当前位置: 仪器信息网 > 行业主题 > >

哌嗪基苯并异噻唑

仪器信息网哌嗪基苯并异噻唑专题为您提供2024年最新哌嗪基苯并异噻唑价格报价、厂家品牌的相关信息, 包括哌嗪基苯并异噻唑参数、型号等,不管是国产,还是进口品牌的哌嗪基苯并异噻唑您都可以在这里找到。 除此之外,仪器信息网还免费为您整合哌嗪基苯并异噻唑相关的耗材配件、试剂标物,还有哌嗪基苯并异噻唑相关的最新资讯、资料,以及哌嗪基苯并异噻唑相关的解决方案。

哌嗪基苯并异噻唑相关的资讯

  • 赛默飞发布盐酸法舒地尔药品中高哌嗪含量检测方案
    2014年12月8日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布盐酸法舒地尔药物中高哌嗪含量检测方案。盐酸法舒地尔作为高效的血管扩张药物,可以有效缓解脑血管痉挛,是一种具有广泛药理作用的新型药物。高哌嗪是盐酸法舒地尔合成过程的中间体杂质,其测定方法鲜有文献报道,主要原因是高哌嗪含量较低,在常规的反相色谱柱上保留较弱,同时没有紫外吸收。因此本检测方法采用离子色谱的方法,电导作为检测器测定盐酸法舒地尔药品中高哌嗪的含量。盐酸法舒地尔的结构图 赛默飞发布离子色谱法检测盐酸法舒地尔中高哌嗪含量,采用ICS-2100系统,配备EG淋洗液发生装置,在前处理过程中将药物盐酸法舒地尔去除,采用与流动相浓度一致的17 mmol/LMSA作为溶解样品的最佳溶液,配备Ion Pac CS17色谱柱,选择15%含量的乙腈作为淋洗液条件,在此分析条件下,采用离子色谱技术分析盐酸法舒地尔中高哌嗪的含量,方法简单,分离柱效高,测定结果满足要求。高效离子色谱方法在药物杂质离子的测定中有比较广泛的应用前景。ICS-2100 RFIC 离子色谱系统产品详情:www.thermo.com.cn/Product6474.html应用纪要:《离子色谱法测定盐酸法舒地尔药物中高哌嗪含量》下载地址:www.thermo.com.cn/Resources/201410/30102057126.pdf --------------------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 常州涂料院主导制定的《使用LC-UV和LC-MS测定罐内异噻唑啉酮》国际标准项目成功进入DIS阶段
    3月14日,由中海油常州涂料化工研究院有限公司(简称:常州涂料院)主导制定的ISO 7012-3《色漆和清漆—水可稀释性涂料中防腐剂的测定─第3部分: 使用LC-UV和LC-MS测定罐内异噻唑啉酮》国际标准项目成功进入DIS(询问草案)投票阶段,标志着该国际标准草案的技术性内容已基本完善。据了解,异噻唑啉酮类生物杀伤剂具有潜在的接触致敏性,能引发接触性皮炎,出现过敏反应,国际上对纺织品、化妆品、玩具产品、指画颜料等产品中的异噻唑啉酮出台了多项限值法规。我国的国家标准GB/T 35602-2017《绿色产品评价 涂料》和GB 18582-2020《建筑用墙面涂料中有害物质限量》也有对该类生物杀伤剂的限制规定。异噻唑啉酮类生物杀伤剂生产工艺成熟,价格适中,在涂料领域有广泛的使用,主要用于涂料在生产后及使用前的罐内防腐;但过高的异噻唑啉酮添加量将导致施工人员、终端用户群体产生过敏性反应,严重时将威胁生命安全。因此,准确测定涂料中异噻唑啉酮含量非常重要。ISO 7012-3国际标准的内容是以常州涂料院牵头制定的国家标准GB/T 37363.1-2019内容为基础,融合了多年的最新使用经验和理念,并结合国内外相关检测技术的最新发展水平而提出,方法先进、可行。该国际标准项目由常州涂料院在2019年5月召开的ISO/TC 35上海国际标准化年会上首次提出,2021年5月成功获批立项,后续经历了长达1年多的国际比对试验过程(包括试验方案制定、试验样品制备和分发、国内外7家实验室参加试验及试验数据的分析)、近20次的ISO工作组会议讨论,目前项目成功进入DIS投票阶段,DIS阶段投票将于6月6日结束,预计将于2024年正式发布。标准发布后,有利于在全球范围内统一涂料中异噻唑啉酮含量测试方法、控制涂料中异噻唑啉酮含量水平,对于推动涂料产品低污染化、保护施工人员和终端用户群体身心健康发挥着积极作用。2024年第1季度,除了主导制定的国际标准ISO 7012-3取得阶段性进展外,常州涂料院主导修订的另一项重要国际标准ISO 11890-1《色漆和清漆——挥发性有机化合物(VOCs)和/或半挥发性有机化合物(VOCs)含量的测定——第1部分:重量法测定VOC》也于2月16日启动了FDIS投票,该标准有望在2024年中发布。接下来,常州涂料院国际标准化团队将在各级领导的关心帮助下和各部门的支持下,继续做好国内外资源的协调利用,完善标准内容,推动2项标准取得有效进展。
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。   一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。   二、各兽药残留基准实验室药物检测范围   (一)国家兽药残留基准实验室(中国兽医药品监察所)   1.一般兽药品种   (1)抗微生物药   四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙   星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。   (2)抗寄生虫药   二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。   2.禁用药物清单品种   β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。   (二)国家兽药残留基准实验室(中国农业大学)   酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、   一般兽药品种抗微生物药   磺胺类:磺胺二甲嘧啶、磺胺甲   磺胺间甲氧嘧啶、甲氧苄啶。   抗寄生虫药   阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西   磺胺类:磺胺喹   钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、   癸氧喹酯、氢氢溴酸常山酮。   具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种   氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。   3.禁用药物品种   洛硝达唑   (三)国家兽药残留基准实验室(华南农业大学)   β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄   一般兽药品种抗微生物药一般兽药品种抗微生物药   西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。   咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡   啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、   氟胺氰菊酯。   性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。   杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。   群勃龙、醋酸氟孕酮。   (四)国家兽药残留基准实验室(华中农业大学)   氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。   苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。   糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。   喹噁啉类:卡巴氧   硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋   喃妥因、呋喃西林。   硝基化合物:硝基酚钠、硝呋烯腙。   杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动   物)。   砜类抑菌剂:氨苯砜。   三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。   二0一一年七月二十九日
  • 真的有“0添加”防腐剂化妆品?智商税!
    我们常用的化妆品,如护肤、彩妆、洗护类产品,由水、油脂和营养物质组成,是微生物增生、繁殖的培养基地,极易变质腐败。为了延长化妆品使用寿命,在生产的过程中需加入适量的防腐剂。根据文献资料和新闻报道,绝大多数化妆品所谓的“0添加”只是没有添加《化妆品安全技术规范》中列出的防腐剂,而是使用了其他替代防腐剂,且这类物质使用时间较短,其副作用还暂不明确。 2015版《化妆品安全技术规范》中规定了51种准用防腐剂及最大允许浓度,较常用的有苯氧乙醇、苯甲酸钠、对羟基苯甲酸酯类、甲基异噻唑啉酮等。某护手霜成分表 如何检测化妆品中防腐剂? 防腐剂是一把双刃剑,过量的或不适合自身肤质的防腐剂可能会导致过敏性皮炎、肝脏毒性、类激素作用等副作用。 2021年3月国家药品监督管理局发布《化妆品中防腐剂检验方法》(2021年第17号通告),与2015版《化妆品安全技术规范》中绝大部分准用防腐剂一一对应,检测仪器有液相色谱仪和气相色谱仪,如有阳性检出或测试结果存在干扰因素,可采用三重四极杆液相色谱-质谱仪、气相色谱-质谱仪进行确证。 《化妆品安全技术规范(2015年版)》准用防腐剂与检验方法对照表岛津解决方案 岛津公司拥有丰富的色谱质谱产品,性能优越,操作简便,可以应对化妆品中防腐剂的检测。 检验方法 液相色谱法检测化妆品中23种防腐剂色谱柱:Shim-pack GIST C18,250mm x 4.6mm x 5μm流动相:A 0.12%磷酸水溶液 B乙腈流速:1 mL/min,柱温:30℃检测波长:230nm、254nm、280nm进样体积:10 μL洗脱程序:梯度洗脱 色谱图(1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱法检测化妆品中26种防腐剂色谱柱:Rxi-wax,60m×0.32mm×0.25μm柱温程序:50℃(1 min)_50℃/min_ 120℃ _5℃/min_195℃(3 min)_20℃ /min_220℃(10min)_20℃/min_240℃ (15 min)进样方式:分流进样(分流比为5:1)检测器温度:250℃ 色谱图(1. 丙酸、2. 三氯叔丁醇、3. 苯甲酸甲酯、4.苯甲酸异丙酯、5. 苯甲酸乙酯、6. 苯甲酸丙酯、7. 苯甲酸异丁酯、8. 苯甲酸异丁酯、9. 苯甲醇、10. 甲基氯异噻唑啉酮、11. 苯氧异丙醇、12. 甲基异噻唑啉酮、13. 山梨酸、14. 苯氧乙醇、15. 苯甲酸、16. 十一烯酸、17. 对氯间甲酚、18. 氯二甲酚、19. 邻苯基苯酚、20. 4-羟基苯甲酸甲酯、21. 4-羟基苯甲酸异丙酯、22. 4-羟基苯甲酸乙酯、23. 4-羟基苯甲酸丙酯、24. 4-羟基苯甲酸异丁酯、25. 4-羟基苯甲酸丁酯、26. 4-羟基苯甲酸戊酯) 确证方法 三重四极杆液相色谱-质谱法检测化妆品中34种防腐剂 色谱柱:Shim-pack GIST C18,50mm x 2.1mmx 2μm流动相1:A相-5 mM乙酸铵;B相-甲醇流动相2:A相-5 mM乙酸铵(含0.1%甲酸) B相-甲醇流速:0.3 mL/min洗脱方式:梯度洗脱离子化模式:ESI +/- 同时扫描离子源接口电压:4.0 kV雾化气:氮气 3.0 L/minDL温度:250℃扫描模式:多反应监测(MRM) 色谱图流动相1:(1. 水杨酸、2. 甲基异噻唑啉酮、3. 苯甲酸、4. 2-溴-2硝基丙烷-1,3-二醇、5. 4-羟基苯甲酸、6. 脱氢乙酸、7. 甲基氯异噻唑啉酮、8. 硫柳汞、9. 4-羟基苯甲酸甲酯、10. 4-羟基苯甲酸乙酯、11. 4-羟基苯甲酸异丙酯、12. 对氯间甲酚、13. 碘丙炔醇丁基氨甲酸酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 邻苯基苯酚、17. 氯二甲酚、18. 4-羟基苯甲酸异丁酯、19. 4-羟基苯甲酸丁酯、20. 4-羟基苯甲酸苄酯、21. 氯咪巴唑、22. 十二烷基三甲基溴化铵、23. 4-羟基苯甲酸戊酯、24. 苄氯酚、25. 十二烷基二甲基苄基氯化铵、26. 苄索氯铵、27. 溴氯酚、28. 三氯卡班、29. 三氯生、30. 十四烷基二甲基苄基氯化铵、31. 十六烷基二甲基苄基氯化铵、32. 海克替啶) 流动相2:(1. 己咪定二(羟乙基磺酸)盐、2. 氯己定) 部分同分异构体色谱图气相色谱-质谱法检测化妆品中19种防腐剂色谱柱:InertCap Pure-WAX,30 m×0.25 mm×0.25 μm柱温程序:40℃(1 min)_40℃/min_80℃_10℃/min_230℃(1 min) _10℃/min_260℃(5 min)色谱柱流量:1 mL/min进样方式:分流进样(分流比为5:1)采集模式:SIM 色谱图(1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 结语 其实,为了抑制细菌繁殖,绝大多数化妆品都会添加防腐剂。防腐剂种类繁多,涉及多种检测仪器,利用岛津LC、GC可以准确测定防腐剂含量,如存在不确定因素,可用岛津LC-MS/MS和GC-MS进行定性定量确证,符合法规要求,助您高效准确识别化妆品中防腐剂。 撰稿人:郑嘉
  • 应对新国标——化妆品中限用防腐剂测定
    化妆品中含有很多天然高营养、高活性的有机物,如氨基酸、蛋白质、糖类、维生素等,为了合理延长产品保质期,确保产品在使用期间不会因为各种污染而产生变质,通常会加入阻止微生物滋生的各种防腐剂,常用防腐剂有苯酸甲酯、乙酯、丙酯和丁酯、苯甲酸、山梨酸等,防腐剂不超标都是正常的,防腐剂种类以及含量越低越好。 “GB/T 39927-2021化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定”已于2021年11月1日正式实施,在《化妆品安全技术规范(2015)》中规定二甲基噁唑烷使用范围及限制条件PH≥6,7-乙基双环噁唑烷禁用于接触粘膜的产品,5-溴-5-硝基-1,3-二噁烷用于淋洗类产品,避免形成亚硝胺。本标准适用于水剂类、水包油类和油包水类化妆,推荐方法包括气相色谱-质谱联用以及高效液相色谱法。 岛津拥有丰富的色谱质谱产品,性能优越,操作简便,在应对化妆品中防腐剂的检测方面有丰富应用。 液相色谱法检测化妆品中23种防腐剂Nexera LC-40 (1. 甲基异噻唑啉酮、2. 2-溴-2-硝基丙烷-1,3-二醇、3. 4-羟基苯甲酸、4. 甲基氯异噻唑啉酮、5. 苯甲醇、6. 苯氧乙醇、7. 苯甲酸、8. 4-羟基苯甲酸甲酯、9. 氯苯甘醚、10. 脱氢乙酸、11. 5-溴-5-硝基-1,3-二噁烷、12. 4-羟基苯甲酸乙酯、13. 4-羟基苯甲酸异丙酯、14. 4-羟基苯甲酸丙酯、15. 4-羟基苯甲酸苯酯、16. 4-羟基苯甲酸异丁酯、17.4-羟基苯甲酸丁酯、18. 4-羟基苯甲酸苄酯、19.苯甲酸乙酯、20. 4-羟基苯甲酸戊酯,21. 苯甲酸异丙酯、22. 苯甲酸丙酯、23. 苯甲酸苯基酯) 气相色谱-质谱法检测化妆品种19种防腐剂GCMS-QP2020NX (1. 甲酸、2. 丙酸、3. 三氯叔丁醇、4. 苯甲酸甲酯、5. 苯甲酸异丙酯、6. 苯甲酸乙酯、7. 苯甲酸丙酯、8. 苯甲酸异丁酯、9. 苯甲酸丁酯、10. 苯甲醇、11. 苯氧异丙醇、12. 山梨酸、13. 苯氧乙醇、14. 2,6-二氯苯甲醇、15. 邻伞花烃-5-醇、16. 2,4-二氯苯甲醇、17. 十一烯酸、18. 苯甲酸苯基酯、19. 氯苯甘醚) 如需了解岛津相关仪器设备或化妆品中相关应用资料,请不吝与岛津联系! 本文内容非商业广告,仅供专业人士参考。
  • 岛津推出牛奶中青霉素分解剂—β-内酰胺酶检测方法
    随着国家对食品安全问题的关注和部分乳制品企业无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为&beta ‐内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用解抗剂去降解牛乳中残留的抗生素,生产人造&ldquo 无抗奶&rdquo 。目前市售解抗剂的主要成分是&beta ‐内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的&beta ‐内酰胺类抗生素。&beta ‐内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。&beta ‐内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。为此,长期关注中国&ldquo 食品安全&rdquo 的岛津公司发挥技术优势,推出了基于岛津超快速液相UFLCXR的&beta ‐内酰胺酶的检测方法。 本方法通过检测牛奶中的青霉噻唑酸钾,间接检测牛奶中是否添加了&beta ‐内酰胺酶,供相关检测人员参考。在本方法中,使用岛津超快速液相UFLCXR,配合岛津shim pack XR‐ODS II 75 mm L.× 3.0 mm I.D.,2.2 &mu m 快速分析色谱柱,测定了市售牛奶中青霉噻唑酸钾的含量,标准曲线线性良好,重现性良好,1#样品中青霉噻唑酸钾为31.2&mu g/mL , 2# 样品中青霉噻唑酸钾为5.4&mu g/mL,说明牛奶中添加过&beta ‐内酰胺酶。 有关本方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171132.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 珂睿:在线固相萃取-质谱系统助力污水验毒
    2020年6月23日习近平总书记在全国禁毒工作先进集体和先进个人表彰会议上就禁毒工作做出了重要指示,要求坚持厉行禁毒方针,打好禁毒人民战争,完善毒品治理体系,深化禁毒国际合作,推动禁毒工作不断取得新成效,为维护社会和谐稳定、保障人民安居乐业作出新的更大贡献。在国家“十四五”规划中污水检毒也已经成为了禁毒工作的重要手段,污水验毒可以客观、全面的反应城市毒情,为公安机关锁定“毒源”提供有利的技术支持。目前,污水验毒已成为各省监控毒情的重要技术手段,很多省市在2018年就已经开始开展对全省的污水样本进行检测,并取得了一定的成效,目前该技术已经开始得到大范围的推广。污水中主要检测的毒品包括:吗啡、可待因、、O6-单乙酰吗啡、苯丙胺、甲基苯丙胺、MDMA、苯甲酰爱康宁、氯胺酮、去甲氯胺酮、MDA、可卡因、美沙酮等,同时需要检测常量的可替宁,作为人群基数标志物。目前,较常见的污水毒品检测方法有离线固相萃取法和在线固相萃取法两种方案,两种方案前处理流程如下:离线固相萃取法:在线固相萃取法:两种前处理方法对比:离线固相萃取法在线固相萃取法污水取样量50ml10ml是否需要对水样进行酸化需要不需要单个样本耗时175分钟18分钟前处理耗材(按照每个样品做两次平行计算)一次性过滤器3-5个一次性酸性SPE小柱 2个一次性碱性SPE小柱 2个分析色谱柱 1套一次性过滤器1个在线富集柱 1套分析色谱柱 1套需要配置的前处理设备全自动固相萃取仪离心浓缩仪移液枪移液枪每天可处理和分析的样品数量20个100个自动化程度中等高综上所述,在线固相萃取法相较于离线固相萃取法,具有明显的方法学优势,样本检测耗时只有离线法的十分之一,检测成本只有离线法的十分之一,每日检测速度是离线法的十倍。目前,成都珂睿开发的双鱼-I在线固相萃取系统,在与质谱联用后,可以非常方便而有效的将污水验毒工作开展起来,可同时监测多达近30种毒品,且可随着工作的深入,形势的变化,对监测的毒品种类进行扩展,有效达到毒情监测的目的。目前珂睿可以检测的毒品包括但不限于:a. 常见毒品及代谢物15种:吗啡、可待因、O6-单乙酰吗啡、苯丙胺、甲基苯丙胺、MDMA、MDA、可卡因、苯甲酰爱康宁、氯胺酮、去甲氯胺酮、美沙酮、甲卡西酮、卡西酮、四氢大麻酸。b. 芬太尼类毒品6种:芬太尼、去苯乙基芬太尼,呋喃芬太尼,舒芬太尼、卡芬太尼、瑞芬太尼。c. 新精活物质8种:氟硝西泮、MDPV、对甲氧基甲基苯丙胺、甲氧麻黄酮、1-(3-三氟甲基苯基)哌嗪、1-(3-氯苯基)哌嗪、苄基哌嗪、氟胺酮。d. 制毒原料5种:麻黄碱、伪麻黄碱(冰毒原料)、邻酮(氯胺酮原料)、NPP和4-ANPP(芬太尼原料)本方案完全满足公安部JD/Y JY02.10-2021“水样中21种毒品及代谢物与可替宁的测定”技术规范要求。我们按照方法要求,对污水中12种毒品进行了方法学相关的一系列测试,包括准确性、方法检出限、定量限、污水中基质效应、标准曲线线性相关系数、每种毒品保留时间偏差、样品重复性和双样平行相对相差等,得出了一系列数据,充分证明了双鱼-I在线固相萃取系统的方法可靠性。本次测试所用仪器设备为:双鱼-I在线固相萃取系统+API4000型三重四级杆串联质谱仪。样本情况:A、B、C三个污水样本(每瓶200ml),其中含有的12种毒品已知浓度。操作步骤:1.取样本10ml,过0.22um水相膜,至进样瓶中2.进样瓶中加入氘代内标(12种氘代含量均为25ng/mL),振匀3.取进样瓶中2mL样本进样目标物检出限ng/L(S/N≥3)定量限ng/L(S/N≥10)内标在盲测污水样本中基质效应%(回收率)线性关系方程线性相关系数吗啡0.3183.2Y=0.02679X-0.048700.9997706-单乙酰吗啡0.51109Y=0.01876X+0.006400.99864可待因0.51101Y=0.02034X+0.003560.9986美沙酮0.21123Y=0.01639X+0.105360.99903甲基苯丙胺0.2194Y=0.01933X+0.117440.99929苯丙胺0.2187.3Y=0.0187X+0.109710.99924氯胺酮0.2190.1Y=0.01889X+0.094030.99967去甲氯胺酮0.5179.5Y=0.02229X+0.069610.99981MDMA0.2197.5Y=0.02199+0.016020.99762MDA0.5199.5Y=0.01991X+0.050.99985可卡因0.21106Y=0.02293X+0.016480.99718苯甲酰爱康宁0.5168.8Y=0.02117X+0.026960.99847方法检出限、定量限、污水中基质效应、线性关系考察(定量限均可达1ng/L, 回收率均在68%-125%之间,线性相关系数均优于0.998)目标物保留时间偏差(%)样品重现性(RSD, %, n=6)平行双样相对相差(%)ABCABCABC吗啡0.1290.1210.1932.5171.9893.5920.680.982.0406-单乙酰吗啡0.1280.0370.0372.0521.6260.9682.983.380.47美沙酮0.1560.2150.1952.2641.1311.531 4.551.030.74甲基苯丙胺0.1560.0670.0373.391.7643.0054.711.035.79苯丙胺0.1970.1970.1970.8210.6161.484.923.282.78氯胺酮0.1240.1240.1471.4120.6512.3282.431.982.75去甲氯胺酮0.110.110.111.2230.9611.3752.363.661.11MDMA0.0640.0350.0351.1831.3440.5643.481.493.13MDA0.1810.060.060.5290.9550.7172.222.164.82可卡因0.1040.1040.1040.5030.7342.270 0.111.613.09苯甲酰爱康宁0.1790.1790.1092.9764.1252.574.121.685.22保留时间与标准品的偏差均小于0.2%,样品的重现性RSD均小于3%,双样平行相对相差小于6%珂睿双鱼-I在线固相萃取与Sciex三重四级杆串联质谱系统联用(客户现场)考虑到污水毒品检测中,可替宁为常量组分,不适合采用大体积进样,双鱼-I专门设计了双进样器的高配方案,可以在一次序列分析中实现大体积进样分析痕量毒品和常量可替宁,无需对硬件进行任何手动更换或切换,无人值守,全自动获得检测结果。同时考虑到相关用户除污水毒品检测外,可能会开展其它如毛发毒品检测、理化检测等常量分析,双进样器高配方案用户仅通过系统升级和软件控制,即可方便地实现大体积进样与常规小体积进样分析的快速无缝切换,满足多种应用需要。 成都珂睿科技双鱼-I型在线固相萃取系统目前已经多家客户处开展污水中毒品分析的应用,包括公安局和第三方司法鉴定机构,用户反馈良好。2020年珂睿推出了双鱼-I型在线固相萃取系统以及国产第一套污水中毒品分析的在线固相萃取液质联用方案,希望让国产色谱分析仪器能够更好地助力到关系国计民生的检测项目中,真正做到“中国制造服务于中国崛起”!
  • 简智仪器芬太尼类物质现场快速检测 助力毒品现场分析
    最近两年,芬太尼类毒品案件越来越常见了。近日西安一则新闻:制毒贩毒团伙将合成大麻素,在青少年中推销… … 然而接受并开始吸毒的青少年也是听信朋友不上瘾、检测不出来… … ”才开始吸食。西安市新城区公安局第一时间组织民警连夜抓捕。民警调查发现在西安存在多名代理,他们通过网络联系、线下送取货的方式贩卖这种新型毒品。今年7月1日起,我国已把“整类合成大麻素类物质”和“氟胺酮”等18种新精神活性物质列为毒品进行管制。吸食合成大麻素类物质等18种物质是违法行为。据了解,该大型制作、贩卖新型合成大麻素毒品团伙涉及违法犯罪人员以16至25岁青少年为主,社会危害性极大。简智仪器秉承着科技守护美好生活的办企宗旨,针对公安机关对毒品、易制毒等危险化工品的现场检测需求,开发出SERDS Portable-standard 差分拉曼光谱仪,以满足侦查现场的快速检测。简智SERDS Portable-standard 差分拉曼光谱仪在实际检测过程中,某些毒品由于本身高荧光特性及辅料、颜色等因素(如海洛因、芬太尼等),导致普通拉曼光谱技术在检测高荧光样品时准确度显著降低,差分拉曼光谱仪通过双光源及简智独有的专利差分算法技术,大大降低了荧光物质的干扰,提高了检测灵敏度,也降低了物质外包装对检测时的影响。检测项目可检测常见毒品、易制毒化学品、制毒辅料及其他危险化学品1000多种。包括苯丙胺类、阿片类、芬太尼类、可卡因类、苯乙胺类、巴比妥类、合成大麻素类、致幻剂类、苯二氮卓类、哌嗪类、易制毒化学品、常见毒品辅料以及其他毒品等。新型物质出现应对办法新型毒品层出不穷,相应的易制毒化学品也在持续增加,拉曼光谱仪可快速采集新型毒品样品谱图建立数据库,将仪器数据库进行更新即可实现新型物质的检测能力。一般通过以下两种方式实现检测能力的更新:1、简智仪器新增检测能力简智采集新型毒品标准品或样品谱图,更新内部谱图库后,联系客户,通过仪器更新按键实现一键式更新,也可通过在线传输软件数据包的方式进行客户端谱图库更新。2、客户使用端检测新型管制品当客户在侦查办案中发现新型毒品或危化品,可将检测数据存入用户数据库实现检测能力的更新,也可将数据拷贝出来发送给简智仪器,公司对数据进行处理后更新数据库,再远程将客户仪器上的数据库进行更新,从而获得新物质检测能力。
  • 国家药监局综合司关于2024年化妆品标准立项计划公示
    根据《化妆品标准制修订工作程序规定(试行)》,国家药监局化妆品标准化技术委员会(以下简称“标委会”)组织开展了2024年化妆品标准制修订项目立项遴选工作,经公开征集立项、标委会组织审查,确定了2024年55项化妆品标准制修订计划项目,现予公示。公示期间,如有异议,请向国家药监局反馈。公示时间:国家药监局发布该公示之日起7日电子邮箱:hzpjgs@nmpa.gov.cn(邮件主题请注明“2024年化妆品标准立项计划反馈意见”)附件:2024年化妆品标准立项计划序号项目名称制修订类型承担项目的标委会分技术委员会1菌落总数(眼部化妆品、口唇化妆品和儿童化妆品)限值修订通用技术要求分技术委员会2二噁烷限值修订通用技术要求分技术委员会34-甲基苄亚基樟脑修订通用技术要求分技术委员会46-氨基间甲酚修订通用技术要求分技术委员会5丁苯基甲基丙醛(铃兰醛)修订通用技术要求分技术委员会6环四聚二甲基硅氧烷(D4)修订通用技术要求分技术委员会7全氟辛基磺酸及其盐类制定通用技术要求分技术委员会8全氟辛酸及其盐类制定通用技术要求分技术委员会9汞及其化合物(化妆品准用防腐剂中的汞化合物除外)修订通用技术要求分技术委员会10吡硫鎓锌修订通用技术要求分技术委员会11水杨酸(最大允许浓度)修订通用技术要求分技术委员会12氯咪巴唑(最大允许浓度)修订通用技术要求分技术委员会13甲基异噻唑啉酮(最大允许浓度)修订通用技术要求分技术委员会14聚氨丙基双胍(最大允许浓度)修订通用技术要求分技术委员会15二苯酮-3(最大允许浓度)修订通用技术要求分技术委员会16胡莫柳酯(最大允许浓度)修订通用技术要求分技术委员会17奥克立林(最大允许浓度)修订通用技术要求分技术委员会18邻苯基苯酚及其盐类(最大允许浓度)修订通用技术要求分技术委员会19酸性紫43号(最大允许浓度)修订通用技术要求分技术委员会20甲苯-2,5-二胺(最大允许浓度)修订通用技术要求分技术委员会21甲苯-2,5-二胺硫酸盐(最大允许浓度)修订通用技术要求分技术委员会22细菌回复突变试验修订安全评价分技术委员会23体外哺乳动物细胞染色体畸变试验修订安全评价分技术委员会24亚慢性经口毒性试验修订安全评价分技术委员会25亚慢性经皮毒性试验修订安全评价分技术委员会26啮齿动物体内外周血Pig-a基因突变试验方法制定安全评价分技术委员会27体外重建3D模型试验方法制定安全评价分技术委员会28 人体皮肤斑贴试验修订人体安全与功效评价分技术委员会29人体试用试验安全性评价修订人体安全与功效评价分技术委员会30防晒化妆品防晒指数(SPF 值)测定方法修订人体安全与功效评价分技术委员会31防晒化妆品长波紫外线防护指数(PFA 值)测定方法修订人体安全与功效评价分技术委员会32化妆品祛斑美白功效测试方法修订人体安全与功效评价分技术委员会33化妆品防脱发功效测试方法修订人体安全与功效评价分技术委员会34胶原类制定原料和包装材料分技术委员会35透明质酸类制定原料和包装材料分技术委员会36卡波姆制定原料和包装材料分技术委员会37对苯二胺制定原料和包装材料分技术委员会38甲基氯异噻唑啉酮和甲基异噻唑啉酮与氯化镁及硝酸镁的混合物(甲基氯异噻唑啉酮:甲基异噻唑啉酮为3:1 )制定原料和包装材料分技术委员会39珍珠提取物制定原料和包装材料分技术委员会40芦荟类提取物制定原料和包装材料分技术委员会41玫瑰花提取物制定原料和包装材料分技术委员会42石榴提取物类制定原料和包装材料分技术委员会43化妆品产品标准通则制定产品分技术委员会44冻干粉制定产品分技术委员会45次抛型化妆品制定产品分技术委员会46喷雾产品制定产品分技术委员会47气雾产品制定产品分技术委员会48化妆品中N-亚硝基二甲胺等多种亚硝胺组分的检验方法制定检验检测方法分技术委员会49化妆品中32种禁用着色剂的检验方法制定检验检测方法分技术委员会50化妆品中有机溶剂的检验方法(二氯甲烷等15种组分的检验方法、乙醇等37种组分的检验方法)修订检验检测方法分技术委员会51铜绿假单胞菌检验方法修订检验检测方法分技术委员会52牙膏分类目录制定 牙膏通用要求分技术委员会53牙膏中多组分防腐剂的检验方法制定 牙膏检验检测分技术委员会54牙膏中抗感染组分的检验方法制定牙膏检验检测分技术委员会55牙膏中多西拉敏等60种组分的检验方法制定牙膏检验检测分技术委员会
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 欧盟对阿斯巴甜的重新评估延至2013年5月
    应欧洲食品安全局(EFSA)的要求,欧洲委员会已经同意将阿斯巴甜(aspartame)的全面重新评估延至2013年5月。这也将允许EFSA的科学专家们有充分的时间来考虑新的数据并完成综合风险评估,以及在最终采纳前就草案意见进行公开评议。   2011年5月,欧洲委员会要求EFSA在2012年前提前对阿斯巴甜(E 951)进行全面重新评估。之前计划于2020年前完成,对该甜味剂的审查是对2009年1月20日之前的,经欧盟授权的对所有食品添加剂系统地重新评估的一部分,该次重新评估是EU 257 / 2010条例下的提前行动。   EFSA接受了这一任务并着手公开征求科学数据和全面开展文献审查,使政府食品添加剂及食品营养源添加(ANS)小组能够在2012年初开始风险评估。   在科学审议的过程中,该小组发现5-苄基-3,6-二氧-2-哌嗪乙酸(5-benzyl-3,6-dioxo-2-piperazine acetic acid,DKP)及其他储存于特定条件下的食品及饮料中的阿斯巴甜的潜在降解物的数据太少。因此EFSA再次发动号召征求关于DKP及其他阿斯巴甜降解物的数据资料。
  • UC伯克利分校研究人员证明将 RiPP 生物合成酶重定向到蛋白质和骨架修饰的底物
    大家好,本周分享一篇发表在ACS central science上的文章,题目是Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates,通讯作者是来自UC伯克利分校的Matthew B. Francis教授和Alanna Schepartz教授。核糖体合成和翻译后修饰多肽 (RiPP,Ribosomally synthesized and post-translationally modified peptides) 是肽衍生的天然产物,具有强效的抗菌、抗病毒和抗癌特性。RIPP 生物合成始于核糖体合成的多肽,其 N 端先导序列 (~20–110 aa) 会招募一种或多种能够对相邻 C 端底物序列进行多种翻译后修饰 (PTM) 的内源酶。环化脱水酶和脱氢酶是其中研究得非常充分的 RiPP 酶。这些酶共同催化分子内环化和随后的芳构化反应,在多肽链中安装恶唑啉/恶唑和噻唑啉/噻唑杂环。Naismith 及其同事设计了一个环化脱水酶家族,先导肽与脱水酶催化剂的 N 端而不是与底物多肽的N端相融合。这些酶,尤其是LynD Fusion (LynD-F)和 MicD Fusion (MicD-F),以不依赖先导肽的方式发挥作用,以促进含有 C 末端上Ala-Tyr-Asp (AYD) 识别序列的多肽环化脱水。此外, Schmidt 和同事证明了两种脱氢酶 ArtGox 和 ThcOx 也接受无先导肽底物。总而言之,与基于嵌合先导肽或先导肽交换的方法不同,这些酶代表了一种完全无先导的途径得到安装噻唑和恶唑键的多肽。在本文中,作者报告了使用 MicD-F和 ArtGox共同作用来处理含有多种翻译相容的氨基苯甲酸衍生物和 β-氨基酸的多肽底物,得到含恶唑啉/恶唑和噻唑啉/噻唑杂环的骨架。作者在测试中发现,MicD-F 和 ArtGox 在 +1 位点(环化反应位点前一个残基)和-1位点(环化反应位点后一个残基)均接受具有不同结构的底物,且-1 位点对非α-氨基酸单体的耐受性低于 +1 位点。作者进一步实验证明,RiPP 生物合成酶可以重定向到完整的折叠蛋白。他们发现MicD-F 和 ArtGox 可以在蛋白质loop和linker安装杂环骨架,而不会破坏天然的三级折叠。即使插入的 CAYD 序列在mCherry(一种大的 β-桶蛋白)的C 末端,或是嵌入在二聚体 α-螺旋束蛋白 Rop中的loop区,仍然可以得到折叠完好的球蛋白产物,其中含有构象受限的、完全非天然的杂环骨架。作者认为他们的研究代表了第一个在环化位点旁边含有多种非α-氨基酸单体的多肽中进行无前导azol(in)e生物合成的例子,以及第一个含有翻译后安装的杂环的折叠蛋白。作者还通过计算揭示了这些杂环限制构象空间的程度;它们还在合成中消除了肽键——这两种特征都可以提高稳定性或增加接头序列的功能,这在新兴的生物治疗药物中很常见。作者认为这项工作提出了一种扩展蛋白质组的化学多样性的一般策略。本文作者:Cyao责任编辑:LDY原文链接:https://pubs.acs.org/doi/full/10.1021/acscentsci.1c01577文章引用:DOI:10.1021/acscentsci.1c01577
  • 欧盟对两种防腐剂成分开展公众咨询
    2013年8月20日起,欧盟对防腐剂成分甲基氯异噻唑啉酮(CMIT)和甲基异噻唑啉酮(MIT)开展公众咨询。目前,根据欧盟化妆品法规1223/2009附录V39规定,甲基异噻唑啉酮(MIT)和甲基氯异噻唑啉酮(CMIT)的混合物作为防腐剂。另外,根据1223/2009附录V57的规定,甲基异噻唑啉酮(MIT)除了以混合物形式可以使用外,还可以单独使用。   2009年,欧盟消费者安全科学委员会(SCCS)采纳了MIT和CMIT作为混合物使用的意见,即防腐剂MIT和CMIT的混合比例为3:1,该混合物在冲洗类产品(rinse-off)中作为防腐剂且浓度不超过0.0015%时不会对消费者的健康构成危险,刺激性除外。   欧盟委员会已提议仅在冲洗类产品中限制使用MIT和CMIT的混合物,SCCS建议市场上符合规定和不符合规定的产品召回期限分别为6个月和2个月。此外,欧盟委员会还建议在附录V39和57项中增加脚注,即39和57项是相互排斥的。   目前,DG健康与消费者组织(DG Health & Consumers)正在展开公众咨询,邀请有兴趣的人士对限制使用MIT和CMIT混合物的意见和其对经济影响的可能性提出建议。   有兴趣人士可以通过邮寄和电子邮件的方式提交自己的建议,截止日期为2013年10月8日。
  • CEM公司发布TRT-DCA SpheriTide新型固相多肽合成树脂
    CEM公司,一个全球领先的微波多肽合成仪和试剂生产商,很高兴给大家介绍一种新的专为碳端为羧酸的多肽进行固相多肽合成设计的所需通用树脂。通过使用三苯甲二氯乙酸类连接基(TRT-DCA),这种新型的树脂免除了第一个氨基酸在多肽合成中的预装载。相比与传统连接基做这类合成,TRT-DCA允许任何氨基酸的简单连接,避免了需要存储全部20种预装的树脂,同时对水解仍保持较高的稳定性。曾经,往羧基端连接基上连接第一个氨基酸是非常困难的,因为需要羟基作为亲核试剂(比如Wang树脂,HMPA树脂)。需要特定的条件,同时会产生副反应,包括差向异构化,二肽的形成,和不完全的偶联。因此,使用酸性连接基的树脂通常已经连接了第一个氨基酸。作为超高酸敏感的连接基(2-Cl-trityl, trityl)的一个优势,提供了一个更容易偶联的氯化物结构,然而这种结构对于水解非常敏感,对于长期使用来说,稳定性有限。 TRT-DCA连接基类似于酸敏感树脂,但提供一个对水解更稳定的结构。在连接第一个氨基酸之后,多肽合成过程中一直保留一个三苯甲基连接基。相比较Wang/HMPA连接基,三苯甲基庞大的空间结构有利于最小化二酮哌嗪和3-(1-哌啶基)丙氨酸构型的形成。 此外,三苯甲基的高酸敏感特性使得可以用适当的切割液,切割得到一个全保护的多肽序列。 高酸敏感树脂的使用通常仅限于温和的温度,以防过早的从树脂上解离。最近,CEM出台了一个新的基于碳二亚胺缩合剂的方法,可以在90° C下,基于高效固相多肽合成技术(HE-SPPS)使用三苯甲基树脂得到更高的多肽产率。这个方法被发现可以增加多肽的纯度,超越现有的任何活化方法,在高温下也能提供诸如磷酸化多肽的敏感序列。总之,新的TRT-DCA SpheriTide?树脂和新的碳二亚胺耦合方法使得多肽化学家充分利用该酸敏树脂对羧基肽进行高效固相多肽合成。 CEM商务开发主任Jonathan M. Collins说:“TRT-DCA SpheriTide树脂和新开发的碳二亚胺耦合方法的结合对于高温下简化和改善多肽合成是非常有用的,这不仅免除了购买预装树脂的需要,而且通过树脂自保护防止副反应的发生,提高了多肽的纯度。”CEM的Liberty Blue? Peptide Synthesizer 现在包括一个连接TRT-DCA SpheriTide树脂的自动化标准方法。Trityl-DCA SpheriTide树脂现在可以在线购买。 CEM公司,一家坐落在美国北卡罗莱纳马修斯的公司,是一个为世界顶级实验室提供科学解决方案的世界级领先供应商。公司在英国,德国,意大利,法国,和日本均拥有子公司并有全球分销商网络。CEM为生命科学、分析实验室和过程控制领等域设计和制造先进仪器。公司的产品广泛应用与许多行业,包括制药、生物技术、化学和食品加工、以及科研。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 基于TICT零背景荧光的通用型荧光点亮传感设计策略研究获进展
    荧光传感作为一种快速可视化、高特异性、简单便携和高性价比的检测技术,经历了从以实验方法为导向到以分子设计为导向的发展历程。科研人员在构象依赖型暗态发射荧光探针分子设计策略方面投入了大量的努力。其中,通过精确调控分子结构扭转,构建荧光发射禁阻跃迁的扭转分子内电荷转移(TICT),对于消除背景荧光、提升荧光点亮传感性能具有重要意义。然而,如何通过简单外界环境变化以调控荧光探针扭转能力的设计鲜有报道,这严重限制了TICT原理的拓展应用。针对于此,中国科学院新疆理化技术研究所痕量化学物质感知团队创新性地提出了一种背景荧光信号完全消除的新策略:通过化学酸化控制氨基质子化,进而引入激发态分子内质子转移(ESIPT)、空间位阻效应和共轭效应,从热力学与动力学层面极大促进了TICT过程的旋转效率。   为了验证该策略的可行性和通用性,研究人员采用密度泛函理论(DFT)以及含时密度泛函理论(TDDFT),对(2-(2-氨基-4-羧基苯基)-苯并噻唑(邻苯噻唑),o-BT)探针分子及其他9种结构类似分子进行了势能面扫描过渡态计算、电子空穴激发分析以及从头算分子动力学(AIMD)等理论模拟分析。结果表明,质子化o-BT探针激发态质子转移过程的反应势垒在热力学/动力学上具有明显优势;其次,结合激发态分子内氢键增强过程,o-BT探针的ESIPT光异构化过程被显著促进;再次,质子转移发生后质子给体氨基释放出的孤对电子在激发态条件下与苯环发生共轭;最后,质子给体氨基与转移后的H原子之间得以产生较强的空间位阻效应。以上三个效应耦合大大降低了系统能量,增加了电子和空穴在空间上完全分离的TICT构象形成概率,实现了背景荧光的完全消除。借助该策略,实现了直径最小为0.44 μm(~1 pg)的亚硝酸盐颗粒的超灵敏荧光点亮检测。   该研究成果有望为设计开发超灵敏、实时、精准响应的高性能荧光探针提供理论思路和依据。相关成果以“A General Twisted Intramolecular Charge Transfer Triggering Strategy by Protonation for Zero-Background Fluorescent Turn-On Sensing”为题发表在《物理化学通讯》(The Journal of Physical Chemistry Letters)杂志上,博士研究生李继广为第一作者,窦新存研究员和雷达博士为通讯作者,中科院新疆理化所为唯一完成单位。同时,基于该工作的创新性,被杂志选为Supplementary Cover封面论文。该研究工作得到了自治区重点实验室开放课题、国家自然科学基金面上项目、中科院从0到1原始创新项目、新疆维吾尔自治区杰出青年基金等项目的资助。质子化-激发态分子内质子转移(ESIPT)-扭转分子内电荷转移(TICT)策略实现皮克级亚硝酸盐荧光点亮检测示意图
  • 关于《GB 4789.28 食品微生物学检验 培养基和试剂的质量要求》等34项食品安全国家标准(征求意见稿)意见的函
    本次发布的34项标准中,包含微生物检验方法与规程、理化检验方法、生产经营规范和食品相关产品四个大类。具体信息如下:食品相关产品生产经营规范微生物检验方法与规程理化检验方法与规程1食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定理化检验方法与规程2食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定理化检验方法与规程3食品安全国家标准 食品中乳铁蛋白的测定理化检验方法与规程4食品安全国家标准 食品中膳食纤维的测定理化检验方法与规程5食品安全国家标准 食品中维生素A和E的测定理化检验方法与规程6食品安全国家标准 食品中维生素D的测定理化检验方法与规程7食品安全国家标准 化学分析方法验证通则理化检验方法与规程8食品安全国家标准 食品微生物学检验培养基和试剂的质量要求微生物检验方法与规程9食品安全国家标准 食品中二噁英及其类似物毒性当量的测定理化检验方法与规程10食品安全国家标准 食品中氯酸盐和高氯酸盐的测定理化检验方法与规程10食品安全国家标准 食品中N-亚硝胺类化合物的测定理化检验方法与规程12食品安全国家标准 食品中钼的测定理化检验方法与规程13食品安全国家标准 食品中铬的测定理化检验方法与规程14食品安全国家标准 食品中镉的测定理化检验方法与规程15食品安全国家标准 食品接触材料及制品 邻苯二甲酸酯的测定和迁移量的测定理化检验方法与规程16食品安全国家标准 食品中过氧化值的测定理化检验方法与规程17食品安全国家标准 酒和食用酒精中乙醇浓度的测定理化检验方法与规程18食品安全国家标准 食品接触材料及制品 多元素的测定和多元素迁移量的测定理化检验方法与规程19食品安全国家标准 食品接触材料及制品 9种抗氧化剂迁移量的测定理化检验方法与规程20食品安全国家标准 食品中淀粉的测定理化检验方法与规程21食品安全国家标准 食品接触材料及制品 纸、纸板及纸制品中荧光性物质的测定理化检验方法与规程22食品安全国家标准 食品接触材料及制品 异噻唑啉酮类化合物迁移量的测定理化检验方法与规程23食品安全国家标准 食品接触材料及制品方法验证通则理化检验方法与规程24食品安全国家标准 食品中酪蛋白磷酸肽的测定理化检验方法与规程下面,与大家一起对《食品安全国家标准食品微生物学检验培养基和试剂的质量要求》征求意见稿编制说明进行梳理分析:本标准于2018年立项(项目编号spaq-2018-061),项目承担单位为中国食品药品检定研究院和厦门海关技术中心中心。2018年12月正式启动,2019年2月28日召开食品安全国家标准项目启动会,2019年7月12日至2020年10月19日在广泛调查研究和讨论的基础上,起草了本标准,并邀请10家以上专业技术机构进行方法标准实验室间验证工作,2020年11月30日形成草案,2020年12月1日至2020年12月25日进行行业内征求意见,期间未收到重大分歧意见,2021年2月22日形成《食品安全国家标准食品微生物学检验培养基和试剂的质量要求》草稿。2021年6月24日经第二届食品安全国家标准审评委员会微生物检验方法与规程专业委员会第六次会议审查通过。具体修订情况如下:1.检验方法的整合: 现行国家标准 GB 4789.28-2013 存在两套验证的方法,一套方法针对生产商及实验室自制的培养基和试剂(附录 D),一套方法针对实验室使用商品化培养基和试剂(附录 E)。经研讨,确定该标准应作为实验室验收培养基的质控标准,明确了标准的使用对象。附录E 的划线半定量方法,操作上有很大的人为因素影响评价结果,同时由于附录D 包含的培养基评价方法更为全面,经研讨,删除了附录E,保留附录D 评价方法。即该标准为实验室使用商品化培养基和试剂评价标准,检验方法参照附录D。 2.新增了参比培养基的质控要求GB 4789.28-2013 规定用参比培养基为标尺对待测培养基的质量进行评价,但在标准未见参比培养基的质控方法和评价标准。经过咨询行业和专家意见,目前检验机构和生产企业随机选用培养基作为参比培养基进行培养基验证,没有质控标准可供执行。工作组在本次标准修订中,通过征求专家意见,结合培养 基的检验范围增加了参比培养基的质控菌株和评价方法。 3.增加了国内菌株:GB 4789.28-2013 中包含 21 株国外菌株,菌株购买时间长花费多,且随着生物制品的限制,国外菌株购买难度加剧。本次修订针对以上问题,选择国内CMCC和CICC菌种库 169 株菌和国外 21 株菌株进行 比对验证,经过13家验证机构验证筛选出21株国内菌株替代国外菌株。本次修订为确保实验室菌种替换 过渡,同时保留了ATCC菌种,原有菌种可以继续使用,但当两种菌种检测出现两种不同结果时,以国内2 菌株结果为最终判定依据。4.新增28套培养基评价方法针对 GB4789.28-2013 版未涵盖所有GB4789系列标准检验用培养基的情况,新增了28套培养基的评价方法。
  • 公布|2021年社会化农产品质量安全与营养品质检验检测技术能力验证结果
    关于公布2021年社会化农产品质量安全与营养品质检验检测技术能力验证通过结果的函各农产品质量安全检验检测机构、营养品质评价鉴定等技术机构:为满足各相关农产品质量安全检验检测、营养品质评价鉴定等技术机构检验检测评价鉴定技术水平与业务能力提升需要,确保检验检测结果的准确性、稳定性、可靠性、一致性和可比性,2021年10-11月,农业农村部农产品质量安全中心(简称“国家农安中心”)依托农业农村部环境保护科研监测所、中国兽医药品监察所、中国水产科学研究院等技术单位,启动探索开展了例行化、常态化、社会化服务的农产品质量安全检验检测与营养品质评价鉴定技术能力验证工作,统称“国农验证”(CAQS验证)。经考核评价和综合分析,78家农产品质量安全检测机构和营养品质评价鉴定技术机构通过了农产品中农药残留检验检测、农产品中重金属检验检测、农产品中营养品质评价鉴定、畜禽产品中兽药和违禁添加物残留检验检测、水产品中药物残留检验检测、牛奶营养品质评价鉴定与污染物检验检测、土壤中全量和有效态元素检验检测、肥料中养分和重金属检验检测等8个项目(参数)481类次能力验证考核,具体能力验证考核通过单位及项目(参数)信息见附表。2022年国家农安中心将根据需要常态化启动实施国农验证,如需咨询可随时与国家农安中心检验检测管理处联系。电话:010-59198536 010-59198576;邮箱:nongyezhijian@163.com。附表:2021年社会化农产品质量安全与营养品质检验检测技术能力验证机构通过结果一览表农业农村部农产品质量安全中心2021年12月13日附表:2021年社会化农产品质量安全与营养品质检验检测技术能力验证机构通过结果一览表注:1.农产品中农药残留检验检测项目具体参数:A类参数:甲胺磷、甲拌磷(含甲拌磷砜、甲拌磷亚砜)、氧乐果、对硫磷、甲基对硫磷、毒死蜱、敌敌畏、甲氰菊酯、乙酰甲胺磷、三唑磷、水胺硫磷、杀螟硫磷、马拉硫磷、伏杀硫磷、亚胺硫磷、氯氟氰菊酯、异菌脲、丙溴磷、溴氰菊酯、克百威(含3-羟基克百威)、甲萘威、灭多威、腐霉利、三唑酮、涕灭威(含涕灭威砜、涕灭威亚砜)、滴滴涕、六六六、氯氰菊酯、氰戊菊酯、异丙威。B类参数:倍硫磷、辛硫磷、治螟磷、蝇毒磷、灭线磷、杀扑磷、乐果、甲基异柳磷、二嗪磷、氟氯氰菊酯、联苯菊酯、氟胺氰菊酯、氟氰戊菊酯、氯菊酯、百菌清、五氯硝基苯、乙烯菌核利、三氯杀螨醇、多菌灵、吡虫啉、氟虫腈(含氟甲腈、氟虫腈硫醚、氟虫腈砜)、啶虫脒、苯醚甲环唑、哒螨灵、嘧霉胺、甲氨基阿维菌素苯甲酸盐、烯酰吗啉、虫螨腈、咪鲜胺、嘧菌酯、二甲戊灵、噻虫嗪、氟啶脲、灭幼脲、阿维菌素、除虫脲、吡唑醚菌酯、多效唑、甲霜灵、氯苯嘧啶醇、氯虫苯甲酰胺、醚菊酯、灭蝇胺、敌百虫、莠灭净、特丁硫磷(含特丁硫磷砜、特丁硫磷亚砜)、异丙甲草胺、霜霉威、氯吡脲、虫酰肼。C类参数:抗蚜威、氟硅唑、唑螨酯、己唑醇、丙环唑、腈苯唑、杀虫脒、氯唑磷、戊唑醇、久效磷、内吸磷、硫环磷、狄氏剂、莠去津、乙螨唑、茚虫威、肟菌酯、噻虫胺、噁唑菌酮、唑虫酰胺。2. 畜禽产品中兽药及违禁添加物残留检验检测项目具体参数:猪肉中β-受体激动剂:克伦特罗、沙丁胺醇、莱克多巴胺。鸡肉中氟喹诺酮类药物:达氟沙星、恩诺沙星、环丙沙星、沙拉沙星。3.水产品中药物残留检验检测项目具体参数:8种磺胺类化合物:磺胺噻唑、磺胺异恶唑、磺胺二甲嘧啶、磺胺嘧啶、磺胺甲恶唑、磺胺喹恶啉、磺胺间二甲氧嘧啶、磺胺甲基嘧啶。4.牛奶营养品质评价鉴定与污染物检验检测项目具体参数:磺胺类:磺胺二甲基嘧啶、磺胺嘧啶、磺胺甲基嘧啶、磺胺噻唑。
  • 常见毒品及新精活类毒品检测公安行业新标准发布-岛津新技术应用进行时
    联合国禁毒署将第三代毒品定性为“新精神活性物质”(NPS, New psychoactive substances)。根据化学结构,新精神活性物质分为九大类:合成大麻素类、合成卡西酮类、苯乙胺类、色胺类、氨基茚满类、哌嗪类、氯胺酮及苯环利啶类、植物类、其他类。 毒品检测相关的公安行业标准方案齐全 新精活类物质分析困惑 疑似新精活类物质的鉴定通常可以采用红外光谱+质谱+核磁的方案快速筛选。但对于生物样品(血液、毛发)或复杂基质的污水样品中的新精神活性物质就较难处理了。 本文介绍采用岛津三重四极气质、液质技术实现卡西酮类化合物鉴定的具体案例及液质检测常见各类样品中卡西酮+合成大麻素的分析方案。岛津AOE系统(在线固相萃取分析系统)●AOE System (Automatic Online Enrichment/Extraction) ● 岛津AOE系统检测生活污水中13种毒品• 公安部合作开发分析方法 • 一针分析所有目标物:毒品及代谢物13种,人口标记物1种• 该方法已通过实际样品测试 AOE系统&离线SPE 前处理对比• 岛津AOE系统真正实现生活污水样品的即时检测• 分析效率较离线SPE提升80% 25种合成大麻素类毒品检验色谱柱:Shim-pack ODSⅢ C18 150mm*2.1mm/5um流动相为:A:5 mmol / L的甲酸铵水溶液 ,pH值6.4B:甲醇岛津Nexera在线脱气机脱气柱温箱:60℃自动进样器:4℃洗针液:甲醇标准曲线范围为10-1000ng/ml日内变异系数:±15%(定性)日内变异系数:±20%(定量)检测方法符合国际指导标准 提取过程 合成大麻素类毒品检验 25种卡西酮、麻黄碱类策划药检验色谱柱:Shim-pack VP-ODS C18 150mm*4.6mm/5um流动相为:A:50 mmol / L的甲酸铵水溶液 ,pH值3.5B:含0.1%甲酸的乙腈岛津Nexera在线脱气机脱气柱温箱:60℃自动进样器:4℃洗针液:甲醇标准曲线范围为10-1000ng/ml日内变异系数:±15%(定性)日内变异系数:±20%(定量)检测方法符合国际指导标准 提取过程 卡西酮、麻黄碱类策划药检验10ng/mL血药浓度下检测结果图谱(MRM+) 本文内容非商业广告,仅供专业人士参考。
  • 祛痘液、养发液、婴儿爽身粉等化妆品检测出禁用成分!
    28日,国家药品监督管理局发布5批次化妆品检出禁用物质的通告。包括标示为云南木源堂化妆品有限公司等生产的本草秀复祛痘原液二号1批次祛痘/抗粉刺类产品,标示为广州莎莎化妆品制造有限公司生产的德生源育发健发养发液1批次养发/育发类产品,标示为汕头市金雅虹精细化工有限公司生产的采媚芦荟保湿霜(高度保湿)1批次保湿护肤类产品,标示为广州名露药业有限公司生产的婴瑞儿婴儿松花玉米爽身粉、白美人金银花热痱粉2批次爽身粉类产品检出4类禁用物质。1、氯霉素经重庆市食品药品检测研究院检测,该化妆品氯霉素含量为854μg/g,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,氯霉素(chloramphenicol)是一种抗生素,易溶于甲醇、乙醇、丙醇及乙酸乙酯,微溶于乙醚及氯仿,不溶于石油醚及苯。氯霉素极稳定,其水溶液经5h煮沸也不失效。由于氯霉素分子中有2个不对称碳原子,所以氯霉素有4个光学异构体,其中只有左旋异构体具有抗菌能力。 抗生素类药物属于处方药,必须在医生指导下方可使用。据了解,长期使用添加抗生素的化妆品,可能引起接触性皮炎等不良反应,表现为红斑、水肿、糜烂、脱屑、渗出、瘙痒、灼热。其中,长期使用氯霉素还会造成肝损害。2、米诺地尔经深圳市药品检验研究院检测,该化妆品米诺地尔含量为0.13μg/g,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,米诺地尔化学名为6-(1-哌啶基)-2,4-嘧啶二胺-3-氧化物,是一种有机物,呈白色或类白色结晶性粉末。临床上作为钾离子通道开放剂,能直接松弛血管平滑肌,有强大的小动脉扩张作用,使外周阻力下降,血压下降,而对容量血管无影响,故能促进静脉回流。同时,由于反射性调节作用和正性频率作用,可使心输出量及心率增加,但不引起体位性低血压。外用制剂可能会引起红斑、瘙痒等皮炎反应。3、甲基氯异噻唑啉酮江苏省药品检验研究院检测出该化妆品含有甲基氯异噻唑啉酮,为《化妆品安全技术规范》(2015年版)中的禁用物质。据公开资料显示,甲基异噻唑啉酮(MIT),分子量为115.15,是一种高效杀菌剂。对于抑制微生物的生长有很好的作用,可以抑制细菌、真菌、霉菌及霉菌的生长。长期使用,可能出现头晕头痛、皮疹或关节疼痛等现象,并且有一定的细胞毒性与神经毒性。4、铅经研究院检测,婴瑞儿婴儿松花玉米爽身粉中铅含量达17.6mg/kg,白美人金银花热痱粉中铅含量达17.4mg/kg,严重超均标。铅是一种金属化学元素,元素符号Pb,原子序数为82,原子量为207.2,是原子量最大的非放射性元素。金属铅为面心立方晶体。如果长期使用重金属超标的产品,重金属会在体内积累,具有一定的致癌性。值得一提的是,铅超标的产品在初期可能会使皮肤变白,但是很快皮肤会产生大量色素沉淀,造成深层色斑,也可能诱发其他疾患,如过敏性皮炎、婴幼儿神经感觉下降,发育不良等等。
  • 韩国强化食品中有害物质安全标准
    韩国食品医药品安全局于2009年5月7日公布了强化食品中有害物质安全标准的相关文件。   以下为其附则中的主要内容:   一、新设标准等强化的内容   1. 新设对玉米及其单纯加工品的丝状真菌毒素(伏马毒素)标准   - 新设玉米的伏马毒素标准为‘4ppm以下’,新设玉米单纯加工品(粉碎,切断等)及玉米面的伏马毒素标准为‘2ppm以下’。   2. 新设小麦、黑麦、大麦及咖啡中丝状真菌毒素(赭曲毒素)标准   - 新设小麦、黑麦、大麦及炒咖啡的赭曲毒素A的标准为5ppb以下,新设速溶咖啡的赭曲毒素A的标准为10ppb以下。   3. 新设及强化液状茶的重金属标准   - 像饮料一样饮用的液状茶(在市场上销售的液态的‘对身体好的某某茶’同类的茶)的含铅标准从2.0ppm以下强化到0.3ppm以下(与雪绿茶和玄米绿茶一样的浸出茶为5.0mg/kg以下)。   - 新设含镉标准为0.1ppmg以下(与饮料的重金属标准相同)   4. 新设腹泻性贝毒标准   - 二枚贝类(与牡蛎,贻贝相同由两枚壳构成的蛤蚌类,海螺等一枚贝类)的腹泻性贝类毒素标准与 Codex, EU等诸国的标准相同新设为0.16ppm以下。   5. 修正农药及动物用药品的残留许用标准   - 修正醚菊酯等15种农药(包含人参一种)及氨苯砜等29种动物用药品的残留许用标准。   二、中国许可农药中韩国未许可的农药目录   除草剂(19种):莠灭净Ametryn,氰草津Cyanazine,磺草灵asulam,甜安宁phenmedipham,灭草猛vernolate,氯嘧磺隆chlorimuron-ethyl,玉嘧磺隆rimsulfuron,胺苯磺隆ethametsulfuron-methyl,甲磺隆metsulfuron-methyl,苯磺隆tribenuron-methyl,甲氧咪草烟Imazamox,甲咪唑烟酸imazapic,灭草喹imazaquin,咪草烟imazethapyr,异丙隆isoproturon,溴苯腈bromoxynil,环庚草醚Cinmethylin,吡氟草胺diflufenican,哒草特pyridate   杀虫剂(3种):杀螟腈cyanophos,地虫硫磷 fonafos,烯虫灵nitenpyram   植物生长调节剂(1种):烯效唑Uniconazole   三、有中国标准而没有韩国标准的动物用医药品目录   此次公布的2种药品:伊维菌素Abamectin,盐酸沙拉沙星sarafloxacin   本周中预告立案的5种药品:头孢氨苄素Cafalexin,二氟沙星difloxacin,氟苯尼考Florfenicol,吉他霉素kitasamycin,丙氧咪唑Oxibendazole   计划年内开发试验法的15种药品:倍他米松Betamethasone,越霉素A DestomycinA,地塞米松Dexamethesone,卤喹酮Halofuginone,马拉硫磷Malathion,甲苯达唑mebendazole,安乃近Metamizole,硝碘酚腈Nitroxinil,苯唑青霉素Oxacillin,哌嗪Piperazine,碘醚柳胺Rafoxanide,氯苯胍Robenidine,洛克沙胂Roxarsone,氨苯磺酰胍sulfaguanidine,甲基三嗪酮Toltrazuril   四、保存流通标准及原料标准的修订   1. 强化新鲜方便食品(沙拉)及熏制鲢鱼的保存及流通标准   - 沙拉及熏制鲢鱼的保存及流通温度由10℃以下修订为5℃以下以防止李斯特菌生长。   2. 追加‘食品不能使用的原料’品目   - 在附表3‘食品不能使用的原料’目录中(现有木炭等82个品目)增加大麻等46个品目,共计128个品目。
  • 普拉瑞思科学仪器(苏州)有限公司推出 新精神活性物质(NPS)快速检测解决方案 ——让毒pin无处遁行
    背景信息 1、1996年我国公布的麻醉药品品种目录将阿芬太尼等12种芬太尼类物质列入麻醉药品 品种目录...... 2、2015年,我国新出台了《非药用类麻醉药品和精神药品增补目录》,亦将芬太尼列入其 中...... 3、2018年底,中美两国元首在二十国集团首脑峰会间进行会晤,会后白宫发布的声明中, 位列首位的是双方表示就管控芬太尼达成共识,令“芬太尼”一词突然曝光于大众...... 4、中国公安部、国家卫生健康委、国家药监局三个部门2019年4月1日联合发布公告, 引入了“类物质”的概念,从5月1日起将芬太尼类物质列入《非药用类麻醉药品和精神药品 管制品种增补目录》...... 近期芬太尼的密集曝光,标志着该类化合物正式进入了国内、国际禁毒部门管理的严控 范围之内。芬太尼是一种强效麻醉剂,药理作用与吗啡类似,但药效是吗啡的80倍,因此 该类物质不仅是药品,还是实验室毒pin中的重要成分,因其可产生强烈的精神依赖和兴奋感, 导致该类药物在全球范围内滥用严重。但是芬太尼的一大特征就是变化极快、衍生品众多, 截止目前报道的芬太尼类化合物约70种,最主要的特征就是结构式和基团的细微差别,对 检测设备和方法的准确性提出了极高要求,让缉毒部门防不胜防;此外不法分子会通过混合 物、掺杂如面粉等物质、溶解在饮料中等手段逃避监管。 技术现状 拉曼技术作为一种分子光谱技术可有效检测毒pin毒物等,但由于拉曼光谱的光源波长和 信号灵敏度成指数反比,即偏红外(1064nm)光源的拉曼信号通常较弱,造成采用高功率 激光照射而增加了使用的危险性,不过这类光谱仪可以有效的避免样品荧光干扰,而短波长 (785nm,532nm)光源的拉曼信号虽然较强,但却往往受到样品荧光的影响,像海洛因、芬 太尼等物质无法获得有效拉曼信号,且上述技术只能筛查常量状态下存在的毒pin,对样品的 纯度有较高要求,一旦样品基质组成复杂,误判率极高;另外,在面对饮料、溶液、糖、面 粉、盐等基质掺毒样品的快速侦查时往往束手无策,让不法分子有机可乘,逍遥法外。 解决方案 基于上述检测技术的不足,普拉瑞思科学仪器(苏州)有限公司专注于拉曼光谱仪及表 面增强拉曼光谱技术在毒pin检测领域的创新开发,依靠强大的产品研发能力和专业的技术人 才队伍,迅速建立起了一系列检测方法,面向海关、公安等推出了完整的毒pin、新型毒pin、 麻醉及精神药品的常量及微痕量检测解决方案,其中对芬太尼类、卡西酮类、苯丙胺类等毒pin不仅可实现常量检测,同时也可借助表面增强拉曼光谱,使用自主研发的增强基底和前处 理方法,有效去除荧光基底干扰,不仅可以实现饮品、污水、尿液等样品中毒pin的准确识别, 也可以在混合的复杂固体基质如面粉、咖啡、巧克力等常见固体粉末类食品中实现ng级别 毒pin的高灵敏检测。图1 表面增强拉曼光谱可实现单分子浓度水平的检测 表面增强拉曼光谱属于分子振动光谱,可利用相似结构化合物中不同的分子基团和细微 的结构式变化,在激发光源的作用下会产生不同的振动模式和散射光谱,实现结构类似物的 准确识别,只可检测至单分子水平。我司自主研发的高性能拉曼光谱仪和专用的毒pin类快速检测试剂盒,配有自主研发的深度学习识别算法和高效提取试剂,可快速分辨芬太尼类物 质中不同分子基团的细微区别,准确判断化合物结构式的归属。 图2 芬太尼、瑞芬太尼、舒芬太尼的高灵敏检测和有效区分 如图2所示,ppb级别的芬 太尼、瑞芬太尼、舒芬太尼等结构类似化合物可明显、快速区分,相关技术和方法填补了国 内及国际市场空白,且相较于实验室方法,极大的缩短了检测时间,简化了样品处理流程。 图3 甲卡西酮的高灵敏检测 图3即为1ppb甲卡西酮(卡西酮类中的一种)的表面增强拉曼光谱对照图 目前,普拉瑞思解决方案可针对芬太尼类、卡西酮类、吗啡类、大麻素类、苯胺类、色 胺类、哌嗪类、氯胺酮类、苯环利定类等数百种毒pin及新型毒pin实现常量及微痕量的快速检 测,相关产品及技术可广泛应用于海关、公安、边防等多种应用场景。 我司愿与政府和社会各单位共同携手,推进新精神活性物质检测技术的完善和发展,让毒pin无所遁形,使我们的社会更加和谐安宁!
  • 质谱和光谱是解决新精神活性物质现场微痕量检测的有效方法
    5月25日,普拉瑞思在北京参加并学习了毒pin毒物、新精神活性物质的现场查缉及实验室快速分析研讨会,这次活动展现了质谱现场检测的前瞻实力,清谱科技作为业内领xian的现场质谱解决方案提供商,为缉毒等工作带来了“检测利器”,我们也看到了业内zui顶jian团队的研发实力。与此同时,光谱方法也是质谱之外另一种现场检测的有效技术,普拉瑞思公司专注于表面增强拉曼光谱技术的研究及应用,开发了多种增强基底及配套前处理方案,广泛应用于食品安全、公共安全、药品安全等多个领域。我司的增强拉曼方法为新精神活性物质含量检测提供了上百种的解决方案和数据库,为目前国内领xian的解决方案提供商。公司拥有完善的研发团队和技术积累,已获得国jia级、省级多份检测、检验报告,覆盖硬件、软件、检测能力、试剂等多个方面。1. 检测能力介绍1.1 普通拉曼数据库接近8000种:现有毒pin、精神药品、麻醉品的常量数据库约360种,检测项目齐全,涵盖如芬太尼类、卡西酮类、大麻类、阿片类、苯丙胺类等;另外有易制毒化学品、易燃易爆品、危险化学品、一般化学品、毒气及毒剂、珠宝矿物、聚合物、食品包材及添加剂等不同种类约近8000种常量数据库。1.2 增强拉曼数据库约300种:食品类增强数据库约200种,包括非食用化学物质、滥用食品添加剂、兽药残留、农药残留、保健品非法添加、化妆品非法添加、环境污染物、植物激素、抗生素类药物残留等多个类别,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。 表1食品类增强拉曼数据库类别统计表毒pin类增强数据库约100种,包括传统毒pin类、新精神药品类、麻醉品类等,例如芬太尼类、卡西酮类、苯丙胺类、吗啡类、大麻素类、哌嗪类等。适用于常见的生物样品检材比如毛发、唾液、尿液等,环境样品如污水、废水等,食品检材如饮料、糖果、咖啡、面粉、调味料等样品中均可实现快速、灵敏检测,配合公司自主研发的增强试剂和前处理方法,最di检出限可达ppt级别。预计未来6个月内,微痕量毒pin数据库将在现有基础上新增检测项目100项以上,其中新增芬太尼结构类似物20种以上、卡西酮结构类似物15种以上、苯胺类结构类似物10种以上、合成大麻素等50种以上。表2 毒pin类增强拉曼数据库明细表2. 检测案例介绍案例1:食品检材、污水及生物检材中芬太尼的测定-表面增强拉曼光谱法污水、饮料等液体类样本:向10毫升离心管中加入1毫升样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。毛发,体毛等:按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中依次加入增强试剂和待测液,混匀置于检测池中,开始检测。面粉、奶粉、咖啡粉等固体类:向10毫升离心管中加入1克样品,按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;按照芬太尼类物质检测试剂盒说明书进行前处理,清液待测;向检测瓶中加入4增强试剂A,待测液,增强试剂B2,混匀,置于检测池中,开始检测。上述解决方案的标准品检出限为0.001ppm,实际样品中的最di检出限可达0.01ppm。 图1 样品中芬太尼的表面增强拉曼光谱图 图2 样品中不同种类芬太尼的表面增强拉曼光谱图 3. 总结普拉瑞思科学仪器(苏州)有限公司拥有强大的产品研发能力,在拉曼光谱仪快速检测行业领域具备完善、齐全的检测方案,在食品安全、公共安全、药品安全等领域均有深厚技术积累和对应的产品方案,不仅具有多种类别的常量拉曼数据库,另外还配备目前国内最全面的毒pin类增强拉曼数据库,对芬太尼类等新精神活性物质有齐全的检测和解决方案,可为各级食药、公安、海关、口岸等部门提供强大技术保障。
  • 土壤重金属检测仪【竞道光电新款发布】
    土壤重金属检测仪【竞道光电新款发布】JD-ZSBเครื่องวัดโลหะหนักในดิน,近年来环境污染越来越受到公众的关注。大量重金属通过污水,大气沉降,固体废弃物等沉积富集在土壤中,重金属具有较强的迁移性和生物毒性,对人类及动植物均会产生较大威胁和危害。目前,土壤中重金属检测国标方法多采用混酸加热进行湿法消解后的原子光谱法测定金属含量,该方法操作复杂,重复性较差,偶然误差大。  食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等 重金属大量富积、积累,特别是城市郊区现象更为严重 加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致 消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤 繁琐且仪器昂贵。基于这种形势,我们开发出了重金属快速测定方法,可对蔬菜、食品、土壤、有机肥、烟叶等样品中的铅、砷、铬、镉、汞等进行快速联合测定。  一、土壤重金属检测仪检测原理:  (一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。  (二)各项重金属的检测原理及采用标准  1、重金属砷的检测原理及采用标准  采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈黄色,经仪器检测得出砷含量。  2、重金属铅的检测原理及采用标准  采用国家标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。  3、重金属铬的检测原理及采用标准  样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。  4、重金属镉的检测原理及采用标准  采用国家标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。  5、重金属汞的检测原理及采用标准  采用国家标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。
  • 【行业动态】准备好了吗?GB2763-2021已实施!
    由国家卫生健康委员会、农业农村部和国家市场监督管理总局联合发布的《食品安全国家标准 食品中农药大残留限量》(GB 2763-2021,代替GB 2763-2019)食品安全国家标准,9月3日已正式实施。2021版GB 2763规定了2,4-滴等564种农药在376种(类)食品中10092项残留限量标准。完成了批准的《加快完善我国农药残留标准体系的工作方案》规定的“十三五”末1万项的目标任务,农药品种和限量标准数量达到食品法典委员会(CAC)相关标准的近2倍,标志着我国农药残留标准制定工作迈上新台阶。2021版GB 2763标准的主要变化如下:1、新增部分农药残留限量2985项。其中,蔬菜、水果等居民日常消费的重点农产品的限量标准数量增长明显,分别增加了960项和615项,占新增限量总数的32.2%和20.6%,两类限量总数分别占2021版GB 2763食品限量总数的32.0%和24.5%。2、修订农药残留限量194项修订了46种农药在玉米等106种(类)食品中194项残留限量标准;将2甲4氯(钠)等17种农药的176项限量由临时限量修改为正式限量;将噻草酮等3种农药的19项限量由正式限量修改为临时限量。需要重点关注的是,此次修订涉及的胺苯磺隆等7种禁用农药和毒死蜱等9种限用农药,均按照检测方法的定量限水平设定限量值,实现了对相应禁限用范围食品种类的全覆盖。3、新增农药品种81种新增了81种农药,相应增加限量标准1343项。其中,42种农药已在我国批准登记,39种农药尚未在我国取得登记。4、修订了12种农药残留物监测定义修订了2,4-滴异辛酯、吡氟禾草灵和精吡氟禾草灵、氟噻草胺、甲基碘磺隆钠盐、井冈霉素、喹禾灵和精喹禾灵、螺虫乙酯、氰霜唑、三唑醇、噻唑锌这12种农药残留物监测定义及表述。5、修订了4种农药每日允许摄入量(ADI)。修订了丁苯吗啉、氟苯脲、喹禾灵和精喹禾灵这4种农药每日允许摄入量(ADI)。6、新增20种、修订15种食品名称增加了以下20种食品名称:小麦全粉、黄花菜(干)、番茄干、马铃薯干、香瓜茄、柑橘肉(干)、苹果干、茉莉花、蒌叶、马郁兰、夏香草、番茄酱、贝母(鲜)、贝母(干)、百合(干)、三七花(干)、哺乳动物脂肪(乳脂肪除外)、鸡脂肪、鸭脂肪、鹅脂肪;修订了以下15种食品名称:小茴香、莲子、人参、三七、白术、百合、元胡、石斛、黄花菜、菊花、浆果和其他小型水果、热带和亚热带类水果、羊肉、羊脂肪、羊乳。并将枸杞(干)的食品类别从干制水果调整为药用植物的花及果实类。7、调整部分配套农药残留检测方法增加7项农药残留检测方法:GB 23200.116、GB 23200.117、NY/T 1721、SN/T 1971、SN/T 4066、SN/T 4591、SN/T 4655;更新2个检测方法:《出口水果中克菌丹残留量的检测 气相色谱法和气相色谱-质谱/质谱法》(SN/T 0654)和《进出口植物性产品中氰草津、氟草隆、莠去津、敌稗、利谷隆残留量检验方法 液相色谱-质谱/质谱法》(SN/T 1605);删除2项检测标准:《植物性食品中氯氰菊酯、氰戊菊酯和溴氰菊酯残留量的测定》(GB/T 5009.110)和《食品安全国家标准 食品中苯酰胺类农药残留量的测定 气相色谱-质谱法》(GB 23200.72)。从新标准的变化来看,新标准的特点主要有² 涵盖农药品种和限量标准数量大幅增加;² 高风险农药品种监管力度持续加大;² 蔬菜等特色小宗作物限量标准显著增加;² 农药残留限量配套检测方法标准更加完善。 新国标已经实施,您的标准品准备好了吗,坛墨配套标准品已经部分上架,新品正持续不断更新中,助力新国标的顺利执行。
  • 2020年FDA共批准53款新药 化学结构创新为驱动力
    2020年,新药创新依然强劲。美国食品药品监督管理局(FDA)在2020年一共批准了53款药物,为二十多年来第二高的批准数量,这是制药行业生产力的一个积极指标。化学结构创新是FDA去年批准了的许多小分子药物背后的驱动力。  FDA在2020年批准的新药包括小分子、抗体、抗体-药物偶联物、多肽和寡核苷酸。其中,具有环结构的小分子药物仍占主导地位,在批准的新药中,有31款药物为具有环结构的小分子(不包括诊断性显像剂)。在这些小分子药物中,65%(即20款药物)的化学结构是新颖的,这意味着它们至少有一个基于新分子形状的新分子实体(NME)。在本文中,我们将探讨一些新药及其分子形状对临床的影响。  分子形状的重要性  化学结构创新和药物取得临床与商业成功的潜力之间存在着明显的联系。事实上,与其他小分子药物相比,化学结构新颖的药物被FDA指定为突破性疗法的可能性要高出2.5倍,成为重磅药物的可能性要高出2倍。  最近发表在美国化学会《药物化学快报》(ACS Medicinal Chemistry Letters)上的论文阐述了通过药物的化学结构来评估药物创新的价值。因为化学结构和药理活性之间有着直接的关系,所以将药物的创新性与其分子结构联系起来是有意义的。大多数小分子药物的作用取决于它们与蛋白质上特定位点的结合能力,这些位点是人体内自然产生的某些分子的作用位点。例如:一种药物可能比天然分子的结合力更强,从而阻止了该分子实现其生物学功能。因此,药物结合到所需位点的能力是其分子结构的功能。  常用来分析药物结构的概念工具之一是药物的骨架。它被定义为分子结构的一部分,由所有的环和连接环的链段组成。药物结构的这一部分很重要,因为它的作用是固定特定的化学基团,这些化学基团必须以特定的方式定位,以便与药物靶点的结合位点相互作用。具有相似药理活性的药物具有相同的骨架并不罕见。可以通过忽略某些化学细节(例如,特定类型的元素和键)来进一步简化骨架,并将其视为一个抽象形状,如下图所示。  图1:药物分子形状和骨架的定义示例  尽管分子形状简单,但它们经常被用来比较化学结构,而且可以被用来评价药物的化学结构创新。如果一款最近被批准的药物的分子形状从未出现在任何以前被批准的药物的化学结构中,我们就认为它在结构上是新颖的。这类药物有效地开辟了“化学空间”的新区域,因此我们称其为原创药物。  骨架和形状的概念只适用于至少有一个环的分子,大多数药物分子都满足这一条件。FDA在2020年批准的33款小分子药物中,有31款至少有一个环。根据我们的新分类方案,其中有20款是化学结构新颖的原创药物。  新的化学结构特征改善了患者的预后  化学结构创新的动机往往是希望改善直接影响患者预后的药物特性,如疗效和毒性。这一点可以从FDA在2020年批准的三款用于治疗罕见或“孤儿”疾病的新药中看出,由于患者人数少,这些疾病往往缺乏足够的治疗选择。  由PharmaMar开发的Zepzelca (Lurbinectedin)是一款被批准用于治疗转移性小细胞肺癌的DNA烷化剂。Lurbinectedin的分子形状在1992年首次被报道(16年前Lurbinectedin的新药研究申请[IND]被提交给FDA),目前被报道的其他物质中有不到150个物质与Lurbinectedin具有相同的分子形状。Lurbinectedin包含一个环系,但它是一个极其复杂的环系,由十个环组成。图中突出显示的结构部分是一个三环系(tryptoline),为药物化学中一个众所周知的结构砌块。Tryptoline被发现稠合在一些天然产物和药物希力士(他达拉非)的环系中。在之前被FDA批准的药物trabectedin(FDA在2015年批准其用于治疗转移性脂肪肉瘤或平滑肌肉瘤)的化学结构中,用Tryptoline替代了四氢异喹啉环系。Tryptoline已经被用于Lurbinectedin的化学结构设计中。这一替代创造了一种新的、没有在以前被批准的药物的化学结构中出现过的环系。与Trabectedin相比,Lurbinectedin的新环系显著改善了其毒性、效价和药代动力学。  图2:Lurbinectedin的结构  由PTC Therapeutics开发的 Evrysdi(risdiplam)是一种SMN2剪接修饰剂,被FDA批准用于脊髓性肌萎缩症的治疗。这是第一款被批准用于治疗这种罕见的致命遗传疾病的口服药物。Risdiplam的分子形状首次被报道是在2013年(在它的IND提交给FDA的三年前),目前被报道的其他物质中只有不到50个物质具有这种分子形状。Risdiplam的骨架由三个连接在一起的环系组成。图中突出显示的环系(4,7-diazaspiro[2.5]octane)是一个从未在以前被批准的药物的化学结构中出现过的环系。这个新颖的环是螺环系的一个例子,其中两个环通过一个共同的原子连接。具体来说,它是哌嗪环和三元环的螺稠合。虽然哌嗪的这种螺环衍生物对已批准的药物来说是新颖的,但哌嗪环本身并不是 它已被用于大量的上市药物的化学结构中。像这样的螺环系由于能够增加分子结构的非平面性,从而增强其三维性而在药物化学中引起越来越多的关注。  图3:Risdiplam的结构  由Array BioPharma开发的Retevmo(selpercatinib)是一款RET(转染期间重排)抑制剂,用于治疗伴有RET基因突变或融合的肺癌和甲状腺癌。Selpercatinib是FDA批准的首款选择性RET靶向药物。Selpercatinib的分子形状首次报道于2018年(在其IND提交给FDA一年后),目前被报道的其他物质中有不到350个物质具有这种分子形状。Selpercatinib的骨架由四个连接在一起的环系组成。图中突出显示的环系(3,6-二氮杂二环[3.1.1]庚烷)从未在以前被批准的药物的化学结构中出现过。这种新颖的环(与上段文中提到的药物Evrysdi中的环一样)也是哌嗪的衍生物。这种衍生物是通过在哌嗪环上加一个单碳桥而生成的。最近的研究发现,将这些类型的环合并到药物的化学结构中可以降低其亲脂性(即,其对类脂环境的亲和力)。这是影响药物活性许多方面的重要性质。X射线晶体学发现,与2020年批准的第二款RET抑制剂pralsetinib相比,selpercatinib的两个中心环(包括其新型桥接的哌嗪)在目标蛋白的配体结合裂缝中埋得更深。这说明了环结构在药物与靶标的结合中所起的重要作用。  图4:Selpercatinib的结构  原创药物在肿瘤学领域取得了重大进展  为了进一步了解一些化学结构新颖的获批药物,我们将重点放在肿瘤的治疗领域。2020年,FDA批准的小分子肿瘤药物有12款,比任何其他治疗领域都多。下图展示了肿瘤药物分类:原创药物和使用现有分子形状的药物,在获批的这些药物中,原创药物的数量是非原创药物的三倍。  图5:获批的原创和非原创药物  FDA在2020年批准的12款具有环结构的小分子肿瘤药物中,有9款是化学结构新颖的药物。作为这些原创药物的一个例子,图6展示了6款被FDA指定为突破性疗法的原创肿瘤新药。仔细观察这些药物就会发现,它们代表了癌症治疗方面的一系列重要的“首创”,进一步加强了化学结构创新的临床影响。  图6:2020年代表肿瘤治疗“首创”的原创药物  Ayvakit是首款被FDA批准用于治疗由血小板源性生长因子受体特异性突变引起的胃肠道间质肿瘤的疗法。  Pemazyre是首款被FDA批准用于治疗转移性胆管癌(胆管癌,这种肿瘤的成纤维细胞生长因子受体发生了突变)的药物。  Qinlock是一款治疗晚期胃肠道间质瘤的药物,是第一款专门批准用于治疗已接受过三种或三种以上激酶抑制剂治疗的患者的药物。  Retevmo(如上所述)是首款被FDA批准用于治疗非小细胞肺癌和一些甲状腺癌的药物(肿瘤的RET基因发生了改变[突变或融合])。  Tabrecta是首款被FDA批准用于治疗转移性非小细胞肺癌(肿瘤导致了MET[间充质上皮转化]外显子14跳跃的突变)的药物。  Tukysa是一款被FDA批准作为联合用药方案的组成成分,用于治疗不可手术、局部晚期或转移性HER2阳性乳腺癌(包括已扩散到大脑的癌症)的药物。  推动化学结构创新能够加速药物开发  正如我们最近基于结构的药物创新分析所显示的那样,FDA在过去几十年批准的药物中,原创药物的比例呈上升趋势。对FDA在2020年批准的药物进行分析后发现,化学结构的创新趋势可能会持续,因为药物猎人寻求改进现有药物,为目前无法治疗的疾病寻找药物,并在高价值治疗领域建立独有的知识产权。此外,微生物对现有抗生素的耐药性或新型病毒病原体(如导致COVID-19的冠状病毒SARS-CoV-2)等新威胁的出现,继续加强了开发新疗法以减轻这些威胁的紧迫性。问题是,我们可以做些什么来加速发现?机器学习和新兴的预测方法在未来几年对这一趋势的影响会达到什么程度呢?
  • 重庆食药监局订购北京智云达保化快检产品
    现在保健品、化妆品市场鱼龙混杂,一些未经允许的物质加入其中,对消费者身心健康产生严重影响。为了规范保化产品市场,2014年6月16日,重庆市食品药品监督管理局订购了北京智云达科技有限公司研发、生产的保健品、化妆品类快速检测试剂盒。 此次重庆食药局共订购27套保化产品,包括磺脲类、那非类、拉非类、双胍类、西布曲明、噻唑烷酮类、二氢吡啶类、酚酞等保健品快检检测试剂盒;甲硝唑快速检测试剂盒,苯二胺类化妆品类快速检测试剂盒。根据颜色反应可快速判定检测结果,而且小包装方便携带,操作简便。 智云达一直与食药局、工商部门有良好的供应关系。快检产品不仅质量有保障,而且售后服务到位。在重庆市食药局订购产品的第三天,我公司技术工程师杨益平来到重庆食药局做现场培训工作。技术工程师现场讲解 北京智云达科技有限公司的研发力量雄厚,队伍由一批专业水平高、事业心强的博士、硕士以及长期从事食品安全检测、化学分析、软件开发的专家组成。多年来专业致力于食品安全快速检测产品的研发、生产,获得了多项拥有自主知识产权的产品。在这个食品安全频发的年代,智云达作为您身边的食品安全检测专家一直在努力研发、生产更多更有效的快检产品,为食品安全贡献一份力!技术工程师现场指导
  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 86项分析测试方法国标本月起正式实施
    仪器信息网讯 2014年12月1日,国家标准化管理委员会发布了12月起将要实施的国家标准目录,共382项。仪器信息网编辑经过整理,据不完全统计,其中相关的分析测试标准共有86项,详细目录如下表所示。 2014年12月份实施的分析检测国家标准 标准编号 标准名称 代替标准号 GB/T 11141-2014 工业用轻质烯烃中微量硫的测定 GB/T 11141-1989 GB/T 11743-2013 土壤中放射性核素的&gamma 能谱分析方法 GB/T 11743-1989 GB/T 12701-2014 工业用乙烯、丙烯中微量含氧化合物的测定 气相色谱法 GB/T 12701-1990 GB/T 14420-2014 锅炉用水和冷却水分析方法 化学耗氧量的测定重铬酸钾快速法 GB/T 14420-1993 GB/T 15893.1-2014 工业循环冷却水中浊度的测定 散射光法 GB/T 15893.1-1995 GB/T 16422.2-2014 塑料 实验室光源暴露试验方法 第2部分:氙弧灯 GB/T 16422.2-1999 GB/T 16422.3-2014 塑料 实验室光源暴露试验方法 第3部分:荧光紫外灯 GB/T 16422.3-1997 GB/T 16422.4-2014 塑料 实验室光源暴露试验方法 第4部分:开放式碳弧灯 GB/T 16422.4-1996 GB/T 16801-2013 织物调理剂抗静电性能的测定 GB/T 16801-1997 GB/T 18851.5-2014 无损检测 渗透检测 第5部分:温度高于50℃的渗透检测 GB/T 18851.6-2014 无损检测 渗透检测 第6部分:温度低于10℃的渗透检测 GB/T 19281-2014 碳酸钙分析方法 GB/T 19281-2003 GB/T 208-2014 水泥密度测定方法 GB/T 208-1994 GB/T 2383-2014 粉状染料 筛分细度的测定 GB/T 2383-2003 GB/T 2386-2014 染料及染料中间体 水分的测定 GB/T 2386-2006 GB/T 2391-2014 反应染料 固色率的测定 GB/T 2391-2006 GB/T 2392-2014染料 热稳定性的测定 GB/T 2392-2006 GB/T 2399-2014 阳离子染料 染色色光和强度的测定 GB/T 2399-2003 GB/T 2403-2014 阳离子染料 染腈纶时染浴pH适应范围的测定 GB/T 2403-2006 GB/T 24148.7-2014 塑料 不饱和聚酯树脂(UP-R) 第7部分: 室温条件下凝胶时间的测定 GB/T 24148.8-2014 塑料 不饱和聚酯树脂(UP-R) 第8部分:铂-钴比色法测定颜色 GB/T 7193.7-1992 GB/T 24148.9-2014 塑料 不饱和聚酯树脂(UP-R) 第9部分:总体积收缩率测定 GB/T 2679.1-2013 纸 透明度的测定 漫反射法 GB/T 2679.1-1993GB/T 2679.12-2013 纸和纸板 无机填料和无机涂料的定性分析 化学法 GB/T 2679.12-1993 GB/T 2792-2014 胶粘带剥离强度的试验方法 GB/T 2792-1998 GB/T 29493.9-2014 纺织染整助剂中有害物质的测定 第9部分: 丙烯酰胺的测定 GB/T 30397-2013 皮鞋整鞋吸湿性、透湿性试验方法 GB/T 30398-2013 皮革和毛皮 化学试验 致敏性分散染料的测定 GB/T 30399-2013 皮革和毛皮 化学试验 致癌染料的测定 GB/T 30412-2013 塑料薄膜和薄片水蒸气透过率的测定 湿度传感器法 GB/T 30419-2013 玩具材料中可迁移元素锑、砷、钡、镉、铬、铅、汞、硒的测定 电感耦合等离子体原子发射光谱法 GB/T 30564-2014 无损检测 无损检测人员培训机构指南 GB/T 30565-2014 无损检测 涡流检测 总则 GB/T 30701-2014 表面化学分析 硅片工作标准样品表面元素的化学收集方法和全反射X射线荧光光谱法(TXRF)测定 GB/T 30702-2014 表面化学分析 俄歇电子能谱和X射线光电子能谱 实验测定的相对灵敏度因子在均匀材料定量分析中的使用指南 GB/T 30703-2014 微束分析 电子背散射衍射取向分析方法导则 GB/T 30704-2014 表面化学分析 X射线光电子能谱 分析指南 GB/T 30705-2014 微束分析 电子探针显微分析 波谱法实验参数测定导则 GB/T 30706-2014 可见光照射下光催化抗菌材料及制品抗菌性能测试方法及评价 GB/T 30707-2014 精细陶瓷涂层结合力试验方法 划痕法 GB/T 30708-2014 低密度矿物棉毯状绝热材料热阻评价方法 GB/T 30709-2014 层压复合垫片材料压缩率和回弹率试验方法 GB/T 30710-2014 层压复合垫片材料蠕变松弛率试验方法 GB/T 30711-2014 摩擦材料热分解温度测定方法 GB/T 30758-2014 耐火材料 动态杨氏模量试验方法(脉冲激振法) GB/T 30773-2014 气相色谱法测定 酚醛树脂中游离苯酚含量 GB/T 30776-2014 胶粘带拉伸强度与断裂伸长率的试验方法 GB/T 30777-2014 胶粘剂闪点的测定 闭杯法 GB/T 30790.6-2014 色漆和清漆 防护涂料体系对钢结构的防腐蚀保护 第6部分:实验室性能测试方法 GB/T 30791-2014 色漆和清漆 T弯试验 GB/T 30792-2014 罐内水性涂料抗微生物侵染的试验方法 GB/T 30793-2014 X-射线衍射法测定二氧化钛颜料中锐钛型与金红石型比率 GB/T 30794-2014 热熔型氟树脂涂层(干膜)中聚偏二氟乙烯(PVDF)含量测定 熔融温度下降法 GB/T 30824-2014 燃气热处理炉温度均匀性测试方法 GB/T 30902-2014 无机化工产品 杂质元素的测定 电感耦合等离子体发射光谱法(ICP-OES) GB/T 30903-2014 无机化工产品 杂质元素的测定 电感耦合等离子体质谱法(ICP-MS) GB/T 30904-2014 无机化工产品 晶型结构分析 X射线衍射法 GB/T 30905-2014 无机化工产品 元素含量的测定 X射线荧光光谱法 GB/T 30906-2014 三聚磷酸钠中三聚磷酸钠含量的测定 离子色谱法 GB/T 30907-2014 胶鞋 运动鞋减震性能试验方法 GB/T 30908-2014 摄影 加工废液 硼的测定 GB/T 30909-2014 胶鞋 丙烯腈迁移量的测定 GB/T 30910-2014 胶鞋 2-巯基苯并噻唑、二硫化二苯并噻唑迁移量的测定 GB/T 30911-2014 汽车齿轮齿条式动力转向器唇形密封圈性能试验方法 GB/T 30914-2014 苯乙烯-异戊二烯-丁二烯橡胶(SIBR)微观结构的测定 GB/T 30917-2014 天然胶乳橡胶避孕套中可迁移亚硝胺的测定 GB/T 30919-2014 苯乙烯-丁二烯生橡胶 N-亚硝基胺化合物的测定 气相色谱-热能分析法 GB/T 30921.1-2014 工业用精对苯二甲酸(PTA)试验方法 第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定 GB/T 30924.2-2014 塑料 乙烯-乙酸乙烯酯(EVAC)模塑和挤出材料 第2部分:试样制备和性能测定 GB/T 30925-2014 塑料 乙烯-乙酸乙烯酯共聚物(EVAC)热塑性塑料 乙酸乙烯酯含量的测定 GB/T 5161-2014 金属粉末 有效密度的测定 液体浸透法 GB/T 5161-1985 GB/T 5211.15-2014 颜料和体质颜料通用试验方法 第15部分:吸油量的测定 GB/T 5211.15-1988 GB/T 5616-2014 无损检测 应用导则 GB/T 5616-2006 GB/T 7791-2014 防污漆降阻性能试验方法 GB/T 7791-1987 GB/T 8657-2014 苯乙烯-丁二烯生橡胶 皂和有机酸含量的测定 GB/T 8657-2000 GB/T 8941-2013 纸和纸板 镜面光泽度的测定 GB/T 8941-2007 GB/T 9339-2014 反应染料 染料与纤维素纤维结合键 耐酸耐碱性的测定 GB/T 9339-2006GB/T 10663-2014 分散染料 移染性的测定 高温染色法 GB/T 10663-2003 GB/T 12604.7-2014 无损检测 术语 泄漏检测 GB/T 12604.7-1995 GB/T 12604.8-2014 无损检测 术语 中子检测 GB/T 12604.8-1995 GB/T 12735-2014 带传动 农业机械用V带 疲劳试验 GB/T 12735-1991 GB/T 30787-2014 数字印刷材料用成膜树脂 平均分子量及其分布的测定 凝胶渗透色谱法 GB/T 4516-2013 家用缝纫机 缝厚能力测试方法 GB/T 4516-1995 GB/T 4517-2013 家用缝纫机 送料方向稳定性测试方法 GB/T 4517-1995 GB/T 4518-2013 家用缝纫机 缝料层潜移量测试方法 GB/T 4518-1984 GB/T 7125-2014 胶粘带厚度的试验方法 GB/T 7125-1999
  • 紧急采购:90余类仪器、试剂耗材批量采购
    湖南某单位是一家俄语区国家实验室耗材、成套设备及通风系统的配套商,现需采购一批仪器设备及试剂,需要国内优质的生产企业对接,满足要求的生产厂商可与之联系。同时该单位将于2022年4月25日下午的“后疫情时代国产仪器的出海机会”网络研讨会上进行线上的采购交流会,届时会现场讲解采购需求及注意事项,满足要求的国内生产厂商也可点击报名参与下。采购产品清单如下(联系方式见文末):Маркер гидрофобный ImmEdge Pen 免疫组化笔RNA Cleanup Kit (10 μg)трис(гидроксиметил)аминометан/Tris base, 99% 三羟甲基氨基甲烷Агароза 高纯度低电渗琼脂糖1-е антитела第一抗体Ligation Sequencing Kit (Q20+) 连接测序试剂盒 (Q20+)MinION Flow Cell (R10.4) 测序芯片Ultra-Long DNA Sequencing Kit超长DNA测序试剂盒Spermine tetrahydrochloride精胺四盐酸盐Short Read Eliminator Kit XL短读消除试剂盒 XLShort Read Eliminator Kit 短读消除试剂盒Gentra Puregene Tissue Kit组织试剂盒NEBNext RNA Depletion Core Reagent Set RNA 去除核心试剂套装NEBNext Small RNA Library Prep Set 1 小 RNA 文库制备套装 1Monarch HMW gDNA Tissue Lysis Buffer Monarch HMW gDNA 组织裂解缓冲液Monarch Protein Separation Solution Monarch 蛋白分离Monarch gDNA Wash Buffer RIPA裂解液Monarch gDNA Elution Buffer II gDNA 洗脱缓冲液 IIMonarch DNA Capture BeadsMonarch Bead RetainersMiSeq Reagent Kit v2 (50 cycle) 基因测序试剂盒v2 (50循环)Glycerin (glycerol), 50% (v/v) Aqueous Solution 甘油(甘油),50% (v/v) 水溶液Ethanol, Pure (200 Proof, anhydrous) 乙醇,纯(200 证明,无水)Вода UltraPure, не содержащая ДНКаз / РНКаз 不含 DNase/RNase 的超纯水Картридж BluePippin 2% агароза, без крас.,100-600 п.о., 层析柱 BluePippin 2% 琼脂糖,无染料,bp 100-600,Картридж BluePippin 3% агароза, без крас.,100-200 п.о., 层析柱BluePippin 3% 琼脂糖,无染料,bp 100-200,1-Bromo-3-chloropropane 1-溴-3-氯丙烷c dna synthesis kitc DNA合成试剂盒Reliance Select cDNA Synthesis cDNA 合成试剂盒N,N-Dimethylformamide N,N-二甲基甲酰胺MiSeq Reagent Kit v3 MiSeq 试剂盒 v3SP6 RNA Polymerase (20 U/µL) SP6 RNA 聚合酶(20 U/µL)dUTP Solution (100 mM) dUTP 溶液(100 mM)Epredia™ Neg-50™ Frozen Section Medium Epredia™ Neg-50™ 冷冻切片培养基Обратная транскриптаза Mint 逆转录酶Эмбриональная бычья сыворотка (FBS, происхождение Южная Америка), 500 мл (-20°) 胎牛血清(FBS,原产南美),500 毫升(-20°)Agarose, low gelling temperature Type VII-A, 琼脂糖,低胶凝温度 VII-A 型,Dulbecco′s Phosphate Buffered Saline, Dulbecco 的磷酸盐缓冲液Sony Sorting Chip-70um for SH800 and MA900 (box of 40) 适用于 SH800 和 MA900 的Sony Sorting Chip-70um(40 盒)GM 6001 伊洛马司他 基质蛋白酶抑制剂Aphidicolin 艾菲地可宁Glutaraldehyde solution 戊二醛溶液Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa Fluor™ 488 dyeGreen features 细胞增殖检测试剂盒Grid-Stick Glue (For recoating Grid-Stick)HEPES 4-羟乙基哌嗪乙磺酸High SensitivityDNA Kit高灵敏度 DNA 试剂盒RNA 6000 Pico Kit RNA 6000 Pico 试剂盒RNA 6000 Nano Kit RNA 6000 纳米试剂盒Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 546 山羊抗大鼠 IgG (H+L) 交叉吸附二抗,Alexa Fluor™ 5465ml tips 吸头Axygen TF-1000Axygen T-300Стекла предметные Superfrost plus с углами 90° со шлифованной кромкой с зоной для маркировки белого цвета Superfrost plus 带有 90° 角的幻灯片和带有白色标记区域的磨边шт Планшет для 25 предметных тонких стекол, прозрачная крышка, ПЭ, 用于 25 个薄载玻片的板、透明盖、PE、Планшет на 50 ст. тонких предм. стекол, ПЭ, прозрачная крышка, белый, 用于 50个薄载玻片的板、白色、透明玻璃Grid-Stick KitGrid-Stick, uncoated 无涂层Staining Pipettes with 2 plugs 带 2 个塞子的染色移液器Filter Tips 10μl, 50 racks 带滤芯吸头Filter Tips 200μl, 50 racks 带滤芯吸头Filter Tips 1000μl, 50 racks 带滤芯吸头Дозатор 0,5-10 мкл, 8 каналов, biohit proline plus 8通道移液器Дозатор 10-100 мкл, 8 каналов, biohit proline plus8通道移液器Дозатор 30-300 мкл, 8 каналов, biohit proline plus8通道移液器Охлаждающий ПЦР-штатив, 0,2мл 低温PCR架 有机玻璃Охлаждающий ПЦР-штатив, 2мл 低温PCR架 有机玻璃Система обратного осмоса Angstra R-5C 实验室反渗透纯水机Редуктор давления 隔膜式减压阀 DRVN 1.5-6 barМанометр 压力表Картридж B150 Миди 滤芯椰壳活性炭 140X330Мешок 20л储水袋Комплект промывки 反渗透及管路清洗组件УФ лампа 双波长紫外灯Картридж умягчителя软化柱картридж сверхчистой воды 超纯化柱Патрон предварительной обработки预处理柱2 модуля обратного осмоса (RO модуля)反渗透柱SterilePlus (стерильный фильтр, Sartopore® 2 150)Galileo 1214 Mini Gel Unit 水平电泳迷你凝胶系统 Pbs без кальция и магния Dulbecco′s Phosphate Buffered Saline D5652-10L杜氏磷酸盐缓冲盐水 PBS 不含钙和镁Пробирки с оптически-прозрачной плоской крышкой объемом 0,2 мл 带光学透明平盖的试管,0.2 mlСуспензия магнитных частиц CleanMag DNA - 5 мл (пробирка 1 мл - 5 шт) BC35S 磁性粒子悬浮液 CleanMag DNA - 5 ml(管 1 ml - 5 pcs)пробирка 1 мл 悬浮液管1mlШтатив RA-20002 Компания Хеликон Артикул RA-20002 pcr变色冷冻盒Магнитный штатив для пробирок объемом 1.5-2.0 мл pcr PCR冷冻盒Суспензия магнитных частиц CleanMag DNA - 5 мл (пробирка 1 мл - 5 шт) BC35S磁力冷冻盒Штатив RA-20002 Компания Хеликон Артикул RA-20002 离心管托盘VWR (Amresco) Агароза (Biotechology Grade) Am-O710-0.5 500г VWR(Amresco)琼脂糖(生物技术级)Am-O710-0.5 500gEncyclo полимераза PK002L 0X смесь полимераз Encyclo, 5 x 100 мкл10X Encyclo буфер, 5 x 600 мкл 1000 р-ций объемом 25 мкл环聚合酶 PK002L 0X 环聚合酶混合物,5 x 100 µl10X Encyclo 缓冲液,5 x 600 µl 1000 25 µl p-tions 采购单位:湖南中星科技有限公司联系人:樊先生(总经理)联系电话:15388055177邮箱:282794290@qq.com还需要其他的试剂,请优质生产厂家直接发英文目录至邮箱,或添加微信(同手机号)。
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制