当前位置: 仪器信息网 > 行业主题 > >

甘露聚糖肽对照品

仪器信息网甘露聚糖肽对照品专题为您提供2024年最新甘露聚糖肽对照品价格报价、厂家品牌的相关信息, 包括甘露聚糖肽对照品参数、型号等,不管是国产,还是进口品牌的甘露聚糖肽对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甘露聚糖肽对照品相关的耗材配件、试剂标物,还有甘露聚糖肽对照品相关的最新资讯、资料,以及甘露聚糖肽对照品相关的解决方案。

甘露聚糖肽对照品相关的资讯

  • 中关村量子生物农业产业技术创新战略联盟发布《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》 (征求意见稿)
    各有关单位、相关专家:由北京农学院、北京中农弘科生物技术有限公司、河北弘科荣达生物技术有限公司、安琪酵母股份有限公司、安徽东方新新生物技术有限公司、北京大北农科技集团股份有限公司、中国农业大学、铁骑力士食品有限责任公司共同起草的团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》已完成征求意见稿。根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的有关要求,现公开广泛征求意见。请各有关单位和专家认真审阅团体标准《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见稿及编制说明,并于2023年9月25日前将《征求意见表》反馈给联系人。同时欢迎与该项团体标准有关的高等院校、科研机构、相关企业、行业从业者等加入本标准的研制工作,若有意参与该项团体标准研制工作请与中关村量子生物农业联盟联系。联系人:刘运平联系方式:15011406045电子邮箱:uabi2007@163.com 中关村量子生物农业产业技术创新战略联盟2023年8月25日关于征求《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)意见的通知.pdf1.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿).pdf2.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》(征求意见稿)编制说明.pdf3.团体标准-《酿酒酵母培养物中甘露聚糖的测定 反相高效液相色谱法》征求意见表.docx
  • MALDImini-1数字离子阱质谱仪糖肽分析
    聚糖是蛋白质的一种翻译后修饰产物,是一类拥有高结构异质性的分子,由葡萄糖、甘露糖和其他单糖复合键形成。已知此类复杂结构与蛋白质调节功能相关,且可根据不同疾病和其他因素,产生各种不同现象。其中包括蛋白质主链出现异常聚糖结构,并且可能在认为应该发生此类键合的位点却不存在聚糖键。关于复杂聚糖结构和聚糖与蛋白质结合位点的信息并非直接编码于基因中,而是在蛋白质生物合成过程中起效的大量聚糖转移酶发生反应时产生的。因此,必须对目标糖蛋白实施直接分析,进而了解糖蛋白上聚糖的结构与结合位点。 从抗体中提取的糖肽组分质谱图 糖肽的MS/MS质谱图(前体离子m/z 2796.2) 糖肽的MS3质谱结果 顶部:肽主链(前体离子m/z 1189.7)底部:包含根GlcNAc部分结构的肽主链(前体离子m/z 1272.7) 糖肽结构预测 MALDImini-1基质辅助激光解吸/电离数字离子阱质谱 MALDImini-1数字离子阱(DIT)技术是岛津的原创技术,紧凑迷你的体积,即可实现MS多级的检测。宽范围的分子量范围提供更多新可能,应用范围广泛:糖肽分析、抗体化学修饰位点、未知生物分子结构分析,蛋白质、多肽、翻译后修饰肽、脂质等。
  • 中关村量子生物农业联盟批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准
    各会员及相关单位:根据《中关村量子生物农业产业技术创新战略联盟团体标准管理办法》的规定,现批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》为中关村量子生物农业产业技术创新战略联盟团体标准,编号为T/QBAA 001—2023,本标准于2024年1月1日起实施,现予以公告。中关村量子生物农业产业技术创新战略联盟2023年12月31日关于批准发布《酿酒酵母培养物中甘露聚糖含量的测定 高效液相色谱法》团体标准的公告.pdf
  • 沃特世和PREMIER Biosoft合作推广多聚糖数据分析软件
    强强联手应对生物制药分析的苛刻要求 盐湖城, 犹他州 - 2010年5月24日 沃特世公司(WAT:NYSE)今天宣布已经与PREMIER Biosoft国际公司(帕洛阿尔托,加州)达成协议:双方携手推广该公司的SimGlycan® 软件以及沃特世质谱分析方案,用于多聚糖和糖肽分析。根据协议,沃特世将继续销售和支持其多聚糖质谱分析方案,而PREMIER Biosoft公司则将其软件卖给将使用沃特世SYNAPTTM和XEVOTM质谱平台进行多聚糖和糖肽分析的客户。 通过利用PREMIER Biosoft的SimGlycan数据分析软件来扩展沃特世分离科学产品、质谱仪和超高效液相(UPLC® )色谱柱方案,可以帮助生物制药企业获取生物药物关键信息,这些信息对于了解该药物的稳定性和安全性至关重要。 糖基化的重要性引起了FDA法规的关注和监管 多聚糖是随蛋白质翻译后连接在生物药物如蛋白质、多肽或单克隆抗体上的支链多聚糖分子。细胞中多聚糖加成和成熟反应的最终结果是不均匀的生物药物修饰,而不同的糖基化形式可对生物药物的有效性和安全性产生不同的影响。因此确定生物药物的糖基化位点和多聚糖的糖型及数量对于评价药物的有效性和安全性是必须的,由于存在各种不同的复杂多糖结构,对分析技术提出了很高的要求。另一方面,糖基化的一致性与否通常被作为一个灵敏度很高的标志,以此来判断制药公司是否对生物药物生产过程进行了有效的控制。为此,美国食品药品监督管理局FDA和其它法规机构也提出了相应的指导原则,要求对蛋白质药物糖基化进行更为严格的控制,这将使生物制药行业针对分析技术进行更大的投入,以便更好地分析和了解复杂的生物治疗药物。 关于沃特世的UPLC多聚糖分析方案 沃特世UPLC多聚糖分析方案由ACQUITY UPLC BEH多聚糖分析专用色谱柱配合带荧光检测器的ACQUITY UPLC® 系统组成,用于分析2-氨基苯甲酰胺(2-AB)或其它荧光试剂标记的生物药物经酶处理后得到的多聚糖混合物。UPLC多聚糖分析方案提供比HPLC方案更好的分析结果,具有重现性好、分离度高、灵敏度高且分析速度快的特点,能够帮助实验室分析检测多聚糖的同分异构体(质量数相同、但保留时间不同),进行不同种类多聚糖如高甘露糖、中性以及唾液酸化的多聚糖分析,并同时对相对丰度很低的多聚糖进行分析(相对于其它多聚糖来讲)。 沃特世UPLC多聚糖分析方案配合沃特世质谱仪器使用可以对多聚糖结构进行确证。作为MS/MS数据分析的工具,SimGlycan软件可预测蛋白质分子上的多聚糖结构、对其进行评分并生成一个与得到的质谱图信息最接近的可能的多聚糖列表。SimGlycan数据库是一个巨大的包含8,553种多聚糖信息的关系型数据库,并持续不断地更新其它新发表的多聚糖信息,可支持糖肽和多聚糖分析。 关于PREMIER Biosoft国际公司(www.premierbiosoft.com ) 成立于1994年,由计算机科学家和生物学家领导,专注于制造用于生命科学研究的最尖端的直观软件。该公司的目标是研究生命科学中最新的创新型技术并将其转化为软件产品以辅助研究。 关于沃特世公司(www.waters.com ) 50年来,沃特世公司(NYSE:WAT)通过提供实用且可持续的创新,实现了全球医疗保健、环境管控、食品安全、水质监测等领域的显著进步,为基于实验室的许多机构创造了商业价值。 沃特世的技术突破和实验室解决方案开创了分离科学、实验室信息管理、质谱技术和热分析的相互组合,为客户提供了一个持久成功的平台。 沃特世公司2009年的收入达15亿美元,员工人数达5,200人;公司正在帮助全球客户推进科研进程,并为其提供绝佳的操作体验。
  • 中关村量子生物农业产业技术创新战略联盟立项《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准
    各有关单位:根据国家标准化管理委员会、民政部关于印发《团体标准管理规定》(国标委联[2019]1号)的规定和《中关村量子生物农业产业技术创新战略联盟团体标准管理办法(试行)》的有关要求,由北京农学院牵头申报的《反相高效液相色谱法测定酿酒酵母培养物中甘露聚糖含量》团体标准经联盟标准化工作委员会及相关专家评审,符合立项条件,现批准立项。请各起草单位按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定和要求,严把质量关,加强组织协调,增强本标准的适用性和有效性,确保标准高质量,按期完成标准编制工作。同时欢迎与本标准有关的高校、科研机构、相关企业、使用单位等加入本批标准的起草制定工作。有意参与标准起草制定工作的请与联盟秘书处联系。联系人:刘运平,电话:15011406045电子邮箱 :uabi2007@163.com通讯地址:北京市海淀区苏家坨镇翠湖南路澄湾街19号院。中关村量子生物农业产业技术创新战略联盟2023年04月26日
  • GlycoSLASH:用谱聚类和谱库搜索从多个相关的LC-MS/MS数据集同时鉴定糖肽
    大家好,本周给大家分享一篇发表在Journal of Proteome Research上的文章,GlycoSLASH: Concurrent Glycopeptide Identification from Multiple Related LC-MS/MS Data Sets by Using Spectral Clustering and Library Searching[1],本文的通讯作者是来自美国印第安纳大学的Haixu Tang教授。  目前,对从疾病患者样本中获得的大规模糖蛋白组数据进行糖肽鉴定仍有较大难度。现有的算法采用了从少量聚糖和糖肽的注释MS/MS谱中得出的经验性和针对性的评分方案,它们也许并不能很好地推广到其他糖肽的谱图。其次,估算糖肽鉴定中的错误发现率(FDR)的方法尚未得到系统验证,有时可能会高估鉴定结果中的FDR。此外,大规模的人类糖蛋白组学实验可以生成数十到数百个个体疾病或对照样品的数据集,通常包含来自这些样品中不同丰度的相同聚糖/糖肽的许多谱图,然而在这些基于队列的相关研究中,缺乏能够利用冗余信息来改进和加快糖肽识别的算法。本文提出了一种名为GlycoSLASH的新型并行方法,通过谱聚类和谱库搜索在多个相关糖蛋白组学数据集中进行糖肽鉴定,利用相关样本中共享的冗余糖肽来改善鉴定结果。  图1. GlycoSLASH的工作流程:使用谱库搜索并发糖肽鉴定  GlycoSLASH工作流程如图1所示。首先,使用msCRUSH算法对输入数据集中的所有MS/MS谱进行聚类,并为每个聚类生成共识谱。根据置信度优先的标准,排除相对模糊的糖肽鉴定(GSM)后,可以发现,谱聚类减少了糖肽的错误识别,从而在多个样品中产生一致的糖肽识别结果。随后将从标记为糖肽或多肽的聚类中获得的共识谱整合到谱库中。最后,使用谱库搜索算法msSLASH对所有输入谱库中的MS/MS谱进行糖肽鉴定,与糖肽谱库中的共识谱一样具有大于阈值的余弦相似度的MS/MS谱则被识别为标记的糖肽。具有相似阈值的谱库搜索结果的FDR可以通过同时进行的多肽鉴定结果来估计:如果MS/MS谱被数据库搜索算法鉴定为未修饰的肽,但与注释为糖肽的共识谱具有大于阈值的相似度,则认为是错误鉴定。  作者用了两种数据集来评估GlycoSLASH的性能:数据集I研究了丙型肝炎病毒(HCV)相关肝硬化和早期肝细胞癌(HCC)患者血液样本中触珠蛋白的位点特异性N -糖基化 数据集II利用相同的实验方案研究肝硬化、早期和晚期HCC合并非酒精性脂肪性肝炎患者的触珠蛋白中位点特异性N-糖基化。首先使用数据集I的MS/MS谱建立了一个糖肽谱库,然后通过该谱库对数据集I和II进行搜索来鉴定糖肽。由于数据集I和II是使用相同的实验方案从人血清中获得的,由此可以测试从一个数据集建立的谱库是否足以从相关数据集进行糖肽鉴定。  表1. 基于数据集I聚类构建的谱库    图2. 一个共识谱的例子,与识别为K.M[+15.99492]VSHHN[+1622.58161]LTTTGATLINE.Q的单个谱进行比较。该聚糖是HexNAc(4)Hex(5)。作者利用具有+2至+5电荷的质谱簇的共识谱构建了一个谱库,这些质谱簇被注释为无修饰的肽或糖肽。该谱库包括1215个代表2+至5+电荷簇的质谱(表1),其中454个被注释为糖肽。图2展示了一对共识谱和单个谱的注释示例。此外,作者利用MASCOT和Byonic的鉴定结果对质谱簇的纯度进行了检测。在这里,纯度是根据参考文献msCRUSH中描述的公式计算的,其中被Byonic识别为糖肽的簇中的质谱和被MASCOT识别为未修饰肽的簇中的质谱被认为是不同的。纯度表示簇中可能被错误识别的质谱的平均百分比 因此,在构建共识谱之前对这些GSM进行了过滤。图3显示了不同相似度截断值下每个质谱簇的纯度值。例如,当相似度截断值为0.6时,3+电荷的聚类纯度为0.97,4 +电荷的聚类纯度为0.85,当相似截断值提高到0.8时,聚类纯度基本保持不变。  图3. 每个电荷具有不同相似度截断值的质谱簇纯度。y轴表示纯度,x轴表示用于谱聚类的相似度截断值。  将构建的谱库用于数据集I和II中每个样品的糖肽鉴定。被查询的MS/MS谱根据谱库中(在高于截断值的基础上)相似度最高的共识谱的注释来鉴定。表2显示了数据集I中不同电荷的MS/MS谱的鉴定。GlycoSLASH在3+和4+电荷的MS/MS谱中分别将3431和3085个谱图鉴定为糖肽。相比之下,Byonic鉴定了1605个3+电荷的糖肽,其中1517个与GlycoSLASH鉴定的糖肽相同。  表2 GlycoSLASH在数据集I上鉴定多肽和糖肽  通过比较GlycoSLASH(使用相同的相似度截断值0.6)和MASCOT对未修饰肽的鉴定结果来估计谱库搜索的FDR,对于电荷2+的二级谱,MASCOT识别出6862个未修饰的肽,其中只有32个(0.05%)与GlycoSLASH的识别结果不同。在电荷为 3+ 和 4+ 的情况下,两者鉴定的所有未修饰肽的结果相同。如果报告的谱库与查询谱之间的相似度大于截断值(0.6),并认为MASCOT鉴定结果全部正确,那么鉴定到不同肽的比例远低于1%。基于此,可以认为在截断值0.6时谱库搜索的FDR远低于1%。  通过对从数据集I构建的谱库搜索来识别数据集II中的糖肽,GlycoSLASH的鉴定结果如表3所示。通过谱库检索,共鉴定出72,784个多肽,其中32.3%为糖肽,共鉴定出270个独特的糖肽。这些结果和识别率与数据集I的结果具有可比性。  表3 GlycoSLASH在数据集II上鉴定多肽和糖肽  作者在本研究中证明了从一个数据集建立的谱库足以从相关数据集中识别糖肽。这项工作着重分析了免疫纯化的糖蛋白中的N糖肽,然而,谱库搜索方法可以扩展到复杂样品的一般糖蛋白组学研究,只要能够获得来自相关样品的多个糖蛋白组学数据集。利用这样一个全面的文库进行谱库搜索,将进一步提高糖蛋白组学数据中糖肽的鉴定。  撰稿:夏淑君  编辑:李惠琳  文章引用:GlycoSLASH: Concurrent Glycopeptide Identification from Multiple Related LC-MS/MS Data Sets by Using Spectral Clustering and Library Searching  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Sujun Li, Jianhui Zhu, David M. Lubman, He Zhou, and Haixu Tang. Journal of Proteome Research 2023 22 (5), 1501-1509
  • 左旋葡聚糖定位PM2.5来源助力大气新规
    近日,生态环境部发布《关于征求4项大气颗粒物源解析标准意见》。其中:左旋葡聚糖类物质被正式列入大气颗粒物重要监测指标成分之一。左旋葡聚糖类物质是什么?又为什么可以监测大气颗粒物呢? 这一切要从“生物质燃烧”说起̷生物质燃烧,主要指森林火灾或者秸秆焚烧等,特别在秋冬季节,生物质燃烧在中国北方区域成为雾霾的主要原因。各地政府相继启动了禁烧令,但是偷烧秸秆的情况仍屡见不鲜。明确的来源解析可以为追踪违法者提供支持。 生物质燃烧的过程会同时排放左旋葡聚糖(1,6-脱水-β-D-吡喃葡萄糖)及其立体异构体甘露聚糖、半乳聚糖,因排放量大且在大气环境中稳定存在,被视为生物质燃烧的特征指示物质,通过计算聚糖物质的组成比例,还可以判断出具体的燃烧木材种类。 这一特性可以用于分析大气颗粒物中不同生物质燃烧源的类型和所占比例。通过计算左旋葡聚糖与有机碳(OC)的相互关系,还可以识别生物质燃烧的远距离输送,因此,该3种聚糖类物质是识别污染源和利用受体模型进行源解析中的重要指示物,对其实现快速、准确定量具有现实意义。 究竟如何快速、准确地测定左旋葡聚糖类物质呢? 赛默飞提供大气颗粒物中左旋葡聚糖及其异构体最全解决方案 1、离子色谱法(IC)《环境空气和废气 颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 离子色谱法(试行)》采用高效阴离子交换色谱-脉冲安培检测法测定大气颗粒物中糖和糖醇的解决方案,无需繁琐的样品前处理和衍生化反应,操作简单,直接进样,灵敏度高可以达到μg/L 级别。大气颗粒物中的糖类物质分析 Dionex ICS-6000 HPIC作为一款顶级离子色谱系统,专为需要扩展离子分析领域的用户而设计,满足日常分析及研究人员对仪器操作便利性、耐用性和快速分析的性能要求。 Dionex ICS-6000 HPIC 一款真正模块化、配置灵活性极高的高性能色谱系统,强大的系统设计可在高达 5000 psi 的压力下运行,并获得一致可靠的结果。其特点如下:● 模块化设计,可灵活选配单双系统,满足不断发展的分析需求● 平板交互界面,PEEK™ 材质的Viper 接头,良好人机交互与易用性● 自动追踪 IC 耗材的使用情况和性能,最大化工作效率● 无试剂离子色谱–淋洗液生成(RFIC-EG™ )技术自动制备淋洗液● HPAE-PAD 可以分析从单糖到低聚糖的碳水化合物 2、气相色谱-质谱法(GC-MS) 此次发布的《环境空气和废气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖的测定 衍生化-气相色谱-质谱法(征求意见稿)》以及中国环境监测总站发布的《环境空气颗粒物源解析监测技术方法指南(试行)》中,通过检测左旋葡聚糖、甘露聚糖和半乳聚糖等化合物含量,来确认污染物的来源,以期更好地控制污染。 除了标准中的左旋葡聚糖、甘露聚糖和半乳聚糖以外,正构烷酸也被认为是植物燃烧的示踪物,同时,主要来源于厨房油烟的甾醇类化合物,也可作为餐饮源的示踪物。通过监测正构烷酸和甾醇,也可以用于监测污染物来源。 正构烷酸(C9-C30)、胆固醇、豆甾醇、β-谷固醇、1,6-酐-B-D-吡喃(型)葡萄糖总离子流图 赛默飞GC-MS方案符合法规要求,通过Dionex™ ASE™ 350 加速溶剂萃取仪加速溶剂萃取提取后,采用Triplus RSH-ISQ7000 GC/MS在线衍生-气质联用法,不仅可以测定颗粒物中的左旋葡聚糖类物质,也可同时测定正构烷酸、甾醇类化合物。该方法省去了离线手动衍生的烦扰,使该方法前处理更简单快速、自动化程度更高。 RSH自动衍生化样品过程Dionex™ ASE™ 350 加速溶剂萃取仪Triplus RSH-ISQ7000 GC/MS 方案优势:● 从样品前处理至仪器分析,均为全自动化完成,节省样品前处理时间。● ASE萃取,只需要20min即可完成样品的萃取。● TriPlus RSH样品处理平台,能够自动实现样品的衍生化,减少人为操作的繁琐程度,提高数据的稳定性● ISQ 7000系列GC/MS,具有超高仪器灵敏度及稳定性,同时具有NeverVent技术,实现仪器的24×7全天候运行 赛默飞色谱与质谱 PM 2.5 来源解析监测综合解决方案点击查看大图 治理雾霾,控制大气污染,需要我们搞清楚其具体组成成份及成因。由于大气PM2.5颗粒物来源广泛,组成复杂,包含很多类物质如无机元素、水溶性离子、有机物等,从而需要不同的分析监测方法。 赛默飞全套的分析仪器及卓越的检测方案,可为您提供全面且完善的综合解决方案! 守护蓝天白云,赛默飞义不容辞 大气颗粒物源解析,有助于政府监管部门对空气污染进行精细化管理,精准控制污染源,此项工作意义深远,赛默飞离子色谱是您不可多得的科研助手。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 宁波市客户通过仪器信息网平台订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂!
    宁波市客户通过仪器信息网平台订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂,上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 宁波市客户通过仪器信息网订购远慕谷胱甘肽、壳聚糖、维生素等生化试剂! 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 上海远慕生物科技有限公司专业供应销售各种进口/国产elisa试剂盒系列产品,公司具有良好的市场信誉,专业的销售和技术服务团队,凭着经营ELISA检测试剂盒系列多年经验,熟悉并了解ELISA检测试剂盒系列市场行情,迎得了国内外厂商的一致好评,欢迎来电来涵洽谈交流!上海远慕生物科技有限公司,致力于为生命科学研究领域提供优质产品,为广大科研工作者提供最优质服务。既能满足研发类客户对产品种类、包装、纯度的特殊要求,也能满足生产型企业 。欢迎来电咨询与订购!
  • 糖肽固相合成的利器——Liberty全自动微波多肽合成系统
    糖肽是指糖蛋白和蛋白聚糖中,糖与氨基酸或多肽链以共价键相连而形成的区域。糖链与氨基酸之间的连接称为糖肽键。由于含有糖肽键的物质具有多种重要的生物功能,因此人们对糖肽的合成非常感兴趣,而且,合成的糖肽还可作为研究天然活性糖蛋白结构与功能关系的模型物。 由于糖键氨基酸极易卷曲,活性位点被隐藏,因此糖肽合成的主要困难在于耦合效率非常低。同时,合成时间也是从事糖肽固相合成研究人员所面临的一大考验。 CEM公司生产的Liberty研究型全自动微波多肽合成仪目前已经成为多肽合成研究领域的王牌产品,Liberty采用了CEM公司研发的环形聚焦电磁场技术,多肽链在这种环形电磁场的作用下可以充分的伸展开,因此可以非常方便的在头部氨基酸上进行去保护、缩合和切割反应,在合成时间和纯度上突破了常规方法的极限。 有关Liberty研究型全自动微波多肽合成仪在糖肽合成方面的卓越表现,详情请与我们联系。电话:010-65528800,EMAIL:sales@pynnco.com, 或浏览我们的网站:www.pynnco.com. 高效微波多肽合成系统
  • 使用UPLC-荧光/质谱法分析2-AB标记的多聚糖混合物
    王 芸 沃特世科技(上海)有限公司 蛋白质糖基化是生命系统非常重要的翻译后修饰之一,在免疫识别,蛋白分泌,信号转导等生命过程中发挥了重要作用。与蛋白相连的多聚糖是这些功能的重要载体,特别是对于单克隆抗体药物,多聚糖部分对药物的生物活性有着重要的影响。因此,发展分离效率高,检测灵敏度好的糖基化分析方法对单克隆抗体药物分析具有十分重要的意义。 针对糖基化分析中的种种困难,沃特世公司开发了亲水作用色谱法,以及荧光-质谱结合检测的分析方法。ACQUITY UPLC® 系统配合荧光检测器(FLR)以及多聚糖分析专用(GST )色谱柱,比HPLC方法有更高的分离度。多聚糖分析专用色谱柱装填了1.7&mu m的酰胺吸附剂,可在HILIC模式下有效分离荧光标记的多聚糖。UPLC® 配合荧光检测器分析多聚糖可以获得很高的分离度和定量准确性,特别是对于位置异构体以及有共流出的小峰分析;而质谱检测为糖链鉴定提供了更多的结构信息。通过与标准糖链保留时间的比较,该流程能实现高通量的多聚糖定性定量,满足药物分析的多种需求。 一、色谱条件与标记后的多聚糖样品的分离 可通过HILIC方法,有效分离2-AB标记的多聚糖混合物。对于方法优化,使用更缓的窄梯度,可有效提高保留时间上相临近的多聚糖峰之间的分离度;对于其它的参数,如流速、缓冲液浓度、流动相pH及柱温等,一般也需要进行优化。图1示例使用优化后的HILIC色谱条件后,复杂的2-AB标记的IgG多聚糖混合物得到了很好的分离,包括E1/ E2与F1/ F2。实验所用梯度洗脱时间为45分钟,包括色谱柱清洗和再平衡步骤。一般来说,一个样品的总分析时间在1小时内。因此,与使用3.0-&mu m填料的HPLC方法相比,使用1.7-&mu m填料的UPLC色谱方法,不但分离效果更好,而且运行时间更短。实验中使用2.1 x150 mm色谱柱。图1(B)中甘露糖5(峰C)与甘露糖6(峰H)可与邻近多聚糖峰成功分离,解决了共流出的问题。 二、2-AB标记的多聚糖定量及结构鉴定 由于多聚糖在HILIC 模式下能实现基线分离,各种异构体,例如末端唾液酸的位置异构,都能得到很好的分离。因此,在荧光检测器下的峰面积积分能对各种糖链进行定量分析。而从MS谱图来看,多聚糖样品中高甘露糖糖型所占比例较高,而复合型及杂合型糖链也都能够得到鉴定。各种带有神经氨酸的糖链也都能得到鉴定,表明该方法能够适合各种多聚糖复合物的分析。除了分子量,我们还能通过MS/MS谱图进一步确认多聚糖的结构。 2-AB标记的IgG多聚糖混合物的分析结果充分说明沃特世提供了成熟的聚糖分析方案,且相应色谱柱的质量控制采用了2-AB标记的IgG多聚糖混合物进行。ACQUITYUPLC系统显著缩短了分析时间,将常规HPLC上需要2个小时甚至3个小时的分离梯度缩短到1小时。 此外沃特世提供UPLC-FLR-MS的整体解决方案可以十分有效的对多聚糖进行分析,除提供分子量信息外,还可以进行糖结构推导,大大降低了生物药物研发工作中糖基化分析的难度。 实验流程: 一、2-AB 标记糖链 使用GlycoPro le试剂盒,Prozyme公司 使用试剂盒进行2-AB 标记糖链时,除以下步骤,按照该公司的说明操作即可。 1.使用50&mu l的标记反应液 2. 65度反应4-5小时 3.将样品按步骤4处理除掉过量的标记试剂 使用Sigma公司试剂 1. 配制3 0% 的醋酸D M S O 溶液( 3 0 &mu l 冰醋酸,700ulDMSO) 2.按照20:1(v/w)的比例配制2-AB 溶液 (如需要20mg 2-AB,则用400&mu l 30% 的醋酸DMSO溶液配制) 3.以16.7:1(v/w)的比例将2-AB溶液与氰基硼氢化钠混合配制标记反应液 4.将所得糖链用50&mu l标记反应液溶解,65度震荡反映4-5小时 5 .将反应液按步骤4处理除去过量的标记试剂 二、使用MassPrep亲水作用样品处理板除去过量的标记试剂 所需溶液: MiniQ 纯水,90% 乙腈 ACN,10 mM 醋酸铵Tris,20% ACN 1.样品处理板活化,向样品处理板加入200&mu l MiniQ纯水,再加入 200&mu l 90% ACN,重复 90% ACN 2.吸取 50&mu l 标记溶液,加入 450&mu l ACN( 如有沉淀,请勿离心,以免降低糖链回收率),由于板上每孔体积为200&mu l,可以将样品分为四份加入 3.将样品加入处理板,设定真空度为低(压力 250-500 mmHg),以保证样品与HILIC基质有充分时间相互作用;如果溶液在板上没有移动,可适当增加真空度 4.用 90% ACN清洗处理板两次 5.换用样品收集板,用200&mu l 10 mM 醋酸铵Tris, 20%ACN洗脱,洗脱液转移至1ml 离心管 6.冷冻干燥标记后糖链溶液冻干后的样品复溶于20&mu l50% ACN中,超声5 min 后转入UPLC采样瓶,进样5&mu l。 参考文献 (1) Martin Gilar, Ying-Qing Yu, Joomi Ahn, and Hongwei Xie.Analysis of Glycopeptide Glycoforms in Monoclonal Antibody TrypticDigest using a UPLC HILIC Column (2) Hongwei Xie, Weibin Chen, Martin Gilar, St John Skiltonand Jeffery R. Mazzeo. Separation and Characterization of N-linkedGlycopeptides on Hemagglutinins In A Recombinant Influenza Vaccine (3) Joomi Ahn,Ying Qing Yu and Martin Gila.r UPLC亲水相互作用色谱(HILIC)-荧光检测法分析2-AB标记的多聚糖
  • 在线固定化糖苷酶实现糖基化表位的氢氘交换定位
    大家好,本周为大家分享一篇在Analytical Chemistry上发表的文章:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase[1],文章的通讯作者是来自弗罗里达大学的Patrick R. Griffin教授。  氢氘交换质谱(HDX-MS)是一种常用的抗体表位定位方法。在典型的HDX-MS实验中,目标蛋白在D2O缓冲液中孵育,使氢与氘在设定的时间内交换。随后通过添加低pH“猝灭”缓冲液,在低温(0 ̊C)并保持pH接近2.7的情况下猝灭氘代反应, 使得氘化酰胺氢的回交速率最低。蛋白质结构的不同特征可以影响氘交换速率,其贡献因素包括溶剂可及性和酰胺骨架的氢键。蛋白质被耐受低pH慢交换条件的蛋白酶消化,所得肽通过液相色谱联用质谱(LC-MS)分析。通过比较氘代肽段与未暴露于D2O的对照肽的同位素分布的m/z位移,用质谱法监测肽水平上的氘交换程度。  蛋白糖基化可导致HDX-MS中肽覆盖范围的减少,这是由于多糖对肽的异质修饰。为了获得可以通过质谱监测的确定的糖肽质量,在HDX-MS实验之前,必须首先通过专门的糖蛋白组学方法解决糖肽的结构。此外,糖基化氨基酸通常在每个位点被多个糖型修饰,这可能导致糖肽的质谱信号被稀释。聚糖酰胺基团也可能参与交换和影响氘摄取测量,这个问题很明显,特别是对于病毒刺突蛋白,它们已经进化到通过N-聚糖的广泛修饰来逃避免疫检测。在许多涉及SARS-CoV-2的HDX-MS研究中,特别是当快速结果至关重要时,糖基化位点从分析中被省略。SARS-CoV-2 RBD(受体结合区域)含有N331和N343两个N-聚糖,几个靶向RBD并且识别包括N343在内的表位的中和单抗(例如S309、SW186、SP1-77和C144)的对应信息在HDX-MS中均无法被识别。  酶解后去除氘代肽段上的N-聚糖是一种很有前途的方法,可以避免与糖基化相关的问题。最近发现了从PNGase A和PNGase H+到高活性的PNGase Dj和PNGase Rc,并应用于HDX的一系列有活性的耐酸酶。这些酶通常用于糖肽溶液中进行去糖基化。本文中作者将PNGase Dj固定在醛修饰的聚合物树脂上,并封装在HPLC保护柱中,该柱可直接并入典型的HDX平台。并应用该系统获得了S蛋白RBD的全序列覆盖,并显示了mAb S309的广泛作用位点,包括RBD的N343聚糖位点。  作者首先在大肠杆菌32中表达PNGase Dj,并将其固定在POROS树脂上,这是一种具有大表面积的聚合物树脂,HDX实验室通常使用这种树脂固定胃蛋白酶和其他蛋白酶。POROS 20 Al是一种醛修饰树脂,可以通过席夫碱形成和随后的氰硼氢化物还原与赖氨酸侧链偶联。虽然猪胃蛋白酶A通常固定在POROS树脂上,但它只含有1个赖氨酸,必须在pH 5.0固定,这低于偶联反应的最佳pH。作者认为含有7个赖氨酸且在中性pH下稳定的PNGase Dj可能更有效地与树脂偶联。在pH为6.5的条件下固定化树脂,洗涤后的树脂装入微孔保护柱中,然后PNGase Dj在树脂上的活性用酶解糖基化比色法测定。1 mg树脂对PNGase Dj的活性为0.79 μg [95% CI: 0.66, 0.92]。作者探究了不同的缓冲体系对于色谱柱活性的影响(图1)。固定化酶最容易受到胍HCl的抑制,并对还原剂TCEP表现出抗性。  图1. 固定化PNGase Dj的糖肽脱糖基化研究。(A)不同缓冲液中糖肽的去糖基化。x轴上的数字对应于去糖基化条件的列表。(B)在PNGase Dj处理的样品中,去糖基化肽的信号大大增强。(C)图中每对柱状图显示了chaotrope/TCEP注射后分别注射了参考缓冲液。(D)糖肽在50 mM NaH2PO4和25 mM TCEP中在12°C下的代表性EICs。强度根据每个地块进行缩放。  在确认PNGase Dj的活性后,作者评估了三种糖蛋白的去糖基化柱:HRP(horse radish peroxidase),牛胎蛋白A和AGP(α-1-acid glycoprotein)。由于糖肽的去糖基化速度比完整的蛋白质快,作者采用了双柱设置,蛋白质首先通过胃蛋白酶柱,然后进入去糖苷酶柱。为了简化设置,还使用了混合柱,其中单柱含有9:1的胃蛋白酶和PNGase Dj树脂混合物。与胃蛋白酶和PNGase Dj混合柱也可能促进蛋白质水解,去糖基化使胃蛋白酶进一步进入裂解位点。可以观察到N-聚糖位点的覆盖(图2),而这些位点在单独用胃蛋白酶消化时缺乏覆盖。用PNGase Dj处理的样品显示N-聚糖天冬酰胺脱酰胺,而单独用胃蛋白酶处理的样品未检测到脱酰胺肽。在所有情况下,PNGase Dj的加入提高了覆盖率,混合床的结果与双柱的结果相当。混合柱系统还显示末端靠近N-聚糖位点的肽,表明去糖基化可能允许胃蛋白酶在聚糖位点附近进一步切割。  图2. 糖蛋白AGP、胎蛋白A和HRP的LC - MS/MS肽覆盖。(A) AGP肽覆盖图。n -聚糖位点用箭头标记。(B)检测到的脱酰胺肽数。(C)每个糖蛋白序列的覆盖率百分比。  接下来,作者使用HDX-MS分析SARS-CoV-2 RBD序列与单克隆抗体的相互作用。S309是从先前感染SARS-CoV-1的患者的B细胞中分离出来的抗体,与SARSCoV-2交叉反应。S309与S三聚体之间的相互作用通过低温电子显微镜(cryo-EM)进行了表征,结果显示S309能够识别靠近N343聚糖的RBD上的一个表位,包括与聚糖本身的接触。作者用混合床胃蛋白酶/ PNGase Dj柱对RBD-Fc融合蛋白进行酶切,并与胃蛋白酶柱进行比较。发现混合柱可以完全覆盖RBD序列,而胃蛋白酶柱在N331和N343聚糖区域缺乏覆盖(图3)。  图3. 与单独使用胃蛋白酶相比,胃蛋白酶/PNGase Dj混合床的SARS-CoV-2 RBD肽覆盖率。多肽的Mascot ionscore≥20。胃蛋白酶消化在N331和N343聚糖附近没有覆盖。RBD-Fc蛋白的RBD区域如图所示。  随着RBD序列的全面覆盖,作者进行了差分HDX-MS实验,评估在存在和不存在S309的情况下RBD上的氘代情况。HDX-MS结果显示,在序列上的所有N-聚糖位点都检测到去糖基化肽,并且N343和N630两个位置都显示有多个重叠的去糖基化肽。S309的结合使得氘交换减少,这种保护作用最大程度的集中在N343聚糖周围,从残基338到350。ACE2受体结合基序(RBM,由438~506残基组成)边界上的434~441残基也有被保护效应。RBD以Fc融合蛋白的形式存在,但在Fc标签中没有观察到显著的HDX差异。这些结果与通过冷冻电镜鉴定的表位一致。该工作的作者鉴定出RBD残基337~344、356~361和440~444是S309的表位,此外,还观察到RBD的C端附近残基516~533的氘交换减少。虽然该序列不直接与S309相互作用,但RBD上的2个残基521~527与358~364广泛接触,这可能引起了S309结合后的变构变化。  总的来说,作者认为PNGase Dj固定在POROS树脂上提供了一种增加序列覆盖的直接方法,使得HDX-MS分析糖蛋白时,允许氢氘交换后去糖基化。这里采用的固定方法可能也适用于其他体系,例如PNGase Rc。此外,研究的结果显示,将PNGase Dj与胃蛋白酶混合使用的序列覆盖率要高于单独使用胃蛋白酶。PNGase Dj可以识别RBD中与S309结合的的糖基化表位,并且结果与冷冻电镜结构密切一致。  撰稿:李孟效  编辑:李惠琳  文章引用:Hydrogen−Deuterium Exchange Epitope Mapping of Glycosylated Epitopes Enabled by Online Immobilized Glycosidase  参考文献  1. O'Leary, T.R.R., Balasubramaniam, D., Hughes, K., et al. Hydrogen-deuterium exchange epitope mapping of glycosylated epitopes enabled by online immobilized glycosidase. Analytical Chemistry,2023.
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 生物药岛津说-单抗药物糖型分析和质控,您学会了吗?
    治疗性单克隆抗体结构相对小分子更加复杂。不仅仅是序列影响蛋白活性,同时蛋白的翻译化修饰也会影响。常见的修饰包括脱酰胺、二硫键、末端赖氨酸丢失和糖基化修饰,糖基化修饰是相对复杂的特殊翻译后修饰,包括N糖修饰和O糖修饰,N糖基化修饰主要发生在蛋白质一级结构中的特征性序列NXT(其中X是除脯氨酸外的任意氨基酸),修饰存在一定规律,O糖修饰可以与任何含有羟基基团的氨基酸连接,丝氨酸(S)和苏氨酸(T)是最常见的修饰位点,因此更加复杂。糖型结构会显著影响治疗效果,是单抗药物质量监测的重要关键质量属性。 抗体生物类似药在面临生产和临床过程中,需要保证质量的一致性,糖基化分析是重要的关键分析流程。糖修饰异质性会间接影响药效,因此需要在多批次生产过程中,保证工艺和质量的稳定性。N糖根据不同的连接方式使得N-糖基化的五糖核心结构分为高甘露糖型、杂合型和复杂型3 种类型,FDA,EMA 等生物类似药指导原则都鼓励研发单位采用最新的分析技术手段,对生物类似药和原研药的糖基化修饰位点、程度以及寡糖的组成进行深入比较分析,例如可以利用岛津液相以及质谱等设备可进行由浅入深的糖型修饰分析,进而对产品生产过程中严格监测。岛津在糖基化分析方面有三大护法守护。下面一一道来。 岛津抗体糖型分析质控解决方案 第一护法-高分辨质谱LCMS-9030 LCMS-9030四极杆飞行时间质谱仪使高速度、高灵敏度的四极杆质谱与TOF技术的紧密结合。融合岛津先进工程技艺的DNA,打造出速度与出色性能兼备的全新一代高分辨质谱仪,以优异表现轻松胜任定性和定量分析挑战。对完整蛋白以及亚基水平的糖型进行初步分析。 第二护法-MALDI-MSMALDImini-1 MALDImini-1数字离子阱(DIT)体积极小,功能强大,可实现质谱多级的检测。针对糖肽分析、抗体化学修饰位点、未知生物分子结构分析,蛋白质、多肽、翻译后修饰肽等都有专向解决方法。 第三护法-高效液相色谱系统Nexera Bio 从完整蛋白或者亚基水平分析,利用质谱可快速的分析带有糖基化修饰蛋白分子量。可以分析简单的糖型结构,速度比较快,重现性较好,但是精细的糖型结构也不能很好的监测清楚,所以可以搭配糖肽水平和游离寡糖水平一同研究。 首先,第一步从完整蛋白水平,利用岛津LCMS-9030四极杆飞行时间质谱仪从完整分子量水平分析抗体的糖修饰情况如下表所示,鉴定并分析相关糖型的分布。 不同糖型抗体形式分子量测定结果与理论对比 第二步可以从糖肽水平分析,通常抗体通过使用蛋白酶酶切后,产生分子量大约为0. 5 ~ 5 kDa 的小肽,采用色谱或电泳分离后再进行MALDI-MS 或ESI-MS 分析。利用质谱分析糖肽序列、寡糖组成,岛津MALDI-TOF和MALDI-数字离子阱质谱可以分析相关糖肽组成分析。 例如针对血清糖蛋白,使用MALDI-离子阱质谱分析得到的衍生N-聚糖谱图,如下图所示:血清糖蛋白N-聚糖质谱解析谱图 第三步可以从游离寡糖层面分析,药典相关要求,针对游离寡糖的分析通常有三种方法: (第一法)亲水相互作用色谱法、(第二法)毛细管电泳法、(第三法)高效阴离子色谱法,通过N-糖苷酶F对单抗N糖进行酶切后,使用2-氨基苯甲酰胺( 2-AB) 或2-氨基苯甲酸( 2-AA) 对寡糖进行标记即可进行糖型分析。针对唾液酸分析,岛津超高效液相色谱结合荧光检测器建立了抗体中唾液酸Neu5Ac 和Neu5Gc 含量测定,结果如下图所示: 唾液酸液相分析定量标准曲线 单抗糖基化是作为重要的翻译化修饰,宿主细胞培养工艺过程会影响不同的修饰构成,岛津不仅可以提供糖基化质量分析质控方案,同时针对培养工艺优化以及工艺残留物监测,提供特色的培养监测在线和离线分析解决方案,为了更好地把握产品质量,力图让产品质量更加稳定和安全。虽然生物类似药与原研药批次糖基化修饰结构差异依然存在,但在生物类似药相似性评价和适应症外推的征途上还有许多路要走,岛津依旧陪伴左右。
  • 解读《关于β-1,3/α-1,3-葡聚糖等6种“三新食品”的公告》
    一、新食品原料(一)β-1,3/α-1,3-葡聚糖β-1,3/α-1,3-葡聚糖是以蔗糖为主要原料,经普沙根瘤菌(Rhizobium pusense)发酵、醇沉、过滤、分离、干燥、粉碎等工艺制成。β-1,3/α-1,3-葡聚糖是由7个β-1,3-D-葡萄糖和2个α-1,3-葡萄糖相互连接而成的9个D-葡萄糖为重复单元构成的直链多糖。本产品中β-1,3/α-1,3-葡聚糖含量为≥90 g/100g。由酵母、燕麦、大麦等来源的β-葡聚糖目前作为食品原料或食品添加剂已在美国、澳大利亚、日本等多个国家被批准使用。我国于2006年批准以β-1,3-葡聚糖为主要成分的可得然胶作为食品添加剂,2010年和2014年分别批准酵母β-葡聚糖和燕麦β-葡聚糖为新食品原料。β-1,3/α-1,3-葡聚糖的推荐食用量为≤3克/天。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,审评机构依照法定程序,组织专家对β-1,3/α-1,3-葡聚糖的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于β-1,3/α-1,3-葡聚糖在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)二氢槲皮素二氢槲皮素(Dihydroquercetin)是多种植物中存在的一种二氢黄酮醇类化合物。本产品是以人工种植的长白落叶松的根部为原料,经去皮、撕裂处理,进行提取、浓缩、醇沉、上清液浓缩、萃取、再浓缩、结晶、离心分离、冷冻真空干燥、粉碎过筛等工艺制成。欧盟已批准落叶松来源的二氢槲皮素为新食品原料,俄罗斯已批准二氢槲皮素作为食品原料和食品添加剂使用。本产品推荐食用量为≤100毫克/天(即含量为90%的二氢槲皮素推荐食用量为100毫克/天,超过该含量的按照实际含量折算)。使用范围和最大使用量:饮料(20mg/L),发酵乳和风味发酵乳(20mg/kg),可可制品、巧克力和巧克力制品(70mg/kg)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对二氢槲皮素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。二氢槲皮素在婴幼儿、儿童(14岁及以下)、孕妇、哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)鼠李糖乳杆菌MP108鼠李糖乳杆菌MP108(Lactobacillus rhamnosus MP108)从健康幼儿肠道分离得到,菌粉性状为白色至微棕色粉末。含有该菌株的产品已在澳大利亚生产并上市,可用于婴幼儿食品。国内外开展的多项婴幼儿临床研究证明,该菌株具有较好的食用安全性。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对鼠李糖乳杆菌MP108的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌株原料的食品安全指标应符合我国相关标准。(四)拟微球藻(Nannochloropsis gaditana)拟微球藻(Nannochloropsis gaditana)属于单胞藻科拟微球藻属,藻体微小,通常为绿色或黄绿色。含有该藻的食品在美国、智利、加拿大等国家有销售。该藻含有蛋白质、二十碳五烯酸(EPA)等营养成分,其推荐食用量为≤2克/天(以干品计)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对拟微球藻(Nannochloropsis gaditana)的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于拟微球藻(Nannochloropsis gaditana)在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照我国现行食品安全国家标准中食用藻类的规定执行。二、食品添加剂新品种(一)蛋白酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的蛋白酶申请作为食品工业用酶制剂新品种。法国食品安全局、美国食品药品管理局、丹麦兽医和食品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,水解蛋白。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。(二)磷酸肌醇磷脂酶C1.背景资料。荧光假单胞菌(Pseudomonas fluorescens)来源的磷酸肌醇磷脂酶C申请作为食品工业用酶制剂新品种。美国食品药品管理局和巴西国家卫生监督局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,用于食用植物油脂的脱胶。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。
  • 沃特世将在WCBP推出业内首台蛋白质、多肽、多聚糖分析平台
    1月28日,沃特世公司(NYSE:WAT)在2013年生物精神病学世界大会(WCBP 2013)专题报告会上再次强调了他们将推进生物治疗表征技术的承诺。更具体地说,沃特世在当天推出了一款扩展的使用UNIFI® 的生物制药解决方案平台,新的ACQUITY 平台性能卓越,可利用 LC® (UPLC® )CSH130 C18 和 XSelect™ HPLC CSH130 C18 色谱柱分析肽图并可运用三GlycoWorks™ 试剂盒进行多聚糖标记和样品制备。   这些创新表明沃特世持续专注于为正在研发生物治疗药物和生物仿制药物的科研人员及相关的合作实验室或机构开发有针对性的解决方案。这些新产品将进一步促进常规化学疗法的分析,特别是除精细蛋白和多肽水平结构分析外的糖蛋白的多聚糖修饰成分分析。在整个研发制造过程中运用更快、更精确的糖基化知识,生物制药企业能够更大程度地获得分子水平上的关键性质量控制。这也是达到更好监管生物治疗药物安全、有效这一目标的内在需求所要求的。   沃特世集成UNIFI的生物制药解决方案平台   该生物制药解决方案平台汇集了HPLC/MS表征技术和UNIFI的科学信息系统,是第一个可进行完整的蛋白质质量分析,肽图绘制和常规生物分离的平台。今天,沃特世扩展的解决方案已可支持一个网络工作组实验室中的混合四级杆飞行时间质谱(Q-TOF)和光学检测仪器的运行。该UNIFI的部署能力基于系统可指导生物制药公司调节或不调节实验室环境,并在整个生产和质量体系控制的全程灵活地采用高分辨率的UPLC和高性能质谱进行生物分离和分析。   最新发行的多聚糖应用工作手册扩展了该平台的功能,可通过荧光检测器支持常规的多聚糖检测和分析。结合高性能UPLC的HILIC(亲水作用色谱法)分离,沃特世的校准标准物质和试剂,以及NIBRT/沃特世 GlycoBase 3+ UPLC 多聚糖单元参考数据库可对多聚糖进行定性、定量和定型。   爱尔兰国家生物处理研究与培训学院(NIBRT)教授Pauline Rudd率领的研究小组开发的GlycoBase 3+ 数据库是世界首个多聚糖色谱保留值的资料库,采用葡萄糖校准单元表示,涵盖了与现代生物治疗糖蛋白相关的多种不同结构的多聚糖类型。   当前基于UNIFI的生物制药解决方案平台具有的特点是:   ACQUITY UPLC H-Class和H-Class生物系统具有生物惰性流路并附带自动混合的四元溶剂处理技术,在执行高分辨率的生物分离时具有很大的灵活性   沃特世的肽、蛋白质和多聚糖色谱柱分离技术,利用生物分子的特性设计选择性并通过QC测试来确保达到预期结果   沃特世提供的生物制药的分析标准物质和试剂确保了SEC(尺寸排阻色谱法)及多聚糖分离校准系统、系统整体质量的检查标准、肽图和释放多聚糖流程的准确性   Xevo® G2-S Q-T质谱仪,一款高灵敏度、定性定量精确的台式质谱系统配备了沃特世专利的StepWave™ 离子光学技术,一种独特的离轴离子源技术,可为质谱提供顶级的灵敏度和优良的重现性   UNIFI科学信息系统,一种交互、工作流驱动的数据平台可进行灵活的仪器控制,先进的数据处理及出具综合性报告,通过GxP的实验室兼容性可实现工作站内的常规部署或工作组的实验室配置   GlycoBase 3+数据库,史无前例的色谱保留位置资料库记录了与一系列生物治疗药物相关联的以葡萄糖为单元的多聚糖结构。
  • 自上而下质谱揭示SARS-CoV-2 Omicron变异体棘突蛋白RBD的独特核心聚糖和O-糖型
    大家好,本周为大家分享一篇发表在Chemical Science上的文章,Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry1,通讯作者是美国威斯康星大学的Ying Ge教授。  SARS-Cov-2的快速变异为全球抗疫带来了极大的挑战。Delta和Omicron等新变种的传染性更强、病症更严重、显著逃避康复者或疫苗的中和抗体,并且逃避检测的风险更高。与野生型(WT)毒株相比,Omicron变体具有数量惊人的突变(30),包括棘突蛋白受体结合域(S-RBD)中的15个位点突变。S-RBD是中和抗体和其他疗法的主要靶点,病毒的细胞感染性、保护表位免受抗体中和及与人类受体ACE2结合的能力与S蛋白的糖基化密切相关。S蛋白O-聚糖具有巨大的微观异质性和结构多样性,因此对其O-糖基化的表征仍具是极大的挑战。作者在本文中报道了一种自上而下的混合质谱方法,能够同时表征分子结构、位点特异性、各种糖类的相对丰度,以及不同共现蛋白型的整体翻译后修饰(PTM)。  与WT相比,Delta和Omicron变体固有的突变差异在其RBD中尤其明显(图1A)。为了阐明各种S-RBD的分子序列和O-聚糖,作者使用PNGase F从S-RBD中完全去除N-聚糖,以最小化N-聚糖异质性造成的干扰(图1B)。与完全糖基化的S-RBD相比,N-聚糖的去除产生了10 kDa的分子量损失。通过超高分辨率12T FTICR-MS可实现各种S-RBD的基线同位素分离。自上而下的MS分析显示,各种O-糖型的化学计量比和相对丰度存在显著差异,其中Omicron变体显示出最大的O-糖型结构异质性(图1C)。  图1 由WT、Delta和Omicron变体产生的S-RBD的蛋白质突变图谱和高分辨率自上而下MS。(A)SARS-CoV-2基因组结构和S-RBD变体蛋白质序列变化的说明。(B)PNGase处理前(-)后(+)的S-RBD的SDS-PAGE。(C)在对WT、Delta和Omicron变体进行PNGase F处理后,完整S-RBD蛋白型的原始MS1。所有确定的O-糖型在插图中用红色圆圈注释。  为了实现深入的糖型和糖位点分析,作者利用捕获离子迁移谱(TIMS)-MS,通过timsTOF Pro仪器分离和分析各种S-RBD O-聚糖结构(图2)。为了表征Omicron变体的聚糖结构和占比,作者对单个S-RBD O-糖型进行了特异性分离。以最丰富的O-聚糖(26+,1069.4.3 m/z)为例,从Bruker数据分析软件输出由CAD获得的MS/MS片段离子,并使用MASH Explorer16在靶向蛋白质分析模式下进行分析,以进行全面的蛋白型表征。获得了自上而下的MS/MS谱以及各种O-聚糖结构的离子迁移率分离,以克服O-聚糖分析固有的质量简并性和微观异质性(图2B)。足够软的TIMS淌度池活化参数能够对分离的S-RBD蛋白型进行详细的中性缺失图谱绘制,并揭示了具有GalNAcGal(NeuAc)2结构的核心1(Galβ1-3GalNAc-Ser/Thr)O-聚糖(图2C)。这种TIMS-MS方法允许对聚糖结构进行直接表征,以揭示在三种S-RBD变体中具有核心1和核心2(GlcNAcβ1-6 (Galβ1-3) GalNAc-Ser/Thr)O-聚糖结构的多个S-RBD糖型。  图2 S-RBD O-糖型的TIMS-MS分析。(A)经PNGase F处理后的特定S-RBD糖型(z=26+, 1069.4 m/z)的TIMS-MS分离示意图。插图为前体离子分离后对应的离子迁移率热图。(B) 分离的蛋白型经CAD碎裂后,Omicron S-RBD O-聚糖的自上而下MS/MS。(C) Omicron S-RBD蛋白型中性缺失O-聚糖图谱。  随后,作者进一步描述了S-RBD WT、Delta和Omicron O-糖基化模式,以揭示变体之间的所有O-糖基化结构改变(图3)。有趣的是,与WT或Delta变体相比, Omicron中主要的O-聚糖微观异质性发生变化。特别是Omicron的核心2 O-聚糖结构丰度显著增强,多重唾液酸化GalNAc(GalNeuAc)(GlcNAcGalNeuAc)和岩藻糖基化GalNAc(GalNeuAc)(GlcNAcGalFuc)结构显著表达。表1总结了Omicron与WT或Delta变体相比所观察到的显著分子丰度差异。  图3 S-RBD变体的O-糖型表征。S-RBD蛋白型的去卷积谱显示了WT(绿色)、Delta(蓝色)和Omicron(粉色)变体的所有主要O-聚糖分配。理论同位素分布由红点表示。聚糖结构在用插图所示的图形表示。  表1 S-RBD变体O-糖型相对丰度总结  Omicron变体的核心1与核心2 S-RBD O-聚糖结构的相对丰度比约为71:29,核心1 GalNAcGal(NeuAc)2是最丰富的O-糖类(~69%相对丰度)。有趣的是,WT和Delta变体显示出对核心1型O-聚糖结构的强烈偏好,其O-糖型丰度的80%以上对应于核心1结构 含核心2 GalNAc(GalNeuAc)(GlcNAcGalFuc)结构的O-聚糖占其总O-糖型组成的13%以上。在WT和Delta S-RBD变体中也发现了这些特殊的核心2结构,但相对丰度要低得多(5-7%)。图3所示的高分辨率完整S-RBD糖型表征表明,与基于糖肽的自底向上MS方法相比,这种自上而下的MS方法具有明显的优势。  作者进一步研究了S-RBD变体之间的糖基化位点及其微观异质性。对S-RBD O-糖型的详细自上而下MS/MS分析显示,存在一种新的O-糖位点(Thr376),这是Omicron变体所特有的(图4A)。令人感兴趣的是,所有检测到的WT和Delta变体的S-RBD O-聚糖都被自信地单独分配给Thr323(图4B-C),这与之前关于WT S O-糖基化的研究一致。鉴于Delta上的突变数量比Omicron少,因此O-糖位点Thr323在Delta和WT变体之间保持保守也就不足为奇了。另一方面,Omicron变体产生了熟悉的Thr323 O-糖位点和一个新的Thr376 O-糖位点(b6012+和b525+),对应于核心1 O-糖型(图4D)。该Thr376 O-糖位点在残基373处与脯氨酸相邻,这与先前关于脯氨酸附近O-糖基化频率增加的报道一致。这种特殊的Pro373是Omicron变体特有的位点特异性突变,很可能是产生这种新O-糖位点的原因。实验还发现,与T323相比,Thr376位点的占有率较低(30%),并且仅被可靠地分配给丰富的核心1 O-糖基。此外,尽管为变异体指定的O-糖型是HEK293细胞表达的S-RBD特有的,但已知HEK293表达模型可反映病毒体预期的糖基化位点。  图4 通过自上而下的MS/MS进行S-RBD O-糖定位。(A)对应于WT、Delta和Omicron S-RBD变体的核心1型聚糖的片段映射。蓝色N表示PNGase F处理后的脱酰胺作用。特定的Omicron残基突变用粉红色表示。(B-D)代表性的自上而下MS/MS CAD片段离子,包括完整的(B)WT(b71+和b17311+)、(C)Delta(b71+和b22312+)和(D)Omicron(b51+、b182+、b71+、b17311+)变体。WT和Delta变体在Thr323处显示完全的O-糖苷占据。发现Omicron变体同时具有Thr323(b51+和b182+)和Thr376(b71+和b17311+)。  本文首次阐明了SARS-CoV-2 Omicron和Delta变异体中发现的O-糖型结构异质性。与WT或Delta相比,Omicron变体的核心2型O-糖型的利用率显著提高。此外还鉴定了一种新的Omicron S-RBD特有的Thr376 O-糖位点。这种自上而下的MS方法是对传统结构方法的补充,并为SARS-CoV-2 S-RBD蛋白形式的表征提供了无与伦比的分辨率。  撰稿:夏淑君  编辑:李惠琳  文章引用:D.S. Roberts, M. Mann, B.H. Li, et al., Distinct core glycan and O-glycoform utilization of SARS-CoV-2 Omicron variant Spike protein RBD revealed by top-down mass spectrometry, Chemical Science (2022).
  • 葛瑛团队新成果:自上而下质谱揭示SARS-CoV-2 Omicron变异体棘突蛋白RBD的独特核心聚糖和O-糖型
    大家好,本周为大家分享一篇预发表的文章,Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry1,通讯作者是美国威斯康星大学的葛瑛教授。SARS-Cov-2的快速变异为全球抗疫带来了极大的挑战。Delta和Omicron等新变种的传染性更强,其中Delta病情严重,但Omicron症状很轻。与野生型(WT)毒株相比,Omicron变体具有数量惊人的突变(30),包括棘突蛋白受体结合域(S-RBD)中的15个位点突变。S-RBD是中和抗体和其他疗法的主要靶点,病毒的细胞感染性、保护表位免受抗体中和及与人类受体ACE2结合的能力与S蛋白的糖基化密切相关。S蛋白O-聚糖具有巨大的微观异质性和结构多样性,因此对其O-糖基化的表征仍具是极大的挑战。作者在本文中报道了一种自上而下的混合质谱方法,能够同时表征分子结构、位点特异性、各种糖类的相对丰度,以及不同共现蛋白型的整体翻译后修饰(PTM)。与WT相比,Delta和Omicron变体固有的突变差异在其RBD中尤其明显(图1A)。为了阐明各种S-RBD的分子序列和O-聚糖,作者使用PNGase F从S-RBD中完全去除N-聚糖,以最小化N-聚糖异质性造成的干扰(图1B)。与完全糖基化的S-RBD相比,N-聚糖的去除产生了10 kDa的分子量损失。通过超高分辨率12T FTICR-MS可实现各种S-RBD的基线同位素分离。自上而下的MS分析显示,各种O-糖型的化学计量比和相对丰度存在显著差异,其中Omicron变体显示出最大的O-糖型结构异质性(图1C)。图1 由WT、Delta和Omicron变体产生的S-RBD的蛋白质突变图谱和高分辨率自上而下MS。(A)SARS-CoV-2基因组结构和S-RBD变体蛋白质序列变化的说明。(B)PNGase处理前(-)后(+)的S-RBD的SDS-PAGE。(C)在对WT、Delta和Omicron变体进行PNGase F处理后,完整S-RBD蛋白型的原始MS1。所有确定的O-糖型在插图中用红色圆圈注释。为了实现深入的糖型和糖位点分析,作者利用捕获离子迁移谱(TIMS)-MS,通过timsTOF Pro仪器分离和分析各种S-RBD O-聚糖结构(图2)。为了表征Omicron变体的聚糖结构和占比,作者对单个S-RBD O-糖型进行了特异性分离。以最丰富的O-聚糖(26+,1069.4.3 m/z)为例,从Bruker数据分析软件输出由CAD获得的MS/MS片段离子,并使用MASH Explorer16在靶向蛋白质分析模式下进行分析,以进行全面的蛋白型表征。获得了自上而下的MS/MS谱以及各种O-聚糖结构的离子迁移率分离,以克服O-聚糖分析固有的质量简并性和微观异质性(图2B)。足够软的TIMS淌度池活化参数能够对分离的S-RBD蛋白型进行详细的中性缺失图谱绘制,并揭示了具有GalNAcGal(NeuAc)2结构的核心1(Galβ1-3GalNAc-Ser/Thr)O-聚糖(图2C)。这种TIMS-MS方法允许对聚糖结构进行直接表征,以揭示在三种S-RBD变体中具有核心1和核心2(GlcNAcβ1-6 (Galβ1-3) GalNAc-Ser/Thr)O-聚糖结构的多个S-RBD糖型。图2 S-RBD O-糖型的TIMS-MS分析。(A)经PNGase F处理后的特定S-RBD糖型(z=26+, 1069.4 m/z)的TIMS-MS分离示意图。插图为前体离子分离后对应的离子迁移率热图。(B) 分离的蛋白型经CAD碎裂后,Omicron S-RBD O-聚糖的自上而下MS/MS。(C) Omicron S-RBD蛋白型中性缺失O-聚糖图谱。随后,作者进一步描述了S-RBD WT、Delta和Omicron O-糖基化模式,以揭示变体之间的所有O-糖基化结构改变(图3)。有趣的是,与WT或Delta变体相比, Omicron中主要的O-聚糖微观异质性发生变化。特别是Omicron的核心2 O-聚糖结构丰度显著增强,多重唾液酸化GalNAc(GalNeuAc)(GlcNAcGalNeuAc)和岩藻糖基化GalNAc(GalNeuAc)(GlcNAcGalFuc)结构显著表达。表1总结了Omicron与WT或Delta变体相比所观察到的显著分子丰度差异。图3 S-RBD变体的O-糖型表征。S-RBD蛋白型的去卷积谱显示了WT(绿色)、Delta(蓝色)和Omicron(粉色)变体的所有主要O-聚糖分配。理论同位素分布由红点表示。聚糖结构在用插图所示的图形表示。表1 S-RBD变体O-糖型相对丰度总结Omicron变体的核心1与核心2 S-RBD O-聚糖结构的相对丰度比约为71:29,核心1 GalNAcGal(NeuAc)2是最丰富的O-糖类(~69%相对丰度)。有趣的是,WT和Delta变体显示出对核心1型O-聚糖结构的强烈偏好,其O-糖型丰度的80%以上对应于核心1结构;含核心2 GalNAc(GalNeuAc)(GlcNAcGalFuc)结构的O-聚糖占其总O-糖型组成的13%以上。在WT和Delta S-RBD变体中也发现了这些特殊的核心2结构,但相对丰度要低得多(5-7%)。图3所示的高分辨率完整S-RBD糖型表征表明,与基于糖肽的自底向上MS方法相比,这种自上而下的MS方法具有明显的优势。作者进一步研究了S-RBD变体之间的糖基化位点及其微观异质性。对S-RBD O-糖型的详细自上而下MS/MS分析显示,存在一种新的O-糖位点(Thr376),这是Omicron变体所特有的(图4A)。令人感兴趣的是,所有检测到的WT和Delta变体的S-RBD O-聚糖都被自信地单独分配给Thr323(图4B-C),这与之前关于WT S O-糖基化的研究一致。鉴于Delta上的突变数量比Omicron少,因此O-糖位点Thr323在Delta和WT变体之间保持保守也就不足为奇了。另一方面,Omicron变体产生了熟悉的Thr323 O-糖位点和一个新的Thr376 O-糖位点(b6012+和b525+),对应于核心1 O-糖型(图4D)。该Thr376 O-糖位点在残基373处与脯氨酸相邻,这与先前关于脯氨酸附近O-糖基化频率增加的报道一致。这种特殊的Pro373是Omicron变体特有的位点特异性突变,很可能是产生这种新O-糖位点的原因。实验还发现,与T323相比,Thr376位点的占有率较低(30%),并且仅被可靠地分配给丰富的核心1 O-糖基。此外,尽管为变异体指定的O-糖型是HEK293细胞表达的S-RBD特有的,但已知HEK293表达模型可反映病毒体预期的糖基化位点。图4 通过自上而下的MS/MS进行S-RBD O-糖定位。(A)对应于WT、Delta和Omicron S-RBD变体的核心1型聚糖的片段映射。蓝色N表示PNGase F处理后的脱酰胺作用。特定的Omicron残基突变用粉红色表示。(B-D)代表性的自上而下MS/MS CAD片段离子,包括完整的(B)WT(b71+和b17311+)、(C)Delta(b71+和b22312+)和(D)Omicron(b51+、b182+、b71+、b17311+)变体。WT和Delta变体在Thr323处显示完全的O-糖苷占据。发现Omicron变体同时具有Thr323(b51+和b182+)和Thr376(b71+和b17311+)。本文首次阐明了SARS-CoV-2 Omicron和Delta变异体中发现的O-糖型结构异质性。与WT或Delta相比,Omicron变体的核心2型O-糖型的利用率显著提高。此外还鉴定了一种新的Omicron S-RBD特有的Thr376 O-糖位点。这种自上而下的MS方法是对传统结构方法的补充,并为SARS-CoV-2 S-RBD蛋白形式的表征提供了无与伦比的分辨率。撰稿:夏淑君编辑:李惠琳文章引用:doi.org/10.1101/2022.02.09.479776
  • 糖类物质分析利器—离子色谱值得拥有!
    糖类物质分析利器—离子色谱值得拥有!关注我们,更多干货和惊喜好礼高立红 韩春霞 郑洪国糖类是自然界中广泛分布的一类重要的有机化合物,在生命活动过程中起着重要作用。由于其具有改善肠道菌群,以及抗肿瘤、抗氧化、抗衰老、降血糖降血脂等作用,广泛应用于食品和医药领域。因此,糖类物质的分析检测在食品和药物质量控制方面具有重要作用。 糖类分析难点:1. 极性强并且同分异构体较多,常规色谱柱对其保留和分离效果欠佳;2. 无紫外吸收或较弱,一般检测器无法直接检测, 需要衍生后进行测定,操作复杂并且某些热不稳定的糖回收率差。基于糖类物质的化学特征,以及常规分析检测难点,采用离子色谱法(IC)进行检测具有多种优势: 1.专用糖分析色谱柱对糖类物质具有很好的保留和分离效果;2.脉冲安培检测器(PAD)对糖类物质具有特异性响应和高灵敏度;3.无需衍生即可直接检测,重复性好;4.单双糖、低聚糖、多聚糖、糖醇、氨基糖、酸性糖均可进行检测。Dionex™ ICS-6000多功能高压离子色谱仪 快来围观离子色谱在糖分析中的优异表现吧! 单双糖分析分离度和灵敏度齐飞——赛默飞ICS-6000高压离子色谱仪,配置特有的单双糖分析色谱柱,脉冲安培检测器,使离子色谱轻松应对半乳糖、葡萄糖、木糖、果糖、蔗糖、乳糖、麦芽糖等常见单双糖的测定。仅需5~25 μL小体积进样即可检测ng/L~mg/L级别单双糖,无需衍生化,灵敏度高,选择性好。IC-PAD测定常见单双糖1-岩藻糖;2-鼠李糖;3-阿拉伯糖;4-半乳糖;5-葡萄糖;6-蔗糖;7-木糖;8-果糖;9-乳糖(点击查看大图) 脱水糖和糖醇分析 对PM2.5大气颗粒物中糖类物质进行监测可以有效帮助识别大气颗粒污染物的成因和来源。采用ICS-6000离子色谱仪脉冲安培法测定大气颗粒物中左旋葡聚糖、甘露聚糖和半乳聚糖,无需衍生可直接测定,操作简单重复性好;并且与颗粒物中阿拉伯糖醇和海藻糖等干扰物质具有有效分离;当样品提取液为10 mL,左旋葡聚糖、甘露聚糖和半乳聚糖的检出限可达到0.02 μg,灵敏度高。IC-PAD测定大气颗粒物中脱水糖和糖醇(点击查看大图) 低聚糖和多糖分析 1. 国家标准方法依从2016年出台的三项食品安全国家标准:《GB5009.245-2016食品中聚葡萄糖的测定》、《GB5009.255-2016食品中果聚糖的测定》、《GB5009.258-2016食品中棉子糖的测定》均采用赛默飞离子色谱条件进行测定。赛默飞ICS-6000高压离子色谱仪,配置四元梯度泵和脉冲安培检测器,四电位波形测定,灵敏度高,重复性好,助您轻松应对标准法规。 2. 乳粉中的低聚半乳糖低聚半乳糖(GOS)是一种具有天然属性的功能性低聚糖,婴幼儿奶粉中都添加了低聚半乳糖的营养成分,因此是奶粉中的必检项目。赛默飞自主研发建立使用低聚半乳糖原料为对照品直接测定低聚半乳糖的方法。利用不受奶粉本底干扰的色谱峰来定性定量,不受样品中高含量乳糖的干扰,可准确测定婴幼儿奶粉中的低聚半乳糖。此方法无需酶解,降低成本,但对色谱柱分离能力和检测器灵敏度要求较高,赛默飞ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA20色谱柱,可完全满足高灵敏度和分离度的要求。IC-PAD测定不同厂家的低聚半乳糖谱图(点击查看大图) 3. 淀粉多糖的分析对于聚糖分析,即使聚合度大于100的淀粉,离子色谱法也仍有很好的分离度和灵敏度,可分离出多达132个峰!其他检测方法望尘莫及!IC-PAD测定玉米淀粉谱图(点击查看大图) 糖型结构分析 由于赛默飞离子色谱无需衍生、灵敏度高以及专用糖色谱柱you秀的保留分离能力,其在注射液糖类分析、多糖疫苗/多糖蛋白结合疫苗和糖基化蛋白药物分析等方面亦有you秀表现。 糖基化对蛋白药物的疗效,稳定性,免疫原性具有重要的影响。糖基化蛋白经酶切后,N-糖链无需衍生即可直接离子色谱进样分析,避免了衍生过程中唾液酸的降解,减少样品前处理步骤和时间。2020版中国药典新增单抗N糖谱分析,采用ICS-6000高压离子色谱仪,配置脉冲安培检测器和Carbopac PA200色谱柱进行测定。此外,赛默飞独有的IC-Q Exactive高分辨质谱联用技术,可鉴定出更多的糖型,适用于复杂唾液酸修饰的糖型,可极大的完善和推动糖蛋白类药物N-糖链的质控分析。单克隆抗体N-糖链 (a) LC-MS/MS完整分析流程, (b) IC-MS分析流程(点击查看大图)滑动查看更多IC-PAD和IC-QE检测N-糖型结果(点击查看大图) zui后为大家总结了离子色谱法测定糖类物质的标准方法和推荐色谱柱,诚意满满!!!离子色谱法测定糖类物质标准方法和推荐色谱柱(点击查看大图)高品质明星耗材,助力检测事半功倍!5月6日起,离子色谱耗材官网全线7折,购抑制器+任意耗材低至6.8折!更有热点应用方案免费下载,尽请期待!? 下单即赠: 摩飞果汁机/蕉下太阳伞/幻响蓝牙耳机? 促销代码:IC0501如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 实验室里的那些事儿,大环糖肽类手性固定相(一)
    小时候,实验室一直是一个带有神秘色彩的地方,就像宇航员穷其一生追求浩瀚的宇宙,科学家们总是和实验室断不开联系,穿着白大褂,在房间里研究着一些令人惊奇的事情。后来,我们走进大学的校园,实验室也不那么神秘,成为了我们经常出入的场所,每天都有着有趣的故事在上演。 2021年开年,默克分析化学给大家汇总了2020年的百余篇干货满满的微信小文章。希望有陪伴到您在实验室里的美好时光,感兴趣的同学们可以戳链接,回看全年的精彩哦。 在方法开发部分里,我们给大家简单介绍了手性开发的一些要点和概念。 关于手性Chirality,小朋友你是否有很多问号?走进环糊精和气相手性柱的精彩世界 2021年,默克分析化学的干货也不会少的!接下来我们将带大家深入了解大环糖肽类手性固定相,拿出您聪明的小脑瓜,让我们开始吧! 图1 大环糖肽型万古霉素手性固定相大环抗生素其分子量一般在500-3000之间,分子中具有众多官能基团和不对称中心,其中糖肽型化合物还具有空穴结构。因此该类化合物可以与手性分子发生多种相互作用如:范德华力疏水作用离子作用氢键作用偶极-偶极作用π-π 电荷转移作用 离子相互作用存在离子相互作用是大环糖肽型手性固定相与市场上众多产品的真正差异化所在。 大环糖肽类抗生素是目前较为成功的大环抗生素类手性选择剂,包括瑞斯托菌素A (Ristocetin A)、替考拉宁(Teicoplanin)、万古霉素(Vancomycin)(如图1所示)及其衍生物。 优点:ü 耐用和LC-MS兼容可用于含水和非水流动相,多种分离模式可选(正相、反相、极性有机、极性离子等)ü 对溶剂或添加剂无记忆效应,适用于中性、极性和可电离化合物的分离ü 吸附解吸速度快,有利于提高制备的速度和效率 我们以大环糖肽型万古霉素手性固定相为例:CHIROBIOTIC V and V2 为大环糖肽型万古霉素手性固定相,两者的不同主要体现在键合化学特性且填料颗粒的孔径,因而各自具有不同的选择性和制备能力: • 键合相:万古霉素 • 工作pH范围: 3.5 - 7.0 • 粒径:5μm 或 10μm • 孔径:100 Å (CHIROBIOTIC V)或200 Å (CHIROBIOTIC V2) 应用举例:氟西汀Fluoxetine在Astec CHIROBIOTIC V2上极性离子模式下手性拆分:华法令Warfarin在Astec CHIROBIOTIC V上反相模式下手性拆分:沙利度胺Thalidomide在Astec CHIROBIOTIC V2上极性有机模式下手性拆分:美芬妥因Mephenytoin在Astec CHIROBIOTIC V上正相模式下手性拆分: 未完待续默克分析化学会持续和您分享实验室里的那些事儿,分享实验室里的小技巧,关于大环糖肽类手性固定相,还有更多精彩干货,记得关注我们哦。
  • 聚焦学术前沿,2021年全国糖科学与糖工程学术会议暨产业论坛圆满闭幕!
    仪器信息网讯 7月11日,2021年全国糖科学与糖工程学术会议暨产业论坛在重庆圆满闭幕。大会为期两天,吸引了全国近千名代表参会,仪器信息网作为大会独家直播合作媒体进行了全程报道。11日,大会进入第二天日程,上午3个分会场同时进行,分别为糖链/糖蛋白生物合成与表达体系分会、蛋白质糖基化修饰分会、多糖/寡糖结构功能与应用技术分会,共邀请40位专家、学者阐述糖科学前沿最新研究成果,分享糖工程技术的最新进展。糖链/糖蛋白生物合成与表达体系分会现场蛋白质糖基化修饰分会现场多糖/寡糖结构功能与应用技术分会现场11日下午,中国科学院院士饶子和、中国科学院微生物研究所研究员金城担任大会主持。中国科学院院士、中国生物工程学会理事长高福作了题为:《蛋白糖基化在病毒感染与免疫识别中的作用》大会开场报告。大会报告现场中国科学院院士饶子和视频主持中国科学院微生物研究所研究员金城主持中国科学院院士、中国生物工程学会理事长高福报告题目:《蛋白糖基化在病毒感染与免疫识别中的作用》高福院士在报告中指出,人类的生命活动离不开糖,并讲述了糖生物学的重要性,蛋白翻译后修饰(PTM)、糖基化修饰对肿瘤免疫治疗的影响、SARS病毒S蛋白的N糖、O糖研究现状,重点介绍了和病毒感染相关的高度糖基化免疫球蛋白PD-1,从不同表达系统PD-1蛋白的稳定性差异等方面研究,总结出保守的N糖结构导致其特异性降低、PD-1抗体药研发要尽量避开糖基化修饰位点。高福院士在会上对本次会议给予高度的肯定,同时强调了糖科学与糖工程在生命科学研究中的关键作用以及在大健康产业应用中的广阔前景和迫切需求,呼吁更多的专家学者和产业界人士关注糖科学研究与糖工程产业。此外,中国科学院上海有机化学研究所研究员俞飚、东北师范大学教授周义发等特邀嘉宾分别作了精彩的大会报告。中国科学院上海有机化学研究所研究员俞飚报告题目:《Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus》细菌表面的脂多糖,是革兰氏阴性菌细胞壁的重要成分,其多糖大都具有显著的诱导炎症的效应,是细菌内毒素的主要成分。俞飚研究员在二糖水平上解决了其中难以构建的β-D-甘露糖苷键的大量合成,把正交保护的二糖砌块制备成给体和受体,通过较易控制的α-鼠李糖糖苷化反应得到四糖,通过迭代组装得到了全保护的8糖、16糖、32糖、64糖和128糖,并详细介绍了线性最长的128聚糖化学合成方法、表征方法和对免疫的影响。东北师范大学教授周义发报告题目:《天然活性多糖的构效关系研究策略》天然活性多糖构效关系的核心问题和研究策略在糖类研究中十分重要。周义发教授从建立组合法分离纯化多糖/寡糖的技术体系、综合分析方法、糖降解酶库等方面介绍了多糖构效关系的研究策略。以人参多糖为例,建立了系统纯化人参多糖的方法,得到了人参多糖的各种级分,将国内外人参多糖的研究工作关联起来。随后,张树政糖科学获奖者南方科技大学教授王鹏、西北大学教授关锋、浙江大学教授易文、中国科学院上海药物研究所研究员黄蔚作大会报告。南方科技大学教授王鹏报告题目:《为糖生物学提供工具》王鹏教授介绍了核心化学合成/酶促扩增(CSEE) 方法。从5个简单的单糖出发, 通过化学合成的方法得到8种末端含GlcNAc的N-Glycan核心结构, 然后 使用糖基转移酶通过遵循多种不同的生物合成途径来延长核心,以产生具有高度 多样性的含5-15单糖的寡糖化合物, 使用CSEE方法最终生产了含73个糖的N-糖文库(Chemical Science, 2015, 6, 5652) 。此外,王鹏教授还分享了在寡糖和糖肽合成的自动化 、合成糖组学、糖基化抗肿瘤药物等方面的研究成果。西北大学教授关锋报告题目:《基于组学的肿瘤糖生物学研究》在异常糖基化修饰与肿瘤特征的关系中,肿瘤细胞有自给自足生长信号、抗生长信号的不敏感、抵抗细胞死亡、潜力无限的复制能力、持续的血管生成、组织浸润和转移、避免免疫摧毁、促进肿瘤的炎症、细胞能量异常、基因组不稳定和突变等十大特征。关锋教授讲解了基于MALDI-TOF技术解析细胞/组织模型中糖链的表达差异,建立化学衍生结合质谱鉴别不同键型唾液酸链接的方法、乳腺癌中FUT8的分子调控机制、癌细胞平分糖链变化等。浙江大学教授易文报告题目:《乙酰葡萄糖胺修饰(O-GlcNAc)的研究》O-GlcNAc修饰在生物体内极其重要,具有单糖、可逆修饰、对环境敏感、修饰丰度低等特点。修饰协调胚胎发育、免疫应答及细胞分化。而修饰异常则会导致肿瘤病变、发育缺陷、代谢失衡。易文教授从如何捕捉O-GlcNAc修饰、如何确定O-GlcNAc修饰的蛋白、O-GlcNAc如何调控蛋白的功能等三个关键问题,介绍团队对O-GlcNAc的研究。中国科学院上海药物研究所研究员黄蔚报告题目:《蛋白糖基化调控方法及其在糖类药物研究中的应用》蛋白质糖基化可以提高药物治疗效果和降低毒副作用,但蛋白结构复杂多样,通过表达体系调控N-糖基化具有一定挑战性。黄蔚研究员建立和发展了细胞表面受体糖链编辑方法与技术,利用各类Endo糖苷酶及其突变体的底物选择性,分别对细胞表面糖链进行亚型选择性“删除”和“插入”操作,实现对膜蛋白糖基化的结构编辑。此外,黄蔚研究员还分享了在抗体药物糖基化的调控策略、基于糖基化的药物受体分子模型、GPCR等药物受体糖基化的研究。报告结束后,中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持产业论坛。本次论坛聚焦大健康背景下糖工程产业的机遇与挑战、糖科学研究转化中存在的问题以及未来糖工程产业的发展方向等。中国生物物理学会糖生物学分会会长王鹏、中科院微生物生理与代谢工程重点实验室主任陶勇、华熙生物科技股份有限公司首席科学家郭学平、东北师范大学生命科学学院院长周义发、北京同仁堂股份有限公司科学研究院部长范国强、国家糖工程技术研究中心副主任肖敏、澳门国际中草药糖科学研究学会会长赵宁、先正达集团(中国)生物农药产品线经理宋荣,共同上台参与论坛的讨论。中国生物工程学会糖生物工程专业委员会主任委员、大会主席杜昱光主持糖工程产业论坛现场论坛围绕糖科学研究如何与大健康产业的需求紧密结合、中医药多糖的发展趋势、在大健康背景下,企业未来的发展方向和糖工程的关系、糖工程技术转化的要点痛点与难点、糖工程产业未来3-5年的风口和高潜力发展地区、中国需要糖工程产业,年轻人创业如何选择,如何开始等问题展开热烈的讨论。为奖励做出优秀科研工作的研究生和博士后,大会特设“优秀墙报奖”颁奖环节。经过评审委员会的严格评选,共选出十名优秀墙报奖获奖者,分别是丁亚琦(中国科学院上海药物所)、程汉超(南方科技大学)、邓陶(上海交通大学)、闫振鑫(山东大学)、张念竹(大连医科大学)、项梦海(江南大学)、吴金澎(西北大学)、宋淑淑(复旦大学)、李瑞莲(中国科学院过程工程研究所)、刘思思(江南大学)。(排名不分先后)优秀墙报奖获奖者合影部分参展商后记糖工程技术是我国高新技术及新产业革命支柱之一,这次会议的召开推动了糖科学科研与产业的交流,加速了糖工程产业化的进程。为期两天的大会中,国内外糖化学、糖生物学及糖工程等领域知名的专家、学者和业界人士等在本次学术会议暨产业论坛上围绕“糖科学与糖工程产业”,共同研讨糖链结构功能、制备技术、检测分析方法,以及糖类药物、营养食品、生物医用材料研究开发等相关领域的最新研究进展和成果,并就我国糖生物工程产业的现状及产业结构升级展开了多视角、跨学科的交流。内容丰富的学术报告和讨论热烈的产业论坛都让参会代表受益匪浅,让我们见识到糖科学领域的高水平发展和糖工程产业的蓬勃生机,相信通过糖科学与糖工程领域的众研究学者与产业同仁的共同努力,糖科学与糖工程的未来会绽放出更璀璨的光芒,让我们共同期待下一届将在珠海横琴举办的会议!
  • 叶明亮团队开发N-糖肽质谱谱图解析新软件 解析率提升31%
    近日,大连化物所生物分离分析新材料与新技术研究组(1809组)叶明亮研究员团队开发了一款具有高灵敏度的N-糖肽质谱谱图解析新软件——Glyco-Decipher。该软件可实现在解析谱图的过程中不依赖糖库,利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现谱图拓展,从而提高完整糖肽的鉴定灵敏度,并且可发现未知的糖链及糖链修饰。Glyco-Decipher为深度解析位点特异性糖型,揭示糖基化修饰的微观不均一性,以及研究糖生物学功能等提供了新工具。  蛋白质糖基化与疾病的发生发展密切相关,临床上使用的大多数肿瘤标志物是糖基化蛋白质。在组学层次上进行位点特异性糖型的分析对发现新型疾病标志物,提高基于蛋白质糖基化的精准医学研究水平等具有重要作用。 N-糖肽质谱谱图高度复杂,谱图解析率低,且常规N-糖肽解析软件依赖糖库,无法实现未知糖链及修饰糖的鉴定。为解决上述问题,本工作开发了非糖库依赖的肽段序列鉴定方法,实现了未知糖链肽段及其上可能带有的修饰基团的鉴定。为解决N-糖肽质谱谱图解析率低的问题,团队系统研究了糖肽的碎裂规律,发现糖链的种类、组成、母离子价态等对肽段骨架的碎裂模式没有显著的影响,建立了肽段序列相同的完整糖肽谱图之间的联系,发展了基于“模式识别”的肽段序列鉴定策略,实现了完整糖肽的谱图拓展,在原有基础上将完整糖肽的解析率提升了31%。  本工作还以蛋白Prosaposin为例,展示了蛋白Prosaposin在老鼠的五个不同的组织中糖基化差异,进一步揭示了该蛋白上各个位点特异性糖型的丰度分布,展示了Glyco-Decipher在蛋白糖基化分析领域的应用潜力。通过对同一个N-糖肽质谱数据进行对比分析,发现Glyco-Decipher的谱图解析效率比其它软件提升了34-179%。该软件具有友好的用户界面和较好的定量比较功能,学术界可以免费使用(软件可从github下载)。  叶明亮团队长期致力于位点特异性糖型分析方法的发展,包括糖肽的富集方法和谱图的解析方法:在O-GlcNAc糖肽的富集方面发展了酶促标记结合化学氧化法(Anal. Chem., 2021)、可逆酶促化学标记法(Angew. Chem. Int.Edit., 2022)等方法;在O-GalNac糖肽的富集方面发展了酶解辅助的亲水作用色谱法(Anal. Chem., 2017)、酶化学方法(Anal. Chem., 2018)、Ti-IMAC富集方法(Anal. Chem. 2021)等;在N糖肽的富集方面发展了适合大样本分析的自动化富集方法(Anal. Chem., 2021);在O-GalNac糖肽的谱图解析方面,发展了O-search检索策略(Anal. Chem., 2019),有效地减小了检索空间,提高了鉴定灵敏度。最近,上述检索策略被集成于一款具有自主知识产权的谱图检索软件——MS-Decipher(Bioinformatics, 2022)中。  相关研究成果以“Glyco-Decipher Enables Glycan Database-independent Peptide Matching and in-depth Characterization of Site-specific N-glycosylation”为题,于近日发表在《自然-通讯》(Nature Communications)上。该工作的共同第一作者是大连化物所1809组博士研究生方正和秦洪强研究员。上述工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等项目的支持。
  • 上海发布母乳低聚糖团体标准乳粉再掀新风口?
    近日,上海市食品化妆品质量安全管理协会正式发布《婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的测定》(以下简称“标准”),母乳低聚糖(HMOs)是母乳中第三大固体成分,这是国内首个使用液相色谱法同时检测婴配粉及调制乳粉中7种HMOs的团体标准,大大增加了HMOs的推广可能性。  去年10月,HMOs正式被批准在奶粉中添加,公告一出就掀起了热潮。蒙牛、伊利、君乐宝等纷纷推出国内首款HMOs奶粉,HMOs已然成为奶粉品牌科研力、创新力、产品力等竞争最热门的领域之一。  业内分析人士指出,HMOs的应用对行业的母乳化研究起着至关重要的作用,为行业生产、检测、监管等环节提供了明确的技术指导,助力提升行业的整体技术水平,保证产品的质量和安全,为消费者提供更加优质、健康的产品。  上海发布团体标准  3月4日,上海市食品化妆品质量安全管理协会正式发布HMOs团体标准,该标准由上海市质量监督检验技术研究院、雅士利、宜品乳业、美赞臣营养品、蓝河营养品、上海花冠营养乳品、安捷伦科技等单位共同起草。  母乳低聚糖是母乳中第三丰富的固体成分,具有调节免疫系统、抗炎症、降低呼吸道感染的发病率、促进双歧杆菌的生长、有益于肠道健康、促进大脑发育等功能,对于婴幼儿的健康成长起到重大帮助作用。乳粉中母乳低聚糖的添加,能够实现对母乳结构更深入的模拟,因此其在生产加工中的应用日益广泛。  此前上海市食品化妆品质量安全管理协会发布的征求意见稿中指出,母乳低聚糖的主要添加形式为7种:2'-FL、3-FL、3'-SL、6'-SL、LNT、LNnT、DFL,但目前国内获批允许添加的仅为2'-FL和LNnT。为保证母乳低聚糖添加型产品的安全生产和质量水平,也为此类新产品的后续研发推波助澜,此次标准中建立了婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的检测方法。  目前国际上没有关于母乳低聚糖检测的相关标准,国内也尚未出台国家标准或行业标准,仅有2个团体标准,分别为天津市奶业科技创新协会的团标方法T/TDSTIA 032-2023《婴幼儿配方乳粉中7种母乳低聚糖含量的测定液相色谱-质谱法》和中国食品科学技术协会的团标方法T/CIFS 007-2022《食品中2'-岩藻糖基乳糖的测定离子色谱法》。上海市食品化妆品质量安全管理协会表示,质谱仪器价格相对昂贵,实验成本较高,离子色谱法所检测的单一原料,无法满足同时添加了多种母乳低聚糖产品的检测需求。  此次上海发布的团体标准在现有检测方法的诸多问题上做了突破性改变,较好地解决了基质干扰影响较大、无法同时检测婴配粉及调制乳粉中7种HMOs等最大难点。采用本标准的方法,母乳低聚糖的标准溶液与峰面积响应值之间存在着良好的线性关系,相关系数R2≥0.99。添加标准物质,对婴幼儿配方奶粉和调制乳粉等样品进行母乳低聚糖精密度和准确度的测定,能够符合GB/T 27404-2008中的相关规定。  乳业分析师宋亮表示,“因为HMOs的形成不一样,所以检测的方法不一样,可能会有一些偏差。但既然公布了,说明上海的检测方法和之前两个检测方法不会有任何冲突,在检测的精准度上也都会达标”。  国内乳企抢滩布局  2023年10月7日,国家卫健委官网公布2种母乳低聚糖(HMOs)原料——2'-岩藻糖基乳糖(2FL)、乳糖-N-新四糖(LNnT),正式获批用于国内奶粉产品。国产奶粉正式进入HMOs时代,蒙牛、伊利、君乐宝、宜品等奶粉品牌纷纷抢滩布局。  在众多HMOs 原料获批的生产企业中,蒙牛是首批获批企业中唯一的中国本土企业。早在2023年6月份,蒙牛自研HMOs就获得美国SELF-GRAS市场准入许可,正式进军国际市场,突破了长久上游原料“卡脖子”的困境。  蒙牛瑞埔恩研发人员向北京商报记者介绍,“我们花了一年多的时间,比较了液相色谱-串联质谱仪、离子色谱仪以及液相色谱仪三种检测设备,选择了国内外各种奶粉基质产品,做了上千次的试验,最终确定选择液相色谱仪配荧光检测器进行HMOs的检测方法推广性强”。  母乳低聚糖在国内并不陌生,在国内政策和应用落地前,已在全球100多个国家和地区批准上市,雀巢、惠氏、美赞臣、菲仕兰、雅培等外资巨头已利用跨境购渠道将这类奶粉卖到中国市场。  据了解,惠氏营养品早在30三十多年前就开展母乳低聚糖(HMOs)相关研究,发表了70多篇文献,拥有100多项专利成果。目前,惠氏及雀巢集团已在70多个国家推出HMOs相关产品,年销售高达13亿瑞郎,获得全球市场广泛认可。在中国市场,惠氏自2017年便开始了对HMOs产品的布局,在中国香港市场推出了首款启赋HMOs产品,并通过跨境渠道登陆中国大陆市场。此外,美国婴幼儿奶粉巨头雅培也较早布局了该品类。  目前,蒙牛推出了首款自主研发HMOs奶粉瑞哺恩,伊利旗下伊利金领冠推出“珍护铂萃”儿童成长配方奶粉,飞鹤推出了HMOs奶粉星飞帆卓睿4段,君乐宝推出了添加HMOs成分的小小鲁班“诠维爱未来”奶粉,国内掀起了一波HMOs奶粉上市潮。  新风口下面临挑战  近年来,在出生率持续下降、产业减能、市场萎缩的背景下,国内奶粉市场竞争愈发激烈。面对HMOs风口,乳企纷纷升级迭代新品,也引发了消费者对奶粉涨价的担忧。  2024年开年,北京商报记者从母婴渠道了解到,已有包括皇家美素佳儿、澳洲a2在内的多个奶粉品牌调价,佳贝艾特、飞鹤星飞帆等发出调价通知。  对此,宋亮表示,“添加了HMOs和奶粉涨价没有必然关系,只是给消费者多了一种选择。调价不是涨价,奶粉行业经过四年的价格战,近期价格向上浮动是正常的,价盘会逐步恢复到2020、2021年的水平”。  不过,受到原料成本、生产成本等因素影响,在国内市场竞争激烈的背景下,国内奶粉品牌确实面临挑战。2021年,国产奶粉的市场占有率一度超过60%。但据菲仕兰、达能等外资奶粉品牌近期发布的2023年财报显示,包含婴幼儿配方奶粉业务板块在中国市场的业绩却不降反增。  宋亮认为,外资乳企市场份额逐步增长有迹可循,主要是过去四五年国内乳企在打价格战,外资乳企始终控货稳价,这也正是国产奶粉面临的困境。  根据尼尔森IQ数据,2023年中国婴幼儿配方奶粉全渠道销售额下滑了13.9%,市场大盘将进一步萎缩。这对于以婴幼儿配方奶粉为主业的乳制品企业来说,无疑加剧了存量市场的竞争态势。  知名战略定位专家、福建华策品牌定位咨询创始人詹军豪向北京商报记者表示,“外资品牌在品牌知名度、产品质量、市场营销等方面具有较强的竞争力,在国内市场占据一定优势。在消费者心中,外资品牌往往代表着高品质,因此容易获得消费者的青睐。国内乳企在面临市场竞争压力的同时,还需要加大研发投入,提升产品质量和品牌形象。在国内市场竞争激烈的背景下,部分企业可能会通过涨价来提升产品形象和利润空间”。  不过,新标准的发布,对加强对婴幼儿奶粉质量的监管,确保产品安全、可靠提供了新的方法。对乳企来说,要不断优化生产工艺和产品配方,以适应市场需求。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物 糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。 上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持! 产品信息: 货号 品名 CAS No. B691000 N-Butyldeoxynojirimycin Hydrochloride 210110-90-0 C10H22ClNO4 10/100mg a-葡糖苷酶1和 HIV cytopathicity抑制剂 E915000 N-Ethyldeoxynojirimycin Hydrochloride 210241-65-9 C8H18ClNO4 10/100mg HIV cytopathicity抑制剂 C181150 N-5-Carboxypentyl-deoxymannojirimycin 104154-10-1 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶 A187545 2,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture)   C56H63NO13 10/100mg 4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体 B690500 N-(n-Butyl)deoxygalactonojirimycin 141206-42-0 C10H21NO45/50mg a-D-半乳糖苷酶抑制剂 B690750 N-Butyldeoxymannojirimycin, Hydrochloride 355012-88-3 C10H22ClNO4 5/50mg a-D-甘露糖苷酶抑制剂 D236000 Deoxyfuconojirimycin, Hydrochloride 210174-73-5 C6H14ClNO3 10/100mg alpha-L-岩藻糖苷酶抑制剂 M166000 D-Manno-&gamma -lactam 62362-63-4 C6H11NO5 5/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和 M165150 D-Mannojirimycin Bisulfite   C6H13NO7S 1/10mg alpha-甘露糖苷酶抑制剂 D455000 6,7-Dihydroxyswainsonine 144367-16-8 C8H15NO5 1/10mg a-甘露糖苷酶抑制剂 C665000 Conduritol B 25348-64-5 C6H10O4 25/250mg b-葡糖苷酶抑制剂 C666000 Conduritol B Epoxide 6090-95-5 C6H10O5 25/250mg b-葡糖苷酶抑制剂 A155250 2-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate 132152-77-3 C16H22N2O10 25/250mg glucosamidase抑制剂 D240000 Deoxymannojirimycin Hydrochloride 73465-43-7 C6H14ClNO4 10/100mg mammalian Golgi alpha- mannosidase 1 抑制剂 M297000 N-Methyldeoxynojirimycin69567-10-8 C7H15NO4 10/100mg N-连接糖蛋白高斯过程干扰剂 A158400 2-Acetamido-1,2-dideoxynojirimycin 105265-96-1 C8H16N2O4 1/10mg N-乙酰葡糖胺糖苷酶抑制剂 A157250 O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate 132489-69-1 C15H19N3O7 5/10/100mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 A157252 (Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate 1331383-16-4 C15H14D5N3O7 1/10mg O-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂 M334515 4-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester   C26H31NO12 25mg T2DM糖苷酶抑制剂 G450000 4-O-&alpha -D-Glucopyranosylmoranoline 80312-32-9 C12H23NO9 1/10mg &alpha -葡萄糖苷酶抑制剂 D231750 1-Deoxy-L-altronojirimycin Hydrochloride 355138-93-1 C6H14ClNO4 5/50mg &alpha -糖苷酶抑制剂 H942000 N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt   C8H18ClNO5 0.5/5mg &alpha -糖苷酶抑制剂 H942015 N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride   C8H18ClNO5 1/10mg &alpha -糖苷酶抑制剂 H942030 N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride   C8H18ClNO55/50mg &alpha -糖苷酶抑制剂 T795200 3&rsquo ,4&rsquo ,7-Trihydroxyisoflavone 485-63-2 C15H10O5 200mg/2g &beta -半乳糖苷酶抑制剂 A158380 O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate 351421-19-7 C21H24N4O12 10/100mg 氨基葡萄糖苷酶抑制剂 M166505 Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal   C13H19NO4S 2.5/25mg 保护的Mannostatin A B682500 Bromoconduritol (Mixture of Isomers) 42014-74-4 C6H9O3Br 200mg 哺乳类 alpha-葡萄糖苷酶 2 抑制剂 K450000 Kifunensine 109944-15-2 C8H12N2O6 1/10mg 芳基甘露糖苷酶抑制剂 D239750 1-Deoxy-L-idonojirimycin Hydrochloride 210223-32-8 C6H14ClNO4 10/100mg 酵母葡糖a-苷酶类抑制剂S885000 Swainsonine 72741-87-8 C8H15NO3 1/10mg 可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂 T295810 [1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone 149952-74-9 C8H11NO4 10/100mg 苦马豆素和衍生物合成中间体 N635000 Nojirimycin-1-Sulfonic Acid 114417-84-4 C6H13NO7S 10/100mg 葡糖苷酶类抑制剂 V094000(+)-Valienamine Hydrochloride 38231-86-6 C7H14ClNO4 1/10mg 葡糖苷酶抑制剂 D440000 2,5-Dideoxy-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 葡糖苷酶抑制剂 D494550 N-Dodecyldeoxynojirimycin 79206-22-7 C18H37NO4 10/100mg 葡糖苷酶整理剂 D479955 2,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside 111495-86-4 C12H13FN2O9 5/50mg 葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖 A653270 2,5-Anhydro D-Mannose Oxime, Technical grade 127676-61-3 C6H11NO5 10/100mg 潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺 D236500 1-Deoxygalactonojirimycin Hydrochloride 75172-81-5 C6H14ClNO4 10/100mg 强效的和有选择性的d半乳糖苷酶抑制剂 D236502 Deoxygalactonojirimycin-15N Hydrochloride   C6H14Cl15NO4 5/25mg 强效的和有选择性的d半乳糖苷酶抑制剂 B445000 (2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine 105015-44-9 C6H13NO4 10/100mg 强有力的和特定的糖苷酶抑制剂 M166500 Mannostatin A, Hydrochloride 134235-13-5 C6H14ClNO3S 1/10mg 强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂 A858000 N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose 86979-66-0 C13H16N4O7 1/10mg 人类红细胞单糖运输标签抑制剂 C185000 Castanospermine 79831-76-8 C8H15NO4 10/100mg 溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂 D439980 1,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride 114976-76-0 C6H14ClNO4 5/50mg 糖蛋白甘露糖苷酶抑制剂 A608080 N-(12-Aminododecyl)deoxynojirimycin 885484-41-3 C12H26N2O4 5/50mg 糖苷酶亚氨基糖醇制备用试剂 I866350 1,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose 53167-11-6 C8H12O5 100mg/1g 糖苷酶抑制剂制备试剂 A648300 2,5-Anhydro-2,5-imino-D-glucitol 132295-44-4 C6H13NO4 10/100mg 糖水解酶类抑制剂 A648350 2,5-Anhydro-2,5-imino-D-mannitol 59920-31-9 C6H13NO4 1/10mg 糖水解酶类抑制剂 M257000 3-Mercaptopicolinic Acid Hydrochloride 320386-54-7 C6H6ClNO2S 500mg/5g 糖质新生抑制剂 B286255 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin 138381-83-6 C21H23NO6 5/50mg 脱氧野尻霉素衍生物 B286260 N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate 153373-52-5 C25H27NO8 2.5/25mg 脱氧野尻霉素衍生物 D245000 Deoxynojirimycin 19130-96-2 C6H13NO4 10/100mg 脱氧野尻霉素抑制哺乳类葡糖苷酶1 A172200 N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt 209977-53-7 C11H16NNaO8 10/100mg 细菌、动物和病毒抑制剂 C181200 N-5-Carboxypentyl-1-deoxynojirimycin 79206-51-2 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C181205 N-5-Carboxypentyl-1-deoxygalactonojirimycin 1240479-07-5 C12H23NO6 5/50mg 制备亲和树脂的配体,用于纯化葡糖苷酶I C645000 Conduritol A 牛奶菜醇A 526-87-4 C6H10O4 1/10mg   C667000 Conduritol D牛奶菜醇D 4782-75-6 C6H10O4 10mg   I868875 1,2-Isopropylidene Swainsonine 85624-09-5 C11H19NO31/10mg   更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 凝胶过滤层析中的葡聚糖凝胶
    葡聚糖凝胶简介月旭科技的交联葡聚糖产品名是Tandex,Tandex不溶于水,但有较强的亲水性,能迅速在水和电解质溶液中吸水膨胀,而且在碱性环境中比较稳定,所以用适当浓度的碱液(一般为0.2mol/L)可除去吸附在凝胶上的污染物。Tandex G是由葡聚糖和3-氯-1,2-环氧丙烷(交联剂)以醚键交联形成的具有三维多孔网状结构的高聚物,其交联度由交联剂的百分比决定。Tandex G的种类主要有:G10、G15、G25。G后面的阿拉伯数字表示每克干胶吸水量(g水/g干胶)的10倍。例如:Tandex G25表示该凝胶在吸水膨胀时每克干胶能吸水2.5g。G反映凝胶的洗水量、排阻极限及分离范围。例如:Tandex G10的网孔结构紧密,孔径小,吸水率低,排阻极限小,只能分离分子量较小的物质;而Tandex G25的孔径大,吸水率高,可分离分子量较大的物质。因强氧化剂和强酸可使Tandex中起交联作用的糖苷键水解断裂,所以在使用时要防止其与强氧化剂和强酸接触。在中性条件下,Tandex悬浮液可进行高温煮沸溶胀和消毒,其性质不受影响。在Tandex G25中加入亲脂性的羟丙基基团,形成烷基化葡聚糖凝胶Tandex LH型。它是一种同时具备吸附性和分子筛功能的独特凝胶介质,型号是Tandex LH-20,适用于有机溶剂洗脱,分离脂溶性物质,具有高处理量,可分离结构非常相近的分子,而且分离效果好。Tandex G系列葡聚糖凝胶产品性能Tandex LH-20产品性能
  • 解决方案 | GPC在测量壳聚糖分子量及分布上的应用
    壳聚糖及其测定壳聚糖是目前研究最多的多糖类天然高分子材料,对于生物体来说,壳聚糖具有优良的生物相容性和降解性。将其植入人体后,可被人体组织中的酶缓慢吸收,是用来制作缝线和创伤覆盖材料的高分子材料。由于其优越的性能,使得壳聚糖在化工、 轻工、 医药、 食品及环境保护等领域中的开发应用研究十分活跃。 壳聚糖的学名为β-(1,4)聚-2-氨基-D-葡萄糖,是甲壳素最重要的衍生物,是除蛋白质以外含氮量MAX的有机氮源,也是自然界中仅有的碱性多糖,其相对分子量通常在10万-30万,但几乎不溶于水,其中分子量是影响壳聚糖溶解性的主要因素之一,分子量越低其溶解性就越好。 凝胶色谱法(GPC)是测定壳聚糖相对分子质量及其分布的常用方法,这将有助于推动壳聚糖作为生物医用材料的选择和设计。 应用案例——GPC测定壳聚糖本案例基于Waters1515凝胶色谱仪,搭配Ultrahydrogel色谱柱,对市售壳聚糖的相对分子量及分布进行计算。1、仪器 ▲Waters1515凝胶色谱仪,配示差检测器 2、标准品聚乙二醇标准品套组 3、实验条件01RI流通池温度40 °C02流动相50 mM 的醋酸+100 mM 硝酸钠缓冲液03流速0.45 mL/min04色谱柱Waters Ultrahydrogel 2000柱,7.8 ×300 mm05柱温40 °C 06样品稀释剂50 mM 的醋酸+100 mM 硝酸钠缓冲液07进样量50 μL08数据处理软件Empower QS +GPC计算模块色谱数据软件09样品处理1 mg/mL的壳聚糖4、结果与讨论壳聚糖样品的色谱图如下: 图1. 壳聚糖样品色谱图 利用Empower QS中GPC选项的功能,采用标样的保留时间绘制标准曲线,来计算壳聚糖样品的分子量分布,软件会自动计算出对应的重均分子量(Mw)、数均分子量(Mn)、多分散性等相关参数。 连续6针进样的重复性色谱图如下,通过计算Mw的RSD小于0.2%,表明此方法重复性良好。 Waters GPC优势行业先驱 Waters 从 1963 年起就致力于 GPC 技术的研究和开发,经过 50 多年的发展,使Waters 成长为 GPC 技术的引航者。专业 多项*技术加持,保证检测结果的准确性及重现性。易上手 简单、易操作,性能稳定,专为高聚物领域量身打造。参考文献[1] 凝胶渗透色谱法研究壳聚糖生物材料酶降解过程的均匀性[2] 用GPC研究壳聚糖氧化降解过程中的分子量及其分布_刘羿君[3] 壳聚糖作为医用高分子综述-王霞
  • 【行业应用】赛默飞发布在线衍生-气质联用法分析检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖
    赛默飞世尔科技(以下简称:赛默飞)近日发布了检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖的解决方案。 中国环境监测总站为规范全国环境空气颗粒物来源解析的监测技术,发布了《环境空气颗粒物源解析监测技术方法指南(试行)》,其中就包含正构烷酸、甾醇类、左旋葡聚糖类化合物分析方法。通过检测这类化合物的含量,来确认污染物的来源,以期更好地控制污染。其中正构烷酸被认为是植物燃烧的示踪物。甾醇类化合物主要来源于厨房油烟,可作为餐饮源的示踪物。左旋葡聚糖为纤维素热降解产物,可作为生物质燃烧的示踪物。 但正构烷酸、甾醇类以及左旋葡聚糖类化合物极性大,挥发性较差,需要通过衍生的方法来改善极性及挥发性。本方法参考《环境空气颗粒物源解析监测技术方法指南(试行)》,采用加速溶剂萃取提取后,采用在线衍生-气质联用法测定PM2.5中的正构烷酸、甾醇类、左旋葡聚糖。该方法省去了离线手动衍生的烦扰,前处理更简单快速、自动化程度更高。本实验采用赛默飞Triplus RSH 三合一自动样品前处理平台结合Thermo ScientificTM ISQTM系列四极杆 GC-MS 系统分析PM2.5中的正构烷酸、甾醇、左旋葡聚糖,样品通过Triplus RSH在线自动衍生通过气质进行定量分析,前处理简单快速、自动化程度高,结果重复性好。 更多产品信息,请查看:Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/Determination-of-normal-fatty-acid-sterol-levoglucosan-in-PM2.5-by-online-derivation-GC-MS.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 全自动乌式黏度计在壳聚糖材料中的应用
    壳聚糖又称脱乙酰甲壳素,是由自然界广泛存在的几丁质通过脱乙酰作用得到,常用名还有壳多糖、可溶性几丁质、可溶性甲壳素等。壳聚糖通常情况呈无定形固体,比旋光度[α]D11—3°~+10°。几乎不溶于水,但溶于甲酸、乙酸、苯甲酸和环烷酸等有机酸以及稀无机酸。工业品为白色或灰白色的半透明片状固体,略带珍珠光泽,无味、无毒、易降解,是少有的天然阳离子聚电解质,同时壳聚糖具有优异的抗菌、吸附、保湿锁水的功效,被广泛应用于医药、食品、环保、化妆品等领域,在创面修复、食品保鲜、污水净化、皮肤护理等方面发挥重要作用。粘度是衡量壳聚糖材料的一个重要指标,粘度的大小和壳聚糖产物的分子量有关,对产品的保湿性、成膜性、絮凝性也有影响。测定壳聚糖稀溶液的特性粘度,可以确定壳聚糖材料相对分子质量和聚合度,还可以了解其分子链在溶液中的存在形态及支化程度等。乌氏毛细管法是测试壳聚糖材料粘度的常用方法,乌氏毛细管法实验操作简便、效率高、在大多数高分子材料的研发生产相关质量控制中都起到关键作用,尤其是目前在很多材料分析领域中使用的自动乌式黏度计,以自动化智能简便替代人工及数据误差,节省人力的同时进一步提高了实验数据的稳定性。以IV3000系列全自动乌式黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程 MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV3000系列全自动乌式黏度计可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动乌式黏度计连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。5. 粘度管清洗干燥过程:仪器可自动排废液,自动清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列全自动乌式黏度计可实现自动测试、自动排废液、自动清洗,自动干燥,告别了粘度管是耗材的时代。
  • 鞠熀先团队顶级期刊发文 细胞表面聚糖检测新成果
    p   在国家自然科学基金项目项目(项目编号:90713015、91213301、91413118、21135002、21635005)等资助下,南京大学鞠熀先、丁霖教授研究团队通过十余年的持续研究,在细胞表面聚糖检测领域取得系列开创性研究成果。 /p p   糖基化模式随细胞生物过程和信号转导通路的改变而发生明显的动态变化,并对多种重要的生物过程具有调控作用。因此,活细胞表面以及特定蛋白上糖型的原位示踪不仅能够加深对蛋白质糖基化过程及其功能的理解,而且有助于新型诊断标志物和治疗靶标的甄定。 /p p   该研究组开创性提出一系列细胞表面聚糖的原位电化学、光学与扫描成像检测方法(J. Am. Chem. Soc. 2008, 130, 7224 Angew. Chem. Int. Ed. 2009, 48, 6465 Anal. Chem. 2010, 82, 5804 Anal. Chem. 2012, 84, 1452 Chem. Sci. 2015, 6, 3769),发展了特定蛋白上聚糖原位检测的多种方法(Angew. Chem. Int. Ed. 2016, 55, 5220 Chem. Sci. 2016, 7, 569 Angew. Chem. Int. Ed. 2017, 56, 8139),实现了细胞表面神经节苷脂的定量、亚型筛查与再生分析(Angew. Chem. Int. Ed. 2018, 57, 785),在细胞表面糖基的原位检测领域提出了奠基性成果(Acc. Chem. Res. 2014, 47, 979 by Prof. M. S. Strano at Massachusetts Institute of Technology),并应邀综述了该领域的发展前沿与趋势(Acc. Chem. Res. 2018, 51, 890)。 /p p   近期,该研究组利用DNA序列的编码功能,构建了一种分级编码策略(Hierarchical Coding Strategy, HieCo)。他们以细胞表面的肿瘤标志物粘蛋白MUC1为模型,O-聚糖糖链末端的唾液酸和岩藻糖为对象,巧妙地设计DNA序列和荧光基团的标记位点,结合适配体识别蛋白技术和糖代谢标记技术,对糖蛋白的蛋白、聚糖两个不同级别的结构单元进行分别编码和掩蔽,利用启动序列与时间编码的杂交引发解码过程,实现了由高级到低级的顺序解码,并提出癌细胞表面MUC1上两种单糖的同时成像方法。与已有的蛋白特异性糖型成像策略相比,该方法可反映目标糖蛋白的真实分级结构,并提供任意扩展的单糖检测通道,实现细胞生理状态改变和上皮细胞-间充质转化过程中两种单糖变化的动态监测,为揭示与聚糖相关的生命过程提供了重要工具。 /p p   这一研究成果以“A hierarchical coding strategy for live cell imaging of protein-specific glycoforms”(分级编码策略用于活细胞表面蛋白特异性糖型的成像)为题发表于Angew. Chem. Int. Ed. 2018, 57, 12007-12011(https://onlinelibrary.wiley.com/doi/10.1002/anie.201807054)。日本糖化学生物学专家Tadashi Suzuki教授在Nature的News and Views专栏以《DNA tags used to image sugar-bearing proteins on cells》为题对该工作进行了介绍和评论(Nature 2018, 561, 38-40)。该文指出:鞠、丁课题组提出的对聚糖进行DNA编码的方法“解决了同时检测特定蛋白上多种聚糖的难题” “由于作为标签的DNA序列在理论上可以有无穷多,该方法可以被拓展为多种聚糖的同时检测” 并且,所使用的DNA不会被转运到细胞内,使该方法“具有专注于细胞表面蛋白研究的优点”。Suzuki教授在评论中高度评价鞠、丁课题组的工作“具有很大的潜力,为发展绿色荧光蛋白标记的类似系统走出了重要的一步”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/f17ecf36-3d43-45f7-a14e-72dee3bde0e0.jpg" title=" 微信图片_20180928105530.jpg" alt=" 微信图片_20180928105530.jpg" / /p p br/ /p
  • 你的冻干饼够坚固吗?——使用Micropress来研究冻干饼强度对产品的影响
    40多年来,对不稳定样品采用冻干剂型一直是制药界的共识。然而,这带来了一些挑战,得到完美且坚固的冻干饼外观就是其中之一——这决定了样品是否可以承受冷冻干燥后的运输和保存等过程。目前主要对冻干蛋糕进行定性分析以确定蛋糕外观是否稳定,但这样的分析得到的结果比较主观,无法提供进一步分析所需要的数据。 图1:定性分析结果合格的冻干饼(左为甘露醇,右为葡聚糖)如图1所示,葡聚糖和甘露醇这两种截然不同的赋形剂可用作冻干制剂中的填充剂或热稳定剂。冷冻干燥后,葡聚糖和甘露醇都会产生白色的饼状物,并且看起来结构相似,很可能在生产后通过质量控制的目视检查。然而,含有这些赋形剂的冻干蛋糕可能具有非常不同的物理特性,这可能会影响蛋糕在运输后的外观,以及它们的复原速度。因此需要一小批来提供关于冷冻干燥产品在运输过程中保持稳定的概率的定量数据。1、MicroPressMicroPress提供关键数据 图2:MicroPress冻干饼强度定量分析仪MicroPress是一种可以原位定量测定冻干饼强度和物理特性的仪器。通过设置参数和分析方法,MicroPress将能够分析您的冻干饼结构。这允许对您的产品进行快速有效的批量筛选,节省大量时间和人员成本。使用MicroPress可以在不到一分钟的时间内完成冻干饼的定量分析。MicroPress能够提供关键数据,说明所生产的产品是否能够在从制造现场到临床现场甚至到当地药房的潜在破坏性过程中幸存下来。虽然 MicroPress 分析会在冻干饼表面留下一个小凹痕,但仍可用于其他类型的分析如Karl-Fischer和DSC,以提供更多信息。2、如何使用MicroPress分析冻干饼?如表1所示,根据浓度对样品溶液进行区分,并稀释到100ml水中。容器为6ml玻璃小瓶,每个小瓶填充2ml:样品浓度配方编号甘露醇10mg/ml120mg/ml230mg/ml3葡聚糖10mg/ml420mg/ml530mg/ml6 表1:配方详情列表这些小瓶采用如表2中所示的方法进行冷冻干燥。所有样品均使用相同的一组参数进行分析,使所有样品充分预冻并尽可能增大结晶的尺寸,然后再进行初级干燥步骤。在初级干燥阶段,降低压力以促进冰的升华,从而更快地干燥产品。所有样品都放在冻干机的同一托盘上,以控制干燥过程中出现的变量。预冻程序StepTemp(℃)Time(min)Vacuum(mTorr)Ramp/Hold1205OffH2-40120OffR3-40120OffH干燥程序StepTemp(℃)Time(min)Vacuum(mTorr)Ramp/Hold1-4600100H20801006302700100H4204050R52072050H 表2:冻干程序详情列表所有样品均使用MicroPress上的相同参数设置进行分析(见表3)。MicroPress采用人性化的软件设计,参数设置简单,随时可根据需要进行更改。阶段速度(mm/s)压头延伸10定位0.1*次挤压0.05第二次挤压4停止- 表3:MicroPress运行程序延伸阶段以10mm/s的速度将压头移动到预估冻干饼高度的5mm以内;定位阶段找到蛋糕的顶部;一旦检测到顶部,就会开始挤压冻干饼,然后记录施加在冻干饼上的力。从图3(左)可以看出,3%葡聚糖显示出弹性特性,这个特性由减压阶段从40%应变返回到18%应变的曲线得到证明。图3(右)描绘了3%甘露醇冻干饼的*结果,它显示了与3%葡聚糖非常不同的图表。右图显示了一个易碎的饼体,它无法承受太大的压力。 图3:3%葡聚糖(左)与3%甘露醇(右)在MicroPress中的分析图像甘露醇的浓度从1%增加到2%的过程中,杨氏模量(Youngs Modulus)从最弱到最强增加了近10倍(图4左)。但从3%甘露醇的强度并不比2%高 ,相反3%甘露醇冻干饼的平均杨氏模量降低了,但相比2%浓度的标准偏差有所增加,样本之间的差异变得更大。图4右显示提升葡聚糖浓度的结果是得到了比甘露醇强得多的冻干饼,且葡聚糖的浓度从1%到3%,冻干饼的杨氏模量增加了107%,发生变形所需的力倍增。由于蛋糕的整体强度超过了MicroPress 的测量范围,无法确定其能承受的*应力。然而,这可以通过更小直径的压头来解决,以确保能达到被测量冻干样品的*应力。 图4:不同浓度的甘露醇(左)和葡聚糖(右)得到的平均杨氏模量结果从以上结果可以看出,MicroPress能够确定蛋糕的杨氏模量和冻干饼在结构破坏前所能承受的*应力。上述的结果表面,对于塑造更好的冻干饼外观,甘露醇的性能不及葡聚糖。杨氏模量和*应力也与冻干配方中赋形剂的浓度相关——浓度越高,冻干饼越结实。甘露醇相对缺乏稳定性和强度可能与许多因素有关,比如冻干饼的孔径和多态性。 图5. 由MicroPress记录并分析的各个样品的强度数据结论MicroPress清楚地定量分析了冻干样品的强度和物理特性。它的分析过程可以得到更精确的冻干饼强度数据,因此更确定冻干样品在整个运输和处理过程中保持外观和性能稳定。这些结果证实甘露醇使用甘露醇作为赋形剂来增加蛋糕强度可能并不是一个理想的选项。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制