当前位置: 仪器信息网 > 行业主题 > >

副溶血性弧菌增菌液

仪器信息网副溶血性弧菌增菌液专题为您提供2024年最新副溶血性弧菌增菌液价格报价、厂家品牌的相关信息, 包括副溶血性弧菌增菌液参数、型号等,不管是国产,还是进口品牌的副溶血性弧菌增菌液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合副溶血性弧菌增菌液相关的耗材配件、试剂标物,还有副溶血性弧菌增菌液相关的最新资讯、资料,以及副溶血性弧菌增菌液相关的解决方案。

副溶血性弧菌增菌液相关的方案

  • 餐饮食品微生物检测解决方案-微生物检测-食品
    餐饮食品微生物监测主要包括:卫生指示菌:菌落总数、大肠菌群、大肠埃希氏菌、霉菌酵母、李斯特菌等食源性致病菌:沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特氏菌、大肠埃希氏菌 O157:H7/NM、副溶血性弧菌、蜡样芽胞杆菌等。食源性病毒:诺如病毒为主
  • 迪澳生物食品安全分子检测整体解决方案 -商场、超市篇
    由于国内近几年食品安全问题频发,众多的食物中毒事件暴露在大众视野内,2018 年云南一起由副溶血性弧菌引起的食品污染问题,导致了 20 人患病,其中 2 人死亡;更有甚者,2020 年 6 月在广州发生一起 48 人食物中毒事件,究其原因,罪魁祸首也是副溶血性弧菌。据相关统计,仅 2017 到 2020 年间国内发生多起因食用微生物污染的木耳导致的中毒事件,其中伤亡人数二十余人。2020 年 6 月 12 日,湖南省市监局通报的不合格 6 批次食物抽检结果中,微生物污染食品占 3 例,食品种类涉及乳饮、凉菜、果干、肉制品等。2020 年 7 月 3 日,江苏省市监局通报不合格 6 批次食物抽检结果中,微生物污染食品占 3 例。由于微生物引起的食品污染导致人类中毒导致伤亡的程度尤其严重,人们对微生物污染的印象越来越深,大家对食品生物安全概念的了解越来越多,人民群众的食品安全意识也随之越来越高,能提供绿色安全有保障食品的商家和店铺成为了消费者关注和选择的对象。
  • 迪澳生物食品安全分子检测整体解决方案-商场超市篇
    由于国内近几年食品安全问题频发,众多的食物中毒事件暴露在大众视野内,2018年云南一起由副溶血性弧菌引起的食品污染问题,导致了20人患病,其中2人死亡;更有甚者,2020年6月在广州发生一起48人食物中毒事件,究其原因,罪魁祸首也是副溶血性弧菌。据相关统计,仅2017到2020年间国内发生多起因食用微生物污染的木耳导致的中毒事件,其中伤亡人数二十余人。2020年6月12日,湖南省市监局通报的不合格6批次食物抽检结果中,微生物污染食品占3例,食品种类涉及乳饮、凉菜、果干、肉制品等。2020年7月3日,江苏省市监局通报不合格6批次食物抽检结果中,微生物污染食品占3例。由于微生物引起的食品污染导致人类中毒导致伤亡的程度尤其严重,人们对微生物污染的印象越来越深,大家对食品生物安全概念的了解越来越多,人民群众的食品安全意识也随之越来越高,能提供绿色安全有保障食品的商家和店铺成为了消费者关注和选择的对象。
  • HPLC-ELSD 助力检测药品中溶血磷脂酰乙醇胺和溶血磷脂酰胆碱
    一般注射药品中会添加乳化剂,而常用的乳化剂大豆磷脂、蛋黄卵磷脂等中含有溶血磷脂酰乙醇胺(LPE)和溶血磷脂酰胆碱(LPC)两种物质。这两种物质具有较强的表面活性,其浓度较高时容易引起红细胞膜破裂,从而引起溶血或细胞坏死现象。因此按照新版《中国药典》规定,中/长链脂肪乳注射液、丙泊酚注射液等注射剂均将其作为影响质量的主要杂质进行质控。
  • 细菌增殖曲线的测定实验方案
    将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、对数期、稳定期和衰亡期。这四个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所改变。因此通过测定微生物的生长曲线,可了解各菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实验采用比浊法测定,由于细菌悬液的浓度与光密度(OD值)成正比,因此可利用分光光度计测定菌悬液的光密度来推知菌液的浓度,并将所测的OD值与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线。
  • 迅数多功能一体机:蜂液抑菌活性研究
    采用不同溶剂提取长木蜂蜂粮粗提液, 并用杯碟法测定所得粗提液的抑菌活性。结果表明: 不同的浸提方法提取粗提液得率有明显差别, 沸水提取的得率最高, 为80. 14% 乙醚提取得率最低, 为22. 96%。不同溶剂的粗提液抑菌活性以70% ( 质量分数)乙醇粗提液的抑菌活性最强, 水提液的次之, 沸水提取液的最低。70% 乙醇粗提液对细菌的抑菌活性明显大于对真菌的抑菌活性, 对不同指示菌的抑菌活性有显著差异, 表现为抑菌活性随粗提液浓度梯度增加而增强。粗提液对各种细菌的抑菌活性从高到低依次为: 枯草杆菌、鳗弧菌、金黄色葡萄球菌、大肠杆菌、耶尔森菌。其中, 对枯草芽孢杆菌最大抑菌圈直径为( 23. 61 ? 0. 89)mm。
  • 天津兰力科:金电极上放线菌素D的电化学行为及分析测定
    应用方波溶出伏安法研究了放线菌素D在KH2PO4-2Na2HPO4缓冲溶液中于金电极上的电化学行为以及酸度、预富集沉积电位、预富集沉积时间、方波频率、方波幅度、电位增量等的影响,优化测定参数,建立一种直接测定放线菌素D的电分析测定方法. 在0. 1~10. 0μmol/L浓度范围内,放线菌素D与其方波溶出伏安氧化峰电流呈良好的线性关系,相关系数0. 9991,检测限0.00000001mol/L.
  • 固相萃取法用于猪肉中磺胺类药物多残留的测定
    近年来,越来越多的研究结果表明,磺胺类药物特别是磺胺甲基嘧啶、磺胺二甲氧嘧啶、磺胺甲基异恶唑等残留对人体的危害主要表现为“致癌、致畸、致突变”作用,引起过敏、中毒和导致耐药性菌株产生,以及引起造血系统障碍、急性溶血性贫血、粒细胞缺乏症、再生障碍性贫血等。因此,加强磺胺残留的检测及监控是控制兽药残留发生的重要措施之一。
  • 力扬:毒性物质的费氏弧菌(Vibrio fischeri)生物自发光色谱检测
    成立于1912年的Landeswasserversorgung公司作为德国历史最悠久的长距离自来水供应商,充分了解水源环境中可能存在的有毒物质和其它污染物(下称有害物质)并将它们排除在饮用水之外对其而言非常重要。在检测有害物质方面,除了常规的化学、物理化学和微生物方法外,最近新的被称作“生物测试系统”的活性检测技术被引进,譬如采用发光细菌进行有毒物质的生物自发光检测,以及胆碱酯酶抑制剂的活性检测等。传统方法仅能对成分的化学性质进行分析,而生物测试则可以直接测定成分的活性强度。可测定的活性参数通常包括急性毒性(如导致消亡,发光抑制),慢性毒性(如生长抑制)和遗传毒性(如致突变)。生物自发光检测可测定有毒物质的急性毒性。生物测试系统的另一个优势在于对于未知活性物质的检测。对于已知的3万余种相关化学物质及其降解产物而言,采用物理化学方法每次进行某一类成分的检测显然力不从心,因为检出的物质只能是该分析方法有针对性所要检测的,并且是具有参照物质的。而生物测试系统的检测能力可以在一定范围内达到所有成分全部得到检测,因此对于复杂组分样品的风险评估而言,能够跨越即便采用种类繁多的化学分析也不能够充分覆盖的可检测范围。基于费氏弧菌的生物自发光显影检测是在废水分析中常用的试管法,其所测定的总活度是样品中各个活性组分活度之合,因此同时包括了成分间的拮抗作用和协同作用
  • 力扬:经光辐照后防晒霜的原位HPTLC-费氏弧菌生物活性分析
    防晒油是为了保护人体皮肤免受UVA(波长320~400 nm)和UVB(波长275~320 nm)的辐射损害。然而早在1997年的研究结果[1]即显示,一些产品配方中所添加的UV防晒剂当暴露于阳光中会发生成分降解,存在潜在危害。但有关这些降解产物的毒理学相关研究迄今未见报导。本文所介绍的方法结合了色谱分离与生物活性检测技术,能够确定防晒霜产品中光降解产物的具有专属性的生物活性。 HPTLC-生物自发光联用技术系将物理及化学的分离技术与采用发光细菌费氏弧菌(Vibrio fischeri)的生物检测方法将融合的专属性分析技术。生物发光抑制剂可对细菌的新陈代谢造成干扰,其抑制活性的等级与其化合物毒性呈正相关。Vibrio fischeri细菌自1979年起就用于生态毒理学分析,特别是水样测试(德国国标DIN 38412 L34 比色法)以及化学品测试。为了将细菌作为一种HPTLC高效薄层色谱的衍生化显色手段,需要借助Bioluminex特种试剂盒(www.chromadex.com)。 瑞士巴赛尔一史达特州立实验室是该州对于食品、玩具和化妆品等各类生活用品质量进行法规监管的权力机构。作为非食品部门主任的Dr. Christopher Hohl,着力于分析日用消费品中的各种添加物,如保鲜剂、染料色素和紫外防晒剂(UV filters)等。其工作还包括针对各类有害的目标化合物开发适合的GC,HPLC以及HPTLC分析方法。最近引进的基于HPTLC-生物自发光技术的毒理学检测技术帮助该部门在筛查未知化合物时发现了数个感兴趣的具有特殊毒性的色谱成分。 与传统的检测手段相比,生物检测显示了与众不同的结果:一些在色谱中具有高UV响应值的成分斑点并未观察到生物发光的改变,而另一些斑点在生物自显影图谱中则得到了很强的表达,另外也有一些成分在2种图谱中拥有基本一致的信号强度。非常有趣的一点是,UV防晒剂的生物活性强度与其分子量具有负相关性。在1998年后推出的所有新的UV防晒剂类型(分子量均大于400),对Vibrio fischeri基本显示抑制效应。 为了比较HPTLC和HPLC方法以及鉴别降解产物,防晒霜提取物在HPTLC薄层板上展开后,将感兴趣的活性成分斑点从板上刮下并采用HPLC-DAD和LC-MS进行分析。该鉴别流程结果满意,由于HPTLC的塔板个数低于HPLC,因此薄层板上的某些个活性斑点在HPLC系统中被分开为几个色谱峰。生物发光检测下成分的峰高与传统检测方式(HPTLC-UV,HPLC-DAD和LC-MS)下的响应不呈线性关系。甚至有一个高活性成分采用各种物理-化学方法都无法得到检测。 Vibrio fischeri生物活性检测可用于2个目的:一是它独特的选择性检测机制使其可以探测到过去无法发现的化合物。第二,细菌抑制作用作为一种活性指标可以帮助甄别出哪些光降解产物需要进行更进一步的毒理学评估。
  • 血液增菌培养基制备实验
    实验原理:供血液和骨髓液病原菌的增菌培养。血液增菌培养基主要用于血液和骨髓液病原菌的增菌培养。
  • 磺丁基β环糊精在BioCore SEC-300上的分离-体积排阻
    磺丁基-β -环糊精是β -环糊精6位(也包括2、3位)OH被磺丁基(CH2)4SO3H取代的产物,按不同的取代度可以分为单取代、多取代和全6位取代的β -环糊精,分子式也因此不同磺丁基-β -环糊精是阴离子型高水溶性环糊精衍生物,能很好地与药物分子包合形成非共价复合物,从而提高药物的稳定性、水溶性、安全性,降低肾毒性、缓和药物溶血性,控制药物释放速率,掩盖不良气味等。
  • 离子色谱-脉冲安培检测磺丁基醚-β -环糊精中的β -环糊精
    磺丁基醚-β -环糊精(SBE-β -CD)是阴离子型高水溶性环糊精衍生物,能很好地与药物分子包合形成非共价复合物,从而提高药物的稳定性、水溶性和安全性,同时具有降低肾毒性、缓和药物溶血性、控制药物释放速率及掩盖不良气味等特性,其在欧美已被批准用作注射剂的辅料。β -环糊精(β -CD)是SBE-β -CD的合成原料之一,控制其含量对于提高SBE-β -CD的质量有重要意义。
  • 磺丁基β环糊精在BioCoreSEC-150上的分离-体积排阻
    磺丁基-β -环糊精是β -环糊精6位(也包括2、3位)OH被磺丁基(CH2)4SO3H取代的产物,按不同的取代度可以分为单取代、多取代和全6位取代的β -环糊精,分子式也因此不同。磺丁基-β -环糊精是阴离子型高水溶性环糊精衍生物,能很好地与药物分子包合形成非共价复合物,从而提高药物的稳定性、水溶性、安全性,降低肾毒性、缓和药物溶血性,控制药物释放速率,掩盖不良气味等。
  • 磺丁基β环糊精在BioCore SEC-150上的分离-体积排阻
    磺丁基-β -环糊精是β -环糊精6位(也包括2、3位)OH被磺丁基(CH2)4SO3H取代的产物,按不同的取代度可以分为单取代、多取代和全6位取代的β -环糊精,分子式也因此不同。磺丁基-β -环糊精是阴离子型高水溶性环糊精衍生物,能很好地与药物分子包合形成非共价复合物,从而提高药物的稳定性、水溶性、安全性,降低肾毒性、缓和药物溶血性,控制药物释放速率,掩盖不良气味等。
  • 真菌在摇床上的用途及选型
    粘稠的培养基降低氧转移率,不利真菌生长,培养物不超过培养瓶容积的20%,常用转速~200rpm,最佳生长温度在30~35℃。恒温摇床可以让菌液不停振荡,从而有利于与空气接触,对于需氧菌是非常有利的。而且也可以让真菌与培养液中的营养物质更充分的接触其培养条件是。
  • 动物源性食品中磺胺类药物残留LC-MS/MS分析方法
    磺胺类药物(Sulfonamides,SAs) 是指一类具有对氨基苯磺酰胺结构、用于预防和治疗细菌感染性疾病的化学药物,是当前畜禽生产中常用的抗菌、抗原虫药物,具有抗菌谱广、价格低、化学性质稳定、使用方便等优点。但是摄入大量磺胺类药物会破坏正常免疫机能,破坏人的造血系统,造成溶血性贫血症、粒血细胞缺乏症等症状。并且人体长期摄入含磺胺类药物的动物性食品后,药物不断在人体内蓄积,当积累到一定程度后,就会对人体产生毒性作用,同样可引起肾损害,所以针对磺胺类药物的监控是一项刻不容缓的工作。目前关于磺胺类药物的标准已出台《GB/T 21316-2007 动物源性食品中磺胺类药物残留量的测定 》,方法中涉及肌肉、内脏、鱼、虾和肠衣、牛奶中磺胺脒、甲氧苄啶、磺胺醋酰、磺胺嘧啶等几十种磺胺类药物的前处理方法及液质检测方法。本文用蜂蜜作为目标样品,使用PerkinElmer QSight LC/MS/MS 系统研究了并优化磺胺类药物在此类基质中的检测方法。PerkinElmer QSight 210 系统完全满足动物源性食品中磺胺类药物的日常检测工作。QSight 210 系统,离子源具有自清洁功能以及质谱接口HSID 热源去溶剂技术,提高仪器抗污染能力,从而获得更低的噪音,更低的检测限,从容应对复杂基质的食品安全检测。油中的重金
  • 动物源性食品中磺胺嘧啶残留LC-MS/MS分析方法
    磺胺类药物(Sulfonamides,SAs) 是指一类具有对氨基苯磺酰胺结构、用于预防和治疗细菌感染性疾病的化学药物,是当前畜禽生产中常用的抗菌、抗原虫药物,具有抗菌谱广、价格低、化学性质稳定、使用方便等优点。但是摄入大量磺胺类药物会破坏正常免疫机能,破坏人的造血系统,造成溶血性贫血症、粒血细胞缺乏症等症状。并且人体长期摄入含磺胺类药物的动物性食品后,药物不断在人体内蓄积,当积累到一定程度后,就会对人体产生毒性作用,同样可引起肾损害,所以针对磺胺类药物的监控是一项刻不容缓的工作。目前关于磺胺类药物的标准已出台《GB/T 21316-2007 动物源性食品中磺胺类药物残留量的测定 》,方法中涉及肌肉、内脏、鱼、虾和肠衣、牛奶中磺胺脒、甲氧苄啶、磺胺醋酰、磺胺嘧啶等几十种磺胺类药物的前处理方法及液质检测方法。本文用蜂蜜作为目标样品,使用PerkinElmer QSight LC/MS/MS 系统研究了并优化磺胺类药物在此类基质中的检测方法。PerkinElmer QSight 210 系统完全满足动物源性食品中磺胺类药物的日常检测工作。QSight 210 系统,离子源具有自清洁功能以及质谱接口HSID 热源去溶剂技术,提高仪器抗污染能力,从而获得更低的噪音,更低的检测限,从容应对复杂基质的食品安全检测。油中的重金
  • 盈盛恒泰-食源性致病菌快速检测解决方案-PEN3
    随着经济 化进程的加快,由食源性治病菌导致的食品安全问题不断出现。传统的细菌检测方法灵敏度高、费用低,但检测所需时间较长且工作量庞大。现代免疫学和分子生物学特异性好效率高,但一般样品预处理过程比较复杂,且较难达到实时检测的目的。PEN3型便携式电子鼻传感器是一种新颖的分析、识别和检测手段。应用电子鼻检测,样品处理方便,操作简单快捷、有望实现实时检测。本实验依据PEN3型电子鼻传感器对不同食源性致病菌代谢挥发物质的差异响应,研究应用PEN3型电子鼻传感器快速检测区分不同食源性致病菌的可行性。结论:基于金属氧化物的PEN3型电子鼻传感器技术对金黄色葡萄球菌、大肠杆菌、粪链球菌、单增李斯特菌4种食源性治病菌培养液的挥发性代谢产物进行检测,PCA、LDA均可建立4 种菌的指纹图谱,并将4 种致病菌株明显区分开,在原始菌液稀释107 倍后(对应菌落数约10 CFU/mL)的较低浓度下仍能区分开。这说明基于气味指纹的PEN3型电子鼻传感器技术具有区分不同微生物的潜在能力,并且PEN3型电子鼻传感器检测在操作过程中不需要对样品进行任何破坏处理,在微生物快速检测中是一项非常有发展前景的无损伤快速刷检测方法,有望在食源性致病菌的低浓度快速检测和鉴定方面进一步得到利用。
  • 融雪剂冰点自动测定的解决方案
    融雪剂的冰点是衡量融雪剂质量的重要指标之一,融雪剂冰点的测定可以采用SH128 全自动冰点测定仪或者SH128C 全自动航煤冰点仪冰点是:在没有过冷的情况下,冷却液开始结晶的温度 或在过冷的情况下,冷却液最初形成结晶后迅速回升所达到的温度。
  • Microtox发光细菌法检测水力压裂回流水毒性
    水力压裂技术促进了页岩气开采的发展,而由于含盐量高,金属/准金属(As,Se,Fe和Sr)以及有机添加剂等原因,无意溢出的回流水可能会对周围环境造成危害。本研究对东北地区4个代表性页岩气开采区域,采用Microtox生物测定法(费氏弧菌)和酶活性测试,对回流水溶液对土壤生态系统的影响进行评估。
  • 离子色谱法测定饮用水中氯酸盐
    随着给水处理技术的发展和人们对饮用水水质的重视 , 臭氧消毒技术在饮用水中的应用日益广泛。 臭氧消毒虽然不会产生有机卤代副产物 , 但当原水中含有溴化物时 , 会在臭氧的氧化作用下形成对人体有害的溴酸盐 , 原水中的氯离子也有可能被强氧化性的臭氧氧化为亚氯酸盐和氯酸盐。 溴酸盐、亚氯酸盐和氯酸盐都是对人体有害的消毒副产物。 溴酸盐已经被确定是一种致癌物质 而亚氯酸盐、氯酸盐可引起溶血性贫血 , 并降低精子的数量和活力 [ 1 ] 。 目前 , 国外应用臭氧对饮用水消毒比较普遍 , 对臭氧消毒所产生的消毒副产物也非常关注 , 在世界卫生组织最新的《饮用水水质准则》中 , 确定溴酸盐的指导值为 25μg/ L, 我国卫生部 2001年颁布的《生活饮用水水质卫生规范》规定亚氯酸盐的最大质量浓度为 200μg/ L, 氯酸盐为未确定指导值的指标 美国现行的饮用水水质标准中 , 溴酸盐的指标值为 10μg/ L。
  • 山西苯胺泄漏污染河水-LabTech解决方法
    中广网北京1月6日消息,据中国之声《新闻纵横》报道,昨天(5日)下午5时左右,邯郸市市区突发大面积停水事故。事故原因是邯郸接山西省有关部门通报,漳河上游浊漳河山西境内发生了事故性污染物排放。目前,邯郸市的水质检测报告尚未出炉,政府提醒民众暂时不要饮用漳河水。初步调查的结果是一个装有苯胺的罐发生了泄漏。 苯胺是一种被广泛应用的化工原料,可用作染色、生产农药,作为炸药中的稳定剂、汽油中的防爆剂等。对环境有危害,对水体可造成污染。人体若吸入或接触,会造成溶血性贫血和肝、肾损害等。针对于水(河流、生活饮用水、地表水等)中的苯胺检测,莱伯泰科公司已有成熟的应用文章《利用全自动固相萃取系统实现水中苯胺的萃取》,利用固相萃取SPE-DEX4790和LC600高效液相色谱仪形成整体解决方案。
  • 采用TSKgel色谱柱参考GB/T 40486-2021测定蜂毒干粉中蜂毒溶血肽含量
    蜂毒肽(Melittin)是蜂毒的主要成分和主要生物活性物质,约占蜂毒干重的40%~50%,是由26个氨基酸残基组成的多肽,分子式为C131H229N39O31,相对分子量为2846.46。参照国标《GBT 40486-2021蜂毒干粉中蜂毒溶血肽含量的测定高效液相色谱法》,使用C18色谱柱TSKgel ODS-100Z(4.6 mm I.D.×15 cm,5μm)对蜂毒肽标准品进行定量分析,其浓度-峰面积的校正曲线优异,可满足该国标中的测试要求。
  • 人单核细胞增多性李斯特菌素O((LLO)检测试剂盒
    人单核细胞增多性李斯特菌素O((LLO)检测试剂盒人单核细胞增多性李斯特菌素O((LLO)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人单核细胞增多性李斯特菌素O((LLO)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人单核细胞增多性李斯特菌素O((LLO)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人单核细胞增多性李斯特菌素O((LLO)抗原、生物素化的人单核细胞增多性李斯特菌素O((LLO)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人单核细胞增多性李斯特菌素O((LLO)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 检测农产品中的单增李斯特菌的前处理方法
    单核细胞增生李斯特菌(Listeria monocytogenes,简称单增李斯特菌)是人畜共患病原菌。李斯特菌在环境中无处不在,在绝大多数食品中都能找到李斯特菌。 其前处理主要分为单曾李斯特菌细菌培养、空白样品制备和人工污染单曾李斯特菌污染样品制备。细菌培养方法简单只需进行摇床24小时培养。将空白样品与单曾李斯特菌混合,稀释不同浓度,选择菌落总数在20-300之间进行计数。整个过程简单易操作,其中采用比例稀释仪可以再稀释浓度步骤节省大量时间和提高稀释准确性,采样自动菌落计数器可以在选择20-300之间的菌落步骤中节省大量时间。
  • 溶菌酶的制备原理和操作方法
    溶菌酶广泛存在于动植物及微生物体内,鸡蛋(含量约为2%~4%)和哺乳动物的乳汁是溶菌酶的主要来源,目前,溶菌酶仍属于紧销的生化物质,广泛应用于医学临床,具有抗感染、消炎、消肿、增强体内免疫反应等多种药理作用。
  • 大肠杆菌IMVC生化鉴定套装(GB、SN)
    C:柠檬酸实验1.吲哚试验:(1)原理:一些细菌(如大肠埃希菌、变形杆菌、霍乱弧菌等)能分解培养基中的色氨酸生成吲哚(靛基质),经与试剂中的对二甲基氨基苯甲醛作用,生成玫瑰吲哚而呈红色,则为吲哚试验阳性。2.(2)方法:将试验菌用蛋白胨水培养基30~35℃培养24小时滴加吲哚试剂2~4滴呈玫瑰红的为阳性不变色的为阴性。3.MR-VP试验包括甲基红试验和VP试验。
  • 迅数全自动菌落计数仪用于红树林溶磷菌的研究
    摘 要: 对分离来自华南红树林的溶磷菌进行16S rDNA 或ITS 等基因水平上的初步鉴定, 测定其溶解无机磷的能力, 并对溶磷菌的生长培养基条件进行优化。结果表明, 溶磷真菌的溶磷效果明显强于溶磷细菌, 且溶磷真菌的溶解无机磷能力与培养液的pH 呈极显著负相关, 而溶磷细菌的溶磷能力与pH 没显著相关关系。单因素实验表明, 对供试菌株生长的合适碳源为麦芽糖, 氮源为尿素。通过正交实验得到的优化培养基为麦芽糖5 g/L、尿素0.05 g/L、NaCl 5 g/L、pH 5, 在30°C下培养48 h 菌落总数可达6.06×109 CFU/mL。关键词: 红树林, 溶磷菌, 溶磷能力, 优化培养
  • 赤潮的危害与赤潮毒素—麻痹性贝毒(PSP)
    近年来,随着海洋环境的恶化,有害赤潮发生的频率大大增加, 对海水养殖业造成了巨大的损害,甚至威胁到人类的健康。  根据有害赤潮的危害形式,可将其大致分为三类。第一类赤潮一般是无害的,只是由于赤潮藻的数量过高,当它们死亡分解时造成海水缺氧,可能致使鱼类和无脊椎动物的死亡;第二类赤潮虽然对人无害,但藻体本身的特殊结构或化学物质能够使鱼类及其它无脊椎动物的鳃发生堵塞、机械损伤或中毒,部分微藻如米氏裸甲藻产生的溶血性毒素,可造成鱼类大量死亡,即属于此类;第三类形成赤潮的生物能产生毒素,这些赤潮毒素通过食物链的积累和传递可对高营养级生物和人类造成危害,具体有:麻痹性贝毒(Paralytic Shellfish Poisoning, PSP)、腹泻性贝毒(Diarrhetic Shellfish Poisoning, DSP)、记忆缺失性贝毒(Amnesic Shellfish Poisoning, ASP)、神经性贝毒(Neurotoxic Shellfish Poisoning, NSP)和西加鱼毒(Ciguatera Fish Poisoning, CFP),其中麻痹性贝毒是目前已知的赤潮生物毒素中,发生次数最频繁,对人类影响最严重的一种。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制