当前位置: 仪器信息网 > 行业主题 > >

外消旋羟基顺式视黄酸

仪器信息网外消旋羟基顺式视黄酸专题为您提供2024年最新外消旋羟基顺式视黄酸价格报价、厂家品牌的相关信息, 包括外消旋羟基顺式视黄酸参数、型号等,不管是国产,还是进口品牌的外消旋羟基顺式视黄酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合外消旋羟基顺式视黄酸相关的耗材配件、试剂标物,还有外消旋羟基顺式视黄酸相关的最新资讯、资料,以及外消旋羟基顺式视黄酸相关的解决方案。

外消旋羟基顺式视黄酸相关的资讯

  • 欧盟限制化妆品中对羟基苯甲酸酯类的使用
    4月10日,欧盟委员会发布官方公报(EU) No 358/2014,修订了欧洲化妆品法规No 1223/2009附件Ⅱ,限制物质清单新增尼泊金异丙酯、羟苯异丁酯、羟苯苄酯、4-羟基苯甲酸苯酯、戊烷基对羟苯甲酸酯5种对羟基苯甲酸酯类物质。  此外,修订案还规定二氯苯氧氯酚在漱口水中使用最大浓度为0.2%,在其他化妆品如牙膏、手皂、扑面粉中使用最大浓度为0.3%。羟基苯甲酸及其盐和酯类作为单酯中的酸用于制作配制品中的最大浓度为0.4%,作为混合酯中的酸最大允许浓度为0.8%。2014年10月30日前,不符合新规的化妆品仍可在市场上正常销售,2015年6月30日起,所有市场上流通的化妆品必须符合新规。  对此,检验检疫部门提醒相关企业:一是密切关注欧盟化妆品修订案,及时掌握法规变化动态 二是强化同进口商的沟通,做好过渡期期间的合同评审,避免因法规认识偏差导致的退运风险 三是加强产品质量管控,通过优化升级生产工艺、第三方检测,确保降低对羟基苯甲酸酯类限制物质含量,确保平稳过渡。
  • 欧盟科学委员或将对羟基苯甲酸酯修改意见
    2012年11月1日消息,欧盟消费者安全科学委员会(Scientific Committee for Consumer Safety ,SCCS)被要求就潜在的内分泌干扰物羟基苯甲酸丙酯(propylparaben)和羟苯丁酯(butylparaben)提供建议,这两种物质作为防腐剂被用于个人护理产品中。  2011年3月,SCCS认为一种产品中羟苯丁酯和对羟基苯甲酸丙酯的单独的浓度总量不超过0.19%,那么这两种物质都是安全的。与此同时,丹麦通知委员会,该国已禁止在三岁以下儿童用化妆品中使用对羟基苯甲酸丙酯和羟苯丁酯。2011年10月,SCCS在其之前的意见上添加了一项说明,结论为六个月以下婴幼儿尿布中的“风险不能排除”。  SCCA被要求考虑其对羟基苯甲酸的意见是否需要更新。
  • 基于三维电子衍射技术解析含有序硅羟基纯硅分子筛结构
    近日,大连化物所低碳催化与工程研究部(DNL12)郭鹏研究员、刘中民院士团队与南京工业大学王磊副教授团队合作,在分子筛结构解析研究中取得新进展,利用先进的三维电子衍射技术(cRED)直接解析出含有序硅羟基的纯硅分子筛结构。分子筛是石油化工和煤化工领域重要的催化剂及吸附剂,分子筛的性能与其晶体结构密切相关。分子筛通常为亚微米甚至纳米晶体,传统的X-射线单晶衍射法无法对其结构进行表征。在前期工作中,郭鹏和刘中民团队聚焦先进的电子晶体学(包括三维电子衍射和高分辨成像技术)和X-射线粉末晶体学方法,对工业催化剂等多孔材料进行结构解析,并且在原子层面深入理解构—效关系,为高性能的工业催化剂/吸附剂的设计及合成提供理论依据。团队开展了一系列研究工作,包括针对定向合成SAPO分子筛方法的开发(J. Mater. Chem. A,2018;Small,2019)、酸性位点分布的研究(Chinese J. Catal.,2020;Chinese J. Catal.,2021)、吸附位点的确定(Chem. Sci.,2021)、利用三维电子衍射结合iDPC成像技术解析分子筛结构并观测局部缺陷(Angew. Chem. Int. Ed.,2021)等。本工作中,研究人员利用先进的三维电子衍射技术,从原子层面直接解析出一种含有序硅羟基排布的新型纯硅沸石分子筛的晶体结构,其规则分布的硅羟基与独特的椭圆形八元环孔口结构息息相关。研究人员通过调变焙烧条件,在有效去除有机结构导向剂的同时保留了分子筛中有序硅羟基结构,实现了丙烷/丙烯高效分离,并从结构角度揭示了有序硅羟基和独特的椭圆形八元环孔口对丙烷/丙烯的分离作用机制。相关研究成果以“Pure Silica with Ordered Silanols for Propylene/Propane Adsorptive Separation Unraveled by Three-Dimensional Electron Diffraction”为题,于近日发表在《美国化学会志》(Journal of the American Chemical Society)上。该工作的第一作者是我所DNL1210组博士后王静,该工作得到了国家自然科学基金、中科院前沿科学重点研究等项目的资助。
  • 欧盟拟放宽番茄中8-羟基喹啉的最大残留限量
    近日,欧洲食品安全局就放宽番茄中8-羟基喹啉(8-hydroxyquinoline)的最大残留限量发布意见。  依据欧盟委员会(EC)No396/2005法规第6章的规定,西班牙收到一家公司要求修订番茄中8-羟基喹啉的最大残留限量的申请。为协调8-羟基喹啉的最大残留限量(MRL),西班牙建议对其残留限量进行修订。  依据欧盟委员会(EC)No396/2005法规第8章的规定,西班牙起草了一份评估报告,并提交至欧委会,之后转至欧洲食品安全局。  欧洲食品安全局对评估报告进行评审后,做出如下决定:建议将番茄(商品代码:0231010)中8-羟基喹啉的最大残留限量放宽至0.1mg/kg(现行标准是:0.01mg/kg)。
  • 新型毒饮料伪装上市,“合法”“非法”仅在“氨基”“羟基”一字之差
    这两天,一条关于某种“新毒品”在各大酒吧流行的“预警”信息,在记者朋友圈掀起了一阵转发热潮。相关信息称,这种“新毒品”是一款含有“γ-氨基丁酸”成分的饮料——咔哇,多地有人喝了这个东西可以连续嗨三个晚上,据说之前吸k粉的人很多都嗨这种东西了。 据了解,咔哇是生长在南太平洋岛国、海拔500-1000英尺地区的一种植物,系胡椒科多年生灌木。当地民间医生广泛应用咔哇改善睡眠、缓解焦虑、战胜抑郁、松弛肌肉、消除疲劳。咔哇可榨制一种饮料,即咔哇酒。2015年,国内一旅途探秘综艺真人秀节目中,节目嘉宾率领的旅行达人,曾在瓦努阿图制作饮用所谓“最幸福的饮料”——咔哇酒,从而引起国内关注,并在年轻人、时尚人士中流行。 但是仔细阅读配料表后我们发现,我国出现的这种含有“γ-氨基丁酸”成分的饮料,并非来自太平洋岛国的“最幸福的饮料——咔哇”。在太平洋岛国流行的咔哇饮料,是由卡瓦胡椒制成的,卡瓦胡椒当中含有的卡瓦内脂和二氢醉椒素,是“γ-氨基丁酸”的激动剂,能够调节人体内“γ-氨基丁酸”的传输,所以能够起到安神、镇定的作用。 饮料中标示的“γ-氨基丁酸”(gamma aminobutyric acid, gaba),是一种天然存在的功能性氨基酸,广泛分布于动植物体内,如豆属、参属、中草药等的种子、根茎和组织液中都含有,2009年9月27日由卫生部批准使用γ-氨基丁酸为新食品原料,并不是毒品。参见卫生部网站http://www.moh.gov.cn/mohbgt/s9513/200910/43090.shtml 这批咔哇饮料之所以引起关注,是因为经公安机关毒品实验室对其进行检验和分析,发现其中含该饮料含有 γ-羟基丁酸(我国一类精神药品)和 γ-丁内酯( γ-羟基丁酸的前体),并不是商品介绍的γ-氨基丁酸,这两种物质虽然只有一字之差,却有天壤之别。 γ-羟基丁酸(gamma hydroxybutyrate, ghb),是属于中枢神经抑制剂,它曾被用来当做全身麻醉剂,后由于有报导其可导致癫痫发作或昏迷使得使用率降低。滥用“γ-羟基丁酸”会造成暂时性记忆丧失、恶心、呕吐、头痛、反射作用丧失,甚至很快失去意识、昏迷及死亡,与酒精并用更会加剧其危险性。在过去的十几年,美国、东南亚国家以及中国港台地区γ-羟基丁酸的滥用呈快速增长趋势,ghb及其相关物质γ-丁内酯(gamma-butyrolactone, gbl)和1,4-丁二醇(1,4-butanediol, 1,4-bd)常被用作迷奸药,因此,2005年我国就将“γ-羟基丁酸”列入二类精神药物予以管制,并于2007年变更为一类。 据了解,目前夜场各种打着咔哇旗号的所谓潮饮数不胜数,不排除部分饮料“挂羊头卖狗肉”,打着合法成分的旗号使用违禁药物。文中提到的“毒饮料”已被勒令全面下架,但是我们仍要保持警惕,尤其在酒吧、ktv这样的地方,建议青少年朋友不要因为好奇去尝试一些“小众”“特色”的饮品。相关检测标准品
  • 透过红外光谱法,洞察石英玻璃羟基含量的秘密
    玻璃中的羟基会严重影响玻璃的性能,即使羟基重量含量低于1%,它也会明显地影响玻璃的粘度、密度、折射率和热膨胀系数。同时,由于玻璃中羟基的存在,它将对某种波长的红外光波形成强烈的吸收,这对于光纤通讯中光学材料的选择是一个十分重要的问题。在电光源行业中,玻璃中羟基含量的高低是直接影响气体放电灯的质量。因此,需要严格监控玻璃中的羟基含量。此外,为了研究羟基含量与玻璃性能之间的关系,以便为设计与制造具有一定特性的玻璃提供必要的数据,这也需要定量地测定玻璃中羟基的含量。你知道吗?利用红外光谱仪可以快速、准确地检测石英玻璃中的羟基含量!这是怎么做到的呢?让我们一起来揭开这个谜底。红外光谱仪是一种神奇的科学仪器,它能够通过测量样品对红外光的吸收情况,分析出样品的化学成分和结构信息。测定玻璃中羟基含量的方法有两类:一、水的热除气法 二、光谱法。比较这两类方法,光谱法更具有其优越性,该法在测试过程中,玻璃内所有羟基都将被探测,但该法需要已知羟基含量的校准标准。对于石英玻璃来说,其中的羟基会在特定的红外波长范围内产生吸收峰。通过检测这些吸收峰的强度和位置,我们就能分析出石英玻璃中羟基的含量。在水晶或者石英玻璃行业做相关分析的老师如何需要了解具体方案可以联系能谱科技,我们将给您一套完整的解决方案!
  • 拉曼光谱分析法在古陶瓷真伪的应用-羟基无损科学检测(二)
    文物是文化的产物,是人类社会发展过程中的珍贵历史遗存物。它从不同的领域和侧面反映出历史上人们改造世界的状况,是研究人类社会历史的实物资料。我国古陶瓷源远流长,不仅种类繁多、风格各异,而且工艺精湛,文化、科技内涵丰富。由于不法者在仿制过程中借用高科技手段,使一些高仿赝品几乎达到了乱真的程度。  拉曼光谱技术是一种分析技术,由于它能够获得物质的分子信息而被应用于文物的鉴定分析中。  我们主要依据是否在陶瓷釉面发现“羟基”这种化学分子结构去判断陶瓷是不是老的,因为“羟基”是天然生成, 而且生长速度非常缓慢,大概在100年左右的时间,如果在陶瓷釉面发现“羟基”,说明是古董,最起码是清未、民国早期的瓷器。“羟基”和年代成正比,“羟基”峰值越高,年份越老。  检测陶瓷样品的拉曼特征峰,通过3700cm-1附近的羟基峰判断古陶瓷真伪。图1:拉曼光谱图,没有检测到羟基峰图2:拉曼光谱图,可以检测到3632cm-1的羟基峰图3:拉曼光谱图,可以检测到微弱的3601cm-1的羟基峰  拉曼光谱——羟基古陶瓷真伪检测鉴定法的依据和原理是现代仿品和古代真品的成岩过程有着本质区别,而时间是造成的这种区别的根本原因,造假者无法跨越时间所产生的鸿沟。时间所造成的古陶瓷的物理、化学变化是造假者无法仿制的。基于此,古陶瓷真伪拉曼光谱——羟基鉴定法的技术研发者把古陶瓷真品在地表环境下其釉面所产生的化学反应中生成的羟基作为古陶瓷鉴定的定性及定量物质,从而做出准确而科学的鉴定结论。
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 新品上市 | 固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。国标中预处理技术存在的问题现行的《食品安全国家标准 食品中对羟基苯甲酸酯类的测定》(GB 5009.31-2016)中,针对气相色谱法检测的样品预处理技术主要是多次液液萃取+液液洗涤的技术,该方法操作繁琐、检测耗时长、有机溶剂消耗量大(其中包括消耗大量的易制毒化学试剂),且回收率较低、稳定性差,另外净化效果也不佳,往往存在着干扰检测的杂质成分。月旭科技针对固态发酵食醋这种复杂基质食品,开发出了固态发酵食醋中对羟基苯甲酸酯类色谱检测预处理专用方法包,这个方法包所采用的双柱SPE法可实现高效、稳定可靠地从各种复杂基质的固态发酵食醋中提取、分离和净化4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、乙酯、丙酯和丁酯),大幅度减少对色谱柱及色谱管路污染、甚至堵塞情况,可以很好地保护色谱系统。提取液:从食醋样品中提取对羟基苯甲酸酯类;提取吸附剂:吸附食醋样品中的大颗粒杂质;萃取液:使对羟基苯甲酸酯类提取液中的杂质沉淀分离;萃取管:管中的吸附剂可吸附萃取时沉淀的杂质;净化专用SPE柱(双柱):吸附食醋中不同种类的色素;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来。主要操作流程1)食醋样品称量:准确称取5g食醋样品;2)分离提取:使用“提取液”和“提取吸附剂”,振荡分离提取;3)萃取:取试样提取上清液进行萃取,使用“萃取管”和“萃取液”,类似于QuEChERS的操作;4)净化:使用双柱串联的“净化专用SPE柱”,上样用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280 ℃;5)载气:氮气,纯度≥99.999 %,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • 【瑞士步琦】干货!聚醚多元醇羟基含量分析,BUCHI FT-NIR 快速检测技术助您一臂之力!
    聚醚多元醇羟基含量分析 聚醚(又称聚醚多元醇)主要是由环氧丙烷、环氧乙烷等为原料,以碱金属氢氧化物为催化剂,按阴离子机理开环聚合,可以是均聚或共聚而制得分子末端带有羟基基团的线型聚合物, 聚醚在聚氨酯以及合成润滑材料上得到广泛的应用,对聚醚多元醇羟基含量的测定是监测反应程度和产品质量的主要手段。传统的聚醚羟值分析一般采用化学法,其原理是:样品中羟基与酸酐定量地进行反应,生成酯或酸。过量的酸酐水解成酸。 用已知浓度的碱标准溶液滴定酸。同量的酰化剂,不加样品,其他条件与样品滴定相同,做空白滴定。空白滴定和样品滴定两者所耗用碱标准溶液的体积差就是样品中的羟基所相当于耗用碱标准溶液的体积。由于这种方法反应时间长需要 3-4h, 操作比较复杂, 已不能适应工业分析的需要。近红外光是介于可见光与中红外光之间的电磁波, 波长为 780~2500nm。 有机物分子中 C-H , O-H , C=O 等基团振动频率的合频与倍频吸收在近红外区。 光谱中 OH 伸缩振动所引起的吸收峰的强弱决定于羟值的高低, 即单位质量聚醚羟值含量的多少。羟值高则吸收峰强度大, 反之则强度小。 所以可以应用此关系来测量聚醚羟值。BUCHI FT-NIR 的优点1无损利用近红外光以透射或透反射的方式采集被照样品的近红外光谱,对样品没有破坏性。2快速平均 1-2min 可以完成 1 个样品的检测,采集一次样品光谱,可以同时分析多组分含量。3利润高,成本低无需化学试剂消耗,实现零成本,可以大大提高检测效率。4绿色环保无需样品前处理,避免使用有毒,有害的化学试剂,从而对环境造成污染。▲ 建模样品集的近红外吸收光谱▲ 羟值含量的化学值与模型校正值、模型预测值的相关关系图▲ 羟值含量检测的液体附件配置多至6个孔位, 0.5,1,2,5,8,10mm 比色皿根据样品可选,控温室温到 65 度。用近红外光谱法,克服了化学方法测定羟值费时费力且大量使用有害试剂的缺点,此外,使用比色皿作样品吸收池,省去了每次测试后需要花费大量时间清洗吸收池的麻烦。这种方法不仅在聚醚多元醇生产中具有很大实用价值,而且在其他类似黏度较大、清洗不便的样品测试中也具有很大推广价值。步琦近红外光谱仪可以提供各种型号的光谱,以适用于实验室检测、旁线检测和在线检测的应用过程设备。如您对以上应用产品感兴趣,欢迎咨询了解!
  • 欧盟批准硒代蛋氨酸羟基类似物用作饲料添加剂
    5月15日,欧盟委员会发布(EU)No445/2013号条例,批准硒代蛋氨酸羟基类似物用作动物饲料添加剂。硒代蛋氨酸羟基类似物添加于饲料时,分属的添加剂类型为“营养添加剂”,功能组为“微量元素化合物”,需保证硒元素在12%含水量的饲料成品中的含量不超过0.5mg/kg,有机硒不超过0.2mg/kg。  硒代蛋氨酸羟基类似物用作饲料添加剂时,可作为蛋氨酸营养补充剂,促进动物生长发育。但该物对皮肤和眼睛有刺激作用,在使用该产品后,必须用水冲净皮肤。对此,检验检疫部门提醒相关企业:一是根据欧盟委员会发布的法规,严格按照相关要求来用作动物饲料添加剂。二是与相关部门合作,加大检测力度,确保出口产品符合欧盟标准。三是推进生产工序升级和优化,并建立自检自控体系,分析关键控制点并予以重点关注,确保其含量符合法规要求,避免退运或召回。
  • 助力精准诊断!药明奥测质谱法“25-羟基维生素D测定试剂盒”获批
    维生素D是人体内重要的微量元素之一,可调节钙、磷代谢、促进骨骼生长、调节细胞生长分化、调节免疫功能,但据不完全统计,目前有50%以上的中国人群存在维生素D缺乏的现象。维生素D在体内转化成25-羟基维生素D2/D3,因其半衰期长、含量高、易于检测,已成为评估VD含量的最佳指标。传统VD测定试剂盒多采用免疫分析法,因抗体特异性差异等因素影响,常存在干扰,影响了定量的准确度。为助力精准诊断,近日,上海药明奥测医疗科技有限公司(以下简称“药明奥测”)自主开发推出了“25-羟基维生素D测定试剂盒(液相色谱-串联质谱法)”,且该试剂盒已获批二类医疗器械注册证。据了解,药明奥测是中国第一家践行整合诊断的赋能平台公司,公司依托Mayo Clinic的整合诊疗理念与经验,凭借融合多平台、多组学及临床数据驱动的开放式赋能平台,通过算法整合升级,不断推出创新诊断服务和产品,同时加速诊疗创新者从研发到应用的技术转化,创造共赢共享的产业新生态。值得关注的是,为打造领先的临床质谱平台,药明奥测独家引进Mayo Clinic的400余项质谱项目,提供肿瘤、个体化用药、人体营养和代谢、激素、金属元素检测等服务,其质谱法25-羟基维生素D测定试剂盒,更是经过严格质量体系验证,可溯源至美国国家标准与技术研究院(NIST)Standard Reference Material 2972a。液相色谱-串联质谱法(LC-MS/MS)检测特异性及灵敏度高,可对25-羟基维生素D2、25-羟基维生素D3分别测定,保证了测试准确度。同时,作为一家高新技术企业,药明奥测始终坚持国际高标准自主创新,在试剂盒的开发过程中,药明奥测秉承以客户为中心的理念,积极提出差异化的解决方案并落实到产品性能优化中。在前处理阶段,采用“蛋白沉淀一步法”,显著减少了前处理步骤,操作方便快捷,有效地提高通量。此外,鉴于25-羟基稳定性差,目前市场上诸多解决方案采用-20℃冷冻保存或冻干粉基质,增加了客户使用成本,影响了用户体验。奥测试剂盒创新的采用独特配方新基质,产品为液体剂型,2-8℃稳定保存。据悉,截至目前,公司已累计申请体外诊断(IVD)专利近200项,涉及免疫、分子及质谱技术平台。目前,国内疫情仍处于不平静阶段,疫情常态化推动了诊疗场景拓展,在社区、在第三方检测机构、在家庭,方便快捷地采集、检测,已成为广大人民群众的需求,药明奥测国际高标准的试剂开发与整体解决方案创新,不仅大大提高了维生素D检测准确性与便捷性,实现了应用场景拓宽,也让更多人获益于高质量的医疗服务。此后,药明奥测将持续凭借强大的医疗及商业资源整合能力,基于临床需求布局丰富的研发管线,通过算法整合升级,不断创新整合诊断服务和产品,以“自主研发+授权合作”双模式,推动诊疗药险全新生态,促进诊疗场景的融合与拓展,让更多人在医院、在社区、在家庭中,都能获得高品质的医疗服务。
  • 洛科仪器发布洛科 | SF 外旋式不锈钢过滤漏斗新品
    SF 外旋式不锈钢过滤漏斗 : 产品特色◆ 全新旋卡紧扣设计SF 外旋式不锈钢过滤漏斗采用全新外旋卡扣紧方式,安装快速丶牢固且不需夹具。◆ SS316不锈钢材料制作SF 外旋式不锈钢过滤漏斗使用高级不锈钢材料 SS316 制作,可以火焰快速灭菌。◆ 可搭配不同大小过滤杯SF 外旋式不锈钢过滤漏斗包含 100, 300, 500ml 等三种容量过滤杯,方便各种过滤实验使用。◆ 过滤杯刻度线采雷射雕刻,数字清晰且滤液不残留◆ 过滤基座的滤膜夹口,方便夹取滤膜◆ 標配8号矽胶塞SF 外旋式不锈钢过滤漏斗 : 订购资讯◆ 180100-10  SF 1, 100 ml 不锈钢过滤漏斗◆ 180100-11  100 ml 不锈钢漏斗盖◆ 180100-01  100 ml 不锈钢过滤杯◆ 180100-30  SF 3, 300 ml 不锈钢过滤漏斗◆ 180100-13  300 ml 不锈钢漏斗盖◆ 180100-03  300 ml 不锈钢过滤杯◆ 180100-50  SF 5, 500 ml 不锈钢过滤漏斗◆ 180100-13  500 ml 不锈钢漏斗盖◆ 180100-05  500 ml 不锈钢过滤杯◆ 180100-31  不锈钢滤膜垫片◆ 180100-00  47 mm 不锈钢过滤基座◆ 167110-16  8号矽胶塞创新点:◆ SF 外旋式不锈钢过滤漏斗采用全新外旋卡扣紧方式,安装快速丶牢固且不需夹具。◆ 过滤杯刻度线采雷射雕刻,数字清晰且滤液不残留◆ 过滤基座的滤膜夹口,方便夹取滤膜洛科 | SF 外旋式不锈钢过滤漏斗
  • 外媒称“螺旋藻检测事件”让药监局被动
    外媒10日报道称,针对媒体报道称中国药监局掩盖国内螺旋藻类保健食品铅过量问题,该部门10日进行了自我辩护。  据美联社报道,国家药监局说,它认可3月30日公布的对十多种螺旋产品的检查结果,发现其中有一种产品铅超标而且含有砷,就是福建幸福生物科技公司出售的幸福来牌螺旋藻。  然而,据官方媒体上月首次报道,国家药监局2月份一份内部报告称中国螺旋藻污染现象普遍,并列举了13个涉嫌铅、砷或汞超标的品牌。  这份文件促使这家官方媒体对螺旋藻进行检测,结果发现从商店购买的8种样本中有6种为铅超标,其中一种超过国家规定的标准820%。  国家药监局说,它的内部和公开报告并不矛盾。它说,内部报告指的是未证实的可疑产品,而3月30日的公开报告依据的是检验机构得出的结论。它还说,藻类产品的铅指标限量高于其他食品。  《经济参考报》9日报道称,国家药监局明显自相矛盾的报告引起北京检察机关对其进行腐败调查。报道说,该报记者给调查人员提供了材料和证据。  现住在北京的芝加哥政治学教授杨达利(音)是一位研究中国监管问题的专家。他说,尽管大大加强了药品监管、提高了透明度,然而国家药监局仍然人力不足和任务过重。保健品和草药的质量控制可能不是该机构的工作重点,可能存在漏洞。  杨还说,国家媒体对检查结果提出质疑并主动自行检测是好事,因为这意味着媒体在发挥监督作用。  美联社指出,自从2007年国家药监局一位前局长因受贿被处决以来,该局极力恢复自己的名声。此后发生的一系列食品和药品安全问题,从劣质药品到2008年导致6名婴儿死亡的三聚氰胺奶粉,进一步削弱了大众对监管者的信任。  铅损伤神经系统,对儿童和胎儿危害更大。少量或短期接触铅可以治愈,如果接触量高可能导致出生缺陷、大脑损伤和其他问题。环境来源和摄食是铅中毒最常见的途径。
  • 紫外高级催化冷燃烧(UCO)
    What' s UCO? UCO是通过紫外光解技术、吸附氧化技术和催化氧化技术的有效结合,针对中低浓度、非24小时生产的工况研发的一项VOCs处理技术。 How Dose UCO Work?UCO技术对VOCs的处理分为以下两个步骤:(1)VOCs催化降解VOCs过程 在工业生产产生VOCs污染的过程中,UCO中的紫外光解和催化氧化吸附部分,实现VOCs的有效拦截与去除;(2)光催化氧化再生过程 在非生产时间中,紫外线通过其光解作用,配合特有的催化剂,实现催化氧化吸附材料再生,将拦截下来的VOCs分解成CO2、H2O。 UCO催化氧化原理 紫外线氧化降解污染物通常是指污染物在紫外线的激发作用下,污染物的原子结构发生变化,在氧化剂的作用下,逐步被氧化成低分子中间产物,有机污染物最终生成CO2、H2O。 UCO催化氧化原理图 紫外线光子能量与不同分子键能量对比 由于短波长紫外线光子能量高于大多数污染物质分子内部化学键的键能,所以可以通过紫外线光子对分子化学键的作用直接使其断裂,从而达到分解的目的。此外,基于同样的原理,185nm的紫外线还可以将空气中的氧气和水蒸气转化成原子氧和活性羟基(HO? ),这两种产物同样可以与污染物质分子产生化学反应,起到分解降低废气污染物浓度的作用。如果选用合适的催化剂配方,上述光化学反应的速率可以得到大幅提升。其基本反应原理可以用下面的反应式描述:光化学氧化反应机理:VOC + hv →CO2 + H2O光催化氧化反应机理:O2 + e-→ O2(活性氧)O2-+2H2O+e- → H2O2+2OH-H2O2 + e-→ OH + OH-h+ + H2O → H+ + OHh+ + OH- →OH
  • Blue Marlin自动漩涡振荡混合器新品上市大促销!
    Blue Marlin 最新推出新一代自动漩涡振荡混合器VM-8。为了答谢广大客户一直以来的支持,即日起至年底,倾情推出感恩促销活动。促销详情促销时间:2012.11.5-2012.12.31原价:3980RMB,现价:2180RMB,直降1800RMB详情请询:400-821-0778产品详情● 混合速度可变, 200 ~ 2500rpm;● 具备两种运行模式,即&ldquo Touch&rdquo 瞬时 运行和 连续运行模式;● 集成的曲棍可将容器固定在混合器上,以满足 长时间运行;● 并可选配多种附件,满足多种应用。技术参数速 度 可变速度, 250~ 2500rpm圆周直径 4.2mm工作模式 压式起动和连续运行外形尺寸 135 × 215× 78mm( W× D× H) 主机净重 3.2kg电源供应 90-240V, 50/60Hz, 20W订货信息VM-8 主机VM-8-01 试管橡胶杯VM-8-02 平板固定器
  • 岛津战略合作伙伴和合诊断集团自主研发25-羟基维生素D试剂盒,获批国家二类医疗器械注册证
    2020年2月,和合诊断集团全资子公司合肥和合医疗科技有限公司自主研发的25-羟基维生素D检测试剂盒(液相色谱-串联质谱法)、25-羟基维生素D校准品、25-羟基维生素D质控品正式通过审批,获得国家二类医疗器械注册证!上图为25-羟基维生素D检测试剂盒、校准品、质控品的国家二类医疗器械注册证件 合肥和合医疗科技有限公司自主研发的25-羟基维生素D系列检测试剂盒产品基于液相色谱-串联质谱检测方法,该方法为国际公认的维生素D项目检测金标准,可以大大提高血清维生素D检测的精确性,为相关疾病的临床诊断提供重要依据。产品适用机型广、组成全面,能很好的满足临床客户的检测需求。 和合诊断集团自2011年开始与岛津合作,现在拥有多台岛津LCMS-8050CL、Nexera系列液相色谱仪。LCMS-8050CLNexera X2(LC-30A系列) 岛津液相色谱仪历经50年在技术积淀,从输液泵、自动进样器到柱温箱和检测器,各个方面做到最优,为用户获得最优、最稳定的检测结果,提供最优秀的仪器平台。 和合诊断尤以开展高效液相色谱、串联质谱法检测擅长,是国内第一家也是目前规模最大的临床“色谱/质谱检验技术平台”,可提供临床化学和分子遗传学检验专业的百余项检测项目。集团率先在国内开展血清维生素检测,为全国2000余家医院提供诊断技术服务。集团各实验室执行国际通用标准ISO15189,拥有与世界同步的检验技术和实验室管理系统,检测结果为全球100多个国家和地区认可。科研能力突出,截至目前,集团共获得国家专利局审批及受理的专利近百余项、其中维生素D检测发明专利10余项。 研究表明,人体血清维生素D水平与免疫力息息相关,维生素D可以使细胞因子水平提高,从而增强人体免疫力。所以高度关注血清维生素水平,及时干预,可使肌体抗病毒感染能力提升。
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 锐拓RT7流池法溶出系统应用案例——混悬滴眼液的体外释放试验
    混悬滴眼液被广泛用于治疗各种眼部疾病,而且混悬液这种剂型设计能够改善API在角膜前的停留时间和整体眼部的生物利用度。混悬滴眼液中分散着细微的、相对不溶的原料药,而且每次用药剂量很少,这给体外释放度测试的方法开发带来很大的难度。不过,得益于流池法的发展和应用,使得这个技术难题得以有效解决。本次应用案例中,我们将分享为某客户开发的混悬滴眼液的体外释放度试验,希望能够给各位带来帮助和启发。测试方法在流通池底部放置一颗5mm直径的红宝石球,然后填充1mm直径的玻璃珠。用力摇匀样品溶液,精密移取100μL,均匀滴加在玻璃珠上面。在流通池顶部安装在线过滤装置。启动恒流泵,开始流池法溶出测试。溶出介质在进行体外释放度研究时,溶出介质的选择应充分考虑药物在人体释放部位的生理特点。混悬滴眼液主要在眼部释放,我们在开发溶出介质的时候,参考了泪液的pH值及其他生理特点。同时,添加了适量的表面活性剂以确保满足漏槽条件。测试结果本次研究分别对两个不同的混悬滴眼液自研样品平行执行三次体外释放度测试,测试结果如下:混悬滴眼液自研样品1:混悬滴眼液自研样品2:根据测试数据我们可以发现:本方法的重现性良好,三次平行测试的溶出曲线之间的差异都很小,两种样品在120min时溶出率的RSD都分别小于1%。同时,本方法具有良好的区分力,能够区分不同样品之间的溶出行为差异。结论流池法在执行混悬滴眼液的体外释放度试验方面,具有其他溶出方法无法比拟的优势。流池法能够提供更有区分力和更接近体内条件的溶出数据,很好地助力混悬滴眼液的研究开发及其释放度评价。
  • 【开谱动态】瞬时结晶技术助力冻干工艺革新
    7月9日,第五届生物医学聚合物与高分子生物材料国际会议(ICBPPB2024)在上海圆满落幕。这是国际生物医学聚合物和聚合物生物材料学会首次在中国召开年会,多国学者和企业共襄盛举,共同交流生物材料领域的相关研究与合作。开谱仪器作为国产实验室冻干机制造及冻干工艺研发的新锐力量,应邀出席本次会议,并就冻干机瞬时结晶技术研究成果和技术突破进行了汇报分享。 一直以来,冷冻干燥作为生物医药、化学工程,食品等多个领域的关键技术之一,其成核温度的控制难题一直制约了产品质量的进一步提升。成核是一个随机发生的现象,样品通常在很宽的温度范围内成核,产生不同大小的冰晶,均匀性不好,进而导致得到的产品一致性较差,给实际大规模生产带来了很大的困难。 针对国内这一行业痛点,开谱团队经过长期深入研究与反复实验,成功研发出冻干机瞬时结晶技术,该技术通过抽真空使部分溶液蒸发,形成制冷效果,在剩余溶液里面形成形核,打破溶液过冷状态,使不同溶液在同一时间成核。从而改善产品均一性与外观,提高产品的稳定性。 在ICBPPB2024的会议上,开谱冻干专家罗春博士向与会专家学者详细介绍了这一研究成果。他表示:瞬时结晶技术在国内冻干机和冻干工艺的成功应用,不仅解决了传统冻干方法中成核温度不一致的问题,提升制备样品的均匀性,还提高了冻干效率,降低了能耗,也为生物制品、药品等领域的工业化大规模生产提供了更加可靠、高效的解决方案。 对于此次的技术突破,开谱仪器的创始人兼董事长陈昌杰先生表示:开谱仪器作为国产冻干领域的新锐力量,凭借团队深厚技术底蕴,专注研发,致力于将国产冻干机的性能推向新的高度。我们深知,高质量且高性价比的冻干设备是保障国内科学研究及产品生产质量的重要支撑。因此,我们将继续不断革新技术,勇于挑战传统,只为制造出真正实用的国产好冻干机,服务好科学研究。陈总、罗博与会议主席东华大学教授莫秀梅合影
  • 广东省食品流通协会发布《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    由广东省食品流通协会提出的《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对标准的征求意见稿提出宝贵的意见和建议,并将意见反馈表于2023年10月28日前反馈至协会标准化专委会处,意见接收邮箱:gdfcastandard@126.com。附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明附件3、广东省食品流通协会团体标准征求意见表关于对《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见的函.pdf附件1、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿).pdf附件2、《农药中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》(征求意见稿)编制说明.pdf附件3、广东省食品流通协会团体标准征求意见表.docx
  • 广东省农药协会发布《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准征求意见稿
    各有关单位及专家:广东省农药协会立项的《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准已完成征求意见稿,为保证团体标准的科学性、严谨性和适用性,现公开征求意见。请有关单位及专家提出宝贵意见或建议,并请于2023年12月3日前将《标准征求意见汇总表》(见附件1)以电子邮件的形式反馈至广东省农药协会秘书处,逾期未回复将按无异议处理。感谢您对我们工作的大力支持!联系人:沈文胜;联系电话:020-37288797, 13802631090;电子邮箱:swsg@163.com 附件:1. 标准征求意见汇总表2. 《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》征求意见稿 广东省农药协会2023年11月3日广东省农药协会关于征求《农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定》团体标准意见的通知.pdf附件1:标准征求意见汇总表.docx附件2:农药产品中涕灭威砜、涕灭威亚砜、3-羟基克百威、氟甲腈、氟虫腈砜、氟虫腈硫醚、甲拌磷砜、甲拌磷亚砜的测定(征求意见稿).pdf
  • 关于热脱附解吸仪二级解吸“热气流瞬时解吸技术”的说明
    热脱附解吸仪是分析空气中挥发性有机物的重要前处理设备,其中二级解吸时的解吸速度和效率直接决定仪器的性能。图1 AutoTD系列自动热脱附解吸仪我公司使用了“热气流瞬时解吸技术”,在传统加热丝加热的基础上,使用了高温热气流辅助加热,在二级解吸开始的瞬间,高温热气流打开,冷阱中填料的温度瞬间达到设定值,消除了热量传递带来的影响,冷阱升温速度趋近于无穷大,样品解吸速度快,峰形好,残留少。图2 “热气流瞬时解吸技术”示意图
  • 乘势而上 顺势而为 推动中医药新的更大发展
    p  近日,国家卫生计生委召开党组会议,听取国家中医药管理局党组工作汇报。会议提出,要乘势而上,顺势而为,推动中医药新的更大发展。/pp  会议认为,2015年及“十二五”期间,全国中医药系统在国家中医药管理局党组的带领下,紧紧围绕中央关于深化医药卫生体制改革的部署要求,深入贯彻落实《国务院关于扶持和促进中医药事业发展的若干意见》,围绕中心、服务大局,深化改革、开拓进取,推动中医药各项工作取得了有目共睹的成绩。屠呦呦研究员获得诺贝尔奖,中医药科技创新登上新的高峰,中医药国内外影响力进一步扩大。《中医药法(草案)》提交全国人大常委会进行了首次审议,中医药立法工作有了突破性进展。《中药材保护和发展规划(2015-2020年)》、《中医药健康服务发展规划(2015-2020年)》等相继制定出台,中医药事业发展上升为国家战略。实践证明,中医药队伍是一支善于继承、勇于创新、求真务实、敢于担当、深受人民欢迎和依赖的队伍,为提高人民群众健康水平发挥了重要作用。/pp  会议强调,2016年是“十三五”规划全面开启之年,也是全面建成小康社会决胜阶段开局之年。习近平总书记祝贺中国中医科学院成立60周年时指出“中医药振兴发展迎来天时、地利、人和的大好时机”,是对中医药发展形势的科学判断,意义深远。李克强总理对中医药在继承中创新发展、在发展中服务人民提出了殷切期望和明确要求。广大中医药工作者备受鞭策和鼓舞,要抓往难得机遇,乘势而上,顺势而为,推动中医药有新的更大发展。一是将中央领导同志重要指示精神贯彻落实好,国家中医药管理局党组已将2016年确定为“中央领导同志重要指示精神贯彻落实年”,要作为重中之重任务抓好落实。二是将“五大发展理念”坚决贯彻好,中医药改革发展要始终坚持继承创新、统筹协调、绿色生态、包容开放、共享惠民,要把中医药宝库挖掘工程作为“十三五”的重头戏。三是将中医药立法切实推进好。四是将中医药发展的各项规划制定实施好。五是将中医药在深化医改中的作用充分发挥好。六是将中医药传承创新统筹谋划好。/pp  会议指出,中医药事业是我国卫生计生事业的重要组成部分,加快推进中医药振兴发展,卫生计生部门责无旁贷。一是切实贯彻好中西医并重的方针,这是我们党和国家新时期的卫生工作方针。二是进一步加大对中医药工作的支持力度。共同推动中医药立法工作,共同研究制定中长期发展规划,共同谋划实施重大项目和工程,在基层中医药服务能力建设、发挥中医药在医改中的优势作用、完善跨部门协调机制等方面继续取得新的进展。总之,加快推进中医药振兴意义重大,任务艰巨,要全面贯彻落实党的十八大和十八届三中、四中、五中全会精神,进一步解放思想、改革创新,求真务实、扎实工作,为推动中医药振兴发展,为提高人民健康水平做出新的更大贡献。/ppbr//p
  • 外泌体粒径分析该选谁?不同外泌体粒径分析技术间的比较
    测量外泌体的粒径分布一直以来都是外泌体表征的重要组成部分。但是由于外泌体的尺寸仅为30~200 nm,所以必须借助一些特殊的检测手段才能够对这种在光学显微镜下不可视的颗粒进行观测。本篇就外泌体粒径测量技术的发展进行简述,并对不同技术的差异进行比较。一、电镜技术在外泌体发现的早期,由于还没有专门针对这类尺寸颗粒的分析方法,因此直接在电镜下面观察粒径并统计成为了早的外泌体粒径统计方法。但是这种方法费时费力,且通量低,在面对临床和科研中的大量样本时显得十分无力。文献中外泌体在电镜TEM模式下的经典形态 二、动态光散射技术 & 纳米粒子跟踪分析技术由于外泌体与材料学所合成的脂质体在形态上十分相似,因此用于脂质体表征的动态光散射技术(DLS)便被应用于外泌体的尺寸测量上。DLS利用光射到远小于其波长的小颗粒上时会产生瑞利散射现象,通过观察散射光的强度随时间的变化推算出溶液中颗粒的大小。但是这种技术会受到测量物质的颜色、电性、磁性等理化特性的影响,并且对于灰尘和杂质十分敏感。因此使得DLS在测量尺寸较小的粒子时,测量出的粒径与实际的分布具有较大的偏差。为了弥补DLS的短板,纳米粒子跟踪分析(NTA)技术孕育而生。这种技术采用激光散射显微成像技术,用于记录纳米粒子在溶液中的布朗运动轨迹,并通过Stokes-Einstein方程推算粒子大小。这种技术能够对30~1000 nm的粒径进行测量,因此能够提供更为地粒径数据。在诸多文献的测试中均取得了较DLS更好的精度,因此成为目前为主流的外泌体尺寸测量手段。NTA技术的工作原理与DLS技术在测量不同尺寸纳米球的数据对比。可见相比于DLS,NTA测量的粒径分布更为。 虽然NTA取得了比DLS 更高的性,但是随着外泌体研究的深入,其局限性也十分明显。先NTA仅能够测量溶液中颗粒的平均粒径尺寸,但是NTA无法分辨其中的外泌体、囊泡、脂蛋白,也不能区别不同源性的外泌体。这直接限制了外泌体粒径表征的意义,使得研究者很难探究外泌体尺寸与外泌体来源之间的关系。另外NTA本身对于测试时的温度、浓度和校准都有着较高要求,因此使得NTA在测试较小的粒子时其精度仍不能达到令人满意的效果,其测试结果却仍与电镜、AFM等成像技术所观测到的粒径存在着明显差异。外泌体在TEM下的成像及粒径统计与NTA测量的结果对比。可见NTA测量到的粒径要比TEM直接测量的结果大50~100 nm。 三、单粒子干涉反射成像技术为了解决上述在实际测试中的问题,一种新型的单粒子干涉反射成像传感器(SP-IRIS)技术孕育而生。这种技术摒弃了布朗运动轨迹追踪方法,通过基底与颗粒形成的相干光进行成像,通过成像后的亮度来直接计算纳米粒子的大小。从而避免了NTA测量粒径轨迹误差大的短板,拥有更高的灵敏度和精度,即使对于NTA无法区分的40 nm与70 nm的粒子混合溶液也依然能够取得很好的分辨率。SP-IRIS的原理及芯片微阵列打印的成像效果和对混合不同粒径小球的区分效果。可见SP-IRIS技术拥有更高的测试通量和测量精度。得益于这种高精度测量方法,越来越多的研究者终于能够测量到与电镜直接观测相当的粒径。这种优势所带来的效果不单单是能够让TEM的数据与纳米粒子表征的数据更为一致,同时还能够表征不同来源的外泌体之间的粒径差异。SP-IRIS、NTA和TEM统计同一样品时所测量的粒径分布。SP-IRIS在测量不同尺寸的外泌体时,测量的粒径与TEM的尺寸统计基本一致,而NTA统计的粒径则比TEM大约50 nm。此外SP-IRIS技术还能够提供不同来源外泌体的尺寸差异,能够看出CD9来源的外泌体要比其它来源的外泌体大~10 nm。 SP-IRIS的另一个优势在于能够更换激光源的波长,因此除了能够实现外泌体的形貌成像外,还能够实现单外泌体的荧光成像。使得单外泌体的荧光共定位成为可能,研究者通过这种单外泌体荧光成像能够研究单外泌体的表型、载物、来源等生物信息。使用SP-IRIS 对受伤组和对照组小鼠不同时间点的血清CD9、CD81来源外泌体的分泌量监测。可以看到CD81来源的外泌体的分泌量呈现先增加后减少的趋势,而CD9来源的外泌体分泌量则一直在增加。 综上所述,由于SP-IRIS技术的高精度、高灵敏度、可做单外泌体荧光成像的优势,目前有越来越多的学者开始对比NTA技术和SP-SPIS技术,其结果均认为SP-SPIS技术测试的效果要明显优于NTA,这其中也不乏Cell等高水平期刊。相信在不久的将来,SP-IRIS技术将会越来越普及,为研究者研究外泌体打开新的大门。 参考文献:[1]. Ayuko Hoshino, et al, Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers,cell, 2020, 182, 1–18.[2]. Oguzhan Avci, et al., Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection, Sensors 2015, 15, 17649-17665.[3]. George G. Daaboul, et al, Digital Detection of Exosomes by Interferometric Imaging, Scientific Reports,6, 37246.[4]. Federica Collino, et al, Extracellular Vesicles Derived from Induced Pluripotent Stem Cells Promote Renoprotection in Acute Kidney Injury Model, Cells 2020, 9, 453.[5]. Daniel Bachurski, et al, Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, JOURNAL OF EXTRACELLULAR VESICLES 2019, 8, 1596016.[6]. Robert D. Boyd, et al, New approach to inter-technique comparisons for nanoparticle size measurements using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering, Colloids and Surfaces A: Physicochem. Eng. Aspects 387,2011, 35– 42.
  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • 立足“十快” | 百泰克助力构建环交通枢纽1小时核酸检测圈
    据统计2021年全国卫生费用支出逾7.55万亿,相比疫情前增加近2万亿,尤其核酸检测逾百亿次,频繁的大规模筛查加重了国家财政负担,更使得检验人员的工作强度和压力倍增。如何在恢复正常经济生活的前提下,有效预防、控制疫情,成为科学防疫的重中之重。核酸检测新要求——“十快”8月10日举行的国务院联防联控机制新闻发布会上,有关部门和专家对当前疫情形势、奥密克戎新变异株特点等热点问题进行了权威解读。会议提到,奥密克戎变异株传播快,因此所有防控措施就是要与病毒赛跑,以快制快,把速度作为疫情处置全流程的工作要求。会议还提出把快字当头分解到工作的各个关键流程和环节当中,总结了“十快”,就是快采样、快送样、快检测、快追阳、快流调、快排查、快转运、快隔离、快诊断、快报告。“快”字当头——又快又好,才是真的快疫情处置中首要关键要素是“早发现”,以快制快狙击病毒已成为防控共识。根据流行病学的观点,防控核心内容即是要发现病毒感染者。短时间内检测发现感染者是在这几次疫情当中的一个重要经验,而后续的流调排查、隔离转运等,只有在检测快的基础上并联推进,才能够同步突出“快”字。“早发现”是核心,不应当以牺牲检测灵敏度为代价。疫情之初,国家就快速检测技术曾发起过紧急技术攻关,技术方案的实现方法多数采用等温扩增与检测一体机设备。例如美国曾宣称的某品牌快速检测产品,能够5min获得阳性结果,15min确认阴性结果,但其等温扩增技术与传统变温PCR技术相比,存在严重假阴性即漏检问题,华盛顿邮报、纽约时报对此皆有报道。另一种快速检测方法依托于检测一体机,目前市面上已有多款此类产品,采样管加样、核酸提取,反应体系配置和扩增均在同一设备中完成,该技术优势在于能够减少实验员工作量,但单轮检测速度与人工检测速度相当,所有操作在一个腔体完成,可能会有假阳性问题。另外检测需要P2+或者P3的实验室,才能保证结果的有效性和生物安全,因此检测成本会有提升。以上检测方案若要适配“十快”要求,还有很长的路要走。“十快”之“三快方案”(快速核酸检测站)铁路、航空、高速是跨省市人口流动的主要形式,也是造成国内各省疫情的源头。目前无论乘坐高铁、飞机还是汽车,进出站均需要查验48小时核酸阴性报告,这是目前防控的普遍共识,但可惜的是,这并不能实时准确的反映出被检测者的健康状况,诚然最严格的防疫是缩短检测间隔时间,并在达到城市第一时间进行检测,拿到检测结果后再安排是否放行或隔离,由此一旦发现病毒携带者,可在其未扩散影响前,直接控制传染源,避免后续繁重的流调、隔离和全民筛查的工作。但这样的极端措施显然不符合实际情况,一则交通枢纽人流量巨大,所有人共处一室采样,等待结果也容易造成聚集性感染。而且现在的检测技术手段,也无法达到随检随出的速度。所以,目前亟需解决的问题是,在保证检测灵敏度的前提下,大幅提高检测速度,缩短人员从出站到拿到检测结果的时间,在其没有造成大规模影响前,及时控制传染源,避免疫情升级。无锡百泰克生物技术有限公司自疫情之初,便致力于SARS-CoV-2快速核酸筛查项目研发,目前已成功突破变温PCR技术壁垒,推出了快速荧光定量PCR仪,其核心参数升降温速率可高达12℃/s,将传统荧光PCR检测时间从2小时,缩减至20~30分钟,并且提速不是以牺牲检测准确性和灵敏度为代价的,可以达到传统检测方法同等检测能力。__实时荧光定量PCR仪(BTK-8)麻雀虽小、五脏俱全依托关键核心PCR设备的性能突破,无锡百泰克生物又设计开发了快速核酸检测站,旨在快从核酸采样到取得报告在1小时之内完成。快速核酸检测站功能分区包括:信息登记、样本采集、样本提取、PCR体系配制、核酸加样、快速核酸检测、报告打印、试剂存储等。精简核酸检测站各操作区域,优化动线,重新设计区域传递方式,整个检测站占地12㎡,集成式设计,可整体运输搬迁,极大降低了场地建设费用和投入使用周期。检测灵敏度、检测速度——“一个都不能少”检测站核酸提取区配置2台32通量全自动核酸提取仪,搭配磁珠法病毒核酸提取试剂盒,可在9分钟内完成核酸提取。检测区域配备4台10通量快速荧光PCR仪,升降温速度高达12℃/s,可匹配市面主流荧光PCR检测试剂,RT-PCR检测时间可缩短至30分钟内完成,检测灵敏度可达500 copies/mL。从核酸采样到拿到结果,可在1小时内完成,并且随到随采,真正实现报告立等可取。严格分区,保障生物安全快速检测工作站以P3实验室为设计模板,样本提取区、核酸加样区、扩增区均内置负压系统及梯度压差,有效防止核酸及扩增产物逆向流通,导致假阳性问题。同时检测人员所在区域及PCR体系配置区域设置正压系统及高效HEPA防护系统,保障生物安全。与此同时,检测站考虑到被采样者的安全,采样区配备了最新防护科技——采样防护仪,联动三项消杀技术(高效HEPA、紫外催化羟基、等离子),采样呼出的气体瞬间被吸附净化,气体瞬时消杀效率高达99.9%。应用前景当前,各地都按照新版防控方案的要求,立足于快速精准做好风险管控,积极应对,几乎每一起疫情都能在短时间内得到有效控制,这也反映出第九版防控方案对奥密克戎变异株是行之有效的。百泰克快速核酸检测站与国家抗疫需求以及国务院联防联控“十快”要求高度契合,可直接运输至机场、火车站、汽车站,便可投入使用,形成环枢纽1小时核酸检测圈,将流动人口的疫情传播风险,缩小至1小时社交圈,大大降低后期流调的工作量,减少全民筛查的频率,节省人力、物力和财力的多方共赢的精准抗疫举措,是经济复苏与严防疫情扩散之间的行之有效的手段。
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 听中美院士王晓东讲述“体制外”的科研
    以研究细胞凋亡著名的中国、美国科学院“双料”院士王晓东,似乎一直习惯将自己隐在媒体聚光灯之外。回国十三年来,作为生命科学领域科学家的他,让公众最 为“熟知”的形象应该是有着国家科技体制改革“试验田”之称的北京生命科学研究所(NIBS,下称“北生所”)创始人兼所长。这家后来被誉为中国最高效研 究所的特殊之处,在于打破了科研“铁饭碗”,采用全员聘用制,五年内不问成绩,充分给予研究人员科研自由和空间。低调王晓东的这点知名度,一定程度上还得 归功于北京大学终身讲席教授饶毅在2011年的一篇博文《一个成功的研究所为何被边缘化》引起的轩然大波。  另一次备受瞩目,是在2015年1月未来论坛创立大会上,出现了清华大学生命科学院院长施一公、王晓东和饶毅三位优秀华人生物学家首次同台作主题讲演的盛况。  今年2月,王晓东和前保诺公司(Bioduro)创始人欧雷强(John Oyler)共同创建的百济神州(北京)生物科技有限公司(下称“百济神州”)逆势登陆美国纳斯达克,成为2016年第一家赴美IPO的中国公司。  而这一次王晓东露面的直接原因,是他和饶毅正在为一个由民间多元化资本创立的科学奖项——未来科学大奖担任生物学家评委。  “我感觉这个事情确实是我们国家科学界的一件大事,如果做得好其实会产生很大的一个推动。”王晓东说,该奖项的评奖标准,是在大中华区内发生的对未来最有影响力的科学发现。    北京生命科学研究所所长王晓东  40岁的勇气  同样留美归来的施一公曾经形容王晓东“已经达到了从新中国走出去的华裔科学家能够在美国取得的最高地位”。  当时做出回国这个决定,对王晓东来说并不容易。  出国的时候王晓东没想到自己会在美国待那么久,从1985年赴美留学到成为得克萨斯州西南医学中心终身教授,在美国的20多年里,回国一直在王晓东的计划之中。和那些大多数在海外退休之后才回国的前辈相比,他做出这个决定的时候只有40岁。  创建北生所的初衷,是在6位新加坡华裔科学家的倡议下产生的,意在以新加坡分子与细胞生物学研究所(IMCB)为模板而建立中国IMCB。2003年,北生所以全球招聘的方式,从20多位应聘人选中选拔出美国得克萨斯大学西南医学中心教授王晓东、耶鲁大学终身教授邓兴旺担任共同所长。  当王晓东决定回国接受北生所聘书的时候,他听到最大的质疑声是:这个决定能不能再推后点,40岁的你正处在科研高峰期,而且你所在的美国实验室科研条件也无可挑剔,可不可以等到60岁再回来?  当53岁的王晓东回过头看10多年前做出的决定时,只庆幸40岁的自己的确有勇气。  学会“妥协”  即使是竭力推掉很多公开亮相机会,作为北生所所长的王晓东也常会感叹分身乏术。  对于不爱抛头露面的原因,王晓东此次面对《第一财经日报》时直言,是因为自己确实没有这方面兴趣,“你得总有一个平衡,到底是面向什么样的观众?如果总是面向大众,这一点其实我们真正做科学(的人)多少是有点‘不屑’的。”  王晓东所在的科学家圈子里,有一个玩笑说作为科学家每上一次报纸就会丢掉一个朋友 上一次电视就会丢掉所有朋友。依据是因为即使是科学家,面对媒体时说的话也不可能一直足够严谨,这些不够严谨的话通过媒体传播出去后,科学家同行们很容易给你打上“媚俗”的标签。  “看你这么说就觉得你‘媚俗’,你‘媚俗’就被人看不起,如果你还经常‘媚俗’,大家肯定就知道这个人已经从(科研)第一线下来了。”王晓东说。  为了保证把足够的时间和精力放在实验上,王晓东曾给自己立下规矩,每年出国参加学术会议不超过两次,每周工作不少于6天。但如今,想要坚持这个规矩变得越来越难。“我现在也很难保证能在实验室待足够的时间,虽然对我来讲在实验室的时间是最享受的。”  几年前的一个大年初一,王晓东的一个朋友打电话过来问他在哪儿度假。王晓东的确是在度假,只不过他对度假的定义是有机会留在实验室。  事实上,回国这么多年后,王晓东已经学会释怀,逐步接受了出席一些公开活动是科研所必须的存在,但很多时候他还是会因此多少有点负罪感。  2004年4月,王晓东以41岁的“低龄”当选为美国国家科学院院士,成为当时中国内地二十多万赴美留学生中进入美国科学界最高殿堂的第一人,也是其中最年轻的学者。如今,已经迈过50岁门槛的王晓东最大的感受是时间越来越宝贵,如果能够把时间放在实验室里也许是他对时间最好的利用。  但“偏爱”实验室的王晓东面对《第一财经日报》记者时也坦言,科学家到了一定年龄要学会放手,比如尝试把自己的工作重点放在培养下一代。  如今,王晓东对于自己的要求是努力地让自己脑子不要懒,有时候不见得非得要本人待在实验室里面,但脑子不能停止对实验的思考。  坚持“体制外”  北生所经常被外界描述成一个相当特立独行的存在。  北生所的英文名称——Nation Institute of Biological Sciences,Beijing(国家生命科学研究所,北京)——与其中文名字并不一致,这在一定程度上也暗示了它出身的复杂性。  曾经有媒体这样表述北生所的特殊性:在中国,几乎99.99%的科研机构都隶属于中科院、各大高校或科技部系统,目前独立于这个庞大体制的,只有一南一北两家机构:一是位于深圳的华大基因研究院,另一个就是北生所。  华大基因集团董事长汪建曾在接受采访时表示,对国家给北生所在人才考核和待遇方面开了“口子”羡慕不已。  王晓东并不否认北生所的特殊性,并且强调这种特殊性才是北生所的立足之本。“没有这个特殊性就没有办法在一个小环境里面去种一块试验田,如果完全跟大环境是通着的,大环境又有各种各样的问题,你的小环境就很难独立生存。”  和很多海归学者一样,刚回国那几年,王晓东花了很长时间去适应国内的科研体制。“国内的科学群体比较小,真正能够理解你、欣赏你的‘内行’并不多。”  相比海外比较成熟的评价系统,王晓东在初期需要反复地向“上级”科普他们到底在做什么,有多重要。“你要做真正有创造性的科学研究,它确实不是一个一帆风顺的过程,也不应该是一个政绩工程,作为一个先驱,你总是要经历所有的冷暖。”  有很多人给中国的科学研究尽快发展开了很多药方,而王晓东的药方就是要办独立的研究所。“因为我们中国没有足够数量的真正的好科学家,科学家不够,底子不行,开再多药方也不管用,即使有的药方能一时把某个学科的水平推上去,但也不可持续。我们需要在人才、资源和体制上发力,打造创新体系。”  从科研到高科技企业,王晓东的药方是科学要高于商业,需要培养各方面的专业人才。  但不可忽视的大背景是,现在中国的某些高科技领域极度缺乏合适的人才。因为很多领域以前没有做过,没有做过就不可能有现成合适的人才。  偏爱有野心的人  2012年,北生所年仅41岁的研究员李文辉在《eLife》杂志上发表了有关乙肝病毒受体的研究结果。这一发现,被国内同行认为是“真正在中国做出的生命科学重大突破”。  而李文辉自2007到北生所到2012年,在过去5年里只发过一篇小文章。一个科研机构竟然容许自己的工作人员在长达5年的时间里没有什么像样的“业绩”,这在国内科学界是难以想象的。  但这就是北生所打破科研“铁饭碗”,采用全员聘用制,五年内不问成绩,充分给予科研自由和空间的特殊性与成果。  经历十多年的特殊化发展之后,北生所交出的成绩单是:所内科研人员已在《科学》《自然》《细胞》等国际顶尖杂志上发表论文30余篇,质量为行业翘楚 2012年,全球著名研究机构美国霍华德休斯医学研究所,授予来自17个国家的28位科研人员“国际优秀青年科学家”称号,入选的7名中国人中,北生所独占4席。  由诺贝尔奖得主、美国科学院院士等组成的国际科学指导委员会曾如此评价北生所:“世界上还没有其他研究所能在如此短的时间里,在国际科研领域占据如此重要的地位。”  值得一提的是,北生所在挑选人才上,并不太看重过去有过怎么样的成绩,而是更关注引进人才计划做的项目其整体目标是否足够大胆。  “很多人考核关注提交的计划是不是足够严谨、是不是可行,我不关心可行性,我需要的是有野心的人。敢想敢干,这才是真正探索性的科研。你如果没有那样脑洞大开的能力,这些科研永远是低层次的。”按照王晓东的表述,他目前看过的所有计划,至今都没有能够完全按计划实现。因为一种真正看得很远的计划,很多细节是不可能在早期就能提前“填”进去的。  和很多科学家一样,王晓东喜欢未知带来的快感,直言“如果前方的路已能看得很清楚,那就没意思了”。  而这样一个发现性的科学成果,很多时候是可遇而不可求的,工作必须得做到,做不到就没有发现,但是谁也不知道工作做到什么时候才能获得真正有价值的发现。  王晓东并不回避这么多年来,天天要面对失败是件很恐怖的事情,但他给自己开出的药方是内心要足够强大,能够有坚定的方向,不能完全别人喜欢听什么就去说什么做什么。  科学与技术的界限  在美国待了20多年,又回国10多年,在中美两地科研环境差异上,王晓东最直观的感受是成熟度不同。  相比在二战后迅速发展的美国科学研究大环境,抛开经济水平差异和对于前沿科学的投入差别,王晓东不满意的是:中国是一个缺乏科学精神或者说科学传统的国家,没有真正的科学传统,所以很难把科学追求真理和经济、技术发展的关系搞得很清楚。  “真正在中国做科研,做真正原创性的科研,其实还是一个很新的事情。”按照王晓东的理解,科学和技术应该是两码事,科学最重要的功能是对人类未知的探索,而技术是怎么样把事情利用科学的原理做得更好,但中国至今还没有把科学和技术两个概念完全区分开。不过,利好因素是中国有很多聪明人,有足够的做科学的储备 此外,如今的中国正站在近现代史上最好的时间点,可以有更多的资金来投入科学研究。  “从生物学研究的角度来讲,现在的年轻人建立自己的独立实验室,留在中国还是留在美国,我觉得基本上差别不是很大了,这也是以前从来没有过的事情。”但王晓东还是坚持,必须搞清楚为什么要做科学,什么是好的科学,这个标准如果搞不清楚,也会把大家的路给带歪。
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:  GB 28301-2012食品添加剂 核黄素5'—磷酸钠  GB 28302-2012食品添加剂 辛,癸酸甘油酯  GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠  GB 28304-2012食品添加剂 可得然胶  GB 28305-2012食品添加剂 乳酸钾  GB 28306-2012食品添加剂 L-精氨酸  GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液  GB 28308-2012食品添加剂 植物炭黑  GB 28309-2012食品添加剂 酸性红(偶氮玉红)  GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)  GB 28311-2012食品添加剂 栀子蓝  GB 28312-2012食品添加剂 玫瑰茄红  GB 28313-2012食品添加剂 葡萄皮红  GB 28314-2012食品添加剂 辣椒油树脂  GB 28315-2012食品添加剂 紫草红  GB 28316-2012食品添加剂 番茄红  GB 28317-2012食品添加剂 靛蓝  GB 28318-2012食品添加剂 靛蓝铝色淀  GB 28319-2012食品添加剂 庚酸烯丙酯  GB 28320-2012 食品添加剂 苯甲醛  GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)  GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)  GB 28323-2012 食品添加剂 乙酸香茅酯  GB 28324-2012 食品添加剂 丁酸香叶酯  GB 28325-2012 食品添加剂 乙酸丁酯  GB 28326-2012 食品添加剂 乙酸己酯  GB 28327-2012 食品添加剂 乙酸辛酯  GB 28328-2012 食品添加剂 乙酸癸酯  GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)  GB 28330-2012 食品添加剂 乙酸异丁酯  GB 28331-2012 食品添加剂 丁酸戊酯  GB 28332-2012 食品添加剂 丁酸己酯  GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)  GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)  GB 28335-2012 食品添加剂 2-甲基丁酸乙酯  GB 28336-2012 食品添加剂 2-甲基丁酸  GB 28337-2012 食品添加剂 乙酸薄荷酯  GB 28338-2012 食品添加剂 乳酸 l-薄荷酯  GB 28339-2012 食品添加剂 二甲基硫醚  GB 28340-2012 食品添加剂 3-甲硫基丙醇  GB 28341-2012 食品添加剂 3-甲硫基丙醛  GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯  GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯  GB 28344-2012 食品添加剂 乙酰乙酸乙酯  GB 28345-2012 食品添加剂 乙酸肉桂酯  GB 28346-2012 食品添加剂 肉桂醛  GB 28347-2012 食品添加剂 肉桂酸  GB 28348-2012 食品添加剂 肉桂酸甲酯  GB 28349-2012 食品添加剂 肉桂酸乙酯  GB 28350-2012 食品添加剂 肉桂酸苯乙酯  GB 28351-2012 食品添加剂 5-甲基糠醛  GB 28352-2012 食品添加剂 苯甲酸甲酯  GB 28353-2012 食品添加剂 茴香醇  GB 28354-2012 食品添加剂 大茴香醛  GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)  GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)  GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)  GB 28358-2012 食品添加剂 丁酰乳酸丁酯  GB 28359-2012 食品添加剂 乙酸苯乙酯  GB 28360-2012 食品添加剂 苯乙酸苯乙酯  GB 28361-2012 食品添加剂 苯乙酸乙酯  GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯  GB 28363-2012 食品添加剂 二氢香豆素  GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)  GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮  GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮  GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮  GB 28368-2012 食品添加剂 2,3-戊二酮  GB 14930.2-2012 消毒剂(代替GB14930.2-1994)  GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)  GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)  附件:71项食品标准文本.rar
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制