当前位置: 仪器信息网 > 行业主题 > >

吡啶基苯并三唑标

仪器信息网吡啶基苯并三唑标专题为您提供2024年最新吡啶基苯并三唑标价格报价、厂家品牌的相关信息, 包括吡啶基苯并三唑标参数、型号等,不管是国产,还是进口品牌的吡啶基苯并三唑标您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡啶基苯并三唑标相关的耗材配件、试剂标物,还有吡啶基苯并三唑标相关的最新资讯、资料,以及吡啶基苯并三唑标相关的解决方案。

吡啶基苯并三唑标相关的论坛

  • 【求助】马来酸氯苯那敏的四氢呋喃、二氧六环、吡啶、甲苯我做不出来

    [em06] 四氢呋喃、二氧六环、吡啶、甲苯 照残留溶剂测定法(附录Ⅷ P第三法)试验。精密称取苯适量,加甲醇制成每1 ml中约含60μg的溶液,作为内标溶液。精密称取四氢呋喃、二氧六环、吡啶、甲苯适量,加甲醇制成每1ml中各含720μg、380μg、200μg和890μg的溶液,作为对照贮备溶液;精密量取对照贮备溶液1ml与内标溶液1ml,置10ml量瓶中,加水稀释至刻度,摇匀,作为对照溶液。精密称取本品1.0g,置10ml量瓶中,加内标溶液1ml,加水溶解并稀释至刻度,摇匀,作为供试品溶液。用二乙烯基-乙基乙烯苯型高分子小球作为固定相,柱温190℃,依法测定。残留溶剂含量应符合规定。我让色谱公司按这个要求做了不锈钢柱子(柱填料:401有机载体(二乙烯基苯/乙基乙烯苯共聚体)60-80目),可是不出峰,后来把柱寄回去了,现在又寄给我的柱子(柱填料:10%PEG-20M CHROMOSORB PAW-DMCS 80-100目),峰是有了,可是分不开,我做[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的氮气4圈,空气4.2圈,氢气4.5圈,后我又把氮气开到3圈,还是这个样子.是怎么回事呢,请高手赐教.谢谢!!!

  • 【分享】空气中氯苯的测定方法 吡啶-碱比色法

    【分享】空气中氯苯的测定方法 吡啶-碱比色法

    空气中氯苯的测定方法 吡啶-碱比色法 1 原理氯苯硝化时生成二硝基氯苯,二硝基氯苯与吡啶及碱反应生成玫瑰紫色,比色定量。2 仪器2.1 小型气泡吸收管。2.2 抽气机。2.3 流量计,0.2~1.0L/min。2.4 具塞比色管,25ml。3 试剂3.1 吸收液(硝化混合液):称取10g于80℃干燥过的硝酸铵,溶于100ml硫酸中。3.2 氨水。3.3 氢氧化钠溶液,400g/L。3.4 稀硝化混合液:取硝化混合液按1+3的比例用水稀释,稀释时应不断摇动冷却。3.5 吡啶:应无色,否则需蒸馏。3.6 标准溶液:量取12.5ml硝化混合液于50ml量瓶中,加入1滴氯苯摇匀,放置2~3h硝化,小心加水至刻度,计算氯苯的含量。再用稀硝化混合液稀释成1ml=100微克氯苯的贮备液。临用前取贮备液,用稀硝化混合液稀释成1ml=10微克氯苯的标准溶液。4 采样串联两个各装2ml吸收液的小型气泡吸收管,以0.2L/min的速度,抽取1L空气。5 分析步骤5.1 对照试验:同采样。将吸收管装好吸收液带至现场,但不抽取空气,照样品分析,作为空白对照。5.2 样品处理:用吸收管中的吸收液洗涤进气管内壁3次,冷却。前、后吸收管内的样品溶液分别例入盛有6ml水的比色管中,加稀硝化混合液到10ml,混匀。5.3 标准曲线的绘制:按表70配制标准管。表70 氯苯标准管的配制[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201449_52383_1625938_3.jpg[/img]各标准管用氨水(3.2)中和至中性(石蕊作指示剂),加水至5ml。各加1ml吡啶(3.5),摇匀,放入沸水浴中5min。冷却后加入3ml氢氧化钠溶液(3.3),用力摇动1~2min,静置分层。吡啶层显出玫瑰紫色。5.4 测定:量取2ml样品于具塞比色管中,操作同标准管,与标准管目视比色定量。6 计算X=5(C1+C2)/V0式中:X——空气中氯苯的浓度,mg/m3;C1、C2——分别为前后吸收管所取样品溶液中氯苯的含量,微克;V0——标准状况下的样品体积,L。7 说明7.1 本法的检测限为2微克/5ml。7.2 显色后的颜色在1h内稳定。7.3 苯、丙酮、酯类、醋酸、二氯苯及松节油无干扰。

  • 请问有做鸡蛋中氯羟吡啶的么?

    http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif我们按照GB/T 20362-2006国标来做鸡蛋中氯羟吡啶,但是做加标回收实验室,过完柱子以后发现没有回收率!请问各位大侠你们是怎么做氯羟吡啶的呢,实验过程中有什么要特别注意的?是标准准伤害了我还是我做的方法不对呢?

  • 【求助】测定2-氰基吡啶、3-氰基吡啶用什么内标物?

    刚刚摸索用内标法测定2-氰基吡啶和3-氰基吡啶纯品的含量,不知道选哪种内标物比较好?(纯品中可能还含有甲苯、吡啶、2-甲基吡啶/3-甲/4-甲、4-氰基吡啶)看到一篇文献中以3-氰基吡啶为内标物测定2-氰基吡啶水溶液的含量,但以我们现在的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]条件,2-氰基吡啶和3-氰基吡啶的样品峰并不能完全分开,还有一小部分互溶,好像达不到内标法的要求。用甲醇或乙醇作内标物不知道合适不?期盼高手解答一下。不胜感激!

  • 三氟乙酸的作用与用途

    用作医药、农药中间体、生化试剂、有机合成试剂。三氟乙酸用于合成含氟化合物、杀虫剂和染料。是酯化反应和缩合反应的催化剂;羟基和氨基的保护剂,用于糖和多肽的合成。还用作选矿剂。用于有机合成。三氟乙酸是一种重要的脂肪含氟中间体,由于含有三氟甲基的特殊结构,因此使其性质不同于其他醇类,可以参与多种有机合成反应,尤其用于合成含氟的医药、农药和染料等领域,国内外需求量越来越大,已成为含氟精细化学品的重要的中间体之一。主要用于新型农药、医药和染料等的生产,在材料、溶剂等领域也有较大的应用开发潜力。三氟乙酸主要用于合成多种含三氟甲基和杂环的除草剂,可以合成多种带有吡啶基、喹啉基的新型除草剂;作为极强的质子酸,它广泛用于芳香族化合物烷基化、酰基化、烯烃聚合等反应的催化剂;作为溶剂,三氟乙酸是氟化、硝化及卤代反应的优良溶剂,特别是其衍生物三氟乙酰基对羟基和氨基的优良保护作用,在氨基酸和多肽化合物合成方面有着非常重要的应用,用于多肽合成中除去氨基酸的叔丁氧羰基(t-boc)保护基;三氟乙酸作为制备离子膜的原料和改性剂,可大幅提高烧碱工业电流效率,延长膜的使用寿命;三氟乙酸还可合成三氟乙醇、三氟乙醛和三氟乙酐。室温下三氟乙酸汞使氟苯起汞化反应(亲电取代),也可将腙转化为重氮化合物。此酸的铅盐可将芳烃转化为酚。可部分溶解二硫化碳和六碳以上烷烃,是蛋白质和聚酯的优良溶剂。它也是有机反应的优良溶剂,可获得在一般溶剂中难以获得的结果,例如喹啉在一般溶剂中催化氢化时,吡啶环优先氢化,但在三氟乙酸中苯环优先氢化。三氟乙酸在苯胺存在下分解成氟仿和二氧化碳。在HPLC中的应用:在反相色谱分离多肽和蛋白质的实验中,使用三氟乙酸 (TFA) 作为离子对试剂是常见的手段。流动相中的三氟乙酸通过与疏水键合相和残留的极性表面以多种模式相互作用,来改善峰形、克服峰展宽和拖尾问题。三氟乙酸与多肽上的正电荷及极性基团相结合以减少极性保留,并把多肽带回到疏水的反相表面。以同样的方式,三氟乙酸屏蔽了固定相上残留的极性表面。三氟乙酸的行为可以理解为它滞留在反相固定相的表面,同时与多肽及柱床作用。三氟乙酸优于其他离子修饰剂的原因是它容易挥发,可以方便地从制备样品中除去。另一方面,三氟乙酸的紫外最大吸收峰低于200nm ,对多肽在低波长处的检测干扰很小。改变三氟乙酸的浓度,可以细微地调整多肽在反相色谱上的选择性。这一影响对于优化分离条件、增大复杂色谱分析(如多肽的指纹图谱)的信息量是非常有益的。三氟乙酸添加在流动相中的浓度一般为 0.1% ,在这个浓度下,大部分的反相色谱柱都可以产生良好的峰形,当三氟乙酸浓度大大低于这个水平时,峰的展宽和拖尾就变得十分明显。三氟乙酸在分离蛋白等大分子的时候效果很好,在实际使用中,大家对于三氟乙酸的浓度都很难控制好,因为它是挥发性的物质,如果配置时间长了,就会挥发一些,改变了浓度。配制好以后一定要封闭好,防止挥发。

  • 【求助】请问苯酐吡啶溶液变黄,影响测定的原理是什么?

    新进的批号是201004的吡啶已经是淡黄色的了,配制溶液过夜后,苯酐溶液颜色更深了,请问,吡啶变色原理是什么?对多元醇测定影响是如何产生的,请高人指点。我用的电位滴定。吡啶变黄不能用是针对使用指示剂干扰终点判断还是其他的原因呢?

  • 生态环境部关于2023年第8批新化学物质环境管理简易登记证审批结果的公开

    按照《中华人民共和国政府信息公开条例》(国务院令第711号)的要求,现将2023年第8批新化学物质环境管理简易登记证审批结果予以公开。  附表:2023年第8批新化学物质环境管理简易登记证批准情况表  [b]附表:2023年第8批新化学物质环境管理简易登记证批准情况表[/b][table=800][tr][td][align=center][b]序号[/b][/align][/td][td][align=center][b]登记证号[/b][/align][/td][td][align=center][b]中文名称[/b][/align][/td][td][align=center][b]申请人/代理人[/b][/align][/td][td][align=center][b]活动类型[/b][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]J1A222230097[/align][/td][td]甲基丙烯酸(3-乙基氧杂环丁-3-基)甲基酯[/td][td]捷时雅(上海)商贸有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]J1A222230098[/align][/td][td]甲基丙烯酸(7-氧杂二环[4.1.0]庚-3-基)甲基酯[/td][td]捷时雅(上海)商贸有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]J1A221230099[/align][/td][td]1-[(4,4,8-三甲基三环[6.3.1.0[sup]2,5[/sup]]烷-1-基)氧]戊-2-醇和1-[(1,4,4-三甲基三环[6.3.1.0[sup]2,5[/sup]]烷-8-基)氧]戊-2-醇及其异构体的混合物[/td][td]国际香料(中国)有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]J1A222230100[/align][/td][td](R)-3-(苄氧基)-2-((叔丁氧基羰基)氨基)丙酸[/td][td]阿塞托国际贸易(上海)有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]J1A212230101[/align][/td][td]4-(6-氯-2-吡啶基)-1-哌啶羧酸1,1-二甲基乙基酯[/td][td]凯莱英医药化学(吉林)技术有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]6[/align][/td][td][align=center]J1A212230102[/align][/td][td]((3S,5S,6R)-6-甲基-2-氧代-5-(2,3,6-三氟苯基)哌啶-3-基)氨基甲酸叔丁酯[/td][td]吉林凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]7[/align][/td][td][align=center]J1A212230103[/align][/td][td]4-(6-氯-2-吡啶基)-1-哌啶羧酸1,1-二甲基乙基酯[/td][td]吉林凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]8[/align][/td][td][align=center]J1A212230104[/align][/td][td]3-羟基-1-哌啶甲酸叔丁酯[/td][td]常州市浚鑫化工有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]9[/align][/td][td][align=center]J1A212230105[/align][/td][td]3-氟-4-(羟甲基)苯腈[/td][td]辽宁凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][/table]

  • 【原创】吡啶的性质(超级完善)

    吡啶,有机化合物,是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯,无色或微黄色液体,有恶臭。吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。吡啶在工业上可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料等)的原料。  英文名称: pyridine  中文名称2: 氮(杂)苯  CAS No.: 110-86-1  分子式: C5H5N  分子量: 79.10吡啶结构  吡啶的结构与苯非常相似,近代物理方法测得,吡啶分子中的碳碳键长为139pm,介于C-N单键 (147pm)和C=N双键(128pm)之间,而且其碳碳键与碳氮键的键长数值也相近,键角约为120°,这说明吡啶环上键的平均化程度较高,但没有苯完全。  吡啶环上的碳原子和氮原子均以sp2杂化轨道相互重叠形成σ键,构成一个平面六元环。每个原子上有一个p轨道垂直于环平面,每个p轨道中有一个电子,这些p轨道侧面重叠形成一个封闭的大π键,π电子数目为6,符合4n+2规则,与苯环类似。因此,吡啶具有一定的芳香性。氮原子上还有一个sp2杂化轨道没有参与成键,被一对孤对电子所占据,是吡啶具有碱性。吡啶环上的氮原子的电负性较大,对环上电子云密度分布有很大影响,使π电子云向氮原子上偏移,在氮原子周围电子云密度高,而环的其他部分电子云密度降低,尤其是邻、对位上降低显著。所以吡啶的芳香性比苯差。  在吡啶分子中,氮原子的作用类似于硝基苯的硝基,使其邻、对位上的电子云密度比苯环降低,间位则与苯环相近,这样,环上碳原子的电子云密度远远少于苯,因此象吡啶这类芳杂环又被称为“缺π”杂环。这类杂环表现在化学性质上是亲电取代反应变难,亲核取代反应变易,氧化反应变难,还原反应变易。吡啶性质  外观与性状: 无色或微黄色液体,有恶臭。  熔点(℃): -41.6  沸点(℃): 115.3  相对密度(水=1): 0.9827  折射率:1.5067(25℃)  相对蒸气密度(空气=1): 2.73  饱和蒸气压(kPa): 1.33/13.2℃  闪点(℃): 17  引燃温度(℃): 482  爆炸上限%(V/V): 12.4  爆炸下限%(V/V): 1.7  偶极距:吡啶为极性分子,其分子极性比其饱和的化合物——哌啶大。这是因为在哌啶环中,氮原子 只有吸电子的诱导效应(-I),而在吡啶环中,氮原子既有吸电子的诱导效应,又有吸电子的共轭效应(-C)。  溶解性: 溶于水、醇、醚等多数有机溶剂。吡啶与水能以任何比例互溶,同时又能溶解大多数极性及非极性的有机化合物,甚至可以溶解某些无机盐类。所以吡啶是一个有广泛应用价值的溶剂。吡啶分子具有高水溶性的原因除了分子具有较大的极性外,还因为吡啶氮原子上的未共用电子对可以与水形成氢键。吡啶结构中的烃基使它与有机分子有相当的亲和力,所以可以溶解极性或非极性的有机化合物。而氮原子上的未共用电子对能与一些金属离子如Ag、Ni、Cu等形成配合物,而致使它可以溶解无机盐类。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。)  光谱性质:  (1)吡啶的红外光谱(IR):芳杂环化合物的红外光谱与苯系化合物类似,在3070~3020cm-1处有C—H伸缩振动,在1600~1500cm-1有芳环的伸缩振动(骨架谱带),在900~700cm-1处还有芳氢的面外弯曲振动。  (2)吡啶的核磁共振氢谱(HNMR):吡啶的氢核化学位移与苯环氢(δ7.27)相比处于低场,化学位移大于7.27,其中与杂原子相邻碳上的氢的吸收峰更偏于低场。当杂环上连有供电子基团时,化学位移向高场移动,取代基为吸电性时,则化学位移向低场移动。  (3)吡啶的紫外吸收光谱(UV):吡啶有两条紫外光谱吸收带,一条在240~260nm(ε=2000),相应于π→π*跃迁(与苯相近)。另一条在270nm的区域,相应于n→π*跃迁(ε=450)。吡啶化学性质  吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。  (1)碱性和成盐 吡啶氮原子上的未共用电子对可接受质子而显碱性。吡啶的pKa为5.19,比氨(pKa9.24)和脂肪胺(pKa10~11)都弱。原因是吡啶中氮原子上的未共用电子对处于sp2杂化轨道中,其s轨道成分较sp3杂化轨道多,离原子核近,电子受核的束缚较强,给出电子的倾向较小,因而与质子结合较难,碱性较弱。但吡啶与芳胺(如苯胺,pKa4.6)相比,碱性稍强一些。  吡啶与强酸可以形成稳定的盐,某些结晶型盐可以用于分离、鉴定及精制工作中。吡啶的碱性在许多化学反应中用于催化剂脱酸剂,由于吡啶在水中和有机溶剂中的良好溶解性,所以它的催化作用常常是一些无机碱无法达到的。  吡啶不但可与强酸成盐,还可以与路易斯酸成盐。  此外,吡啶还具有叔胺的某些性质,可与卤代烃反应生成季铵盐,也可与酰卤反应成盐。  (2)亲电取代反应 吡啶是“缺π”杂环,环上电子云密度比苯低,因此其亲电取代反应的活性也比苯低,与硝基苯相当。由于环上氮原子的钝化作用,使亲电取代反应的条件比较苛刻,且产率较低,取代基主要进入3(β)位。  与苯相比,吡啶环亲电取代反应变难,而且取代基主要进入3(β)位,可以通过中间体的相对稳定性来说明这一作用。  由于吸电性氮原子的存在,中间体正离子都不如苯取代的相应中间体稳定,所以,吡啶的亲电取代反应比苯难。比较亲电试剂进攻的位置可以看出,当进攻2(α)位和4(γ)位时,形成的中间体有一个共振极限式是正电荷在电负性较大的氮原子上,这种极限式极不稳定,而3(β)位取代的中间体没有这个极不稳定的极限式存在,其中间体要比进攻2位和4位的中间体稳定。所以,3位的取代产物容易生成。  (3)亲核取代反应 由于吡啶环上氮原子的吸电子作用,环上碳原子的电子云密度降低,尤其在2位和4位上的电子云密度更低,因而环上的亲核取代反应容易发生,取代反应主要发生在2位和4位上。  吡啶与氨基钠反应生成2-氨基吡啶的反应称为齐齐巴宾(Chichibabin)反应,如果2 位已经被占据,则反应发生4位,得到4-氨基吡啶,但产率低。如果在吡啶环的α位或γ位存在着较好的离去基团(如卤素、硝基)时,则很容易发生亲核取代反应。如吡啶可以与氨(或胺)、烷氧化物、水等较弱的亲核试剂发生亲核取代反应。  (4)氧化还原反应 由于吡啶环上的电子云密度低,一般不易被氧化,尤其在酸性条件下,吡啶成盐后氮原子上带有正电荷,吸电子的诱导效应加强,使环上电子云密度更低,更增加了对氧化剂的稳定性。当吡啶环带有侧链时,则发生侧链的氧化反应。  吡啶在特殊氧化条件下可发生类似叔胺的氧化反应,生成N-氧化物。例如吡啶与过氧酸或过氧化氢作用时,可得到吡啶N-氧化物。  吡啶N-氧化物可以还原脱去氧。在吡啶N-氧化物中,氧原子上的未共用电子对可与芳香大π键发生供电子的p-π共轭作用,使环上电子云密度升高,其中α位和γ位增加显著,使吡啶环亲电取代反应容易发生。又由于生成吡啶N-氧化物后,氮原子上带有正电荷,吸电子的诱导效应增加,使α位的电子云密度有所降低,因此,亲电取代反应主要发生在4(γ)上。同时,吡啶N-氧化物也容易发生亲核取代反应。  与氧化反应相反,吡啶环比苯环容易发生加氢还原反应,用催化加氢和化学试剂都可以还原。  吡啶的还原产物为六氢吡啶(哌啶),具有仲胺的性质,碱性比吡啶强(pKa11.2),沸点106℃。很多天然产物具有此环系,是常用的有机碱。  (5)环上取代基与母环的影响 取代基对水溶解度的影响:当吡啶环上连有-OH、-NH2后,其衍生物的水溶度明显降低。而且连有-OH、-NH2数目越多,水溶解度越小。.  其原因是吡啶环上的氮原子与羟基或氨基上的氢形成了氢键,阻碍了与水分子的缔合。取代基对碱性的影响:当吡啶环上连有供电基时,吡啶环的碱性增加,连有吸电基时,则碱性降低。与取代苯胺影响规律相似。吡啶应用  除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。  吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。吡啶来源  吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,

  • 气质联用测定废气中的吡啶含量

    [color=#444444]参照国标 GB/T27524-2011 卷烟 主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法,想知道方法中用0.01%三乙胺/甲醇(100微升三乙胺-1000mL甲醇)体系作吡啶的萃取剂,这个极其微量的三乙胺是起什么作用呢?可以不加吗?[/color]

  • 气质联用测定废气中的吡啶含量

    [color=#444444]参照国标 GB/T27524-2011 卷烟 主流烟气中半挥发性物质(吡啶、苯乙烯、喹啉)的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法,想知道方法中用0.01%三乙胺/甲醇(100微升三乙胺-1000mL甲醇)体系作吡啶的萃取剂,这个极其微量的三乙胺是起什么作用呢?可以不加吗?[/color]

  • FDA确认的烟草产品中93种有毒有害成分(HPHCs)列表

    这是美国FDA建立的关于烟草制品及香烟烟雾中的有害物质和潜在有害物质成分列表成分 看看一颗烟多大的毒害呀!!! 致癌物质(CA),呼吸系统有毒物(RT),心血管有毒物(CT),生殖系统/发育有毒物(RDT),致瘾物(AD)乙醛......................................... CA,RT,AD乙酰胺.......................CA丙酮................................................ RT丙烯醛.......................................... RT,CT丙烯酰胺.........................................CA丙烯腈.............................................. CA,RT黄曲霉素B1.......................................CA4-苯基苯胺......................................... CA1-氨基萘.......................................... CA2-氨基萘............................................. CA氨............................................................ RT新烟碱..................................................... AD邻-甲氧基苯胺................................... CA砷..................................................... CA,CT,RDTA-a-C(2-氨基-9H-吡啶吲......... CA苯并蒽............................. CA,CT苯并醋蒽烯.................................. CA苯..................................... CA,CT,RDT苯并荧蒽...................................................... CA,CT苯并荧蒽................................ CA,CT苯并呋喃...................................... CA苯并芘................................. CA苯并菲..................................... CA铍................................. CA1,3-丁二烯....................CA,RT,RDT镉....................................... CA,RT,RDT二羟基桂皮酸(咖啡酸)....... CA一氧化碳...............................................RDT儿茶酚(邻苯二酚)...................... CA氯代二噁英/呋喃............................................ CA,RDT铬..........................................CA,RT,RDT1,2-苯并菲(屈).................CA,CT钴.............................................. CA,CT香豆素..............................................食品中禁止使用甲酚(邻-, 间-, 对-甲酚)........... CA,RT丁烯醛(巴豆醛).................................. CA环戊烯(c,d)芘................................................. CA二苯并蒽................................................ CA二苯并芘............................................. CA二苯并芘................................... CA二苯并芘....................................... CA二苯并芘.................................... CA2,6-二甲基苯胺................................. CA氨基甲酸乙酯(尿烷)................. CA,RDT乙苯....................................................... CA环氧乙烷...................................... CA,RT,RDT甲醛........................................................ CA,RT呋喃...................................... CAGlu-P-: 3‘,2’-d]咪唑盐酸盐) . . . . . . . . . .. . . .CAG l u - P - 2 ( 2 - 氨基二吡啶[ 1 , 2 - a : 3 ‘ , 2 ’ - d ] 咪唑盐酸盐. . . . . . . . . . . . . . . . . . . . . . . . . . . .CA阱................................ CA,RT氰化氢.............................. RT,CT茚并(1,2,3-cd)芘................................... CAIQ(2-氨基-3-甲基咪唑并(4,5-f)喹啉])............CA异戊二烯........................................ CA铅............................................ CA,CT,RDTM e A - a - C ( 2 - 氨基- 3 - 甲基) - 9 H - 吡啶并[ 2 , 3 - b ] 吲哚. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .汞........................................ CA,RDT甲基乙基酮..................... RT5-甲基屈............................................... CA4 - 甲基亚硝胺- 1 - 3 - 吡啶基- 1 - 丁酮( N N K ) . . . . . . . . . . . . . . . . CA羟基萘(臭樟脑).................... CA,RT镍................................................. CA,RT烟碱(尼古丁)..................... RDT,AD硝基苯....................................... CA,RT,RDT硝基甲烷.................................... CA2-硝基丙烷................................ CAN-亚硝基二乙醇胺(N................... CAN-亚硝基二乙胺........................................... CAN-亚硝基二甲胺(NDMA) ........................... CAN-亚硝基甲基乙基胺....................................... CAN-亚硝基吗啉(NMOR) ......................... CAN-亚硝基降烟碱(NNN) ......................... CAN-亚硝基哌啶(NPIP) .................................. CAN-亚硝基吡咯烷(NPY

  • 请教几个吡啶原位红外的问题~

    刚开始做吡啶红外,有好些问题不清楚,请论坛里的大神给帮忙看看吧~1.吸附吡啶的时候,要保证吡啶全程都是凝固的状态么?2.为什么吡啶红外要用自支撑片啊?不加KBr的话压片还是挺困难的,量多了透过率太低,量少了一夹就碎,大家有什么办法?3.吡啶红外求酸密度,使用的试样质量和表面积都要减去被螺母覆盖的一圈么?4.吡啶红外的背景该怎么采集?

  • 三氟乙酸的性质

    三氟醋酸 Trifluoroacetic Acid 〔CF3COOH=114.02〕本品为无色发烟液体 有吸湿性 有强腐蚀性。在水乙醇丙酮或乙醚中易溶.三氟乙酸别名三氟醋酸,是一种重要的脂肪含氟中间体,由于含有三氟甲基的特殊结构,因此使其性质不同于其他醇类,可以参与多种有机合成反应,尤其用于合成含氟的医药、农药和染料等领域,国内外需求量越来越大,已成为含氟精细化学品的重要的中间体之一。三氟乙酸(醇、醛)主要用于新型农药、医药和染料等的生产,在材料、溶剂等领域也有较大的应用开发潜力。三氟乙酸主要用于合成多种含三氟甲基和杂环的除草剂,目前可以合成多种带有吡啶基、喹啉基的新型除草剂;作为极强的质子酸,它广泛用于芳香族化合物烷基化、酰基化、烯烃聚合等反应的催化剂;作为溶剂,三氟乙酸是氟化、硝化及卤代反应的优良溶剂,特别是其衍生物三氟乙酰基对羟基和氨基的优良保护作用,在氨基酸和多肽化合物合成方面有着非常重要的应用;三氟乙酸作为制备离子膜的原料和改性剂,可大幅提高烧碱工业电流效率,延长膜的使用寿命;三氟乙酸还可合成三氟乙醇、三氟乙醛和三氟乙酐。

  • 【求助】请问亲水性色谱柱与正相柱的区别是什么?

    亲水性色谱是正相色谱的一个变种。 HILIC HPLC Column亲水性色谱柱是以超纯硅胶为基质,表面键合有二氧化硅(silica,弱酸性),氰基(cyano,弱酸性), 二羟基(diol,中性),二丙基乙酰胺基(valpromide,弱碱性),丙基酰胺基(Venusil,弱碱性),氨基(amino,弱碱性), 吡啶基(Pyridine,弱碱性),咪唑基(Imidazole,弱碱性)等亲水基团的极性固定相。请问大家它与正相柱有什么区别都体现在什么地方?

  • 【原创大赛】4-二甲氨基吡啶在不同溶剂中相平衡的研究

    【原创大赛】4-二甲氨基吡啶在不同溶剂中相平衡的研究

    研究概况 物质的相平衡数据测定及其相平衡研究是化工热力学的一个重要分支,固液相平衡是化工分离的理论基础。固液平衡的研究为结晶分离过程规定了分离极限,并为设备结构尺寸的设计和操作条件的确定提供基础数据,是实现化工生产的重要前提。实验测定固液平衡不仅是工程设计必不可少的基础数据,也是进行理论研究的基础。固液平衡的数学模型参数需要由实验数据来回归,数学模型的准确性需要用实验数据来检验。通过对固液平衡实验数据的处理,找出其内在规律,提出符合溶解行为的数学模型。 4-二甲氨基吡啶(简称DMAP)结构上有共电子的二甲氨基与吡啶环的共振,强烈的激活了环上的氮原子进行亲核取代,明显催化高位阻、低反应性的醇或胺的酰化(磷酰化、磺酰化)反应,其活性为吡啶的106倍。1967年,Litvinenko和Kirichenko用间氯苯胺进行苯甲酰化动力学研究,以4-二甲氨基吡啶代替吡啶,发现其反应速率增加约1万倍。Steglich、Hassner等人开始着手于研究DMAP作为催化剂催化酰化反应,酰化反应应用于醇、胺、酚和烯醇盐,尤其是存在空间位阻的仲醇、叔醇等。至今,DMAP在酰化反应催化剂中,具有反应速度快、副反应少、溶剂选择范围广、反应条件温和、反应温度低、催化剂量少、对空间位阻大与活性低的醇类酰化催化效果明显的特点,被称为“超级催化剂”。 美、欧、日等国家早已实现DMAP的工业化生产与应用研究,广泛地应用于医药、高分子、精细化工等行业中,我国从90年代初开始DMAP的合成与应用研究,目前,在化学制药领域上取得了成功的应用及良好的效益,如乙(丙)酞螺旋霉素、青篙素唬拍酸酷等原料药的生产;农药领域上在胺菊酯的合成已通过中试并投产。1.实验部分1.1实验试剂4-二甲氨基吡啶 (1) DMAP的物性:白色结晶性粉末,溶于水、乙醇、丙酮、苯、甲苯、二甲苯、二氯乙烷、氯仿、乙酸、乙酐、乙酸乙酯、已烷、四氢呋喃、三乙胺、吡啶、DMF 等溶剂。DMAP的分子结构,如图1-1。http://ng1.17img.cn/bbsfiles/images/2015/09/201509272125_568160_2423358_3.jpg1.2实验试剂规格及来源实验试剂规格及来源,均符合分析化学实验的要求,可以保证实验的进行。表1-2 实验所用试剂 试剂名称 生产厂家分子量规格和品级质量分数% DMAP 北京华威锐科化工有限公司122.17分析纯99.00 乙醇 北京化工厂46.07分析纯99.70 正丙醇 天津市福晨化学试剂厂60.10分析纯99.80 异丙醇 北京化工厂60.10分析纯99.70 正丁醇 北京化工厂74.12分析纯99.00 异丁醇 天津市福晨化学试剂厂74.12分析纯99.00 乙酸甲酯 天津市光复精细化工研究所74.08分析纯98.00 乙酸乙酯 北京化工厂88.11分析纯99.50 乙酸丙酯 天津市光复精细化工研究所102.13分析纯98.00 乙酸异丙酯 天津市光复精细化工研究所102.13分析纯99.00 乙酸丁酯 北京化工厂116.16分析纯99.00 乙酸异丁酯 天津市光复精细化工研究所116.16分析纯98.501.3实验装置表1-3 实验的仪器设备 设备名称 型号 生产厂家 精密温度计 制冷和加热循环槽 0-50℃ MPG-10C型 上海精密科学仪器厂 上海一恒科技仪器有限公司 电子分析天平 Sartorius CP124S型 德国Sartorius公司 磁力搅拌器 85-1A型 巩义市于华仪器有限责任公司 激光发射器 JDW-3型激光电源 北京大学物理系 夹套溶解釜 定制 北京化工大学仪器厂 本实验用到的仪器设备列于表1-3。 实验装置主要包括激光监视系统、夹套溶解釜、磁力搅拌器、电子分析天平、制冷和加热循环槽等。激光监视系统是发射激光、接受激光、记录仪等组成的,激光具有单色性好、相干性高、方向性强的特点,应用到测定溶解度,可减少因人为目测试样溶解情况带来的误差。夹套溶解釜是一个双层玻璃的瓶子,外层接通循环水,使内层试样升温或降温,还具有保温功能,内层装实验试样,内层上方有两个瓶口,大瓶口以插有温度计的塞子为塞子,大瓶口加入溶剂或溶质,小瓶口接冷凝管,冷却逸出液面到达瓶口处的试样,减少试样的挥发。磁力搅拌器充分搅拌瓶内试样,加快溶质的溶解。电子分析天平用来称量溶剂、溶质的质量。制冷和加热循环槽是一个超级恒温水浴系统,通过设定循环槽的温度调整溶解釜的温度,确保在加入溶质的实验过程中为恒定温度下。http://ng1.17img.cn/bbsfiles/images/2015/09/20150927212

  • 【分享】空气中三氯乙烯的测定方法 吡啶--碱比色法

    【分享】空气中三氯乙烯的测定方法 吡啶--碱比色法

    空气中三氯乙烯的测定方法 吡啶--碱比色法 1 原理三氯乙烯与吡啶和碱反应生成红色,比色定量。2 仪器2.1 多孔玻板吸收管。2.2 抽气机。2.3 流量计,0~1L/min。2.4 具塞比色管,25ml。3 试剂3.1 吸收液:吡啶。3.2 氢氧化钠乙醇溶液,10g/L。3.3 标准溶液:于25ml量瓶中加入10ml吸收液,准确称量,加1~2滴三氯乙烯,再准确称量。两次称量之差即为三氯乙烯的质量,加吸收液至刻度,计算1ml溶液中三氯乙烯的含量。用吸收液稀释成1ml=100?g三氯乙烯的标准溶液。4 采样串联两个各装10ml吸收液的多孔玻板吸收管,置冰盐浴中,以0.5L/min的速度抽取1.5L空气。5分析步骤5.1 对照试验:同采样,将吸收管装好吸收液带至现场,但不抽取空气,照样品分析。5.2 样品处理:采样后,用吸收管中的吸收液洗涤进气管内壁3次,由每个吸收管中各量取5.0ml样品溶液,分别放入比色管中,供测定用。5.3 标准管的配制:按表69配制标准管。表69 三氯乙烯标准管的配制[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201457_52384_1625938_3.jpg[/img]向标准管中各加入1ml氢氧化钠溶液(3.2)混匀,在70℃水浴中加热3min,取出加3ml水,混匀,3min后目视比色定量。5.4 测定:按5.3相同的操作条件,将处理后的样品与标准管目视比色,求出三氯乙烯含量。6 计算X=2(C1+C2)/V0式中:X——空气中三氯乙烯的浓度,mg/m3;C1、C2——分别为第1、第2吸收管所取样品溶液中三氯乙烯的含量;微克;V0——标准状况下的样品体积,L。7 说明7.1 本法检测限为2微克/5ml,当三氯乙烯含量为10、20、30、40、50微克/5ml时,其变异系数为3.7%、4.5%、3.5%、3.2%、2.6%。7.2 反应不是特异的,四氯乙烯,四氯化碳,三氯甲烷有干扰。

  • Bruker仪器氘代吡啶做溶剂topshim报错问题

    最近做的氘代吡啶作溶剂的样品,lock pyr之后,如果用topshim命令匀场,会出现一个报错对话框:BSMS error:L-TRX 2H Ampifier: RF Pulse Length or Duty Cycle violation! Please check your Pulse Program. Max Duty Cycle: 10%, Max Pulse Length: 1000 ms.另外锁场线也呈现很粗的锯齿状。以前没有用过氘代吡啶做溶剂。请问这是什么问题?如何解决?

  • 生态环境部关于2023年第8批新化学物质环境管理简易登记证申请审查情况的公示

    根据《新化学物质环境管理登记办法》(生态环境部令第12号,以下简称《办法》),我部对捷时雅(上海)商贸有限公司等单位的9份新化学物质简易登记申请材料进行了审核,符合相关要求,拟批准登记,详见附表。  根据《办法》第二十四条,现将拟批准的新化学物质环境管理简易登记证申请相关情况予以公示。  公示时间:2023年6月21日—6月26日  公示期间设立联系电话和邮箱:  电话:010-65645764  传真:010-65645767  通讯地址:北京市东城区东长安街12号 100006  电子邮箱:chem@mee.gov.cn [b] 附表拟批准的新化学物质环境管理简易登记证明细表[/b][table=800][tr][td][align=center][b]序号[/b][/align][/td][td][align=center][b]受理号[/b][/align][/td][td][align=center][b]物质名称[/b][/align][/td][td][align=center][b]申请类型[/b][/align][/td][td][align=center][b]申请人/代理人[/b][/align][/td][td][align=center][b]活动类型[/b][/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]J1-220199[/align][/td][td]甲基丙烯酸(3-乙基氧杂环丁-3-基)甲基酯[/td][td][align=center]简易登记[/align][/td][td]捷时雅(上海)商贸有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]J1-220206[/align][/td][td]甲基丙烯酸(7-氧杂二环[4.1.0]庚-3-基)甲基酯[/td][td][align=center]简易登记[/align][/td][td]捷时雅(上海)商贸有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]J1-230018[/align][/td][td]1-[(4,4,8-三甲基三环[6.3.1.0[sup]2,5[/sup]]烷-1-基)氧]戊-2-醇和1-[(1,4,4-三甲基三环[6.3.1.0[sup]2,5[/sup]]烷-8-基)氧]戊-2-醇及其异构体的混合物[/td][td][align=center]简易登记[/align][/td][td]国际香料(中国)有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]J1-230049[/align][/td][td](R)-3-(苄氧基)-2-((叔丁氧基羰基)氨基)丙酸[/td][td][align=center]简易登记[/align][/td][td]阿塞托国际贸易(上海)有限公司[/td][td][align=center]进口[/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]J1-230064[/align][/td][td]4-(6-氯-2-吡啶基)-1-哌啶羧酸1,1-二甲基乙基酯[/td][td][align=center]简易登记[/align][/td][td]凯莱英医药化学(吉林)技术有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]6[/align][/td][td][align=center]J1-230065[/align][/td][td]((3S,5S,6R)-6-甲基-2-氧代-5-(2,3,6-三氟苯基)哌啶-3-基)氨基甲酸叔丁酯[/td][td][align=center]简易登记[/align][/td][td]吉林凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]7[/align][/td][td][align=center]J1-230066[/align][/td][td]4-(6-氯-2-吡啶基)-1-哌啶羧酸1,1-二甲基乙基酯[/td][td][align=center]简易登记[/align][/td][td]吉林凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]8[/align][/td][td][align=center]J1-230074[/align][/td][td]3-羟基-1-哌啶甲酸叔丁酯[/td][td][align=center]简易登记[/align][/td][td]常州市浚鑫化工有限公司[/td][td][align=center]生产[/align][/td][/tr][tr][td][align=center]9[/align][/td][td][align=center]J1-230078[/align][/td][td]3-氟-4-(羟甲基)苯腈[/td][td][align=center]简易登记[/align][/td][td]辽宁凯莱英医药化学有限公司[/td][td][align=center]生产[/align][/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制