当前位置: 仪器信息网 > 行业主题 > >

地克珠利分析标准品

仪器信息网地克珠利分析标准品专题为您提供2024年最新地克珠利分析标准品价格报价、厂家品牌的相关信息, 包括地克珠利分析标准品参数、型号等,不管是国产,还是进口品牌的地克珠利分析标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地克珠利分析标准品相关的耗材配件、试剂标物,还有地克珠利分析标准品相关的最新资讯、资料,以及地克珠利分析标准品相关的解决方案。

地克珠利分析标准品相关的资讯

  • 上榜!迪马色谱柱入选多个中药配方颗粒国家药品标准
    中药配方颗粒是由单味中药饮片经水提、分离、浓缩、干燥、制粒而成的颗粒,在中医药理论指导下,按照中医临床处方调配后,供患者冲服使用。中药配方颗粒的质量监管纳入中药饮片管理范畴。按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,国家药典委员会组织相关企业开展中药配方颗粒品种试点统一标准研究,并组织专家开展标准审评工作。 NEWS  2021年4月29日,国家药典委员会发布《关于执行中药配方颗粒国家药品标准有关事项的通知》:   经国家药品监督管理局批准,首批160个中药配方颗粒国家药品标准已正式颁布,将于2021年11月1日正式实施,现在我委网站予以转发,并就有关事项通知如下: 迪马色谱柱入选多个中药品种   在国家药典委员会发布的首批160个中药配方颗粒国家药品标准中,炒牛蒡子、川牛膝、干姜、黄芩、酒黄芩、酒女贞子、牛蒡子、女贞子、山楂(山里红)等多个品种推荐使用迪马科技液相色谱柱,现将部分品种汇总如下,供广大中药配方颗粒分析工作者参考。 160个中药配方颗粒如下:备注:以上红框标注品种推荐使用迪马液相色谱柱。
  • AAV衣壳滴度自动化标准化分析方案
    重组AAV载体(rAAV)已经成为使用最广泛的基因治疗病毒载体之一,由于载体本身结构和生产工艺复杂性,没有合适标准品作为对照,在研发阶段、临床前动物和临床病人阶段,准确标准化定量不同研究人员和实验室病毒载体剂量一直是主要问题。Tony Hitchcock等(BioProcess International, 2017)说明了由于AAV载体异质性,导致能感染目的细胞并转导表达目的蛋白的病毒量很少,下图说明只有小比例细胞可完成有临床价值的目的蛋白表达。 临床前和临床研究重要前提是病毒含量准确检测,作为AAV基因治疗开发中的关键质量属性,准确检测病毒含量需要从不同维度和采用多种分析方法来评估。病毒生物功能学检测主要是通过感染培养的细胞,重组基因组在细胞内复制或转导的目的异源基因表达,这两种类型检测分别为感染性或病毒转导滴度。相反,物理方法不依赖于病毒的生物学功能,病毒DNA通过衣壳消化酶处理后提取,常规的检测技术是qRCR和数字PCR,称为基因组滴度检测;对于病毒衣壳滴度检测采用ELISA方法、HPLC、SEC-MALS和NTA等技术;为了评估病毒感染的效价,必须要检测感染滴度。 D Grimm 1999说明AAV2衣壳蛋白可能引发宿主体液免疫原性反应,迫切需要检测AAV制剂中总AAV衣壳的准确数量。目前检测病毒衣壳滴度最普遍采用传统孔板ELISA实验,特别是PROGEN公司开发ELISA检测试剂盒。但是这些ELISA方法动态范围窄、手动操作步骤多、耗时长和不易标准化,行业都在开发更快速、重复性更好和通量更高的检测方案,自动化检测方案为病毒衣壳检测领域铺平了道路。 Bio-Techne公司旗下ProteinSimple为了加速AAV衣壳滴度分析,利用PROGEN公司经过严格验证金标准抗体,结合全自动微流控ELISA技术平台Ella,成功开发了AAV自动化快速检测试剂盒。目前广泛使用的血清型是AAV2,可靶向眼、肾和中枢神经系统等组织。Ella AAV2检测方案可检测AAV2病毒生产过程中衣壳完整的AAV2滴度,将双抗体夹心ELISA法和Ella微流控技术结合,实现了AAV2病毒衣壳滴度的自动化快速可重复检测。1Ella自动化操作流程对比手动ELISA,可减少80%手动操作时间和人员投入(15min VS 80min)2Ella ELISA实验具有更宽动态检测范围,可适用于各种不同工艺阶段的样本浓度测试要求3自动化实验检测具有更高数据精密度,适合不同实验室和不同时间点实验数据对比研究对比PROGEN传统手动ELISA,Ella自动化方案总结 以上技术对比可说明,与传统ELISA方法比,在操作复杂、费时和重复性差等方面Ella都有明显提升,其检测方案具有更高自动化程度,具有更宽检测范围,可更快速获得实验结果。特别适合AAV病毒载体工艺优化和CMC生产过程中衣壳滴度检测,而且Ella软件符合21 CFR Part 11,安全性高,符合GMP要求。 除AAV2自动化快速检测方案外,Ella已经成功开发HEK293 HCP自动化检测方案,致力于实现AAV基因治疗产品的工艺和质控测试自动化。扫码获取AAV衣壳滴度自动化标准化分析方案ProteinSimple,Meet Ella | ProteinSimple 全自动微流控免疫分析仪 全自动 高灵敏 高精度 快速视频号
  • 中药配方颗粒标准中“茯苓皮配方颗粒的检测”,使用迪马色谱柱
    2023年,辽宁省药品监督管理局正式发布了68个第三批中药配方颗粒标准,自发布之日起正式实施。其中“茯苓皮配方颗粒”标准检测方案中,使用了迪马科技色谱柱:Diamonsil Plus C18, 250x4.6mm,5μm(Cat.#:99403)。一、品种说明 【来源】本品为多孔菌科真菌茯苓Poria cocos(Schw.)Wolf 菌核的干燥外皮经炮制并按标准汤剂的主要质量指标加工制成的配方颗粒。【制法】取茯苓皮饮片10000g,加水煎煮,滤过,滤液浓缩成清膏(干浸膏出膏率为2%~6%),加入辅料适量,干燥(或干燥,粉碎),再加入辅料适量,混匀,制粒,制成1000g,即得。【性状】 本品为浅灰黄色至浅灰棕色的颗粒;气微,味微苦。二、特征图谱 【特征图谱】照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(柱长为250mm,内径为4.6mm,粒径为5μm);以乙腈为流动相A,以0.1%磷酸溶液为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.8mL;柱温为30℃;检测波长为242nm。理论板数按茯苓酸A峰计算应不低于8000。参照物溶液的制备 取茯苓皮对照药材2g,加水50mL,加热回流30分钟,放冷,滤过,滤液蒸干,残渣加甲醇25mL,超声处理30分钟,放冷,摇匀,滤过,取续滤液,作为对照药材参照物溶液。另取茯苓酸A对照品、松苓新酸对照品适量,精密称定,加甲醇制成每1mL各含40μg的混合溶液,作为对照品参照物溶液。供试品溶液的制备 取本品适量,研细,取约1.0g,精密称定,置具塞锥形瓶中,精密加入甲醇20mL,称定重量,超声处理(功率250W,频率40kHz)30分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密吸取参照物溶液和供试品溶液各10μL,注入液相色谱仪,测定,即得。供试品色谱中应呈现6个特征峰,并应与对照药材参照物色谱中的6个特征峰保留时间相对应,其中峰3,峰5应分别与相应对照品参照物峰的保留时间相对应;与茯苓酸A参照物峰相对应的峰为S1峰,计算峰1、峰2、峰4与S1峰的相对保留时间,其相对保留时间应该在规定值的±10%之内,规定值为:0.81(峰1)、0.91(峰2)、1.29(峰4);与松苓新酸参照物峰相对应的峰为S2峰,计算峰6与S2峰的相对保留时间,其相对保留时间应该在规定值的±10%之内,规定值为:1.13(峰6)。
  • 关注消费品标准:中国标准比国际低吗
    悄然之间,国民消费升级的步伐加速,人们日常消费越来越注重品质、安全、细节。相比之下,国产消费品升级的进程有些滞后,一些消费者加入“海淘族”。  标准是质量的基准线。有人说,消费品生产升级缓慢都是标准惹的祸,因为中国标准与国际标准相比水平偏低。中国消费品标准真的远远落后于发达国家吗?咱们的差距在哪儿?  中国标准总体水平不低  比对中外3816项消费品安全技术指标,有3000项与国际国外要求一致  “口罩要参照欧洲EN149、美国NIOSH标准来选,净水器要买美国NSF认证的,空气净化器得选经过美国CADR认证的̷̷”北京的准妈妈冯女士有一套自己的买东西准则,对各大生活用品的各大标准了如指掌、如数家珍。而最让她信赖的当属欧盟标准,对于中国标准,冯女士表示感觉国内标准在一些方面太宽松了、不够严,“还是有些不放心。”  中国标准的真实水平如何?  80%——国际标准的转化率(即国际标准被国家标准、行业标准等国内标准采纳的比例)基本超过80%。国际标准化组织制定的标准是国际贸易的基础,也是产品参与国际竞争的入场券。目前,我国在家用电器、照明电器、纺织品、服装、家具、玩具、鞋类产品、纸质品、洗涤用品等主要消费品行业转化率均已超过80%,有些行业甚至更高一些。  79%——安全技术指标一致性达79%。国家标准委2014年启动了消费品安全国内外标准比对行动,在首批比较的12个行业3816项指标中,有3000项左右技术指标能够与国际技术法规和标准要求保持一致性,比重为79%。  具体而言,有2299项严于国际国外,728项与国际国外一致,529项宽于国际国外,260项与国际国外存在差异。71%的指标严于或与欧盟相关指令与协调标准一致 74%的指标严于或与美国相关法律法规与标准一致 90%的指标严于或与日本、加拿大的相关法律法规与标准一致。  “对比结果显示,我国消费品安全标准与国外相比总体水平并不低。”国家标准委工业标准二部主任戴红说,在储水式电热水器的防电墙要求、电压力锅、豆浆机等液态加热器的安全要求、纸质品的卫生要求等方面,中国标准甚至严于国际标准。  中国标准的水平还可从中国参与国际标准修制订的深度看出。  国家标准委主任田世宏介绍,目前在纺织服装、家用电器、烟花爆竹、制鞋、钟表等领域,我国承担了国际标准化组织、国际电工委员会两大国际组织下属10个技术机构的主席、副主席或秘书处、联合秘书处工作。  “在这10个机构中,我们都实质性地参与甚至领头承担国际标准的制定工作。”田世宏说,在家庭服务机器人等新兴技术领域、玩具等热点安全领域,中国也在推进相关国际标准的研制工作。  差距在化学安全领域  国外标准从安全要素出发,力求覆盖范围最大化,中国标准长期以来局限在行业内部  为何一些消费者会形成“国外标准更严格”的印象呢?  “我国与国外标准的差距主要体现在化学安全方面,且落后较多,而这恰恰是消费者颇为关注的领域。”戴红说。  高先生和妻子最近正在为即将出生的宝宝挑选儿童安全座椅,夫妻俩首选国外的牌子。“除了物理性能上的安全,我更关心座椅的塑料、面料等原材料是否含有有毒物质。”高先生说,化学物质的侵害看不见、摸不着但危害大,需要格外注意。  今年6月,欧洲化学品管理局发布了第15批SVHC清单(需要高度关注的物质清单),至此欧盟REACH法规(《关于化学品注册、评估、许可和限制法案》)累计发布的清单中共有169种化学物质。根据REACH法规,如果物品中含有任何一种SVHC候选清单中的物质,且该物质的含量超过0.1%,则有告知消费者的义务。  以儿童安全座椅为例,我国国家标准仅针对8种可迁移元素(锑、砷、钡、镉、铬、铅、汞、硒)做出了限量要求,而欧洲则建立起了跨行业的化学品管控标准。可以说,我国消费品标准中涉及的化学危害指标不仅少且缺乏全产业链的通用要求。“尽管标准对部分化学物质进行了限量要求,但由于缺乏基础研究和伤害案例,仅能被动跟随发达国家和地区的法规变化。”戴红说,我国标准仅针对产品领域进行化学安全要求,缺乏类似国外法律法规覆盖跨领域、全产业链的通用要求。  究其根本,差距源自我国与欧美发达国家在标准化理念上的差异。  一方面,欧美发达国家注重从安全要素出发,制定跨行业领域的顶层通用法规,强调源头控制。如欧盟REACH法规、ROHS指令等,均是以安全要素为线索,涉及前后产业链和相关产品,力求安全要求覆盖范围最大化。  “而我国长期以来制定标准更多是为了服务于行业管理,以产品为线索,局限在行业内部制定安全标准。虽然围绕具体某种产品的安全要求比较全面、系统,但标准适用范围窄,既容易出现标准的交叉重复,又容易出现标准覆盖不到的空白区域。”戴红说。  另一方面,欧美发达国家重视团体标准、企业标准,消费者所推崇的美国NIOSH口罩标准就是团体标准。而在去年标准化改革方案出台前,行业标准在我国尚不具备法律地位。即使是企业自己制定、内部使用的企业标准,也须到政府部门履行备案甚至审查性备案。  “国标其实只是个进入门槛,为适应市场竞争,追求更好水平的企业标准水平往往反而更高。”戴红说。  不让标准有短板  2020年,重点领域消费品与国际标准一致性程度达到95%以上  消费升级,标准必须迎头赶上。近日发布的《消费品标准和质量提升规划(2016—2020年)》明确提出,到2020年,消费品整体质量要得到明显提升,重点领域消费品与国际标准一致性程度达到95%以上。  “标准是动态变化的,比对工作将加快推进。”国家标准委有关负责人介绍说,首批中外消费品安全技术标准的比对集中在儿童用品(玩具、童鞋、童装、童车)、服装纺织、家用电器、首饰、家具、纸制品、插头、涂料等12个领域。根据《提升规划》,比对工作将逐步常态化,一方面要建立起消费品标准比对与报告制度,另一方面,要加强国内外标准比对数据资源的建立。除了关键技术指标的对比,比对工作也将拓展至试验方法的比对验证。  重要国际标准转化速度将加快。“我们将通过建设一批消费品的标准化示范区,探索经验、树立标杆,以期推动我国消费品标准更快地与国际标准和国外先进标准接轨,满足大家对更高品质消费品的需求。”田世宏说。  标准的结构优化也在同步推进。记者了解到,去年出台的标准化改革方案,赋予了团体标准合法身份。今后,我国将鼓励具备相应能力的学会、协会、联合会等社会组织和产业技术联盟协调相关市场主体共同制定满足市场和创新需要的标准,供市场自愿选用。此外,还对团体标准不设行政许可,由社会组织和产业技术联盟自主制定发布。  中国玩具和婴童用品协会就于今年6月发布儿童安全座椅的团体标准,其在三个方面都严于国家标准,并增加了对pH值、甲醛、邻苯二甲酸酯、阻燃剂等化学元素的限量要求。更为可贵的是,这一团体标准得到了15家企业的认同,他们发布声明自愿执行此标准。  在企业标准方面,根据改革方案,将逐步取消政府对企业产品标准的备案管理,推行企业产品和服务标准自我声明公开和监督制度,企业自我声明公开标准的视同完成备案。“希望通过这些举措,增加标准的有效供给,构建更成熟的中国标准体系。”田世宏说。
  • 沃特世推出全新的分析标准品与试剂产品组合
    质量控制标准品和认证溶剂瓶可确保用户获得一致的、准确的分析结果 美国马萨诸塞州米尔福德市&ndash 2013年3月18日&ndash 沃特世(Waters)公司(纽约证券交易所代码:WAT)针对分析标准品与试剂产品组隆重推出质量控制标准品(QCRM)和认证溶剂瓶。QCRM设计专用于沃特世仪器,通过此标准品能够非常快捷地确认色谱或MS系统的运行状况,同时确保系统性能的可重复性。沃特世认证溶剂瓶适用于盛载溶剂和流动相,经过独特的工艺处理,可防止出现假峰和基线噪音。 沃特世的QCRM产品组合是以沃特世科学家们的专业知识为基础,经过特别配制的一系列标准品和混合物。用户可以使用QCRM对系统进行评估和基准测试,确保系统每次运行时都能够呈现出相同的性能。生产这些即时可用型标准品的工厂均经过ISO 9001和ISO 17025系统认证。QCRM适用于大量的仪器性能测试,产品规格囊括组成简单的中性混合物以及组成复杂、特定于某个应用的标准品。所有化合物经过在不同的色谱柱上进行评价、满足UV和MS检测器下良好的峰形后最终被选中。此外,QCRM还可用于评估硬件、软件、流动相、色谱柱和化学问题。 新型的认证溶剂瓶有助于确保我们的客户尽可能方便地获得可靠、一致的优质结果。认证溶剂瓶可用于任何LC系统,包括UPLC、LC/UV和LC/MS。这些特殊的溶剂瓶按照严格的标准进行制造,可防止由高TOC、玻璃的化学干扰以及玻璃基质的水解腐蚀引起的玻璃老化而导致的假峰和基线噪音。 &ldquo 分析标准品与试剂在检测准确度方面作出的贡献有效提升了沃特世产品的竞争力,而QCRM和认证溶剂瓶则帮助我们在这个方向上又迈进了创新性的一大步。通过整合这些产品,我们的用户将明显感受到数据质量的大幅提升。此外,他们无需花费大量时间用于制备、混合标准品和流动相,节省下来的更多时间可以集中到解决科学问题上。&rdquo 消耗品业务部副总裁Mike Yelle说。 沃特世致力于为实验室提供端对端解决方案,范围涵盖仪器到消耗品,力争提供全方位的支持服务。分析标准品与试剂可以完美地融合到分析过程中,为所有沃特世品牌的色谱柱提供可靠的结果。QCRM和认证溶剂瓶在实现这一目标的同时,可减少重复运行,确保分析系统性能的稳定性并有效提高系统的工作效率。 关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2012年沃特世拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 联系人:Chris Orlando沃特世公司公共关系经理508-482-2623Chris_Orlando@waters.com
  • 2020年分析标准品市场总值15.6亿美元
    p  日前,Markets and Markets发布报告“Analytical Standards Market by Technique (Chromatography, Spectroscopy, Titrimetry, Physical Property Testing), Application (Food & Beverage, Environmental, Pharmaceutical, Cosmetic, Veterinary, Forensics, Petrochemistry) - Global Forecast to 2020”,分析研究了北美、欧洲、亚太和其他地区的分析标准品市场面临的主要驱动力、约束、机会和挑战。/pp  该报告分析研究了2015年至2020年的预测期内全球标准品市场情况。2015年全球标准品市场规模为11.4亿美元,预计到2020年该市场将达到15.6亿美元,2015年至2020年期间年复合增长率为6.5%。许多因素,如a title="" href="http://www.instrument.com.cn/application/industry-S22.html" target="_self" style="color: rgb(255, 0, 0) "strong医药/strong/a行业严格的监管环境、全球范围内越来越多的a title="" href="http://www.instrument.com.cn/application/industry-S03.html" target="_self" style="color: rgb(255, 0, 0) "strong食品/strong/a安全问题、政府对各行业研究活动日益增长的资助、蛋白质组学和代谢组学对分析仪器需求增长、生物制剂和生物仿制药审批中分析测试的地位越来越重要,正推动着全球分析标准品市场不断增长。另一方面,分析仪器成本较高和专业技术人员缺乏等因素也制约着全球市场的增长。/pp  按照标准品所用于的分析技术方法的不同,全球标准品市场被分为四个主要部分,即色谱法、光谱法、滴定法和物理性能测试。2015年,色谱标准品占整个标准品市场的最大份额,其主要原因在于食品安全问题不断爆发、药品审批和新产品推出过程中色谱测试的重要性越来越凸显。/pp  全球标准品市场也可分为食品饮料、环保、制药/生命科学、法医、兽医和石化等细分市场。食品饮料市场又可细分为香精香料、糖类、多肽/氨基酸、食品添加剂、脂肪酸/ FAME /血脂、GMO(转基因生物)及真菌毒素市场。2015年至2020年期间,制药/生命科学市场预计将以最高的年复合增长率增长,而这种高增长主要是由于制药业严格的监管规定、以及不断增长的研发支出。/pp  有关环境的标准品市场分为农药、挥发/半挥发性物质、阻燃剂、多氯联苯、二恶英、烷基酚和固体废物的标准品。同样,制药/生命科学标准品市场分为化妆品、草药/植物药物、二级药品、药品杂质、药典标准和荧光微粒的标准品。法医标准品市场包括药物滥用和掺杂标准品。兽医标准品市场被分成抗生素和激素标准品。石化市场被分为汽油、柴油和生物燃料的标准品。/pp  截至2015年,北美占全球分析标准品市场的最大份额,其次是欧洲。然而,2015年至2020年期间,亚太市场预计将具有最高的复合年增长率。生命科学领域的研究经费增加、从发达国家向亚太地区国家转移的临床试验外包增加、基于色谱的研究活动增加、色谱法在食品和环保行业应用的增加和粮食安全问题不断爆发等诸多因素,不断刺激亚太地区的分析标准品市场的增长。/pp  Merck KGaA 、LGC Limited 、Agilent Technologies Inc. 、Waters Corporation 、Restek Corporation 等公司是的全球分析标准品市场的主要参与者。/pp style="text-align: right "编译:刘丰秋/p
  • 沃特世扩展分析标准品与试剂产品线
    最新发布的质量控制标准品和经认证的溶剂瓶可提高实验室整体效率  2012年,沃特世(Waters)公司(纽约证券交易所代码:WAT)面向科学实验室推出了分析标准品与试剂产品,其中包括200余种预制的标准品和试剂。有了这些产品,科研人员通过沃特世一家供应商便可获得所有试剂,范围涵盖预配制小分子单一成分标准品、多成分试验混合标准品以及蛋白质消化物和糖苷标准品。  一年后,沃特世隆重推出质量控制标准品(Quality Control Reference Materials, QCRM)和经认证的溶剂瓶,进一步完善了这一产品线。沃特世质量控制标准品(QCRM)可用于对LC系统性能进行常规基准测试和故障排除,使科研人员无需再自行制备标准品。通过这些标准品,科研人员可以确保系统处于最佳运行状态,避免收集到不准确的数据。它们还可以用来更早地发现系统问题,从而缩短仪器停机时间、防止珍贵样品的浪费。  沃特世全新经认证的溶剂瓶采用专利工艺制造,最大程度降低背景噪音,为科研人员获得可靠、一致和高质量的结果提供保证。经认证的溶剂瓶到货时即可使用,可用于任何LC系统,包括UPLC、LC/UV和LC/MS。这些独特的溶剂瓶可以防止由高TOC、玻璃的化学干扰以及玻璃基质水解腐蚀引起玻璃老化而导致的鬼峰和基线噪音。  &ldquo 通过和客户交流,我们发现他们还需要一系列的标准品来帮助他们清楚了解从化学品到硬件的整体系统性能水平,&rdquo 沃特世消耗品业务部副总裁Mike Yelle说,&ldquo 质量控制标准品和经认证的溶剂瓶加入到这一产品线后可帮助科学家获得更高质量的结果和一致性。&rdquo   沃特世分析标准品与试剂可一直追溯至原材料,便于实验室管理人员和审计人员对化学测量的质量进行评估。此外,沃特世分析标准品与试剂的配制极其精确,大大消除了不同实验、不同仪器和不同实验室之间差异性的可能来源。
  • 沃特世扩展分析标准品与试剂产品线
    最新发布的质量控制标准品和经认证的溶剂瓶可提高实验室整体效率  2012年,沃特世(Waters)公司(纽约证券交易所代码:WAT)面向科学实验室推出了分析标准品与试剂产品,其中包括200余种预先配制的标准品和试剂。有了这些产品,科研人员通过沃特世一家供应商便可获得所有试剂,范围涵盖预配制小分子单一成分标准品、多成分试验混合标准品以及蛋白质消化物和糖苷标准品。  一年后,沃特世隆重推出质量控制标准品(Quality Control Reference Materials, QCRM)和经认证的溶剂瓶,进一步完善了这一产品线。沃特世质量控制标准品(QCRM)可用于对LC系统性能进行常规基准测试和故障排除,使科研人员无需再自行制备标准品。通过这些标准品,科研人员可以确保系统处于最佳运行状态,避免收集到不准确的数据。它们还可以用来更早地发现系统问题,从而缩短仪器停机时间、防止珍贵样品的浪费。  沃特世全新经认证的溶剂瓶采用专利工艺制造,最大程度降低背景噪音,为科研人员获得可靠、一致和高质量的结果提供保证。经认证的溶剂瓶到货时即可使用,可用于任何LC系统,包括UPLC、LC/UV和LC/MS。这些独特的溶剂瓶可以防止由高TOC、玻璃的化学干扰以及玻璃基质水解腐蚀引起玻璃老化而导致的鬼峰和基线噪音。  &ldquo 通过和客户交流,我们发现他们还需要一系列的标准品来帮助他们清楚了解从化学品到硬件的整体系统性能水平,&rdquo 沃特世消耗品业务部副总裁Mike Yelle说,&ldquo 质量控制标准品和经认证的溶剂瓶加入到这一产品线后可帮助科学家获得更高质量的结果和一致性。&rdquo   沃特世分析标准品与试剂可一直追溯至原材料,便于实验室管理人员和审计人员对化学测量的质量进行评估。此外,沃特世分析标准品与试剂的配制极其精确,大大消除了不同实验、不同仪器和不同实验室之间差异性的可能来源。  关于沃特世公司(www.waters.com)  50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。  作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。  2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 中药配方颗粒省级标准制定关注要点
    2月10日,国家药品监督管理局、国家中医药管理局等四部门联合发布《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),结束中药配方颗粒试点工作。《公告》的发布标志着中药配方颗粒的生产和监管进入新的阶段。  根据《公告》要求,符合条件的生产企业可报所在地省级药品监督管理部门备案后进行中药配方颗粒的生产。作为中药配方颗粒生产和质量监管的重要依据,中药配方颗粒质量标准成为备案资料中最关键的技术文件。《公告》要求,中药配方颗粒应执行国家标准,国家标准没有规定的,允许省级药品监督管理部门自行制定标准。目前国家药品监督管理局已经公示了160个品种的中药配方颗粒质量标准,即将转为中药配方颗粒国家标准,将为各生产企业配方颗粒的备案提供依据。但是160个品种之外的中药配方颗粒品种目前尚无国家标准,中药配方颗粒省级标准制定工作迫在眉睫。  《公告》要求中药配方颗粒省级标准的制定应严格按照《中药配方颗粒质量控制与标准制定技术要求》执行。中药配方颗粒省级标准制定应重点关注以下几点:  一是研究用样品的代表性。应在充分产地调研基础上收集含道地产地、主产地等不同产地的15批以上符合药品标准规定的同一基原药材样品,并依据药品标准或中药饮片炮制规范炮制成供研究用中药饮片样品。  二是标准汤剂研究的标准性。标准汤剂是衡量中药配方颗粒与中药饮片汤剂“一致性”的物质基准。标准汤剂的标准性涵盖了投料饮片(药材)的道地性、煎煮工艺的一致性、质量控制的严谨性。因此,标准汤剂的制备应参照《医疗机构中药煎药室管理规范》采用传统汤剂的获得模式。标准汤剂是中药饮片经水煎煮提取、过滤固液分离、低温浓缩、冷冻干燥制得。通过15批标准汤剂的出膏率、有效成份(或指标成份)含量及含量转移率、特征图谱等数据,分析得出标准汤剂的三个基本质量指标,为中药配方颗粒的工艺研究和质量标准制定提供依据。  三是工艺研究的合理性。中药配方颗粒制备工艺合理性的主要评价标准是上述标准汤剂的三个质量指标。因此,工艺研究中提取时间、提取次数、浓缩、干燥、制粒等工艺参数的确定均应以标准汤剂的质量指标为依据。处方量、制成总量及规格等也应与标准汤剂的质量指标相对应。中药材、中药饮片、标准汤剂、中间体、成品之间关键质量属性的量质传递应具有相关性。  四是质量标准研究的科学性、严谨性。中药配方颗粒质量标准的制定应针对中药配方颗粒的特点,由于中药饮片经水煎煮制成颗粒后已失去了中药饮片的鉴别特征,因此应采用特征图谱或指纹图谱等专属性、整体性控制方法进行鉴别;含量测定应选择水溶性有效成份或专属指标成份作为测定指标并根据标准汤剂的含量及含量转移率范围制定合理含量上下限度。此外,为有效控制中药配方颗粒的安全性,应参照中药材、中药饮片质量标准中规定的重金属、农药残留、真菌毒素限量制定相应的检查项目,对于中药材、中药饮片标准中未规定上述安全性检查项目的品种应进行相应考察,根据考察结果确定是否有必要进行控制。  五是质量标准复核的重要性。质量标准复核工作是考察标准重现性和可行性的重要环节,质量标准草案上升为正式标准之前均应进行质量标准复核,应组织省级药检部门或其他有资质的检验机构对制定的质量标准草案进行复核,以确保标准的可行性。  中药配方颗粒省级标准制定工作是一项关系中药配方颗粒行业健康发展的重要工作,期待各省能群策群力,充分发挥中药配方颗粒原试点企业的经验和科研院校的科研优势,尽快制定出能有效控制中药配方颗粒质量的省级标准。(作者:河北省药品医疗器械检验研究院 冯丽
  • 沃特世公司推出可追溯的认证分析标准品与试剂新生产线
    独立来源的随时可用的标准品与试剂可以提高实验室的产能,降低浪费,增加分析结果的可信度奥兰多,福罗里达州-2012年3月12日-沃特世公司(WAT:NYSE)今天启用了一条分析标准品和试剂的新生产线,目前它可以向科研实验室提供200多种预包装的标准品和试剂。沃特世分析标准品和试剂满足了实验室对提高工作量、支持全球化、刺激业务增长和加强合规性的需要。沃特世公司将在美国科罗拉多州Golden新建成的工厂生产标准品和试剂。全球客户现在可以立即订购沃特世公司的分析标准品和试剂,从小分子、单一化合物标准品、到蛋白酶切和多糖标品,品种繁多。为满足客户需求,沃特世今后还将推出更多新品。&ldquo 对于认证的LC和LC/MS分析而言,标准品和试剂对获得理想的性能,以及符合法规十分重要。配置过程从纯净的起始材料开始,经过适当的混合,到稳定性分析和准确记录,&rdquo 化学商业运营部高级总监Mike Yelle说。&ldquo 我们调查了上百名科研人员并且发现,目前即使不是绝大多数,也有很多实验室从外部供应商购进化学原料,然后自己亲手配制标准品。说实话,实验室不想再干这些事情了。因为他们的工作不是配制标准品;而是进行化验,发现新成果。因此,我们将配制分析标准品和试剂作为我们的业务。&rdquo 分析标准品和试剂对正确校准、控制、量化和评估分析操作中使用的LC、SFC或LC/MS系统至关重要。而对于一家拥有全球实验室网的组织而言,保持分析与分析、仪器与仪器,以及实验室与实验室之间质量水平的一致性非常重要。而在数据的可比性和可防御性方面,在较长的一段时间内,完全可重复地配制标准品极为关键,因此沃特世公司按照严格的规范生产标准品和试剂。沃特世标准品和试剂具有绝对的可追溯性,这是她标志性的特征。为了确保真实性,测定的属性必须通过明确与完整的可追溯链条,直接与标准品的来源相关联。沃特世公司作为一个有资质的,可随时使用的标准品与试剂的单独来源的认证的供应商,它能帮助实验室:将员工从繁琐和低效的手工操作中解放出来让员工参与到更有价值的工作中压缩库存控制/控制运营成本降低损耗和对环境的影响简化工作流程/降低运营成本/采用更加一致更容易地评估分析测定的质量通过消除标准品和试剂导致的错误,提高了对分析准确性和质量的信心符合更严格的法规要求缩短了分析结果的周转时间沃特世公司为客户提供标准品与试剂的历史可以回溯到很多年前。沃特世公司对每个工序的所有权与控制权,促进了每批次、每月和每年生产的产品性能不变,从而可以确保目前开发出的分析方法在产品的有效期之内始终有效。沃特世分析标准品和试剂的推出,使沃特世公司实现了它作为端对端系统解决方案供应商的承诺,它为分析测定提供了最佳的设备、信息、色谱柱,现在又为它提供了标准品和试剂。实验室可以通过www.waters.com网上直接购买沃特世产品。了解更多信息:www.waters.com/standards关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。联系人:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 食品中元素形态分析方法与标准简述
    元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态分为物理形态和化学形态,物理形态是指元素在样品中的物理状态,如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。  元素在食品中以不同的形态存在,元素对于人体的作用和元素的形态密切相关。这里所说形态是指该元素在不同种类化合物中的表现或分布。比如铬,三价铬是人体耐糖因子的组成部分,很多糖尿病和人体缺乏三价铬有关,而六价铬则是比较强的致癌物。不同形态砷之间的毒性差异也很大,如以有机砷形式存在的砷糖、砷甜菜碱几乎没有毒性,而无机砷化物的毒性却很高。所以,对于某些元素,只了解某元素在食品中的总量还是不够的,我们在了解总量的同时,更希望了解某元素在食品中的形态组成。  测量元素的形态,可以通过以下一些方法来实现:  分光光度法:在显色时对元素的形态有特定要求,可以利用这一特性,进行形态分析。比较典型的例子是水中六价铬的测量。这一方法通常干扰大、灵敏度不是很高,在简单基质有一定应用的范围。  原子荧光法(AFS):由于产生氢化物对元素的形态有一定的要求,可以利用这一特点进行形态分析。比如说有机砷几乎不会和硼氢化物生成氢化砷,氢化物-原子荧光法不能直接检测有机砷,而无机砷则能和硼氢化物进行反应而被探测到。利用这一特点可以测量某些元素的不同形态。该方法的特点是灵敏度很高。不足之处是特异性强,只能分析有限几种元素中某些形态,应用不广。  色谱法:采用色谱柱分离不同形态,然后用分光光度或电导等检测器测量。比如离子色谱法就是比较常用的方法。这一方法由于有预分离处理,干扰比分光光度法小,灵敏度也好一些。  预分离法:对试样先根据元素不同形态的特点,进行预分离,如有机萃取、离子吸附和交换等手段,将某特定形态和其它形态分离后收集,再采用一些光谱的分析方法测量。这种方法灵敏度比较高,但前处理比较复杂,也容易受到干扰。  色谱-光谱(质谱)联用法:该方法采用在线色谱分离,分离后各组分直接进入光谱仪器测量。结合了色谱和光谱技术的优点,具有分离效果好、灵敏度高、应用广泛等优点。缺点是设备较为昂贵,从色谱到光谱的接口技术需要解决,前处理方法也有待加强研究。不同的色谱和光谱联用技术都有文献报道,主要集中在色谱和等离子体质谱仪(ICP-MS)的联用上。目前常见的有以下几种联用方法。  1、液相色谱-ICP-MS联用  液相色谱(HPLC)-ICP-MS联用技术适用于食品样品中难挥发的化合物的分析。由于液相色谱的流速和ICP-MS 进样速度一致,所以联接非常简单方便,其联用接口非常简单。另外,由于液相色谱的特点,具有进样量小、分析速度快、分离效果好等优点。因此,HPLC与ICP&mdash MS联用技术在各类食品中砷、硒、锡、汞等元素形态分析领域得到了越来越多的应用,相关的研究也最多。在使用该技术时,要注意液相流动相的成分是否符合ICP-MS的进样溶液要求。如果有机相比例过高,则需要辅助氧化技术。  2、离子色谱-ICP-MS联用  离子色谱法(IC)作为一种有效的分离和检测技术,已经在金属和非金属离子的测定中得到了较多应用,已成为成为解决复杂机体中超痕量离子形态分析的有效工具,也是ICP&mdash MS相关联用技术研究的热点之一,在食品分析领域有着越来越多的应用。其联用方法和液相色谱一样,也很简单。目前相关文献集中在铬、砷、锑、溴、碘等形态的检测研究上。同样的,使用该技术时,要注意离子色谱流动相和ICP-MS进样要求的匹配性,流动相的可溶性固体含量不能太高。  3、气相色谱-ICP-MS  气相色谱(GC)适用于易挥发或中等挥发的有机金属化合物的分离,而且分离之前的衍生化步骤不仅使分离与分析过程复杂化,而且增加了待测形态丢失或玷污的可能性。而且气相和ICP-MS联接需要一个专用的接口。因此,GC与ICP&mdash MS联用应用于元素的形态分析具有一定局限性。目前,GC-ICP-MS技术仅限于烷基铅、烷基锡和烷基汞等形态的分析上。  4、毛细管电泳-ICP-MS  相对与气相和液相色谱,毛细管电泳(CE)具有分离效率高、消耗样品量少、分离时间快等特点适用范围广,可分离从简单离子、非离子性化合物到生物大分子等各类化合物。但是在分离过程中,样品中分析物的原始形态可能由于电解质或pH值的调节而发生变化,样品的组成也是影响CE分离的一个重要因素,由于CE与ICP&mdash MS的接口没有HPLC成熟,在一定程度上制约了CE-ICP&mdash MS联用技术的应用。但相关的研究还是不少,主要集中在食品中砷、硒、汞等元素形态的分析。  5、液相色谱-AFS  由于中国AFS的技术领先于世,所以该研究在国内发展也很快。由于AFS对某些元素,如As、Se、Hg等的检测灵敏度很高,而且这些元素也是形态分析所最关注的元素,所以AFS在元素形态分析上大有用武之地。如前所述,单用AFS能进行一些特定的形态分析,而要完成更好的分离和检测,就需要和色谱联用。现在主要是和液相色谱联用,已经有多款HPLC-AFS仪器上市。该技术的优势在于具备了液相分离的优点,也能利用AFS的高灵敏度和元素特异性,仪器的整体价格也不高。其缺点在于,检测元素受到AFS的限制,而且AFS检测状态的稳定性也较难保证。  食品中元素形态分析的标准:  1、砷的形态分析标准  根据GB 2762-2012 《食品中污染物限量》,规定了食品中无机砷的限量标准,所以也有相关的检测方法:  GB/T 5009.11-2003 食品中总砷及无机砷的测定 :无机砷检测采用原子荧光法,前处理和总砷不一样。  GB/T 23372-2009 食品中无机砷的测定 液相色谱-电感耦合等离子体质谱法:该标准采用HPLC-ICP-MS联用技术,分离和检测能力都很强。  有机砷农药的检测方法有一个行业标准:SN/T 2316-2009 进出口动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留量检测方法 离子色谱-电感耦合等离子体质谱法  2、汞的形态分析标准  根据GB 2762-2012 《食品中污染物限量》,规定了食品中有机汞(以甲基汞计)的限量标准,所以也有相关的检测方法:  GB/T 5009.15-2003 食品中总汞及有机汞的测定: 有机汞采用气相色谱法和预分离&mdash 冷原子光度法。  无机砷和有机汞的检测方法都有缺陷,修订的新方法(草案)采用液相-原子荧光联用法,但也有问题,到现在没有颁布为更新方法。  3、溴酸盐的形态分析标准  由于溴酸盐是2B类致癌物,所以已不允许作为添加剂使用。食品中溴酸盐的形态分析有两个标准,都用离子色谱法:  GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法  SN/T 3138-2012 出口面制品中溴酸盐的测定 柱后衍生离子色谱法  水中溴酸盐也有限量标准和检测方法,在相关水检测标准中,也是离子色谱法。  4、铬的形态分析标准  六价铬的检测方法有一个行业标准:  SN/T 2210-2008 保健食品中六价铬的测定 离子色谱-电感耦合等离子体质谱法  水中的六价铬也有相应标准检测方法,采用经典的比色法。在水的检测标准中。    (撰稿人:上海出入境检验检疫局 杨振宇 博士)  注:文中观点不代表本网立场,仅供读者参考
  • 世界主流药典标准中液相色谱柱应用情况分析
    p style="text-align: center "  strong液相色谱柱进展及其在药品标准中的应用(三)/strong/pp style="text-align: right "strong  ——液相色谱柱在药典标准中的应用情况分析/strong/pp  strongspan style="color: rgb(112, 48, 160) "3 液相色谱柱在药典标准中的应用情况分析/span/strong/pp  新颁布的2015 年版《中国药典》自2015 年12月1 日起正式实施。新版药典的最大变化是将原来各部的附录整合成了第四部,形成通则并对通则制定了更为合理的编码,液相色谱法列于2015 年版《中国药典》(四部)中通则0512 中。/pp  strongspan style="color: rgb(0, 112, 192) "3.1 《中国药典》中使用的各类色谱柱/span/strong/pp  液相色谱方法在新版《中国药典》中得到了更广泛的应用,使用方法也更加合理。以二部化药为例,在修订的415 个品种中,有的新增了液相色谱检测方法,如本芴醇在有关物质检查项下,采用液相色谱法取代原来的薄层色谱法,规定杂质Ⅰ与主成分的分离度,以及杂质峰面积等要求,并列出了杂质Ⅰ的结构信息,这不仅使杂质的信息更加明确,而且对杂质限量的控制更加准确 有的对流动相进行了修订,如叶酸的含量检测中,通过添加离子对试剂―四丁基氢氧化铵,增加了叶酸的保留,流动相中甲醇的比例也从原来的每升80 mL 增加到270 mL,这样有利于防止色谱柱C18 键合相在高水相比例下产生疏水塌陷。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/01c4db8b-eba9-4447-9396-504936620f73.jpg" style="" title="表1_副本.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 112, 192) "表1 2015 年版和2010 年版中国药典一部中液相色谱柱的使用情况/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/77e42643-539c-48fa-a129-075f52643f0f.jpg" style="" title="表2_副本.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 112, 192) "表2 2015 年版和2010 年版《中国药典》二部中色谱柱的使用情况/span/strong/pp  但是,与液相色谱柱和填料种类的快速发展相比,在中国药品标准中,包括在《中国药典》中,高效液相色谱柱的应用显得较为单调,缺乏活力。表1、表2 分别列出2015 年版和2010 年版《中国药典》一部和二部使用液相色谱柱的情况。由表2 可以看出,在各类药品分析中,绝大部分方法采用的是反相液相色谱法,色谱柱则是以C18 柱为主 与2010 年版相比,2015 年版《中国药典》中C8 柱的使用数量翻了1 倍 而其他各种类的液相色谱柱使用比例则较少。/pp  strongspan style="color: rgb(0, 112, 192) "3.2 各国药典对液相色谱柱规定/span/strong/pp  strong3.2.1 关于色谱柱类型描述的差异/strong/pp  美国药典对色谱柱分类则较为详细,收载的各类液相色谱固定相(柱)类型已经超过80 种,除C18 柱、C8 柱、氰基柱、氨基柱、苯基柱外,还有C6 柱、C4 柱、C1 柱、五氟苯基(PFP)柱等。根据是否化学改性,是否封端,是否增加多官能基团以及是核壳结构还是多孔型结构等不同,以C18 为基质的色谱柱分类为L1、L2、L42 和L67等,以C8 为基质的色谱柱分别有L7、L28、L42 和L44 等。L1 柱对应于目前使用的各种C18 分析柱,L2柱常作为保护柱使用。由此可知,美国药典提供的可选择的色谱柱比较丰富。/pp  不过,尽管各厂家或品牌C18 在分离效果上存在一定差异,美国药典却没有对各种商品化C18 再进一步细分。/pp  在英国药典中,当用到特定色谱柱时,色谱柱信息描述会具体到色谱键合相类型、尺寸、键合相官能团描述、是否封端、是否通过碱性脱活处理等。团描述、是否封端、是否通过碱性脱活处理等。/pp  和欧美药典相比,《中国药典》对液相色谱法的色谱柱描述过于简单粗放,色谱柱的种类明显偏少。方法中仅描述色谱柱填料种类的主要大类:如十八烷基硅烷键合硅胶(C18 柱)、辛烷基硅烷键合硅胶(C8柱),氰基硅烷键合硅胶(氰基柱)、氨基硅烷键合硅胶(氨基柱),苯基硅烷键合硅胶(苯基柱)等。使用者无法根据不同性质的化合物选择适合分离的色谱柱。/pp  为解决这一矛盾,满足某些特殊分析目的,或为了简化色谱柱选择的过程,新版药典在某些品种的标准正文中对色谱柱给出了具体描述及品牌的信息。/pp  如在新颁布的2015 年版《中国药典》新增品种拉米夫定及片剂中,含量测定及有关物质测定项对所使用的色谱柱描述为“用十八烷基硅烷键合硅胶为填充剂(Zorbax XDB-C18,4.6 mm× 250 mm,5 μm 或效能相当的色谱柱)”。检测人员可直接选择对应色谱柱进行检测,避免进行盲目的大量色谱柱筛选工作。但详细列明色谱柱信息描述似乎从一个极端走到了另一个极端,从完全的粗放转到特定的选择。在一定程度上,这种具体至色谱柱厂家或品牌仍不是很客观的方法。因为某种色谱柱并不一定仅有1 家公司生产或提供,除非经过同类型不同厂家多根色谱柱的充分研究和实验对比,才能规定具体的色谱柱品牌,否则就意味着可能放弃了使用分离更好的色谱柱。/pp  表3列举了中国药典与英美药典中几个色谱柱使用实例,以便比较各药典对色谱柱分类及应用情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/b9c5dbd6-b7db-4675-8dc1-e4583a4f4ce2.jpg" title="表3_副本.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "表3 中国药典与欧美药典中几个色谱柱使用实例的比较/span/strong/pp  由表3可以看出,美国药典列出了色谱柱的尺寸、填料类型编号 而英国药典不仅列出了色谱柱的尺寸和颗粒粒径,还对固定相进行了详细的描述,如封端的十八烷基键合硅胶,适合高比例水为流动相的烷基键合硅胶,碱去活封端十八烷基硅烷硅胶,二异丙基氰基柱等。/pp  另外,以埃索美拉唑(esomeprazole)缓释胶囊为例,表4 列出在美国药典(USP 35-NF 30)官方网站中可以查询到分析用到的色谱柱信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/4620d675-45bb-4f17-8713-e21264ea69f6.jpg" title="表4_副本.jpg"//pp style="text-align: center "  strong表4 美国药典中埃索美拉唑使用的色谱柱信息/strong/pp  从表4 可见,美国药典对方法中用到的色谱柱进行了归类和详细描述,也列出了替代的色谱柱。对于分析人员来说,提供了色谱柱选择方面的便利性。总之,在中国药典中,无论是色谱柱填料种类,还是色谱柱填料粒径和孔径等方面的描述,均显得较为简单、粗放,科学性和严谨度均有待提高。br//pp  strong3.2.2 关于使用不同色谱柱时的方法转化/strong/pp  为满足系统适用性的要求,当选择1 根合适的色谱柱时,其尺寸应在一定要求的范围内。根据待分离分析药品的特性和实际分析需要,当使用的色谱柱填料尺寸规格发生变化时,各国药典对色谱柱柱径和填料粒径分别有相应的限定。美国药典( 621 CHROMATOGRAPHY)在色谱适应性要求中对色谱柱长度、粒径、内径等变化范围作了限定。在USP 36及以前的版本中,无论是等度还是梯度条件,色谱柱的粒径可以减小50%,不能增大 柱长有70% 的变化选择余地,流速也可有50% 的变化范围,色谱柱的内径以及进样量可根据情况调整。不过,从USP 37 起,在等度条件下,色谱柱尺寸发生变化的范围采用柱长与粒径的比值(L/dp)或柱效N 来进行限定,要求L/dp 保持恒定,或者N 的值介于-25%~+50% 之间。在梯度条件下,则色谱柱尺寸不宜发生变化,否则需要做方法的验证,见表5。!--621--/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/51f50c94-cd62-4ae5-a52a-d6da0390e989.jpg" title="表5_副本.jpg"//pp style="text-align: center "  strongspan style="color: rgb(0, 112, 192) "表5 美国药典对色谱柱尺寸及条件变化的限定/span/strong/pp  中国药典虽然对色谱柱柱径和填料粒径也有相应规定,但是仅仅区分亚2 微米柱和常规柱(中国药典现在实际上使用的几乎都是常规柱)。某些特殊分析中,如复杂组分、指纹图谱和有关物质的分离,常对色谱柱有更苛刻的要求,即使明确了色谱柱填料具体种类,常规柱的柱内径和填料粒径范围定义太宽,会由于色谱柱的内径和填料粒径的差异,无法实现理想的分离和重现性的效果。/pp  按照仪器公司商业化的概念,采用亚2 微米色谱柱的方法为超高效液相色谱法,采用常规柱的方法为高效液相色谱法。但是,简单地根据粒径的不同将色谱填料分为亚2 微米填料与常规柱填料(3~10 μm)并不是一种科学的分类法,至少未能涵盖粒径为2~3 μm 的色谱填料柱。以美国药典要求的色谱柱粒径变化要求,当选择粒径2.7 μm 的色谱住替代5 μm的色谱柱时,其变化的范围是允许的,只要保持L/dp或N 值在-25%~+50% 范围内。实际上,填料粒径对色谱分离的影响是一个量变过程,粒径在限制性范围内改变不会引起分离机理的改变。但是,量变到一定程度必然引起质变,质变是量变的必然结果,当粒径降低到一定程度时,高效液相色谱仪到超高效液相色谱仪的质变归因于填料粒径大小降低到一定程度引起的压力突变,进而可导致分离机理的改变和各成分峰的保留时间变化。因此,使用常规柱填料或亚2 微米填料的色谱方法转化时,方法验证是必要的,但是,中国药典还没有明确规定应如何验证以及选择何参数进行验证。/pp  尽管中国药典2015 年版没有将超高效液相色谱法作为一个新方法单独收载,并不是否认此技术革新,而是在高效液相色谱法中作了系统的、科学的、实事求是的描述。这样既解决了概念上混乱的问题,也是对这一技术革新在药物分析,特别是在标准中应用的一种认同,对这一技术在药物分析、药品检验中的广泛应用将起着一定的积极推动、引导作用。毫无疑问,亚2 微米填料以及表面多孔型填料技术将是高效液相色谱发展的一个重要方向。/pp  strong3.2.3 对药典或药品标准中使用和描述色谱柱的建议/strong/pp  由于商品化的色谱柱填料种类、粒径尺寸、颗粒类型或选择性差异等非常丰富,为了避免方法描述中的不确定性,建议对中国药品标准中包括中国药典使用的色谱柱种类进行归纳总结,国家药典委员会适时对各种可在药品中获得应用的色谱柱进行科学的归类划分,建立相应的色谱柱列表,以便药品标准工作者或检验人员参照使用 各色谱柱生产商或供应经销商应对归类划分工作积极密切配合,提供必要、准确、科学、可靠的相关信息和全面的技术支持。同时,为建立方法提供了更多的选择,应鼓励在建立分析方法时,药物分析工作者应大胆尝试使用各种有利于提高选择性的色谱柱,不要仅限于常规C18 柱等。/pp  从欧美药典对固定相描述或提供的信息来看,细化色谱柱的分类能给色谱分离分析带来积极影响:一方面,由于可从一大类填料中选择到最适合的色谱柱用于分析,从而可获得最佳的分离效果 另一方面,在复杂体系分离时,如中药成分分析或化学药有关物质测定中,如在药品标准中明确规定了色谱填料性质参数的描述信息,有利于克服复杂基质的干扰,提高方法的可靠性,或提高色谱柱的选择性。/pp  在建立相关药品标准时,应适当增加色谱柱尺寸如长度、内径、粒径等的描述 必要时,在充分比对验证的前提下,是否对使用何种色谱柱品牌予以具体规定也是可以探讨的。/pp  为了提高色谱柱的使用寿命,当进行一些具有复杂基质或辅料的原料药或制剂分析时,建议尽可能地使用保护柱,并在方法中说明。在许多品种分离分析中,美国药典都采用了预柱,这对保护色谱柱不受污染,提高色谱柱寿命是极为有利的。/pp  建议中国药典适时在相关的通则中增加对方法转化的描述,提出方法转化的要求,这样有利于分析人员在方法转化时有据可依。/pp  strongspan style="color: rgb(112, 48, 160) "4 结语/span/strong/pp  液相色谱柱技术的发展趋势是高效快速分离,亚2 微米填料色谱柱及亚3 μm 的表面多孔型填料在近年来得到了飞速的发展和应用,各种选择性的色谱固定相和多种分离模式解决了许多分离难题。色谱柱填料类型和种类繁多,在制定药典或相关药品标准时,有必要细化色谱柱的分类,从而有利于更科学、更高效地选择和利用恰当的分离技术实现药物中复杂组分的可靠分析。/pp  span style="font-family: 微软雅黑, " microsoft=""strong注:近年来,液相色谱柱技术发展的非常迅速,这同时也促进了高效液相色谱法在药物分析中更为广泛的应用。据统计,一个典型的制药企业甚至可能会拥有成百上千支液相色谱柱,在一种药物分析方法的开发过程中,如何选择适当的色谱柱往往会给实验人员带来很多困扰。/strong/span/ppspan style="font-family: 微软雅黑, " microsoft=""strong  本文献原文刊登于《药物分析杂志》2017年37卷第2期,作者为洪小栩、石莹、宋雪洁等八人,分别来自国家药典委员会、扬子江药业、安捷伦科技和江苏省食品药品监督检验研究院等单位。本文为该文献的最后部分,详细介绍了世界主流药典及中国药典中液相色谱柱的使用情况,为广大色谱柱用户以及色谱柱供应商提供了相关参考。/strong/span/ppbr//p
  • 地下水质分析方法系列标准更新,坛墨为您提供标准品解决方案!
    2021年2月22日,国家自然资源部发布了DZ/T 0064《地下水质分析方法》的系列标准,该标准替换了93年的老标准,对85个子标准全部进行了更新。该系列标准的适用领域是地下水的测定,在经过方法验证后也可适用于地表水和饮用水的测定。新标准已于2021年7月1日实施。坛墨质检一直以来紧跟检验检测行业标准规定,在环境、食品、职业卫生、化妆品、药品、地质等各个检测领域都提供产品方案,且提供定制服务。根据这次地下水质系列标准的要求,坛墨质检已准备好配套的产品方案,欢迎咨询!在系列标准中有机物检测标准主要有三个:DZ/T 0064.71-2021,DZ/T 0064.72-2021和DZ/T 0064.91-2021。①DZ/T 0064.71-2021《地下水质分析方法 第71部分:α-六六六、β-六六六、 γ-六六六、δ-六六六、六氯苯、p, p′-滴滴伊、p, p′-滴滴滴、o,p′-滴滴涕和p,p′-滴滴涕的测定 气相色谱法》有机氯农药是水体中的常见污染物,对人体健康和生态环境有着巨大的危害,该方法以正己烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机氯农药,提取的有机相经脱水、净化、浓缩后气相色谱毛细管柱分离,电子捕获检测器检测。新标准调整了检测范围,增加了精密度和准确度数据并且增加了质量保证和质量控制的要求,为方法的实施提供了大量实验数据的支撑。坛墨质检DZ/T 0064.71-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170005095.html正己烷中9种有机氯农药混标/DZ/T 0064.71-2021产品编码CAS号名称标准值单位81693b319-84-6α-六六六1000μg/mL319-85-7β-六六六1000μg/mL58-89-9γ-六六六1000μg/mL319-86-8δ-六六六1000μg/mL72-55-94,4’-滴滴伊1000μg/mL789-02-62,4' -滴滴涕1000μg/mL72-54-84,4’-滴滴滴1000μg/mL50-29-34,4' -滴滴涕1000μg/mL118-74-1六氯苯1000μg/mL(点击产品编码即可查询产品)②DZ/T 0064.72-2021《地下水质分析方法 第72部分:敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷的测定 气相色谱法》敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷均为水体中毒性较强的有机磷污染物,方法以丙酮、二氯甲烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机磷农药,提取有机相液经脱水、净化、浓缩后毛细管气相色谱柱分离,火焰光度检测器检测,其他类似的有机磷农药通过验证后也可适用于该方法。该方法操作简单,灵敏度高,检出限达到ng/L。坛墨质检DZ/T 0064.72-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170001628.html丙酮中7种有机磷农药混标/DZ/T 0064.72-2021产品编码CAS号名称标准值单位溶剂81601a62-73-7敌敌畏100μg/mL丙酮298-02-2甲拌磷100μg/mL丙酮60-51-5乐果100μg/mL丙酮298-00-0甲基对硫磷100μg/mL丙酮121-75-5马拉硫磷100μg/mL丙酮2921-88-2毒死蜱100μg/mL丙酮56-38-2对硫磷100μg/mL丙酮(点击产品编码即可查询产品)③DZ/T 0064.91-2021《地下水质分析方法 第91部分:二氯甲烷、氯乙烯、1,1-二氯乙烷等24种挥发性卤代烃类化合物的测定 吹扫捕集/气相色谱-质谱法》该方法借助于吹扫捕集装置,用高纯氦(或氮)气将地下水样品中低水溶性的挥发性卤代烃、内标、替代物吹出并被吸附剂吸附,吸附的挥发性有机物经升温脱附后,导入色谱分离,质谱检测。坛墨质检DZ/T 0064.91-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170401017.html甲醇中24种挥发性有机物VOC混标/DZ/T 0064.91-202124种卤代烃混标产品编码CAS号名称标准值单位溶剂81457b75-01-4氯乙烯1000μg/mL甲醇75-35-41,1-二氯乙烯1000μg/mL甲醇75-09-2二氯甲烷1000μg/mL甲醇156-60-5反-1,2-二氯乙烯1000μg/mL甲醇75-34-31,1-二氯乙烷1000μg/mL甲醇67-66-3三氯甲烷1000μg/mL甲醇71-55-61,1,1-三氯乙烷1000μg/mL甲醇56-23-5四氯化碳1000μg/mL甲醇107-06-21,2-二氯乙烷1000μg/mL甲醇79-01-6三氯乙烯1000μg/mL甲醇78-87-51,2-二氯丙烷1000μg/mL甲醇75-27-4一溴二氯甲烷1000μg/mL甲醇10061-01-5顺式-1,3-二氯丙烯1000μg/mL甲醇10061-02-6反式-1,3-二氯丙烯1000μg/mL甲醇79-00-51,1,2-三氯乙烷1000μg/mL甲醇127-18-4四氯乙烯1000μg/mL甲醇124-48-1二溴氯甲烷1000μg/mL甲醇108-90-7氯苯1000μg/mL甲醇75-25-2三溴甲烷1000μg/mL甲醇79-34-51,1,2,2-四氯乙烷1000μg/mL甲醇541-73-11,3-二氯苯1000μg/mL甲醇106-46-7对二氯苯1000μg/mL甲醇95-50-1邻二氯苯1000μg/mL甲醇120-82-11,2,4-三氯苯1000μg/mL甲醇内标物80171KA3855-82-11,4-二氯苯-D42000μg/mL甲醇3114-55-4氯苯-D52000μg/mL甲醇462-06-6氟化苯2000μg/mL甲醇替代物BW900725-1000-A460-00-44-溴氟苯1000μg/mL甲醇91495JA2037-26-5甲苯-D81000μg/mL甲醇90014JA17060-07-01,2-二氯乙烷-D41000μg/mL甲醇在该系列标准中重金属检测标准有32个,常规因子检测标准约40个,坛墨质检助力于新标准的发布,该系列标准中所使用的的标准物质坛墨质检均有销售,欢迎选购!
  • 2015广州优瓦分析标准品研发与应用技术研讨会
    2015广州优瓦分析标准品研发与应用技术研讨会邀 请 函尊敬的各位朋友、老师: 您好! 我国是仿制药大国。目前,市场上95%左右的国产药为仿制药。特别是近年来随着大量国外专利药到期及国内相关政策趋向松动,我国仿制药产业即将迎来一个前所未有的“机遇期”,市场规模会越来越大。在研发过程中,标准品、药用辅料及试剂的选用对项目的申报质量和准确性有极大的影响,很大程度上决定了分析实验的结果,进而影响整个项目甚至公司的决定和发展。 面对种类繁多的品牌,您是否有以下困惑: 如何选择适合您实验和项目申报要求的标准品? 如何判断、检测和选择药用辅料和高纯溶剂,保证实验结果? 项目申报中,需要标准品提供何种证书和检测结果? …… 针对以上问题,您将在“2015广州优瓦分析标准品研发与应用技术研讨会”中找到满意的答案。 广州优瓦仪器有限公司定于2015年6月19日上午9:00(周五)在广州丽柏国际大酒店开展“2015广州优瓦分析标准品研发与应用技术研讨会”,我们非常荣幸邀请您参加本次研讨会,本次会议主题为标准品在研发过程的方案设计及应用。艾吉析科技(北京)有限公司、艾万拓化工产品贸易(上海)有限公司等专家将莅临现场,开展相关讲座。同时,数十家相关药企将就本次会议主题开展讨论,现场还有神秘礼物大抽奖活动,精美礼品等着你哦。 让我们一起携手共进,共创佳绩。诚挚邀请您及相关人员参加,衷心感谢您的到来与支持! 关于此次研讨会的免费注册和有关的详细信息,请访问www.uwalab.com。 主办单位:广州优瓦仪器有限公司 主题:标准品在药物研发过程的方案设计及应用时间:2015年6月19日地点:广州丽柏国际大酒店 注意事项: 本次技术研讨会是免费的。请回执电邮至marketing@uwalab.com或传真至020-81202005注册。 会前后如有任何问题或意见,请随时联系我们。网址:www.uwalab.com 热线电话:4000-868-328 广州优瓦仪器有限公司 2015年5月15日 交通指南:岗顶公交站、地铁3号线岗顶站A出口 请务必于6月3日前将此回执电邮至marketing@uwalab.com或传真至020-81202005以便统一安排。
  • GE CheckPoint TOC分析仪标准品无锡投产
    GE分析仪器三种适用于CheckPoint总有机碳TOC分析仪的标准品已正式于GE水处理无锡工厂投产,这三种标准品将采用TOC与电导率两用样品瓶进行封装,配备标准样品瓶盖。(TOC与电导率两用样品瓶:玻璃瓶内壁经去离子处理,实现电导率检测无离子干扰,同时玻璃瓶最大程度降低TOC污染)◆ ◆ ◆三种标准品编号如下- STD 97010-02,CheckPoint TOC校准套装,装于TOC与电导率两用样品瓶中- STD 31003-04,CheckPoint系统适用性套装,装于TOC与电导率两用样品瓶中- STD 97006-02,CheckPoint线性套装,装于TOC与电导率两用样品瓶中同时,适用于CheckPoint TOC分析仪的电导率标准品也可从GE水处理无锡工厂直接订购。◆ ◆ ◆电导率标准品编号如下- LCSTD 77035-01,浓度为25 μS/cm的电导率标准品 (HCl)在此之前,CheckPoint TOC分析仪的标准品需要从美国订购,用户普遍反应 “运输不便,保质期短”,给仪器的校准验证带来不便。为提升用户使用的方便性,在美国工厂的支持下,GE水处理无锡工厂已开始正式生产CheckPoint TOC分析仪的标准品,生产工艺及质量保证系统与美国生产基地一致。在确保标准品质量的同时,因省去了繁杂的进出口及清关手续,标准品的运输时间较之前至少加快了30%,保证及时供货,大大缩短了客户从订货到收货的周期,从而留给客户的保质期更长,全面保证仪器校准验证的通过率。现在,用户可以从GE水处理无锡工厂订购 Sievers全系列TOC分析仪的配套常用标准品:- 包括M9、M5310 C、500 RL、860、CheckPoint、InnovOx;- 标准品的原物料主要向三大机构采购(NIM, NIST, USP*);- 每份标准品都具备相应的分析证书;- 生产质控严格,符合2015版中国药典、美国药典、欧洲药典和日本药典,满足TOC的校准、验证、确效及药典系统适用性需求。* NIM—中国计量科学研究院,NIST—美国国家标准与技术研究所,USP—美国国家药典委员会◆ ◆ ◆您的仪器需要定期校准校验对于不同型号的TOC分析仪,我们建议根据不同的周期校准校验,以确保仪器稳定及精准的运行。Sievers M9/M5310C/860/500RL系列的TOC分析仪,建议至少每年校准校验一次;CheckPoint及InnovOx系列TOC分析仪,建议每6个月校准校验一次。另外,系统适用性试验的频率,各国药典均没有明确规定。实际操作中,要保证仪器的正常工作状态,建议至少每3-6个月确认一次。根据产品的质量控制风险,可以适当提高确认频率,如每个月或每周。立刻联系我们,进行订购!▼http://www.instrument.com.cn/netshow/SH102481/
  • 食品感官分析:传统技术焕发新的光芒——访中国标准化研究院食品感官分析实验室赵镭博士
    前言与赵镭博士初识在中国标准化研究院与法国阿尔法莫斯公司合作签约仪式上,彼时正值中国标准化研究院食品感官分析实验室筹建之时,时隔2年之后,笔者来到位于北京昌平科技园的中国标准化研究院昌平实验基地,此时一个功能齐备,设施完全的食品感官分析实验室呈现在眼前。中国标准化研究院食品感官分析实验室 赵镭博士笔者与赵博士相坐在宽敞明亮的评价员状态调整室里,一边品茗,一边聊起了基于该实验室平台之上的相关的食品感官分析“十一五”课题的研究情况以及我国食品感官分析的过去、现在和未来等。 谈话源起于电视剧《大宅门》的一个片段:京城百草堂的两位老先生涂二爷、许先生带着七爷白景琦去安国置办药材,在人声鼎沸的药材市场上,二位老先生通过观察草药的品相和闻其气味就能判断药材的产地和质量的好坏。…… “以人为本”的感官分析技术“这应该就是大家普遍认识的,也是最为传统的感官评价活动。”赵镭博士说到,“这种看一看、闻一闻、尝一尝经验型地评价是感官分析技术发展的初期阶段。而实际上,为了保证感官分析结果的可靠性、有效性,避免环境因素和人的生理因素、心理因素等对感官分析的影响,客观地评价人对食品的反应和食品固有的质量特性,感官分析技术在发展过程中融合了许多学科的知识与技术。简单来说,食品感官分析就是将人的感觉器官作为“仪器”,结合心理学、生理学和统计学等学科,对食品进行定性和定量的检测与分析。一方面测知食品的色、香、味、形等感官质量特性,另一方面也能获知产品所能引起的人的反应(接受、偏爱)。”当介绍到食品感官分析实验流程时,赵镭博士用仪器分析的实验流程做了一个类比。食品感官分析实验流程大体上也是:方法设计——样品前处理——“仪器调试”——测量——分析——结果解释与结论,具体到每个步骤做法就有所不同了。如方法设计里包括了评价方法的设计、评价人员的选用、评价程序的建立和评价环境的控制;而样品前处理既包括评价样品的制备也包括对送检样品进行去除包装、分装、分形等无损处理,保证提供给评价员的样品是一个双盲样品,以保证评价的客观性;“仪器”这里就是指具体的人了,通常我们做仪器分析实验需要调试基线平稳等,对于感官分析的主体——人也需要一个调试,如心理、生理调试等;之后测量就是采集评价员的视觉、嗅觉、味觉、触觉和听觉等感官知觉以及联觉对产品的反应;分析就是采用适合的统计学方法对采集的数据进行统计分析;最后就是结果解释与结论了,这与仪器分析一样对采用的方法、实验的局限性和可靠性等进行合理的解释与判断。 食品感官分析技术是一个以人为中心的分析技术,在这个过程中人的作用是巨大的,而人又是主观的、易受外界环境以及自身的生理和心理影响,因此会在一定程度上造成对产品评价的主观性和评价结果的变异性。此外,人也无法一次进行大量的检测和对有害物质的检测。针对这些问题,现代感官分析技术也就应运而生。 仪器分析、智能感官技术为感官分析“锦上添花”现代感官分析技术将传统感官分析的内涵扩大,不仅仅依赖于人进行感官评价,而是把分析仪器和智能感官仪器也作为工具,辅助感官评价,使得感官分析更具确定性和精确性。赵镭博士介绍说,目前这也是我们课题研究的重点之一。具体来说,一方面就是以感官分析与理化分析的相关性研究为核心,将感官分析技术与现代仪器分析技术相结合,多技术融合进行产品品质特征的评价与控制,为规模化和自动化工业生产提供产品感官品质精确评价与控制的技术与方法。我们知道食品的感官特性一般可归于色、香、味、形几个方面。于是,研究者们就将分析仪器测定的不同指标与这些感官特性之间的关联性做了大量的研究。研究表明,对于食品的色泽可以应用色差计来进行测定;而对于香气则可应用气相色谱—质谱联用技术来测定食品中的挥发性成分;对于味觉的研究则应用高效液相色谱仪对甜味、酸味、苦味、辣味物质进行测定;对于形方面,则使用流变仪、质构仪对食品的流变学特性、拉伸、硬度、脆度等物理特性进行测定。另一方面就是以模拟人的嗅觉和味觉的电子鼻、电子舌等智能感官分析仪器为手段,来研究食品的香、味。用气敏和味敏的传感器阵列模拟人的嗅觉和味觉细胞采集气味物质和滋味物质的传感器信号,再用类似人中枢神经的模式识别系统对传感器信号进行判断识别,得出类似人的嗅觉和味觉感知的结论。 传统食品感官分析日渐成熟 现代食品感官分析尚待发展当问及我国食品感官分析的现状时,赵镭博士介绍说:我国在传统的以人为核心的感官分析技术研究正日渐成熟,特别是在茶叶、白酒等嗜好性产品方面;而在分析仪器及智能感官仪器为载体的现代食品感官分析方面属于起步发展阶段。目前我国颁布的产品类专用感官分析标准只有15项,其中国标5项、行标8项,产品种类涉及酒类1项烟草类2项、茶叶类7项、调味料类1项、饮料/饮用水类2项、其他类2项。标准的类型主要涉及某类产品感官评价术语标准、感官品质要求标准、感官评价方法标准和感官评价环境标准。至于分析仪器及智能感官仪器介入的食品感官分析方法标准在国内外至今还是空白。随着我国食品工业的快速发展,对感官分析技术的需求日益增长,对感官分析标准的需求也不断增加,而且传统的食品感官评价也需要向科学分析型转变。2006年国家加大了对感官分析标准技术研究的投入,我们申请并承担了国家“十一五”科技支撑计划《关键技术推进工程》项目《重要基础性技术标准研制》的子课题《食品感官分析技术与重要标准研制》。课题主要针对解决食品感官分析领域的两大重点与难点问题,即“传统感官评价的规范化”,提高依赖于人的传统感官评价的可比性和可靠性;以及“传统感官评价的现代化”,将人的感官评价与现代仪器分析、智能技术相结合,解决感官评价的不确定性和不精确性。我们研究的重点在:1、嗜好性食品:茶叶、酒;2、工业化食品:果汁、乳品、方便食品。截止目前我们已经完成了《感官分析 建立感官分析实验室一般导则》、《感官分析 采用三点选配法(3-AFC)测定气味、风味和味觉觉察阈值的一般导则》和《感官分析 方便面感官评价》等6项国家标准的研制,其中4项已颁布,2项今年即将颁布。赵镭博士表示,虽然目前还没有感官标准涉及分析仪器和智能感官仪器,但是在我们研究课题中已经把这两种技术手段加入到感官分析标准的体系中,相信不久的将来,我国的感官标准就能呈现基础感官分析标准、仪器辅助及智能感官分析标准相结合的面貌。 食品安全监测 感官分析也显威力近几年来我国频发食品安全事件,但都是以仪器分析作为检测手段,那么食品感官分析在这方面是否可以发挥作用呢?当笔者问及此问题时,赵镭博士说:“感官分析可应用于食品的质量评价、偏好评价和安全评价,前二者应用于产品质量稳定性评估和品质控制等质量管理及新产品开发、产品配方重组和改进、消费者调查和产品定位等产品的研发与营销;而安全评价则可解决一般理化分析所不能解决的人的复杂的生理感受和综合判断问题。当然,更多时候感官分析在食品安全监测中起到的是一个快速筛查的作用,通过感官分析可以初步判定其有问题,但是具体是什么物质引起的问题,还是要通过仪器分析来确定。”在我国质监部门和卫生部门的监督检查以及企业内部的质控过程中,产品感官指标的检验通常是例行的检查项目。感官鉴别不仅可以直接发现食品感官性状在宏观上出现的异常现象,而且当食品感官性状发生微观变化时也能很敏锐地觉察到。例如,食品中混有杂质、异物,发生霉变、沉淀等不良反应时,质量监督人员和消费者能够直观地鉴别出来并作出相应的决策和处理,而不需要再进行其他的检验分析。尤其重要的是,当食品的感官性状只发生微小变化,甚至这种变化轻微到仪器都难以准确发现时,通过人的感觉器官都能给予应有的鉴别。后记随着社会经济的发展,人们将从关注食品安全到关注食品的感官品质,人们不仅要求吃的安全,更要求吃得可口,这就为食品感官分析技术提供了一个很好的发展契机。作为国家的公益机构中国标准化研究院适时建立食品感官分析实验室,致力于传统食品感官分析技术的推广与规范化、科学化工作以及现代食品感官分析的食品感官评价与仪器数据相关性研究工作,将使这项在中国有悠久历史的感官品评技术焕发出新的光芒。 采访编辑:杨娟 附录:赵镭博士简介 赵镭,副研究员,博士。1990年6月毕业于四川大学化学系,获理学学士学位。1990年至1993年,在西北农林科技大学生命科学学院执教。1995年至2001年,任北京三鸣生物工程有限公司新产品开发部经理。1997年9月至2000年12月及2001年9月至2004年6月,在中国农业大学食品科学与营养工程学院农产品加工及贮藏工程专业学习,获工学硕士和博士学位。2004年9月至2006年8月从事中国农业大学、浙江雨田集团联合培养博士后研究工作。2006年8月至今,就职于国家质检总局中国标准化研究院,负责食品感官分析标准化领域工作。在食品领域具有最高和较高影响力的国外知名SCI原投刊物和国内学报及核心期刊上发表文章30余篇,其中SCI原投科技论文6篇;编撰书籍5部;开发成功了获中华人民共和国卫生部批准的保健食品2个;主持或主要参与国家十一五课题、省部级项目和博士后基金项目等10余项,获得鉴定成果1项,成果水平达到国际先进;负责起草或参与起草了《感官分析 方法学 排序法》、《感官分析 方法学 采用三点选配法(3-AFC)测定嗅觉、味觉和风味觉察阈值的一般导则》和《感官分析 建立感官分析实验室的一般导则》等感官分析国家标准10项。
  • 新标准:颗粒 微生物气溶胶采样和分析(GB/T38517-2020)
    由我司(青岛众瑞智能仪器有限公司)参与起草的《颗粒 微生物气溶胶采样和分析通则(GB/T38517-2020)》已于2020年3月6日正式发布,并将于6月1日正式实施。 本标准为环境空气中细菌、病毒、真菌和毒素等不同特性的生物气溶胶(也称之为空气微生物)的采样提供了采样方法和生物气溶胶的分析,其中,采样方法包括采样原理、采样器的选择和采样过程中应关注的问题;分析方法包括分析方法的类型、方法的适用性、分析结果的表达方式。 一 生物气溶胶采样方法及采样器 众瑞仪器相关产品 ZR-2000型智能空气微生物采样器是经精心研制的新型智能空气微生物采样器,主机配备不同的采样终端可以实现安德森采样、冲击式采样、过滤式采样等功能,做到一机多用,具有极高的性价比。该仪器可广泛应用于环保、医疗卫生、食品工业、发酵工业、制药工业、农牧业、工矿企业、劳动卫生以及其它相关研究部门。 1 撞击式采样原理:利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采集方式。 众瑞仪器相关配件 ZR-A01型二级安德森采样头是微生物采样专用器皿,采用惯性撞击原理,既能测定空气中微生物的总数,又能区分可吸入微粒和不可吸入微粒的数量。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式。?标准二级分层生物气溶胶采样。 ZR-A02型六级安德森采样头是符合国际标准的多级采样装置,用于监测细菌和真菌的浓度和粒径分布,它可以真实模拟人类肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度,都具有较高的准确度和可靠性。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式;?标准六级分层生物气溶胶采样; ZR-A05型八级安德森采样头是一个多孔、层叠碰撞(空气)取样器,通常用于环境中的需氧细菌和真菌浓度和颗粒大小分布的测量。该采样器可以根据人体肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度。采样器的每级中可放置一个装有琼脂培养基的培养皿,用于收集采样空气中的微生物粒子,微生物粒子会随气流的撞 击留在培养基上。随后培养皿可以取出,进行培养后,用菌落计算公式计算。技术特点:?标准撞击法筛孔式工作方式;?标准八级分层生物气溶胶采样; 2 冲击式采样能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采集方式。 众瑞仪器相关配件 ZR-A03型冲击式采样头是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B01型空气微生物吸收瓶(AGI-30)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子就冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B02型空气微生物吸收瓶(AGI)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 二 生物气溶胶采样方法的选择 新标准中,生物气溶胶细分为细菌、真菌、病毒及毒素四钟,采样方法主要分为定量、定性两种,以细菌为例(其他种类可点击“阅读原文”下载原文件查看):
  • 沃特世推出最新业务—分析标准品和试剂
    沃特世推出最新业务 — 分析标准品和试剂(Analytical Standards and Reagents, ASR)实验室分析数据的质量、可追溯性以及可靠性对整个公司或组织的决定有着重要的影响,其中标准品和试剂是获得可靠分析结果的基础和前提。沃特世(Waters)推出分析标准品和试剂业务,旨在帮助用户获得更准确、更可靠的分析数据。 众所周知,分析标准品和试剂的质量和准确性很大程度上决定了分析实验的结果,进而影响整个项目甚至公司的决定和发展;另一方面,随着分析仪器的发展,越来越多的客户使用系统测试液调节仪器至最佳状态以帮助获得更高的灵敏度。致力于为客户提供完整解决方案的沃特世公司看到了这一潜在市场并成为第一家提供分析标准品和试剂的分析仪器公司。 沃特世建立了一条管理规范、关注质量的分析标准品和试剂的生产线,目前的产品涉及系统测试标准品;生物分析标准品;食品分析标准品;环境分析标准品;化工分析标准品;药物分析标准品以及离子对试剂等。通过以上业务我们旨在帮助客户:提高工作效率,简化实验流程,节省实验成本,增加科学家对分析数据的信心! 点击此处下载ASR产品手册 请登录网站了解更多信息:www.waters.com/standards
  • 新书速递 | 《2020年版〈中国药典〉中药标准物质分析图谱》
    《中国药典》《中国药典》标准物质分析图谱集一直以来,已经成为广大分析工作者喜爱的重要参考书。继 2005 版、2010 版、和 2015 版《中国药典》一部二部检测图谱集出版后,中国食品药品检定研究院组织上海诗丹德标准技术服务有限公司和安捷伦科技(中国)有限公司,共同编写了《2020 年版〈中国药典〉中药标准物质分析图谱》,并由中国医药科技出版社于 2024 年 2 月正式出版。《中华人民共和国药典》(以下简称《中国药典》)作为国家药品质量控制、确保人民用药安全有效而依法制定的药品法典,自 1953 年版(第一版)编印发行以来,至 2020 年版已经出版到第十一版。收载的中药相关品种(包括药材与饮片、植物油脂和提取物、成方制剂和单味制剂)从 1953 年版的 78 种,至 2020 年版收载 2711 种,其中相较 2015 年版新增 117 种、修订 452 种;不仅大幅增加了中药饮片的数量和标准,还同时新增了大量的中药化学对照物质。较大地解决了困扰中药产业发展的国家标准较少、地方规范不统一等问题。对有效进行中药质量控制、促进中药现代化的发展起到了重要的推动作用。2020 年 12 月 30 日,2020 年版《中国药典》正式实施,编者团队立刻着手编写针对 2020 年版《中国药典》一部的检测分析图谱集,基本覆盖了所有 2020 年版《中国药典》一部中有含量测定项的品种。本书里,在新增和修订的中药相关液相图谱中,不仅收载了使用经典的 5μm 液相色谱填料进行分析的图谱,如 Zorbax SB-C18、PLus-C18,XBD-C18 等,而且还收录了使用表面多孔层填料色谱柱(Agilent Poroshell 120)分析的结果。Poroshell 4μm 粒径色谱柱的使用,在保持尺寸、相同 HPLC 条件下,获得更好的柱效和分离度,如鹅不食草、淫羊藿、京大戟等。随着新的色谱柱技术的应用,Poroshell 系列将为分析工作者在常规液相色谱体系中,更好地提高中药成分的分离能力,从而更准确地控制药品质量。本书将会为广大色谱分析工作者,提供中药分析色谱柱选择的参考和指导。在编写历版图谱集时,编者团队牢记职责:确保所建立的图谱集与《中国药典》中的标准一致,以保障检测结果及图谱的准确性和可靠性;持续并不断地收集各种中药化学对照品和对照药材或提取物,以丰富图谱集的内容;不断更新和完善图谱集,以适应中药产业的发展和变化。为了回馈广大安捷伦用户,扫码注册,前 50 位用户可领取《2020 年版〈中国药典〉中药标准物质分析图谱》实体书一本。图谱集案例淫羊藿:色谱柱:InfinityLab Poroshell SB-C18 4.6*250mm 4μm测试结果小 结:Poroshell SB-C18 4μm 粒径色谱柱是相同尺寸全多孔 5μm 填料柱效的两倍。在保持药典方法不变的条件下,Poroshell 4μm 色谱柱测试结果,淫羊藿苷理论塔板数远大于系统适应性要求的 8000,与前峰分离度良好。且朝藿定 A、朝藿定 B、朝藿定 C 三个组分相对保留时间符合规定。
  • 《做好标准物质标准品,更好地为食品和环境安全服务》  —常州市市长丁纯一行莅临坛墨质检调研指导!
    10月11日上午,常州市市长丁纯、市委副书记蔡俊,副市长梁一波,市政府秘书长杭勇,发改、科技、工信、公安等市级机关部委办局等一行参观考察坛墨质检科技股份有限公司。坛墨质检于2007年成立于北京,是一家专业研发标准物质标准品的高科技企业,获得了中国CNAS标准物质/标准样品生产者能力认可,并通过ISO9001质量管理体系认证。目前拥有各类产品近3万个,成功申报标准物质500多个。主要服务于国家出入境检疫检验系统、食药监系统、各省市环境监测站、第三方检测机构以及科研院所等。2018年6月坛墨质检公司总部迁至常州,成立“坛墨质检科技股份有限公司”,注册资本5000万元。建立现代化的标准物质常州研发服务中心5400㎡,购置专业的研发/分析仪器二百多余套。坛墨质检科技股份有限公司总经理方燕飞女士就坛墨质检的发展情况、公司定位、企业价值观和企业愿景等方面内容向丁市长等领导做了详细汇报。丁纯市长对坛墨质检的公司定位、企业价值观、企业使命给予充分的肯定和鼓励! 坛墨质检科技股份有限公司总经理方燕飞女士向丁纯市长等领导介绍公司情况。丁纯市长一行领导详细参观了标准物质领域目前国内专业、智能的冷冻仓库。 2-8度冷藏库 零下18度冷冻库坛墨质检冷库总长度是40米,共1200立方米丁纯市长重点参观了坛墨质检公司的系列研发实验室坛墨质检公司的有机标准物质研发实验室。丁纯市长参观坛墨质检公司的同位素标记研发实验室。坛墨质检实验室配备有排风、全新风、恒温恒湿等系统,技术参数完全满足CNAS对检验检测实验室的要求。稳定同位素稀释质谱法是国际公认的痕量残留检测的“金标准”,但所使用的稳定同位素相关产品长期被国外垄断,从而使得我国农兽药残留检测技术应用受到了很大限制。坛墨质检为了填补了国内空白,改变进口产品垄断国内市场供应现状。目前,坛墨质检公司已研发出上百种国内食品安全、环境监测领域所急需同位素标记标准品,技术水平处于国际先进地位,并有多个产品已申请发明专利,其中1个产品在短短7个月就获得发明专利授权。由于该类产品国内无其他研发企业,使得我们形成了“技术高新专有,产品需求迫切,市场前景广阔”的产业链格局,满足了我国食品安全、环境监测领域迫切的溯源需求,能产生巨大的经济效益和社会效益丁纯市长表示,标准物质行业具有十分广阔的发展前景,希望坛墨质检进一步加快科研成果产业化的步伐,持续保持高速增长,企业要用新产品、新技术努力提升核心竞争力,掌握行业话语权。坛墨质检环境检测类标准物质标准品坛墨质检食品安全检测标准物质标准品坛墨质检拥有一支年轻富有创造力的专业团队,常州总部目前拥有员工150人,其中技术团队超过60人,2019年申报专利近20项,目前已获授权专利3项,其中发明专利1项。
  • 陈竺:适合中国国情食品标准体系初步建立
    围绕生乳安全标准是否降低的热议,速冻食品安全标准中金黄色葡萄球菌引发的担忧……食品安全标准的制修订每每牵动各界视线,成为关注焦点。食品安全标准直接关系老百姓健康权益,关系产业行业发展和贸易利益。担负标准制定任务的卫生部近年来开展了哪些工作?标准的制定如何做到科学合理、安全可靠、公开透明?新华社记者近日专访了卫生部部长陈竺。适合我国国情的食品标准体系初步建立问:我国食品安全标准工作进展如何?答:按照国务院统一部署,卫生部高度重视食品安全工作,不断加大工作力度,将食品安全纳入医改重点项目,作为公共卫生服务均等化的普惠制度向人民群众提供。2009年《食品安全法》公布施行后,卫生部会同有关部门在食品安全标准方面开展了大量工作,初步建立适合我国国情的食品标准体系,内容涵盖从原料到产品中涉及健康危害的各种卫生安全指标,包括食品产品生产加工过程中原料、生产环境、设备设施、工艺条件、卫生管理、产品出厂前检验等各个环节的安全要求。问:在食品安全标准方面,卫生部主要开展了哪些工作?答:一是完善食品安全标准管理制度。公布实施食品安全国家标准、地方标准管理办法和企业标准备案办法,明确标准制定、修订程序和管理制度。组建了食品安全国家标准审评委员会,建立健全标准审评制度。组织制定《食品安全国家标准“十二五”规划》,确定未来五年的食品安全标准工作的指导思想、基本原则、主要目标和工作任务。二是已制定公布185项新的食品安全国家标准,包括乳品安全国家标准、复配食品添加剂、真菌毒素限量、预包装食品标签和营养标签、农药残留限量以及部分食品添加剂产品标准。三是修订公布了新的食品添加剂使用标准,明确规定23类、2314种食品添加剂的使用范围、用量,依法撤销了过氧化苯甲酰、过氧化钙等39种食品添加剂。四是加快食品包装材料标准清理工作。对行业提交的3000余种食品包装材料进行系统清理,公布了107项包装材料用树脂名单。公告禁止双酚A用于婴幼儿奶瓶生产。五是加强标准宣传解读和解疑释惑。在卫生部官网公开标准文本,便于各方下载和查询。通过印发文件、制定标准问答、召开座谈会和新闻发布会、举办培训班、在线问答等方式,向公众科学介绍食品安全标准制定公布情况。及时回应社会关注的食品安全标准热点问题。六是积极开展国际交流。我国已连续5年担任国际食品添加剂法典委员会主持国,2011年我国又成功当选国际食品法典委员会亚洲地区执行委员。卫生部充分利用上述有利条件,加强国际食品标准的跟踪研究,促进我国食品标准与国际标准同步发展。食品安全标准清理整合工作仍面临挑战问:我国现行食品安全标准存在哪些突出问题?答:尽管标准工作取得了较大进展,受我国食品产业发展水平、风险评估能力和食品标准研制条件等因素制约,现行食品安全标准还存在一些突出问题,主要表现在:一是标准体系有待进一步清理完善,《食品安全法》实施前,我国有农产品质量安全、食品卫生、食品质量等多类国家标准及行业标准同时并存,总计超过5000余项,标准数量多,标准间既有交叉重复、又有脱节和矛盾的问题 二是个别重要标准或者重要指标缺失,难以满足食品安全监管需求,例如有的缺乏配套检测方法、食品包装材料标准等 三是标准科学性和合理性有待提高,目前部分标准标龄较长,食品产品安全标准通用性不强,一些标准指标风险评估依据不足 四是标准宣传培训和贯彻执行有待加强,食品安全标准指标多、技术性强、强制执行要求高,公众、媒体、行业均高度关注,但相关标准管理制度和工作程序有待改进完善,比如,健全广泛征求意见的机制和有效解读标准方式、方法。问:清理整合食品安全国家标准难在哪里?答:目前,食品安全国家标准工作存在一些制约因素:一是食品安全国家标准的基础研究滞后,我国风险评估工作尚处于起步阶段,食品安全暴露评估等数据储备不足,监测评估技术水平有待提高 二是保障机制有待建立完善,目前缺乏专门的食品安全国家标准技术管理机构,专业人员力量和工作经费严重不足,与当前标准制定、修订工作不相适应,在一定程度上也影响了标准工作的质量 三是标准专业人才队伍建设有待加强,标准研制基础薄弱,专业人才不足且较分散,标准研制能力和水平需要进一步提高。虽然食品安全标准清理整合工作面临上述困难和挑战,我们将想方设法,克服困难,切实履行职责,认真抓好食品安全标准的制定、修订完善工作。同时,希望社会各方面能够给予充分的支持、理解,我们共同努力,不断提高标准工作水平。
  • CATO分析标准品空降Thailand Lab,不小心上了头条
    美国CATO分析标准品—唯有创新方能引领— 作为国际知名标准品品牌,CATO分析标准品此次在泰国曼谷国际实验室设备仪器及技术展会(Thailand Lab)中的出现,以其贴合客户需求的创新性产品引起在场客商高度关注,这一表现也体现出,如今,品牌与客户已不再是简单的供销关系,而是相互提升相互促进的关系。品牌要随时根据客户的需求对自身产品进行创新优化,才能抓住客户的心。?————————————————————————————————————————————关于2018 Thailand Lab 泰国曼谷国际实验室设备仪器及技术展会Thailand Lab(以下简称“泰国实验展”)是由荷兰皇家展览集团VNU Exhibitions联合泰国科学技术贸易协会共同举办,由泰国科学技术部、公共健康部、国家科学技术研究所、科技促进会、药品研究和制造商协会、泰国会议展览局等多部门赞助。展览会一年一届,是东南亚实验室设备仪器的顶级盛会,行业内一个重要的商业交流平台。 而今年的泰国曼谷国际实验室设备仪器及技术展会以30000平米展示面积盛大回归,吸引来自世界各地的895家参展企业,客商数量达到6000人。——————————————————————————————————————此次CATO分析标准品在Thailand Lab上能够受到客户青睐继而登上头条除公司自身的实力外还因相关媒体所总结的以下几点 1、品牌力量 品牌是实力的保障,选择CATO分析标准品,更多是因为相信品质。多年来的匠心经营,赢得全球超过220个国家和地区的客户信赖,是各级企业及买家、科学家、研究学者、分析仪器用户、行业工程师以及业内知名经销商、贸易商等行业人员对CATO品牌的认可。2、产品种类齐全 时代在变,需求在变,不变的是客户对产品的高要求,以及CATO随着检测需求的变化,不断更新产品。CATO至今已有14000+种标准品,其中130种独家品种。业务范围包括药物杂质对照品、工业检测标准品、农药残留检测标准品、兽药残留检测标准品、食品检测标准品、环境检测标准品、天然提取物等,同时还提供原料药、中间体和定制合成服务。 3、品质保证 CATO通过了ISO9001:2015质量管理体系认证,并且拥有ISO17025:2017检测和校准实验室能力认可资质的实验室,每个标准品按照ISO17034:2016标准物质/标准药品生产者要求进行生产管理。 4、证书提供 CATO分析标准品除了可提供分析证书(COA)、GC/LC-MS、HNMR、HPLC,还可以根据客户的要求增加IR、水分、UV、HMBC、CNMR、旋光和三维核磁等检测报告。 5、现货供应亚洲市场(货期更快) CATO针对亚洲市场打造独立仓库,做到90%以上的标准品可以做到现货供应,彻底解决客户在货期问题上的困扰。
  • 空气产品公司研制的艾必利® 环境气体标准物质取得国家标准物质定级证书,助力更精准的环保分析
    一氧化氮、二氧化氮、二氧化硫是大气中的主要污染物和雾霾前驱物,这些污染物的存在不仅对人体和动植物有直接危害,还是调控臭氧,形成酸雨和光化学烟雾的重要因子,因此,这些污染物是我国空气质量监测的关键参数。随着环保力度的加强,我国环境监测部门对微量环境气体标准物质,尤其是国家有证气体标准物质的需求量急剧增加。为应对我国环境监测用气体标准物质的市场需求,空气产品公司旗下的北京氦普北分气体工业有限公司于2018年立项开展“低含量环境气体标准物质关键技术研究”项目。该项目由技术专家赵俊秀、项目负责人唐亮带领技术团队历时近1年半进行关键技术攻关研究,攻克了气瓶内壁处理、原料气中微痕量关键杂质定值等关键技术,采用称量法成功研制了低含量氮中一氧化氮、氮中二氧化硫、氮中二氧化氮系列气体标准物质,并考察了组分在气瓶中的长期稳定性。通过与国内最高水平的国家实验室开展比对,验证了认定值的准确性,取得了很好的比对等效度,并于2020年正式推出拥有自主知识产权的3种环境监测用低含量气体标准物质系列新产品——艾必利环境气体标准物质。这三种艾必利环境气体标准物质经全国标准物质管理委员会组织专家评审,符合国家二级标准物质定级鉴定技术条件和相关技术规定要求,于近期顺利通过了国家标准物质定级审查,并取得了国家标准物质定级证书。 艾必利环境气体标准物质定值数据表名称国家标准物质编号量分数(×10-6)不确定度(%)氮中一氧化氮气体标准物质GBW(E)0840031.00~10.0210.0~50.01氮中二氧化硫气体标准物质GBW(E)0840041.00~10.0210.0~50.01氮中二氧化氮气体标准物质GBW(E)08400510.0~1002100~1.00×1031.5 艾必利环境气体标准物质能够顺利获得国家标准物质定级证书,是空气产品公司在微痕量环境监测用气体标准物质研究领域的一项重要突破。该成果将广泛应用于我国各省、市和重点地区的环境空气监测、汽车污染物排放限值监测、汽车排气分析仪等分析仪器计量性能评价等,为进一步构建和完善我国气体成分量值溯源体系以及相关国家标准的有效实施起到有力的基础支撑和保障作用。标准物质作为量值传递与溯源的载体,广泛应用于能源、环境、化工等领域各类产品研发、技术评价、校准与质量控制活动中,对各领域的有效分析测量起到十分重要的作用,是确保测量结果可靠与国际互认的核心与关键。作为全球领先的工业气体供应商,空气产品公司长期致力于向客户提供高品质艾必利特种气体产品。包括本次获得国家标准物质定级证书的新产品在内的所有艾必利特种气体产品均采用了严格品控的原料气体,精确控制和检测杂质含量,同时配合先进的充装系统,确保产品的高准确性、长期稳定性以及可追溯性。同时,我们的技术专家不断探索和研发前沿技术,以帮助客户应对环保合规方面的挑战。 如需进一步了解空气产品公司艾必利特种气体产品,可登录我们的展台进行了解。
  • 分析仪器通用技术、色谱柱等381项标准将在5月份实施
    分析仪器通用技术、液相色谱柱等381项标准将在5月份实施我们通过国家标准信息平台查询到,在2022年5月份将要实施的科学仪器及检测相关的国家标准暴增,共有381项标准将要实施。其中有111项电子电器类标准将要实施位居榜首,机械类标准次之有72项,农林牧渔食品类与化工橡胶塑料类标准旗鼓相当分别有47项和46项标准。5月份将要实施标准类别图除此之外我们还发现有5项仪器仪表类标准,分别如下:GB/T 12519-2021 分析仪器通用技术条件本文件规定了分析仪器的术语和定义、仪器分类与命名、要求、试验方法、检验规则及标志、包装、运输和贮存。本文件适用于各种类型分析仪器。本文件也适用于与仪器配用或形成独立产品的样品处理、制备、信号处理传输和辅助分析的装置等。GB/T 30433-2021 液相色谱仪测试用标准色谱柱本文件规定了液相色谱仪测试用标准色谱柱的术语和定义.标准柱参数、要求、试验方法,检验规则,标志﹑包装、运输和贮存。本文件适用于液相色谱仪测试用标准色谱柱(以下简称“标准柱”)。GB/T 40023-2021 无损检测仪器 超声衍射声时检测仪 技术要求本标准规定了超声衍射声时检测仪的技术要求、检验规则、标志、包装、运输和贮存等内容。本标准适用于超声衍射声时检测仪。GB/T 40658-2021 溴化钾光学元件本文件规定了溴化钾光学元件(以下简称溴化钾)的技术要求、试验方法、检验规则及包装、标志、运输及贮存等要求。本文件适用于溴化钾光学元件的制造与验收。GB 19815-2021 离心机 安全要求(该标准划归为机械)本标准规定了各种具有金属转鼓的工业用离心机(以下简称离心机)在设计、制造、安装和使用中的安全要求,以及使用信息和安全性能的检验、判定方法。本标准适用于一切工业用途的离心机(包括工业脱水机)。其他的标准如下:需要相关标准的,点击链接即可下载收藏↓农林牧渔食品标准(47个)GB/T 40850-2021 饲料中肠杆菌科的检验方法 GB/T 40848-2021 饲料原料 压片玉米 GB/T 40747-2021 饲料瘤胃可发酵有机物(FOM)测定方法 GB/T 21543-2021 饲料添加剂 调味剂 通用要求 GB/T 40830-2021 猪饲料真可消化氨基酸测定技术规程(简单T型瘘管法) GB/T 40837-2021 畜禽饲料安全评价 蛋鸡饲养试验技术规程 GB/T 40835-2021 畜禽饲料安全评价 反刍动物饲料瘤胃降解率测定 牛饲养试验技术规程 GB/T 23884-2021 动物源性饲料中生物胺的测定 高效液相色谱法 GB/T 23801-2021 中间馏分油中脂肪酸甲酯含量的测定 红外光谱法 GB/T 40834-2021 夏玉米苗情长势监测规范 GB/T 40833-2021 甘蔗皮渣中对香豆酸检测方法 高效液相色谱法 GB/T 40832-2021 芒果叶中芒果苷的测定 高效液相色谱法 GB/T 40772-2021 方便面 GB/T 40752-2021 沃柑产业扶贫项目运营管理规范 GB/T 40751-2021 花曲柳窄吉丁检疫鉴定方法 GB/T 40750-2021 农用沼液 GB/T 40749-2021 海水重力式网箱设计技术规范 GB/T 40748-2021 百香果质量分级 GB/T 40746-2021 淡水有核珍珠 GB/T 40745-2021 冷冻水产品包冰规范 GB/T 40744-2021 马铃薯茎叶及其加工制品中茄尼醇的含量测定 高效液相色谱-质谱法 GB/T 40743-2021 猕猴桃质量等级 GB/T 40644-2021 杜仲叶提取物中京尼平苷酸的检测 高效液相色谱法 GB/T 40642-2021 桑叶提取物中1-脱氧野尻霉素的检测 高效液相色谱法 GB/T 40643-2021 山楂叶提取物中金丝桃苷的检测 高效液相色谱法 GB/T 40641-2021 松针聚戊烯醇含量的测定 高效液相色谱法 GB/T 40636-2021 挂面 GB/T 40635-2021 银耳干品包装、标志、运输和贮存 GB/T 40632-2021 竹叶中多糖的检测方法 GB/T 40631-2021 阿月浑子(开心果)坚果质量等级 GB/T 40627-2021 油菜茎基溃疡病菌活性检测方法 GB/T 40626-2021 杨树细菌性溃疡病菌检疫鉴定方法 GB/T 40624-2021 黄瓜绢野螟检疫鉴定方法 GB/T 40622-2021 牡丹籽油 GB/T 29379-2021 马铃薯脱毒种薯贮藏、运输技术规程 GB/T 23347-2021 橄榄油、油橄榄果渣油 GB/T 20452-2021 仁用杏杏仁质量等级 GB/T 20412-2021 钙镁磷肥 GB/T 20398-2021 核桃坚果质量等级 GB/T 19164-2021 饲料原料 鱼粉 GB/T 15628.1-2021 中国动物分类代码 第1部分:脊椎动物 GB/T 1536-2021 菜籽油 GB/T 14467-2021 中国植物分类与代码GB/T 11761-2021 芝麻 GB/T 10457-2021 食品用塑料自粘保鲜膜质量通则 GB/T 10395.21-2021 农林机械 安全 第21部分:旋转式摊晒机和搂草机 GB/T 10395.20-2021 农林机械 安全 第20部分:捡拾打捆机 冶金标准(21个)GB/T 40854-2021 镧铈金属 GB/T 40798-2021 离子型稀土原矿化学分析方法 稀土总量的测定 电感耦合等离子体质谱法 GB/T 40796-2021 金属和合金的腐蚀 腐蚀数据分析应用统计学指南 GB/T 40795.2-2021 镧铈金属及其化合物化学分析方法 第2部分:稀土量的测定 GB/T 40795.1-2021 镧铈金属及其化合物化学分析方法 第1部分:铈量的测定 硫酸亚铁铵滴定法 GB/T 40794-2021 稀土永磁材料高温磁通不可逆损失检测方法 GB/T 40793-2021 烧结钕铁硼表面涂层 GB/T 40792-2021 烧结钕铁硼永磁体失重试验方法 GB/T 40791-2021 钢管无损检测 焊接钢管焊缝缺欠的射线检测 GB/T 40790-2021 烧结铈及富铈永磁材料 GB/T 40566-2021 流化床法颗粒硅 氢含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 40561-2021 光伏硅材料 氧含量的测定 脉冲加热惰性气体熔融红外吸收法 GB/T 28504.3-2021 掺稀土光纤 第3部分:双包层铒镱共掺光纤特性 GB/T 28504.2-2021 掺稀土光纤 第2部分:双包层掺铥光纤特性 GB/T 18996-2021 银合金首饰 银含量的测定 氯化钠或氯化钾容量法(电位滴定法) GB/T 17832-2021 银合金首饰 银含量的测定 溴化钾容量法(电位滴定法) GB/T 18115.4-2021 稀土金属及其氧化物中稀土杂质化学分析方法 第4部分:钕中镧、铈、镨、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇量的测定 GB/T 14949.6-2021 锰矿石 铜、铅和锌含量的测定 火焰原子吸收光谱法 GB/T 12690.7-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第7部分:硅量的测定GB/T 12690.4-2021 稀土金属及其氧化物中非稀土杂质化学分析方法 第4部分:氧、氮量的测定 脉冲-红外吸收法和脉冲-热导法GB/T 11888-2021 首饰 指环尺寸 定义、测量和命名 环境标准(2个)GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 GB/T 40662-2021 废铅蓄电池再生处理技术规范医疗卫生生物标准(4个)GB/T 40660-2021 信息安全技术 生物特征识别信息保护基本要求 GB/T 40423-2021 健康信息学 健康体检基本内容与格式规范 GB/T 40419-2021 健康信息学 基因组序列变异置标语言(GSVML) GB/T 25915.12-2021 洁净室及相关受控环境 第12部分:监测空气中纳米粒子浓度的技术要求 化工橡胶塑料标准(46个)GB/T 9766.6-2021 轮胎气门嘴试验方法 第6部分: 气门芯试验方法 GB/T 9578-2021 工业参比炭黑4# GB/T 8290-2021 胶乳 取样 GB/T 40872-2021 塑料 聚乙烯泡沫试验方法 GB/T 40871-2021 塑料薄膜热覆合钢板及钢带 GB/T 40870-2021 气体分析 混合气体组成数据的换算 GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法 GB/T 40844-2021 化妆品中人工合成麝香的测定 气相色谱-质谱法 GB/T 40639-2021 化妆品中禁用物质三氯乙酸的测定 GB/T 40797-2021 硫化橡胶或热塑性橡胶 耐磨性能的测定 垂直驱动磨盘法 GB/T 40789-2021 气体分析 一氧化碳含量、二氧化碳含量和氧气含量在线自动测量系统 性能特征的确定 GB/T 40726-2021 橡胶或塑料涂覆织物 汽车内饰材料雾化性能的测定 GB/T 40725-2021 浸胶帘线与橡胶粘合剥离性能试验方法 GB/T 40723-2021 橡胶 总硫、总氮含量的测定 自动分析仪法 GB/T 40722.2-2021 苯乙烯-丁二烯橡胶(SBR) 溶液聚合SBR微观结构的测定 第2部分:红外光谱ATR 法 GB/T 40721-2021 橡胶 摩擦性能的测定 GB/T 40720-2021 硫化橡胶 绝缘电阻的测定 GB/T 40719-2021 硫化橡胶或热塑性橡胶 体积和/或表面电阻率的测定 GB/T 40718-2021 绿色产品评价 轮胎 GB/T 40717-2021 阻燃轮胎 GB/T 40716-2021 汽车轮胎气密性试验方法 GB/T 40640.5-2021 化学品管理信息化 第5部分:化学品数据中心 GB/T 40640.4-2021 化学品管理信息化 第4部分:化学品定位系统通用规范 GB/T 40640.2-2021 化学品管理信息化 第2部分:信息安全 GB/T 40640.1-2021 化学品管理信息化 第1部分:数据交换 GB/T 40006.9-2021 塑料 再生塑料 第9部分:聚对苯二甲酸乙二醇酯(PET)材料 GB/T 40006.8-2021 塑料 再生塑料 第8部分:聚酰胺(PA)材料 GB/T 40006.7-2021 塑料 再生塑料 第7部分:聚碳酸酯(PC)材料 GB/T 40006.6-2021 塑料 再生塑料 第6部分:聚苯乙烯(PS)和抗冲击聚苯乙烯(PS-I)材料 GB/T 40006.5-2021 塑料 再生塑料 第5部分:丙烯腈-丁二烯-苯乙烯(ABS)材料 GB/T 3778-2021 橡胶用炭黑 GB/T 30314-2021 橡胶或塑料涂覆织物 耐磨性的测定 泰伯法 GB/T 29614-2021 硫化橡胶 多环芳烃含量的测定 GB/T 26277-2021 轮胎电阻测量方法 GB/T 23938-2021 高纯二氧化碳 GB/T 22930.2-2021 皮革和毛皮 金属含量的化学测定 第2部分:金属总量 GB/T 22930.1-2021 皮革和毛皮 金属含量的化学测定 第1部分:可萃取金属 GB/T 22271.1-2021 塑料 聚甲醛(POM)模塑和挤出材料 第1部分:命名系统和分类基础 GB/T 21537-2021 锥型橡胶护舷 GB/T 21287-2021 电子特气 三氟化氮 GB/T 17874-2021 电子特气 三氯化硼 GB/T 18426-2021 橡胶或塑料涂覆织物 低温弯曲试验 GB/T 18012-2021 胶乳 pH值的测定 GB/T 1687.4-2021 硫化橡胶 在屈挠试验中温升和耐疲劳性能的测定 第4部分:恒应力屈挠试验 GB/T 1232.3-2021 未硫化橡胶 用圆盘剪切黏度计进行测定 第3部分:无填料的充油乳液聚合型苯乙烯-丁二烯橡胶Delta门尼值的测定GB 18382-2021 肥料标识 内容和要求 石油地质矿产标准(16个)GB/T 6683.1-2021 石油及相关产品 测量方法与结果精密度 第1部分:试验方法精密度数据的确定 GB/T 4985-2021 石油蜡针入度测定法 GB/T 4652-2021 地下矿用装岩机和装载机 试验方法 GB/T 40874-2021 原油和石油产品 散装货物输转 管线充满指南 GB/T 40873-2021 大洋富钴结壳资源勘查规程 GB/T 40736-2021 矿用移动式货运索道 安全规范 GB/T 40704-2021 天然气 加臭剂四氢噻吩含量的测定 在线取样气相色谱法 GB/T 40702-2021 油气管道地质灾害防护技术规范 GB/T 40697-2021 第三方煤炭检测管理规范 GB/T 386-2021 柴油十六烷值测定法 GB/T 261-2021 闪点的测定 宾斯基-马丁闭口杯法 GB/T 23799-2021 车用甲醇汽油(M85) GB/T 17144-2021 石油产品 残炭的测定 微量法 GB/T 11060.10-2021 天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化 合物 GB 40881-2021 煤矿低浓度瓦斯管道输送安全保障系统设计规范 GB 40880-2021 煤矿瓦斯等级鉴定规范 玻璃陶瓷建材标准(11个)GB/Z 2640-2021 模制注射剂瓶 GB/T 5990-2021 耐火材料 导热系数、比热容和热扩散系数试验方法(热线法) GB/T 40724-2021 碳纤维及其复合材料术语 GB/T 40715-2021 装配式混凝土幕墙板技术条件 GB/T 40714-2021 浮法玻璃生产成套装备通用技术要求 GB/T 40713-2021 建筑陶瓷生产成套装备通用技术要求 GB/T 40619-2021 基于雷电定位系统的雷电临近预警技术规范 GB/T 19322.1-2021 小艇 机动游艇空气噪声 第1部分:通过测量程序 GB/T 16399-2021 黏土化学分析方法 GB/T 16277-2021 道路施工与养护机械设备 沥青混凝土摊铺机 GB/T 17808-2021 道路施工与养护机械设备 沥青混合料搅拌设备 轻工标准(29个)GB/T 40971-2021 家具产品及其材料中禁限用物质测定方法 多环芳烃 GB/T 40908-2021 家具产品及其材料中禁限用物质测定方法 阻燃剂 GB/T 40907-2021 家具产品及其材料中禁限用物质测定方法 2,4-二氨基甲苯、4,4’-二氨基二苯甲烷 GB/T 40906-2021 家具产品及其材料中禁限用物质测定方法 邻苯二甲酸酯增塑剂 GB/T 40904-2021 家具产品及其材料中禁限用物质测定方法 偶氮染料 GB/T 40938-2021 皮革 物理和机械试验 水渗透压测定 GB/T 40936-2021 皮革 物理和机械试验 服装革防水性能的测定GB/T 40927-2021 皮革 物理和机械试验 漆皮耐热性能的测定 GB/T 40920-2021 皮革 色牢度试验 往复式摩擦色牢度 GB/T 40917-2021 纺织品 全氟己烷磺酸及其盐类的测定 GB/T 40912-2021 纺织品 定量化学分析 聚酰胺酯纤维与某些其他纤维的混合物 GB/T 40910-2021 纺织品 防水透湿性能的评定 GB/T 40909-2021 纺织品 甲基环硅氧烷残留量的测定 GB/T 40905.1-2021 纺织品 山羊绒、绵羊毛、其他特种动物纤维及其混合物定量分析 第1部分:光学显微镜法 GB/T 40903-2021 纺织品 DNA分析法鉴别某些特种动物纤维 山羊绒、绵羊毛、牦牛绒及其混合物 GB/T 29493.2-2021 纺织染整助剂中有害物质的测定 第2部分:全氟化合物(PFCs)的测定 GB/T 29493.1-2021 纺织染整助剂中有害物质的测定 第1部分:禁限用阻燃剂的测定 GB/T 40628-2021 籽棉衣分率试验方法 锯齿型试轧法 GB/T 3903.25-2021 鞋类 整鞋试验方法 鞋跟结合强度 GB/T 3903.14-2021 鞋类 外底试验方法 针撕破强度 GB/T 3903.12-2021 鞋类 外底试验方法 撕裂强度 GB/T 40828-2021 绵羊毛分级规程 GB/T 40826-2021 分梳山羊绒手排长度试验方法 图板电子扫描仪法 GB/T 40673-2021 计时仪器 辐射发光涂层检验条件 GB/T 3903.9-2021 鞋类 内底试验方法 跟部持钉力 GB/T 28004.1-2021 纸尿裤 第1部分:婴儿纸尿裤 GB/T 26703-2021 皮鞋跟面耐磨性能试验方法 GB/T 25036-2021 布面童胶鞋 GB/T 20096-2021 轮滑鞋 机械交通航空航天标准(72个)GB/T 8601-2021 铁路用辗钢整体车轮 GB/T 40861-2021 汽车信息安全通用技术要求 GB/T 40855-2021 电动汽车远程服务与管理系统信息安全技术要求及试验方法 GB/T 40822-2021 道路车辆 统一的诊断服务GB/T 40816.11-2021 工业炉及相关工艺设备 能量平衡测试及能效计算方法 第11部分:各种效率评估 GB/T 40810.2-2021 产品几何技术规范(GPS) 生产过程在线测量 第2部分:几何特征(形位)的在线检测与验证 GB/T 40810.1-2021 产品几何技术规范(GPS) 生产过程在线测量 第1部分:几何特征(尺寸、表面结构)的在线检测与验证 GB/T 40742.5-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第5部分:几何特征检测与验证中测量不确定度的评估 GB/T 40742.4-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第4部分:尺寸和几何误差评定、最小区域的判别模式 GB/T 40742.3-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第3部分:功能量规与夹具 应用最大实体要求和最小实体要求时的检测与验证 GB/T 40742.2-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第2部分:形状、方向、位置、跳动和轮廓度特征的检测与验证 GB/T 40742.1-2021 产品几何技术规范(GPS) 几何精度的检测与验证 第1部分:基本概念和测量基础 符号、术语、测量条件和程序 GB/T 40809-2021 铸造铝合金 半固态流变压铸成形工艺规范 GB/T 40808.1-2021 机床环境评估 第1部分:机床节能设计方法 GB/T 40807-2021 微系统用生产设备 末端执行器与处理器的接口 GB/T 40806-2021 机床发射空气传播噪声 金属切削机床的操作条件 GB/T 40805-2021 铸钢件 交货验收通用技术条件 GB/T 40804-2021金属切削机床加工过程的短期能力评估GB/T 40803-2021 机械加工过程 能量效率评价方法 GB/T 40802-2021 通用铸造碳钢和低合金钢铸件 GB/T 40800-2021 铸钢件焊接工艺评定规范 GB/T 40799-2021 机械加工过程 能效基础数据检测方法 GB/T 40741-2021 焊后热处理质量要求 GB/T 40740-2021 堆焊工艺评定试验 GB/T 40738-2021 熔模铸造 硅溶胶快速制壳工艺规范 GB/T 40737-2021 再制造 激光熔覆层性能试验方法 GB/T 40735-2021 数控机床固有能量效率的评价方法 GB/T 40734-2021 焊缝无损检测 相控阵超声检测 验收等级GB/T 40733-2021 焊缝无损检测 超声检测 自动相控阵超声技术的应用GB/T 40732-2021 焊缝无损检测 超声检测 奥氏体钢和镍基合金焊缝检测 GB/T 40731-2021 精密减速器回差测试与评价方法 GB/T 40730-2021 无损检测 电磁超声脉冲回波式测厚方法 GB/T 40729-2021 精密齿轮传动装置疲劳寿命试验方法 GB/T 40728-2021 再制造 机械产品修复层质量检测方法 GB/T 40727-2021 再制造 机械产品装配技术规范 GB/T 40711.3-2021 乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调GB/T 40709-2021 耙吸挖泥船波浪补偿器技术要求 GB/T 40701-2021 动车组驱动齿轮箱润滑油 GB/T 40700-2021 上面级自主导航系统设计要求 GB/T 40698-2021 航天控制系统工程通用要求 GB/T 40578-2021 轻型汽车多工况行驶车外噪声测量方法GB/T 40574-2021 大型工业承压设备检测机器人通用技术条件 GB/T 40565.4-2021 液压传动连接 快换接头 第4部分:72 MPa螺纹连接型 GB/T 40565.3-2021 液压传动连接 快换接头 第3部分:螺纹连接通用型 GB/T 40565.2-2021 液压传动连接 快换接头 第2部分:20 MPa~31.5 MPa平面型 GB/T 40564-2021 电子封装用环氧塑封料测试方法 GB/T 40563-2021 氟化物红色荧光粉 GB/T 40562-2021 电子设备用电位器 第6部分:分规范 表面安装预调电位器 GB/T 39851.3-2021 道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求 GB/T 39560.8-2021 电子电气产品中某些物质的测定 第8部分:气相色谱-质谱法(GC-MS)与配有热裂解/热脱附的气相色谱-质谱法 (Py/TD-GC-MS)测定聚合物中的邻苯二甲酸酯 GB/T 39560.702-2021 电子电气产品中某些物质的测定 第7-2部分:六价铬 比色法测定聚合物和电子件中的六价铬[Cr(VI)] GB/T 39560.5-2021 电子电气产品中某些物质的测定 第5部分: AAS、AFS、ICP-OES和ICP-MS法测定聚合物和电子件中镉、铅、铬以及金属中镉、铅的含量 GB/T 39560.4-2021 电子电气产品中某些物质的测定 第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞 GB/T 27840-2021 重型商用车辆燃料消耗量测量方法 GB/T 26548.8-2021 手持便携式动力工具 振动试验方法 第8部分:往复式锯、抛光机和锉刀以及摆式或回转式锯 GB/T 26548.12-2021 手持便携式动力工具 振动试验方法 第12部分:模具砂轮机 GB/T 26548.11-2021 手持便携式动力工具 振动试验方法 第11部分:石锤 GB/T 26548.10-2021 手持便携式动力工具 振动试验方法 第10部分:冲击式凿岩机、锤和破碎器 GB/T 23931-2021 三轮汽车 试验方法 GB/T 20933-2021 热轧钢板桩 GB/T 19290.7-2021 发展中的电子设备构体机械结构模数序列 第2-5部分:分规范 25 mm设备构体的接口协调尺寸 各种设备用机柜接口尺寸 GB/T 1805-2021 弹簧 术语 GB/T 16895.33-2021 低压电气装置 第5-56部分:电气设备的选择和安装 安全设施 GB/T 16895.10-2021 低压电气装置 第4-44部分:安全防护 电压骚扰和电磁骚扰防护 GB/T 15055-2021 冲压件未注公差尺寸极限偏差 GB/T 12678-2021 汽车可靠性行驶试验方法 GB/T 12535-2021 汽车起动性能试验方法 GB/T 10919-2021 矩形花键量规 GB 40161-2021 过滤机 安全要求 GB 40160-2021 升降工作平台安全规则 GB 40159-2021 埋刮板输送机 安全规范 GB 17957-2021 凿岩机械与气动工具 安全要求 电子电器标准(111个)GB/Z 40825-2021 电器附件 总则协调 GB/Z 40776-2021 低压开关设备和控制设备 火灾风险分析和风险降低措施 GB/Z 40680-2021 直流系统用剩余电流动作保护电器的一般要求 GB/Z 17624.6-2021 电磁兼容 综述 第6部分 测量不确定度评定指南 GB/T 6346.24-2021 电子设备用固定电容器 第24部分:分规范 表面安装导电聚合物固体电解质钽固定电容器GB/T 5169.9-2021 电工电子产品着火危险试验 第9部分:着火危险评定导则 预选试验程序 总则 GB/T 5169.2-2021 电工电子产品着火危险试验 第2部分:着火危险评定导则 总则 GB/T 5169.20-2021 电工电子产品着火危险试验 第20部分:火焰表面蔓延 试验方法概要和相关性 GB/T 4942-2021 旋转电机整体结构的防护等级(IP代码) 分级 GB/T 40867-2021 统一潮流控制器技术规范 GB/T 40863-2021 生态设计产品评价技术规范 电动机产品 GB/T 40862-2021 输变电设施运行可靠性评价指标导则 GB/T 40823-2021 配电变电站用紧凑型成套设备(CEADS) GB/T 40819-2021 架空线缆微风振动疲劳试验方法GB/T 40815.4-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第4部分:电子机柜中供水热交换器的冷却性能试验 GB/T 40815.2-2021 电气和电子设备机械结构 符合英制系列和公制系列机柜的热管理 第2部分:强迫风冷的确定方法 GB/T 40813-2021 信息安全技术 工业控制系统安全防护技术要求和测试评价方法 GB/T 40786.2-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第2部分:数据链路层规范 GB/T 40786.1-2021 信息技术 系统间远程通信和信息交换 低压电力线通信 第1部分:物理层规范 GB/T 40784.1-2021 信息技术 用于互操作和数据交换的生物特征识别轮廓 第1部分:生物特征识别系统概述和生物特征识别轮廓GB/T 40783.1-2021 信息技术 系统间远程通信和信息交换 磁域网 第1部分:空中接口GB/T 40777-2021 家用及类似用途断路器、RCCB、RCBO自动重合闸电器(ARD)的一般要求 GB/T 40775-2021 生态设计产品评价技术规范 灯具 GB/T 40774-2021 生态设计产品评价技术规范 办公设备系列产品 GB/T 40773-2021 变电站辅助设施监控系统技术规范 GB/T 40739-2021 燃气轮机 燃气轮机设备的数据采集和趋势监测系统要求 GB/T 40678-2021 PXI总线模块通用规范 GB/T 40676-2021 PXI Express总线模块通用规范 GB/T 40659-2021 智能制造 机器视觉在线检测系统 通用要求 GB/T 40654-2021 智能制造 虚拟工厂信息模型 GB/T 40649-2021 智能制造 制造对象标识解析系统应用指南 GB/T 40648-2021 智能制造 虚拟工厂参考架构 GB/T 40647-2021 智能制造 系统架构 GB/T 40617-2021 电气场所的安全生态构建指南 GB/T 40615-2021 电力系统电压稳定评价导则 GB/T 40613-2021 电力系统大面积停电恢复技术导则 GB/T 40610-2021 电力系统在线潮流数据二进制描述及交换规范 GB/T 40609-2021 电网运行安全校核技术规范 GB/T 40608-2021 电网设备模型参数和运行方式数据技术要求 GB/T 40606-2021 电网在线安全分析与控制辅助决策技术规范 GB/T 40602.2-2021 天线及接收系统的无线电干扰 第2部分:基础测量 高增益天线方向图室内平面近场测量方法GB/T 40602.1-2021 天线及接收系统的无线电干扰 第1部分:基础测量 天线方向图的室内远场测量方法 GB/T 40598-2021 电力系统安全稳定控制策略描述规则 GB/T 40594-2021 电力系统网源协调技术导则 GB/T 40593-2021 同步发电机调速系统参数实测及建模导则 GB/T 40592-2021 电力系统自动高频切除发电机组技术规定 GB/T 40591-2021 电力系统稳定器整定试验导则 GB/T 40589-2021 同步发电机励磁系统建模导则 GB/T 40588-2021 电力系统自动低压减负荷技术规定 GB/T 40587-2021 电力系统安全稳定控制系统技术规范 GB/T 40586-2021 并网电源涉网保护技术要求 GB/T 40585-2021 电网运行风险监测、评估及可视化技术规范 GB/T 40584-2021 继电保护整定计算软件及数据技术规范 GB/T 40581-2021 电力系统安全稳定计算规范 GB/T 40580-2021 高压直流输电系统机电暂态仿真建模技术导则 GB/T 40559-2021 平衡车用锂离子电池和电池组 安全要求 GB/T 40532-2021 电力系统站域失灵(死区)保护技术导则 GB/T 40427-2021 电力系统电压和无功电力技术导则 GB/T 40366-2021 电气设备用图形符号列入IEC出版物的导则 GB/T 38775.7-2021 电动汽车无线充电系统 第7部分:互操作性要求及测试 车辆端 GB/T 38775.6-2021 电动汽车无线充电系统 第6部分:互操作性要求及测试 地面端 GB/T 38659.2-2021 电磁兼容 风险评估 第2部分:电子电气系统 GB/T 38428.2-2021 数据中心和电信中心机房安装的信息和通信技术(ICT)设备用直流插头插座 第2部分:5.2 kW插头插座系统GB/T 3836.9-2021 爆炸性环境 第9部分:由浇封型“m”保护的设备 GB/T 3836.8-2021 爆炸性环境 第8部分:由“n”型保护的设备 GB/T 3836.5-2021 爆炸性环境 第5部分:由正压外壳“p”保护的设备 GB/T 3836.4-2021 爆炸性环境 第4部分:由本质安全型“i”保护的设备 GB/T 3836.35-2021 爆炸性环境 第35部分:爆炸性粉尘环境场所分类 GB/T 3836.34-2021 爆炸性环境 第34部分:成套设备 GB/T 3836.3-2021 爆炸性环境 第3部分:由增安型“e”保护的设备 GB/T 3836.31-2021 爆炸性环境 第31部分: 由防粉尘点燃外壳“t”保护的设备 GB/T 3836.29-2021 爆炸性环境 第29部分:爆炸性环境用非电气设备 结构安全型“c”、控制点燃源型“b”、液浸型“k” GB/T 3836.28-2021 爆炸性环境 第28部分:爆炸性环境用非电气设备 基本方法和要求 GB/T 3836.2-2021 爆炸性环境 第2部分:由隔爆外壳“d”保护的设备 GB/T 3836.13-2021 爆炸性环境 第13部分:设备的修理、检修、修复和改造 GB/T 3836.1-2021 爆炸性环境 第1部分:设备 通用要求 GB/T 36450.7-2021 信息技术 存储管理 第7部分:主机元素 GB/T 33598.3-2021 车用动力电池回收利用 再生利用 第3部分:放电规范 GB/T 33133.2-2021 信息安全技术 祖冲之序列密码算法 第2部分:保密性算法 GB/T 29618.5120-2021 现场设备工具(FDT)接口规范 第5120部分:通用对象模型的通信实现 IEC 61784 CPF 2 GB/T 29618.5110-2021 现场设备工具(FDT)接口规范 第5110部分:通用对象模型的通信实现 IEC 61784 CPF 1 GB/T 2900.104-2021 电工术语 微机电装置 GB/T 25285.2-2021 爆炸性环境 爆炸预防和防护 第2部分:矿山爆炸预防和防护的基本原则和方法 GB/T 25285.1-2021 爆炸性环境 爆炸预防和防护 第1部分:基本原则和方法 GB/T 24726-2021 交通信息采集 视频交通流检测器 GB/T 24621.1-2021 低压成套开关设备和控制设备的电气安全应用指南 第1部分:成套开关设备 GB/T 22712-2021 变频电机用G系列冷却风机技术规范 GB/T 22459.3-2021 耐火泥浆 第3部分:粘接时间试验方法 GB/T 20184-2021 拉曼光纤放大器 GB/T 21973-2021 YZR3系列起重及冶金用绕线转子三相异步电动机 技术条件 GB/T 19754-2021 重型混合动力电动汽车能量消耗量试验方法 GB/T 1971-2021 旋转电机 线端标志与旋转方向 GB/T 19334-2021 低压开关设备和控制设备的尺寸 在开关设备和控制设备及其附件中作机械支承的标准安装轨 GB/T 18910.61-2021 液晶显示器件 第6-1部分:液晶显示器件测试方法 光电参数 GB/T 18910.203-2021 液晶显示器件 第20-3部分:目检 有源矩阵彩色液晶显示模块 GB/T 18910.202-2021 液晶显示器件 第20-2部分:目检 单色矩阵液晶显示模块 GB/T 18910.201-2021 液晶显示器件 第20-1部分:目检 单色液晶显示屏 GB/T 18910.102-2021 液晶显示器件 第10-2部分:环境、耐久性和机械试验方法 环境和耐久性 GB/T 18910.101-2021 液晶显示器件 第10-1部分:环境、耐久性和机械试验方法 机械 GB/T 18898.1-2021 掺铒光纤放大器 第1部分:C波段掺铒光纤放大器 GB/T 18663.2-2021 电子设备机械结构 公制系列和英制系列的试验 第2部分:机柜和机架的地震试验 GB/T 18113-2021 铬酸镧高温电热元件 GB/T 17215.231-2021 电测量设备(交流) 通用要求、试验和试验条件 第31部分:产品安全要求和试验 GB/T 15972.49-2021 光纤试验方法规范 第49部分:传输特性的测量方法和试验程序 微分模时延 GB/T 14824-2021 高压交流发电机断路器 GB/T 13542.2-2021 电气绝缘用薄膜 第2部分:试验方法 GB/T 12668.7302-2021 调速电气传动系统 第7-302部分:电气传动系统的通用接口和使用规范 2型规范对应至网络技术 GB/T 12274.4-2021 有质量评定的石英晶体振荡器 第4部分:分规范 能力批准 GB/T 11019-2021 镀镍圆铜线 GB/T 10217-2021 电工控制设备造型设计导则 GB 40165-2021 固定式电子设备用锂离子电池和电池组 安全技术规范 能源标准(17个)GB/T 40866-2021 太阳能光热发电站调度命名规则 GB/T 40860-2021 压水堆核电厂设计扩展工况分析要求 GB/T 40858-2021 太阳能光热发电站集热管通用要求与测试方法 GB/T 40821-2021 太阳能热发电站换热系统检测规范 GB/T 40817.2-2021 核电主泵电机技术条件 第2部分:屏蔽泵异步电机 GB/T 40817.1-2021 核电主泵电机技术条件 第1部分:轴封泵异步电机 GB/T 40703-2021 太阳能中温工业热利用系统设计规范 GB/T 40677-2021 微型导热管 GB/T 40620-2021 核动力厂火灾危害性分析指南 GB/T 40618-2021 回旋加速器术语 GB/T 40616-2021 村镇光伏发电站集群控制系统仿真测试技术要求 GB/T 40614-2021 光热发电站性能评估技术要求 GB/T 40607-2021 调度侧风电或光伏功率预测系统技术要求 GB/T 40604-2021 新能源场站调度运行信息交换技术要求 GB/T 13697-2021 二氧化铀粉末和芯块中碳的测定 高频感应炉燃烧-红外检测法 GB/T 20115.1-2021 工业燃料加热装置基本技术条件 第1部分:通用部分 GB/T 11809-2021 压水堆燃料棒焊缝检验方法 金相检验和X射线照相检验其他标准(11个)GB/T 4857.23-2021 包装 运输包装件基本试验 第23部分:垂直随机振动试验方法 GB/T 40868-2021 纳米尺度科研生产受控环境规划与设计 GB/T 40753-2021 供应链安全管理体系 ISO 28000实施指南 GB/T 40681.6-2021 生产过程能力和性能监测统计方法 第6部分:多元正态过程能力分析 GB/T 40681.5-2021 生产过程能力和性能监测统计方法 第5部分:计数特性的过程能力和性能估计 GB/T 40681.4-2021 生产过程能力和性能监测统计方法 第4部分:过程能力估计和性能测量 GB/T 40621-2021 地闪密度分布图绘制方法 GB/T 19789-2021 包装材料 塑料薄膜和薄片氧气透过性试验 库仑计检测法 GB/T 13675-2021 航空派生型燃气轮机包装与运输 GB/T 15717-2021 真空金属镀层厚度测试方法 电阻法 GB 19268-2021 固体氰化物包装 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近75万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室 陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知
    各会员单位及有关单位:根据《陕西省质量认证认可协会团体标准制修订工作程序》要求,陕西省质量认证认可协会对《细粒土颗粒分析试验激光粒度仪法》、《水质 可溶性阳离子(锶、钡)的测定 离子色谱法》团体标准进行了立项审查,经协会技术专家认真研究与审核,上述申报的团体标准符合立项条件,现批准立项。请起草单位按照《中华人民共和国标准化法》的有关要求严格把控标准质量,切实提高标准制定的质量和水平,增加标准的实用性和实效性,按期完成标准编制的相关工作。同时欢迎与立项标准有关的高校、科研机构、相关企业、使用单位等加入该标准的起草编制工作。有意参与标准起草工作的请与协会秘书处联系。联系方式:联系人:刘耕典电话:029-87299220;18791486587邮箱:SXQCABZ@163.com地 址:陕西省西安市未央区未央路与凤城南路南100米荣民中央国际1606室陕西省质量认证认可协会2023年03月10日陕西省质量认证认可协会关于《细粒土颗粒分析试验激光粒度仪法》等2项团体标准立项的通知.pdf
  • 普洛帝发布最新颗粒度瓶技术引领世界标准
    标签:颗粒度瓶、普洛帝、世界标准[导读]英国普洛帝分析测试集团向全球客户升级颗粒度取样瓶产品技术,专利“5A+清洁灭菌”技术成为本次升级的重点,颗粒度瓶升级后可将粒径精准至0.1微米。2015年4月15日,英国普洛帝分析测试集团向全球客户升级颗粒度取样瓶产品技术,首次应用专利“5A+清洁灭菌”技术在油液颗粒度检测试验中,避免人为二次污染。普洛帝公司自1980年生产颗粒度瓶至今已有35年的历史了,经历了三代的更新,从NAS1638标准的等级控制,到清洁度等级RCL的控制,可适用于不同行业的要求。升级后的产品可接受各类客户的订制要求,按照NAS1638标准从00级别到4级别,ISO4406标准从0/0/0级别到8/8/8级别,GJB420B标准从00级别到2级别,清洁度等级RCL的控制可达到0.1微米不大于100个,是目前世界上最苛刻的指标要求。逐一检测批次抽检法是目前最为重苛刻的监督检测方法,生产中每一个产品需通过跟踪检测,再从成品中进行批次抽检,达到100%的合格率。目前为普洛帝大中国区服务中心特有监测手段。 普洛帝-全球著名的颗粒检测专家 !普洛帝(简称:PULUODY)是全球最大的油液颗粒监测技术提供者,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术的领导者。PULUODY ANDLYSIS & TESTING GROUP LTD.拥有中国区颗粒检测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。
  • 关于举办食品分析检测难点及乳品检测技术标准会议的通知
    针对食品分析检测人员在实际工作中出现的技术需求,为提高食品安全检测技术水平,进一步交流毒理学替代检测技术、食品掺假、食品溯源等国内外最新食品安全检测技术,了解AOAC 关于SPIFAN ( International Stakeholder Panel on Infant Formula and Adult Nutritionals)国际婴幼儿乳品标准项目进展,了解AOAC 标准的制定程序,AOAC 中国分部将举办食品分析检测难点及乳品检测技术标准研讨会议。现将有关事项通知如下:  一、会议时间  2014 年5 月29-30 日,5 月28 日报到。  二、会议地点  成都高新皇冠假日酒店,成都高新西区西芯大道1 号。  三、会议内容(一)食品安全检测难点、热点及解决方案研讨  1、化学污染物检测难点(农兽药残留、生物毒素、重金属、非法添加等)  2、食品毒理检测难点3、营养元素检测难点4、食品掺假鉴别分析、食品溯源检测难点5、微生物检测难点  (二)AOAC SPIFAN (International Stakeholder Panel on Infant Formula and Adult Nutritionals )国际婴幼儿乳品标准项目最新进展及中国实验室的参与(三)AOAC 标准的制定程序  四、报名方式及会议费请将附件参会报名表发送至section@aoacchina.org ,或登录  http://www.aoacchina.org/_d276317864.htm 进行网上报名。会议不统一安排住宿,食宿、交通费用自理。会议费:800 元。请在5 月25 日前汇至帐户(户名:青岛市公定  分析学会 帐号:80219-02-0029405-7 开户行:青岛银行浙江路支  行),汇款请注明参会人姓名、单位及发票抬头。具体事宜请联系:梁军舰电话:18615951165 E-mail: section@aoacchina.org 静平电话: 15192010681 E-mail: jingp@aoacchina.org
  • 新形势下食品安全四大方向 分析技术标准化位列其中
    2016年的全国两会近日在北京召开,总理的政府工作报告中提到,过去一年的中国,经济社会发展稳中有进、稳中有好。反观过去一年我国的食品安全情况,也可以用“稳中有好,稳中有进”来进行概括。2015年,中国政府高度重视食品安全工作,用“最严谨的标准、最严格的监管、最严厉的处罚、最严肃的问责”构筑科学完善的食品安全监管体系。  方向1  微生物控制和食品分析技术标准化  直击全球食品安全共同面临的最大挑战  据悉,2015年国家食品药品监督管理总局在全国范围内组织抽检了172310批次食品样品,其中检验不合格样品5541批次,而监督抽查发现的主要问题中,微生物污染占不合格样品的27.9%,成为食品抽检不合格的主要原因之一。另据中国食品科学技术学会持续五年开展的年度食品安全热点解析的内容显示:微生物污染已连续两年位列舆情关注的热点之首,这与全球食品安全面临的问题相吻合,尤其在肉制品、水产品等微生物污染的高危行业,如何有效控制微生物污染已成为把控行业健康发展的重要因素。  另外,一直以“分析结果、全球可信”为宗旨的AOAC国际组织,多年来通过协商一致原则,开发统一的确认分析方法和实验室质量保证程序,其官方方法已被全世界的监管机构和组织广泛接受和认可为“金标准”,许多AOAC方法也被一些国家和地方以法律方式确定或以联邦食品标准形式执行,如食品法典委员会分析方法标准中所引用的大多数为AOAC方法。那么,如何借鉴AOAC的标准化体系,加速我国食品安全检测和分析技术的国际化步伐成为当务之急。  方向2  食品营养与健康的科学评价及产业预测  深度解读食品工业健康转型的新趋势  粮食安全是底线,食品安全是保障,营养安全是目标。这一对我国食品安全的深度剖析,将营养与健康列入我国食品安全的未来趋势与终极目标。中国工程院有关“中国食品安全现状、问题及对策战略研究”项目报告组专家也提出将食品营养与民众健康水平列入我国中长期发展纲要的建议,报告中有关“食品营养与健康”的政策建议也得到了国家相关部门的高度重视。由此可见,在我国食品工业发展“新常态”的大环境下,食品产业界向营养与健康的转型将毫无疑问地成为新的增长点。此外,国内外食品科学家多年来在食品营养与健康方面的基础研究与技术创新,亟待寻求与产业对接的突破口,部分研究已逐渐支持其相关食品产业的发展,让人备受鼓舞 尤其是在老年营养与健康产业发展中,老年食品的研发已引起诸多知名食品企业的关注,部分科研机构对老年营养与健康产业的前期调研与情况分析,也有力地支撑了未来老年食品产业的科学发展。  方向3  进出口食品安全与互联网渠道的新风险  全方位守护“舌尖上的安全”  随着全球贸易的快速发展,中国市场吸引着众多国外企业的目光。强大的消费需求和对进口食品的盲目信任,造就了一个非常可观的进口食品市场。自2004年起,中国已从食品出口国转变为进口国,质检总局对进出口食品的监管亦从以出口为主,转变为对出口、进口食品同样严格的监管,并将监管的链条由企业延伸到产地 另一方面,原料来源日趋多元化,供应链复杂化,输入性风险加大,对食品安全的监管已从境内延伸到境外。特别是去年通过新的《食品安全法》之后,对于进口食品和进口食品原料的管理,令众多企业不知如何应对。  导致进出口食品消费快速增加的原因除了贸易开放与关税壁垒大幅降低以外,还有一个重要的原因,就是互联网时代为企业和消费者提供了一个全球采购的供销平台。在全新渠道下,食品安全的监管也变得更具挑战。进出口食品出现了“海淘” 自制食品可以在网上随意开店销售 餐饮O2O模式对传统营销带来巨大冲击。食品产业在融入“互联网+”的概念后,呈现出更加复杂而多变的业态模式。面对这样全新的业态,政府层面该如何监管,电商企业需要如何把控风险,消费者怎么样才能保护自身的利益,都是需要集合多方的智慧去探讨与研究的问题。  方向4  食品安全风险交流  以“科技界共识”回应媒体与消费者的“共需”  2015年10月1日,新《食品安全法》正式实施,其中增加了对食品安全风险交流的规定,即“第二十三条 县级以上人民政府食品药品监督管理部门和其他有关部门、食品安全风险评估专家委员会及其技术机构,应当按照科学、客观、及时、公开的原则,组织食品生产经营者、食品检验机构、认证机构、食品行业协会、消费者协会以及新闻媒体,就食品安全风险评估信息和食品安全监督管理信息进行交流沟通。”  食品安全是行业坚守的底线,而风险交流则是行业发展的助力。食品安全不存在零风险,风险交流在食品安全管理方面意义重大。有效的风险交流能够提升公众对食品安全现状的认知,而错误的风险交流则会将行业推向另一个深渊,因此必须正确地使用这把“双刃剑”。
  • 《食品感官分析技术及重要标准研制》通过验收
    2009年12月30日,中国标准化研究院科研计划部对食品所承担的《食品感官分析技术及重要标准研制》任务进行了验收。北京工商大学副校长孙宝国院士、国家食品质量监督检验中心主任宋全厚高工等八位专家出席了会议,会中各位专家达成一致意见,任务顺利通过验收。  《食品感官分析技术及重要标准研制》是科技部2006年下达的国家科技支撑计划重大项目《关键技术推进工程》课题《重要基础性技术标准研制》中的任务6(项目编号:2006BAK04A05)。该任务针对“传统感官评价的规范化—提高感官评价的可比性和可靠性”和“传统感官评价的精确化—增加感官评价的客观性和精确性”两个核心目标,采用产学研结合的方式与中国农业大学、上海大学、以及今麦郎食品有限公司、法国阿尔法莫斯公司等建立了科研合作关系,共同开展课题研究。形成了在国内龙头企业试点示范,针对实际生产需求进行研究并实地应用验证,并邀请国外知名企业参与,进行标准数据采集与分析的良好模式。  本任务主要研究内容包括:食品感官分析共性及关键技术基础研究、食品感官分析重要通用技术标准及应用指南研究与制定和我国传统特色及大宗食品感官分析技术研究与标准制定三大部分。  主要取得了4个方面的研究成果:第一、构建了食品感官品评价的指标体系。该体系建立了感官品质指标识别技术、确立了食品感官品质指标体系建立的原则与方法、构建了典型特色食品(茶叶、白酒)和大宗工业食品(方便面)的感官品质指标体系、建立了以感官指标为核心的品质指标基础数据库。第二、开发了食品感官品质评价智能算法及信息系统,探索实现我国特色及各大类食品品质指纹数据管理、质量预测和真伪辨别的智能化 第三、研制了6项重要感官分析技术标准(包括4项通用基础标准和2项产品专用标准)与1部感官分析技术标准应用指南,以规范感官评价过程要素及具体产品的感官评价方法,并指导技术标准的应用。第四、成功开展了感官分析国际标准化活动,培养了感官分析领域专业和技术人才。  该任务的圆满完成标志着中国标准化研究院开展的关键技术推进工程重大项目在感官分析技术领域取得了重要进展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制