419肌苷 (25 µg/mL)12.130107-甲基鸟苷 (25 µg/mL)12.725112-硫代胞苷 (10 µg/mL)13.57112鸟苷 (25 µg/mL)14.203 应用案例2:非衍生法检测17种氨基酸:氨基酸在常规反相色谱柱上很难保留,分子中大部分取代基团无紫外吸收,因此对氨基酸分析存在巨大挑战。常用的分析方法是将氨基酸衍生后进行分离,但检测结果受衍生过程、样品基质影响较大。采用新型石墨化碳基质的Supel™ Carbon系列色谱柱,在非衍生条件下,可同时识别17种氨基酸,提高柱寿命,降低客户分析成本。 分析物:1甘氨酸 (GLY)、2丝氨酸 (SER)、3丙氨酸 (ALA)、4苏氨酸 (THR)、5天冬酰胺 (ASN)、6半胱氨酸 (CYS)、7天冬氨酸 (ASP)、8脯氨酸 (PRO)、9谷氨酰胺 (GLN)、10谷氨酸 (GLU)、11缬氨酸 (VAL)、12赖氨酸 (LYS)、13亮氨酸 (LEU)、14甲硫氨酸 (MET)、15异亮氨酸 (ILE)、16组氨酸 (HIS)、17精氨酸 (ARG) 产品列表产品规格货号Supel™ Carbon分析柱2.1mm*50mm59984-USupel™ Carbon分析柱2.1mm*100mm59986-USupel™ Carbon分析柱2.1mm*150mm59987-USupel™ Carbon分析柱3.0mm*50mm59991-USupel™ Carbon分析柱 3.0mm*100mm59993-USupel™ Carbon分析柱 3.0mm*150mm59994-USupel™ Carbon分析柱4.6mm*50mm59997-USupel™ Carbon分析柱4.6mm*100mm59998-USupel™ Carbon保护柱套装2.1mm*20mm59982-USupel™ Carbon保护柱套装3.0mm*20mm59989-USupel™ Carbon保护柱套装 4.0mm*20mm59996-USupel™ Carbon保护柱芯2.1mm*20mm59981-USupel™ Carbon保护柱芯3.0mm*20mm59988-USupel™ Carbon保护柱芯4.0mm*20mm59995-USupel™ Carbon保护柱套/59999-U了解更多Supel™ Carbon色谱柱
  • 武汉大学袁必锋团队发现了一种新的RNA修饰
    RNA 分子具有多种修饰,这些修饰在各种生物过程中发挥着重要的调节作用。已在 RNA 分子中鉴定出超过 150 种修饰。N6-甲基腺苷 (m6A) 和 1-甲基腺苷 (m1A) 是哺乳动物的各种 RNA 物种中普遍存在的修饰。除了腺苷的单甲基化(m6A 和 m1A)外,据报道,在腺苷的核碱基中发生的双重甲基化修饰,例如 N6,N6-二甲基腺苷 (m6,6A),也存在于哺乳动物的 RNA 中。除了 m6,6A 之外,腺苷的核碱基中是否存在其他形式的双重甲基化修饰仍然难以捉摸。2022年9月12日,武汉大学袁必锋团队在Nucleic Acids Research (IF=19)在线发表题为“Formation and removal of 1,N6-dimethyladenosine in mammalian transfer RNA ”的研究论文,该研究报告了在活生物体的 tRNA 中存在一种新的腺苷双甲基化修饰,即 1,N6-二甲基腺苷 (m1,6A)。该研究证实 m1,6A 位于 tRNA 的第 58 位,并且在哺乳动物细胞和组织中普遍存在。tRNA 中 m1,6A 的测量水平范围为 0.0049% 至 0.047%。此外,该研究证明了 TRMT6/61A 可以催化 tRNA 中 m1,6A 的形成,并且 m1,6A 可以被 ALKBH3 去甲基化。总的来说,m1,6A 的发现扩大了 RNA 修饰的多样性,并可能引发新的 tRNA 修饰介导的基因调控途径。  除了四种典型的核碱基之外,RNA 分子还带有多种修饰。近年来,为了揭示和表征 RNA 上存在的修饰,人们付出了巨大的努力,这些修饰具有调节 RNA 代谢的潜力。据报道,超过 150 种不同类型的修饰存在于各种 RNA 。RNA 分子中这些自然发生的修饰在影响 RNA 结构方面发挥着关键作用,也拓宽了我们对 RNA 分子功能的理解。以类似于 DNA 的方式,越来越多的证据表明 RNA 分子中的这些修饰参与调节 RNA 过程。甲基化是哺乳动物 RNA 分子中最普遍的修饰。据报道,N6-甲基腺苷 (m6A) 和 1-甲基腺苷 (m1A) 的两种异构腺苷甲基化修饰广泛存在于哺乳动物的不同 RNA 中。m6A 存在于真核信使 RNA (mRNA)、转移 RNA (tRNA)、核糖体 RNA (rRNA) 和非编码 RNA (ncRNA)。近年来对 m6A 的深入研究表明 m6A 与广泛的关键功能有关,从细胞发育和分化 、应激反应到癌症的发展 。在分子水平上,m6A 参与 RNA 稳定性、翻译调控和 microRNA 生物合成 。m1A 是一种修饰,主要在 rRNA 和 tRNA 的保守位点中观察到。m1A 也在哺乳动物 mRNA 中发现,在 5' 非翻译区 (5' UTR) 中富集。RNA 中的 m1A 可以影响核糖体的生物合成,对环境应激作出反应,并介导细菌的抗生素耐药性。  文章模式图(图源自Nucleic Acids Research )  除了腺苷(m6A和m1A)的核碱基上的单甲基化外,据报道,腺苷的核碱基中发生的双重甲基化修饰,例如N6,N6-二甲基腺苷(m6,6A)也存在于RNA中。m6,6A 是在人类 18S rRNA 中发现的保守修饰,在核糖体生物发生中起关键作用 。由于 m1A 和 m6A 都是哺乳动物 RNA 中普遍存在的修饰,研究人员推测除 m6,6A 之外的二甲基化腺苷,例如 1,N6-二甲基腺苷 (m1,6A),可能存在于 RNA 中。然而,与 m6,6A 不同的是,m1,6A 从未在包括古生菌、细菌和真核生物在内的三域系统的生物体中被发现。RNA 中 m1,6A 的存在仍然是一个悬而未决的问题。在这项研究中,报道了哺乳动物细胞和组织的 tRNA 中存在一种新的腺苷双甲基化修饰,即 m1,6A。值得注意的是,该研究证明了 m1,6A 位于 tRNA 的第 58 位。此外,该研究证明了 TRMT6/61A 负责 tRNA 中 m1,6A 的形成,而 ALKBH3 能够使 tRNA 中的 m1,6A 去甲基化。总的来说,m1,6A 的发现扩大了 RNA 修饰的多样性,并可能引发新的 tRNA 修饰介导的基因调控途径。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制