当前位置: 仪器信息网 > 行业主题 > >

羟乙基氨基乙磺酸

仪器信息网羟乙基氨基乙磺酸专题为您提供2024年最新羟乙基氨基乙磺酸价格报价、厂家品牌的相关信息, 包括羟乙基氨基乙磺酸参数、型号等,不管是国产,还是进口品牌的羟乙基氨基乙磺酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合羟乙基氨基乙磺酸相关的耗材配件、试剂标物,还有羟乙基氨基乙磺酸相关的最新资讯、资料,以及羟乙基氨基乙磺酸相关的解决方案。

羟乙基氨基乙磺酸相关的资讯

  • 国家药监局关于修订羟乙基淀粉类注射剂说明书的公告
    国家药监局关于修订羟乙基淀粉类注射剂说明书的公告(2022年第72号)根据药品不良反应评估结果,为进一步保障公众用药安全,国家药品监督管理局决定对羟乙基淀粉类注射剂(包括羟乙基淀粉20氯化钠注射液、羟乙基淀粉40氯化钠注射液、高渗氯化钠羟乙基淀粉40注射液、羟乙基淀粉200/0.5氯化钠注射液、高渗羟乙基淀粉200/0.5氯化钠注射液、羟乙基淀粉130/0.4氯化钠注射液、羟乙基淀粉130/0.4电解质注射液)说明书内容进行统一修订。现将有关事项公告如下:  一、上述药品的上市许可持有人均应依据《药品注册管理办法》等有关规定,按照羟乙基淀粉类注射剂说明书修订要求(见附件),于2022年12月2日前报国家药品监督管理局药品审评中心或省级药品监督管理部门备案。  修订内容涉及药品标签的,应当一并进行修订,说明书及标签其他内容应当与原批准内容一致。在备案之日起生产的药品,不得继续使用原药品说明书。药品上市许可持有人应当在备案后9个月内对已出厂的药品说明书及标签予以更换。  二、药品上市许可持有人应当对新增不良反应发生机制开展深入研究,采取有效措施做好药品使用和安全性问题的宣传培训,指导医师、药师合理用药。  三、临床医师、药师应当仔细阅读上述药品说明书的修订内容,在选择用药时,应当根据新修订说明书进行充分的获益/风险分析。  四、患者用药前应当仔细阅读药品说明书,使用处方药的,应严格遵医嘱用药。  五、省级药品监督管理部门应当督促行政区域内上述药品的药品上市许可持有人按要求做好相应说明书修订和标签、说明书更换工作,对违法违规行为依法严厉查处。  特此公告。
  • 2012羟乙基淀粉(HES) 专题培训课程通知
    尊敬的用户: 您好!非常感谢您一直以来对美国怀雅特技术公司的支持,为了协助您更好的使用仪器开展工作,诚邀您参加2012年07月27日举办的 羟乙基淀粉(HES)专题培训课程,现将具体安排通知如下: 一、培训时间 2012年7月27日,共计1天。 二、培训日程安排 日 期 培 训 内 容 07月26日 报 到 07月27日 1. 静态光散射技术基本理论(MALS); 2. dn/dc与Optilab T-rEX/RID; 3. SOP解析:MALS & Optilab T-rEX/RID; 1. 光散射色谱联用技术(SEC-MALS)基本原理; 2. SOP解析:SEC-MALS; 3. SEC-MALS实践&数据处理与分析 三、培训地点 北京 四、培训费用 1500.00元/人;(含培训费及资料;工作餐(中餐));其他费用自理。 五、报名截止日期 2012年06月06日下午17:00(注: 报名截止日期后将不再受理培训报名); 六、联系人及联系方式 联系人:兰先生 ; Email:lanjing@wyatt.com.cn 电 话:010-82292806; 传 真:010-82290337 如您有意参加培训,敬请您于2012年06月06日17:00之前将以下回执单(HES下载)传真至010-82290337或者发送至lanjing@wyatt.com.cn,我们会根据回执回复顺序安排培训,并电话与您取得联系。
  • 食药总局提醒关注含羟乙基淀粉类药品安全风险
    新国家食品药品监督管理总局26日发布通报,提醒关注含羟乙基淀粉类药品对严重脓毒血症患者的肾损伤及死亡率增加风险。   含羟乙基淀粉类药品为血容量补充药,主要用于预防和治疗各种原因造成的低血容量,包括失血性、烧伤性及手术中休克等、血栓闭塞性疾患等。   近期,欧盟、美国、加拿大等国外药品管理部门就含羟乙基淀粉类药品对特定健康条件患者的肾损伤及死亡率增高风险陆续发布了多项风险控制措施。在我国收集到的羟乙基淀粉类药品不良反应报告中,用药原因主要为手术中或手术后补充血容量、失血性低血流量、脑梗塞、外伤、烧伤等 仅有1例用药原因为感染性休克,未发现有明显的使用风险。   为确保用药安全,食品药品监管总局针对其安全性问题再次进行了分析和评估。评估认为,含羟乙基淀粉类药品常见不良反应包括寒战、过敏性休克、呼吸困难、胸闷、高热/发热、过敏样反应、皮疹、肾功能损害等,在特定健康条件的患者中存在着死亡率升高、肾损害及过量出血等风险。   食品药品监管总局表示,将统一修改含羟乙基淀粉说明书。建议医务人员和患者应充分重视此类药品的安全性问题,详细了解含羟乙基淀粉类药品的禁忌症、不良反应、注意事项、相互作用。在治疗前,医生应询问患者的既往病史(如严重脓毒血症、肝肾功能障碍、凝血功能异常等),将可能存在的安全性隐患告知患者,在增加剂量或调整治疗方案时,应密切关注患者的不良反应发生情况。同时,医务人员应根据患者的健康条件,权衡利弊后谨慎使用。如在使用过程中患者出现肾功能异常、凝血机制异常等不良事件,应及时处置。
  • 再度出击,聊聊亚硝胺类和磺酸酯类遗传毒性杂质检测方案
    遗传毒性(Genotoxicity)是指遗传物质中任何有害变化引起的毒性,而不参考诱发该变化的机制,又称为基因毒性。遗传毒性杂质(Genotoxic Impurities, GTIs)是指能引起遗传毒性的杂质,包括致突变型杂质和其他类型的无致突变性杂质。致突变型杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致NDA突变,从而可能引发癌症的遗传毒性杂质[1]。目前遗传毒性列表中有1574种致癌物质,亚硝胺类、磺酸酯类和苯并芘类等属于高遗传毒性物质。近年来,出现多起已上市的药品中发现遗传毒性,继而被召回的案例。  例如某制药企业在欧洲推出的抗艾滋药物Viracept(nelfinavir mesylate),EMA在2007年7月暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸乙酯超标。经自查,发现存储罐中乙醇残留,放置3个月导致甲磺酸乙酯达到2300ppm,去掉存储罐,增加对甲磺酸乙酯的控制要求低于0.5ppm,EMA对新工艺重新评估,对工厂进行现场检查,2007年10月重新获得上市许可。2018年7月,欧盟药品管理局报道在其对某企业含有ARB药物缬沙坦原料药的药物抽查汇总发现了杂质NDMA,其平均含量达66.5ppm,超过欧盟标 准0.3ppm。随后全球已有包括美国,加拿大,挪威,德国等22个国家召回共2300批该企业的含有沙坦类原料药的降压药。相关药企沙坦原料药中的NDMA经推断疑似来源于药物合成过程中使用的溶剂N,N-二甲基甲酰胺(DMF)与亚硝酸钠在酸性条件下反应产生的微量副产物,即NDMA。随后FDA发布了GCMS测定NDMA和NDEA的方法。2019年3月,又一种亚硝胺类杂质(NMBA)在ARB药物氯沙坦中被发现,但是该物质不能直接被GCMS测定。 9月FDA发表声明,在雷尼替丁中发现NDMA,但是不适用于GCMS方法测定。原因是雷尼替丁结构中,硝基和二甲胺在高温下从母核解离,结合成NDMA,对GCMS法测定产生干扰。  岛津中国创新中心,不仅致力于科研领域,同时时刻关注各行业的发展和社会的需求,秉承着以科学技术向社会做贡献的宗旨不断前行。本项目针对部分亚硝胺类和磺酸酯类遗传毒性杂质在药品原料药中的测定提供检测方法,为行业客户提供参考。针对客户比较关心的几种遗传毒性杂质分别建立了方法,并完成完整的方法学验证。  2019年6月,创新中心率先推出遗传毒性杂质NMBA(N-亚硝基-N-甲基-4-氨基丁酸)LC-MS/MS解决方案。与此同时,对NDMA和NDEA的研究也已在《分析试验室》2020年39卷2期上发表杂质上发表;关于NMBA的研究已在《中国药学杂志》2020年55卷3期上发表。如下将上述研究报告分别简述,供行业客户参考。 1. HS-GC-MS检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,建立了原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的同时测定方法。在10~500ng/mL浓度范围内各组分线性关系良好,相关系数均达到0.999以上,100ng/mL标准品溶液连续进样6针,各组分峰面积RSD均小于2.40%。阴性空白样品在40,80,160ng/mL加标浓度时,回收率为100.6%-104.6%,阳性空白样品回收率为101.8%-108.7%。该方法简单方便,顶空进样不污染气化室,能够有效的检测原料药厄贝沙坦中N-亚硝基二甲胺和N-亚硝基二乙胺的含量。 2. 岛津中国推出氯沙坦钾中N-亚硝基-N-甲基-4-氨基丁酸(NMBA)解决方案   本文利用岛津公司LCMS-8050高效液相色谱-三重四极杆质谱联用仪,建立了原料药中氯沙坦钾中NMBA的测定方法。该方法中NMBA在0.1 ~ 50.0 ng/mL范围内线性关系良好,日内和日间的精密度保留时间和峰面积的重复性良好(RSD均小于1.10%,n = 6和n = 18),在低中高3个浓度的平均回收率在94.40 ~ 98.04%之间。该方法简单方便,能够快速有效的检测氯沙坦钾原料药中NMBA的含量。 3. GC-MS内标法测定甲磺酸中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~10000ng/mL浓度范围内甲磺酸甲酯线性关系良好,在1~100ng/mL内甲磺酸乙酯和甲磺酸异丙酯线性关系良好,相关系数均达到0.999以上,样品平行测定6次,计算各组分含量RSD均小于3.33%。样品在650,850,1000ng/mL加标浓度时,MMS回收率为91.85%-103.09%,在10ng/mL加标浓度时,EMS、IMS回收率为92.21%-105.93%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中MMS、EMS和IMS的含量。 4. GC-MS内标曲线法测定甲磺酸中甲磺酰氯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标测定甲磺酸中甲磺酰氯的方法并完成方法学验证。在1~5000ng/mL浓度范围内甲磺酰氯线性关系良好,相关系数达到0.999,样品平行测定6次,计算组分含量RSD为1.19%。样品在320,400,480ng/mL加标浓度时,甲磺酰氯回收率为100.09%-109.84%。该方法灵敏度和准确度高,能够有效的检测甲磺酸中甲磺酰氯的含量。 5. HS-GC-MS法测定甲磺酸倍他司汀中甲磺酸甲酯、甲磺酸乙酯、甲磺酸异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲磺酸倍他司汀原料药中甲磺酸甲酯(MMS)、甲磺酸乙酯(MES)和甲磺酸异丙酯(IMS)的方法并完成方法学验证。在1~250ng/mL浓度范围内MMS和EMS线性关系良好,在1.5~250ng/mL内IMS线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于2.40%。样品在80,100,120ng/mL加标浓度时,MMS、 EMS和IMS回收率在93.86%~112.21%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲磺酸倍他司汀中MMS、EMS和IMS的含量。 6. HS-GC-MS法测定甲苯磺酸舒他西林中甲苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定甲苯磺酸舒他西林原料药中甲苯磺酸甲酯(MTS)、甲苯磺酸乙酯(ETS)和甲苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MTS和ETS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内ITS衍生后的(iPrI)线性关系良好,相关系数均达到0.998以上,样品加标平行测定6次,计算各组分含量RSD均小于4.50%。样品在20,40,60ng/mL加标浓度时,MTS、 ETS和ITS回收率在92.50 %~108.13%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测甲苯磺酸舒他西林中MTS、ETS和ITS的含量。 7. HS-GC-MS法测定苯磺酸氨氯地平中苯磺酸甲酯、乙酯、异丙酯   本文利用岛津公司GCMS-QP2020 NX气相色谱-质谱联用仪结合HS-20顶空进样器,参照《欧洲药典》9.0和ICH指导原则,建立了以甲磺酸丁酯(BMS)为内标,通过碘化钠衍生化,测定苯磺酸氨氯地平原料药中苯磺酸甲酯(MTS)、苯磺酸乙酯(ETS)和苯磺酸异丙酯(ITS)的方法并完成方法学验证。在1.5~250ng/mL浓度范围内MBS和EBS衍生化后的碘甲烷(MeI)和碘乙烷(EtI)线性关系良好,在3~250ng/mL内IBS衍生后的(iPrI)线性关系良好,相关系数均达到0.999以上,样品加标平行测定6次,计算各组分含量RSD均小于5.46%。样品在5,10,15ng/mL加标浓度时,MBS、 EBS和IBS回收率在85.4 %~104.70%之间。该方法操作简单,灵敏度和准确度高,能够有效的检测苯磺酸氨氯地平MBS、EBS和IBS的含量。 [1] 《中国药典》2020年版四部通则增修订内容:遗传毒性杂质控制指导原则审核稿(新增)
  • 21项检验方法纳入化妆品安全技术规范
    国家药监局关于将油包水类化妆品的pH值测定方法等21项制修订项目纳入化妆品安全技术规范(2015年版)的通告(2023年第41号)国家药品监督管理局组织起草了《油包水类化妆品的pH值测定方法》等21项制修订项目并形成相应检验方法,经化妆品标准专家委员会全体会议审议通过,现予以发布。其中,《化妆品中丙烯酰胺的检验方法》《化妆品中地氯雷他定等51种原料的检验方法》《化妆品中巯基乙酸等8种原料的检验方法》《化妆品中游离甲醛的检验方法》《化妆品中α-熊果苷等4种原料的检验方法》等5项检验方法为修订的检验方法,替换《化妆品安全技术规范(2015年版)》中原有检验方法(详见附件1),自2024年3月1日起,化妆品注册、备案及抽样检验相关检验应当采用本通告发布的检验方法。《油包水类化妆品的pH值测定方法》《化妆品中丙烯酸乙酯等40种原料的检验方法》《化妆品中CI 10020等11种原料的检验方法》《化妆品中CI 11920等13种原料的检验方法》《化妆品中2-氨基-4-羟乙氨基茴香醚硫酸盐等15种原料的检验方法》《化妆品中抗坏血酸磷酸酯镁等11种原料的检验方法》《化妆品中联苯乙烯二苯基二磺酸二钠等5种原料的检验方法》《体外皮肤变态反应 人细胞系活化试验》《体外皮肤变态反应 氨基酸衍生化反应试验方法》《化妆品用化学原料荧光素渗漏试验方法》《急性经口毒性试验 上下增减剂量法》《急性经口毒性试验 固定剂量法》《急性经口毒性试验 急性毒性分类法》《体内彗星试验》等14项新增检验方法,纳入《化妆品安全技术规范(2015年版)》(详见附件1),自发布之日起实施。新增化妆品禁用组分“本维莫德”,纳入《化妆品安全技术规范(2015年版)》第二章 化妆品禁限用组分 表1 序号1285,自发布之日起实施。新增化妆品禁用组分苯的管理限值(2mg/kg),将“若技术上无法避免苯作为杂质带入化妆品时,其限值不超过2mg/kg”纳入《化妆品安全技术规范(2015年版)》第二章 化妆品禁限用组分 表1 注(3),自发布之日起实施。附件:1.《化妆品安全技术规范》21项制修订项目情况汇总表2.油包水类化妆品的pH值测定方法3.化妆品中丙烯酸乙酯等40种原料的检验方法4.化妆品中CI 10020等11种原料的检验方法5.化妆品中CI 11920等13种原料的检验方法6.化妆品中2-氨基-4-羟乙氨基茴香醚硫酸盐等15种原料的检验方法7.化妆品中抗坏血酸磷酸酯镁等11种原料的检验方法8.化妆品中联苯乙烯二苯基二磺酸二钠等5种原料的检验方法9.体外皮肤变态反应 人细胞系活化试验10.体外皮肤变态反应 氨基酸衍生化反应试验方法11.化妆品用化学原料荧光素渗漏试验方法12.急性经口毒性试验 上下增减剂量法13.急性经口毒性试验 固定剂量法14.急性经口毒性试验 急性毒性分类法15.体内彗星试验16.化妆品中丙烯酰胺的检验方法17.化妆品中地氯雷他定等51种原料的检验方法18.化妆品中巯基乙酸等8种原料的检验方法19.化妆品中游离甲醛的检验方法20.化妆品中α-熊果苷等4种原料的检验方法国家药监局2023年8月22日附件《化妆品安全技术规范》21项制修订项目情况汇总表序号项目名称类型建议纳入《化妆品安全技术规范》的章节同时废止的《化妆品安全技术规范》中原章节内容1油包水类化妆品的pH值测定方法新增检验方法第四章 理化检验方法 1 理化检验方法总则 1.10油包水类化妆品的pH值测定方法2化妆品中丙烯酸乙酯等40种原料的检验方法第四章 理化检验方法 2 禁用组分检验方法 2.36 化妆品中丙烯酸乙酯等40种原料的检验方法3化妆品中CI 10020等11种原料的检验方法第四章 理化检验方法 6 着色剂检验方法 6.3 化妆品中CI 10020等11种原料的检验方法4化妆品中CI 11920等13种原料的检验方法第四章 理化检验方法 6 着色剂检验方法 6.4 化妆品中CI 11920等13种原料的检验方法5化妆品中2-氨基-4-羟乙氨基茴香醚硫酸盐等15种原料的检验方法第四章 理化检验方法 7染发剂检验方法 7.3 化妆品中2-氨基-4-羟乙氨基茴香醚硫酸盐等15种原料的检验方法6化妆品中抗坏血酸磷酸酯镁等11种原料的检验方法第四章 理化检验方法 8 其他原料检验方法 8.1化妆品中抗坏血酸磷酸酯镁等11种原料的检验方法7化妆品中联苯乙烯二苯基二磺酸二钠等5种原料的检验方法第四章 理化检验方法 8 其他原料检验方法 8.3化妆品中联苯乙烯二苯基二磺酸二钠等5种原料的检验方法8体外皮肤变态反应 人细胞系活化试验方法新增检验方法第六章 毒理学试验方法 26体外皮肤变态反应 人细胞系活化试验方法9体外皮肤变态反应 氨基酸衍生化反应试验方法第六章 毒理学试验方法 27体外皮肤变态反应 氨基酸衍生化反应试验方法10化妆品用化学原料荧光素渗漏试验方法第六章 毒理学试验方法 28化妆品用化学原料荧光素渗漏试验方法11急性经口毒性试验 上下增减剂量法第六章 毒理学试验方法 29急性经口毒性试验 上下增减剂量法12急性经口毒性试验 固定剂量法第六章 毒理学试验方法 30急性经口毒性试验 固定剂量法13急性经口毒性试验 急性毒性分类法第六章 毒理学试验方法 31急性经口毒性试验 急性毒性分类法14体内彗星试验第六章 毒理学试验方法 32体内彗星试验15本维莫德禁用目录新增第二章 化妆品禁限用组分 表1 序号128516苯的管理限值(2mg/kg)新增第二章 化妆品禁限用组分 表1 注(3):若技术上无法避免苯作为杂质带入化妆品时,其限值不超过2mg/kg。17化妆品中丙烯酰胺的检验方法修订后替换原检验方法第四章 理化检验方法 2 禁用组分检验方法 2.16化妆品中丙烯酰胺的检验方法第四章 理化检验方法 2 禁用组分检验方法 2.16丙烯酰胺18化妆品中地氯雷他定等51种原料的检验方法第四章 理化检验方法 2 禁用组分检验方法 2.18化妆品中地氯雷他定等51种原料的检验方法第四章 理化检验方法 2 禁用组分检验方法 2.18 地氯雷他定等15种组分;化妆品中西咪替丁的检测方法(高效液相色谱法)(国家药品监督管理局2019年48号通告)19化妆品中巯基乙酸等8种原料的检验方法第四章 理化检验方法 3 限用组分检验方法 3.9化妆品中巯基乙酸等8种原料的检验方法第四章 理化检验方法 3 限用组分检验方法 3.9 巯基乙酸 第一法 高效液相色谱法20化妆品中游离甲醛的检验方法第四章 理化检验方法 4 防腐剂检验方法 4.9化妆品中游离甲醛的检验方法第四章 理化检验方法 4防腐剂检验方法 4.9 游离甲醛(序号出自国家药品监督管理局2021年 第17号通告)21化妆品中α-熊果苷等4种原料的检验方法第四章 理化检验方法 8 其他原料检验方法 8.2化妆品中α-熊果苷等4种原料的检验方法第四章 理化检验方法 2 禁用组分检验方法 2.26 氢醌、苯酚
  • 紧急采购:90余类仪器、试剂耗材批量采购
    湖南某单位是一家俄语区国家实验室耗材、成套设备及通风系统的配套商,现需采购一批仪器设备及试剂,需要国内优质的生产企业对接,满足要求的生产厂商可与之联系。同时该单位将于2022年4月25日下午的“后疫情时代国产仪器的出海机会”网络研讨会上进行线上的采购交流会,届时会现场讲解采购需求及注意事项,满足要求的国内生产厂商也可点击报名参与下。采购产品清单如下(联系方式见文末):Маркер гидрофобный ImmEdge Pen 免疫组化笔RNA Cleanup Kit (10 μg)трис(гидроксиметил)аминометан/Tris base, 99% 三羟甲基氨基甲烷Агароза 高纯度低电渗琼脂糖1-е антитела第一抗体Ligation Sequencing Kit (Q20+) 连接测序试剂盒 (Q20+)MinION Flow Cell (R10.4) 测序芯片Ultra-Long DNA Sequencing Kit超长DNA测序试剂盒Spermine tetrahydrochloride精胺四盐酸盐Short Read Eliminator Kit XL短读消除试剂盒 XLShort Read Eliminator Kit 短读消除试剂盒Gentra Puregene Tissue Kit组织试剂盒NEBNext RNA Depletion Core Reagent Set RNA 去除核心试剂套装NEBNext Small RNA Library Prep Set 1 小 RNA 文库制备套装 1Monarch HMW gDNA Tissue Lysis Buffer Monarch HMW gDNA 组织裂解缓冲液Monarch Protein Separation Solution Monarch 蛋白分离Monarch gDNA Wash Buffer RIPA裂解液Monarch gDNA Elution Buffer II gDNA 洗脱缓冲液 IIMonarch DNA Capture BeadsMonarch Bead RetainersMiSeq Reagent Kit v2 (50 cycle) 基因测序试剂盒v2 (50循环)Glycerin (glycerol), 50% (v/v) Aqueous Solution 甘油(甘油),50% (v/v) 水溶液Ethanol, Pure (200 Proof, anhydrous) 乙醇,纯(200 证明,无水)Вода UltraPure, не содержащая ДНКаз / РНКаз 不含 DNase/RNase 的超纯水Картридж BluePippin 2% агароза, без крас.,100-600 п.о., 层析柱 BluePippin 2% 琼脂糖,无染料,bp 100-600,Картридж BluePippin 3% агароза, без крас.,100-200 п.о., 层析柱BluePippin 3% 琼脂糖,无染料,bp 100-200,1-Bromo-3-chloropropane 1-溴-3-氯丙烷c dna synthesis kitc DNA合成试剂盒Reliance Select cDNA Synthesis cDNA 合成试剂盒N,N-Dimethylformamide N,N-二甲基甲酰胺MiSeq Reagent Kit v3 MiSeq 试剂盒 v3SP6 RNA Polymerase (20 U/µL) SP6 RNA 聚合酶(20 U/µL)dUTP Solution (100 mM) dUTP 溶液(100 mM)Epredia™ Neg-50™ Frozen Section Medium Epredia™ Neg-50™ 冷冻切片培养基Обратная транскриптаза Mint 逆转录酶Эмбриональная бычья сыворотка (FBS, происхождение Южная Америка), 500 мл (-20°) 胎牛血清(FBS,原产南美),500 毫升(-20°)Agarose, low gelling temperature Type VII-A, 琼脂糖,低胶凝温度 VII-A 型,Dulbecco′s Phosphate Buffered Saline, Dulbecco 的磷酸盐缓冲液Sony Sorting Chip-70um for SH800 and MA900 (box of 40) 适用于 SH800 和 MA900 的Sony Sorting Chip-70um(40 盒)GM 6001 伊洛马司他 基质蛋白酶抑制剂Aphidicolin 艾菲地可宁Glutaraldehyde solution 戊二醛溶液Click-iT™ EdU Cell Proliferation Kit for Imaging, Alexa Fluor™ 488 dyeGreen features 细胞增殖检测试剂盒Grid-Stick Glue (For recoating Grid-Stick)HEPES 4-羟乙基哌嗪乙磺酸High SensitivityDNA Kit高灵敏度 DNA 试剂盒RNA 6000 Pico Kit RNA 6000 Pico 试剂盒RNA 6000 Nano Kit RNA 6000 纳米试剂盒Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 546 山羊抗大鼠 IgG (H+L) 交叉吸附二抗,Alexa Fluor™ 5465ml tips 吸头Axygen TF-1000Axygen T-300Стекла предметные Superfrost plus с углами 90° со шлифованной кромкой с зоной для маркировки белого цвета Superfrost plus 带有 90° 角的幻灯片和带有白色标记区域的磨边шт Планшет для 25 предметных тонких стекол, прозрачная крышка, ПЭ, 用于 25 个薄载玻片的板、透明盖、PE、Планшет на 50 ст. тонких предм. стекол, ПЭ, прозрачная крышка, белый, 用于 50个薄载玻片的板、白色、透明玻璃Grid-Stick KitGrid-Stick, uncoated 无涂层Staining Pipettes with 2 plugs 带 2 个塞子的染色移液器Filter Tips 10μl, 50 racks 带滤芯吸头Filter Tips 200μl, 50 racks 带滤芯吸头Filter Tips 1000μl, 50 racks 带滤芯吸头Дозатор 0,5-10 мкл, 8 каналов, biohit proline plus 8通道移液器Дозатор 10-100 мкл, 8 каналов, biohit proline plus8通道移液器Дозатор 30-300 мкл, 8 каналов, biohit proline plus8通道移液器Охлаждающий ПЦР-штатив, 0,2мл 低温PCR架 有机玻璃Охлаждающий ПЦР-штатив, 2мл 低温PCR架 有机玻璃Система обратного осмоса Angstra R-5C 实验室反渗透纯水机Редуктор давления 隔膜式减压阀 DRVN 1.5-6 barМанометр 压力表Картридж B150 Миди 滤芯椰壳活性炭 140X330Мешок 20л储水袋Комплект промывки 反渗透及管路清洗组件УФ лампа 双波长紫外灯Картридж умягчителя软化柱картридж сверхчистой воды 超纯化柱Патрон предварительной обработки预处理柱2 модуля обратного осмоса (RO модуля)反渗透柱SterilePlus (стерильный фильтр, Sartopore® 2 150)Galileo 1214 Mini Gel Unit 水平电泳迷你凝胶系统 Pbs без кальция и магния Dulbecco′s Phosphate Buffered Saline D5652-10L杜氏磷酸盐缓冲盐水 PBS 不含钙和镁Пробирки с оптически-прозрачной плоской крышкой объемом 0,2 мл 带光学透明平盖的试管,0.2 mlСуспензия магнитных частиц CleanMag DNA - 5 мл (пробирка 1 мл - 5 шт) BC35S 磁性粒子悬浮液 CleanMag DNA - 5 ml(管 1 ml - 5 pcs)пробирка 1 мл 悬浮液管1mlШтатив RA-20002 Компания Хеликон Артикул RA-20002 pcr变色冷冻盒Магнитный штатив для пробирок объемом 1.5-2.0 мл pcr PCR冷冻盒Суспензия магнитных частиц CleanMag DNA - 5 мл (пробирка 1 мл - 5 шт) BC35S磁力冷冻盒Штатив RA-20002 Компания Хеликон Артикул RA-20002 离心管托盘VWR (Amresco) Агароза (Biotechology Grade) Am-O710-0.5 500г VWR(Amresco)琼脂糖(生物技术级)Am-O710-0.5 500gEncyclo полимераза PK002L 0X смесь полимераз Encyclo, 5 x 100 мкл10X Encyclo буфер, 5 x 600 мкл 1000 р-ций объемом 25 мкл环聚合酶 PK002L 0X 环聚合酶混合物,5 x 100 µl10X Encyclo 缓冲液,5 x 600 µl 1000 25 µl p-tions 采购单位:湖南中星科技有限公司联系人:樊先生(总经理)联系电话:15388055177邮箱:282794290@qq.com还需要其他的试剂,请优质生产厂家直接发英文目录至邮箱,或添加微信(同手机号)。
  • 本土生产!日立全自动氨基酸分析仪战略国产化
    日立自1952年推出第一代氨基酸分析仪,经过70多年的产品升级迭代,始终保持优异稳定的性能。为了更好地服务中国客户,助力“健康中国”,日立全自动氨基酸分析仪战略国产化!日立国产全自动氨基酸分析仪,由日立仪器(大连)有限公司生产,延用日立特别开发的第3.5代TDE3衍生技术,具有以下优异性能:&bull 日立特别开发的第3.5代TDE3衍生技术,灵敏度比第1代反应盘管(圈)提高4倍&bull 配置 1 mL/min高精度半微量泵,可实现色谱柱自行装填&bull 内置仪器自维护清洗程序&bull 3 μm色谱柱,可节省45%的试剂消耗&bull 采用光栅分光,通道1噪音值低到小于 25 μV&bull 茚三酮衍生试剂及缓冲液分开放置,保质期长达12个月&bull 可使用自行配制的缓冲液,成本降低到进口试剂的1/10符合多项国家级和行业级标准:1、GB 5009.124-2016 食品中氨基酸测定(2023年修订)2、谷氨酰胺的测定,QB/T 5298-2018 小麦低聚肽粉(附录D)3、羟脯氨酸的测定, NY/T 3130-2017 生乳中L-羟脯氨酸的测定(第三法)4、游离氨基酸的测定,GB/T 30987-2020 植物中游离氨基酸的测定5、肽的测定,GB 31645-2018 食品安全国家标准 胶原蛋白肽6、植物源性食品中γ-氨基丁酸的测定(农业行业标准2022年立项)7、食品中γ-氨基丁酸的测定(食品安全国家标准2023年立项)8、食品中牛磺酸的测定9、GB 18246-2019 饲料中氨基酸测定16种氨基酸(Asp、Thr、Ser、Glu、Gly、Ala、Val、Met、Ile、Leu、Tyr、Phe、Lys、His、Arg、Pro)和胱氨酸(Cys)10、GB 15399-2018 饲料中含硫氨基酸测定11、GB 32016-2015 丝绸中氨基酸测定12、NYT 1618 鹿茸中氨基酸测定13、JJG 1064-2011 氨基酸分析仪检定规程14、药典:含Cys复方氨基酸注射液测定自2024年7月1日起,日立全面接收国产全自动氨基酸分析仪的垂询和订单。有采购意向和感兴趣的客户,欢迎扫码登记、预定,我们将有精美礼品赠送。日立科学仪器(北京)有限公司是世界500强日立集团旗下子公司,秉承日立集团的使命、价值观和愿景,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。不断响应中国客户的需求,精益求精,力求成为您分析检测的得力伙伴。
  • 美丽新卫士:电雾式检测器应用于化妆品检测
    美丽新卫士:电雾式检测器应用于化妆品检测熊亮 胡金盛 冉良骥 金燕引言:随着经济的快速发展,人们生活水平的提高,化妆品已从早期的奢侈品转变为大众日常的消费品,美丽经济规模日渐壮大。近年来随着电商的广泛应用、各大美妆博主的时尚引导、短视频平台的直播带货,化妆品的种类不断丰富,化妆品的消费逐年递增,随之而来引起的化妆品纠纷也逐年上升。化妆品中致癌致敏成分检出、铅汞重金属含量超标、糖皮质激素非法添加、微生物污染等安全问题, 使得化妆品质量监督管理及化妆品检验的科学性受到了人们的关注和重视。 2021年3月2日,国家药品监督管理局发布2021年第17号通告,将《化妆品中防腐剂检验方法》、《化妆品中硼酸和硼酸盐检验方法》、《化妆品中对苯二胺等32种组分检验方法》、《化妆品中维甲酸等8种组分检验方法》等7项检验方法纳入《化妆品安全技术规范(2015年版)》,作为该规范修订或新增的检验方法。 此次新增和修订,对原技术规范“第四章 理化检验方法4防腐剂检验方法”整个分析方法的框架结构进行了调整,变更尺度非常之大。在修订的《化妆品中防腐剂检验方法》中,新增了4.3 已脒定二(羟乙基磺酸)盐等7种组分的检验方法。 随着政府通告的发布,《规范》修订的检验方法,自2021年5月1日起施行,因此众多具有化妆品注册和备案检验机构资质的实验室开始了实验室扩项的准备工作。然而有多个客户实验室在实际方法开发过程中发现,参照“4.3 已脒定二(羟乙基磺酸)盐等7种组分”标准方法,采用0.1%三氟乙酸溶液作为流动相,检测波长为210nm,虽然可以提高部分低紫外吸收待测物的响应,但由于210nm为三氟乙酸的截止波长,在梯度分析过程中产生剧烈的基线波动,可能会影响低含量待测物的峰型以及检测灵敏度。 飞飞有妙招针对这一情况,飞飞协助客户开发了一套全新的含量测定方法。新方法采用了Acclaim Surfactant Plus表面活性剂专用色谱柱分离,并配合赛默飞独有的电雾式检测器(以下简称CAD,如图1所示)测定。图1 电雾式检测器(CAD)(左:Vanquish CAD系列,右:Corona Veo系列)由于待测物经色谱柱分离后,在CAD内部先进行雾化再进行检测,可完全消除挥发性流动相对基线的干扰,而且相对原标准方法,飞飞发现“十二烷基三甲基溴化铵”的检测灵敏度也有大幅提升,如图2所示。图中7种组分的浓度分别为:己脒定二(羟乙基磺酸)盐40 μg/mL、氯己定60 μg/mL、十二烷基三甲基溴化铵(DTAB)800 μg/mL、十二烷基二甲基苄基氯化铵200 μg/mL、苄索氯铵200 μg/mL、十四烷基二甲基苄基氯化铵200 μg/mL、十六烷基二甲基苄基氯化铵200 μg/mL。图2 7种组分混标CAD色谱图 随后飞飞对这套全新方案进行了方法学考察,结果当然也是妥妥哒!图3 混标最低点连续进样6次重叠色谱图 结论本方法基于赛默飞新一代Vanquish Core高效液相色谱系统,Acclaim Surfactant Plus表面活性剂专用色谱柱配合赛默飞特有的电雾式检测器(CAD),开发了一个全新的针对化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量测定方法。本方法中7种防腐剂的分离度和灵敏度均优于国标方法,重复性好,线性范围宽,给化妆品中限量使用组分的分析提供了一种新思路,拓展了化妆品行业的分析手段。 “码”上下载扫码立即免费下载【采用电雾式检测器(CAD)分析化妆品中已脒定二(羟乙基磺酸)盐等7种防腐剂的含量】
  • 麦克仪器给力科学研究-用于脂化生物柴油合成中游离酸的超高交联聚苯乙烯磺酸催化剂
    随着美国麦克仪器的市场份额的逐步壮大,美国麦克仪器已经成为行业科学研究必备仪器,日前英国哈德斯菲尔德大学教授发表了一篇题为&ldquo 用于脂化生物柴油合成中游离脂肪酸的超高交联聚苯乙烯磺酸催化剂 &rdquo 学术文章,已经被Applied Catalysis B: Environmental(115&ndash 116 (2012) 261&ndash 268)收录,在该项研究中,美国麦克仪器ASAP 2020与DVS Advantage仪器成为表征催化剂最强有力的工具,为其研究提供了最具可信度的分析结果。以下列举该文章的摘要以及链接供参考: 链接:http://www.sciencedirect.com/science/article/pii/S0926337311006102 标题:Hypercrosslinked polystyrene sulphonic acid catalysts for the esterification of free fatty acids in biodiesel synthesis 摘要: New sulphonic acid catalysts supported on hypercrosslinked polystyrene have been studied in the esterification of oleic acid with methanol and in the rearrangement of &alpha -pinene to camphene and limonenes. The catalysts have been characterised in terms of specific surface areas and porosities, affinities for water and for cylcohexane vapours, and both concentrations and strengths of acid sites. They have been compared with conventional macroporous polystyrene sulphonic acids (Amberlysts 15 and 35) and SAC-13, a composite between Nafion and silica. The results show that the hypercrosslinked polystyrene sulphonic acids, despite exhibiting relatively low concentrations of acid sites and acid site strengths below those of Amberlysts 15 and 35, are very much more catalytically active than conventional resins in reactions such as the esterification in which high acid site strengths are not required. It is thought that this is due to the highly accessible acid sites throughout the catalyst particles. Reusability studies are reported and it appears that the temperature at which the catalyst is used is important in controlling and minimising catalyst deactivation. 美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。公司主营产品为研究级全自动比表面积与孔隙度分析仪、多站比表面积与孔隙度分析仪、快速比表面积与孔隙度分析仪、流动气体法比表面分析仪、程序升温化学吸附仪、化学吸附仪、压汞仪、高压吸附气体吸附仪、蒸汽吸附仪、密度测量、颗粒技术和颗粒形态分析仪等各种材料表征仪器。 美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州、西安分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
  • 离子色谱分析氨基糖苷类药物及在各国药典中的应用
    离子色谱自上世纪70年代开始经过近40多年的发展,已成为色谱分析领域中十分重要的分支,被广泛应用于无机阴阳离子、有机酸、糖醇类化合物、氨基酸、氨基糖苷类抗生素等,具有方便快速、灵敏度高、选择性好、可同时分析多种化合物、样品用量少等优点。离子色谱的检测器主要有电化学检测器与光学检测器,在药品控制领域,应用得最多的为电化学检测器,包括电导检测器和安培检测器。电导检测器主要用于测定无机阴阳离子与部分极性有机物如羧酸等。安培检测器又可分为直流安培检测器与积分安培(包括脉冲安培)检测器,其中积分安培检测器主要用于测定糖类、氨基酸类及氨基糖苷类抗生素等。氨基糖苷类抗生素具有相似的化学结构与理化性质,都是以碱性环己多元醇为苷元,与氨基糖缩合成苷,是临床应用较早的一类抗生素。氨基糖苷类抗生素根据其来源可分为发酵与半合成2种,其中发酵来源的主要有链霉素、新霉素、卡那霉素、巴龙霉素、妥布霉素、庆大霉素、核糖霉素及大观霉素等;半合成是以发酵来源的抗生素为前体,再进行结构改造而得到,主要有阿米卡星、奈替米星、异帕米星及我国自主研发的依替米星等,具有更强的抗菌活性、低耐药性及低毒性等。氨基糖苷类抗生素结构中无紫外吸收基团,难以采用常规的高效液相色谱-紫外检测器控制质量,目前国内常用的分析方法为高效液相色谱-蒸发光散射检测法(HPLC-ELSD)。由于其结构中含有多个氨基(-NH2)与羟基(-OH),在强碱性溶液中易解离成阴离子,在一定电压下,可在金电极表面发生氧化反应,实现脉冲安培检测,因此国外药典中多采用离子色谱法检测该类药物。本文概述了本实验室近十几年来采用离子色谱法分析氨基糖苷类抗生素的实例,并简述离子色谱法在各国药典中控制该类药物的应用与发展趋势。1. 硫酸阿米卡星、硫酸阿米卡星注射液与注射用硫酸阿米卡星有关物质1.1 色谱条件YMC ODS-Aq C18(4.6mm×250mm, 5µm)色谱柱,流动相为1L无二氧化碳的去离子水中加三氟乙酸20mL,五氟丙酸300μL,七氟丁酸300μL,50%(V/V)氢氧化钠溶液8mL,用50%(V/V)氢氧化钠溶液调节pH为3.3,加乙腈10mL;流速1.0 mLmin-1;柱后加碱2.1%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。1.2 结果硫酸阿米卡星与其杂质A、杂质B、杂质 C、杂质D、杂质E、杂质G、杂质H、杂质I均能分离,见图1。阿米卡星质量浓度在0.4985~9.969 µgmL-1范围内峰面积线性关系良好,阿米卡星峰检测限为2.0ng,定量限为5.0ng。供试品溶液中除辅料峰外,各杂质均以主成分自身对照法计算,其中杂质B校正因子为1.4,杂质C校正因子为1.3,杂质D校正因子为0.8,杂质E校正因子为1.2,杂质H校正因子为1.4,杂质I校正因子为0.6。结果8批次硫酸阿米卡星原料总杂质含量为1.2%~1.7%,77批次硫酸阿米卡星注射液总杂质含量为1.1%~2.3%,10批次注射用硫酸阿米卡星总杂质含量为1.2%~2.2%。1. 杂质I 2.杂质B 3.杂质G 4.杂质A 5.杂质C 6.杂质D 7.杂质E 8.杂质H图1 硫酸阿米卡星系统适用性色谱图中国药典2020年版(ChP2020)采用高效液相色谱紫外末端吸收法测定硫酸阿米卡星及其制剂的有关物质。英国药典2024年版(BP2024)与欧洲药典11.0版(EP11.0)均采用离子色谱法测定,流动相体系均为辛烷磺酸钠-无水硫酸钠-四氢呋喃,其中四氢呋喃是影响该方法测定的关键因素,同样纯度不同品牌、甚至同一品牌不同批号的的四氢呋喃都会影响该方法的重复性。此外,EP 11.0 与BP2024的方法还存在运行时间太长大于100min,三电位检测对金电极损耗较大,盐浓度较大对仪器损耗大等缺点。本实验室同样采用离子色谱法,用多氟烷酸体系代替辛烷磺酸钠体系,简化了流动相的配制,缩短了分析时间为35min,用四电位取代三电位保护了工作电极,检测的杂质数量与杂质总量均多于ChP2020的紫外末端吸收法,可用于硫酸阿米卡星及其制剂的有关物质控制。2. 硫酸庆大霉素注射液、硫酸庆大霉素片与硫酸庆大霉素颗粒2.1 色谱条件TSK-gel ODS-81Ts C18(4.6mm×250mm,5µm)色谱柱;流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4ml,用50%(V/V)氢氧化钠调节pH值至2.6)-乙腈(97:3);流速为1.0mLmin-1;柱后加碱为2%(V/V)氢氧化钠溶液,流速为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(3mm),参比电极为Ag-AgCl复合电极,四电位检测:同前;柱温为35℃;进样量20µL。2.2 结果硫酸庆大霉素含有4个主组分,分别为C1、C1a、C2a、C2,还含有结构相似的小组分西索米星与小诺霉素。该方法可完全分离4个主组分,并可同时分离出22个有关物质。庆大霉素C1a、西索米星与小诺霉组分的检测限分别为5.3ng、3.5ng与8.0ng,定量限分别为17.8ng、11.6ng与26.7ng。ChP2020采用HPLC-ELSD法测定硫酸庆大霉素注射液的组分,而BP2024与EP11.0均采用离子色谱法测定硫酸庆大霉素原料的组分与有关物质,USP现行版采用离子色谱法测定其原料的组分,均未采用离子色谱法对硫酸庆大霉素注射液进行控制。本实验室对比了离子色谱法与HPLC-ELSD法同时测定硫酸庆大霉素注射液的有关物质,发现两种方法的分离效能相当,但采用离子色谱法时各组分的响应值随其电化学活性不同而差异明显,如西索米星的响应因子大于小诺霉素,在以西索米星为外标法进行有关物质测定时,结果小于HPLC-ELSD。 3 硫酸庆大霉素片组分与有关物质3.1 色谱条件Thermo AcclaimTMAmG C18(4.6mm×150mm, 3µm)色谱柱,流动相为0.7%三氟乙酸(含0.025%五氟丙酸,50%(V/V)氢氧化钠4mL,用50%(V/V)氢氧化钠溶液调节pH至2.6)-乙腈(96.5:3.5),流速1.0mLmin-1,柱后溶液为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。3.2 结果该方法中庆大霉素C1、C1a、C2a、C2分别在1.328~132.8µgmL-1、1.606~160.6µgmL-1、7.378~737.8µgmL-1、1.276~127.6µgmL-1浓度范围内线性关系良好,回收率为98.2%~101.8%。有关物质测定中,西索米星在2.632~52.64µgmL-1、小诺霉素在2.006~25.07µgmL-1浓度范围内线性关系良好,西索米星检测限为0.01µg,小诺霉素检测限为0.02µg,各杂质与庆大霉素各组分均能完全分离,见图2。156批次中148批次的硫酸庆大霉素片各C组分的绝对含量分别为C1a为26.3%~37.1%,C2+ C2a为41.8%~49.3%,C1为16.5%~22.2%,4个组分总含量为90.6%~105.0%。148批次的有关物质为小诺霉素1.8%~2.8%,西索米星为未检出~1.5%,其他最大单杂为 0.3%~0.9%,其他总杂为1.2%~4.2%。发现其余8批次样品组分与有关物质均不符合规定,原因为企业采用不符合标准规定的原料所致。1-5,7-8.未知杂质 6. 西索米星 9.小诺霉素图2 硫酸庆大霉素片有关物质典型色谱图ChP2020采用微生物检定法控制其含量,未控制有关物质。BP2024、EP11.0与USP现行版均未收载该品种。本实验室在参考国外药典离子色谱法测定其原料的基础上建立了硫酸庆大霉素片组分与有关物质的方法。方法对乙腈的比例进行了调整,工作电位由四电位取代三电位,可有效的分离硫酸庆大霉素片各组分与各杂质。4.硫酸庆大霉素颗粒组分与有关物质 4.1 色谱条件YMC-Pack Pro C18 RS(4.6×250mm,5μm)色谱柱,流动相为1.6%三氟乙酸(含0.05%五氟丙酸,50%(V/V)氢氧化钠8ml,用50%(V/V)氢氧化钠溶液调节pH值至2.6)-乙腈(94:6),流速1.0 mLmin-1,柱后加碱为2%(V/V)的氢氧化钠溶液,柱后加碱为0.3mLmin-1;脉冲安培电化学检测器,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。柱温为35℃,进样量20μL。4.2 结果硫酸庆大霉素颗粒的辅料主要为蔗糖,含量较高,与主成分的比例约为200:1,出峰时间约为5min。采用硫酸庆大霉素片的方法测定颗粒时,蔗糖的拖尾峰会导致前15min的基线抬高,严重干扰颗粒有关物质的测定。因此本实验室在硫酸庆大霉素方法的基础上增加了三氟乙酸、五氟丙酸与乙腈的比例,成功解决了蔗糖对硫酸庆大霉素颗粒有关物质测定的干扰。该方法中庆大霉素C1、C1a、C2a、C2分别在5.264~131.6µgmL-1、5.032~125.8µgmL-1、5.595~139.9µgmL-1、3.410~85.24µgmL-1浓度范围内线性关系良好,回收率为98.7%~100.8%。有关物质测定中,西索米星在1.987~39.74µgmL-1、小诺霉素在2.045~51.13µgmL-1浓度范围内线性关系良好,西索米星检测限为0.003µg,小诺霉素检测限为0.01µg,各杂质与庆大霉素各组分均能完全分离,见图3。1-14,16-18-未知杂质;15-西索米星;19-小诺霉素图3 硫酸庆大霉素颗粒有关物质典型色谱图5.盐酸大观霉素与注射用盐酸大观霉素有关物质 5.1 色谱条件采用离子色谱法及HPLC-ELSD法同时分析注射用盐酸大观霉素的有关物质。两法色谱柱均为Apollo C18 (250mm× 4.6mm,5µm),流动相均为0.1molL-1三氟乙酸溶液,柱温均为30℃,进样量均为20µL。离子色谱检测:柱后加减为21g/L氢氧化钠溶液,流速0.5mlmin-1,工作电极为金电极(直径3mm),参比电极为Ag-AgCl复合电极,四波形检测电位(T1: 0.00~0.40s,E1: 0.1V;T2: 0.41~0.42s,E2: -2.0V;T3: 0.43s,E3: 0.6V;T4: 0.44~0.50s,E4: -0.1V)。ELSD检测:漂移管温度110℃,载气流速2.6Lmin-1,增益1。5.2 结果ChP2020采用HPLC-ELSD法控制其原料,BP2024与EP11.0采用离子色谱法控制其原料。注射用盐酸大观霉素为无菌原料直接分装,本实验室参考国外药典方法测定了盐酸大观霉素及其制剂的有关物质,并同时与HPLC-ELSD方法进行比较。结果两种方法检测出的有关物质种类和数量基本一致,但离子色谱灵敏度比ELSD高,离子色谱检测限为2.4ng,ELSD为72.8ng。两种方法测定的31批次注射用盐酸大观霉素,杂质D与杂质E结果基本一致,但杂质A、4R-双氢大观霉素及总杂质结果差异较大,原因为杂质A、4R-双氢大观霉素杂质在两种检测器上响应不一致。因此采用离子色谱测定时需对杂质A与4R-双氢大观霉素杂质进行校正因子计算,按校正因子计算后的有关物质结果两种方法基本一致。6.青霉胺与青霉胺片含量与有关物质6.1 色谱条件Dikma Spursil C18(4.6mm×250mm,5µm)色谱柱;流动相为5.3g无水磷酸二氢钠-0.25g己烷磺酸钠,加去离子水1L溶解后,用磷酸调节pH值为2.85,加乙腈9ml;流速为1.0mLmin-1;柱后加碱为21gL-1氢氧化钠溶液,流速为0.3mLmin-1;脉冲积分安培电化学检测器,工作电极为金电极(1mm),参比电极为Ag-AgCl复合电极,六电位检测(T1为0~0.04s,E1为0.13V;T2为0.05~0.21s,E2为0.33V;T3为0.22~0.46s,E3为0.55V;T4为0.47~0.56s,E4为0.33V;T5为0.57~0.58s,E5为-2.0V;T6为0.59~0.60s,E6为0.93~0.13V);柱温为30℃;进样量20µL。6.2 结果含量测定方面,青霉胺浓度在49.88~199.5µgmL-1范围内线性关系良好,回收率为98.4%~101.5%,31批次青霉胺片含量为97.6%~101.5%。有关物质测定方面,各杂质与主成分青霉胺均能完全分离(见图4),青霉胺浓度在3.118~49.88µgmL-1,青霉胺二硫化物杂质浓度在1.616~19.39µgmL-1范围内线性关系均良好,青霉胺与青霉胺二硫化物杂质的检测限均为0.02µg;青霉胺二硫化物结果为0.4%~0.8%,最大单杂为0.9%~2.9%,其他总杂为2.4%~7.3%。1. EDTA 2.辅料3~8.未知杂质 9.青霉胺10.青霉胺二硫化物图5 青霉胺片有关物质典型色谱图ChP2020采用电位滴定法测定其含量,USP现行版采用HPLC法测定其含量,二者均未控制其有关物质。青霉胺虽不属于氨基糖苷类抗生素,但其结构中含有多个氨基与羧基,无共轭双键,同样可以采用离子色谱法测定。离子色谱法测定该品种的关键点为检测电位的选择,直接采用糖四电位时主成分响应很弱,采用仪器自带的六电位时峰型严重拖尾,因此本实验室采用循环伏安法分别对青霉胺与杂质青霉胺二硫化物进行扫描,确定了最佳的六电位波形,解决了主成分严重拖尾的问题。讨论讨论1: 操作过程中遇到的问题与解决方法离子色谱电化学检测在操作过程中常存在背景信号较高、基线噪音较大,重复性差等问题,导致试验耗时耗力,进展缓慢。如硫酸阿米卡星及其制剂测定过程中会出现响应信号下降的现象,原因为流动相中的三氟乙酸可使金电极表面钝化,使用一段时间后需用水擦拭金电极。硫酸庆大霉素制剂测定过程中,出现了背景信号缓慢增加,基线噪音增大的情况,使用一段时间后需用硝酸冲洗管路或打磨电极。为解决该问题,本实验室与离子色谱工程师们查找问题与原因,耗时近3年,终于初步解决了上述问题。首先,所有涉及的容器、试剂与过滤装置均应单独使用,试剂均应为高纯度试剂。其次,对仪器的部分管路用聚醚醚酮材料的管线取代原白色塑料管线,降低管路的透氧性。再次,仪器使用前分别用1.5molL-1的硝酸溶液、2.4gL-1的EDTA溶液、乙腈与去离子水依次冲洗管路。接着,使用时分别对流动相、柱后碱液的水离线脱气15min,除去溶解在其中的氧气,脱气完成后再用氮气或氦气保护。使用时所有的管路须充满液体,防止氧气进入系统中导致重复性降低。最后,更换了进样阀。初步解决了重复性差的问题,但测定时仍需要在碱液中加入一定浓度的EDTA,降低金属离子的影响。虽然重复性差的问题初步得到解决,但背景信号较高,剂型噪音较大等问题在日常操作中还存在着,还需要继续磨合。讨论2:各国药典中离子色谱法分析氨基糖苷类药物的情况(1)中国药典ChP2005年版在“附录V D 高效液相色谱法”检测器下提到了电化学检测器。从2010年版开始在附录中单独列出了“离子色谱法”,对离子色谱的色谱柱、洗脱液、检测器、测定法均进行了详细说明。直到2015年版才首次将该法收录至正文中,涉及的品种为硫酸依替米星,检测项目为有关物质与含量,同时还设有第二法为HPLC-ELSD法,二者选其一。现行2020年版药典仍沿用2015年版方法测定硫酸依替米星。收载的氨基糖苷类药物主要都采用HPLC-ELSD法。硫酸依替米星是我国自主研发的一种半合成氨基糖苷类抗菌药物,也是ChP 2020年版唯一一个采用离子色谱法安培检测器控制的品种。有关物质方法与含量测定方法均一致,为采用C18色谱柱,以0.2molL-1三氟醋酸溶液[含0.05%五氟丙酸、1.5gL-1无水硫酸钠、0.8%(V/V)的50%氢氧化钠溶液、用50%氢氧化钠溶液调节pH值至3.5]-乙腈(96:4)为流动相,四电位检测,柱后加碱(50%氢氧化钠溶液1→25),柱后流速为0.5mLmin-1。(2)国外药典美国药典USP25-NF20首次采用高容量的三乙胺阴离子交换色谱柱,以氢氧化钠为淋洗液测定了阿米卡星(包括硫酸阿米卡星及阿米卡星注射液)、卡那霉素(包括硫酸卡那霉素、卡那霉素注射液及硫酸卡那霉素胶囊)的含量。随后,USP27-NF22开始采用耐强酸、强碱和高浓度盐的聚苯乙烯-二乙烯基苯共聚物填料色谱柱代替传统的阴离子交换柱,并首次用四电位取代三电位测定了硫酸链霉素原料、硫酸链霉素注射液及注射用硫酸链霉素的含量。随着离子色谱不断发展,USP37-NF32及之后的版本用十八烷基键合硅胶代替了聚苯乙烯-二乙烯基苯共聚物色谱柱,流动相以烷基化有机酸如三氟乙酸、五氟丙酸等作为离子对试剂测定庆大霉素原料的组分。该方法采用柱后加碱的模式,较美国药典常用的氢氧化钠淋洗液体系更能避免空气中二氧化碳的影响,分析系统更稳定。BP从2002年版、EP从4.0版开始收载了硫酸新霉素的离子色谱方法,方法采用柱后加减模式测定了硫酸新霉素原料的有关物质。随后,BP2003年版、EP5.0版及之后的版本陆续将离子色谱法应用于奈替米星、妥布霉素、庆大霉素、大观霉素及阿米卡星等品种。方法的共同特点为采用耐强酸碱的聚苯乙烯-二乙烯基苯柱或耐酸的C18柱,以烷基磺酸盐或三氟乙酸等离子对试剂作为流动相,与氨基糖苷类药物形成离子对增强其保留,再加入少量的有机改进剂改善分离,三电位检测。直到BP2007年版、EP6.0版开始陆续采用更为普及的辛烷基键合硅胶或十八烷基键合硅胶色谱柱测定了盐酸大观霉素、硫酸庆大霉素、阿米卡星与硫酸阿米卡星等。其中从BP2011年版、EP7.0版开始,硫酸庆大霉素有关物质与组分方法中,流动相由烷基磺酸盐体系变更为三氟乙酸-五氟丙酸体系,减少了流动相中的盐在金电极表面沉积并使检测信号更稳定。发展趋势与展望中国药典是药品研制、生产、经营、使用和监督管理等均应遵循的法定依据,是我国保证药品质量的法典。中国药典具有使用范围广,权威性强的特点,因此其收载的质量标准应具有操作性强、重现性好、耐用性好、成本适中等特点。目前中国药典中采用离子色谱安培检测法测定的品种仅硫酸依替米星一个,而国外药典多采用安培检测法测定氨基糖苷类药物。离子色谱安培检测法在中国药典中发展缓慢的原因主要有2点:一是国内外离子色谱仪的普及率不同。国内制药企业规模参差不齐,离子色谱仪价格较高,仅一些规模较大的企业采购了离子色谱仪;而国外制药企业规模通常较大,大多有条件购买价格昂贵的仪器。二是国内外离子色谱仪使用情况不同。国内使用离子色谱电导检测比较多,而国外电导检测与安培检测发展基本持平。由于离子色谱安培检测器在分析无紫外吸收或紫外吸收较弱的药物方面具有一定的优势,无需衍生化可直接检测,灵敏度高、选择性好,具有一定的发展前景。而且目前国产离子色谱仪蓬勃发展,日趋成熟与稳定,为今后离子色谱在药物分析方面提供了更多的技术支持和选择性。但相关离子色谱生产企业也需解决操作过程中仪器存在的一些问题,如提高仪器的重复性和易操作性,使离子色谱在今后的应用更加深入和广泛。本文作者:李茜,王立萍,刘英*(河南省药品医疗器械检验院,郑州,450018)作者简介:李茜,女,副主任药师 研究方向:抗生素质量分析与质量控制*通讯作者:刘英,女,主任药师 研究方向:抗生素质量分析与质量控制
  • 日本:牛磺酸被列为不影响人体健康的物质
    2009年6月23日,日本厚生劳动省发布食安发第0623002号通知:近日,日本厚生劳动省对食品卫生法第11条第3项中所规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)进行了部分修改。具体情况如下:   第1 修改的摘要   在食品卫生法(1947年法律第233号)第11条第3项的规定的不对人体健康造成影响的物质(厚生劳动省大臣所指定的物质)中追加牛磺酸。   第2 实施、应用日期   自公布之日起开始实施   第3 其他   根据有关确保饲料安全性以及改善质量的法律(1953年法律第35号),由农林水产部指定牛磺酸及制定其标准、规格。
  • 2022年4月份将要实施的那些标准
    2022年4月份将要实施的标准2022年4月份将要实施的科学仪器及检测相关的国家标准仅有8条。但将要实施的行业标准较多,一共有99条,其中主要包括轻工、气象、环境、机械、化工、卫生医药等。另外还有20条与仪器及检测相关的团体标准也将实施。需要相关标准的,点击链接即可下载收藏↓国家标准GB/T 41072-2021 表面化学分析 电子能谱 紫外光电子能谱分析指南 GB/T 10782-2021 蜜饯质量通则 GB/T 19702-2021 体外诊断医疗器械 生物源性样品中量的测量 参考测量程序的表述和内容的要求 GB/T 10781.1-2021 白酒质量要求 第1部分:浓香型白酒 GB/T 39849-2021 无损检测仪器 超声衍射声时检测仪 性能测试方法 GB/T 39948-2021 食品热力杀菌设备热分布测试规程 GB/T 10781.11-2021 白酒质量要求 第11部分:馥郁香型白酒 GB/T 39945-2021 罐藏食品热穿透测试规程 行业标准交通标准JT/T 1386.10-2022 海事电子证照 第10部分:危险化学品水路运输从业资格证书 JT/T 316-2022 货运挂车产品质量检验评定方法 JT/T 1411-2022 天然气营运货车燃料消耗量限值及测量方法 气象标准QX/T 636—2022 气候资源评价 气候生态环境 QX/T 637—2022 气候预测检验 热带气旋 QX/T 638—2022 气候预测检验 热带大气季节内振荡 QX/T 639—2022 中国雨季监测指标 东北雨季 QX/T 640—2022 气象业务综合监视数据要求 QX/T 641—2022 称重式电线横向积冰自动观测仪 QX/T 642—2022 自动标准气压发生器技术要求 QX/T 643—2022 气象用水电解制氢设备操作规范 QX/T 644—2022 气象涉氢业务设施建设要求 QX/T 645—2022 风电机组测风资料质量审核与订正 QX/T 646—2022 雷电防护装置检测资质认定现场操作考核规范 QX/T 41—2022 空气质量预报 食品 轻工标准JJF 1070.3-2021 定量包装商品净含量计量检验规则 大米 QB/T 5636-2021 品牌培育管理体系实施指南 食品行业 QB/T 2968-2021 口腔清洁护理用品 牙膏中锶含量测定的方法 QB/T 2623.10-2021 肥皂试验方法 肥皂中甘油含量的测定 QB/T 5638-2021 口腔清洁护理用品 牙膏中叶绿素铜钠盐含量的测定高效液相色谱法 QB/T 1915-2021 阳离子表面活性剂 脂肪烷基三甲基卤化铵及脂肪烷基二甲基苄基卤化 铵 QB/T 5656-2021 油墨中苯类溶剂含量测定方法 QB/T 5637-2021 口腔清洁护理用品羟基磷灰石 牙膏用 QBT 5636-2021品牌培育管理体系实施指南 食品行业(报批征求意见稿) 有色金属YS/T 3042-2021 氰化液化学分析方法 金量的测定 YS/T 3041.1-2021 火试金法测定金属矿石、精 矿及相应物料中银量的 校正方法 第 1 部分:全流程回收率法 YS/T 3041.2-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 2 部分:熔渣和灰 皿回收法 YS/T 3041.3-2021 火试金法测定金属矿石、精 矿及相应物料中银量的校正 方法 第 3 部分:熔渣回收 和灰吹校准法 环境标准HJ 1230—2021 工业企业挥发性有机物泄漏检测与修复 技术指南 HJ 1189-2021 水质 28种有机磷农药的测定 气相色谱-质谱法 HJ 1190-2021 水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法 HJ 1191-2021 水质 叠氮化物的测定 分光光度法 HJ 1192-2021 水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法 化工标准HG/T 5912-2021 导电胶粘剂 HG/T 5911-2021 LED 照明器件用加成型有机硅密封胶 HG/T 5913-2021 高分子防水卷材用热熔压敏胶粘剂 HG/T 5914-2021 无衬纸铝箔压敏胶粘带 HG/T 5915-2021 热成像银盐打印胶片 HG/T 5916-2021 照相化学品 防灰雾剂2,5-二羟基-5-甲基-3-(4-吗啉基)-2-环戊烯-1-酮 HG/T 5918-2021 电池用硫酸钴 HG/T 5919-2021 电池用硫酸镍 HG/T 5920-2021粗碳酸锰 HG/T 5931-2021 肥料增效剂 腐植酸 HG/T 5932-2021 肥料增效剂 海藻酸 HG/T 5933-2021 腐植酸有机无机复混肥料 HG/T 5934-2021 黄腐酸中量元素肥料 HG/T 5935-2021 黄腐酸微量元素肥料 HG/T 5936-2021 腐植酸碳系数测定方法 HG/T 5937-2021 腐植酸与黄腐酸含量的快速 测定方法 HG-T 5938-2021 腐植酸肥料中氯离子含量的 测定自动电位滴定法 HG/T 5917-2021 黑白感光材料涂层溶解测定方法 HG/T 5921-2021 碳化法工业重铬酸钠 HG/T 2427-2021 肥料级氰氨化钙 HG/T 5939-2021 肥料级聚磷酸铵 HG/T 5941-2021 稳定同位素13C标记的辛酸 HG/T 5942-2021 稳定同位素15N标记的氨基 酸 HG/T 5943-2021 C.I.分散红152 HG/T 5944-2021 液体C.I.直接红254 HG/T 5945-2021 液体C.I.直接蓝290 HG/T 5909-2021 美罗培南合成催化剂化学成分分析方法 HG/T 5910-2021 双金属负载型聚醚多元醇合成催化剂化学成分分析方法 HG/T 4701-2021 电池用磷酸铁 HG/T 4133-2021 工业磷酸二氢铵 HG/T 4132-2021 工业磷酸氢二铵 HG/T 2568-2021 工业偏硅酸钠 HG/T 5922-2021 工业氰氨化钙 HG/T 5923-2021 化纤用二氧化钛 HG/T 5924-2021 废(污)水处理用生物膜载体 HG/T 3926-2021 水处理剂 2-羟基膦酰基乙酸(HPAA) HG/T 5925-2021 水处理用生物药剂 硝化菌剂 HG/T 5926-2021 水处理用生物药剂 反硝化菌剂 HG/T5927-2021 生物化学试剂 L-白氨酸(L-亮氨酸) HG/T 5928-2021 生物化学试剂 L-胱氨酸 HG/T 5929-2021 化学试剂 色谱用一水合庚 烷磺酸钠 HG/T 5930-2021 化学试剂 色谱用一水合辛烷磺酸钠 HG/T 5946-2021 1-(3-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5947-2021 1-(4-磺酸苯基)-3-甲基-5-吡唑酮 HG/T 5948-2021 1-(4-甲基苯基)-3-甲基-5-吡唑啉酮 HG/T 5949-2021 红色基KD(3-氨基-4-甲氧基-苯甲酰替苯胺) HG/T 5950-2021 色酚AS-IRG(4-氯-2,5-二甲氧基乙酰乙酰苯胺) HG/T 5951-2021 邻甲氧基乙酰乙酰苯胺 HG/T 5952-2021 邻氯乙酰乙酰苯胺 HG/T 5953-2021 纺织染整助剂 涤棉一浴皂洗剂 净洗效果的测定 HG/T 5954-2021 纺织染整助剂产品中异噻唑啉酮类化合物的测定 机械交通标准JB/T 14223-2021 无损检测仪器充电式交流磁轭探伤仪 JB/T 14155-2021 偏轴菲涅尔透镜 JB/T 14156-2021 投影光学非球面超短焦物镜 JB/T 14140-2021 食品机械 化糖设备 JB/T 14141-2021 食品机械 调配设备 JB/T 14142-2021 淀粉降解母粒生产线 JB/T 14144-2021 夹心软糖生产线 JB/T 14145-2021 全自动花色硬糖生产线 JB/T 4297-2021 泵产品涂漆 技术条件 JT/T 1393—2021 船舶压载水指示性分析取样与检测要求 卫生医药标准WS/T 787-2021 国家卫生信息资源分类与编码管理规范 WS/T 788—2021 国家卫生信息资源使用管理规范 WS/T 789—2021 血液产品标签与标识代码标准 YY/T 1416.5—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第5部分:甘氨酸 YY/T 1416.6—2021 一次性使用人体静脉血样采集容器中添加剂量的测定方法 第6部分:咪唑烷基脲 YY/T 1465.7—2021 医疗器械免疫原性评价方法 第7部分:流式液相多重蛋白定量技术 YY/T 1735-2021 丙型肝炎病毒抗体检测试剂(盒)(化学发光免疫分析法) YY/T 1771-2021 弯曲-自由恢复法测试镍钛形状记忆合金相变温度 YY/T 1772-2021 外科植入物 电解液中电偶腐蚀试验方法 YY/T 1775.1-2021 可吸收医疗器械生物学评价 第1部分:可吸收植入物指南 YY/T 1776-2021 外科植入物聚乳酸材料中丙交酯单体含量的测定 团体标准DB12/T 3027-2022 液氨贮存使用单位环境风险防控技术规范 T/CSTM 00470-2022生物炭膨润土复合污水处理剂 T/CSTM 00469-2022 生物炭凹凸棒石土壤重金属钝化剂 T/CPCIF 0168-2021 水中亚硝酸盐、硝酸盐、氨氮的快速检测试剂盒 T/GZSXH 02-2022 饮用天然泉水 T/CIESC 0033-2022 工业用四氢糠醇 T/CIESC 0032-2022 工业用丙二酸二乙酯 T/CIESC 0031-2022 工业用氰乙酸乙酯 T/CIESC 0030-2022 工业用N-乙基吡咯烷酮 T/CIESC 0029-2022 工业用原甲酸三乙酯 T/CIESC 0028-2022 工业用羟乙基甲基纤维素 T/CIESC 0027-2022 工业用乙基纤维素 T/JATEA 001-2022 农田地膜残留量调查与监测DB11/T 374-2021 水生动物疫病检测实验室管理规范 DB11/T 455-2021 动物疫病紧急流行病学调查技术规范 DB11/T 456-2021 动物防疫员防护技术规范 DB11/T 1000.2-2021 企业产品标准编写导则 第2部分:主要技术内容 DB51/T 2874-2022 检验检测机构保护客户秘密实施指南 DBS33/ 3013-2022 食品安全地方标准 酥饼生产卫生规范 DB31 2026-2021 食品安全地方标准 预包装冷藏膳食生产经营卫生规范 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 化妆品安全技术规范修订和新增高效液相色谱法测化妆品中防腐剂含量等7项检验方法
    日前,国家药品监督管理局组织起草了《化妆品中防腐剂检验方法》《化妆品中硼酸和硼酸盐检验方法》《化妆品中对苯二胺等32种组分检验方法》《化妆品中维甲酸等8种组分检验方法》《体外哺乳动物细胞微核试验》《化妆品祛斑美白功效测试方法》《化妆品防脱发功效测试方法》7项检验方法,并纳入《化妆品安全技术规范(2015年版)》。上述7项检验方法中,前4项为《规范》修订的检验方法,自2021年5月1日起施行,原有检验方法同时废止。后3项检验方法为《规范》新增的检验方法,自发布之日起施行。《化妆品中防腐剂检验方法》规定了高效液相色谱法测定化妆品中甲基异噻唑啉酮等23种组分、吡硫鎓锌等19种组分、己脒定二(羟乙基磺酸)盐等7种组分、聚氨丙基双胍、海克替啶、硼酸苯汞的含量。《化妆品中硼酸和硼酸盐检验方法》规定了离子色谱法测定化妆品中硼酸和硼酸盐的含量。《化妆品中对苯二胺等32种组分检验方法》和《化妆品中维甲酸等8种组分检验方法》均规定使用高效液相色谱法检测相关含量。7项检测方法具体实验参数、仪器及图谱详见附件。7项检验方法.doc
  • 国家市场监督管理总局对《表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量》等130项拟立项国家标准项目公开征求意见
    各有关单位:经研究,现对《涤棉混纺色织布》等130项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年8月4日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001901,查询项目信息和反馈意见建议。2024年7月5日相关标准如下:#项目中文名称制修订截止日期1玻璃制品 玻璃容器内表面耐水侵蚀性能 用滴定法测定和分级修订2024-08-042表面活性剂 工业烷烃磺酸盐 直接两相滴定法测定烷烃单磺酸盐含量修订2024-08-043洗涤剂中无机硫酸盐含量的测定 重量法修订2024-08-044首饰 镍释放量的测定 光谱法修订2024-08-045玩具及儿童用品材料中总铅含量的测定修订2024-08-046纸、纸板和纸浆 水抽提液电导率的测定修订2024-08-047瓦楞芯(原)纸修订2024-08-048瓦楞芯纸 实验室起楞后平压强度的测定修订2024-08-049瓦楞纸板修订2024-08-0410瓦楞纸板 边压强度的测定(边缘补强法)修订2024-08-0411瓦楞纸板 厚度的测定修订2024-08-0412医用电气设备 剂量面积乘积仪修订2024-08-0413纸、纸板、纸浆及相关术语修订2024-08-0414纸、纸板和纸浆 包装、标志、运输和贮存修订2024-08-0415造纸原料和纸浆 多戊糖的测定修订2024-08-0416纸板 耐破度的测定修订2024-08-0417纸和纸板 不透明度(纸背衬)的测定(漫反射法)修订2024-08-0418纸和纸板 厚度的测定修订2024-08-0419纸和纸板 孔径的测定修订2024-08-0420纸和纸板 伸缩性的测定修订2024-08-0421纸和纸板 撕裂度的测定修订2024-08-0422纸和纸板 颜色的测定(C/2°漫反射法)修订2024-08-04
  • 十年磨一剑 日立氨基酸分析仪更上一层楼——访日立高新牟晓丽 天美(中国)谢堂光
    p   氨基酸分析仪属于色谱仪器的一种,与液相色谱、气相色谱等通用型仪器相比,它的应用范围更精准,用户群体也更专业,是一种专用型仪器设备。它可以测试所有含有氨基酸及蛋白质的样品,比如营养食品、功能饮料、生物药品、动物饲料等,在涉及氨基酸的化工领域也会用到氨基酸分析仪。 /p p   日立高新技术公司于2018年7月26日发布全新一代氨基酸分析仪LA8080。发布会后,仪器信息网编辑采访了日立高新技术公司氨基酸分析仪产品负责人牟晓丽和天美(中国)科学仪器有限公司氨基酸分析仪产品经理谢堂光。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d8594bfc-b7c6-4bc6-baa3-76f5e90d1171.jpg" title=" 日立高新技术公司氨基酸分析仪产品负责人 牟晓丽.jpg" style=" width: 400px height: 301px " width=" 400" vspace=" 0" hspace=" 0" height=" 301" border=" 0" / /p p style=" text-align: center " strong 日立高新技术公司氨基酸分析仪产品负责人 牟晓丽 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/9ebde19c-383c-46b4-98f9-e549b1a7faba.jpg" title=" 天美(中国)科学仪器有限公司氨基酸分析仪产品经理 谢堂光.jpg" style=" width: 400px height: 301px " width=" 400" vspace=" 0" hspace=" 0" height=" 301" border=" 0" / /p p style=" text-align: center " strong 天美(中国)科学仪器有限公司氨基酸分析仪产品经理 谢堂光 /strong /p p strong br/ /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong style=" font-size: 20px " 日立称雄氨基酸分析仪市场 /strong /span /p p   全世界有近十家国外厂商和十余家国内厂商制造液相色谱仪,而制造氨基酸分析仪的厂商则较少,不足十家。谢堂光讲到:“国内市场对氨基酸分析仪的需求量约为100台/年,日立氨基酸分析仪的销量约为60台/年,销量较好时可接近70台/年。日立的氨基酸分析仪在高端领域用户中的市场占有率可达80%以上。” /p p   对于日立氨基酸分析仪为何有如此高的市场占有率,牟晓丽谈了她的观点。 /p p   从产品本身来讲,日立氨基酸分析仪的首席工程师30多年来一直专注于该产品的设计与研发,对其钻研颇深,开发了许多的专利技术,从而使产品走到了行业的前端 日立的机械加工技术在世界范围也很先进,可以以更好的制造工艺来生产仪器产品。 /p p   从应用方案的开发来讲,日立专业的全球应用中心有许多拥有长期工作经验的应用工程师,当用户有不同的测试需求时,他们可以帮助用户更快、更好地建立新的测试方法。 /p p   从售后方面来讲,日立在中国的独家代理商天美(中国)科学仪器有限公司有专业的售后团队和配件仓库,可以快速响应用户的售后需求。 /p p   日立非常重视中国的氨基酸分析仪市场,许多重要的市场活动都会在中国举办。例如这次海外市场的产品首发就选在中国,因为中国有日立许多重要的客户,市场未来会保持持续增长。 /p p   牟晓丽总结到:“ strong span style=" color: rgb(255, 0, 0) " 日立在中国氨基酸分析仪市场的成功得益于四点:优秀的产品,专业的应用支持,快速优质的售后,以及对市场的重视。 /span /strong ” /p p   日立氨基酸分析仪产品全部在日本完成生产,再进口至国内。谢堂光特别说到,作为该产品的中国独家代理,天美公司采取许多措施以快速响应用户售后服务的需求。天美在国内设有配件库,有充足的配件供应来保障仪器的维修保养,且配件均为原装进口。客户可与天美公司签订不同规格的维保合同,来获取最优的服务,同时天美会向用户提供维修过程的视频教程,以帮助其解决常见问题,提高用户工作效率。每年的3月15日-4月30日天美还会举办“千里行”活动,用户可享受维修保养服务工时费的减免和配件选购折扣。 /p p br/ /p p style=" text-align: center " span style=" font-size: 20px color: rgb(0, 112, 192) " strong 十年磨一剑 日立氨基酸分析仪更上一层楼 /strong /span /p p   LA8080的上一代产品L-8900推出已有13年之久 2011年,日立单独推出使用寿命更长、检测灵敏度更高的第三代衍生技术,并作为L-8900的选配件 2018年,具有更高灵敏度、自动化等特点的LA8080中国首发。氨基酸分析仪的产品迭代周期较长,开发过程中若有重大技术创新,可在5~8年的时间推出新品 若有检测方法的创新,则会在10年左右的时间推出新品。日立拥有伊藤正人领衔的20余人的专业研究团队,保证了该产品能够不断地升级 伊藤正人是日立氨基酸分析仪的研发团队总设计工程师,在日立工作的30多年间,他一直专注于研究氨基酸分析仪这一个产品。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/45f16853-47b1-44e6-b9ac-24c6c9d0fbe5.jpg" title=" 日立氨基酸分析仪总设计工程师 伊藤正人.jpg" style=" width: 400px height: 267px " width=" 400" vspace=" 0" hspace=" 0" height=" 267" border=" 0" / /p p style=" text-align: center " strong 日立氨基酸分析仪总设计工程师 伊藤正人 /strong /p p strong 命名方式推陈出新 /strong /p p   现今,实验室空间十分宝贵。日立以往各型号的氨基酸分析仪均为落地式产品。考虑到用户在有限空间摆放大量仪器设备的需求,在保留传统落地式设备的同时,日立还特别推出了可放置于实验室台面上的台式产品,优化了实验室排布,提高了空间利用率。 /p p   鉴于这一点,牟晓丽说到,新品在命名规则上并未完全沿用L-8800、L-8900的方式,而是采用了全新的型号LA8080,L体现的是日立先进技术的延续,A可以理解为氨基酸amino acid的简称,8080的数字排列规整,发音朗朗上口。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d3b60733-6a33-4d2b-a75a-4d3fbafcd56c.jpg" title=" 日立全新一代氨基酸分析仪LA8080(落地式).jpg" style=" width: 300px height: 448px " width=" 300" vspace=" 0" hspace=" 0" height=" 448" border=" 0" / /p p style=" text-align: center " strong 日立全新一代氨基酸分析仪LA8080(落地式) /strong /p p strong LA8080的技术升级和产品创新 /strong /p p   制药企业对测试数据的合规要求极高,软件需符合相关法规。基于此,LA8080采用了最新的OpenLAB CDS 2软件,相比上代产品使用的OpenLAB CDS 1,其功能更加强大,并全面实现了审计追踪、三级权限设置,以及数据库功能,是氨基酸分析仪里真正全面满足制药法规的软件。软件还增添了功能性模板,仪器会根据操作员输入的待测样品数量自动生成检测序列 用户还可将测试报告数据直接导出并另存为Word、Excel、PDF、TXT格式,无需再单独设置。相比于前代产品L-8900,操作便捷度有了提高。 /p p   LA8080硬件方面也有多处改良。首先,是测试灵敏度的改进:LA8080全系标配的第三代衍生器—TDE3,相比首代的反应盘管,寿命延长了25倍,灵敏度提高了4倍 凭借日立领先的光学技术,分光系统得到优化,光能量相比L-8900提高约30%,更高的光能量也可以提高检测的灵敏度。其次,安全性能也得到了改进:在衍生剂管路增加了止回阀,可以防止误操作时造成衍生剂茚三酮的回流,避免仪器损坏 使用了功率更强大的脱气机,仪器即使在缓冲液存在肉眼可见的气泡时也可正常使用 优化了漏液传感器的位置和结构,可避免漏液传感器被漏液损害。这些改进使设备的故障率大幅降低。 /p p   依托于产品的改进和升级,LA8080可向用户提供超高速、标准和超高分离三种蛋白水解分析程序,分析时间分别为24分钟、30分钟和45分钟,可满足用户快速分析或高度分离的不同测试需求,在超高速分析的同时还能保证高于1.2的分离度 测试生理体液系统时,快速分析的时间可达70分钟,标准分析则为110分钟,这是由于生理体液分析氨基酸的种类较多,样品更复杂,分析速率的上升空间已不大。该程序同样可以应用到上代产品L-8900之上。 /p p   得益于更简便、更便捷的操作流程,LA8080仅需30秒就能让用户掌握独立完成样品测试的能力。 /p p   与其他氨基酸分析仪需要手动进行维护不同,LA8080具备自动清洗与维护的功能,程序运行结束后还可自动关机,自动化程度高,可大大节省用户的时间成本。 /p p br/ /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 20px " 中国首发日,逾10家单位采购LA8080 /span /strong /span /p p   自日立推出首代氨基酸分析仪后的50余年间,已在中国积累了为数众多的用户群体,涵盖科研院所、第三方检测机构、企业、高校等。 /p p   许多检测机构连续购买多台日立氨基酸分析仪,认为日立氨基酸分析仪故障率低、测试效率高。如,谱尼测试集团股份有限公司,最近已采购了第7台日立氨基酸分析仪 通标标准技术服务有限公司(SGS)2017年也采购了第2台产品 华测检测认证集团股份有限公司有2台L-8900产品在用。对检测行业的第三方检测机构而言,仪器测试效率和故障率的高低尤为重要 这些检测机构对日立氨基酸分析仪故障率低、测试效率高等方面予以了认可。 /p p   日立氨基酸分析仪的企业用户主要集中在食品产业。如,正大食品有限公司、新时代健康产业(集团)有限公司,将其应用于食品、保健品的检测 烟台欣和企业食品有限公司、开平味事达调味品有限公司,应用于酱油产品的检测。此外还有一些乳制品、啤酒企业的客户也会使用日立的氨基酸分析仪。 /p p   科研院所和出入境检验检疫机构也是日立氨基酸分析仪的用户,他们的应用主要是食品和药物的检测。 /p p   日立也一直致力于参与到氨基酸检测标准的编制和修订中去。参与起草《氨基酸分析仪检定规程》、《食品中氨基酸的测定》、《饲料中氨基酸的测定》、《植物中游离氨基酸的测定》等标准的部分单位均有日立氨基酸分析仪产品。如,北京市营养源研究所起草了《食品中氨基酸的测定》,其拥有2台L-8900,还拥有更早型号的产品835 中国农业部饲料工业中心起草了《饲料中氨基酸的测定》,其有3台L-8900产品 中国计量科学研究院也有日立上上代的氨基酸分析仪L-8800。 /p p   在做食品、饲料等产品中所含氨基酸的应用检测时,人们通常关注的是常见的18种氨基酸 也可以将羟脯胺酸、牛磺酸等特殊的氨基酸添加到检测序列中来 但通常不会超过23种。当关注的氨基酸种类再多时,就进入到生理体液系统检测的范畴,更多应用于天然提取物、酿造食品、组织间液等的检测。氨基酸种类繁多,其中还有许多人工合成的化学结构,当用户有特殊测试要求时,日立可以协助其开发分析测试方法,以解决用户的测试难题。 /p p   LA8080于2017年在日本分析仪器展(JASIS)上日本首发,本次海外首发前,中国已有4家用户进行了采购 据发布会公布的消息,预售阶段又有10余家用户订购了LA8080,共同掀起了国内用户购买日立最新型氨基酸分析仪LA8080的序幕! /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/36f43392-2a99-4f9b-8c53-4815344174d3.jpg" title=" 用户围绕LA8080进行交流.jpg" style=" width: 400px height: 267px " width=" 400" vspace=" 0" hspace=" 0" height=" 267" border=" 0" / /p p style=" text-align: center " strong 用户围绕LA8080进行交流 /strong /p p strong br/ /strong /p p style=" text-align: center " span style=" font-size: 20px color: rgb(0, 112, 192) " strong 氨基酸分析仪的未来 /strong /span /p p   在谈到氨基酸分析仪未来的技术发展趋势时,谢堂光认为所有的色谱类仪器都在朝着分析速度更快、测试灵敏度更高的目标前进。为达成这些目标,可采取的措施之一是减小离子交换树脂的粒径,从而提高树脂的比表面积。树脂颗粒的比表面积越大,等于进行离子交换时的有效面积就增大了,吸附过程会更快,分离也会更彻底。现在,日立氨基酸分析仪色谱柱的树脂填料粒径已经达到3微米,在其所有产品中具有最快的分析速度。希望未来氨基酸分析仪的分析时间能够从30分钟、24分钟缩短到20分钟,甚至15分钟以内。 /p p   树脂粒径做小的同时如何保证色谱柱的使用寿命是离子交换色谱柱开发的一个难题,从用户反馈来看日立的色谱柱寿命基本可以超过10年。用户可以反复地清洗色谱柱,或替换新的树脂颗粒。 /p p   “因此未来的发展方向有两个方面:提高分析速度 提高色谱柱使用寿命”谢堂光谈到。 /p
  • 欧盟将全面禁用全氟己烷磺酸
    近日,欧盟委员会在其官方公报上发布法规(EU)2023/1608,对关于持久性有机污染物法规(EU)2019/1021进行修订,正式将全氟己烷磺酸和盐类及其相关物质列入欧盟持久性有机污染物法规禁用物质清单。新法规于官方公报发布后的第20天起生效。全氟己烷磺酸及其盐此前已经于2017年7月7日列入SVHC候选物质清单。现在此类物质被加入《斯德哥尔摩公约》,日后将在全球范围内淘汰。2023年3月,欧洲化学品管理局已经公布了针对超过1万种全氟或多氟烷基类物质的REACH法规限制提案,相关企业必须做好市场评估和化学品替代的准备。全氟和多氟烷基化合物由数千种物质组成,由于其含有极其稳定的碳氟键,使得此类物质具有很强的化学稳定性和表面活性、优良的热稳定性和疏水疏油性,被广泛应用于工业生产和生活消费领域。但此类物质具有蓄积性、生殖毒性、诱变毒性、发育毒性、神经毒性、免疫毒性等多种毒性,是一类具有全身多脏器毒性的环境污染物,目前各国已经在逐步管控此类化合物。
  • 生态环境部关于公开征求《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法》等四项国家生态环境标准意见
    各有关单位:为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《生态遥感地面观测与验证技术导则》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。请于2022年1月10日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。联系人:生态环境部监测司 曹 宇电话:(010)65646228传真:(010)65646236邮箱:zhiguanchu@mee.gov.cn地址:北京市东城区东安门大街82号邮编:100006附件:1.征求意见单位名单2.生态遥感地面观测与验证技术导则(征求意见稿)3.《生态遥感地面观测与验证技术导则(征求意见稿)》编制说明4.固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)5.《固定污染源废气 烟气黑度的测定 林格曼望远镜法(征求意见稿)》编制说明6.水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)7.《水质 全氟辛基磺酸和全氟辛基羧酸的测定 固相萃取/液相色谱-三重四极杆质谱法(征求意见稿)》编制说明8.土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)9.《土壤和沉积物 全氟辛基磺酸和全氟辛基羧酸的测定 液相色谱-三重四极杆质谱法(征求意见稿)》编制说明生态环境部办公厅2021年12月9日(此件社会公开)附件1征求意见单位名单生态环境部各流域海域生态环境监督管理局监测与科研中心各省、自治区、直辖市生态环境监测站(中心)新疆生产建设兵团生态环境第一监测站各环境保护重点城市生态环境监测站(中心)中国科学院生态环境研究中心中国环境科学研究院中国环境监测总站生态环境部环境发展中心生态环境部南京环境科学研究所生态环境部华南环境科学研究所国家环境分析测试中心河北环境工程学院
  • 美国公布食品中全氟烷基磺酸盐检测结果及检测方法改进情况
    2023年5月31日,美国食药局(FDA)公布了一般食品供应中的PFAs(全氟烷基磺酸盐)检测结果、海产品相关检测工作的进展以及检测方法改进情况,主要内容如下:   (1)FDA称在2 个鳕鱼和2个虾样本中检测到PFAS,在罗非鱼、鲑鱼和碎牛肉各1个样本中检测到 PFAS.FDA认为在7个样本中检测到的PFAS 暴露水平不太可能对幼儿或一般人群造战健康问题;   (2)对于进口自中国的给蜊罐头,因PFAS问题两家公司发布了自愿召回令,FDA正在继续对边境的有限数量的进口货物和市场上的国内产品进行检测。滤食性动物,如给蜊以及其他双壳克类软体动物(包括牡蛎、贻贝和扇贝),比其他海产品类型有可能积累更多的环境污染物。因此,FDA正在对进口和国产双克类软体动物进行额外采样,以更好地了解商业海产品中的PFAS情况;   (3)FDA将采用高分辨率质谐分析方法进行检测,以测定食品中PFAS情况。
  • 百灵威与ACROS ORGANICS
    ACROS ORGANICS是全世界享有盛誉的精细化学品供应商,是有机化学和精细化学产品行业的l导者。ACROS ORGANICS凭借不断发展创新的产品和服务以满足有机、医药、分析和生化l域的各类研发和生产的产品需求。 ACROS ORGANICS源自Eastman Kodak Laboratory Chemicals 和 Janssen Chimica两家知名化学工厂,自创立之初便继承了Eastman Kodak Laboratory Chemicals和Janssen Chimica在基础化学试剂l域和医药中间体l域的生产经验和研发成果。现在ACROS ORGANICS作为ThermFisher Scientific集团中的y员,有了更高的起点。ThermFisher Scientific集团将助力ACROS ORGANICS不断扩大差异化产品和长期战略资源的供应能力和服务能力,不断提高产品pz和服务质量,满足有机、医药、分析和生化l域客户不断发展的研发和生产需求。 ACROS ORGANICS可提供c过18,000种化学产品,30,000多个不同纯度产品和包装。从毫克到公斤j别的常规基础试剂、百公斤乃至吨j的工业原料,ACROS ORGANICS均可提供。 百灵威作为ACROS ORGANICS在中g大陆及香港的指定服务商及战略合作伙伴,长期为中g用户提供高pz的产品与优质的服务,支持有机合成、医药等多个l域的研究与开发:在百灵威中g的标准化学品仓库中储备c过3,000种实验室常规试剂,满足24小时快速发运要求;每周四次以上中g-欧洲直飞航班,数以万计的产品可在5天内送达实验室;专业化的订货系统与独特的产品预留体系,将远在欧洲的产品提前锁定,保证稳定的货期;定期出版的专业资料,为用户提供世界前延的化学信息。百灵威将始终秉承&ldquo 资源共享,共同发展&rdquo 之理念,y如既往地为中g化学行业广大科研和生产用户提供卓越的产品与服务! 擅长l域 有机化学、分析化学、生物化学、药物化学 特色产品 c干溶剂 c干四氢呋喃,含水量小于50ppm c干二甲亚砜,含水量小于50ppm c干乙腈,含水量小于10ppm 有机锂 正丁基锂、甲基锂、仲丁基锂、叔丁基锂、苯基锂、三仲丁基硼氢化锂 气相衍生化试剂 三氟乙酸(TFA) N,O-双(三甲基硅基)乙酰胺(BSA) N,O-双(三甲基硅)三氟乙酰胺(BSTFA) 三甲基氢氧化硫 生物缓冲液 吗啉乙烷磺酸(MES) 双(2-羟乙基)胺-三(羟甲基)甲烷(Bis-Tris) 3-(N-吗啉)丙烷磺酸(MOPS) 核心实力 精细化学品的专业顾问 合同委托保密生产模式 多j产品定制合成规划: 500毫升到100升的玻璃柔性合成反应釜 散装灌装和包装设备达到药品标准的质量控制和分装体系 个性化产品包装 提供包含即时递送(just-in-time delivery)的发布合同(call-off contracts) 中试和放大能力 从500毫升到6000升的不锈钢制柔性合成反应釜满足不同j别产品需求 提供数千种药物中间体和有机中间体,c过2000种产品可进行工艺缩放 质量控制 通过ISO 9001质量体系和ISO 14001环境管理体系认证 网址:www.acros.com
  • 带你走近月旭离子交换以及HILIC分析柱
    哈喽哈喽,各位亲爱的读者朋友们,大家好呀。好久不见,小编甚是想念大家,不知道大家有没有想小编呢!今天小编将会给大家带来我们月旭两大核心液相色谱柱-离子交换以及亲水分析柱介绍。主要从键合相类型,耐受PH范围,色谱柱具有的特点来带大家走近我们这两大核心色谱柱。离子交换色谱的原理离子交换色谱是指离子交换色谱中的固定相中的一些带电荷的基团, 这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上带相反电荷的离子进行交换。离子交换色谱的固定相有阳离子交换官能团和阴离子交换官能团两种。阳离子交换官能团带有负电荷,用于阳离子的分离;阴离子交换剂官能团带有正电荷,用于阴离子分离。阳离子交换官能团zui常用的有磺酸盐型,阴离子交换官能团zui常用的是季胺型。离子交换色谱的流动相通常是含盐的缓冲水溶液。为了适应不同的分离需要,有时添加适量的能与水相溶的有机溶剂,如甲醇、乙腈、四氢呋喃等,以改进样品的溶解性能,提高选择性,改善分离。在以水溶液为流动相的离子色谱中,缓冲溶液的浓度直接影响着离子平衡。当缓冲液浓度增加时,流动相中反离子浓度的增加,增强了它与样品离子争夺离子交换官能团的能力,从而减弱样品组分与离子交换树脂的亲和性。流动相中的离子类型对样品分子的保留值产生显著的影响。月旭离子交换柱产品特点HILIC柱简介1990年,Alpert教授提出了一个新概念:亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)。这种色谱分析方式用来分离强极性和亲水性化合物,比如核苷和核苷酸、氨基酸、糖类等。它采用极性固定相和极性流动相,一般使用比固定相极性低的溶液,如:乙腈/水等。在HILIC色谱中与反相色谱不同的是,流动相的极性越大,洗脱能力越强,但水相比例zui好不要超过40%,不要低3%HILIC的作用原理目前仍在研究中,zui被广泛接受的说法是分析物在流动相和固定相表面富集水层间的分配作用,同时也包含有弱静电作用、氢键和分子双极性作用等。月旭HILIC柱产品特点时间过的真快,不知不觉小编又要和大家说再见了,感谢大家一直以来的支持,期待我们下次的相遇——只有你想见我的时候我们的相遇才有意义。
  • Detelogy应用分享:化工产品中全氟辛烷磺酸(PFOS)的测定的前处理方案
    全氟辛烷磺酸类物质(PFOS)作为一种重要的全氟化表面活性剂,因其具有疏油疏水的特性,被广泛用于民用和工业产品生产的多个领域,如我们日常熟悉的一次性饭盒,食品塑料包装袋、不粘锅、纺织品、皮革、地毯、油墨行业、消防泡沫、影像材料和航空液压油等产品中都含有它。在生产和使用过程中,PFOS会释放到环境中,研究发现各种环境介质都有PFOS的存在,是最难降解的污染物之一。同时PFOS还被发现能在生物体中蓄积,并可对肝脏、神经和免疫等系统造成一定的损伤。鉴于PFOS具有POPs的这些特征,2009年,PFOS被列入《关于持久性有机污染物(POPs)的斯德哥尔摩公约》,成为受控POPs之一,PFOS污染已成为全球性的环境污染问题。下面以SN/T 2392-2009《进出口化工产品中全氟辛烷磺酸的测定液相色谱-质谱/质谱法》Detelogy提供化工产品中全氟辛烷磺酸的测定的实验方案实验流程01 石蜡样品称取试样约2g(半固体样品需加入约1g硅藻土,搅拌均匀)。放入iQSE-06智能快速溶剂萃取仪萃取池中,池内样品的上下两层均用专用滤膜保护,轻轻压实至池底部,按下面条件进行提取。提取完毕后,将提取液转移至200mL浓缩管中,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩,用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。02 溶剂性涂料及胶粘剂样品称取2g试样于50mL离心管中,加入30mL甲醇,用MultiVortex多样品涡旋混合器振荡提取30min,再超声提取20min。置离心机中,以4000r/min离心10min。吸取上清液于200mL浓缩管中。重复上述提取步骤,合并提取液,置于FlexiVap-12全自动平行浓缩仪在40℃水浴中进行浓缩。用甲醇定容至20mL,取1mL溶液用0.2μm滤膜过滤,滤液供LC-MS/MS测定。03 润滑油样品称取2g,于50mL离心管中,加入5mL甲醇,用MultiVortex多样品涡旋混合器混匀,置离心机中,4000r/min离心10min。上清液待净化。将C18柱固定于iSPE-864全自动智能固相萃取仪。洗脱液置于FV32Plus全自动高通量智能平行浓缩仪于40℃水浴中旋转浓缩。用甲醇定容至20mL,取1mL溶液经0.2μm滤膜过滤,滤液供LC-MS/MS测定。上述智能方案中使用到的仪器
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • L-8900高速全自动氨基酸分析仪测定鸡用饲料中氨基酸
    饲料是在鸡在生长过程中所必需的营养素,准确的掌握所含氨基酸的比例及量有助于提高饲料的利用效率,节约饲养成本。  本文主要介绍市场销售的成熟鸡用饲料中的氨基酸的检测,前处理一般采用盐酸水解法,氧化水解法及碱水解法,介绍两种检测方法,30min标准分析法和特殊氨基酸检测法。http://www.instrument.com.cn/netshow/SH100322/s328059.htm 公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司和英国Edinburgh等多家海外知名生产企业,加强了公司产品的多样化。 更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 安吉尔携中疾控千万打造国际一流实验室
    近日,中国健康饮水第一品牌安吉尔与中国疾病预防控制中心环境所签订了《安吉尔、中国疾病预防控制中心环境所——饮水、净水全领域战略合作伙伴》协议,将自己再次推到了行业的风尖浪头。据了解,结成战略合作伙伴关系后,双方将在饮水机、净水器、净水设备等方面展开全面技术合作。 携手中疾控,关注中国饮水健康   目前中国有2.5亿人仍无法获得安全饮用水,人类所患疾病中80%与水污染有关,52%的儿童死亡与饮用水质不良有关。特别是在我国城市,大多数高层住宅的居民饮用的都是蓄水池水,由于输水管道的锈蚀造成自来水的二次污染相当普遍。因此,饮水机就成为家庭饮水的主要解决方案。   “但不容乐观的是,饮水机市场在高速发展后呈现诸多不足。”有专家指出,饮水机的安全隐患、二次污染、热水反复加热、水不新鲜、漏水隐患、易结垢、易窜温、耗能大等缺陷,已经成为饮水机行业发展的瓶颈。   众所周知,中国疾病预防控制中心环境与健康相关产品安全所是卫生部下属负责饮水安全和检测的国家级技术单位,在涉及健康及健康标准方面具有其他部门无可比拟的权威性。此次中疾控与饮水机行业领头羊安吉尔结成战略合作伙伴关系,将给饮水机行业带来怎样的影响?让我们一起听一听双方及业内专家的观点。   “饮水机技术的提升,饮水机行业的健康发展,对我国解决居民健康饮水问题至关重要。”中国疾病预防控制中心环境所专家表示:“深圳安吉尔饮水产业集团有限公司是中国创建最早的饮水设备研发、制造及销售的专业公司之一,在饮水机和净水器制造方面具有坚实的工作基础。此次与之合作,将有利于不断提高整个行业饮水、净水产品的技术门槛,把一部分劣质产品和技术落后的企业淘汰出局,从而为消费者提供更加健康的饮用水。”   安吉尔品牌负责人表示:“安吉尔致力于为消费者的饮水健康提供最佳解决方案,这与中国疾病预防控制中心环境与健康相关产品安全所在居民饮水领域的目标是一致的,并且它在饮用水净化领域有多年的工作基础,具有雄厚的科研和技术实力,与之进行战略合作,有利于将安吉尔在饮水机行业的标志性地位和中疾控环境所的技术优势结合起来,进一步提升安吉尔的产品和品牌优势,并研制出更安全、更健康的饮水、净水设备,为消费者提供最佳的饮水健康解决方案。”   业内专家分析认为,中疾控环境所与安吉尔的战略合作是饮水机行业内的“强强联合”,这对解决饮水机行业内存在的诸多问题有着积极的意义,一方面提高了行业的技术标准,淘汰了部分劣质产品和企业,另一方面,促使更多的生产企业重视产品创新和技术研发,无形中再次提高行业标准。他还指着,中疾控环境所与安吉尔的战略合作有利于促进饮水机行业的健康、快速发展,对解决中国2.5亿居民的健康饮水问题有极大的促进作用。   根据合作协议,安吉尔与中疾控环境所在人员培训、信息共享、建立联合检查实验室等诸多方面达成共识。中疾控环境所将帮助安吉尔对研发技术人员进行培训、对安吉尔的多个实验室开发进行规划指导,并在行业内与安吉尔进行信息共享 安吉尔将在年内斥资1000万元人民币改造华南基地实验室,改造后的安吉尔检测实验室拥有微生物实验室、理化实验室、环境实验室、精密实验室……等七大实验室,达到国际领先水平。   据安吉尔品牌负责人介绍,改造后的微生物实验室将配置超净无菌室、超净工作台、高温高压灭菌箱、微生物培养箱等先进设备,达到并超过国家一级实验室要求,可以对细菌总数、大肠菌群等多种微生物进行检查 理化实验室也采用多项国内外先进技术,可以对铅、汞等重金属,以及农药残留等各项水质指标进行检查……同时他还表示,实验室建成后,安吉尔的所有产品都必须经实验室各项检验合格后才会上市。
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 哈佛仪器旗下Biochrom氨基酸分析仪亚太区技术交流会暨新软件发布会顺利举行
    2019年4月28日至29日 新加坡 全球著名的氨基酸分析仪制造商biochrom和其亚太区主要合作伙伴dksh在新加坡共同举办氨基酸新一期产品技术交流会和biochom新版软件发布会。 来自新加坡、泰国、马来西亚、越南、韩国和台湾等国家和地区共15位销售和应用专员、biochrom技术支持经理jean-philippe veyssier、哈佛仪器亚太区销售总监邓先生和分子分析渠道经理蒋先生共同参加这次培训。在本次技术交流会上,veyssier先生回顾了氨基酸分析的发展简史、讲述了氨基酸分析的基本理论、比较了各种分析技术的优缺、介绍了bioohom氨基酸分析仪的优势并分享了在全球氨基酸分析领域特别是诊断市场占统治地位的成功经验。 在本次技术交流会上,biochrom在亚太区发布了新的氨基酸分析仪软件。新版软件界面更加简洁直观,符合fda 21cfr part 11的要求,更能适应对电子数字安全有更高监管要求的环境。 与会人员各自介绍了所在区域市场情况,尽管面对各种新分析技术的竞争,基于茚三酮柱后衍生技术的独特优势和长的分析柱使用寿命,传统氨基酸分析仪仍将占有极大的市场份额,大家都看好氨基酸分析仪市场。 培训取得良好效果,与会者积极参与讨论,反响强烈,纷纷表示今后应多组织这类技术交流会。 关于哈佛仪器/哈佛生物科学 哈佛生物科学是世界领先的科学仪器、基础设备和专业产品的研发、制造和销售商。我们的产品广泛用于全球探索生命科学研究的制药和生物技术公司、大学和政府实验室。 我们拥有20家全资的子公司。哈佛生物科学和哈佛仪器的名称以及公司标志的使用受哈佛大学的许可。我们拥有众多知名商标,如harvard apparatus, biochrom, hoefer, warner, btx, heka, mcs, tbsi, panlab, hse, dsi等。
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除Eumulgin® S21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用Hostacerin® DGSB,Hostaphat® KW340D 和Plantasens® Emulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而Eumulgin® S21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。Eumulgin® S21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens® Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂Hostaphat® KW340D能提高洁面膏的泡沫稳定性;Eumulgin® S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂Plantasens® Emulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • 欧洲化学品管理署(ECHA)寻求三种化学物质测试数据
    欧洲化学品管理署(ECHA)近日对三种化学物质的利益相关方发出通知,寻求三类化学物质的测试数据,以避免重复的数据测试,这三种物质为:   • 四乙基氢氧化铵,2-羟基-N-(2-羟乙基)-N,N-二甲基,十六~十八烷和十八烷不饱和脂肪酸,氯化物:两代生殖毒性(6月10日前)   • 三聚磷酸钠:亚慢性毒性(5月24日前)   • 11-氨基十一酸:生殖毒性(5月24日前)。
  • 液相色谱,你问我答(十五)
    反相填料的水解稳定性问有的厂家说他们的柱子的使用pH可以到9或10,而另外的则建议不要大于8。我zui近有根反相柱要用到pH9,因为只有这个条件下我的样品才能完全分离。这超出厂家所说的适用范围,但是柱子的寿命还可以接受。现在我想知道我们应该怎样看待厂家所推荐的pH适用范围。实验已经做出了zui好的回答:如果柱子寿命可以接受那么就可以在推荐的pH范围之外使用。但是我想知道用不同品牌的柱子做的结果是否一样。如果确实一样的话,那么这样用就没什么问题了。填料的pH稳定性是一个比较复杂的问题,很难用一个简单的规则来说明。为了更好的理解我从一些细节上来解释一下。碱性pH中,OH-会攻击并分解硅胶。分解的速度与流动相中的OH-浓度,OH-到填料表面的通道及分解后的硅胶在流动相中的溶解性有关。如你所见,流动相中的pH浓度只是其中一个因素。另外上面所有的过程都与温度有关。在室温下可能工作良好,但是到60℃柱子寿命可能就会明显降低。OH-到填料的通道在填料的稳定性中扮演着重要的角色,填料表面覆盖了致密的C18或C8可以很好的改善稳定性。另外末端封尾也是很重要的。填料表面覆盖的疏水基团可以保护填料免受OH-攻击,其密度是衡量保护能力的尺标。所以我们可以说表面覆盖率高的填料比表面覆盖率低的填料稳定,另外末端封尾的质量也非常重要。在酸性pH中,硅胶自己会分解。因此,键合物的特性只起次要的作用。在相同的键合水平下,单功能结合的硅烷与三功能键合的硅烷其稳定性是没有差别的。但是OH-到填料的通道是zui重要的,因此单功能键合的大的异丙基侧链其稳定性是弱于标准键合相的,因为其zui大覆盖率低。如果柱子一直是使用同一种流动相而没有用有机溶剂冲洗,那么键合相的去吸附和分解是非常缓慢的,因此保留时间也没什么改变。但是硅胶在慢慢的分解。导致的结果就是,柱子可能会毫无征兆的突然坍塌。当然,这种情况下填料密度也是很重要的。孔隙体积大的硅胶没有孔隙体积小的硅胶稳定,因为它的骨架更脆弱。硅胶的孔隙一般在40%-70%,但是它的强度是呈10倍变化的。所以可以根据填料密度来推测键合相的差别。另外,随着填料孔径变大,表面积会减少。所以其他条件一致的话,孔径大的填料要比孔径小的稳定。流动相组分的特性对填料的稳定性也是很重要的。pH相同时,有机缓冲液如氨丁三醇缓冲液【Tris:(HOCH2)3CNH2】,柠檬酸缓冲液和羟乙基呱嗪乙硫磺酸(HEPES)缓冲液的攻击性比通常用的磷酸缓冲液要弱。另外硼酸和甘氨酸即使在pH10也是很温和的。要指出的是在已知的关于填料稳定性的理论研究中都是在等度条件下进行的。当你换到有机溶剂去清洗柱子的污染物的时候,那些吸附在填料上没有键合的基团也可能被洗脱掉。所以,清洗过程也会对柱子的稳定性产生影响。上面的都是针对C18和C8柱的研究。很多极性柱如CN基柱即使在正常的操作过程中其稳定性都要小很多。在pH7时,CN基填料的水解速度是C18和C8填料的1000倍。这样,只要合理操作,即使超过推荐的pH范围,柱子的寿命也还是可以的。zui稳定的柱子是使用高密度硅胶的基质,键合了高密度的C18或C8,加末端封尾。流动相组分的性质对柱子的寿命影响很大,要小心选择。但是,如果分析需要,然后柱子寿命也可以接受,那么大胆的挑战柱子的极限吧!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制