当前位置: 仪器信息网 > 行业主题 > >

甲胎蛋白质控品免疫

仪器信息网甲胎蛋白质控品免疫专题为您提供2024年最新甲胎蛋白质控品免疫价格报价、厂家品牌的相关信息, 包括甲胎蛋白质控品免疫参数、型号等,不管是国产,还是进口品牌的甲胎蛋白质控品免疫您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲胎蛋白质控品免疫相关的耗材配件、试剂标物,还有甲胎蛋白质控品免疫相关的最新资讯、资料,以及甲胎蛋白质控品免疫相关的解决方案。

甲胎蛋白质控品免疫相关的资讯

  • 微流控芯片技术在蛋白质药物质控中的应用前景
    p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 药品标准直接关乎药品质量,它是从源头上控制药品的安全性,有效性及质量可靠性的尺度。随着生物技术药物的发展,生物制品安全问题也越来越引起人们的重视。目前经批准的生物技术药物主要为重组蛋白质药物与单克隆抗体,该类药物的开发已成为当今生物技术及制药工业中最为活跃的领域之一,显示出巨大的社会效益和经济效益。但由于该类药物的结构复杂,用量很小,且生物体内有大量相似物质的干扰,其为质量控制和检测增加了难度。它需要应用生物化学、免疫学、微生物学和分子生物学等多门学科的理论和技术,进行综合性监测分析和评价,确保生物技术药物的安全有效性。而微流控芯片的研究和发展给蛋白质药物质控开拓了新的思路。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 微流控是一个快速发展的跨学科领域,融合贯穿了物理、化学、生物医学和微系统工程学科等。所谓“微流控芯片”,又称芯片实验室(Lab-on-a-Chip),是指把生物和化学领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基于一块几平方里面的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术。其最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。结合不同分析检测手段(如:光学检测法、电化学检测法以及质谱检测法等),对样品进行快速、准确、高通量以及多维度分析。它不仅使生物样品于试剂的消耗降低至纳升甚至皮升级,而且使分析速度大大提高,分析费用大大降低。充分体现了当今分析设备微型化、集成化和便携化的发展趋势。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 随着蛋白质药物研究的发展,对产品进行质量控制也趋于自动化和微型化,实时快速地对产品进行分析测定,为医药、临床病理等蛋白质领域研究提供了强有力的手段。微流控芯片作为一种集成、快速、高效、高通量、试剂用量小的微型实验室,将极大地促进蛋白质药物质控的研究。我们希望能够通过建立相应的微流控芯片平台,针对重组蛋白质药物或单抗药品一些关键质量属性(如:电荷变异体分析、糖基化鉴定、聚集体和片段分析等),通过研制具有溯源性的高准确度测量装置和方法,提高测量结果的准确度和精准度,支撑蛋白质药物的安全性、有效性评价以及服务产业发展。 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 550px height: 310px " src=" https://img1.17img.cn/17img/images/202011/uepic/968aed89-2fd2-4dd2-8585-b5b54bbc4bad.jpg" title=" 图片12.png" alt=" 图片12.png" width=" 550" height=" 310" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: center text-indent: 0em " 图1:微流控芯片-质谱联用平台。在芯片上集成不同的功能单元, 分别进行药物灌输、生物/化学反应、样品预富集及ESI-MS在线检测。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: right " (文稿:张炜飞) /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/8750474c-7644-477e-be6c-8cc21824717b.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 欢迎各位专家、同仁报名参会! /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站:http://tdmsqs.ncrm.org.cn。 /p
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • 蛋白质免疫亲和活性浓度绝对测量方法的建立
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: left text-indent: 2em " span style=" text-indent: 2em " 近期,中国计量科学研究院武利庆及其合作者杨屹、苏萍等发表系列文章(Anal.Bioanal.Chem. 412(2020)2777-2784、Talanta 178(2018)78-84、Microchem. J. 157(2020)104954),介绍了基于表面等离子共振光谱法和数字ELISA的蛋白质免疫亲和活性浓度绝对测量方法。 /span br/ /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 蛋白质是一类重要的生物大分子,免疫分析是其常用的定量分析手段,在测量和质控中不仅关心目标蛋白的含量,更为关注它的活性与功能,其量值的准确对于保证人民大众健康与安全具有重要意义。活性浓度测量手段的匮乏限制了蛋白质产品活性量值的质控与标准的建立。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 针对这一难题,作者以G2-EPSPS、人肌红蛋白为例,通过表面等离子共振,在部分传质限制条件下,通过扩散速率等测定直接计算出可被抗体识别的目标蛋白浓度,即免疫亲和活性浓度;或采用寡聚核酸标记抗体,借助邻位连接技术和数字PCR技术,以数字ELISA的方式直接测定样本中目标蛋白的免疫亲和活性浓度。两种方法均无需外部标准品,是一种绝对测量手段。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 241px " src=" https://img1.17img.cn/17img/images/202010/uepic/06042747-02ad-460f-82a4-752c907691ff.jpg" title=" 图片1.png" alt=" 图片1.png" width=" 600" height=" 241" border=" 0" vspace=" 0" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图1 基于表面等离子共振技术的蛋白免疫活性浓度测定原理图 span style=" text-align: center text-indent: 0em " & nbsp /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/82c05090-1aa2-4789-9467-c4fd8c632095.jpg" title=" 图片2.png" alt=" 图片2.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 图2 基于数字ELISA技术的蛋白免疫活性浓度测定原理图 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " & nbsp /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 蛋白质免疫亲和活性浓度的绝对测定将有助于准确表征蛋白质与其抗体之间的相互作用,保证免疫分析的准确可靠,同时有助于蛋白质产品的活性量值的质控与标准的建立。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。 /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 本次会议可通过官方网站 a href=" http://tdmsqs.ncrm.org.cn" target=" _blank" http://tdmsqs.ncrm.org.cn /a 注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/c475b4b8-ad00-4d02-bdea-04a9663c0909.jpg" title=" 图片5.png" alt=" 图片5.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center " 欢迎各位专家、同仁报名参会! /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 更多信息请关注会议官方网站: a href=" http://tdmsqs.ncrm.org.cn。" _src=" http://tdmsqs.ncrm.org.cn。" http://tdmsqs.ncrm.org.cn。 /a /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " strong 学者简介: /strong /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 武利庆,研究员,中国计量科学研究院前沿计量科学中心蛋白质室主任 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 杨屹,教授,北京化工大学化学学院 /span /p p style=" text-indent: 2em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 苏萍,副教授,北京化工大学化学学院 /span /p
  • 蛋白质新冠疫苗 有望开启新冠免疫新时代
    图片来源:视觉中国 对于渴望接种新冠疫苗的部分人员来说,由于容易出现急性免疫反应和血液循环问题,他们对一些基于信使RNA(mRNA)和病毒载体技术的疫苗心存担忧。尽管对大多数人来说这些疫苗是安全的,但它们与潜在的严重副作用(如心脏炎症和血栓)有关,因此,接种一种完全由蛋白质制成的疫苗或是他们的希望。  英国《自然》杂志在11月8日的报道中指出,美国诺瓦瓦克斯公司和其他生物技术公司的基于蛋白质的新冠疫苗即将上市。这些基于蛋白质的新冠疫苗尽管进度缓慢,但制造简单、成本低廉、副作用较少,因此,不仅有望填补全球新冠疫苗接种空白,且能进一步遏制新冠疫情的发展势头,“有望开启新冠免疫新时代”。  优点颇多  《自然》杂志报道指出,尽管蛋白质疫苗尚未广泛应用于对抗新冠病毒,但到目前为止,后期临床试验数据看起来很有希望:与其他类型的新冠疫苗相比,蛋白质新冠疫苗能在副作用更少的情况下提供强保护作用。  上个月发表的一份预印本论文称,在今年年初完成的一项有3万人参与的研究中,诺瓦瓦克斯疫苗针对新冠病毒的保护率为90%以上,不过,当时德尔塔变异毒株还未肆虐。位于成都的疫苗制造商三叶草公司报告其蛋白质疫苗针对新冠病毒的保护效力虽然略低,但该疫苗是在德尔塔变异毒株肆虐的人群中开展的。研究显示,这两种疫苗诱导的抗体水平可与mRNA疫苗诱导的抗体水平相媲美。  此外,这些蛋白质疫苗看起来也很安全。目前世界各地正在进行临床试验的大约50种基于蛋白质的新冠疫苗都没有引起任何重大副作用。通常由mRNA或病毒载体疫苗引起的许多反应,如头痛、发烧、恶心和发冷等,在基于蛋白质的替代品中也不常见。  进展缓慢  尽管基于蛋白质的新冠疫苗有诸多优点,但其也有不足之处。  首先,从新冠疫情暴发之初,研究人员就预计,基于蛋白质的疫苗的设计将比其他疫苗技术更慢。  很多生物制药公司知道如何利用哺乳动物、昆虫或微生物经过基因改造的细胞大规模生产纯化蛋白质,但这一过程包含许多步骤,每一步都必须优化。疫苗开发咨询专家克里斯蒂娜曼德尔说:“这必然导致进展缓慢”。  美国Dynavax Technologies首席执行官伊恩斯彭斯也表示,结果表明,使用蛋白质制造的新冠疫苗“并非不合格,只不过需要的时间更长一些。”该公司为三叶草疫苗公司生产佐剂。  此外,不同蛋白质疫苗之间的功效可能差异巨大。目前正在测试的大多数基于蛋白质的疫苗都基于新冠病毒刺突蛋白(帮助病毒进入人体细胞)的某些版本制造而成。不同疫苗产品部署刺突蛋白的形式大相径庭:一些疫苗使用单一蛋白,另一些则使用三联体;有些使用完整的刺突蛋白,另一些只使用刺突蛋白的片段。此外,一些蛋白自由漂浮,另一些则被包装成纳米颗粒。而且,主要候选蛋白质疫苗依赖不同的佐剂,每种佐剂都以自己的方式刺激免疫系统,从而产生不同种类的疫苗反应。  葛兰素史克全球首席卫生官托马斯布鲁尔表示,所有这些都可能转化为不同的疗效和安全性,“最终哪种疫苗会胜出,时间和第三阶段试验结果将给我们最终答案”。  开启新时代  据悉,在经历了数月延迟后,诺瓦瓦克斯的高管表示,他们准备在年底前向美国食品和药品监督管理局提交其蛋白质疫苗监管所需要的材料。此前该公司已向世卫组织、澳大利亚、加拿大、英国、欧盟等提交了相关材料。而且,11月1日,印度尼西亚首次授予该公司疫苗紧急使用权。  无独有偶,三叶草公司以及印度Biological E公司也将在未来几周和几个月内向本国政府提交类似的文件。  《自然》杂志称,如果这些疫苗获批,它们将减轻抵制现有疫苗的人的恐惧,填补全球疫苗接种空白。到目前为止,低收入国家只有不到6%的人接种了新冠疫苗。基于蛋白质疫苗容易制造、成本低廉,而且不需冷冻或冷藏保存,这些优势有助于缩小富国和穷国之间的免疫差距。  防疫创新联盟项目和创新技术负责人尼克杰克逊说:“世界需要这些基于蛋白质的疫苗,以惠及那些弱势群体”。诺瓦瓦克斯公司和三叶草公司都承诺明年向新冠肺炎疫苗实施计划捐赠数亿剂疫苗。  据悉,防疫创新联盟已投资10多亿美元研发基于蛋白质的疫苗,目前有五种基于蛋白质的新冠疫苗处于积极研发当中,其中最令人瞩目的是三叶草公司、诺瓦瓦克斯公司和韩国生物科学公司生产的产品,杰克逊说:“蛋白质疫苗将会开启新冠免疫新时代”。  疫苗行业资深人士、三叶草公司科学顾问拉尔夫克莱门斯说,在新冠疫情暴发之初,mRNA等疫苗带来了速度优势,但现在基于蛋白质的疫苗正在迎头赶上,它们将提供更多的功能,比如,填补疫苗接种空白,保护整个世界免受新冠病毒困扰等,“我认为它们会占上风”。
  • 安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会
    安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议 2011年5月6-9日,亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议在世博之城上海隆重召开。本届会议由&ldquo 亚太地区蛋白质科学联合会(Asia Pacific Protein Association, APPA)和国际蛋白质学会(The Protein Society)主办、中国生化学会蛋白质专业委员会(The Chinese Protein Society)承办。本次会议以&ldquo Proteins and Beyond&rdquo 为主题,诚邀国内外蛋白质组学领域众多顶尖专家学者,围绕业内热点问题成功举行了一次高端学术盛宴,会议议题主要围绕蛋白合成/质控、蛋白翻译后修饰、蛋白相互作用、蛋白工程、蛋白定量、疾病蛋白质组学与药物发现、生物制药等热门领域。 安捷伦公司作为会议的主赞助商以及蛋白质组学领域的重要方案供应商,在本届会议上再次为广大用户呈现其蛋白质组学全面、完备、专业的解决方案。针对蛋白定量这一行业热点课题,安捷伦公司凭借其最新超高灵敏度6490三重四极杆质谱技术、灵活强大的软件功能以及高通量全自动样品前处理技术在这一应用上具有突出及独特的优势。 在5月8日下午的大会学术报告专场,来自安捷伦公司的蛋白质组学应用工程师陶定银博士为在场听众进行了题为《安捷伦6490三重串联四级杆质谱仪在超痕量蛋白定量分析中的应用》的精彩报告:全新一代安捷伦6490三重串联四级杆质谱仪集多种高精技术于一体,与不同流速范围的液相色谱仪&ldquo 无缝&rdquo 匹配,在纳流、微流及常规流速范围内均可提供高灵敏、高重现的超痕量蛋白定量分析结果。配合安捷伦的全自动样品前处理机器人,使用户彻底摆脱繁冗的手工处理,获得重现性优异的分析结果。 Agilent 6490创新型串联质谱简介 1.概况 2010年5月24日 安捷伦科技公司在美国犹他州盐湖城举行的第58届美国质谱年会上推出了基于iFunnel技术的6490三重四极杆液质联用系统。 iFunnel是一种革命性的大气压离子进样技术,可以在大多数应用上极大提高灵敏度。与旧型号相比,6490系统减少了25%的占地面积,但灵敏度却提高了10倍以上。革新产品6490展示了其尖端应用能力,即检测灵敏度可达到10-21mol(Zeptomol)及ppq级别,这种水平的灵敏度过去只能在昂贵的加速器质谱系统上实现。 2.应用价值与意义 6490的尖端性能为富于高灵敏度挑战的分析工作带来的新的成功可能。比如环境领域通常要求灵敏度在ppt级别;制药/生物医药等领域,有时需要做到微小剂量、吸入药物检测和干血斑点分析等等。常规分析中这种高灵敏度也为临床、食品安全和蛋白质/肽定量分析带来了新机遇,而且全面提高了耐受性和样品制备效率。 有关安捷伦6490三重四极杆质谱更多信息,请参考: http://www.chem.agilent.com/en-US/Products/Instruments/ms/Pages/6490.aspx 有关安捷伦蛋白质组学方案更多信息,请参考: http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 【安捷伦】抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手!
    针对 2019 新型冠状病毒(2019-nCoV),研究人员正在紧锣密鼓地研究病毒致病机理、疫苗及治疗药物等。在这个过程中,靶标样本的质量一如继往地决定了研究的最终成败及可靠性。无论是疫苗开发,抑或是核酸与细胞层面的致病机理研究,都离不开对蛋白质与核酸样本的质量控制。自动化电泳产品线控制靶标样本质量 针对新冠肺炎的研究争分夺秒,利用自动化的质量控制平台控制靶标样本质量可大大节省获取结果的时间,同时保障结果的准确性与重现性。安捷伦自动化电泳产品线可以快速对 DNA、RNA、蛋白质样本进行分析,获得包括浓度与分子量在内的数字化信息,并直观显示样本在电场下迁移形态的数字化图像信息,同时针对二代测序技术(NGS)等对核酸完整性程度依赖性高的应用,还提供以 0-10 的数值来直观反映样本完整性的参数,以实现对样本质量的快速且全面的评估(参见 RIN 值 与 DIN 值 )。一、助力测序文库的质量控制,缩短病毒基因测序时间在此次“战疫”中,基于二代测序技术(NGS)的宏基因组测序大大缩短获取病毒序列的时间,为核酸检测试剂盒的开发与病人的确诊赢得了宝贵的时间。病毒变异的监测工作仍将持续、大规模地使用二代测序技术,甚至包括纳米孔测序技术和三代测序技术。无论采用何用技术,对测序文库的上机前质量控制是保证最终结果可靠、问题可追溯的必不可少的环节。目前疫情仍旧不容乐观,研究人员面临着样本量激增、测序压力大、质控样本多的情况,针对这些问题,安捷伦 4200 TapeStation 中-高通量和 Fragment Analyzer 5300/5400 高-超高通量自动化核酸质控平台可以为新冠病毒文库的质量控制提供有力的保障。图 1. 利用 4200 TapeStation 系统对来源于肿瘤FFPE样本的最终上机前的二代测序文库进行质量控制,所得到的结果确认了全部 80 个样品和 6 个阳性对照样品的 DNA 文库均已成功制备。质控数据包括样本的浓度及分布、分子量及分布。二、缩短蛋白质检测与质控时间,加快抗体研发在抗体的研发过程中,对抗体蛋白的检测与质量控制必不可少。针对蛋白质分析,传统的 SDS-聚丙烯酰胺凝胶电泳(PAGE) 制胶过程繁琐、电泳时间长。安捷伦 2100 生物分析仪可以替代 SDS-PAGE 的工作,通过蛋白质分子量大小的变化查看蛋白质的糖基化,对抗原抗体等进行质量控制,并提供从考马斯亮蓝级到银染色级蛋白质含量和纯度的检测灵敏度。图 2. 在还原剂二硫苏糖醇 (DTT) 存在的条件下,使用 2100 生物分析仪系统配合 Protein 80 (P80)、Protein 230 (P230) 和高灵敏度 Protein 250 (HSP-250) 试剂盒对人骨髓瘤 IgG2 进行分析。所示为每种分析的代表性电泳图。在还原条件下,所采用的全部三种蛋白质分析均能够清晰分离 IgG2 的轻链 (LC)和重链 (HC)。P230 和 HSP-250 分析中均可观察到高分子量聚合物,而 P80 分析则分辨出与 IgG2 样品相关的低分子量(摩尔质量)杂质。 三、控制转录产物 RNA 的质量,确保下游分析的成功在病毒致病机理、机体免疫应答和信号通路调节的研究中,转录产物 RNA 的质量控制对下游分析的成败至关重要。安捷伦最早在 2100 生物分析仪上推出了 RNA 完整性参数 RIN 值(RNA Integrity Number),经过在全球 20 年的应用, RIN 值已成为业内公认的 RNA 完整性参数。安捷伦最新一代 TapeStation 核酸分析系统,不仅能够提供 RNA 完整性参数,更满足了样本数量变化大的实验室对通量灵活性的需求,可在单个样本检测成本不变的情况下,实现 1-96 个任意数量样本的检测。图 3. 4 组总 RNA 浓度相同(300 ng/μL)但质量(降解程度)不同的大鼠总RNA样本使用安捷伦 4200 TapeStation 系统分析。分析所得的 RIN 完整性当量RINe如胶图中所示。可以看到,RNA 的完整性随着 RINe 数值的降低在胶图与峰图中都呈现明显的递降。安捷伦自动化电泳产品线可以满足不同客户的通量与应用需求,应用类型包括:- 二代测序样本质控(样本片段化文库构建的各环节,以及终文库等的质控) - 三代测序的长片样本质控(测序前样本制备的各环节质控) - 常规片段分析(PCR 产物,酶切产物等) - 生物样本库(样本入库、出库,以及保存过程中的质控) - 基因分型( AFLP、RFLP、STR、SSR 等) 寡核苷酸大小与纯度分析 - 通过蛋白分子量大小的变化查看蛋白的糖基化,抗原抗体等的质控 分子光谱产品用于疫苗生产的质控环节 在疫苗研发及之后的生产过程中,安捷伦分子光谱产品可以帮助研究机构和生产企业做好核酸和蛋白质定量,保证生产率和准确性。其中,安捷伦 Cary 60 UV-Vis 和 Cary 630 FTIR 凭借其可靠性,已部署在全球众多制药 QA/QC 实验室中,并具有可选软件来满足中国数据完整性法规要求。紫外可见分光光度计是现代分子生物实验室的常规仪器,主要用于测定核酸的纯度、含量以及蛋白质的含量,为检测试剂盒的研发和生产提供质量保证。一、纯度检测核酸的最大吸收峰在 260 nm,蛋白质的最大吸收峰在 280 nm 处。纯的 RNA 样品,260 nm 与 280 nm 吸光度比值(A260/A280)为 2.0;纯的 DNA 样品,A260/A280 为 1.8,所以,A260/A280 可以作为 DNA、RNA 纯度检测的重要指标。核酸和蛋白质在 320 nm都没有吸收,在测试中,可以选择性的将 320 nm 的吸光度用于背景扣除。二、浓度检测对于标准样品来说,当 260 nm 处的吸光度值(A260)为 1 时,dsDNA 浓度约为 50μg/mL,ssDNA 浓度约为 37 μg/mL,RNA 浓度约为 40 μg/mL,寡核苷酸浓度约为 30 μg/mL(底物不同有差异)。据此,测定提纯后样品在 260 nm 处的吸光度值,可以计算出 RNA/DNA 的浓度。紫外可见分光光度计可以快速得到样品在 190-1100 nm 范围内每个波长下的吸光度值,为试剂盒中 RNA 纯度和核酸浓度检测提供快速解决方案。图 4. 安捷伦紫外可见分光光度计 5 次扫描 400 μL DNA 样品光谱图表 1. 安捷伦紫外可见分光光度计 5 次测试 400 μL DNA 样品纯度和浓度图 5. Agilent Cary 3500 UV-Vis(左)和 Agilent Cary 630 FTIR(右)推荐阅读:1. 快速测定口罩中的环氧乙烷残留,让医务人员和大家更安心https://www.instrument.com.cn/netshow/SH100320/news_521849.htm 2. 重要通知:疫情期间安捷伦售后服务安排https://www.instrument.com.cn/netshow/SH100320/news_521419.htm3. 重要通知 :疫情期间安捷伦采购直通车 -- 网上订购耗材https://www.instrument.com.cn/netshow/SH100320/news_521418.htm 关注“安捷伦视界”公众号,获取更多资讯。
  • “蛋白质组与免疫和代谢性疾病”专题研讨会(第二轮通知)
    为了积极促进我国蛋白质组学的研究与发展,由中国生物化学与分子生物学会蛋白质组学专业委员会主办、北京蛋白质组研究中心和德国慕尼黑国际博览集团承办的“蛋白质组与免疫和代谢性疾病”专题研讨会定于2012年10月16-18日慕尼黑上海分析生化展期间在上海新国际博览中心召开。   一、会议安排   本次研讨会主要以大会报告形式进行交流,将邀请国内外蛋白质组学及相关领域的著名专家、教授作大会报告,会议规模约200人。会议同期,第六届慕尼黑上海分析生化展(analyitica China 2012)将于2012年10月16-18日在上海新国际博览中心举办,与会代表可获取生命科学领域最新的仪器、设备和技术等信息。   会议初步日程安排   10月16日上午会议报到   10月16日下午大会开幕式暨学术报告   10月17日学术报告   10月18日参观展会   会议室地点:上海新国际博览中心(上海市浦东新区龙阳路2345号)N2-M42会议室   二、会议议题   蛋白质组与免疫和代谢性疾病:重点围绕蛋白质组学及其在免疫和代谢性疾病研究中的应用取得的新进展进行研讨。   三、会议语言:中文   四、邀请专家   Estela JacintoRutgers University   Garnett KelsoeDuke University Medical School   Yuan ZhuangDuke University Medical School   程金科上海交大医学院   冯新华浙江大学   刘明耀 华东师范大学   秦钧蛋白质组研究中心   苏冰上海交大   唐丽蛋白质组研究中心   杨芃原复旦大学   赵世民复旦大学   郑彪GSK Shanghai   五、会议组织   组织单位:军事医学科学院放射与辐射医学研究所   主办单位:中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   承办单位:北京蛋白质组研究中心   德国慕尼黑国际博览集团   会议主席:张普民、苏冰   名誉主席:贺福初、杨芃原   六、会议注册费   2012年9月7日之前注册:一般代表1100元,学生代表600元   2012年9月7日之后注册:一般代表1300元,学生代表800元   注册请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm进行在线注册。   七、参会须知(指定酒店和交通路线)   互欣商务酒店   地址:上海市浦东新区浦建路1143号(锦绣路路口)   电话:021-51350666   住宿费用(标间/大床):RMB 300/晚(含早)   交通指南:   Ÿ 从浦东机场到酒店: 坐地铁2号线(徐泾东方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥机场到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥火车站到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海火车站到酒店: 坐地铁4号线到世纪大道站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海南站到酒店: 坐地铁3号线到中山公园站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   酒店预订和住宿请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm 进行在线注册。会务组将安排指定酒店与会场的往返班车,凭《参会代表证》乘坐。   六、汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明学员姓名、单位和“蛋白质组与免疫和代谢性疾病专题研讨会”字样。汇款后将汇款凭据传真至中心(010-80705155),以确保汇款安全到账。   七、会务组信息   北京昌平区科学园路33号北京蛋白质组研究中心   电话: 010-66930223,80705166 80705888   传 真:010-80705155   联系人:隆凯云  张雪莉 周建平   上海市浦东新区源深路1088号葛洲坝大厦11层   电话:021-20205500*827   传真:021-20205688   联系人:洪燕   附录:参会注册表(含酒店预订)   中国生物化学与分子生物学会   蛋白质组学专业委员会   德国慕尼黑国际博览集团   2012年8月24日
  • “蛋白质组与免疫和代谢性疾病”专题研讨会 (第二轮通知)
    为了积极促进我国蛋白质组学的研究与发展,由中国生物化学与分子生物学会蛋白质组学专业委员会主办、北京蛋白质组研究中心和德国慕尼黑国际博览集团承办的“蛋白质组与免疫和代谢性疾病”专题研讨会定于2012年10月16-18日慕尼黑上海分析生化展期间在上海新国际博览中心召开。   一、会议安排   本次研讨会主要以大会报告形式进行交流,将邀请国内外蛋白质组学及相关领域的著名专家、教授作大会报告,会议规模约200人。会议同期,第六届慕尼黑上海分析生化展(analyitica China 2012)将于2012年10月16-18日在上海新国际博览中心举办,与会代表可获取生命科学领域最新的仪器、设备和技术等信息。   会议初步日程安排   10月16日上午会议报到   10月16日下午大会开幕式暨学术报告   10月17日学术报告   10月18日参观展会   会议室地点:上海新国际博览中心(上海市浦东新区龙阳路2345号)N2-M42会议室   二、会议议题   蛋白质组与免疫和代谢性疾病:重点围绕蛋白质组学及其在免疫和代谢性疾病研究中的应用取得的新进展进行研讨。   三、会议语言:中文   四、邀请专家   Estela JacintoRutgers University   Garnett KelsoeDuke University Medical School   Yuan ZhuangDuke University Medical School   程金科上海交大医学院   冯新华浙江大学   刘明耀 华东师范大学   秦钧蛋白质组研究中心   苏冰上海交大   唐丽蛋白质组研究中心   杨芃原复旦大学   赵世民复旦大学   郑彪GSK Shanghai   五、会议组织   组织单位:军事医学科学院放射与辐射医学研究所   主办单位:中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   承办单位:北京蛋白质组研究中心   德国慕尼黑国际博览集团   会议主席:张普民、苏冰   名誉主席:贺福初、杨芃原   六、会议注册费   2012年9月7日之前注册:一般代表1100元,学生代表600元   2012年9月7日之后注册:一般代表1300元,学生代表800元   注册请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm进行在线注册。   七、参会须知(指定酒店和交通路线)   互欣商务酒店   地址:上海市浦东新区浦建路1143号(锦绣路路口)   电话:021-51350666   住宿费用(标间/大床):RMB 300/晚(含早)   交通指南:   Ÿ 从浦东机场到酒店: 坐地铁2号线(徐泾东方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥机场到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从虹桥火车站到酒店: 坐地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海火车站到酒店: 坐地铁4号线到世纪大道站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   Ÿ 从上海南站到酒店: 坐地铁3号线到中山公园站换乘地铁2号线(浦东机场方向)到世纪公园地铁站 3号出口 出来,步行至酒店15分钟。   酒店预订和住宿请填写附页《参会注册表》或登陆http://www.a-c.cn/conference/bprc.htm 进行在线注册。会务组将安排指定酒店与会场的往返班车,凭《参会代表证》乘坐。  六、汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明学员姓名、单位和“蛋白质组与免疫和代谢性疾病专题研讨会”字样。汇款后将汇款凭据传真至中心(010-80705155),以确保汇款安全到账。   七、会务组信息   北京昌平区科学园路33号北京蛋白质组研究中心   电话: 010-66930223,80705166 80705888   传 真:010-80705155   联系人:隆凯云  张雪莉 周建平   上海市浦东新区源深路1088号葛洲坝大厦11层   电话:021-20205500*827   传真:021-20205688   联系人:洪燕   附录:参会注册表(含酒店预订)   中国生物化学与分子生物学会   蛋白质组学专业委员会   德国慕尼黑国际博览集团   2012年8月24日
  • ​PACTS辅助热蛋白质分析用于肽-蛋白质相互作用研究
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins。该文章的通讯作者是来自北京蛋白质组学研究中心的贾辰熙和Chen Yali研究员。生物活性肽是一类重要的生物分子,通过与蛋白受体相互作用,参与调控多种生物学进程。研究肽-蛋白相互作用对于理解这些功能分子的调节机制至关重要。目前已开发多种方法用于表征肽-蛋白的相互作用,例如通过引入荧光探针在多肽上来监测蛋白-多肽的相互作用,或者将多肽固定在磁珠或其他载体材料上进行进一步的亲和沉淀。然而以上方法都需要对多肽进行修饰,导致多肽的结构发生改变,进一步影响多肽-蛋白相互作用,产生假阳性结果。细胞热转移变分析(CETSA)和热蛋白质组分析(TPP)作为一种无修饰/无标签技术已被广泛用蛋白-配体相互作用研究。当配体与蛋白结合后,蛋白的热稳定性发生了改变,导致熔解曲线(Melting cure)发生位移。通过监测熔解温度的变化(∆Tm),实现对蛋白-配体相互作用的检测。CETSA以及TPP允许在天然环境下研究分子互作,从而保留了内源性蛋白表达水平、翻译后修饰、局部微环境等生物物理特性。除了改变蛋白质的热稳定性,肽配体与蛋白质受体相互作用还会导致蛋白构象、疏水性和溶剂可及性的改变,一些配体甚至起到生物助溶的作用。所有这些特性的改变会导致研究体系中靶蛋白丰度的变化。这种由肽段配体结合诱导蛋白的丰度改变现象称之为PACTS。而PACTS也可以被合理的利用用于识别与肽段配体结合的靶蛋白。基于此,本文将PACTS与TPP技术相结合用于肽-蛋白质相互作用研究,PACTS可以辅助TPP分析,特别是在TPP分析过程中,由于配体-靶蛋白结合导致靶蛋白丰度降低至质谱检测限以下,无法绘制熔解曲线的情况下,PACTS可以作为另一个重要的监测手段。如图1所示,PACTS辅助TPP分析的实验流程大致如下:将蛋白提取液分成2份,分别与缓冲液(对照组)、肽配体(实验组)孵育,再将孵育后的每组样本等分成10份,在10个不同的温度下加热3 min。加热完成后,离心,收集上清液。利用SDS-PAGE将肽段与蛋白分离并进行胶内酶切。酶切后的肽段随即用TMT 10-plex标记,最后通过LC-MS/LS进行定量分析。将37 °C下对照组、实验组中同一蛋白的丰度变化作为PACTS的衡量指标(蓝框)。将在不同温度下蛋白的相对丰度变化转化为熔解曲线(黑框),实验组相较于对照组,同一蛋白熔解曲线的位移(∆Tm)作为TPP的衡量指标。综合两种方法识别出的靶标蛋白,作为最终的筛选结果。图1. PACTS辅助TPP分析的实验流程图作者首先用标准肽段-蛋白互作对验证了PACTS辅助TPP分析的可行性。如图2所示,右侧为对照组/实验组中靶蛋白在不同温度下丰度变化(Western blot),中间及左侧则是基于Western blot数据生成PACTs以及熔解曲线。对于JIP1-JNK1互作对,PACTS显示没有明显的丰度变化,而熔解曲线则显示发生了位移(图2A)。与之相反的,对于HOXB-AS3-hnRNP A1互作对,PACTS显示出明显的丰度变化,而熔解曲线则由于靶蛋白丰度降至检测限以下而无法绘制(图2B)。以上两个例子都说很好地说明,PACTS和TPP是两种互补的检测手段,使用两种方法同时检测有利用提高结果的准确性。作者还考察了不同细胞环境对蛋白-配体互作的影响(图CD及图EF)。来源于293T细胞的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= 0.5 °C(图E),而来源于Hippocampus的OPRN1与Enkephalin配体互作产生的熔解温度变化为∆Tm= -14.4 °C(图F)。这个差异可能是由于孵育时不同的微环境造成的。图2. PACTS辅助TPP分析标准肽段-蛋白互作对。随后,作者将PACTS辅助TPP分析应用到组学层面。Aβ肽是淀粉样斑的主要成分,而淀粉样斑块主要存在于阿尔茨海默症(AD)患者的大脑中。在Aβ肽中,Aβ1-42在介导神经毒性和氧化应激中起关键作用。THP-1细胞类似于小胶质细胞,小胶质细胞功能障碍加速了与年龄相关的神经退行性疾病的进展,如AD。作者利用了PACTS辅助TPP分析研究了THP-1细胞中与Aβ1-42肽段相互作用的蛋白。如图3所示,图3A为PACTS结果,共发现37个蛋白在37 °C下有丰度变化。而TPP结果(图3B)则显示66个蛋白熔解曲线发生了位移。PACTS与TPP的结果具有较小的重合,说明两种方法具有互补性。GO分析表明(图3C),大多数与Aβ1-42相互作用的蛋白存在于细胞外泌体、胞质溶胶和细胞膜中。外泌体在AD中充当双刃剑,一方面,外泌体传播有毒的Aβ肽和过度磷酸化的tau遍及整个大脑,并诱导神经元凋亡。另一方面,它们消除大脑中的Aβ肽并促进其降解。了解Aβ肽与外泌体蛋白之间的相互作用有利于更好的开发AD治疗治疗药物。此外,作者用Western blot的方法进一步确认识别出的靶标蛋白(图D-E)。最后,作者用免疫共沉淀的方法进一步证明靶蛋白与Aβ1-42存在相互作用。图3. PACTS辅助TPP分析与Aβ1-42相互作用的蛋白总之,本文开发一种PACTS辅助TPP的分析方法,可用于大规模组学层面肽段-蛋白质相互作用研究。该方法具有无标记、无修饰的优势,无需额外实验,即可在TPP分析的同时获得PACTS信息。该方法也有助于理解多肽-蛋白质复合物相关的分子调控机制,进一步开发新型治疗药物。撰稿:刘蕊洁编辑:李惠琳原文:PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins 参考文献1.Zhao T, Tian J, Wang X, et al. PACTS-Assisted Thermal Proteome Profiling for Use in Identifying Peptide-Interacting Proteins. Anal Chem. 2022 94(18): 6809-6818. doi:10.1021/acs.analchem.2c00581
  • 投资7亿 国家蛋白质科学中心(上海)建成
    我国生命科学领域第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施日前通过工艺测试,进入开放试运行阶段,预计于今年年底正式面向多用户、多领域开放。25日,记者走进基本建成的国家蛋白质研究中心,见识了国际一流的研究设施和紧锣密鼓开展科研的研究团队:   高通量自动化克隆构建系统,中心自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了整个大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化),达到全球生物自动化一流水平,从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆,极大地提高了生物实验效率。   自主研发高精度激光双光镊系统,光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现压纳米级位移和压皮牛级力的测量。这些技术有望在蛋白质折叠、RNA聚合酶合等研究领域提供单分子层次的信息。在仪器研发方面,为拓展仪器性能,还将结合单分子荧光技术和高精度激光光镊,有望提升蛋白质科学领域的仪器自主研发能力。   尽管仍处于紧张建设筹备中,科研活动早已紧锣密鼓地开展。截至2013年底,中心科研项目共计31项,年度新增13项,其中包括国家重大科学研究计划项目2项、中科院科研装备研制项目1项以及国家自然科学基金多项。中心成立伊始,许琛琦研究组即在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash &mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   国家蛋白质科学中心上海(筹)在保障上海设施高效运行的同时,定位于蛋白质科学研究,研究内容涵盖染色质结构与功能的调控、跨膜分子信息传递、非编码RNA以及结构生物学新技术和方法研究等学科领域,着重开展蛋白质多尺度结构分析、蛋白质动态结构研究、蛋白质修饰与相互作用研究、设备自主创新与集成研究和生物信息学与计算生物学等五大领域的研究。在未来的科学研究中,国家蛋白质科学中心/上海(筹)/蛋白质科学研究(上海)设施将围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,保障国家中长期科技规划纲要部署的蛋白质重大研究计划的实施,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,提供全面和完整的技术与条件保障,打造开放、协作、创新的国际一流蛋白质科学研究平台,为我国的蛋白质科学基础研究提供强有力的支撑。   背景介绍   蛋白质科学研究(上海)设施于2010年12月破土动工,总投资约7亿元,总建筑面积3.3万平方米,由中科院上海生科院承建,并依托上海设施同步筹建&ldquo 国家蛋白质科学中心· 上海&rdquo 。迄今,已有逾10位诺贝尔奖得主到访,对蛋白质中心表现出浓厚兴趣。
  • 嘉宾揭晓!9月5日“第六届蛋白质组学”主题研讨会不容错过
    随着人类基因序列的完成,蛋白质组学热浪掀起了后基因组年代的序幕,人类将更深入地了解疾病和生命的本源。近年来,质谱、自动化和AI大数据等技术的进步极大地推动了蛋白质组学研究方法的革新。从过去大费周章才能清点一个样品中的近千个蛋白质,到如今使用高分辨质谱和AI可以轻松对数千个样品的逾万个蛋白质进行定量分析,蛋白质组学的研究愈发深入。为帮助大家及时了解蛋白质组学最新进展与前沿技术,仪器信息网将于2024年9月5日举办“第六届蛋白质组学技术与应用进展”主题网络研讨会,围绕蛋白质组学新技术新方法、翻译后修饰蛋白质组学、蛋白质组学与精准医学、单细胞与空间蛋白质组学等热门研究方向展开探讨与交流,期待你的参与!报名链接:https://insevent.instrument.com.cn/t/sro(点击报名)会议日程“第六届蛋白质组学技术与应用进展”网络研讨会2024年9月5日报告时间报告方向专家单位09:00-09:30甲基化蛋白质组分析新方法及其在生物功能研究方面的应用叶明亮中国科学院大连化学物理研究所 研究员09:30-10:00蛋白质组学与精准医学丁琛复旦大学 研究员10:00-10:30AI移液工作站在高效蛋白质组学实验中的创新应用文梃棡合创生物工程(深圳)有限公司 大中华区应用科学家10:30-11:00基于质谱的结构特异糖蛋白质组学及生物医学应用田志新同济大学 教授11:00-11:30颠覆认知,“质的飞跃”——Orbitrap Astral如何颠覆代谢组学研究范超赛默飞世尔科技 色谱质谱应用科学市场经理11:30-12:00基于蛋白质翻译后修饰组学的病理机制解析和治疗策略研究徐骏宇中国科学院上海药物研究所 研究员12:00-13:30午休时间13:30-14:00Expansion proteomics and perturbation proteomics郭天南西湖大学 特聘研究员/长聘副教授14:00-14:30布鲁克高通量高深度4D-蛋白质组学新方案马贝贝布鲁克 (北京) 科技有限公司 应用工程师14:30-15:00解密蛋白质组学样本质控走向自动化高通量的黑科技程鳞安捷伦诊断与基因组学事业部 应用工程师15:00-15:30微量生物样本的蛋白组捕获与分析技术丁显廷上海交通大学 教授15:30-16:00整体蛋白组学(Top-down proteomics)中的串联质谱数据解析孙瑞祥北京生命科学研究所 副研究员16:00-16:30双链RNA结合蛋白的质谱鉴定及其生物功能研究陈瑞冰天津大学 教授16:30-17:00微生物与细胞外囊泡的蛋白质组学研究肖华上海交通大学 教授17:00-17:30疾病相关的尿液细胞外囊泡蛋白质组学研究与应用杨福全中国科学院生物物理研究所 研究员报告嘉宾叶明亮 中国科学院大连化学物理研究所 研究员报告题目:《甲基化蛋白质组分析新方法及其在生物功能研究方面的应用》博士,中国科学院大连化学物理研究所研究员。2015年获得杰出青年基金资助,2016年入选科技部中青年科技创新领军人才,2018年入选国家“万人计划”科技创新领军人才。长期从事蛋白质组学分析新技术新方法的研究,侧重蛋白质翻译后修饰分析和药物靶标鉴定方法研究,在Nat. Methods,Nat. Chem. Biol., PNAS, Nat. Commun., Nat. Protoc.,Angew. Chem. Int. Ed, JACS, Adv. Sci., Anal. Chem.等SCI期刊上发表发表论文200余篇,被引用1.56万次。先后主持基金委杰出青年基金、国家重点研发计划重点专项、基金委重点项目、中加健康合作项目等项目。【报名参会】丁琛 复旦大学 研究员报告题目:《蛋白质组学与精准医学》复旦大学特聘教授,人类表型组研究院副院长,生命科学学院教授,博士生导师。科技部重点研发计划首席科学家,国家“万人计划”科技创新领军人才,中组部青年千人计划,北京市“海聚工程”特聘教授,北京市“优秀青年人才”,上海市“曙光人才计划”,上海市“优秀学术带头人计划”。中国生物物理学会表型组学分会创会秘书长,中国生物化学与分子生物学会蛋白质组学分会委员,中国抗癌协会专业委员会委员,Springer出版集团《Phenomics》杂志创刊执行主编。主要从事以蛋白质组为核心的临床多组学研究:开发一站式高效蛋白质组技术系统和数据云平台Firmiana;建立了内源性转录因子活性分析技术(catTFRE);转录因子DNA修饰结合偏好性解析技术(modi-TFRE);染色质开放域转录调控蛋白质机器解析技术(ATAC-MS)利用多维度组学解析了胶质瘤、胃癌、肝癌、多器官鳞癌、膀胱癌、胰腺导管癌、胆管癌等队列的多维度分子调控网络图景。近5年以通讯作者在Nat Biotechnol、Nat Nanotechnol、Cell Research、 Gastroenterology、J Hematol Oncol、Hepatology、Adv Sci、Sci Adv、Nature Commun (16篇) Mol Cell、J Exp Med、EMBO J、PNAS等高水平杂志发表论文70余篇,邀请综述2篇。主持国家科技部重点研发计划课题2项、科技部国际合作项目1项、863课题1项、国家自然科学基金重点项目3项、北京市自然科学基金1项、北京市留学人员重点项目1项,上海市市级重 大科技专项1项,上海市张江专项2项,产学研项目1项。获得中国专利11项、美国专利1项。【报名参会】郭天南 西湖大学 特聘研究员/长聘副教授报告题目《Expansion proteomics and perturbation proteomics》郭天南,西湖大学医学院、生命科学学院长聘副教授,西湖实验室智能蛋白质组中心主任,西湖大学未来产业研究中心兼聘研究员,国家高层次人才专家。毕业于华中科技大学同济医学院临床医学七年制,武汉大学生物科学双学位,新加坡南洋理工大学博士,瑞士苏黎世联邦理工大学博士后。长期从事蛋白质组学相关研究,联合人工智能,解析生物过程的原理,助力疾病诊疗。更多信息请看guomics.com。【报名参会】丁显廷 上海交通大学 教授报告题目:《微量生物样本的蛋白组捕获与分析技术》丁显廷,上海交通大学特聘教授,国际合作交流处副处长、生物医学工程学院分子医学纳米平台主任、个性化医学研究院常务副院长。民盟中央委员、民盟上海交通大学委员会副主委,徐汇区政协委员。国家“万人计划”科技创新领军人才、国家“千人计划”青年人才、国家基金委优秀青年科学基金、求是基金会“求是杰出青年学者奖”、上海市“曙光计划”学者。先后担任国家 “重大新药创制”科技重大专项负责人、国家重点研发计划“生物安全关键技术”专项负责人、比尔.盖茨基金会国际重大专项负责人、科技部APEC国际合作项目负责人。在Nature, PNAS, Advanced Materials, Science Advances, Genome Biology, Nature Communications等领域内旗舰杂志发表论文150余篇;授权国内外发明专利60余项。研究方向:单细胞时空蛋白组学技术、个体化诊疗标志物发现与检测。【报名参会】田志新 同济大学 教授报告题目:《基于质谱的结构特异糖蛋白质组学及生物医学应用》2003年于中国科学院化学研究所分子反应动力学国家重点实验室获得化学博士学位。2004-2011年先后在美国明尼苏达大学化学系和太平洋西北国家实验室从事合作研究。2011-2013年被聘为中国科学院大连化学物理研究所研究员,高分辨质谱技术研究组组长。2013年-至今被聘为同济大学化学科学与工程学院教授。现为中国生物化学与分子生物学会糖复合物专业委员会及蛋白质组学专业委员会委员、中国生物物理学会糖生物学分会委员、中国质谱学会理事。【报名参会】徐骏宇 中国科学院上海药物研究所 研究员报告题目《基于蛋白质翻译后修饰组学的病理机制解析和治疗策略研究》徐骏宇,中国科学院上海药物研究所研究员,课题组长,获得国家自然科学基金优秀青年项目,中国科协青年托举工程,上海市科委启明星计划资助。2012 年本科毕业于华东理工大学,2017 年获得华东理工大学博士学位。于2017 年至2020年在中国科学院上海药物研究所进行博士后深造。本人以基于生物质谱的蛋白质组学研究策略,围绕着化学蛋白质组学与翻译后修饰,临床蛋白质组学与精准医学开展相关研究工作,揭示新修饰的分子调控机制,探究潜在化学干预策略,鉴定及发现潜在生物标志物及药物靶标,为精准医学和个性化治疗提供重要资源和线索。迄今为止,共在Cell、 Nat Cancer、Sci Transl Med 、Cell Metab、Cell Chem Biol等国际学术期刊上发表第一和通讯作者(含共同)文章合计20篇。相关研究工作被国际人类蛋白质组学组织(HUPO)列为“典型研究成果”,被Cell,Nat Rev Clin Oncol,Cancer Discov等顶级学术期刊进行前瞻性评述(Preview),列入研究亮点(Highlight),入选《中国2020年度重要医学进展》、《2020中国恶性肿瘤学科发展报告》和《2020年上海科技进步报告》,并受到中央电视台、人民日报等国内外媒体广泛报道。研究工作在中央电视台《透视新科技》栏目和中国科学院官方科普平台《科学大院》做了进行相关科普报道。徐骏宇入选J. Proteome Res期刊评选的首届 Rising Stars in Proteomics and Metabolomics,入选首届上海科技青年“35人引领计划”提名获奖者,获2021年度上海市科技系统“青年五四奖章(个人)”称号以及赛诺菲—中国科学院上海生命科学研究院优秀青年人才奖。【报名参会】陈瑞冰 天津大学 教授报告题目:《双链RNA结合蛋白的质谱鉴定及其生物功能研究》陈瑞冰,天津大学药学院教授、博士生导师,教育部青年长江学者、天津大学英才教授。本科毕业于北京大学,后赴美国UW-Madison留学获博士学位。研究方向为生物质谱分析及肿瘤蛋白质组学。作为第一/通讯作者在Nat Commun、Anal Chem、Mol Cell Proteomics等期刊发表学术论文50余篇。现任All Life副主编、Cancer Biology & Medicine 编委、Journal of Mass Spectrometry编委、中国质谱学会学术委员、中国青年科技工作者协会专委会委员、中国分析测试协会青年委员、天津市青年科技工作者协会理事、天津市分析测试协会理事、天津市细胞生物学学会理事等职务。获中国分析测试协会科学技术二等奖、中国抗癌协会科技奖一等奖、天津市青年科技工作者协会优秀科技工作者、天津市青年人才托举工程、天津市“131”创新型人才、天津市青年科技优秀人才等荣誉。【报名参会】肖华 上海交通大学 教授报告题目:《微生物与细胞外囊泡的蛋白质组学研究》肖华博士,上海交通大学教授、博导。国家海外高层次人才引进计划入选者,科技部863青年科学家专题入选者。毕业于中国科学院大连化学物理研究所,获分析化学博士学位。曾先后在美国加州大学欧文分校、加州大学洛杉矶分校和密西根大学安娜堡分校从事博士后研究。主要围绕生命科学、转化医学开展生物分离分析新技术新方法新装置研究,在蛋白质组学、修饰组学、微生物组学、细胞外囊泡、癌症标志物等方面开展工作,先后在国际重要学术期刊发表论文90余篇,获得授权发明专利21项。先后主持科技部青年863项目、国家自然科学基金青年项目、面上项目、国家重点研发计划任务课题、上海市科委自然基金面上项目等。现任中国蛋白质组学专业委员会委员。【报名参会】杨福全 中国科学院生物物理研究所 研究员报告题目:《疾病相关的尿液细胞外囊泡蛋白质组学研究与应用》杨福全,中国科学院生物物理研究所研究员,中国科学院大学岗位教授,博士生导师,质谱首席技术专家。1992年毕业于中科院兰化所,获博士学位。先后在日本国立环境研究所、美国国家卫生研究院(NIH)国立心肺与血液研究所(NHLBI),以及美国Scripps研究所从事博士后和访问学者研究。主要研究方向:色谱、质谱、蛋白质组学等新技术和新方法的研究及其生命科学研究中的应用,在蛋白质和多肽药物质控方法建立与应用。发表SCI论文140余篇。【报名参会】孙瑞祥 北京生命科学研究所 副研究员报告题目:《整体蛋白组学(Top-down proteomics)中的串联质谱数据解析》孙瑞祥博士,北京生命科学研究所Research Scientist, 研究方向为计算蛋白质组学,生物信息学。对生物大分子的质谱分析具有深厚的研究基础,是一名生物质谱技术的Superfan,主要从事高通量的蛋白质,多肽,RNA等生物质谱数据的解析研究与软件开发工作:在蛋白质的ETD质谱数据、Top-Down整体蛋白质质谱数据,以及核酸RNA的串联质谱数据等方面开展深入的质谱数据解析研究。作为课题负责人,承担了多项国家863,973和自然科学基金研究课题。在美国质谱技术学报(JASMS),Analytical Chemistry, Journal of Proteome Research等国际期刊以第一作者或通讯作者发表多篇论文。【报名参会】文梃棡 合创生物工程(深圳)有限公司 大中华区应用科学家报告题目:《AI移液工作站在高效蛋白质组学实验中的创新应用》文梃棡,昆士兰大学生物技术专业硕士,在生物技术和分子生物学领域有着丰富的实践经验和多年的工作经验,目前担任Opentrons大中华区应用科学家,在包括Nature Ecology & Evolution和Scientific Data等多个知名期刊发表多篇研究论文。【报名参会】范超 赛默飞世尔科技 色谱质谱应用科学市场经理报告题目:《颠覆认知,“质的飞跃”—— Orbitrap Astral如何颠覆代谢组学研究》赛默飞色谱质谱科学研究市场经理,药物分析学专业硕士,具有多年质谱仪器的应用研究和产品管理经验,在国内外核心期刊发表10余篇研究论文。目前就职于市场部,专注于科学研究市场推广工作。【报名参会】马贝贝 布鲁克 (北京) 科技有限公司 蛋白质组学应用工程师报告题目:《布鲁克高通量高深度4D-蛋白质组学新方案》马贝贝,现任布鲁克生命科学质谱部门应用工程师。毕业于兰州大学,具有丰富多组学实验和数据分析经验。目前从事基于timsTOF系列质谱的蛋白质组学技术支持和应用推广,熟练掌握蛋白质组学样品的分析方法和流程。【报名参会】程鳞 安捷伦科技(中国)有限公司 应用工程师报告题目:《解密蛋白质组学样本质控走向自动化高通量的黑科技》毕业于复旦大学,现任安捷伦诊断与基因组学应用工程师,在基因组学、蛋白质组学、实验室自动化等方向有丰富经验。【报名参会】扫码加入蛋白质组学技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。
  • 超大孔填料在蛋白质分离纯化中的应用
    p & nbsp /p p   层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。 /p p   span style=" color: rgb(0, 176, 240) " strong  层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题 /strong /span /p p   随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。 /p p   为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。 /p p span style=" color: rgb(0, 176, 240) " strong   病毒及病毒样颗粒的分离纯化 /strong /span /p p   根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。 /p p   例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。 /p p style=" text-align: center " img width=" 576" height=" 450" title=" 1.jpg" style=" width: 415px height: 282px " src=" http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg" /    /p p style=" text-align: center " 重组乙肝病毒表面抗原在不同孔径离子交换填料上 /p p style=" text-align: center "   的吸附动力学[1] /p p style=" text-align: center " img width=" 497" height=" 345" title=" 2.jpg" style=" width: 387px height: 289px " src=" http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg" /   /p p style=" text-align: center "  重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的 /p p style=" text-align: center "   ELISA回收率[1] /p p   对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。 /p p style=" text-align: center "    span style=" font-size: 14px " strong 灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程 /strong /span /p p   与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性: /p p   1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。 /p p   2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。 /p p style=" text-align: center "   span style=" font-size: 14px " strong  表面曲率变化对蛋白接触面积的影响 /strong /span /p p   3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。 /p p   4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。 /p p span style=" color: rgb(0, 176, 240) " strong   快速分离蛋白质及pDNA /strong /span /p p   除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。 /p p   例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。 /p p style=" text-align: center " img width=" 588" height=" 170" title=" 3.jpg" style=" width: 473px height: 144px " src=" http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  超大孔填料应用前景与展望 /strong /span /p p   近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。 /p p   根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面: /p p   (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。 /p p   (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。 /p p   (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。 /p p   (4)制备规模整体柱的开发及其在生物下游技术中的应用。 /p p   目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。 /p p span style=" color: rgb(0, 176, 240) " strong   部分商品化的超大孔层析介质 /strong /span /p p    strong 超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。 /strong /p p   参考文献 /p p   [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79. /p p   [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1). /p p   [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125. /p p   [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77. /p p   [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107. /p p /p
  • 北京蛋白质组研究中心第二期蛋白质组信息学培训班(第一轮通知)
    时间:2014年5月20-23日   地点:北京蛋白质组研究中心(北京市昌平区科学园路33号,中关村生命科学园内)   主办单位:   北京蛋白质组研究中心(BPRC)   蛋白质组学国家重点实验室(SKLP)   中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)   北京蛋白质组研究中心是蛋白质组学国家重点实验室,国际联合研究中心,国际人类肝脏蛋白质组计划(HLPP)执行总部。建立了世界上最大的人类蛋白质组数据库及数据管理平台,和国际领先的蛋白质相互作用网络构建和分析平台。对人类肝脏蛋白质组进行了系统的生物信息研究,包括蛋白质鉴定、修饰、定位、相互作用网络、代谢通路及肿瘤标志物发现等研究。讲师团队长期致力于蛋白质组数据分析及相关知识发现,为国际人类肝脏蛋白质组计划提供了全方位的生物信息支持。2012年,集体获中国电子学会电子信息科学技术奖一等奖:蛋白质组学计算方法的研究及其支撑平台的构建和应用 2007年,集体获北京市科学技术一等奖:蛋白质组支撑技术及其在人类重要疾病与生理过程研究中的应用。   前言   本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。   培训对象   从事生命科学、农学、医学等领域科研工作者和高校教师及研究生   迫切希望提升生物信息分析能力的学者   培训内容   质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。   课程安排 时间 培训内容 2014年5月20日 9:00-10:00 蛋白质组信息学概论 10:00-12:00 质谱数据处理-搜库与质控 13:00-15:00 蛋白质组定量分析(以无标定量为主) 15:00-16:00 蛋白质翻译后修饰分析 16:00-17:00 蛋白质鉴定上机实习 2014年5月21日 9:00-11:00 质谱数据深度挖掘 11:00-12:00 蛋白质定量上机实习 13:00-15:00 蛋白质组数据分析/生物标志物发现 15:00-17:00 蛋白质组数据分析上机实习 2014年5月22日 9:00-10:30 蛋白质组数据库/数据提交 10:30-12:00 数据库及数据提交实习 13:00-15:00 蛋白质组软件包的使用(TPP等) 15:00-17:00 TPP安装及使用实习 2014年5月23日 9: 00-10:30 蛋白质相互作用网络和蛋白质组学知识挖掘的基础知识 10:30-12:00 蛋白质相互作用的生物信息学资源介绍 13:00-14:00 Cytoscape软件使用介绍 14:00-17:00 蛋白质相互作用数据分析上机   培训费   4月18日前注册:每人4200元,学生3900元。   4月19日至5月20日之间注册:每人4500元,学生4200元。   其他优惠:同一单位2人以上参加,每人优惠200元。   提前注册截止日期:2014年4月18日,以银行汇款凭证为准。   网上注册地址: http://61.50.138.116/training/cn/   培训费用包含:培训资料、培训期间的午、晚餐。   可协助安排住宿,住宿费用自理。需住宿的学员请在网上注册时填写住宿信息。   报到时间和地点   报到:5月19日全天,北京扬子江药业海诺康会馆(北京市昌平区生命园路16号,中关村生命科学园内) 20日8:30-10:00,北京蛋白质组研究中心。   住宿:北京扬子江药业海诺康会馆,标准间298元/天(含早餐)。   学生报到时须持学生证。   学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。   注意事项   培训结束后颁发北京蛋白质组研究中心和蛋白质组学国家重点实验室培训证书,需要中国生物化学与分子生物学会继续教育证书的学员报到时需要另交1张2寸免冠照片及20元工本费。   中心通过了ISO/IEC 17025实验室认可,为社会各界提供科研技术服务。参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站: http://www.bprc.ac.cn/guidance/list.php?catid=27   汇款信息   帐 号:0200004909200041055   账户名称:北京蛋白质组研究中心   开户银行:工商银行北京市永定路支行   注:汇款时请务必注明&ldquo 信息学培训班&rdquo 和学员姓名。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。   如需发票请注明发票抬头,培训结束后统一开具发票(培训费、注册费、会议费、技术服务费等),有其他特殊要求请声明。   联系方式   联系电话: 注册:周建平(010)80705277   咨询:史冬梅(010)80705888   传 真:(010)80705155   电子邮件:bprctrain@163.com   通信地址:北京市昌平区科学园路33号(102206)
  • 云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量
    【山东云唐*新品推荐YT-Z12T】云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量  随着科技的不断发展,食品蛋白质检测仪在食品安全检测领域发挥着越来越重要的作用。其中,对于奶粉中蛋白质含量的快速准确检测,食品蛋白质检测仪更是扮演着至关重要的角色。本文将详细介绍食品蛋白质检测仪的工作原理、优势及其在奶粉蛋白质含量检测中的应用。  食品蛋白质检测仪在奶粉蛋白质含量检测中具有显著的优势。首先,它大大提高了检测效率。相较于传统的检测方法,如Kjeldahl法、Lowry法等,食品蛋白质检测仪能够在短时间内完成大量样品的检测,从而满足现代化生产线上对奶粉质量监控的需求。其次,仪器具有高度的准确性。通过精确的光电测量和荧光检测技术,食品蛋白质检测仪能够确保测量结果的准确性,避免因人为因素或操作不当导致的误差。此外,食品蛋白质检测仪还具有操作简便、自动化程度高等特点,使得检测过程更加便捷高效。  在奶粉蛋白质含量检测中,食品蛋白质检测仪的应用具有重要意义。奶粉作为婴儿成长发育的重要营养来源,其蛋白质含量直接影响到婴儿的健康状况。因此,对奶粉中蛋白质含量的准确检测显得尤为重要。食品蛋白质检测仪能够快速、准确地检测出奶粉中的蛋白质含量,为奶粉生产厂家提供及时、可靠的质量监控手段。同时,对于消费者而言,了解奶粉中蛋白质的含量有助于他们选择合适的奶粉产品,为婴儿的健康成长提供保障。  此外,食品蛋白质检测仪还可以用于奶粉生产过程中的质量控制。在奶粉生产过程中,通过定期对原料、半成品和成品的蛋白质含量进行检测,可以及时发现生产过程中的问题,采取有效措施进行调整和改进,确保奶粉产品质量的稳定性和可靠性。同时,食品蛋白质检测仪还可以用于奶粉产品的批次管理和追溯,确保产品的质量和安全可追溯。  总之,食品蛋白质检测仪在奶粉蛋白质含量检测中发挥着重要作用。它不仅能够提高检测效率和准确性,为奶粉生产厂家提供及时、可靠的质量监控手段,还能为消费者选择合适的奶粉产品提供有力支持。随着科技的不断进步和食品安全意识的提高,食品蛋白质检测仪将在食品安全检测领域发挥更加重要的作用,为保障人们的饮食安全贡献力量。
  • FIDA分子互作仪:带你复现Nature青睐蛋白质与核酸互作50分顶级发文思路,还不快学起来!
    研究背景Nature:清北团队合作发现CRISPR免疫增效子,建立Cas9核酸酶生长进化模型CRISPR-Cas系统是一种强大的基因编辑工具,但Cas9核酸酶活性仍需提高。现有的方法存在着种种局限性,例如优化序列可能破坏结构、改变表达方式可能导致副作用、使用辅助蛋白会增加复杂性等。因此,开发新的方法来增强Cas9核酸酶的活性仍是CRISPR-Cas系统研究中的一个重要课题。2024年5月29日,来自清华大学和北京大学的研究团队在Nature上合作发表了题为:Pro-CRISPR PcrIIC1-associated Cas9 system for enhanced bacterial immunity的研究论文研究团队通过生物信息学分析、结构生长轨迹分析、生化实验、冷冻电镜解析和大肠杆菌抗噬菌体实验等手段,发现了一类新型CRISPR免疫增效子PcrIIC1,可以显著增强Cas9核酸酶的活性。研究团队还建立了Cas9核酸酶生长进化模型,揭示了Cas9蛋白结构和功能的演变规律,并阐明了PcrIIC1增强Cas9活性的分子机制。这项研究为我们进一步理解CRISPR系统的进化历程,以及开发基于CRISPR免疫增效子的高效基因编辑工具奠定了基础。研究思路通过生物信息学分析,研究团队观察到一类新型关联基因(Novel-associated genes, NAGs),显著富集存在于较大蛋白体积的II-C型Cas9的基因簇中,并推测这些NAGs可能参与到Cas9介导的细菌免疫过程。图1. 结构生长轨迹分析方法(左)和II-C型Cas9的生长轨迹图(右)通过生化实验和冷冻电镜解析复合体结构表明,来自金黄色细菌属(Chryseobacterium sp.)的CbCas9生长出了一个全新的增强Cas9活性的β-REC2结构域,以及一个全新的能够与其关联基因PcrIIC1互作的CTH结构域。通过蛋白间相互作用,2个CbCas9蛋白和2个PcrIIC1蛋白能够形成异源四聚体复合物。图2. 冷冻电镜分析CbCas9和PcrIIC1结合的三个阶段蛋白质与核酸的分子互作实验表明,与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。研究利用溶液中标记的分子互作方式获得亲和力,得出与单独的CbCas9相比,CbCas9-PcrIC1复合物表现出增强的DNA结合(图3a)进而体现出切割活性,对原间隔区相邻基序序列的兼容性更广,对错配的耐受性更强,抗噬菌体免疫性增强。图3. PcrIIC1增强CbCas9的DNA结合(a)、切割(b)、PAM兼容性(c)、DNA解旋 (d) 和错配容忍 (e) 能力最后,为了检验CRISPR免疫增效子PcrIIC1对CbCas9抗噬菌体免疫能力的影响,研究人员在大肠杆菌中进行了抗噬菌体实验。以上结果说明CbCas9-PcrIIC1复合体的形成对整个CRISPR-Cas系统的免疫增强至关重要。图4. PcrIIC1显著增强了CbCas9系统的细菌免疫活性FIDA如何更好复现Nature蛋白与核酸互作发文思路流体动力分散技术(FIDA)通过第一性物理原理直接获取分子的绝对流体动力学半径(Rh),通过追踪分子微妙的变化来表征生物分子的行为、特征以及功能。Fida Neo分子互作仪涵盖亲和力表征、亲和动力学表征、分子质量表征三大功能,一次实验即可获得互作与分子质控的数据,让互作的数据有“法”可依。FIDA技术无需固定、无需加热,甚至无需标记,可兼容所有缓冲液,是对现有分子互作技术是一次不一样的升级。FIDA技术可用于CbCas9-PcrIIC1复合物冷冻电镜前样品质控,CbCas9-PcrIC1复合物与DNA的亲和力实验以及动力学实验,以及CRISPR- cas以及核酸复合物的大小和定量表征等方面,具体如下:FIDA多维蛋白复合体表征,快速无稀释优化冷冻电镜样品,丰富您的蛋白质表征数据。FIDA所获得的Rh为绝对的粒径大小,可以直接与后期的电镜数据做比较。此外FIDA内置的 PDB 关联程序,可以将实际获得的 Rh 与数据库中的结构信息进行比较,有助于结构的精细解析。FIDA技术单次运行只需要40 nL 蛋白质在 4 分钟内获得的完整蛋白质 QC 图,包括冷冻电镜样品QC的关键参数表征,例如多分散性指数(PDI),聚集(Agg),粘度(Viscosity),粘附性(Stickiness),完整性(Rh)等指标,FIDA是一种非常有效的支持所有生物物理学和结构生物学的基本工具。图5. FIDA单次测试的得到8个蛋白表征数据冷冻电镜应用:FIDA:4分钟给您无稀释的冷冻电镜样品优化解决方案FIDA和本篇研究中应用的分子互作技术都是一种在溶液状态下通过荧光分子标记表征分子互作的技术。对于蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现蛋白与蛋白或蛋白与核酸互作的真实情况。FIDA 可以使用含盐和洗涤剂的缓冲液条件,具有不同环境中(类体内环境)进行测试的灵活性。这使得研究者能够分析不受缓冲液成分限制的核苷酸,以确保其数据的准确性和可靠性。FIDA 这种在溶液内检测分子互作技术,是理想的结合能力检测,因为它不依赖于潜在的阻碍性表面固定,不受结合域空间方向影响的表征。图6. FIDA实验原理示意图FIDA不仅可以表征互作亲和力,也同时无标记检测CRISPR核酸酶与gDNA相互作用的热力学、亲和力、和结合动力学,全面表征蛋白与核酸互作。FIDA不仅可以完成本研究中得到的CbCas9-PcrIC1复合物表现出增强的DNA结合亲和力,还可在无标记下表征蛋白与核酸的热力学参数与结合动力学,甚至表征结合时蛋白构象变化与获得有关基因编辑过程的分子细节的定量表征。FIDA技术可以处理带负电荷分析物和带正电荷配体,使利用FIDA能够深入了解CRISPR- cas组分之间的结合相互作用,并以更高的准确性和效率表征和优化CRISPR系统。FIDA是一种序列无关的技术-不需要事先了解序列。FIDA的序列独立性质可对未知或未表征的基因组区域进行研究,同时简化工作流程。图7.(A) FIDA实验示意图。ReporterRNA用于识别RNP的大小和饱和点(上),用其报告RNP结构作为竞争分析的起点(下) (B)正向结合(上)和反向滴定(下)期间获得的原始FIDA数据 本研究在分子层面直观的揭示了免疫增效子PcrIIC1的作用。首次发现了一类新型的CRISPR免疫增效子可以通过二聚化Cas9效应器提升Cas9活性,这些结果不仅有助于我们进一步理解CRISPR系统的进化历程,还为未来基于CRISPR免疫增效子的高效基因编辑工具的开发奠定了基础。FIDA对于蛋白质复合体的多维表征和对蛋白与核酸互作亲和力与动力学的的检测,不依赖于分子量变化,样本用量少(仅需40nL),是一种在溶液状态下且不受缓冲液成分影响的多维表征技术。对于在本研究中相似的蛋白可能需要形成多聚体,在溶液环境下,更能有效的体现互作的真实情况。
  • 百家实验室:访国家蛋白质科学中心上海(筹)
    仪器信息网讯 2014年4月,我国生命科学领域中第一个综合性的国家级重大科技基础设施&mdash &mdash 蛋白质科学研究(上海)设施(以下简称为:上海设施)通过工艺测试,正式进入开放试运行阶段。近日,仪器信息网工作人员参观拜访了上海设施及同步筹建的国家蛋白质科学中心· 上海(以下简称为:上海中心),一睹这一国家级重大科技基础设施的先进水平和创新风采,上海中心科研项目高级主管汪利俊博士及行政事务主管高馨热情接待了我们。 国家蛋白质科学研究(上海)设施/国家蛋白质科学中心· 上海建筑群   为了形成国际一流的蛋白质科学研究体系,并为我国蛋白质科学研究提供&ldquo 利器&rdquo ,2008年11月,&ldquo 蛋白质科学研究设施国家重大科技基础设施项目&rdquo 列入国家高技术产业发展项目计划,项目分北京设施、上海设施两部分,其中北京设施以蛋白质组学研究为主,而上海设施以结构生物学研究为主。   两年后的2010年12月,上海设施在上海浦东张江高科技园区内动工建设,总投资7亿元,项目总建筑面积3.3万平方米。而今历经3年多建设,上海设施/上海中心正式进入试运行阶段,预计于今年年底正式面向多用户、多领域开放。   据介绍,上海设施配备了蛋白质科学研究所需的各种大型科学仪器设备,以及由上海设施的技术人员自主研发的规模化、系统化技术装备体系。目前,上海设施由基于同步辐射光源的五线六站、规模化蛋白质制备系统、质谱分析系统、核磁分析系统、电镜分析系统、分子影像系统、复合激光显微成像系统、数据库与计算分析系统、动物设施等平台组成,可为在分子水平、细胞水平和个体水平上研究蛋白质、蛋白质复合体、蛋白质机器的结构与功能提供全面和完整的技术与条件保障。   在各大平台中,最令上海设施团队自豪的是几项创新:其中一项是将蛋白质表达实现了从&ldquo 手工作坊&rdquo 到&ldquo 智能工厂&rdquo 的转变。目前,在科研界和制药业对于各种蛋白样品的需求日益强烈,但蛋白表达是一个公认复杂、高成本、耗时和资源占用的过程。上海设施规模化蛋白质制备系统自主设计了五套大型自动化装置,将软件控制、硬件设备和生物应用结合在一起,实现了大规模蛋白表达过程的自动化(包括克隆、蛋白表达和纯化)。 高通量自动化克隆系统   整个流程实现了自动化,从大规模PCR扩增开始,依次自动进行重组质粒的构建、细胞生长、诱导表达、蛋白表达(构建了大肠杆菌、昆虫细胞、哺乳动物细胞三种表达体系),最终完成蛋白纯化及蛋白性质表征。以克隆过程为例,实验效率从传统手工一人次一天10个基因克隆提升到一天1000个基因克隆。   第二项创新则是分子影像系统自主研发的高精度激光双光镊系统。据悉,设备的所有零部件都购自现成。光镊采用激光辐射压对微米级粒子进行捕获,并通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量。依靠这套系统,激光是&ldquo 镊子&rdquo ,能研究蛋白质如何折叠、变形,以及大分子生物酶的工作原理。高精度激光双光镊系统   第三项创新则是上海设施团队基于平台开发的相关研究方法。有了最先进的仪器,没有相应的研究方法也是枉然。为此,上海设施/上海中心的年轻PI们除了从事科学研究外,方法开发也是他们工作的重点。   以核磁系统分析平台为例,上海设施目前拥有5台核磁共振波谱仪,其中有国内第一台最高磁场强度的核磁共振设备(布鲁克900M NMR),主要用来测试蛋白质的溶液结构。上海中心PI周界文带着研究人员开展了核磁共振新技术的开发和新方法的研究。目前新方法的主体研究已完成,正进入软件测试阶段,对推广核磁共振技术在结构生物学领域的广泛应用有重要意义,特别是对依托高场强核磁共振设施进行大蛋白质的三维结构测定过程将更加可行。 布鲁克900M 核磁(左)、安捷伦800兆核磁(中)、安捷伦600兆核磁(右) 布鲁克600兆核磁(左)、安捷伦700兆核磁(右) 核磁系统分析平台一览   同样,上海设施的质谱分析系统平台也很强大,拥有赛默飞、AB SCIEX、安捷伦、沃特世等主流质谱品牌的仪器13台,是全国目前最大、质谱仪器种类最全的质谱分析平台之一。这个实验室在上海中心PI黄超兰的主持下,已自主研发了一系列国内其他实验室尚不具备的研究手段,吸引了全国各地甚至美国的诺奖获得者的研究组等多家科研单位前来合作,在短短半年间已有超过70多个合作项目在进行。 赛默飞质谱系统 (2台 Q Exactive、1台LTQ Orbitrap XL、1台LTQ Orbitrap Elite、1台 LTQ Orbitrap Elite-ETD) AB SCIEX质谱系统 (左上:QTRAP 6500、左下:Triple TOF 5600+、右:MALDI-TOF/TOF 5800) 安捷伦质谱系统 (1台 6530Q-TOF、1台6550 ifunnel Q-TOF、1台6490 QQQ) 沃特世质谱系统 (左:Xevo TQ-S 右:Synapt G2-Si HDMS) 质谱分析系统平台一览 (左:FEI TitanKrios 300kV 球差矫正透射电镜 右上:FEI TF20 场发射冷冻透射电镜 右下:FEI T12 冷冻透射电镜) 电镜分析系统平台一览 (左上:ZEISS Cell Observer SD 转盘式激光共聚焦 左下:NIKON N-SIM 超高分辨率显微镜 右上:LEICA SP8 激光共聚焦显微镜 右下:OLYMPUS FV1200MPE 双光子显微镜) 复合激光显微成像系统平台一览   此外,上海中心还自主研发了一套科研物资管理系统(e-Supply),所有实验室的研究人员都可通过ID登录系统下单购买实验试剂、耗材,资金从课题组经费账户中扣除,而上海中心则能以&ldquo 团购&rdquo 方式,拿到最优的价格。并且上海设施还为供应商提供了库存仓库,供应商只需付较少的费用就可以把上海设施常用的试剂、耗材存于此,这样也极大方便了研究人员,省去了试剂耗材运送的时间。现该系统已获国家计算机软件著作权,除管理上海中心物资外,还兼管筹建中的上海科技大学的物资,不久有望在中科院其他研究院所推广。 科研物资管理系统(e-Supply) 供应商在上海设施库存的商品 数据库与计算分析系统机房   上海设施不仅仅是一个供科学家使用的科研平台,更是一个具有强大科研能力的科学中心。目前,上海中心有PI 14位,仅在上海设施试运行期间,上海中心各研究组就已获得了包括中科院战略性先导科技专项和国家重大科学研究计划项目在内的多项重大课题,相关研究成果已在《自然》、《癌细胞》等国际著名学术刊物上陆续发表。   许琛琦研究组在阐明人体免疫机制方面取得突破性进展,首次证明钙离子能够改变脂分子功能来帮助T淋巴细胞活化,提高T淋巴细胞对外来抗原的敏感性,从而帮助机体清除病原体。   周界文研究组在研究重要离子通道蛋白p7的精细空间结构以及p7与抑制剂金刚烷胺类药物相互作用的分子机理方面也取得重大突破,相关研究成果将大大推动新一代抗丙型肝炎病毒治疗手段的研发。   周兆才研究组研究发现原癌蛋白质YAP的一个天然拮抗剂蛋白&mdash VGLL4,并在蛋白质晶体结构解析的基础上发展出一个针对YAP的多肽类抑制剂,为以胃癌为代表的肿瘤治疗提供了新的策略和途径。   雷鸣、张荣光研究组的研究论文首次在原子水平上解析了端粒酶的结构,第一次从原子层面对脊椎动物端粒酶复合物中蛋白质-RNA的相互作用进行了描述。   未来,上海设施将对中国乃至全球的科学家开放,旨在让上海设施发挥其更大的作用与价值。(撰稿:杨娟)   附录:国家蛋白质科学研究(上海)设施及国家蛋白质科学中心· 上海网址 http://www.sibcb-ncpss.org/   http://www.ncpss.org
  • 干血斑分析技术进展与应用——基于干血斑的蛋白质分析技术
    干血斑(Dried Blood Spot, DBS)是一种微量血液采集、干燥和储存的生物采样技术。该技术由Robert Guthrie于1963年首次应用于新生儿苯丙酮尿症(PKU)筛查[1]。相比于临床检验中常用的液态血液基质,干血斑技术具有采血量少、操作简便、一般不需冷冻或冷藏、储存和运输成本低等优点,已应用于新生儿疾病筛查、流行病学样本分析、药物研发等领域。将干血斑应用于蛋白质研究,拓宽了蛋白质分析研究的生物样本采集形式,具有很好的临床研究和实际应用价值。本文重点讨论两种常见干血斑蛋白质分析技术及应用。1. 基于干血斑的蛋白分析技术1.1 酶联免疫吸附分析法原理:酶联免疫吸附分析法(ELISA)是指将可溶性的抗原或抗体结合到聚苯乙烯等固相载体上,利用抗原抗体特异性结合,进行免疫反应的定性和定量分析,具有灵敏、特异、及易于自动化操作等特点。根据免疫识别和信号输出方式的不同,ELISA可以分为双抗体夹心法、直接免疫竞争法和非直接免疫竞争法等。实验材料及分析仪器:研究人员可通过购买固相载体、抗体或抗原进行包被制备ELISA试剂盒或购买市售试剂盒。酶联免疫吸附测定试剂盒已成为实验中不可缺少的工具,目前国内外Elisa试剂盒生产厂家很多,如上海酶联生物、Abcam、BioVision等,科研人员可根据研究需求选择高质量的试剂盒品牌,以提升分析效率及结果有效性。干血斑处理:以干血斑HIV分析为例:用HIV阴性混合血液样本对阳性混合血液样本进行梯度稀释后,以固定体积点样至干血斑收集卡,室温下干燥。采用干血斑打孔设备获得一定直径的干血斑样片,用300 μL PBST(0.05% Tween20)室温静置洗脱,洗脱液经酶标仪测定样本吸光度值(OD值)。分析和结果处理:以标准曲线样品的浓度为横坐标,以测得的OD值为纵坐标,根据不同类型ELISA本身的特点拟合标准曲线(如竞争法和夹心法可以采用四参数拟合回归方程),选择R值大于0.99的拟合方式,并根据标准曲线计算样品浓度。分析仪器:酶标仪(MicroplateReader)即酶联免疫检测仪,是对酶联免疫检测(EIA)实验结果进行读取和分析的专业仪器。酶标仪可分为普通酶标仪和多功能酶标仪,普通酶标仪的主要功能一是充当分光光度计的角色,二是基于免疫反应的ELISA分析,价格相对较低;多功能酶标仪可实现吸光度、荧光强度、时间分辨荧光、荧光偏振和化学发光等多种检测模式拓展,满足生化分析、免疫检测、细胞研究、药物筛选和机制探索等众多领域检测需要。目前酶标仪市场常用的仪器品牌进口的有:伯腾、帝肯、美谷分子、珀金埃尔默和赛默飞等;国产的有:安图生物、奥盛和闪谱等。1.2 基于质谱技术的蛋白质分析技术基于质谱(Mass Spectrometry, MS)技术的蛋白质分析方法具有高通量、自动化程度高、分离能力强等特点,已逐渐成为蛋白质分析和鉴定的重要技术。原理:蛋白酶将样本中的蛋白质消化成肽段混合物,可采用鸟枪法(Shotgun)对蛋白组进行全谱分析,在最小限度分离蛋白质的同时实现复杂混合物中成千上万种蛋白质的鉴定和定量;或用液相色谱法(Liquid Chromatography, LC)对酶解肽段进行分离,经基质辅助激光电离(MALDI)或电喷雾电离(ESI)等软电离技术将其离子化,带电蛋白质离子通过质量分析器将具有特定质荷比的肽段离子分离,然后经检测器分析。质谱技术与干血斑技术的结合为蛋白质组学研究和蛋白生物标志物筛选提供了强有力手段。图1 基于质谱技术的蛋白质组学分析流程[2]样本处理:采用干血斑打孔设备获得一定直径的干血斑样片,转移至EP管中,加入少量水后用组织研磨器或匀浆机快速、彻底破碎干血斑样片,剧烈摇晃试管。后续处理与常规样本的蛋白提取相似:加入蛋白裂解液(如SDS、SDC、RIPA等),冰上裂解约半小时(辅以震荡),低温、高转速离心后取上清,得干血斑蛋白提取物。分析和结果处理:蛋白质组学数据分析和结果处理包括:①应用数据库搜库对蛋白进行鉴定并相对定量分析,借助如主成分分析、相关性分析、聚类分析等方法掌握数据的整体情况;②对蛋白的生物学功能进行注释,例如GO功能注释、KEGG注释等;③通过蛋白的生物学功能或参与的信号通路可以进一步筛选与研究目标相关的蛋白进行后续的分析。分析仪器:蛋白质组学分析主要使用高分辨液质联用系统进行。可进行蛋白质组学分析的液质联用系统目前以进口为主,常见仪器主要有布鲁克、赛默飞、沃特世和SCIEX的Q-TOF、Q-Orbitrap、Q-Trap质谱仪等。2. 干血斑蛋白分析应用实例分享2.1 采用ELISA法分析干血斑中HIV抗体1996年美国食品药品监督管理局(FDA)批准了以干血斑为载体的样本邮寄传递检测模式,并证明其可作为传统检测模式的良好补充,极大地推动了干血斑技术在传染性疾病分析中的应用。在我国,全国艾滋病检测技术规范(2020年修订版)第二章第4部分“常规HIV抗体或HIV抗体抗原联合检测方法”中指出:ELISA试验可使用血液(包含血清、血浆和干血斑)或尿液样本检测HIV抗体,也可联合检测HIV抗体抗原,说明干血斑在基于ELISA技术的HIV抗体检测中是可代替血浆、血清的生物样本基质,具有广阔的应用前景。近年来,相关专家多推荐受检者使用HIV自主采样包,根据说明采集干血斑样本,匿名寄至专业实验室,通过电话等方式获取结果。图2 RDA Spot公司的干血斑自主采样包(包含一次性采血针,消毒湿巾,样本采集卡,使用说明书及用于运输的特殊包装)图片来源:https://www.rdaspot.com/2.2 基于质谱技术的干血斑蛋白质组学分析研究人员建立了应用Thermo UltiMate 3000 RSLCnano纳升液相色谱联合Q Exactive HF-X质谱技术的干血斑蛋白质组学分析方法,并于2020年在Journal of Proteome Research中报道了该项工作[3]。由于全血中含有较多可溶性蛋白(如血红蛋白、白蛋白、纤维蛋白原等),研究人员为克服干扰、提高分析灵敏度,采用碳酸钠沉淀法(SCP)成功去除干血斑中可溶性蛋白并富集目标分析物疏水性蛋白。采用基于数据非依赖采集模式(DIA)的蛋白质组学分析方法,进行EMBL-EBI(针对人类蛋白GO功能分析的综合注释数据库)蛋白组学搜库分析,通过限定质谱扫描范围和延长离子累积时间等提高了分析方法的检测灵敏度。该研究最终在健康受试者干血斑样本中鉴定到1977种蛋白质,其中包含585种疾病相关蛋白。3. 小结与展望干血斑是一种先进的血液采集及保存技术,具有操作简单、对人体损伤小、便于运输和储存等优势,在临床快检中受到关注。干血斑技术与蛋白质研究的结合将有效推动蛋白质研究成果临床转化。随着分析技术的发展和相关研究的不断深入,前处理自动化仪器、高通量分析仪器和成熟的蛋白分析流程将成为干血斑蛋白质分析的有力工具,干血斑蛋白质分析定将在蛋白质分析中发挥重要作用,为高通量诊断、差异蛋白分析和疾病生物标志物挖掘等拓展新的技术平台。参考文献:[1] R. Guthrie, & Susi, A., A Simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants., Pediatrics, 32 (1963) 338–343.[2] B. Kuster, M. Schirle, P. Mallick, R. Aebersold, Scoring proteomes with proteotypic peptide probes, Nature Reviews Molecular Cell Biology, 6 (2005) 577-583.[3] D. Nakajima, Y. Kawashima, H. Shibata, T. Yasumi, M. Isa, K. Izawa, R. Nishikomori, T. Heike, O. Ohara, Simple and sensitive analysis for dried blood spot proteins by sodium carbonate precipitation for clinical proteomics, Journal of proteome research, 19 (2020) 2821-2827.
  • 利用自上而下质谱对蛋白质高阶结构和动力学进行时间分辨表征的微流控平台
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry [1],文章的通讯作者是北京大学生物医学前沿创新中心的王冠博教授和中国科学院深圳先进技术研究院的门涌帆副研究员。  蛋白质的高阶结构和动力学特性对理解蛋白质的生物学功能和揭示其潜在机制至关重要。自顶向下质谱法(Top-down MS)在完整蛋白水平和肽段碎片水平都能获得结构信息。非变性Top-down MS可以分析蛋白质复合体的结构以及完成亚基鉴定和修饰分析。自顶向下氢/氘交换质谱(Top-down HDX MS)为构象或结合界面分析提供了高空间分辨率,并实现了构象特异性表征。微流控芯片可以为这些质谱工作流程的前端反应提供优越的平台。然而,目前大多数质谱微芯片装置是为Bottom-up或Top-down蛋白质组学设计的。本文中,作者提出了一种用于蛋白质高阶结构和动态Top-down MS分析的芯片设计策略。它适用于时间分辨的非变性质谱和HDX质谱,该设计旨在有效电离完整的蛋白质复合物,灵活控制多种反应物流动,并在较大的流速范围内精确控制反应时间在亚微升/分钟。本文通过对单克隆抗体、抗体-抗原复合物和共存蛋白构象等体系的分析来验证该装置的性能。  TDK-MS(Top-down and kinetic MS)芯片的结构如图1A所示,该方法可以有效电离完整的蛋白质,包括单克隆抗体(mAb)和抗体-抗原复合物(图1 B, C)。  图1. 完整蛋白质和蛋白质复合体在非变性条件下的高效电离  虽然分析蛋白质组合化学计量学和监测构象变化需要保持蛋白质高阶结构和非共价相互作用的完整性,然而为了推导结构信息或在串联MS中展开蛋白质以提高碎裂效率,往往需要不同程度的变性来产生亚复合体,因此变性剂的浓度和变性的时间对变性程度至关重要。本文中,作者采用交错人字微结构(Herringbone microstructure, HM)(图2A, B),并对其性能进行了评估(图2C−E)。如此高的混合效率为进一步微型化芯片混合模块提供了可能。在监测Mb的变性时,作者使用TDK-MS芯片和商用混合三通管平行混合holo-Mb溶液(5 μM)与乙腈(ACN),并比较它们在混合比例变化时的响应(图2F)。TDK-MS芯片在非变性和变性条件之间切换的快速响应通过NIST mAb的变性得到了证明,在向NIST mAb溶液中添加甲酸后,响应时间小于5分钟(图2G)。  图2. 高效混合和快速响应的流体控制  微芯片的灵活通道设计允许引入独立控制的溶液。例如,尽管酸和有机溶剂都能诱导变性,但这两种变性剂同时存在时,对变性途径的影响是不同的。Mb和Hb是血红素蛋白,其中血红素基团分别非共价连接在1条多肽链和4条非共价组装链上,因此这是研究共存复合体解离动力学和亚基构象变化的理想模型。将5 μM holo蛋白溶液与ACN和FA按一定的混合比例依次混合,可以通过解离产物的出现和蛋白质离子电荷态分布的变化来表征复杂的解离和蛋白质的展开。在固定ACN浓度下,随着FA浓度从0.01增加到0.3% (v/v),依次观察到的主要现象是血红素丢失、apo-Mb展开以及折叠的holo-Mb转化为展开的apo-Mb(图3A)。相比之下,在FA浓度恒定的情况下,当ACN从1增加到50%时,Mb主要表现为血红素损失,只有中等程度的apo-Mb展开,这可能是由于展开的部分迅速聚集(图3B)。  图3. (A)增加FA浓度,固定ACN浓度和(B)增加ACN浓度,固定FA浓度时获得的Mb和Hb的质谱图。  在HDX MS检测中,TDK-MS芯片提供了快速和有效的氘代及淬灭,精确控制HDX反应时间,并在2H-标记形式下高效电离完整蛋白质(图4)。  图4. 2H标记完整的(A)Mb、(B)Hb α亚基和(C)Hb β亚基在不同反应时间下的HDX质谱图  由于过大的流速不利于电离效率,并且有可能会增加堵塞或流动中断的风险,因此流速应保持在最佳范围内,这又限制了混合通道中HDX时间的可调节范围,从而影响了HDX动力学分析的灵活性。为了解决这一问题,作者设计了一个具有多个不同长度反应通道的混合模块,在不更换芯片的情况下,除了改变流速外,还可以通过通道切换在更大范围内调整反应时间。在原型芯片中,5个不同长度的通道可以在对蛋白质电离和流动稳定性都最优的流速下,产生从几秒到几分钟不等有效的HDX时间(图5)。  图5. Top-Down HDX MS 分析  本文中作者开发的策略将有利于生物大分子结构的精细分析,并有助于质谱微芯片的方法开发。
  • BiopharmaLynx软件在蛋白质肽图分析中的应用
    BiopharmaLynx软件在蛋白质肽图分析中的应用 周春喜 沃特世科技(上海)有限公司实验中心 在新药研发中,蛋白质药物正在占据越来越大的比重,而蛋白质分子结构的复杂性又要求对蛋白质药物必须进行全面的表征,以满足新药报批、工艺改进和专利保护的要求。目前蛋白质药物的研发和表征还面临很多挑战,尤其是在重组蛋白的序列确证、微量杂质蛋白的检测和定量、不同批次间产品的比较和质量控制等方面。质谱在蛋白质的表征方面发挥着至关重要的作用,它不仅可以测定蛋白质药物的分子量和产品的异质性,还可以通过肽图分析确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等信息。 但如果没有功能强大的软件帮助,质谱数据的分析、比较、注释、有效信息的提取和分析报告的产生将是一个十分费时耗力的复杂过程。如果进行人工分析,即使是经验丰富的分析人员也会感到很头疼,而且在如此复杂的分析过程中很难保证不出差错,而一旦出现差错,不仅会严重影响研发的进程,有些错误的判断还有可能导致整个项目的失败。因此,分析软件是必不可少的。理想的软件不仅可以按照标准的流程,自动地完成分析过程,还可以允许分析人员根据经验和知识对分析结果进行检查并修正错误的结果。沃特世公司的BiopharmaLynxTM软件就是这样的理想工具,它不仅可以自动地完成蛋白质分子量和肽图的分析,比较不同批次间的样品并确认有无差异,还具有以下特点: 肽图分析覆盖率高 肽图分析可以确证蛋白质分子的一级结构,包括氨基酸序列、突变和修饰、二硫键定位等。由于酶解后的样品中同时存在着蛋白质的完全酶切肽段、不完全酶切肽段、非特异酶切肽段、修饰肽段和杂蛋白肽段,因此肽图是非常复杂的。通过全信息串联质谱技术(MSE),可以同时记录样品中所有的母离子及其碎片离子信息。在全面信息的基础上,BiopharmaLynx软件将可以自动进行保留时间的对齐、强度归一化、痕量杂质分析、序列确证等工作。图1为BiopharmaLynx软件对两种干扰素产品肽图分析的鉴定覆盖率分析结果,及其序列对比界面。 二、BiopharmaLynx具有多种酶切功能 在计算理论肽图时,BiopharmaLynx可以进行多种方式的理论酶切,包括半酶切、多酶联合酶切、非特异性酶切,以及自编辑酶切等。全面满足实验中的各种酶切分析需求。 三、BiopharmaLynx具有多种翻译后修饰可选 在计算理论肽图时,BiopharmaLynx还可以考虑各种翻译后修饰。在内置90种常见修饰可供选择外,分析人员还可自行编辑其需要的特殊修饰方式用于分析。 四、修饰的肽段在不同样品间含量对比 BiopharmaLynx软件可以比较不同样品间某种肽段(包括突变肽段和特定修饰肽段)的含量差异,发现样品间的细微差别,并用直观的方式显示出来。 五、BiopharmaLynx的样品间肽图对比 BiopharmaLynx软件这可以自动地将各个批次样品的肽图与参照样品的肽图进行对比,帮助我们快速而敏锐地发现不同批次的样品间有无细微差别。 六、二硫键的定位 二硫键对于蛋白质高级结构的形成和功能的维持具有重要的作用,二硫键的定位也是蛋白质结构分析的重要方面。但是二硫键的定位一直很耗时且非常具有挑战性的事情,尤其是对于含有多对二硫键的蛋白质,如免疫球蛋白等。沃特世公司的肽图分析完整解决方案通过独特的UPLC/MSE数据采集方式和功能强大的BiopharmaLynx软件,可以快速地自动完成二硫键的定位分析(见图6)。 在生物药领域,BiopharmaLynx软件作为液质数据分析最为专业的软件已经被广泛使用。目前,全球前十大生物药企业都已成为沃特世生物制药解决方案的使用者。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 ### 联系人: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 走访北京蛋白质组研究中心
    21世纪是生命科学的世纪,随着人类基因组计划的完成,人类蛋白组研究成为了生命科学乃至自然科学领域下一步的重大科学命题。在这一背景下,2004年6月30日,由军事医学科学院院长贺福初院士牵头,军事医学科学院、中国科学院、中国医学科学院、清华大学、北京大学、北京生物技术和新医药产业促进中心及江中集团共同发起,组建成立BPRC,并于2005年10月29日正式入驻中关村生命科学园。   2012年7月26日,仪器信息网编辑和我要测工作人员走访了中关村生命科学园内的北京蛋白质组研究中心(Beijing Proteome Research Center以下简称BPRC)。走访得到了BPRC技术部史冬梅部长的热情接待,不但了解了BPRC的一些具体情况,还参观了部分实验室。   据了解,BPRC专注于具有自主知识产权的蛋白质组和功能基因组的研究与开发,经过5年的建设,已经成为国际人类肝脏蛋白质组计划执行总部、蛋白质组学国家重点实验室、全军蛋白质组学重点实验室、蛋白质组学北京市重点实验室、“首都科技条件平台”和“中关村开放实验室”。另外,申报的蛋白质药物国家工程研究中心、国家蛋白质科学基础设施也已获得国家发改委批准,即将启动建设。BPRC建成“产、学、研、用”四维一体的综合基地的目标正在逐步实现中。    BPRC取得的部分资质   BPRC内部办公区   BPRC部分专家简介   BPRC实验室部分仪器:AB SCIEX三重四极杆质谱   BPRC实验室部分仪器:赛默飞三重四极杆质谱   BPRC实验室部分仪器   仪器信息网编辑和史冬梅部长(中)合影   科研项目   BPRC现有蛋白质分离鉴定、翻译后修饰蛋白质组、多肽组、蛋白质相互作用、蛋白质定位、功能蛋白质组、功能基因组、肝脏免疫学、脑/神经蛋白质组、模式生物蛋白质组、抗体工程、蛋白质工程、蛋白质组新技术、生物信息学、网络与信号转导共15个研究室,仅拥有的大型设备总价值就达六、七百万,研究团队200多人,包括1名中科院院士、16名研究员、23名副研究员,还有国际人类蛋白质组组织理事1人、亚太地区人类蛋白质组组织副主席1人、蛋白质组学国际权威刊物Proteomics编辑4人,CNHUPO委员12人。   目前,BPRC承担的各类科研任务共计172项,其中由中心牵头承担的重大项目包括973有4项,863项目4项,国际合作项目4项,国家自然科学基金项目13项,国家自然基金创新群体1项,“艾滋病和病毒性肝炎等重大传染病防治”专项2项,国家重大新药创制和军用特需新药创新专项7项。   在接受任务的同时,BPRC也取得了很多骄人的成绩:多人多次获得国际、国家、军队和北京市的科研奖项,仅2011年,BPRC就有10名科技人员获奖,其中贺福初院士获得由人类蛋白质组组织颁发的“杰出贡献奖”,张令强研究员一人获得了“国家杰出青年科学基金” 、“中国科协求是杰出青年实用工程奖”和“贝时璋青年生物物理学家奖”3个奖项 在国际刊物Nature、Science、Mol Cell Proteomics等发表了多篇文章,平均影响因子达5.7 除此之外,BPRC还获得了40项国家、欧盟专利及软件著作权,并将部分开发的软件放到互联网上,供有需要的人免费使用。   人才培养   人才是科研的关键和未来,BPRC对人才的培养主要分三个方面进行:一、对现有人员的扶持和激励,设立“凤凰”杰出人才奖励基金、“雏鹰计划”、“青苗计划”、“重点实验室青年研究项目”和“绿叶奖”等各类人才基金,鼓励人才大胆创新 二、对生力军的大力培养,除军事研究科学院招收的部分研究生外,BPRC还接受访问学者、留学生和进修生,至今已培养出100余名博士、80余名硕士、20余名博士后,其中2人获得全国百篇优秀博士学问论文 三、面向蛋白质相关研究人员的技术培训,BPRC已举办各类培训班50余期,培训学员近万人次,包括医疗、制药等多个行业的从业人员,对推进中国蛋白质组学领域的研究和应用起到了推动。   在人才的培养的同时,BPRC也不忘交流和互动,先后主办了多次大型学术会议和科研交流活动。一方面鼓励科研人员走出去,参加国外的高端科研会议学习、取经,如2011年9月4-7日,贺福初院士等一行十余人赴瑞士日内瓦参加第十届国际蛋白质组大会 另一方面欢迎国外的专家学者来BPRC进行学术交流,如世界知名制药企业罗氏和默克公司,都曾由全球研发总裁带队,带领公司高层和技术人员到BPRC参观、考察。   对外服务   BPRC充分发挥自身技术平台的人力、技术和设备优势,本着资源共享的宗旨,接受委托研究并对外提供技术服务。资质方面,BPRC参与了国际人类蛋白质组组织(HUPO)组织的全球27家实验室比对评估实验,是首批获得100%正确结果的6家实验室之一,并通过了ISO/IEC17025:2005(CNAS-CL01)实验室认可,有着完善的质量控制体系,是首都科技条件平台和中关村开放实验室成员,可提供蛋白质组学、多肽组学及相关药物结构确认等多项服务。目前为止,服务范围已覆盖全国各省市,为500余家研究院所、高校、医院、食品及生物医药企业提供过技术服务。   另外,BPRC还对外提供一些科研检测试剂盒和毛细管液相色谱填充柱。这些都是BPRC自主研发,平时应用于研究中的一些成熟产品,对于特定实验有着更高的灵敏度和更短的检测时间,并可根据客户需要量身订制,满足客户实际需求。   附录:北京蛋白质组研究中心   http://www.bprc.ac.cn
  • 威斯康星大学李灵军自然通讯最新成果:胰腺蛋白质组的质谱定量分析揭示癌症相关特征
    仪器信息网讯 胰腺是人体最重要的器官之一。它产生胰岛素来调节血糖和帮助消化食物。如果胰腺失控,糖尿病、癌症或其他疾病就会威胁生命。然而,关于胰腺如何使人们保持健康以及器官如何衰竭,还有很多未知之处。数以万计的蛋白质控制着胰腺的工作方式:它如何生长和发育,如何产生消化酶以及如何分泌胰岛素。因此,科学家需要进一步了解蛋白质结构如何随时间变化,以帮助开发针对糖尿病或癌症的治疗方法。  基于此,威斯康星大学麦迪逊分校药学院与化学系的李灵军课题组与医学和公共卫生移植外科医生Jon S Odorico合作开展了追踪从出生前到成年后期胰腺蛋白质组(整套蛋白质)变化的相关研究。研究团队还开展了细胞外基质(extracellular matrix,ECM)的研究和分析,该物质能够指导细胞分化、迁移、形态和功能,对于在实验室细胞培养和器官移植过程中生长和支持胰腺细胞至关重要。但在人类胰腺研究中,目前尚未系统研究过不同发育阶段的ECM蛋白质组。该研究中,科学家们应用了基于质谱的定量蛋白质组学策略,并描述了四个年龄组的全蛋白质组和ECM特异性变化:胎儿(妊娠18-20周),青少年(5- 16岁),青年(21-29岁)和老年(50-61岁)。研究团队鉴定了3523种蛋白质,其中包括185种ECM蛋白质,并对其中的117种进行了定量。课题组检测了胰腺发育和成熟过程中以前位置的蛋白质组和基质组的特征。他们还使用免疫荧光染色观察特异性CEM蛋白质,并研究CEM在胰岛和腺泡间的定位变化。该研究全面的蛋白质组学分析有助于深入了解CEM在人类胰腺发育和成熟过程中所起的关键作用。  成果表明,胰腺在人类整个童年时期都会显著重塑其蛋白质,最终在成年阶段稳定。值得一提的是,与癌症相关的蛋白质之间存在明显的年龄特异性变化,这一发现有助于研究人员加深对胰腺癌的了解。  该成果于2月15日发表在《自然通讯》杂志上,论文题目为“Proteome-wide and matrisome-specific alterations during human pancreas development and maturation”。论文链接:https://www.nature.com/articles/s41467-021-21261-w关于研究团队:威斯康星大学麦迪逊分校 李灵军教授    李灵军教授在神经肽和功能性肽组学研究领域取得了开拓性的成果。她所带领的课题组针对神经生物学中的关键性课题,开发了一系列的基于质谱和微分离技术的研究平台,对由分子、细胞水平认识神经肽的功能以及神经退行性疾病生物标志物的发现作出了突出的贡献。据仪器信息网跟踪报道,李灵军教授曾荣获美国质谱学会颁发的Biemann奖章,是世界质谱领域的最高荣誉之一,授予那些长期在质谱学研究领域做出突出贡献的学者。此外,2016年英国分析科学家网站公布了全球50位最具影响力女性分析科学家名单,李灵军教授也荣誉获选。  在以往的采访中,李教授也曾表示:”我最热衷于开发新型分析工具和策略来解决具有挑战性的生物问题。我们很高兴开发一套用于发现神经肽功能的多功能质谱工具,并使用这些技术来提高我们对大脑工作原理的理解。最近,我们正致力于开发用于定量MS分析和系统生物学中高通量测量的新型化学标签。我也热爱培训和指导研究生和博士后,并帮助他们过渡到成功的职业生涯的这个过程。”课题组官网: https://www.lilabs.org/  团队合照
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 聚能生物与国家蛋白质平台开展广泛合作
    JNBIO(聚能生物)是一家由留学人员创办的高新技术企业,自主创新与欧洲前沿技术相融合,开发生产低温超高压连续流细胞破碎仪,是国家技术创新基金立项扶持的项目。   JNBIO系列低温超高压连续流细胞破碎仪自投入市场以来,积极开展与国家蛋白质科学研究平台的合作。到目前为止,中国科学院生物物理研究所(中国科学院蛋白质科学研究平台)、中国科学院上海应用物理研究所、复旦大学遗传工程研究所等国家重要蛋白质研究中心已采购使用JNBIO(聚能生物)高活性低温超高压连续流细胞破碎仪。   JNBIO低温超高压连续流细胞破碎仪特有的细胞高活性破碎技术,最大限度地保持了蛋白质的空间结构和内部活性基团,为研究蛋白的高级结构,晶体工程提供了先决条件。   人类基因组计划完成之后,蛋白质科学研究成为当代生命科学领域的前沿,是未来生物技术与生物产业发展的重要源泉。全球发达国家政府、研究机构和大学以及相关产业界竞相抢占蛋白质研究的制高点。   2004年5月,中国科学院生物物理研究所率先启动了“中国科学院蛋白质科学研究平台”建设。2008年7月中旬,中国科学院生物物理研究所(中国科学院蛋白质科学研究平台)采购了JNBIO低温超高压细胞破碎仪(JN-3000)。目前,中国科学院生物物理研究所用JNBIO低温超高压细胞破碎仪全面替代了国产和进口的高压细胞破碎仪。   中国科学院上海应用物理研究所的上海光源是一台高性能的中能第三代同步辐射光源,它的英文全名为ShanghaiSynchrotronRadiationfacility,简称SSRF。它是我国迄今为止最大的大科学装置和大科学平台。生命科学和医药学与人类健康生活息息相关,也是同步辐射光得到广泛应用的重要领域。同步辐射X射线衍射方法是当前测定生物大分子结构的最有力手段,是研究生命现象与生物过程的利器。2009年5月26日,JNBIO低温超高压连续流细胞破碎仪(JN-3000PLUS)正式进驻上海光源。   复旦大学遗传工程国家重点实验室是在由谈家桢院士创立的复旦大学遗传学研究所的基础上发展而来的研究实体,是我国最早建立的国家重点实验室之一。1984年经国家计委批准建立,1985年开始运行,同时向国内外开放,1987年通过国家验收。近年来,遗传工程国家重点实验室投入大量经费,采购先进的仪器设备建立蛋白质组学研究平台等。JNBIO低温超高压连续流细胞破碎仪独有的细胞高活性破碎技术和5ml微样品量,受到了遗传所教授们的青睐。日前,JN-3000PLUS微量精密型低温超高压连续流细胞破碎仪已正式投入使用。
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 大会报告:蛋白质组学技术的最新研究进展
    仪器信息网讯,2010年5月15日,蛋白质组数据处理暨全国生物质谱学术交流会”在云南省丽江市召开。会议为期两天,主要讨论了蛋白质组学技术和应用、数据挖掘和生物质谱等方面的现状及其进展。在所有的大会报告中,除一些关于蛋白质组学技术最新研究进展的大会特邀报告外,第一天的专家报告集中讨论了糖蛋白组的最新分析技术与研究进展,第二天的报告集中讨论了蛋白质数据处理技术,包括蛋白质组生物数据库及分析平台的构建、数据统计分析方法的研究等方面。   近年来蛋白质组学发展迅速,其相应的方法学研究也取得了巨大的进步,一系列新技术融入了的蛋白质组学技术当中,极大的促进了这门学科的发展。在本届大会上,中国科学院北京基因组研究所的刘斯奇研究员、复旦大学的张祥民教授、中国科学院大连化学物理研究所张丽华研究员等专家的报告介绍了许多应用到蛋白质组学之中的新技术、新方法,本文作简要概述:   报告题目:基于质谱的线粒体GST蛋白质组定性和定量分析   报告人:中国科学院北京基因组研究所的刘斯奇研究员 刘斯奇研究员   刘斯奇研究员在报告中首次提出了“线粒体GSTs蛋白质组”的概念,系统地研究了属肝线粒体中的GSTs。可采用亲和色谱法及SDS-PAGE富集GST蛋白,使用MALDI Tof/Tof MS 和LC tandem MS/MS鉴别蛋白。研究结果表明,属肝线粒体中存在5种GSTs,分别为GSTA3, GSTM1, GSTP1, GSTK1 以及GSTZ1。   为了对线粒体GSTs的相对丰度进行定量分析,其采用了质谱结合免疫印迹的综合分析方法:利用质谱对GSTs进行定性分析时,根据质谱谱图的多反应监测(MRM)推断GSTs结构 使用重组的GST蛋白作为标准物,建立了蛋白浓缩物的线性回归方程和胰蛋白酶GST多肽的MS/MS强度,同时,通过校准估算出了鼠肝线粒体中的GSTs含量。通过对特定GSTs抗体的强度识别,使用免疫印迹对GSTs进行了定量分析 获得了GST重组蛋白的5种单克隆抗体,将其用于GST浓度校准和免疫印迹强度分析 通过免疫印迹分析获得的定性分析结果基本与MRM数据获得的结果一致。   报告题目:蛋白质水平的色谱分离与生物质谱鉴定新方法研究   报告人:复旦大学张祥民教授 张祥民教授   张祥民教授在报告中表示,蛋白质的分离鉴定有更多困难。一方面,蛋白质分子量大,结构与构型上的变化导致分离效率下降,对色谱填料的孔径、分布与非特异性吸附等因素有更高要求 另一方面,蛋白质鉴定需要先进行酶解以得到质谱鉴定信息。   在报告中,他给出了较好的解决方法,通过对液相色谱分离系统的优化,在实际蛋白质样品考察优化了系统的分离性能,构建了液相色谱分离蛋白质鉴定方法与平台。研制了蛋白水平富集预柱,并将其应用于蛋白质捕集。在离子交换色谱柱和反向色谱优化选择上,实现了蛋白质分析所需的高分辨分离。色谱分离组分点样至靶板上,利用发展的快速酶解技术完成蛋白质酶解,再通过MALDI-TOFTOFMS或LC-LTQMS进行蛋白质鉴定。该方法使得蛋白质的理论分离能力达到5000个以上,蛋白质组分能够得到浓度信息,质谱鉴定可以同时利用肽指纹图谱PMFs信息和串级序列信息,使得蛋白质鉴定的可靠性大为提高。   报告题目:基于离子液体的新型膜蛋白质组预处理及分离鉴定技术   报告人:中国科学院大连化学物理研究所张丽华研究员 张丽华研究员   膜蛋白质存在于细胞内环境、细胞与细胞外环境的界面,对执行细胞内外物质交换、信息转换、细胞识别、代谢调节、免疫应答等功能起着重要作用。深入开展膜蛋白质组学研究对于揭示细胞功能、寻找药物靶点以及研制癌症治疗药物等具有重要意义。然而,由于膜蛋白质具有疏水性强、溶解性差、易沉淀、难酶解、含量低等特点,因此在采用通常用于可溶性蛋白质组分离鉴定的方法对膜蛋白质组进行研究时遇到了很大的挑战。   张丽华研究员在报告中指出,要提高膜蛋白质组的分析能力,必须发展可显著改善膜蛋白质组溶解性,又不影响后续分离鉴定的新方法。她在近期研究工作中,采用离子液体作为膜蛋白质组的增溶剂,并结合纳升二维液相色谱-质谱联用系统,对鼠脑和人肝内质网提取的膜蛋白质进行了分析。结果表明,离子液体不仅可以提高膜蛋白的溶解性,而且不用影响后续酶解过程中酶的活性。此外,在样品进入质谱鉴定前,易于在除盐步骤去除,不会影响质谱鉴定。与其他膜蛋白质组研究中常用的增溶剂相比,离子液体在膜蛋白质组样品预处理中表现出明显的优势。
  • 上海国家蛋白质科学中心:托起生命科学梦
    地处上海市海科路园区的国家蛋白质科学中心上海(以下简称蛋白质中心)并不十分引人瞩目,但这个蛋白质中心大院,却在过去短短两年多的时间里吸引了国内外200多家高校、科研院所和企业。  原来,在这个总面积3.3万平米的建筑里,容纳着蛋白质结构与功能研究的九大系统,其中涵盖了包括先进光束线站、电镜、核磁、质谱、规模化蛋白质制备系统等国内乃至世界最为先进的蛋白质设施。  记者到达蛋白质中心时,中心内正忙得热火朝天。  加速前进的科研服务器  走进蛋白质中心,记者被大堂展板上的信息介绍所吸引,上面清晰地介绍了中心研究人员的成果。事实上,还有很多依托蛋白质中心设施的研究用户成果未进行展示,其中包含诸如施一公、高福、许彦辉等生命科学研究领域人们耳熟能详的名字。  2015年到2016年,清华大学施一公研究团队连续两篇论文登上美国《科学》杂志,引起社会普遍关注,甚至有媒体用“诺奖级成果”来评价施一公的研究。然而,人们没有注意到的是,这两篇文章都与蛋白质中心有紧密关联。  “由设施提供基础支持产生的高端研究成果,从2013年到现在已经70多篇,最近是一个加速的过程。”中科院上海生科院生化与细胞所副所长、蛋白质中心主任雷鸣告诉《中国科学报》记者,蛋白质中心已经成为国内蛋白质基础研究的一个重要依托。  在生命科学领域,蛋白质研究被视作基础中的基础,不仅是基础研究中的前沿方向,还与人民健康紧密关联,并能和实际应用有机结合,是雷鸣口中“比较突出的需要大型投入的研究领域”。  “科学创新方面的努力和设想,需要这样一个基础。”雷鸣说。然而,蛋白质中心这一总投资7.56亿元的“国之利器”,并未获得所有人的认可。从筹建之日起,外界就一直存在不同声音。  相比较物理学等学科,生命科学中的大科学装置并不多见。然而,要窥探生命的奥秘,大科学装置自然有它独到的优势。  事实上,在蛋白质中心未建成前,国内生命科学仪器设备散落在全国各地的实验室,许多研究对设施的需求长期得不到满足,这也令大科学装置的建设显得迫切而紧要。  先进光束线站研究员、蛋白质中心副主任张荣光对此有深刻体会。他告诉记者,蛋白质设施开放运行之初,原本只有一条生物大分子晶体学线站,但全国却有180到200个课题组,只能满足国内相关研究20%~25%的机时需求。  “很多课题组都不得不去日本、美国用同步辐射光源晶体学实验站完成自己的研究。”张荣光回忆道。  自2014年5月面向国内外用户开放至今年6月,蛋白质设施已累计试运行超过18万小时,执行用户课题1300多个。从服务基础科研的角度来说,蛋白质中心已经基本达到了预期的设想。  “一站式”设施集成价值凸显  走进蛋白质中心大楼一层宽敞的实验室,规模化蛋白质制备系统运维主任邓玮向记者展示了自动化程度极高的“机械手臂”是如何在轨道上来回运行,将研究人员从繁重的重复劳动中解放出来,并让蛋白质实验变得高效。  如同眼前这条像工厂里的生产线一般的实验设备,蛋白质中心似乎是一条生命科学研究仪器的“流水线”,让蛋白质研究手段更加多元,也令研究本身更加便捷。  但拨开表面看本质,蛋白质中心绝非一条简单的程式化“流水线”。  今年早些时候,中科院上海生科院生化与细胞所分子生物学国家重点实验室的许琛琦与李伯良研究团队,研究发现了一种肿瘤免疫治疗的新方法,成果发表在《自然》杂志。  蛋白质中心工作人员介绍称,这一成果是经过质谱、核磁等多套蛋白质设施的联合攻关,才获得了喜人的实验结果。“一站式”科研设备的集成价值,在研究人员、实验人员与仪器设备的有机互动中,焕发出了夺目的光彩。  表面看来,蛋白质中心的价值核心似乎在于先进的仪器设备,但记者与蛋白质中心工作人员的沟通中清晰地感受到,“人才”也是他们始终关注的焦点,因为这也是中心集成价值大放异彩的关键所在。  从筹建至今,人才储备与培养都是蛋白质中心工作的重点。  蛋白质中心建设的构想成形之初,上海生命科学研究院生化细胞所挑选了7名优秀人才派往国外学习先进仪器设备应用技术。  到如今蛋白质中心建立并成功对外开放,中心已聘请多位国内外一流专家学者,构建了一支由150多人构成的强大运维、科研团队,在探索科学前沿问题的同时,也在为科研用户提供近乎“保姆式”的科研服务。  以蛋白质中心质谱系统为例,在为高校、科研院所提供科研服务时,研究人员往往要与相关研究课题进行长时间的讨论,依据研究者的需求“定制服务”,设计出最佳的实验方法和路径。  事实上,大部分情况下,这九大系统都需要蛋白质中心的研究人员与用户长时间的沟通协调,并根据设备性能调整实验方法,才能获得理想的实验结果。  也正因这样定制化的服务模式,才最终架起技术与研究间的桥梁,使得蛋白质中心在国内相关研究中的推动作用日趋明显。  创新永不止步  如今,蛋白质中心的运行日趋平稳,但创新的脚步却从未停歇。近期建立的生物大分子小角散射和红外线站,便是最好的证明。  张荣光告诉记者,这两条线站在医学应用、减少蛋白质溶液状态散射数据收集的辐射损伤及低分辨率结构的快速测定等方面具有明显的优势。  作为国内建立的首条相关线站,张荣光和他的同事在吸收新技术后,也在通过举办学习班、论坛,让国内更多科研人员认识这些世界领先技术,并期望未来相关技术能在他们的研究中得到应用。  除了紧跟世界先进技术步伐之外,自主设备研发也是蛋白质中心追求卓越的策略。  蛋白质中心自主设计并与国外公司合作搭建了一条“高通量蛋白质生产线”,但这并非终点。在这条“生产线”隔壁实验室里,一条依据进口设备系统为原型,经改进、创新后自主搭建的一台小型自动化设备,已具雏形。  这意味着,成本低廉却能实现中等通量实验效率的蛋白质设备,将从蛋白质中心工作人员的手中,走进国内外大大小小的实验室。“我们打算经过进一步改善,将它推广,为国内相关研究人员提供支付得起的研究设备。”邓玮说。  技术上的创新,也要配合相应管理上的创新。如今,蛋白质设施的机时逐步变得“供不应求”,如何把握设备高效利用与向前沿科学问题倾斜之间的平衡,成了蛋白质中心关注点所在。  中心管理人员告诉记者,他们会通过已构建的第三方用户委员会遴选实验课题,让蛋白质中心这一国之利器得到充分利用的同时,也能有的放矢,“直指以往无法解决的科学难题”。  所有人努力的目的只有一个——服务国内基础科研。对他们而言,这是一份需始终坚守的“初心”,他们也已用漂亮的成绩单,交出了一份令人满意的科研服务答卷。  下一步,在做好科研服务的同时,中心也将在寻求设施价值最大化的途径上有所突破。  记者在采访中了解到,今年9月,蛋白质中心计划召开一次大规模的用户大会,向上海及周边地区医院、企业介绍蛋白质设施及其可以承担的工作,吸引医院和企业利用蛋白质设施来服务自己的工作。  正如雷鸣所说,“转化,是将来我们要做的事情之一。”只不过在他看来,要真正做好转化并非一件容易的事情,需要从国家体制机制、科学家自身,到风险投资集群等许多层面发生深层次的转变。  未来,我们也期待,在国民经济发展的贡献中,能够更多地看到蛋白质中心这一大科学装置的身影。  记者手记:  为科学而坚守  没有催人奋进的口号标语,没有震撼人心的标志性装备,甚至人员配备在上海激烈的人才竞争中也显得捉襟见肘,走进国家蛋白质科学中心上海,记者时刻被一种低调而踏实的氛围所环绕。  高度集成的仪器设备自然是蛋白质中心宝贵的财富,但经过一天的走访,记者发现,蛋白质中心不乏放弃国外优厚待遇归国的学科带头人,不乏24小时值班、超负荷工作的年轻研究人员,不乏为了科学信念而坚持不懈的技术人员,维持设备运行并让设备得到充分利用的“人才”也是蛋白质中心最引以为傲的宝藏。  作为国际一流蛋白质科学研究支撑体系,也作为全球生命科学领域以各种大型科学仪器和先进技术集成为核心的首个综合性大科学装置,它承载着国内相关领域基础科学研究的殷切期望,也终将在未来为国民经济发展和百姓健康发挥更直接、更强劲的作用。  但正是因为创建了一支对科学研究有着最单纯追求的科研团队,蛋白质中心才将一个个孤立的仪器设备串联成一个高效的蛋白质研究综合体系。而只有当这个庞大系统的“大脑”——而未来随着“人才”得到越来越多的重视,随着评价体系这个指挥棒指引更多有科学追求的人才走进并融入这个体系,蛋白质中心也才能进一步加速“从有到好”的进程,实现更大的飞跃。
  • 中国蛋白质组学世界领先
    2003年12月15日,由中国科学院院士贺福初牵头的“人类肝脏蛋白质计划”(HLPP)启动,这是我国领导的第一项重大国际合作计划,也是第一个人类组织/器官的蛋白质组计划。 北京蛋白质组研究中心主任、蛋白质组学国家重点实验室副主任秦钧告诉《中国科学报》记者,十余年来,HLPP经历了三代更迭,从第一代版本的肝脏总蛋白质组,到第二代的肝脏细胞器蛋白质组,以及到刚刚完成的第三代肝脏不同细胞亚群的蛋白质组解析。HLPP的肝脏蛋白质组研究正在并将继续作为“中国人类蛋白质组计划”(CNHPP)的先导,为CNHPP的发展探明道路。 事实上,通过HLPP研究十余年的努力,中国蛋白质组研究团队已向世界交上了一份漂亮的答卷。 据记者了解,中国科学家成功构建了迄今国际上质量最高、规模最大的人类第一个器官蛋白质组的表达谱、修饰谱、连锁图及其综合数据库;首次实现人类组织与器官转录组和蛋白质组的全面对接;在炎症诱发肿瘤等方面,发现一批针对肝脏疾病、恶性肿瘤等重大疾病的潜在药靶、蛋白质药物和生物标志物。 2008年,张学敏课题组首次发现炎症和免疫的新型调控分子CUEDC2,可作为肿瘤耐药的新标志物,从而为克服癌细胞耐药提供了原创性的药物新靶点和治疗新思路。2010年,周钢桥课题组“逮到”肝癌的易感基因,为肝癌的风险预测和早期预警提供了重要理论依据和生物标记̷̷上述几项成果均发表于国际顶级的《科学》《自然》系列杂志。 秦钧认为,蛋白质组学研究是我国生命科学中几个能够始终跻身世界前沿的科学领域之一。 而现在,世界蛋白质组学领域内的新一轮科技竞赛已开始。中国科学院院士、中国科学院大连化学物理研究所研究员张玉奎表示,虽然中国在蛋白质组学领域走在了世界前列,但国外有些团队如今正快马加鞭,中国科学家必须加快步伐,不能丧失已经取得的优势。 这也是我国开展CNHPP研究的一个重要原因。“这是真正的原始创新,是中国能够引领世界科技发展的重要领域之一。”贺福初说。
  • 复旦大学杨芃原团队等创建精准N糖蛋白质组学分析方法
    p   复旦大学化学系教授杨芃原团队、中科院计算技术研究所研究员贺思敏团队、国家蛋白质科学中心(上海)研究员黄超兰团队合作研究,创建了基于质谱的高通量糖基化肽段分析方法pGlyco2.0,为精准N糖蛋白质组学提供了新技术。今天,相关研究成果以《pGlyco2.0:基于综合质控和一步质谱法的精准N糖蛋白质组学糖肽分析方法》为题发表于《自然· 通讯》。 /p p   据悉,杨芃原、贺思敏和黄超兰为共同通讯作者。杨芃原为该文的Lead Contact。 /p p   糖基化是最复杂的蛋白后修饰之一。与其他蛋白后修饰相比,糖基化不但会产生宏观不均一性(每个蛋白上可能有多个后修饰位点),更会产生海量的微观不均一性(每个位点上可能有几十甚至上百种不同的后修饰基团)。此外,糖链本身的离子化效率很低。这些因素的结合使得糖基化分析的通量和质量远低于蛋白质组学的常规分析水平。 /p p   这项研究通过深入研究和测试质谱条件,开发基于阶梯能量的一步质谱采集法,提高了糖肽鉴定的通量和开发具有自主产权的pGlyco2.0糖肽检索引擎,从糖链、肽段、糖肽三个层面对糖肽数据库检索进行精确质控,从而大幅提升了N糖蛋白质组学分析的通量和质量。 /p p   同时,研究人员首次将重标元素应用于糖肽鉴定准确度分析,为该领域的质控分析提供了新的方法及标准。 /p p   专家表示,这项研究报道了目前最大的糖基化数据集:在1%的假阳性率下,在小鼠的五个脏器种鉴定到了超过一万条N糖肽。 /p p /p
  • 清华大学林金明教授:微流控探针诱导化学质膜穿孔用于单细胞蛋白质递送
    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。然而,质膜是阻止外源分子进入细胞的生物屏障。因此,如何在保持细胞活力的同时高效地将外源分子递送到细胞中是细胞生物学领域的一个重要课题。为了克服现有大规模细胞内递送方法的弱点,例如细胞活性和递送效率不一致,主要基于膜破坏介导机制的微技术已成为一种有前景的解决方案。利用化学质膜穿孔进行单细胞递送的尚未得到广泛研究。2024年4月26日,清华大学化学系林金明教授团队在《ACS Applied Materials & Interfaces》杂志在线发表了题为“Chemical Plasma Membrane Perforation Generated by a Microfluidic Probe for Single-Cell Intracellular Protein Delivery”的工作。该研究使用微流控探针将含有毛地黄皂苷和货物的溶液精确地作用到单细胞上。毛地黄皂苷与质膜中的胆固醇结合诱导质膜穿孔,货物通过孔进入细胞。碘化丙啶 (0.67 kDa) 和 FITC-葡聚糖 (10、40 和 150 kDa) 可以在3分钟内成功引入单细胞,同时保持细胞活力。两种蛋白质(细胞色素C和亲环素A)被递送进入细胞,并观察到它们在细胞中得生理功能。图1. 微流控探针诱导单细胞化学质膜穿孔首先,利用Comsol Multiphysics软件对微流控探针形成的微区域进行数值模拟。使用荧光素(扩散系数=500 μm2 /s)来指示溶质扩散。结果表明,注入的溶液可以被完全吸出,并且溶质被限制在液滴状微区域内而不会扩散。微区内溶质浓度分布均匀。计算了基质上的剪切应力,低剪切应力不会对细胞造成额外的机械损伤。实验在与模拟相同的条件下进行,使用荧光素显示微流控探针产生的微区域,与浓度分布模拟结果一致。溶液的连续流动使微区中毛地黄皂苷和货物的浓度几乎恒定,有利于维持递送过程的连续性和稳定性。图2. 流体的数值模拟通过微流控探针进行碘化丙啶(PI)的细胞内递送来验证该方法的可行性以及优化递送条件。尝试使用 20-100 μg/mL 毛地黄皂苷将 PI 递送至U87细胞。随着毛地黄皂苷浓度的增加,ts(PI开始进入时间)和tm(PI进入速度最大时间)逐渐减少,表明细胞穿孔加速。当毛地黄皂苷浓度为60 μg/mL时,ts约为20 s,1 min内即可观察到清晰的荧光。此外,还尝试了不同的PI浓度进行细胞内递送,较高的PI浓度也使得PI能够更快地进入细胞。还测试了流速对递送结果的影响。注入流量保持2 μL/min,抽出流量在6~14 μL/min之间调整。当抽吸流速大于8 μL/min时,进入细胞的PI量随着流速的增长而显着增加。图3. 毛地黄皂苷浓度、PI浓度和流速对细胞内递送的影响为了证明该方法的效率和通用性,使用该方法将PI递送至U87、HUVEC和A549细胞。当递送时间为20秒时,三种类型的细胞几乎不发出荧光。随着递送时间逐渐增加,细胞的相对荧光强度显着增加,递送处理50 s后观察到强烈的红色荧光。由于洋地黄皂苷的作用,质膜逐渐透化,PI通过质膜上形成的孔继续进入细胞。还检查了该方法递送大分子的能力,使用不同分子量(10、40和150 kDa)的 FITC-葡聚糖作为货物。FITC-葡聚糖可以在3min内进入细胞,并且FITC-葡聚糖进入的量随着递送时间的增加而增加。图4. PI和FITC-葡聚糖递送的结果在验证了这种方法用于单细胞胞内递送的可行性后,作者尝试了细胞内蛋白质递送。Cyt C ( Mw = 13 kDa) 是线粒体中的一种蛋白质,可将电子转移到呼吸链以维持ATP的产生。当cyt C释放到细胞质中时,它会引发细胞凋亡。由于外源cyt C在正常情况下不能进入细胞,利用微流控探针将cyt C递送至A549中作为抗肿瘤药物以诱导细胞凋亡。对照组和仅用毛地黄皂苷或cyt C处理的细胞之间未观察到caspase-3水平和Hoechst 33342染色结果的显着差异。毛地黄皂苷诱导的质膜穿孔不会引起细胞凋亡。仅用cyt C处理的细胞中caspase-3的水平也没有增加,表明正常情况下cyt C不能穿过质膜进入细胞激活凋亡途径。然而,在进行毛地黄皂苷介导的cyt C递送的细胞中,caspase-3水平显著增加,蓝色荧光显著增强。细胞形态发生明显变化,细胞体积缩小,并形成凋亡小体。这些结果表明,递送的cyt C成功诱导细胞凋亡,并且外源蛋白可以通过微流控探针有效地引入细胞内并发挥作用。图5. Cyt C被递送至A549以诱导细胞凋亡为了进一步探索这种方法在细胞研究中的潜力,作者利用它来研究肿瘤耐药性。CypA (M w = 18 kDa) 是一种广泛存在的细胞内蛋白质,可充当抗氧化剂。最近有报道称CypA通过重塑细胞氧化状态介导结直肠癌耐药。BCNU是一种常用的抗肿瘤药物,其诱导细胞毒性的机制之一是谷胱甘肽还原酶的抑制导致ROS的积累。利用微流控探针将CypA递送到U87中,研究CypA对胶质瘤耐药性的影响。与对照组相比,未经CypA递送的细胞经BCNU处理1小时后ROS水平显着升高,并且细胞形态发生改变。对于递送CypA的细胞,ROS含量显着低于未递送细胞,并且细胞保持正常形态。结果表明,递送的CypA在细胞中具有抗氧化作用,这可能增强U87对BCNU的耐药性。抑制CypA表达可能是治疗神经胶质瘤的潜在方法。图6. CypA对胶质瘤耐药性的影响总结作者开发了一种基于开放式微流控探针的方法,以方便高效地实现单细胞递送。该方法通过使用化学试剂对单个细胞进行质膜穿孔,将最大分子量为150 kDa 的外源货物递送到细胞中。与载体介导或场辅助递送方法相比,该方法不需要对货物进行额外处理,无需物理场辅助的温和递送条件也避免了对货物和细胞的额外损伤。作者展示了使用微流控探针进行cyt C和CypA的细胞内递送,证明了该方法能够研究外源蛋白质对细胞生命活动的影响。未来,各种货物(肽、蛋白质、mRNA、DNA、质粒、细胞器等)可以通过这种方法导入细胞内,调节细胞的生理功能和命运。而且该方法不需要昂贵的设备,操作简单,有望成为单细胞递送的一种理想方法。清华大学化学系林金明教授为该论文的通讯作者,清华大学化学系2022级博士生宋扬为本论文的第一作者。该研究受到国家重点研发计划(No.2022YFC3400700)和国家自然科学基金(No.22034005)的支持。关于林金明教授工学博士,分析化学专业。1984年福州大学毕业,1992年在日本昭和大学国际交流基金的资助下前往该大学药学部从事访问研究。1994年获得日本政府奖学金转入东京都立大学攻读博士学位,1997年3月获得工学博士学位,同年留校任教,2000年入选中国科学院“百人计划”,受聘中科院生态环境研究中心研究员、博士生导师;2001年获得国家杰出青年科学基金,2002年3月底回国工作,2004年入选清华大学“百名人才引进计划”,受聘清华大学化学系教授、博士生导师。2008年受聘教育部长江学者特聘教授,2014年入选英国皇家化学会会士。目前主要从事微流控芯片质谱联用细胞分析、化学发光/荧光免疫分析、复杂样品前处理分析、空气负离子检测与健康评估等研究。已培养博士研究生43名(含联合培养,其中留学生2名)、硕士研究生28名、博士后11名(其中留学生3名)、访问学者10名(其中外国访问学者1名)。
  • 中国科学家首获国际蛋白质学会青年科学家奖
    因在病原菌和宿主相互作用分子机制研究方面取得一系列原创性成果,北京生命科学研究所高级研究员、中国生物化学与分子生物学会蛋白质专业委员会委员邵峰博士日前获得了蛋白质学会颁发的青年科学家奖。 北京生命科学研究所高级研究员 中国生物化学与分子生物学会蛋白质专业委员会委员邵峰博士   邵峰通过研究致病细菌如何通过调节宿主细胞的多层信号通路而逃避其免疫反应的机理,获得了几个关键的科学发现。比如,发现了导致Rho GTP酶从宿主细胞膜上脱离的一个半胱氨酸蛋白水解酶家族,以及几个影响泛素信号转导的细菌因子等。基于这些重要科学发现,蛋白质学会决定将2013年的青年科学家奖授予邵峰。   蛋白质学会于1985年成立,致力于推动国际蛋白质科学的研究和发展,是生命科学研究领域的权威国际学术组织之一。国际蛋白质学会在1989年开始设立青年科学家奖(此前名为The Irving Sigal Young Investigator Award),每年颁奖给一位处于独立科研生涯早期已在蛋白质研究领域作出重要贡献的科学家。邵峰博士是首位获得此项殊荣的中国本土科学家,这反映了中国在蛋白质科学领域日趋上升的国际影响力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制