当前位置: 仪器信息网 > 行业主题 > >

雪松醇对照品

仪器信息网雪松醇对照品专题为您提供2024年最新雪松醇对照品价格报价、厂家品牌的相关信息, 包括雪松醇对照品参数、型号等,不管是国产,还是进口品牌的雪松醇对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合雪松醇对照品相关的耗材配件、试剂标物,还有雪松醇对照品相关的最新资讯、资料,以及雪松醇对照品相关的解决方案。

雪松醇对照品相关的资讯

  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • SGLC全面销售岛津分析仪器专用试剂、标准品和对照品
    岛津分析仪器专用试剂、标准品和对照品是由岛津企业管理(中国)有限公司联合四川中测标物科技有限公司共同推出。由中国测试技术研究院确保质量,按照岛津仪器性能特点研发生产。用于评估分析仪器的分析能力和工作状态,确保仪器达到设计需要的分析能力和精密度,保证分析仪器处于稳定可靠、灵敏准确的优良工作状态。 岛津(上海)实验器材有限公司作(简称SGLC)为岛津集团在中国成立的专门经营销售岛津分析仪器纯正部件、色谱消耗品及相关小型仪器的子公司。现全面负责岛津分析仪器专用试剂、标准品和对照品在国内的对外销售业务。 岛津分析仪器专用试剂、标准品和对照品现已涵盖的机种类型有岛津GC、GC-MS、GC-MS/MS,HPLC,LCMS-IT-TOF,LC-MS、LC-MS/MS,UV,AAS,ICP-OES,ICP-MS,TOC等机型。包括仪器重现性测试标准物质、灵敏度测试标准物质、调谐标准物质和验收标准物质等。具体产品选择请参考“岛津分析仪器专用试剂、标准品和对照品”产品目录。(下载产品目录) SGLC一直秉持为仪器分析客户提供更丰富的解决方案,此次引入岛津仪器专用试剂产品,将进一步扩充产品阵容,为分析仪器领域的客户提供更多专业利器。
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。  全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”  国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。  “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。  该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p  由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title="培训现场.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "培训现场/span/strong/pp  本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title="史晋海博士主持.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "史晋海博士主持/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title="余立老师2 .jpg"/br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "余立老师/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style="" title="周立春老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "周立春老师/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title="山广志老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "山广志老师/span/strong/pp  无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。br//pp  杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。/pp  微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。/pp  会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。/pp  生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。/pp /p
  • 以光之名,不断追寻人类的未知未涉——访滨松光子学株式会社副社长竹内纯一
    p  2018年11月1日-3日,Photon Fair 2018(滨松光子展)在日本静冈县滨松市举办,滨松光子展是由日本滨松光子学株式会社(以下简称滨松集团或滨松)主办的每5年举行1届的光子技术综合展览会。滨松为何执着于对光电技术的钻研?其背后蕴藏着怎样的企业理念?瞬息万变的市场环境下,滨松又将如何面对?借参加本届光子展的契机,仪器信息网于滨松日本总部采访到了滨松集团副社长竹内纯一先生。/pp style="text-align: center "img width="500" height="333" title="竹内纯一.jpg" style="width: 500px height: 333px " alt="竹内纯一.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/e96dc13c-316c-43d4-b015-cb632cd1f93f.jpg" border="0" vspace="0"//pp style="text-align: center "滨松光子学株式会社副社长 竹内纯一/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong对光子技术的执着追求/strong/span/pp  1926年12月26日,在日本静冈县滨松工业高等学校(现静冈大学工程学院),真空显像管在银屏上放映出了片假名[イ]字,标志了日本首台电子式电视机的诞生。值美国首次播放广播之际,日本的研究所也在集中攻坚收音机技术,在此背景下,日本“电视之父”高柳健次郎教授,秉承“要从事与大环境有所区别,有所领先的尖端行业”的理念,决意开发动态图像技术,最终促成了日本电视机的诞生。/pp  堀内平八郎作为高柳的弟子,继承了其技术和思想,创立了“滨松电视(Hamamatsu TV)”公司,即滨松集团的前身。堀内敏锐地察觉出老师研究成果中蕴藏的巨大财富——光电转换技术,并将其作为滨松集团持之以恒、不断追求的事业。堀内领导滨松走出了一条与众不同的道路。/pp style="text-align: center "img width="400" height="601" title="20寸光电倍增管.jpg" style="width: 400px height: 601px " alt="20寸光电倍增管.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/0214e8ad-cb13-4200-9a69-82b466573333.jpg" border="0" vspace="0"//pp style="text-align: center "超级神冈实验中使用的20寸光电倍增管/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong“昼马循环”理念激励企业奋进/strong/span/pp  滨松集团在第二任社长昼马辉夫的带领之下,坚持了对光子学的追求,继续不断地探寻未知未涉之路。昼马辉夫曾提出:人们面对眼前所见之物,相对比较了解,但与此同时,世间也存在无穷的事物不为我们所知,即未知未涉 明确存在不清楚的事物也是一种认知,在探索未知事物,并将其不断解析的过程之中,会诞生一个个新的发现,这些发现催生的一系列连锁变化又在不断改变我们的生活 社会的进步又使人认识到新的未知未涉领域,持续推动人类对科学、技术、产业、市场的追求与建立。span style="color: rgb(29, 27, 16) "strong简而言之,可概括为以新科学→新技术→新应用→新市场→新产业→新生存方式→新价值观,再到新科学的一个循环,这就是在滨松及业内传之甚广的“昼马循环”理念/strong/span,也是引导滨松全体员工不断奋斗,追求新事物的动力之源。/pp style="text-align: center "img width="500" height="351" title="昼马循环图.png" style="width: 500px height: 351px " alt="昼马循环图.png" src="https://img1.17img.cn/17img/images/201812/uepic/49c4f87c-30ed-4bd6-a885-70b4c741004e.jpg" border="0" vspace="0"//pp style="text-align: center "“昼马循环”示意图/pp  “昼马循环”中很重要的一环是以新技术、新应用催生新市场 同时,面向未知领域及瞬息万变的市场环境,滨松集团在精准把握其研发和技术方向上也有自己的独到之处。/pp  滨松是一家以技术研发为导向的高科技公司,每年会投入约占销售额10%的经费进入科研。先于市场的研发,若不能控制好研发方向与市场需求之间的微妙关系,无疑会产生巨大的资本风险strongspan style="color: rgb(29, 27, 16) "。“风险是客观存在的,任何一家企业都不是预言者,不能断言开发的技术与产品就一定符合市场的预期,但滨松却从未将其视作风险就停步不前,”竹内纯一表示道,“我们的研发方向并不是在一无所有的基础之上盲目决策,而是依托于滨松一线技术人员在开发制造过程中长期积累的丰富经验。”/span/strong滨松依靠长年的沉淀与理性的判断将风险最大程度降低。/pp  竹内纯一介绍到,滨松技术的发展不完全依靠通常所说的专职研发人员,而靠的是一线工作者们每时每刻的辛勤钻研。每名员工在日常工作中发挥出钻研到底的工匠精神,将一个种子技术做的更前沿、更深入,以看到新的应用和需求,这是滨松发展模式的与众不同之处。这种“工匠精神”是支撑滨松的产品技术不断创新的动力源泉。以滨松的代表产品光电倍增管PMT(Photomultiplier Tube)为例:为使器件可以更敏感地探测更为微弱的光,制造人员每天不断地去摸索、探究,将这个产品做得更好更尖 在这个过程中,不断开发出更新颖、更高端的技术和产品。可能最初自己也不知道这些技术和产品可以应用在哪些领域,但随着全社会的产业发展和技术革新,会有新市场和新需求的诞生。此时,滨松的产品已经走在了前面,从而实现了对未知未涉追寻的意义。/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong以高附加值产品应对剧烈变化的市场/strong/span/pp  近年来,整个社会正不断朝着信息化、一体化方向发展,知识和技术的传播与分享变得愈加便捷。滨松也看到了这一趋势,并不断调整自身的策略。以自有种子技术与外部的研究机关、权威机构合作开发新的应用,正成为滨松一个重要的发展方向。滨松认为,利用在光电器件上的技术优势,与产业链上下游的制造企业相配合,这一模式在现有环境下会具有更强的市场竞争力。/pp  随着科技的进步和发展,催生了如床边诊断、智能可穿戴、物联网等民用市场的崛起,这些领域蕴藏着巨大的市场前景。这些市场具有批量化生产、低成本的特点,隐含着激烈的竞争压力。滨松继承了高柳健次郎的精神,不去做与对手同质化的产品和技术,以避免陷入到价格战的僵局之中 而是发现该领域中其他企业没有做到的部分,利用滨松在研发上的领先性和创造力,将产品做得更具高附加值,以在风格上展现出滨松产品与竞品的不同之处。竹内纯一谈到,滨松在产品研发中的有着深厚的技术积淀,使得其在市场成熟之时,有能力、也有准备拿出与之相对应的产品 即使在最初无法预期确定的领域,因滨松走在了应用和市场的前方,也能在合适的时机下有所把握。这正如高柳博士的观点所述:只有走在幸运女神的前方,才能抓住女神的刘海。/pp style="text-align: center "img width="500" height="333" title="滨松集团总部一隅.jpg" style="width: 500px height: 333px " alt="滨松集团总部一隅.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/23f51f96-9f6d-4d11-90ab-bad8bcd8d3f7.jpg" border="0" vspace="0"//pp style="text-align: center "滨松集团总部一隅/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong前路漫漫,在光的指引下不断前行/strong/span/pp  在滨松看来,追求利润不是企业运营的目的,企业的重心应放在更为长远的事物上,比如科学贡献、社会责任、人类福祉等,利润则是一个为了目标努力奋斗的结果,一种回报。滨松集团会对员工的健康做出积极管理,为员工营造一个愉悦的工作氛围,使每个人都享受这个过程,从而会产生更多的突破,才能更好地支撑企业来不断回馈社会。这在滨松的企业经营理念中意义深远,遵循这么一个规律,企业的发展就会趋于良性的循环当中,产生更大的社会价值。/pp  “逆水行舟、不进则退”,企业的宿命应当是不断奋进、不停发展。企业的发展需要技术、资金的支撑和保证,充足的利润保证了滨松常年来在研发上的投入,从而做出更多的技术、应用、产品突破来推动企业前进。“国际市场形势风起云涌、变幻莫测,复杂的竞争态势同时也在激励滨松的前行精神,这一精神从高柳博士、堀内社长,再到两任昼马社长的身上代代相传,并同时铭刻在每个滨松人的心中。”竹内纯一说到。滨松坚持对光子技术的不懈追求,新成果、新产品的诞生也是一个必然的过程,也将会为企业带来更多的利润。坚持光作为自身事业,以思想催动行为,使整个集团凝聚成一个富有挑战性、奋斗力的团队,滨松蓬勃发展至今,将继续朝着前方不断行进。/pp style="text-align: center "img width="500" height="333" title="薪火相传.jpg" style="width: 500px height: 333px " alt="薪火相传.jpg" src="https://img1.17img.cn/17img/images/201812/uepic/7eb1cdb4-c521-47f3-83c1-611df5afc428.jpg" border="0" vspace="0"//pp style="text-align: center "薪火相传的滨松精神/pp style="text-indent: 2em "span style="color: rgb(0, 0, 0) "strong源远流长,滨松与中国的不解之缘/strong/span/pp  滨松与中国最早的渊源可以追溯到40年前:改革开放之初的中国百废待兴,在国际社会对中国进行技术封锁的背景之下,滨松选择了支持中国光电事业的发展。竹内纯一说到:“当时中国的光电事业还处于起步阶段,谈不上具备成熟的市场条件,滨松在技术、资本上对中国光子事业的支持,考虑更多的是贡献自身的力量,以帮助中国的现代化建设和科技发展。”合作从早期的中国核工业部与滨松集团高层互访、技术交流开始,逐渐延伸到1988年双方共同出资建立合资机构北京滨松光子技术有限公司(以下简称北京滨松)。滨松前任社长,也是促成合作最终达成的昼马辉夫在世时,常至中国向北京滨松的员工阐述他的理念,把“昼马循环”的精神也贯彻到北京滨松的每位员工身上,以支撑北京滨松不断发展、壮大。至今天,北京滨松员工总数也由最初的10人左右达到现在的500人左右 2011年成立的滨松光子学商贸(中国)有限公司(以下简称滨松中国)也是建立在其基础之上。/pp  滨松近年来对中国的看法也在随着时间的推移而演变。40年来,中国的社会和市场都发生了剧变。中国的发展速度已经超越了日本,光电技术水平也在不断提高,正成为日本的有力竞争者,现今的中国市场对滨松意味着机遇与挑战并存。竹内纯一表示:“这也是滨松没有预料到的情形,不禁令人惊叹。有了对手间的相互切磋琢磨,才会更加促进整个行业的技术突破,形成一个良好的市场循环,有了竞争才有进步。滨松十分确信最初同中国的合作是正确的,也很欣慰看到中国市场的蓬勃发展,因为这对滨松、对中国、对世界的进步都是具有积极意义的,多方都在共同推动市场的快速发展和转变。”/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "后记:/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  采访同期,滨松集团五年一届的PHOTON FAIR 2018(滨松光子展)开幕。本届光子展全面展示了这五年间滨松发布的新产品、新技术,而且产品展示不是单独地以分析、医疗等应用领域,或按照光源、探测器、传感器等产品属性来进行划分,而是多学科、多领域的一个交叉应用来组织,这也包含了五年间滨松对光子学的一个理解和感受,光子技术能够为人类带来无限的可能。滨松对光的执着追求,让人期待五年后的新一届光子展,会有更丰富、更前沿的新技术、新产品。/span/pp /p
  • 同田,第一家在国外设立代理商的中国中药对照品企业
    上海同田生物技术有限公司(Shanghai Tauto Biotech Co., Ltd)于2008年底已在西班牙,比利时,韩国,泰国,新加坡,瑞士,南非,捷克,意大利。印度等十一个国家设立代理商,共同致力于同田生物公司对照品业务的国际市场开拓和产品品牌建设,是第一家在国外设立代理商的中国中药对照品企业!现面对全国诚招各地代理商,我们将提供优惠的代理政策及完善的服务,望共同拓展国内对照品市场,携手共创美好的未来!招商电话:021-51320588-8026 E-mail:sales2@tautobiotech.com URL: www.tautobiotech.com
  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 不一样的空气“检测仪”
    你知道吗,树叶也是空气质量“检测仪”。南京市环保部门已经连续11年采集行道树雪松的树叶,从中测定硫和氟的含量,来评价空气质量。记者从南京市环保局获悉,2016年上半年南京生物环境质量监测数据日前出炉:树叶中检测出的硫和氟含量都有所降低,这说明树叶越来越“健康”。  雪松用作空气“检测仪”  植物是通过叶片上的气孔“呼吸”的。在空气污染的情况下,有害物质透过气孔被树叶“吃”进去,会影响植物的正常生长和生理生态特征。据此,可以用树叶来监测某个片区的环境质量。据介绍,松树叶片是检测空气质量的最佳工具。现代快报记者采访获悉,从2006年开始,南京环保部门每年都要采集两次雪松树叶,通过蒸馏烘干等特殊方法,提取其中的硫和氟成分及其累积量,然后观察松树所在区域的环境变化规律。  污染的有害物质很多,为何提取松树叶中的硫和氟?环境专家解释说,硫主要来自于工厂企业的燃煤,氟是铝的冶炼、磷矿石加工、磷肥生产、钢铁冶炼和煤炭燃烧过程中的排放物。因此检测硫和氟,可以间接地获知一个地区的空气污染程度。  树叶越来越“健康”  通过计算今年上半年的监测结果显示,硫和氟的含量都在降低,树叶处于清洁水平。据南京市环保局相关负责人介绍,之前监测是以中山陵为清洁区对照。2006年,瑞金路、中华门为重度污染,山西路、浦口、迈皋桥为中度污染,仙林、奥体中心、玄武湖、草场门、百家湖为轻微污染。  对比十多年来的监测数据,现代快报记者发现植物叶片发生明显变化,硫和氟的含量都明显降低。专家表示,造成树叶内污染物的原因很多,可能是来自土壤、地下水或者是降雨。此前,南京的主要电厂都在北方和东北方,加上一年四季的主导风向是北风和东北风,瑞金路和中华门沿线处于污染企业排放氟的“落尘点”。但这几年树叶越来越“健康”,和近几年4大片区的污染企业搬迁以及注重企业污染减排有关系。  微生物指标多年没变化  除了用树叶作为空气质量的评价指标外,南京从2000年就开始监测大气中的微生物情况。从全市11个大气监测点微生物监测情况来看,今年上半年的情况尚好,多数监测点属于“清洁”,只有山西路和中华门为轻微污染。专家解释,这和监测点靠近交通干道有关。  空气中微生物的含量、菌谱是评价环境污染及其危害人类健康的重要指标。这些指标越高,致病菌含量就越高,引起人的呼吸道传染病和过敏性疾病等机会也就越大。那么,空气微生物的监测结果能像PM2.5那样成为常态化对外公布吗?专家表示,微生物指标已经多年没发生大变化,每年都会在“六五环境日”的时候公布一次“年结果”。目前,南京正着力建设大气污染植物指示和长期监测的标准化系统。
  • 红外光谱官能团对照表——永恒的经典还是过时的工具?
    红外光谱官能团对照表是用于解释化合物红外光谱的图形工具。这些图表提供了不同官能团特征分子振动所产生的相对应的吸收峰位置。随着尖端技术和先进仪器的不断发展,分析技术的日益提升,红外光谱官能团对照表尽管看似有些落伍,但其实用性却已成功经受了时间的考验。下面,我们将探究为何这种“化石般古老的”光谱解释工具能够长期沿用,为何它们在如今快节奏的世界中仍然存在很高科学价值。红外光谱官能团对照表的永恒魅力过去,人们在使用FTIR光谱仪进行红外光谱测试时,需要参照样品红外光谱官能团对照表来鉴定材料。不仅如此,这些官能团对照表在鉴定官能团方面具有非常可靠的参照价值。由于包含大量信息且内容高度浓缩,这些图表还成为分享信息和进行现场分析的理想工具。为什么呢?因为只需扫一眼谱图的特征峰,即可快速查到所需答案。在大学校园里,这种简单直观的查询方法非常方便。它可以指导学生如何解释官能团,以及如何更方便地获取复杂的数据,并让学生学会识别不同官能团的特征峰,从而为化合物分析奠定坚实的基础。在实验室中,红外光谱官能团对照表仍然发挥着它的价值。在有机化学、制药和材料科学研究中,红外光谱官能团对照表依然是不可或缺的工具。例如,研究人员可利用该工具,快速识别和确认新合成化合物中的官能团。为此,他们只需将FTIR光谱中观察到的峰值与红外光谱对照图上的特征吸收频率进行比较。这种对比验证对于确保准确合成新化合物至关重要,并且有助于排除故障和优化工艺。在识别官能团方面,尤其是在无法使用高级软件或大规模谱库的情况下,使用红外光谱官能团对照表的方法省时又省力。现代化学分析中不太起眼的老工具尽管红外光谱官能团对照表对比分析方法一直存在,但不可否认的是,在当今FTIR技术背景下,它们已成为一种不太起眼的老工具。利用现代FTIR仪器,我们能够毫不费力地在包含大量化合物信息的庞大数据库中进行检索。这些数据库中甚至还包含一些罕见的、特殊的化合物结构。这些软件通过便捷的自动化分析,简化了鉴定过程,此外,光谱比较、峰值标定和定量分析等功能还有助于增强我们对样品的了解。布鲁克OPUS软件(所有布鲁克光谱仪器都安装了该软件)是一款将丰富的常用功能,与用户友好的界面,高级扩展功能无缝衔接的优秀软件。在此基础上,布鲁克公司开创性的开发出业界首款用于红外光谱的触控软件OPUS TOUCH。通过该软件,您能够以前所未有的方式,直观便捷地控制您的红外分析过程。即使是初次使用FTIR光谱仪的用户,也能够便捷、快速并准确的操控仪器。按步骤轻松完成FTIR分析。1:选择光谱测试工作流;2:选择测试方法,预览测试谱图;3:查看谱图分析结果;4:生成PDF报告结论红外光谱官能团对照图表具有快捷、直观、官能团参考对比价值和节省成本的优点。因此在研究机构等领域,它们仍然具有非常高的实用性。相比之下,现代谱库检索工具可提供全面的光谱数据库、自动化分析和更高的准确性。您选择哪种工具呢?归根结底,这取决于化合物鉴定所涉及的具体要求、资源和复杂程度。但无论您选择哪种工具,布鲁克将始终为您提供合适的解决方案。
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • 梅特勒托利多“趣味填充,轻松得奖”获奖名单揭晓
    经过两个月的激烈角逐,“趣味填充,轻松得奖”游戏已经圆满结束。用最短时间完成游戏的前5名,进入我们的“Top5”排行榜;截止到活动结束的前400名游戏成功者,也幸运地成为获奖选手。我们将尽快与获奖者取得联系,并将奖品邮寄到您的手中。另外,我们还要感谢参与本次活动但遗憾没有获奖的网友们,希望大家继续将这份热情投入到以后的活动中,突出重围,获得大奖! 最后,再一次感谢大家的积极参与!获奖名单如下为了保证游戏的公平,我们已经筛选掉重复申请礼品的用户。 screen.width-300)this.width=screen.width-300" 入围“TOP5”排行榜者,各获赠瑞士军刀一把。 地址获奖者姓名北京唐祖超河南潘伟江苏龚连标江苏林涛四川罗小平恭喜以上五位参与者!希望大家再接再励,继续参与以后的活动,争取获得更丰厚的奖品。screen.width-300)this.width=screen.width-300" 前400名游戏成功者,各获赠精美相架一套。地址获奖者姓名北京 aa浙江aneh江苏chenyanwei四川fanxiaojun江苏GuHaven浙江huanghailong北京kangguanghua上海leiwang山东linlin浙江liuliu上海macoking北京mb广东qinza福建sghfnaps江苏shaohujun浙江shuyan江苏SongHao北京tianyuliang北京wangchao江苏wuhw福建 XuWells北京yuzhiyong江苏zhangjingpin河南zxh辽宁傲菊北京 蔡昆浙江蔡立培辽宁操则平湖北车超江苏陈东亮河北陈刚吉林陈海波上海陈灰根浙江陈洁广东陈敬阳江苏陈军江西陈磊河南陈磊浙江陈琳玲四川陈尚朴江苏陈淑军内蒙古陈艳书浙江陈燕飞海南 陈涌盛广东陈远琪浙江谌荣春上海仇丽江苏仇平江苏崔斌江苏崔兆兵北京 代立红福建 戴展书山东单联旭山西邓超北京邓恭云南邓华广东邓世云陕西丁继英北京 丁庆维河南董鑫江苏杜丽霞上海冯爱军上海冯度山东冯峻凯河南冯毅上海傅明君山东傅旺广东郜振军上海戈萌黑龙江耿汉斌天津古广明江苏顾旭北京 郭镜园山东国新毅陕西韩娜河南杭卫华江苏贺宁河北贺彦磊江苏洪志忠辽宁侯金枝湖南侯静四川侯峡浙江胡斌妹辽宁胡广阳广东胡可哲山东胡鑫黑龙江胡永恒上海华文娟广东黄剑勇河南黄娈淇广东黄琳广东黄路兵福建 黄顺清江苏黄松北京黄云奎河南黄治国河南黄治军山东姜成义云南蒋金和江苏蒋平伟江苏金一鸣上海金中一河南鞠坤浙江雷伟上海李兵山东李发明山东李锋广东李海燕辽宁李华润山东李景峰辽宁李俊莹河南李利娟北京李留祥湖北 李农广东李蕊北京李世龙四川李雪上海李雪冬四川李英军河北李永彩陕西 李子瑛山东梁斌广东梁浩江苏梁莎福建 林爱兰上海林国仕广东林汉滨江苏林洁陕西林琳江苏林榴生山东刘安杰北京 刘超江苏刘德凯北京刘东杰河南刘宏飞重庆刘晶江苏刘雷四川刘立鑫安徽刘鹏程广东刘乔辽宁刘时光山东刘文庆湖北刘熙河南刘宪章河南刘晓红河南刘晓丽辽宁刘欣欣四川刘元宪江苏刘智香北京陆俊上海陆丽娟山东路长水北京闾进广东罗明四川马发良甘肃马金刚天津马君北京马晓娜陕西 马亚玲陕西毛凯福建 宁庄满河北牛占斌北京逄洪波福建彭英前湖北 彭勇上海齐炜辽宁綦宝朋浙江钱红明江苏秦飞四川卿盈盈江苏邱建国安徽邱文伟北京 权万锋吉林任汉涛河南任利宾广东任培武浙江任育林江苏沙维山东邵红光江西邵伟松江苏沈建华上海沈晓明江苏盛积庆湖北 石美江苏史红艳北京 史建坤山西 史鹏江苏史小虎上海司海立河南宋拥军黑龙江宋永搂安徽宋友保上海宋志国黑龙江孙雪松宁夏 孙彦军天津孙燕军浙江孙元贵陕西谈琼陕西 谭耀庭福建 汤海港广东汤锡銮上海唐捷北京 唐年令上海唐平江苏唐银洁四川陶兵河南田忠文重庆万里飞安徽汪胜忠山西 王春江苏王东山东王芳广东王革非广东王亘四川王华江苏王建重庆王军强广东王乐和广东王丽云南王黔明山东王善友辽宁王铄山西王晓东山东王永良河南王媛安徽王召前山东王志磊江苏卫建峰北京 魏春艳江苏文丽吉林闻永强浙江吴光省福建吴火生福建 吴培明江苏吴娉北京吴周亭河北武伟江苏武正飞上海夏海燕辽宁夏海舟湖北夏靖辽宁夏军江西鲜华湖北 向良勇江苏谢锋安徽谢军广东谢君霞重庆谢勇山东辛显义安徽徐嘉江苏徐剑江苏徐黎珺北京 徐鹏湖北徐清平上海徐文杰辽宁徐忠安徽许永钢福建许永禄山东许志鹏山东闫军四川羊以刚吉林杨波湖北 杨电北京杨海江四川杨宏云南杨建钊江苏杨明珠江苏杨盛锋河北杨士冬湖北 杨文兵北京 杨阳江苏姚文华浙江叶瑞彬安徽叶文兵广东伊超广东易亚章浙江尹华军辽宁于斥非安徽于峰浙江余金娥江苏袁文胜上海曾梁平四川翟大庆重庆张兵山东张成德黑龙江张海波四川张华述山东张建波重庆张军安徽张凯江苏张珂北京张雷浙江张磊山东张良银四川张明月江苏张楠辽宁张思源河北张卫鹏广东张文超山东张雪峰山东张赞成山东张泽宇辽宁章海波湖北章静江西赵峰浙江赵洪春江苏赵力平江苏赵炜上海赵颖莹广东赵宗利河南郑秋芬湖南周岸青黑龙江周宝国福建周道春江苏周峰山东周虹伯湖北周能上海朱炅旻江苏朱慧湖北 朱继文上海朱万贵北京朱希龙湖北朱云福建庄云鹏如您对本次活动有任何的意见或建议,欢迎与我们联系。您可发送邮件至:ad@mt.com,并请在邮件标题中注明“趣味填充,一键滴定游戏活动”;或拨打客户互动中心热线:4008-878-788,留下您的宝贵意见。我们会尽快给您回复。再次感谢各位网友的支持!
  • 北京海光推出石墨炉原子吸收新品——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访北京海光仪器公司总经理张雪松先生。  北京海光仪器公司成立于1988年,坐落于中关村电子城科技园区,是以原子荧光光度计、原子吸收分光光度计、等离子体发射光谱等分析仪器为主要产品,集研发、制造、销售和售后服务为一体的高新技术企业,隶属于中国地质装备总公司北京地质仪器厂,具有近四十年光谱分析仪器研发、制造历史,是中国知名的光谱分析仪器制造厂商。北京海光仪器公司总经理张雪松先生在视频中为网友介绍了最新推出的石墨炉原子吸收光谱仪及辐射监测仪。  “GGX-700石墨炉原子吸收分光光度计是根据用户的需求推出的产品,使用简单方便,原子化器的更换采用前后推拉的方式,把电源放在了主机的旁边,对仪器的软件进行了改观,减轻使用者的劳动强度。”  张雪松先生也谈到了海光未来的发展思路:“我们今后进一步加强新产品基础性的研发,在产品的耐用性、便利性、持久性等方面缩小与国际高端产品的差距,提升服务质量,想用户之所想,急用户之所急,为广大用户排忧解难。”
  • 超强基因"探照灯"CRISPR FISHer技术|西湖大学宋春青团队与申恩志团队最新成果《Cell Reserrch》
    让我们乘坐时光机,前往东晋的夏日夜晚。有一位名为车胤的少年,由于家境贫寒,会在黑暗的夜晚出门捕捉萤火虫。他把它们装在白色丝袋中,照亮书本。聚集在袋子里的萤火虫们不会知道,它们的光亮,点亮了车胤官至吏部尚书的平步青云之路,也促成了比喻学习勤奋的成语“囊萤夜读”。现在,我们返回1700年后的当下。与车胤的故事相似,西湖大学生命科学学院PI宋春青、申恩志的团队合作,在细胞微观维度上聚拢了“萤火虫”,研发出能够更自如、更灵活地照亮DNA这本浩瀚之书的基因“探照灯”——CRISPR FISHer技术。近日,他们的研究论文“CRISPR FISHer enables high-sensitivity imaging of nonrepetitive DNA in living cells through phase separation-mediated signal amplification”在Cell Research杂志在线发表、并被选为封面文章。CRISPR FISHer,即实现了活细胞单拷贝基因成像的标记系统(或称,基于相分离信号放大的高敏活细胞DNA元件示踪方法),是基于CRISPR技术而来。它具有追踪任何特定细胞固有或外源DNA序列的潜力,极大地拓宽了活细胞成像的应用范围,为生物学过程研究和生物医学诊断的进一步发展奠定了基础。原文链接:https://www.nature.com/articles/s41422-022-00712-z“基因剪刀”CRISPR:我可以照亮基因之书我们都知道,你之所以是你,我之所以是我,是由于我们每个人拥有着独一无二的基因组(指生物体所有遗传物质的总和)。基因组就像是一本特别的书,以基因片段为“字词”,记载着我们的个人信息,也将在我们的一生中发挥重要作用。CRISPR技术,是基因编辑技术的一种,常被比拟为“基因剪刀”。它能够针对性地对基因组之书的错误靶点进行剪切,在提供模板的情况下可以进行错误“纠正”——简要理解,就是找到错误的地方,“剪”掉错误的内容,然后“替换”成正确的字词。这得益于它的核心组成部分,gRNA和Cas9 蛋白。gRNA(也叫guide RNA,即向导RNA),是这把“剪刀”的导航,能够在基因组的“字词”海洋里找到出错的地方、规划抵达的路线;Cas9核酸内切酶,则是“剪刀”的刀锋,能沿着路线抵达指定位置,并一刀切下去。当然,以上是CRISPR技术最基础的应用方式,随着CRISPR基因编辑技术的发展,2013年,科学家们发现了CRISPR的另一种作用——“剪刀”丧失剪切功能(dCas9,即核酸酶失活形式的Cas9),但却带着“灯”(EGFP,增强绿色荧光蛋白)锁定并照亮基因组的“段落”;自此,CRISPR成像技术在基因成像领域崭露头角。这种带“灯”的CRISPR有什么用?比如,我们可以去观察基因本身,去看一个染色体的状态、记录染色体的运动,也就是当下“流行”的4D染色体研究;又比如,我们可以观察病毒DNA入侵细胞的过程;再比如,可以帮助我们研究癌症的原理,研究诸如染色体易位这样的异常染色体状态与癌症发生的关系;还有,我们可以观察携带基因的载体是否将DNA带到“目的地”,例如,实时动态追踪用于治疗遗传性视网膜疾病和脊髓性肌萎缩症的AAV载体是否承载了疗效基因……看到了这盏“灯”的强大作用后,很多科学家开始聚焦于基于CRISPR技术的活细胞成像研究。最初科学家通过增加向导RNA(即gRNA,“导航”)的量来招募更多的荧光蛋白(即“灯”)照亮局部位点,但是多个“导航”很难同时进入同一个细胞;与此同时,在细胞中游离的“灯”会产生很强的背景光亮,这就使得目标位点的光照分辨率变的很低。2016年,CRISPRainbow活细胞成像系统面世,它像一串彩虹色“霓虹灯”,能实现基因组不同位点的标记;2018年,又诞生了CRISPR-Sirius系统,一个“导航”能够携带更多个数的“灯泡”,从而实现更高分辨率的成像……CRISPR FISHer: 强大的“基因探照灯”,来了!较之在基因成像领域更传统、更广泛应用的DNA原位杂交技术(需要将细胞固定,DNA变性后才能实现,不能实时记录DNA的状态),基于CRISPR技术的“灯”可以在细胞中的靶位点DNA非变性的情况下,实现DNA在活细胞内的动态成像。然而,这样的“灯”目前能照亮、使我们能读到的,仅限于基因组的“书”中那些在同一页中重复出现的内容,也就是临近位置重复出现多次的DNA序列(即成簇存在的多拷贝位点)。而在我们人类的基因组的“书”中,大多数都是非重复的内容,即单拷贝基因。于是,超过65%的人类基因组序列利用现有的成像系统很难检测得到。也就是说,现在给基因“书”用的“灯”,不管怎么打造,总是不够“亮”,很难让我们看清书中那些处于细微处且只出现一次的“字词”。是否可以做出一盏更厉害的基因灯?有了这个理想,西湖大学宋春青实验室和申恩志实验室合作,历经近两年,最终,CRISPR FISHer诞生了。东晋少年车胤之所以聚拢萤火虫,是因为单只萤火虫的光很微弱,且它们分散在大自然中,无法照亮书页;但在聚集后,微弱之光便变强了。同样的,CRISPR FISHer系统,正是在先前版本的CRISPR成像系统上,聚拢了更多的“灯”,实现了在基因维度更强大的成像功能——因而,我们无惧所需照亮的基因“字词”之细小,能够阅读DNA书本的更多细节内容了。具体来说,该系统由dCas9蛋白,包含2个PP7配体的sgRNA(sgRNA-2×PP7)和foldon-GFP-PCP蛋白组成。在成像标记的过程中,dCas9(即“钝刀”的刀锋,上文所述的不会切割的Cas9蛋白)和sgRNA-2×PP7(可理解为导航兼连接支架)会首先在目标DNA序列位点稳定结合,并充当“种子”,使得foldon-GFP-PCP(即“灯”)和其余的sgRNA-2×PP7在目标DNA位点处快速聚集,从而通过相分离的方式最大化募集GFP荧光蛋白“灯”至标记位点(可以理解为形成更庞大的串联的结构,“刀锋-支架-灯”基础上,可以继续串联更多的“支架-灯”结构,形成“刀锋-支架-灯-支架-灯-支架-灯……”),同时大大降低细胞核背景中弥散的GFP信号(如图一)。图一随后,为了验证CRISPR FISHer系统的功能是否强大,研究团队开展了一系列验证实验。他们证实,CRISPR FISHer超越了已有“基因灯”的技术。在相同的拍摄条件下,CRISPR FISHer所标记的端粒荧光强度信噪比最高可以达到246,远远高于传统的成像系统(信噪比在2左右)(图二)。这说明,在照亮基因“书”的重复内容时,因为光更强,所以我们有机会看得更清楚了。图二之后他们证实,那些在书中仅仅出现一次的内容,也就是之前人类没法“看到”的那些单拷贝基因,现在也能看清了。团队发现,相对于对照组细胞呈现出的弥散绿色荧光信号,在CRISPR FISHer所标记的PPP1R2基因的细胞中可以明显的观察到2-4个荧光信号点(如图三a和图三b),这说明CRISPR FISHer系统是具备单拷贝基因成像标记能力的,并且在单拷贝基因的成像标记过程中表现出很好的特异性,能够“看到”基因“书”中的特定的、只出现一次的“字词”内容。最让研究团队兴奋的是,他们发现——当基因“书”被某些因素影响发生改变,成了不常规的“书”,比如,基因组不稳定性或染色体结构变异可诱导 DNA损伤和修复,有时会产生染色体外的DNA;或者,一些外源入侵者,例如病毒,可以感染细胞并将其基因组传递到细胞核中,导致细胞功能障碍和疾病的发生发展——这些时候,这盏“灯”依然能带着我们看清楚最新情况。图三从利刃到钝刀,他们致力于“透视”基因层面的人类病痛不知道千百年前,终于以萤虫之光照亮夜间学海之路的车胤,是否为此激动不已。总之对于创新了CRISPR FISHer活细胞单拷贝基因成像标记系统的宋春青团队和申恩志团队来说,他们对于打造一盏世界上前所未有的“灯”,去照亮、去看见那些在“黑暗”中的基因,等待已久。研究团队从有想法到最终实现,他们整整走了近两年。事实上,两年是往短了说的。这次之所以能够实现原创的突破性的基因成像技术,与研究者们关于CRISPR更早期、更长年累月的研究密不可分。早在2015年至2019年在麻省大学医学院RNA治疗研究所进行博士后研究时,宋春青接触了CRISPR技术,并且练就了如何在“利刃”CRISPR上玩出花的本领——也就是常规意义上的“基因剪刀”的基因编辑功用。正是基于“利刃”的研究经验,熟悉了CRISPR的基本原理,做“钝刀”灯,才会势如破竹。宋春青展望未来,CRISPR FISHer由于拥有能够追踪任何特定内源或外源DNA序列的潜力,将极大地拓宽了活细胞成像技术的应用范围,为生物学过程研究和生物医学诊断的发展奠定基础。换句话说,拥有了这盏超强基因“探照灯”,我们能够看到基因的更多动态,挖掘更多关于人类身体机理和疾病的“秘密”。西湖大学生命科学学院宋春青课题组2020级博士生吕欣原,博士后邓远,2020级博士生黄晓燕,和申恩志课题组2020级博士生李珍珍为该论文的共同第一作者。西湖大学生命科学学院宋春青研究员和申恩志研究员为该论文的共同通讯作者。Ref.1. Ain, Q., et al., Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. 2020. 21(7): p. 2477.2. Foxman, E.F. and A.J.N.R.M. Iwasaki, Genome-virome interactions: examining the role of common viral infections in complex disease.2011. 9(4): p. 254-264.3. Schwarzacher, T. and J.S.J.M.i.M.B. Heslop-Harrison, Direct fluorochrome-labeled DNA probes for direct fluorescent in situ hybridization to chromosomes. 1994. 28: p. 167.4. Qi, L.S., et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. 2013. 152(5): p. 1173-1183.5. Chen, B., et al., Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System. 2013. 155(7): p. 1479-1491.6. Ma, H., et al., Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. 2016.7. Ma, H., et al., CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. 2018. 15(11).8. Sawada, H. and G.F. Saunders, Transcription of Nonrepetitive DNA in Human Tissues. 1974. 34(3): p. 516-520.9. Xu, H., et al., TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. 2020.10. Gu, B., et al., Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. 2018. 359(6379): p. 1050-1055.实验室招聘宋春青研究组主要通过CRISPR技术建立小鼠模型,运用细胞生物学、分子生物学及其生物信息学等手段来解析肝癌以及组织再生和衰老的分子机制。此外实验室聚焦于CRISPR相关的技术的改进、应用和遗传性疾病的修复。实验室主页:http://songlab.web.zhanhi.com/vip_songlab.html申恩志课题组主要集中于非编码核酸(non-coding RNA,ncRNA)的研究,ncRNA是转录组的主要组成部分,广泛参与细胞的一系列生物学过程,对生物体的功能调节起着至关重要的作用。例如,小非编码核酸siRNA、miRNA和piRNA(Piwi-interacting RNA)可以靶向调节基因的表达,进而确保生物体转录组的稳定和生殖发育的正常进行。以线虫和小鼠为模式生物,集中在系统研究piRNA的生物学功能和作用机制。实验室介绍:https://sls.westlake.edu.cn/Our_Faculty/202006/t20200617_5886.shtml实验室长期招聘科研助理、博士后和助理研究员,欢迎有志之士加盟!简历投递到 songlab@westlake.edu.cn shenenzhi@westlake.edu.cn。
  • 第十一届POPs国际学术研讨会在西安开幕
    仪器信息网讯 2016年5月17日,由清华大学持久性有机污染物研究中心、国家履行斯德哥尔摩公约工作协调组办公室、中国环境科学学会持久性有机污染物专业委员会、中国化学会环境化学专业委员会、新兴有机污染物控制北京市重点实验室联合主办的2016持久性有机污染物论坛暨第十一届持久性有机污染物国际学术研讨会在西安开幕。本次会议为期三天,吸引了高等院校、科研机构、企事业单位约480位POPs领域学者、专家参会,仪器信息网作为支持媒体也出席了会议。出席开幕式的领导专家   大会开幕式由中国环境科学学会POPs专委会副主任、北京大学胡建信教授主持,出席开幕式的台上嘉宾还包括环保部环境保护对外合作中心赵维钧党委书记、环保部固体废物与化学品管理中心凌江主任、中国环境科学学会侯雪松副秘书长、西安建筑科技大学郝际平副校长、清华大学余刚教授、环保部固体废物与化学品管理中心丁琼女士、环保部环境保护对外合作中心POPs项目处孙阳昭处长。西安建筑科技大学郝际平副校长  作为东道主,郝际平副校长首先代表西安建筑科技大学致欢迎辞,介绍了其学校的悠久历史和近年来取得的成就,并热烈欢迎各位与会者的到来。环保部环境保护对外合作中心赵维钧党委书记  赵维钧书记首先介绍我国POPs履约的新进展。在26种受控物质中,我国已全面禁止17种物质的生产、使用和进出口,废物焚烧、钢铁、再生有色金属三个行业的二噁英排放强度降低了15%。随着国家核准了10种新增列的POPs物质,履约计划进行了更新,中国的履约成绩多次得到国际社会的充分肯定。赵书记还介绍了我国下阶段POPs履约工作的新形势和新要求。2004年5月17日公约生效以来,经过三次增列,受控POPs物质已从12种增加到26种,2013年增列的六溴环十二烷预计在今年年底获批,十溴联苯醚、三氯杀螨醇等四种化合物正在按公约审查,国际化学品管理战略的进程正在不断推进和拓展,全氟化合物及其替代品、内分泌干扰化学物质等受到关注。在此形势下,我国POPs履约面临更大的压力,我们应以改善环境质量为核心,从顶层重点难点入手,全面推动POPs履约工作,制定出具有前瞻性、可操作性的新版战略措施。最后,赵书记呼吁与会者发挥技术优势,构建强大坚实的POPs科技支撑体系。环保部固体废物与化学品管理中心凌江主任  与赵书记的国际视野不同,凌江主任的主要工作更多考虑的是国内需求,为国内化学品管理制定政策法规。在致辞中,凌主任分享了自己此次参会的三个目的:“一是学习POPs领域管理、技术和研究上的最新动态 二是求教,与广大专家求教如何定位我国化学品管理的风险、战略目标和工作方向。三是寻求合作,希望与广大老师在化学品环境管理领域开展更多合作。”据相关统计,2008年至2015年,我国环保系统处理的环境事故总共是786件,其中62%事件与化学品生产、使用和运输相关,15.5%事件与化学品的污染物排放有关,因此我国化学品危险的防控能力和防控水平亟待提升。最后凌主任表示POPs的高危害决定了其是化学品管理的重中之重,希望广大与会者做好管理创新和技术创新,为保证化学品安全作出应有的贡献。中国环境科学学会侯雪松副秘书长  时隔十年,再次回到POPs论坛,侯雪松副秘书长回忆了此论坛成立之初的目标,“建立科学家联系的平台,推动学科的发展,搭建政产学研的平台”,并认为达到了当初的目标。虽然互联网的发展为人们的交流提供了更多的方式,但此种线下平台不仅可供大家交流技术,更多可以交流感情,是一种不可替代的形式。侯秘书长希望此论坛越办越好,为POPs产业的发展做出更大的贡献。赵维钧书记(左)和凌江主任(右)为余刚教授(中)颁奖侯雪松副秘书长为孙阳昭处长颁发聘书  由于在POPs履约工作中多年的杰出贡献,清华大学余刚教授获得了此届的“消除持久性有机污染物杰出贡献奖”,由赵维钧书记和凌江主任为余刚教授颁奖。除此之外,在本届论坛上,中国环境科学学会POPs专委会还正式宣布聘任孙阳昭处长为专委会副主任,并为其颁发聘书。大会现场  在随后的大会报告中,孙阳昭处长、瑞典毒理学科学研究中心 Ake Bergman教授、沃特世应用工程师李鹏先生、瑞典厄勒布鲁大学、清华大学杰出访问教授Heidelore Fiedler 教授、余刚教授分别针对我国POPs履约年度进展、POPs持久性研究成果、二噁英检测技术、二噁英排放清单、POPs控制技术等做了精彩报告。企业展览  会场外,沃特世、安捷伦、岛津、中持依迪亚、中持新兴、赛默飞、华测、磐合科仪、安谱等10余家仪器、检测和环境治理领域的公司纷纷展示了自己各自的产品,吸引了不少参会者的驻足咨询。会议同期,沃特世和安捷伦还举办了午餐研讨会,与广大用户共同交流POPs检测技术。编辑:李学雷
  • 国家药监局关于发布消肿片中松香酸检查项和复方龙胆碳酸氢钠片中土大黄苷检查项2项补充检验方法的公告
    根据《中华人民共和国药品管理法》及其实施条例的有关规定,《消肿片中松香酸检查项补充检验方法》《复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。附件1消肿片中松香酸检查项补充检验方法(BJY 202111)【检查】松香酸照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验以十八烷基硅烷键合硅胶为填充剂;以乙腈-0.1%甲酸(70:30)为流动相;检测波长为241nm。理论板数按松香酸峰计算应不低于3000。对照溶液的制备(临用新制)取松香酸对照试剂适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为对照试剂溶液。另取11-羰基-β-乙酰乳香酸对照品适量,精密称定,加乙醇制成每1ml含2µg的溶液,作为参照溶液。供试品溶液的制备取本品10片,研细,取0.2g,精密称定,精密加入乙醇20ml,称定重量,超声处理20分钟,放冷,再称定重量,用乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法分别精密吸取供试品溶液、对照试剂溶液与参照溶液各10µl,注入液相色谱仪,记录色谱图。结果判断供试品色谱中,在与松香酸对照试剂溶液色谱峰保留时间相应的位置上不得出现相同的色谱峰。若出现保留时间相同的色谱峰,采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(松香酸对照试剂色谱峰在241nm显示最大吸收);若吸收光谱相同,且该色谱峰的峰面积值大于11-羰基-β-乙酰乳香酸参照溶液色谱峰的峰面积值,则视为阳性检出。备注:必要时,可采用高效液相色谱-质谱联用方法进行验证。起草单位:连云港市食品药品检验检测中心复核单位:江苏省食品药品监督检验研究院广州市药品检验所附件2复方龙胆碳酸氢钠片中土大黄苷检查项补充检验方法(BJY 202112)【检查】土大黄苷(1)取本品细粉适量,约相当于大黄原生药0.1g,加甲醇10ml,超声处理20分钟,滤过,取滤液1ml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每1ml含10μg的溶液,作为对照品溶液(临用新制)。照薄层色谱法(中国药典2020年版通则0502)试验,吸取对照品溶液与供试品溶液各5μl,分别点于同一聚酰胺薄膜上,以甲苯甲酸乙酯丙酮甲醇甲酸(30:5:5:20:0.1)为展开剂展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。(2)照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(20:80)为流动相;二极管阵列检测器,检测波长为328nm,柱温30℃。理论板数按土大黄苷色谱峰计算应不低于3000,土大黄苷峰与相邻峰之间的分离度应符合要求。对照品溶液的制备(临用新制) 取土大黄苷对照品适量,精密称定,加甲醇制成每1ml含60μg的溶液,即得。供试品溶液的制备 取本品20片,研细,取约相当于大黄原生药0.1g,精密称定,精密加入甲醇25ml,称定重量,超声处理60分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,取续滤液,即得。测定法 分别精密量取供试品溶液和对照品溶液各10μl,注入液相色谱仪,记录色谱图。结果判定 供试品色谱中,在与土大黄苷对照品色谱峰保留时间相应的位置上应不得出现相同的色谱峰。若出现保留时间相同的色谱峰,则采用二极管阵列检测器比较相应色谱峰的紫外-可见吸收光谱,吸收光谱应不同(土大黄苷对照品色谱峰在219nm和325nm波长处有最大吸收);若吸收光谱相同,则视为阳性检出。备注:必要时可采用高效液相色谱-质谱联用方法进行验证。起草单位:青海省药品检验检测院复核单位:甘肃省药品检验研究院陕西省食品药品检验研究院
  • 全自动农药残留检测仪需要做空白对照吗
    全自动农药残留检测仪需要做空白对照吗,全自动农药残留检测仪需要做空白对照。空白对照是指不给予任何处理的对照,这在动物实验以及实验室方法研究中常采用,以评定测量方法的准确度以及观察实验是否处于正常状态等。全自动农药残留检测仪在检测食品中农药残留量时,为确保检测结果的准确性和可靠性,通常需要进行空白对照。具体来说,空白对照在全自动农药残留检测仪中的作用可能包括:评估仪器性能:通过空白对照,可以评估仪器在无任何农药残留的情况下,其测量值是否稳定,是否符合预期,从而判断仪器是否处于正常的工作状态。校正误差:在检测过程中,可能会存在各种误差,如仪器误差、试剂误差、操作误差等。通过空白对照,可以及时发现并校正这些误差,提高检测结果的准确性。设定阈值:空白对照的结果可以作为设定阳性阈值的参考。阳性阈值是指判断食品中农药残留是否超标的临界值。通过空白对照,可以确定在无任何农药残留的情况下,仪器的测量值范围,从而设定合理的阳性阈值。此外,一些全自动农药残留检测仪具有空白对照自动检测功能,可以自动进行空白对照操作,并将结果保存于系统中,方便后续分析和查询。这种设计可以进一步提高检测效率和准确性。综上所述,全自动农药残留检测仪需要做空白对照,以确保检测结果的准确性和可靠性。
  • “制药工程与药品智能制造”学术研讨会暨高级研修班在淄博召开
    中国仪器仪表学会药物质量分析与过程控制分会、山东省药学会制药工程专业委员会、山东大学药学院于2019年4月24--26日在山东淄博联合举办以“制药工程与药品智能制造”为主题的2019年学术研讨会暨高级研修班,同期召开山东省药学会制药工程专业委员会会议。本次会议由山东新华制药股份有限公司和山东大学淄博生物医药研究院联合承办,得到了上海宝驰信医药科技有限公司、上海阳森精细化工有限公司以及山东金璋隆祥智能科技有限公司等的大力支持。会议邀请工信部智能制造推进办公室专家、国家智能制造综合标准化专家咨询组相关专家,以及行业内具有重要影响力的专家共同出席并授课,来自各省、各地市医药院校相关专业管理人员、医药生产企业高管、工程技术人员、医药研究机构研究人员等200余名代表参会。研讨会:特邀专家学者把脉行业发展,洞察智能制造产业,引领发展风向标出席本次研讨会的专家有:中国仪器仪表学会科学仪器学术工作委员会顾问燕泽程研究员、中国仪器仪表学会智能制造推进工作委员会秘书长于美梅高级工程师、山东大学药学院院长刘新泳教授、山东省药学会制药工程专业委员会主任委员兼山东大学药学院制药工程与药事管理学教研室主任博导臧恒昌教授、中国仪器仪表学会药物质量分析与过程控制分会秘书长,北京中医药大学中药提取分离过程现代化国家工程技术研究中心学科带头人吴志生教授、北京大学大数据分析与应用技术国家工程实验室主任助理傅毅明高级工程师、天津中医药大学李文龙副教授、北京中医药大学徐冰副教授、中国仪器仪表学会药物质量分析与过程控制分会刘继红高级工程师、山东新华医药集团任福龙总经理、山东新华制药股份郑忠辉副总经理等及医药相关人员200余名代表。研讨会现场开幕式上,首先由中国仪器仪表学会药物质量分析与过程控制分会副理事长、教育部制药工程教学指导分委员会委员、山东省药学会制药工程专业委员会主任委员、山东大学药学院制药工程与药事管理学教研室主任、博士生导师臧恒昌教授担任主持人,隆重的介绍各位嘉宾领导。随后中国仪器仪表学会科学仪器学术工作委员会顾问燕泽程、山东大学药学院院长刘新泳、山东新华医药集团总经理任福龙分别致辞,对嘉宾的到来表示热烈欢迎,预祝大会取得圆满成功。主持人:臧恒昌教授中国仪器仪表学会科学仪器学术工作委员会执行顾问 燕泽程致辞山东大学药学院院长 博士生导师 刘新泳教授致辞山东新华医药集团总经理 任福龙致辞山东新华制药股份郑忠辉副总经理担任主持人,专家学者先后做主题报告并进行了讨论,中国仪器仪表学会智能制造推进工作委员会秘书长于美梅报告“智能制造及标准化”、北京大数据研究院大数据分析技术创新中心主任傅毅明博士报告“大数据技术与应用”、北京中医药大学徐冰副教授报告“‘大数据’驱动的中药智能制造”、天津中医药大学李文龙副教授报告“中药质量控制新理念新技术”、中国仪器仪表学会在线分析委员会周建发主任报告“航天传感器与中药质量控制应用展望”,现场学员专家提问交流,反响热烈。主持人:山东新华制药股份副总经理 郑忠辉中国仪器仪表学会智能制造推进工作委员会秘书长 于美梅“智能制造及标准化”北京大数据研究院大数据分析技术创新中心主任 傅毅明博士“大数据技术与应用”北京中医药大学 徐冰副教授“‘大数据’驱动的中药智能制造”天津中医药大学 李文龙副教授“中药质量控制新理念新技术”中国仪器仪表学会在线分析委员会 周建发主任“航天传感器与中药质量控制应用展望”研修班:专家学者互动式授课研讨会同期还联合中国仪器仪表学会药品生产过程分析与质量控制分会共同举办了“制药行业智能制造关键技术及标准化高级研修班”,出席研修班的专家有:中国仪器仪表学会科学仪器学术工作委员会顾问燕泽程高工、山东省药学会制药工程专业委员会主任委员兼山东大学药学院制药工程与药事管理学教研室主任博导臧恒昌教授、北京中医药大学中药提取分离过程现代化国家工程技术研究中心学科带头人吴志生教授、浙江大学药学院现代中药研究所常务副所长刘雪松教授、北京同仁堂研究院副院长迟玉明博士、北京红日药业配方颗粒研发中心总监张志强总工程师、天津中医药大学李文龙副教授、中国西安西电高压电器研究院有限责任公司李翌辉博士及医药相关企业代表60余人。研修班现场李文龙副教授、臧恒昌教授分别担任上午以及下午的主持人,北京中医药大学吴志生教授报告“先进传感器的中药智能检测与质量设计”、天津中医药大学李文龙副教授报告“中药制药过程全程质量控制体系的构建及相关思考”、中国西安西电高压电器研究院有限责任公司李翌辉博士报告“智能制造的实践与探索”、浙江大学药学院现代中药研究所常务副所长刘雪松教授报告“中药智能装备与智能工厂新模式研究”、北京康仁堂股份有限公司张志强教授级高级工程师报告“中药配方颗粒制造质量控制体系建设”、北京同仁堂股份有限公司研究院迟玉明教授级高级工程师报告“药品生产工艺设计与技术创新”,互动式授课,完成一天的学习,学员们收获颇丰。主持人李文龙副教授北京中医药大学 吴志生教授“先进传感器的中药智能检测与质量设计”天津中医药大学 李文龙副教授“中药制药过程全程质量控制体系的构建及相关思考”主持人:臧恒昌教授浙江大学药学院现代中药研究所常务副所长 刘雪松教授“中药智能装备与智能工厂新模式研究”北京康仁堂股份有限公司 张志强教授级高工“中药配方颗粒制造质量控制体系建设”北京同仁堂股份有限公司研究院 迟玉明教授级高工“药品生产工艺设计与技术创新”会议期间,各位参会代表分别参观了淄博高新区MEMS研究院和山东大学淄博生物医药研究院。会议同期商讨成立山东药品智能制造联盟,初步拟定了联盟协议书、确定首批联盟成员单位,并设立专家委员会,委员会成员由工信部智能制造推进办公室及行业内知名专家组成。联盟成立后将推动制药领域智能化建设,促进医药智能制造产业得到更好的发展。本次学术研讨会及培训班的授课老师由工信部智能制造推进办公室专家及国家智能制造方案起草和咨询有关的相关专家、行业内具有重要影响力的专家组成,是一次难得的学习研讨机会,会议全面贯彻落实党的十九大精神,很好地落实药品智能制造联盟的功能,提高联盟成员智能制造的认知和水平,更好地为山东省药品制造新旧动能转化服务,加快推动制药工程与药品智能制造,参会人员受益颇丰,会议圆满结束。集体大合照
  • 密理博向北京市食品安全监控中心赠送纯水耗材
    密理博向北京市食品安全监控中心赠送纯水耗材,支持国家对奶粉及奶制品中的三聚氰胺检测工作 近日以来,国家已经先后7次大范围的对全国的奶制品进行了检测工作。在这些工作中,各地的商检、质检部门和其他食品安全检测实验室承担了大量的工作,任务非常繁重。 实验室纯水系统作为三聚氰胺检测方法中的重要组成部分,其水质无论是对于样品的制备,标准样标准曲线的绘制,还是作为HPLC的流动相,对于最终的检测限和检测精度都发挥着重要的作用。 密理博公司作为超纯水设备的全球领导者,十分关注国内食品安全检测工作。而Milli-Q系统所产超纯水作为美国FDA检测三聚氰胺的推荐用水,也在此次事件中积极承担了实验检测的责任和义务。针对此次三聚氰胺检测中出现的大样品量和高强度检测工作对实验室纯水制备系统所带来的工作压力和耗材消耗,密理博向部分实验室赠送了耗材。 北京市食品安全监控中心是北京市突发食品安全事件处理的技术平台,它肩负着监测食品安全并对其做风险评估,以及对突发食品安全事件做技术处理的关键职能。 此次奶粉事件,北京市食品安全监控中心承担了大量的安检任务。10月10日,密理博纯水部门全国销售总监高健代表密理博公司向北京市食品安全监控中心赠送了相关纯水系统的耗材,我们希望Milli-Q的超纯水能配合监控中心一流的专家和检测实力,继续攻克难关,造福人类健康。赠送耗材后,高健还详细向监控中心的路勇主任了解了在使用纯水系统中所遇到和关注的问题。Millipore将一如既往地向北京市食品安全监控中心以及其它食品安检部门提供高品质的仪器,耗材和配套服务。 密理博(NYSE:MIL)是生命科学的领导者,为生物科学研究和生物制药生产提供尖端科技、产品和服务。目前,密理博实验室纯水设备在行业内占据绝对主导地位。从经典的MIlli-Q 超纯水系列,Elix纯水系统,RiOs反渗透纯水系统,到新型的Simplicity、Direct-Q等小流量应用系统,密理博的纯水生产设备已成为实验室纯水行业的金标准。
  • 聚焦“长江大保护与化学品环境安全” 第十五届POPs论坛在上海召开
    p strong仪器信息网讯/strong 2020年11月11日,“第十五届持久性有机污染物论坛暨化学品环境安全大会”(以下简称:“第十五届POPs论坛”)在上海富悦大酒店隆重开幕。本届大会主题为“长江大保护与化学品环境安全“。出席论坛的专家学者包括中国工程院院士/中国环境科学学会副理事长/中国环境科学研究院研究员吴丰昌、中国环境科学学会副秘书长侯雪松、同济大学校长助理/教授童小华、中国环境科学学会POPs专委会副主任/北京大学教授胡建信、中国环境科学学会POPs专委会副主任/中科院生态环境研究中心研究员郑明辉,以及中国环境科学学会POPs专委会50多位委员。本次大会采取线上、线下同时进行的方式,由于受疫情防控等影响,部分专家报告采取远程连线的方式进行,现场出席人数近600人。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/3fd340ab-ce59-4924-a38a-2d19886b767a.jpg" title="大会现场.jpeg" alt="大会现场.jpeg" width="500" height="333" border="0" vspace="0"/ /pp style="text-align: center "strong会议现场/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/54090542-db4a-4fe4-b47d-8ee388201b12.jpg" title="余刚.jpeg" alt="余刚.jpeg" width="500" height="334" border="0" vspace="0"/ /pp style="text-align: center "strong清华大学教授/中国环境科学学会POPs专委会主任余刚主持开幕式/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/b88c6fb8-1f7a-41b1-9f8b-2fe9ba3e7f27.jpg" title="童小华.jpeg" alt="童小华.jpeg" width="500" height="333" border="0" vspace="0"/ /pp style="text-align: center "strong同济大学校长助理/教授童小华致欢迎词/strong/pp 作为此次论坛的承办方代表,同济大学校长助理童小华教授首先致欢迎辞,并在致辞中提到,同济大学作为全国高等院校中最早开展环境教育和科学研究的机构之一,在环境污染研究和化学品环境安全方面作出了巨大的贡献,在环境学科建设、人才培养、国家交流与合作方面取得了卓越的成效。与此同时,同济大学围绕长江水环境与化学品污染开展研究,在2004年成立长江水环境教育部重点实验室,在长江环境化学品胁迫与生态效应、新型化学品处理技术、化学品污染风险管控等方面取得了重要进展,为长江化学品污染长期监测建设了长江环境样品库和有关基地,开展了中瑞、中德等国际合作项目,为全球合作共同促进化学品污染控制提供了案例。最后,童小华教授祝贺此次论坛圆满成功。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/785c607c-a10c-4686-9bb0-138896669bde.jpg" title="侯雪松.jpeg" alt="侯雪松.jpeg" width="500" height="333" border="0" vspace="0"/ /pp style="text-align: center "strong中国环境科学学会副秘书长侯雪松致辞/strong/pp 侯雪松副秘书长在致辞中提到,POPs论坛已经成功走过15届,中国环境科学学会POPs专委会也已经成功运转了13年,两者相互支撑、共同发展,到今天已经汇聚了我国POPs领域学术界、管理界和产业界最精英的人士,形成了一个共聚的交流平台,在学术交流、科学普及、人才智库、以及技术成果转化方面为我国POPs问题的解决,包括政策的制定、技术创新以及国家履约工作的推进与发展都做出了非常好的工作和服务。今年6月,生态环境部将POPs纳入全国生态环境监测体系,给POPs科技人员提出了更高的要求。我国和全球消除POPs任务虽然取得了很大的进展,但依然面临着不少实际阻拦和困难,工作任务依然艰巨。从根本上消除POPs,需要以科学理性的公众认知为基础,以持续不断的科技创新为支撑,要始终坚持科学研究与科学普及并重,科技创新与产业并举的方针。/pp 为表彰在POPs领域做出杰出贡献的科学家,POPs论坛每年会颁发“消除持久性有机污染物杰出贡献奖”。今年此奖颁给了同济大学教授尹大强,中科院生态环境研究中心研究员/中国环境科学学会POPs专委会副主任郑明辉宣读了颁奖词,中国工程院院士/中国环境科学研究院研究员吴丰昌和中国环境科学学会副秘书长侯雪松为尹大强颁奖。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/5f0eac3c-a4bd-48a8-9405-bb4997601760.jpg" title="WechatIMG758.jpeg" alt="WechatIMG758.jpeg" width="500" height="333" border="0" vspace="0"//pp style="text-align: center "strong中国工程院院士/中国环境科学研究院研究员吴丰昌(右)和中国环境科学学会副秘书长侯雪松(左)为尹大强(中)颁奖 /strong/pp 颁奖仪式之后,大会还与同日举办的生态环境部对外合作与交流中心履约技术协调会开启了片刻的远程互动交流,就双方正在召开的会议情况进行了简单介绍。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/97101069-e19a-4ac0-b528-8438d7cab746.jpg" title="连线.jpeg" alt="连线.jpeg" width="500" height="333" border="0" vspace="0"/ /pp style="text-align: center "strong生态环境部对外合作与交流中心履约技术协调会远程互动交流/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/3885c469-c10b-46e6-a70b-bcedbb47571d.jpg" title="吴丰昌.jpeg" alt="吴丰昌.jpeg" width="500" height="333" border="0" vspace="0"//pp style="text-align: center "strong中国工程院院士/中国环境科学研究院研究员吴丰昌/strong/pp 吴丰昌院士做了“我国环境基准发展战略初步思考”的大会主旨报告,介绍了环境基准的定位与目标、国际环境基准发展现状与趋势,我国环境基准发展主要设想与进展,以及环境基准建设下一步的计划与建议。环境基准是环境要素对生物和人体健康的理论阈值,是基于科学实验,科学数据和科学判断,不考虑社会经济条件,希望维持的标准、自然控制标准,是一门新兴交叉学科,涉及环境科学、效应、风险、健康和生态。近30年来,为制定国家环境标准、保障生态环境安全,世界各国持续开展环境基准研究。我国的环境基准研究面临技术层面、管理层面和应用层面的多种问题与挑战,需要建立支撑我国环境标准和风险管理的环境基准工程科学体系。这是一项长期的基础性科技工程,涉及大量科学问题和关键技术,需要国家层面的持续科技投入和稳定长期支持,因此建议设立环境基准重大研究计划。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/0327f772-db1c-40fd-865f-59295dcfa3c1.jpg" title="郑明辉.jpeg" alt="郑明辉.jpeg" width="500" height="333" border="0" vspace="0"//pp style="text-align: center "strong中科院生态环境研究中心研究员/中国环境科学学会POPs专委会副主任郑明辉主持大会报告/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 333px " src="https://img1.17img.cn/17img/images/202011/uepic/bd3eeca2-4221-49e2-9cec-926c4698ec07.jpg" title="尹大强.jpeg" alt="尹大强.jpeg" width="500" height="333" border="0" vspace="0"/ /pp style="text-align: center "strong同济大学教授/中国环境科学学会POPs专委会委员尹大强/strong/pp 尹大强教授做了“长三角地区化学品污染胁迫与风险研究”的报告,并在报告中介绍了中瑞重大科技合作项目“长三角地区化学品污染胁迫与风险研究”,该项目历时10年,经过双方的密切交流和紧密合作,在长三角地区化学品暴露、毒理与健康效应以及方法学建立等方面取得了实质性研究成果和进展,发现了长三角地区需要迫切关注的环境化学品污染新问题,如新型污染物在长江流域有全面分布的态势等。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/b2094320-270e-49b6-a46d-7147cf40a2f0.jpg" title="任永.jpeg" alt="任永.jpeg"/ /pp style="text-align: center "strong生态环境部对外合作与交流中心履约三处副处长/中国环境科学学会POPs专委会副主任任永/strong /pp 任永副处长在会上通过远程连线做了“中国履行《斯德哥尔摩公约》进展与展望”的报告,从履约行动、履约成效、2020年履约重要进展以及履约的挑战与展望等方面详细介绍了我国《斯德哥尔摩公约》的履约进展。我国履约行动自开展以来,取得了一系列重要的成效与进展,但履约工作依然面临严峻挑战,其中包括受控物质增加,监管难度增大,POPs替代与污染控制等核心技术不成熟,不遵守履约风险,履约保障资金缺口等。尽管履约工作面临诸多挑战和压力,但作为负责任的发展中国家,我们继续坚持以习近平生态文明思想为指引,积极参与全球环境治理进程,加强与各机构、各部门、各行业协调合作,共同推动国家公约履约工作。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/66bdc064-64d6-4261-a21e-982f707027c9.jpg" title="冉晓蓉.jpeg" alt="冉晓蓉.jpeg" width="500" height="334" border="0" vspace="0"/ /pp style="text-align: center "strong安捷伦科技(中国)有限公司/博士冉小蓉/strong/pp 冉小蓉博士在会上做了“代谢组学、代谢流整合细胞分析助力环境暴露与疾病研究”的报告,从代谢组学、代谢流整合细胞分析的相关背景介绍、整合方案、环境暴露与疾病研究示例等方面进行了介绍,并介绍了一种用来评估环境水细胞毒性的实时无标记细胞检测系统,该系统可提供监测环境水细胞毒性的高通量筛查。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/2a29c33a-6ef4-4f85-8879-e9cebd1ee7a8.jpg" title="胡建信.jpeg" alt="胡建信.jpeg" width="500" height="334" border="0" vspace="0"/ /pp style="text-align: center "strong北京大学教授/中国环境科学学会POPs专委会副主任胡建信/strong/pp 胡建信教授在会上做了“受控短链卤代烃管控进展与挑战”的报告,从受控短链卤代烃管控的定义、重要进展以及未来面临的挑战等方面进行了介绍。2013年习近平主席访问美国,与当时的美国奥巴马总统达成推动全球减排氢氟碳化物(HFCs)的协议,2016年10月全球达成减排HFCs的《基加利修正案》,按照相关科学评估报告,实现修正案目标可以避免全球约0.4℃升温,而中国将是实现上述目标最大的贡献者,也将在科学和技术方面为这一全球环境治理作出重大贡献。公约受控卤代烃如消耗臭氧层物质(ODS)的排放直接涉及臭氧层的破坏和全球气候变化问题,研究受控短链卤代烃排放、归趋和减排技术是当前国家的重大战略需求,是实施全球治理的重要基础之一。未来受控短链卤代烃面临的挑战主要包括履约长效机制的建立、全球环境治理责任原则的落实以及相关替代技术的发展等。/pp 11月11日下午共举办11场分会报告,报告主题围绕:“有机污染物环境分析与污染特征”、“有机污染物环境行为与迁移转化”、“环境污染物毒理效应及健康与生态风险”“二噁英等副产物类POPs减排技术与实践”、“药物和个人护理品(PPCPs)环境风险与控制”、“POPs履约战略与行动”。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/32eb9e2a-f0ff-4e98-a076-3919ca7756fe.jpg" title="未命名_meitu_1.jpg" alt="未命名_meitu_1.jpg"//pp style="text-align: center "strong分会场/strong/pp 此次会议还得到了多家厂商的支持,其中协办企业包括北京联众行贸易有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司、沃特世科技(上海)有限公司、安捷伦科技(中国)有限公司、中持依迪亚(北京)环境监测分析股份有限公司、江苏微谱检测技术有限公司、上海仪真分析仪器有限公司、热耳科技(上海)有限公司、捷欧路(北京)科贸有限公司、上海安谱实验科技股份有限公司、北京博赛德科技有限公司、北京普立泰科仪器有限公司、青岛腾龙微波科技有限公司、北京安易世纪科技有限公司、上海汇析精密仪器有限公司等。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/57633c6f-8459-4c0c-92a9-4d615bb8ee1a.jpg" title="赛默飞.jpeg" alt="赛默飞.jpeg" width="500" height="334" border="0" vspace="0"//pp style="text-align: center "strong赛默飞世尔科技(中国)有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/b889aa25-7dc5-447c-bfe7-3eaf695f32c5.jpg" title="岛津.jpeg" alt="岛津.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong岛津企业管理(中国)有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/886f9818-34ee-4043-aff2-77a54299c633.jpg" title="沃特世.jpeg" alt="沃特世.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong沃特世科技(上海)有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/e30227ee-8b6a-4612-823c-fb1eb8f06ea1.jpg" title="安捷伦.jpeg" alt="安捷伦.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong安捷伦科技(中国)有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/826beb07-617f-4b92-9686-999809c4d805.jpg" title="JEOL.jpeg" alt="JEOL.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong捷欧路(北京)科贸有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/a202aca6-a69d-410b-81cf-2f0ab7ecaa89.jpg" title="安谱.jpeg" alt="安谱.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong上海安谱实验科技股份有限公司/strong/pp style="text-align: center "strongimg style="max-width: 100% max-height: 100% width: 500px height: 334px " src="https://img1.17img.cn/17img/images/202011/uepic/86af22c2-baf6-4f7a-9b28-f39f098d77ef.jpg" title="仪真.jpeg" alt="仪真.jpeg" width="500" height="334" border="0" vspace="0"//strong/pp style="text-align: center "strong上海仪真分析仪器有限公司/strong/p
  • 荧光定量PCR,你做对照了吗?
    前言吾日三省吾身,定量实验做对照了吗?在荧光定量PCR实验中遇到没有曲线、曲线异常等情况,我们总是会在第一时间去看阳性对照和阴性对照的扩增情况来分析原因。由此可见,实验中做对照的重要性不言而喻。在荧光定量PCR实验中,我们通常会按照如下的流程进行实验:样品采集,运输,样品处理,核酸提取,反转录(RNA 病毒),扩增 ,结果读取。为了提高实验结果的精准度,我们通常会通过设置对照的方式对检测的各个环节进行监控。阴性对照荧光定量PCR的灵敏度较高,对实验室的污染也非常敏感,阴性对照可以用来监控和发现污染的发生。常用的阴性对照包括以下几种:无模板对照(No Template Control, NTC)使用水代替荧光定量 PCR反应中的核酸,其它试剂按比例正常加入,用于监控扩增反应体系中的污染。正常情况下,NTC孔不会有扩增;当NTC出现扩增,则预示体系中有污染。在SYBR Green实验中,引物二聚体的形成也可能导致NTC出现扩增。阴性样本对照(Negative Sample Control)阴性样本对照指不含有目的基因或者靶序列的样本,也可以是样本保存液。和含有目的基因的样本一起进行核酸提取等过程。如果出现扩增,则说明实验过程中存在污染,结合NTC结果进行判断。无逆转录酶对照(No Reverse-Transcriptase Control, No RT)当进行RNA定量实验时,如果引物和探针设计在同一个外显子上,扩增有可能来源于未去除干净的DNA,此时可以设置无逆转录酶对照。无逆转录酶对照中不加逆转录酶。由于没有cDNA,DNA聚合酶无法扩增mRNA,则不应发生扩增。如果检测到扩增,则样本中可能含有未去除干净的DNA。阳性对照阳性对照必然是阳性的结果,用于排除假阴性。如果检测出来了这个样本不是阳性,则说明实验有问题,不可靠。阳性样本对照(Positive Sample Control)阳性内对照虽然可以在一定程度上反应核酸提取效率,但是却很难反馈提取流程中对核酸释放的效率。为了能更好的反映提取效率,可以选择已知阳性的样本或者保存在相似基质中已知浓度的病原体,作为单独的样本进行提取和后续的RT-PCR,通过Ct值评断实验流程。内参基因(Endogenous Control)内参基因可以用于反应样本本身的质量,比如拭子是否刮取到样本、RNA在运输和保存过程中是否有严重的降解等问题。内参基因一般选择在取样组织或细胞中均有足量表达的基因,且其表达量不受环境、实验处理条件和取样时间等因素影响,常用内参基因如表1所示。没有某个内参基因是万能的,内参基因需要根据样本类型和实验处理方式进行评估和选择。实验中通过内参基因的Ct值来判断取样和样本降解情况。在相对定量实验中,内参基因亦可用于对取样量进行均一化。▲ 表1: 已报道的部分物种qPCR内参基因扩增对照(Amplification Control)可使用含有扩增片段的质粒、假病毒或者基因组DNA/cDNA作为扩增阳性对照,监控荧光定量PCR的体系是否正常。当扩增对照没有扩增,或者Ct值大于预期,则说明定量PCR体系存在问题。内部阳性对照(Internal Positive Control, IPC)如果想监控每一份样本的整个实验过程,可以在提取之前在每个样本中加入一段外源DNA或RNA(不含目的片段),并在定量PCR时进行单管多重PCR,同时检测目的基因和这段序列。在每个样本中加入特定拷贝数的IPC,进而从该段序列的Ct值判断对应样品孔中的核酸富集和扩增效率。
  • 标准解读︱GB 5009.225-2023《食品安全国家标准 酒和食用酒精中乙醇浓度的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括GB 5009.225-2023《食品安全国家标准 酒和食用酒精中乙醇浓度的测定》(以下称新标准)。新标准将替代GB 5009.225-2016《食品安全国家标准 酒中乙醇浓度的测定》(以下称旧标准),并于2024年3月6日起实施。二、标准的主要技术内容本标准适用于酒中乙醇浓度的测定。其中,第一法密度瓶法适用于酒和食用酒精中的乙醇浓度(酒精度)的测定;第二法酒精计法适用于酒(除啤酒外)和食用酒精中的乙醇浓度(酒精度)的测定;第三法气相色谱法适用于无醇啤酒中的乙醇浓度(酒精度)的测定;第四法数字密度计法适用于酒和食用酒精中的乙醇浓度(酒精度)的测定。本标准修订充分考虑饮料酒行业发展,主要参照OML-TS-90国际酒精度表,扩展了GB5009.225-2016标准中附录A.1酒精水溶液密度和乙醇含量(酒精度)对照表(20℃)和附录B.1酒精计温度与20℃乙醇含量(酒精度)换算表的范围:修订了附录B中90%o以上温度和酒精度的间隔:修订了密度瓶法的适用范围;修订了酒精计法的原理及部分内容:修订了气相色谱法的适用范围、仪器条件及部分内容:修订了数字密度计的名称、原理、适用范围及校正。对修订的方法进行了系统研究,并开展实验室间方法验证。乙醇浓度(酒精度)是酒类食品中重要的检测项目,是评价饮料酒质量的关键指标。那么,新标准与旧标准比较,主要有哪些变化呢?修改标准名称旧标准名称:《食品安全国家标准 酒中乙醇浓度的测定》。新标准改为:《食品安全国家标准 酒和食用酒精中乙醇浓度的测定》。修改第一法密度瓶法的适用范围旧标准:适用于蒸馏酒、发酵酒和配制酒。新标准:适用于酒和食用酒精。修改第二法酒精计法的适用范围旧标准:适用于酒精和蒸馏酒、发酵酒和配制酒(除啤酒外)。新标准:适用于酒(除啤酒外)和食用酒精。修改第四法的方法名称、适用范围旧标准名称:数字密度计法新标准名称:U型震荡管数字密度计法旧标准适用范围:啤酒、白兰地、威士忌和伏特加。新标准适用范围:酒和食用酒精修改试样处理将试样处理修改为不含二氧化碳、含二氧化碳的酒样品制备和食用酒精样品制备三种情况。修改第二法酒精计法的取样量新标准中第二法的取样量可以根据酒精计的情况调整,而不再要求100mL的取样量,调整后适用多数大小规格的酒精计检测。修改第三法气相色谱法所用的标准品、标准溶液配制和仪器条件修改了第四法的原理描述新增第四法仪器的要求等相关内容新增第四法仪器的要求、优化了对数字密度计的校正,新增《附录C U型震荡管数字密度计的校正》。修改附录A和附录B相关内容修改旧标准中附录A和附录B中部分数据错误、参照OIML-ITS-90国际酒精度表扩展了附录A、附录B的酒精度查表范围,填补了检测范围的空白,避免了部分样品存在方法不适用的问题。旧标准附录A酒精度查表范围:0.00—70.00 %vol新标准附录A酒精度查表范围:0.00—100.00 %vol旧标准附录B酒精度查表范围:0.00—70.00 %vol ,91—98 %vol新标准附录B酒精度查表范围:0.00—100.00 %vol乙醇浓度(酒精度)是酒类食品中最常见的检测项目,是判断酒类品质好坏的重要标志,2016版的标准仅对以前老旧的测试方法进行了汇总,对某些不合理的地方未加以修订。通过对旧版标准中四种检测方法的不合理之处进行了大范围修订,最终形成184页的标准文本。修订后的标准解决了原方法范围不适用、仪器条件不合理、酒精度对照表和温度换算表多处缺失和错误、易受环境影响等因素。该项标准的发布实施,能够满足酒和食用酒精中乙醇浓度的测定要求,有利于政府的监督抽查、企业的质量控制及实现酒类产品生产和加工的标准化,从而推动万亿酒类产业的高质量发展。
  • 《食品安全国家标准 酒和食用酒精中乙醇浓度的测定》正式征求意见
    10月22日,食品安全国家标准审评委员会秘书处发布关于征求《食品安全国家标准 食品接触用橡胶材料及制品》等34项食品安全国家标准(征求意见稿)意见的函(食标秘发〔2021〕12号),正式对《食品安全国家标准 酒和食用酒精中乙醇浓度的测定》公开征求意见。   该标准修订任务来源于国家卫生健康委员会委托修订的食品安全国家标准项目,适用于酒中乙醇浓度的测定。其中,第一法密度瓶法适用于酒和食用酒精中的乙醇浓度(酒精度)的测定;第二法酒精计法适用于酒(除啤酒外)和食用酒精中的乙醇浓度(酒精度)的测定;第三法气相色谱法适用于无醇啤酒中的乙醇浓度(酒精度)的测定;第四法数字密度计法适用于酒和食用酒精中的乙醇浓度(酒精度)的测定。  本次修订主要技术内容有以下变化:   1、标准修订充分考虑饮料酒行业发展,主要参照OIML-ITS-90国际酒精度表,扩展了GB 5009.225-2016标准中附录A.1酒精水溶液密度和乙醇含量(酒精度)对照表(20 ℃)和附录B.1 酒精计温度与20 ℃乙醇含量(酒精度)换算表的范围;   修订了附录B中90%vol以上温度和酒精度的间隔;   修订了密度瓶法的适用范围;   修订了酒精计法的原理及部分内容;   修订了气相色谱法的适用范围、仪器条件及部分内容;   修订了数字密度计的名称、原理、适用范围及校正。   对修订的方法进行了系统研究,并开展实验室间方法验证。   2、密度瓶法,范围增加了食用酒精。   3、酒精计法,对其部分内容进行了规范整理,使其更简单明了。   4、气相色谱法,范围从适用于葡萄酒、果酒、啤酒修改为无醇啤酒。   5、U型振荡管数字密度计法,测试范围从适用于啤酒、白兰地、威士忌和伏特加扩展为食用酒精和酒。 按照通知要求,反馈意见需于2021年11月20日前登录食品安全国家标准管理信息系统(https://sppt.cfsa.net.cn:8086/cfsa_aiguo)在线提交。 相关报道:食品安全国家标准审评委员会秘书处关于征求《食品安全国家标准 食品接触用橡胶材料及制品》等34项食品安全国家标准(征求意见稿)意见的函(食标秘发〔2021〕12号)日期:2021-10-28
  • 滨松光子学商贸(中国)有限公司在京成立
    仪器信息网讯 2011年10月8日,国际知名的光电元器件供应商——日本滨松光子学株式会社(以下简称“日本滨松”)在京成立滨松光子学商贸(中国)有限公司(以下简称“滨松中国”)。日本滨松在新公司所在地北京嘉铭中心举行了简短而隆重的开业揭牌仪式。  揭牌仪式现场  日本滨松光子学株式会社代表取缔役社长(董事长兼总经理)昼马明先生出席揭牌仪式,金国藩院士、姚骏恩院士、周立伟院士、中国原子能工业公司总经理刘春胜先生、清华同方威视技术股份有限公司总裁陈志强先生、中科院高能物理研究所副所长魏龙研究员、北京博奥生物有限公司执行副总裁周玉祥先生等30余名业内专家参加了此次开业仪式。仪器信息网作为特邀媒体亦参加了此次活动。  日本滨松代表取缔役社长昼马明先生(第一排中)与到场嘉宾合影  揭牌仪式后,日本滨松代表取缔役社长昼马明先生接受了仪器信息网等媒体的采访。昼马明先生在采访中表示,“23年前也就是1988年,日本滨松在中国建立了技术型的合资企业——北京滨松光子技术股份有限公司(以下简称“北京滨松”),开始生产光电倍增管等产品,借此希望能促进中国光子产业的发展。这23年来,中国光子产业市场的发展非常迅速,未来这个市场会越来越大,会有高速的增长。”  “自两年前我接任日本滨松总经理以来,我非常看重中国市场。北京滨松原先的营业部只是一个生产企业内部的销售部门,对应中国这样巨大的市场,我们觉得需要加大销售部门的权限与自由度,所以就整合国内营业资源,把北京滨松营业部和日本滨松北京、上海事务所合并,成立了滨松中国,在中国销售日本滨松及北京滨松的产品,同时把北京滨松的产品推向亚洲其他地区。”  “这个专业的销售公司一方面为中国客户提供足够的支持与服务,另一方面更重要的是,我们要与中国客户建立一对一的关系,建立更紧密的沟通,借此了解中国市场的信息,了解中国用户到底需要什么样的产品,以促使日本滨松对自己的产品进行适当的改进。中国市场是非常特殊的,日本滨松要根据中国客户的需求,为中国市场定制其所需要的产品。”  报告会现场  日本滨松光子学株式会社代表取缔役社长昼马明先生(左)作报告,北京滨松光子股份有限公司总经理席与霖先生(右)为其翻译  揭牌仪式后,日本滨松在北京友谊宾馆贵宾楼举行了“21世纪光子技术及光产业的现在和未来暨滨松光子学商贸(中国)有限公司成立庆典报告会”,200余名滨松产品用户参加了此次报告会。昼马明先生在报告会上介绍了日本滨松近年来在光子晶体、近场光等纳米光子学领域的研究进展以及该公司的新产业创业梦想,在场听众反应热烈。  当晚,为感谢广大用户对滨松多年来的支持,日本滨松还举行了盛大的答谢晚宴。  答谢晚宴现场  附录:  日本滨松光子学株式会社  http://www.hamamatsu.com/   滨松光子学商贸(中国)有限公司  http://www.hamamatsu.com.cn   北京滨松光子技术股份有限公司  http://www.bhphoton.com/   http://www.instrument.com.cn/netshow/SH102193/
  • CDE发布《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》
    近日,国家药品审评中心为进一步指导企业开展药品研发,并为境外已上市境内未上市的化学药品研发提供可参考的技术标准,发布《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》,自发布之日起施行。该技术要求适用于化学药品3类与化学药品5类。内容包括药学研究与评价基本考虑、化学药品3类研究与评价技术要求(生产工艺、特性鉴定、质量控制、稳定性)、化学药品 5 类研究与评价技术要求。详细内容如下:《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》一、背景境外已上市化学药品的仿制或进口,是解决我国患者对临床需求领域药品可获得性和可及性的重要手段。为加快境外已上市境内未上市仿制药品和原研药品研发上市进程,加强科学监管,提高审评审批质量和效率,依据《药品注册管理办法(国家市场监督管理总局令第27号)及其配套文件,制定化学药品研究与评价技术要求,为工业界和监管机构提供研发和审评的技术参考。二、适用范围本技术要求适用于境外已上市境内未上市的化学药品,主要包括两类情形:(1)境内申请人仿制境外上市但境内未上市原研药品的药品,即化学药品 3 类;(2)境外上市的药品申请在境内上市,即化学药品5 类(不适用于原研药品已在境内上市的化学药品5.2类)。与境外已上市境内未上市制剂关联申报的原料药适用于本技术要求。三、药学研究与评价基本考虑本技术要求是药学研究与评价的基本技术要求。申请人作为申报产品的责任主体,对产品的研发与生产、质量可控性、安全性和合规性等应有全面、准确的了解,并开展相应的研究工作。申请人需结合产品特性,参照本技术要求及国内外相关技术指南开展药学研究,按照现行版《M4:人用药物注册申请通用技术文档(CTD)》格式编号和项目顺序整理(对于不适用的项目,应注明不适用),提交全面、完整的药学研究资料。对于化学药品3类和5.2类注册申请,申请人应全面了解参比制剂上市背景、安全性和有效性数据、上市后不良反应监测情况,评价和确认其临床价值。按照《化学仿制药参比制剂遴选与确定程序》提交参比制剂遴选申请,或按照国家药监局发布的《化学仿制药参比制剂目录》选择合适的参比制剂。仿制药的活性成份、剂型、适应症和给药途径应与参比制剂一致。仿制药的质量应与参比制剂保持一致。申请人应首先充分调研参比制剂公开信息(如国外药品监管机构审评文件、药品说明书及标签和/或文献资料)进行处方解析,明确产品目标质量概况,分析确定产品的关键质量属性。通过处方工艺与质量研究,充分评估原料药、辅料和包装系统相关特性对制剂性能和生产工艺的潜在影响,明确关键物料属性;研究与评价工艺参数,确定影响产品质量的关键工艺步骤和关键工艺参数,建立有效的工艺过程控制。申请人应以多批参比制剂为对照进行质量研究,保证自制制剂与参比制剂质量一致。对于参比制剂确无法获得的情形,建议按照国际通行和国内现行相关药学研究技术要求开展研究。通过加强对原料药、辅料和包装系统的控制、工艺过程控制和产品质量控制等,使设计开发的生产工艺能够持续稳定生产出符合预期质量要求的产品。对于化学药品5类上市许可申请,申请人应提交可反映供中国上市产品情况的现行版CTD药学研究资料,汇总在药品证书(CPP)载明国家首次上市后至申报进口期间发生的工艺改进、质量提升等药学重大变更(包括经药监机构批准的变更内容等)历史简介,必要时提供药学重大变更研究资料,关注进口注册样品与支持中国注册的关键临床批样品的质量对比。药品生产应符合药品生产质量管理规范(GMP),通过不断完善药品生产质量管理体系,降低影响药品质量的风险因素,使药品生产全过程持续符合药品质量要求。申请人应加强药品生命周期的管理,药品研发上市后仍需持续关注物料属性、处方工艺、生产设备、批量等因素对药品质量的潜在影响,不断完善对物料关键属性的控制、过程控制和产品质量控制,推动药品质量的不断提升。本技术要求的起草是基于当前科学认知,随着相关法规的不断完善以及药学研究和科学技术的不断进步,本技术要求将不断修订完善。四、化学药品3类研究与评价技术要求(一)原料药技术要求1.生产工艺原料药生产应遵循生产工艺稳定、能够持续商业化生产和产品质量合格的原则。原料药生产工艺研究与评价的主要内容包括起始物料选择与质量控制、生产工艺开发、工艺过程控制和工艺验证等。申请人对每一阶段的研究目的应有清晰的认识,对生产工艺有整体的理解,以便科学合理地开展研究并获得符合药品质量要求的原料药。1.1 起始物料选择与质量控制根据从源头开始全程控制药品质量的考虑,起始物料的选择应参考ICH Q11和欧盟相关技术要求。对以发酵或植物提取为基础的半合成原料药,一般需考虑从微生物或植物开始描述生产工艺。申请人应对起始物料选择的合理性进行评估与确认。起始物料应有稳定的、能够满足原料药大规模生产的商业化来源。起始物料供应商应具备完善的生产与质量控制管理体系。若起始物料来自多家供应商,建议申请人参照《已上市化学药品变更研究的技术指导原则》相关要求开展研究。申请人应建立合理的起始物料内控标准,对越靠近终产品的起始物料,其质量控制要求一般应越严格。对用于合成多肽类药物起始物料的保护氨基酸,其质量标准应包括手性纯度检查项。对于化学结构和生产工艺较为复杂的起始物料,申请人应结合起始物料的生产工艺,对其工艺杂质(包括毒性杂质、残留溶剂和元素杂质等)进行全面的分析。申请人应详细研究杂质的种类与含量是否会影响后续反应及终产品质量,包括主要杂质的生成、转化和清除,有效控制起始物料的杂质,制定合理的控制项目、分析方法和限度,对分析方法进行方法学验证。1.2 生产工艺开发通过对文献资料的充分调研,申请人可以了解原料药的基本生产工艺信息和关键质量属性。结合质量风险管理和控制策略,选择科学合理的工艺路线。通过实验室小试、中试放大和商业化生产,逐步加深对整个生产工艺的理解,不断优化工艺路线,积累更多的工艺知识和生产经验,设计开发出能够持续稳定生产符合预期质量要求产品的商业化生产工艺。原料药的关键质量属性通常包括影响产品定性、纯度和稳定性的属性或特征。关键质量属性的控制策略通常包括:(1)将其订入原料药质量标准,通过对最终原料药的检测和/或通过上游控制加以确定;(2)不将其订入原料药质量标准,但可以通过上游控制来提供质量保证。上游控制一般可以采用在线检测,或通过对工艺参数和/或生产过程的物料属性测定,预测原料药的关键质量属性。杂质因可能会对药物制剂的安全性产生影响,属于原料药关键质量属性。对于多晶型药物,申请人应在生产工艺开发阶段通过精制工艺的优化和筛选制备优势稳态晶型,保证原料药批间晶型一致性。对于可能存在亚硝胺类杂质的药物,申请人应首先选择可以避免亚硝胺类杂质生成的生产工艺。若生产工艺无法避免亚硝胺类杂质生成时,可以通过制定详细的过程控制策略,保证生产过程有关亚硝胺类杂质的质量控制有效且符合要求。1.3 工艺过程控制原料药工艺过程控制包括关键工艺步骤及其关键工艺工艺参数和中间体控制。关键工艺步骤的终点判断和控制手段均应有数据支持。关键工艺参数与原料药的关键质量属性相关,通常申请人应在原料药生产工艺开发阶段对其进行评估,基于工艺耐用性研究结果或历史数据加以确定,规定可使生产重复操作所需的变化范围。若涉及引入新手性中心的合成反应,申请人应详细提供异构体杂质的分析方法与控制策略。对于已分离的中间体,申请人应制定包括检测项目、分析方法和可接受标准的质量标准,并说明质量标准制定的依据。关键中间体的主要质控方法(如杂质控制方法)应进行包括专属性和灵敏度等的方法学验证。申请人应根据杂质转化和清除研究结果,为原料药过程控制提供杂质限度制定的合理依据。1.4 工艺验证申请人应在原料药上市申请前完成商业规模生产工艺验证,提交工艺验证方案、工艺验证报告和生产工艺信息表。原料药无菌工艺验证应参照已发布的《无菌工艺模拟试验指南(无菌原料药)》等相关指南执行。原料药注册批生产批量应至少满足1批工艺验证或1批拟定商业化生产批量的制剂生产需求,并与实际生产线生产设备产能匹配。2. 特性鉴定2.1结构确证原料药结构确证分析测试方法包括紫外可见吸收光谱、红外吸收光谱、核磁共振波谱、质谱、元素分析、比旋度、X-射线单晶衍射和/或X-射线粉末衍射、差示扫描量热法、热重分析和圆二色谱等。申请人可以结合工艺路线和多种分析测试方法对原料药化学结构进行综合解析。对可能含有立体构型、多晶型、结晶水和/或结晶溶剂等的原料药,建议采用合适的分析测试方法进行结构确证。申请人可以将结构确证样品与药典收载的对照品或已上市产品进行对比研究,确证原料药化学结构的一致性。对于不能获取药典收载的对照品或与已上市产品进行对比的,建议对原料药化学结构进行系统研究与确证。结构确证样品通常应明确精制条件,说明其纯度。对药物制剂关键质量属性产生影响的多晶型药物,需研究证明批间晶型一致性和晶型放置过程稳定性。共晶药物具有特殊的理化性质、确定的组分和化学计量比,可以通过X-射线单晶衍射、X-射线粉末衍射、固相核磁共振波谱、红外吸收光谱、差示扫描量热法和/或晶体形态等分析方法进行结构确证。2.2 杂质谱分析原料药的杂质谱分析包括工艺杂质和降解杂质。申请人可以结合原料药的生产工艺、反应机理、结构特点及其降解途径、药典标准和/或其他文献等全面分析潜在的杂质和杂质来源。工艺杂质指生产工艺过程引入的杂质,包括起始物料及其引入的杂质、中间体、反应副产物、残留的试剂/溶剂/催化剂和元素杂质等。降解杂质指药物通过水解、氧化、开环、聚合等降解反应产生的杂质。降解杂质与原料药的结构特征密切相关,申请人可以通过原料药结构特点、药典标准或文献收载的杂质结构、强制降解试验和稳定性考察等方面分析可能的降解杂质及其降解途径,通过工艺控制、采用合适的包装和贮藏条件,减少降解杂质的生成。3. 原料药的质量控制3.1质量标准质量标准包括检测项目、分析方法和可接受标准。符合标准是指按照拟定的分析方法检测,结果符合可接受标准。原料药质量标准检测项目的设置既要有通用性,又要有针对性,能够反映产品质量的变化情况。质量标准检测项目一般包括但不限于性状、鉴别、检查与含量(效价)测定。检查项目通常应考虑到原料药的安全性、有效性和纯度/效价,包括pH值/酸碱度、溶液的澄清度与颜色、一般杂质(氯化物、硫酸盐、炽灼残渣等)、有关物质、异构体、致突变杂质(包括亚硝胺类杂质)、残留溶剂、元素杂质、干燥失重/水分、细菌内毒素和/或微生物限度等。随着原料药生产工艺的稳定,通过对产品质量检测数据的积累和产品质量认知的逐步提高,可以不断调整和完善原料药的质量控制。申请人应参考ICH Q2和Q6A等指导原则,根据与参比制剂质量一致的要求,合理拟定原料药质量标准检测项目和可接受标准,提供充分的支持性试验资料与文献资料。对于已有药典标准收载的原料药,申请人应首先考虑选用药典标准检测项目和分析方法。分析方法学重点确认药典标准检测方法和条件是否适用,若研究结果表明方法适用,申请人可沿用药典标准分析方法;若需建立新的分析方法,则应进行相应的方法学验证,并证明新方法不劣于药典方法。对于已收载在中国药典的原料药,质量指标一般不低于中国药典要求。3.2 质量研究申请人可参考ICH 指导原则(Q2、Q3A、Q3C、Q3D、Q6A和M7等)、《化学药物杂质研究技术指导原则》、《化学药物残留溶剂研究技术指导原则》、《化学药物质量控制分析方法验证技术指导原则》、《化学药物质量标准建立的规范化过程技术指导原则》等以及中国药典四部通则进行原料药的质量研究,提供原料药质量研究资料,包括代表性样品的典型图谱。分析方法应按照中国药典和ICH指导原则进行规范的方法学验证。(1) 有关物质申请人应在杂质谱分析全面的基础上,结合相关文献,科学选择有关物质分析方法,进行规范的方法学验证和/或确认。对于已有药典标准收载的,申请人应结合原料药工艺路线分析药典标准分析方法的适用性,拟定的有关物质分析方法分离检出能力和杂质控制要求应不低于药典标准。申请人可以在原料药中加入限度浓度的杂质对照品,证明拟定的有关物质分析方法可以单独分离目标杂质和/或使杂质与主成分有效分离;对于药典标准尚未收载的,可以采用富含杂质样品(如粗品或粗品母液、适当降解样品、稳定性末期样品等),对色谱条件进行比较优选研究,根据对杂质的检出能力选择适宜的色谱条件,建立有关物质分析方法,并采用杂质对照品进行方法学验证。测定杂质含量时,申请人可以选择外标法、内标法、加校正因子的主成分自身对照法和不加校正因子的主成分自身对照法。对于加校正因子与不加校正因子的主成分自身对照法,申请人应对校正因子进行研究。对映异构体需采用手性色谱分析方法进行研究。(2) 致突变杂质根据起始物料和原料药的生产工艺和降解途径,申请人应对原料药潜在的致突变杂质进行分析与研究,参考ICHM7制定合理的控制策略。对于晚期肿瘤用药,基于目标制剂的适应症与用药人群,申请人可参考ICHM7与S9制定致突变杂质的控制策略。亚硝胺类杂质参照发布的《化学药物中亚硝胺类杂质研究技术指导原则(试行)》执行。(3) 元素杂质参考ICHQ3D指导原则,通过科学和基于风险的评估,申请人可以评估是否存在来源于原料药的元素杂质,包括起始物料和原料药工艺过程添加的催化剂和无机试剂、生产设备和包装系统引入的元素杂质等。申请人应评估这些来源的元素杂质对制剂的影响,制定合理控制策略。3.3 质量标准限度制定申请人应对药典方法进行比较研究,确定合理的分析方法,参考ICH指导原则制定合理的原料药质量标准可接受限度。对于尚未收载于药典标准的,应结合用原料药制备的自制制剂与参比制剂的质量对比研究结果,拟定合理的质量标准可接受限度。与安全性相关的质量控制检测项目可接受标准应有安全性试验数据或文献依据支持,满足制剂生产工艺和关键质量属性的要求。有关物质检测项目一般应包括已知特定杂质、未知单个杂质和杂质总量。有关物质的可接受限度通常应符合ICHQ3A和/或欧盟抗生素指导原则等要求,必要时申请人需提供安全性试验数据来论证杂质的安全性。4. 稳定性原料药的稳定性研究包括影响因素试验、加速试验和长期试验,必要时应进行中间条件试验考察。申请人可以参考ICH Q1A、Q1B和《化学药物(原料药和制剂)稳定性研究技术指导原则》开展稳定性研究。提交原料药注册申请时,申请人一般应提供3 批样品6个月加速试验和不少于6 个月长期试验的稳定性研究资料(包括典型图谱)。加速试验和长期试验应在符合GMP条件下进行,试验样品应为能够代表商业化生产规模的注册批次。通常应提交稳定性试验方案和稳定性承诺。对于液体原料药,申请人应开展包材相容性研究。(二)制剂技术要求1.处方工艺申请人应在充分了解参比制剂的基础上,结合参比制剂的临床应用、药代动力学等特点,基于安全性和有效性评估确定产品的开发目标,并根据目标产品质量概况及相关研究结果,确定所开发产品的关键质量属性。通过处方工艺开发和生产工艺验证,明确原料药、辅料、包装系统和生产过程对产品质量起重要作用的影响因素,建立相应的物料控制、工艺过程控制等控制策略。通过处方工艺研究,设计开发出可持续稳定生产符合预期质量要求产品的商业化生产工艺。对已开展临床试验研究的产品批次,申请人需提供关键临床试验批、人体生物等效性试验批等批处方和工艺信息。拟上市产品的处方工艺原则上应与已确证临床等效的批次处方工艺保持一致。1.1 处方(1) 原料药申请人应对原料药的理化性质和生物学特性等进行研究,基于风险评估原则,充分评估原料药相关特性对制剂性能和生产工艺的潜在影响,明确其关键物料属性。原料药理化性质和生物学特性主要包括但不限于溶解度、粒度分布、晶型、水分、稳定性和渗透性等。(2) 辅料申请人应结合辅料在制剂中的作用,评估辅料相关特性对制剂性能和生产工艺的潜在影响,说明辅料种类和用量的选择依据。通常应根据参比制剂的处方组成,选择与参比制剂种类一致的辅料,也可以根据研究情况选择合适的辅料但需提供充分依据。辅料的用量或浓度通常需符合FDA IID限度要求,或提供充分依据(如在境外已批准用于该给药途径和系统暴露水平的其他制剂产品)。应特别关注用于儿童制剂的辅料种类及用量合理性。(3) 处方设计申请人应深入调研参比制剂的公开信息,通过处方解析等确定产品目标质量概况。若能够获得参比制剂处方组成,可提供处方组成及其来源,作为产品处方设计的依据。申请人可以参考ICH Q8开发制剂产品处方工艺,充分评估原辅料相关特性对制剂产品关键质量属性的潜在影响,考察并确定对制剂产品性能和质量起关键作用的处方因素。建议申请人在处方开发中考虑拟采用生产工艺对制剂产品性能和质量的影响。如产品涉及特殊设计,申请人应提供设计依据及支持性研究数据。申请人需阐明产品从处方设计初期到最终商业化生产的处方演变过程。过量投料参考ICH Q8相关要求。1.2 工艺研究申请人应根据拟开发产品的剂型特点,结合制剂的处方特征和已有知识对工艺进行选择。参考ICH Q8开展产品工艺开发。必要时应对中间产品的暂存条件和暂存期限进行同步考察。灭菌/无菌工艺的研究和选择参考《化学药品注射剂灭菌和无菌工艺研究及验证指导原则(试行)》。注射剂还应参考《化学药品注射剂包装系统密封性研究技术指南(试行)》、《化学药品注射剂生产所用的塑料组件系统相容性研究技术指南(试行)》等。1.3 过程控制制剂产品生产工艺过程控制需建立在深入的工艺研究基础之上。申请人应基于已有的生产经验、知识以及相关研究结果确认关键工艺步骤、关键工艺参数及其可接受范围,并对关键中间产品制定控制标准。列出所有关键工艺步骤和工艺参数控制范围,提供研究数据支持关键工艺步骤确定的合理性和工艺参数控制范围的合理性。1.4 工艺验证制剂产品上市许可申请前,申请人通常应完成商业规模生产工艺验证,提交工艺验证方案、工艺验证报告和生产工艺信息表。工艺验证阶段建议增加取样频率和取样数量,以支持产品质量符合要求。无菌制剂应按相关指导原则要求开展灭菌/无菌工艺验证,提供验证方案和验证报告。灭菌/无菌工艺验证应支持拟定商业化生产批量产品生产符合要求。1.5 生产批量仿制药注册批样品批量参照发布的《化学仿制药注册批生产规模的一般性要求(试行)》执行。人体生物等效性试验批或关键临床批样品的生产规模应在拟定的商业化生产线和生产设备上生产,处方、工艺、生产设备原则上应与商业化生产保持一致。制剂产品商业化生产中如存在分亚批情况,申请人应研究制定亚批的质控要求,在工艺研发和验证期间论证分亚批的必要性和分亚批控制策略的合理性;在证明生产过程中各亚批间质量均一的基础上方可将多个亚批合并为一个批次;明确亚批组成与成品批次的对应关系,必要时开展亚批保存时限研究。2. 原辅包质量控制2.1原料药申请人如使用外购原料药进行制剂生产,需结合原料药生产商提供的工艺路线对原料药的质量进行充分研究与评估,制定原料药内控标准以达到自制制剂与参比制剂质量一致的目的。如原料药的晶型和/或粒度分布对制剂质量产生影响,应被纳入原料药内控标准并制定专属的检测项目进行控制。原料药粒度分布应以人体生物等效性试验批次、关键临床批次和工艺验证批次样品使用的原料药粒度分布的实测数据作为限度制定依据。申请人应对原料药供应商和原料药质量进行全面的审计和评估,并在后续的商业化生产中保证供应链的稳定。如发生变更,申请人需按相关技术指导原则进行研究和申报。2.2 辅料所用辅料应符合制剂产品剂型的要求。申请人应明确关键辅料的关键质量属性控制情况,制定合理的内控标准。除特殊情况外,辅料应符合中国药典要求,或USP、EP、JP等要求。对于特殊辅料,申请人需注意辅料批间差异对药品质量的影响,基于风险建立合理的内控标准。来源于动物的辅料应有TSE/BSE风险声明。2.3 直接接触药品的包装材料和容器直接接触药品的包装材料和容器应符合国家药监局颁布的药包材标准,或USP、EP、JP等要求。申请人应依据参比制剂的包装系统,结合拟开发产品的特性和临床使用情况,选择能够保证药品质量的包装系统,用于支持自制制剂与参比制剂质量一致。根据制剂产品给药途径和风险评估,申请人应按照相关技术指导原则或规范对所选择的包装材料和容器进行相容性和功能性研究与评价;根据加速试验和长期试验研究结果确定所采用的包装材料和容器的合理性,以保证药品质量与参比制剂一致。3. 制剂的质量控制3.1质量标准建议申请人根据制剂产品特性和相关技术指导原则科学制定制剂产品质量标准,提供制定制剂产品质量标准所依据的试验资料与文献资料。产品的目标质量概况是确定制剂关键质量属性的依据。制剂的关键质量属性一般应包括但不限于性状、鉴别、有关物质(包括异构体杂质)、致突变杂质、元素杂质、微生物限度、无菌和含量测定等。申请人应参考ICH Q2和Q6A等指导原则,根据与参比制剂质量一致的要求,合理设定制剂质量标准检测项目和可接受标准,提供充分的支持性试验资料与文献资料。对于已有药典标准收载的制剂,申请人可以首先考虑选用药典标准检测项目和分析方法。分析方法学应重点确认药典标准检测方法和条件是否适用,若研究结果表明方法适用,申请人可沿用药典标准分析方法;若需建立新的检测方法,则应进行相应的方法学验证,并证明新方法不劣于药典方法。对于已收载在中国药典的制剂,质量指标一般应不低于中国药典要求。3.2 质量研究申请人可以参考ICH指导原则(Q2、Q3B、Q3C、Q3D、Q6A和M7等)、《化学药物杂质研究技术指导原则》、《化学药物质量控制分析方法验证技术指导原则》、《化学药物质量标准建立的规范化过程技术指导原则》等以及中国药典四部通则进行制剂产品的质量研究,提供制剂质量研究资料,包括代表性样品的典型图谱。分析方法应按照中国药典和ICH指导原则进行规范的方法学验证。(1) 有关物质对制剂中有关物质的研究应重点关注降解产物。降解产物包括原料药的降解产物、原料药与辅料和/或内包材的反应产物。原料药的工艺杂质一般不需在制剂中进行监测,但需关注工艺杂质是否对降解产物检出产生干扰。申请人应在全面分析杂质谱的基础上,结合相关文献,科学选择有关物质分析方法,对其进行规范的方法学验证和/或确认。对于已有药典标准收载的,申请人应分析药典标准分析方法的适用性,拟定制剂产品有关物质分析方法的分离检出能力和杂质控制要求应不低于药典标准。申请人可以在制剂中加入限度浓度的杂质对照品,证明拟定的有关物质分析方法可以单独分离目标杂质和/或使其主成分有效分离;对于药典标准尚未收载的,可以采用富含杂质样品(如适当降解样品、稳定性末期样品等),对色谱条件进行比较优选研究,根据对杂质的检出能力选择适宜的色谱条件,建立有关物质分析方法,并采用杂质对照品进行方法学验证。对于辅料、溶剂和/或复杂基质可能对杂质检测产生影响的分析方法,申请人应研究确定合理的辅料溶剂峰扣除方法。杂质含量测定如采用加校正因子和不加校正因子的主成分自身对照法,应对校正因子进行研究。对映异构体需采用手性色谱分析方法进行研究。(2) 致突变杂质通过对参比制剂和相关文献的了解,根据制剂的生产工艺和降解途径,对制剂中潜在的致突变杂质进行分析和研究,参考ICH M7制定合理的控制策略。对于晚期肿瘤用药,需基于适应症与用药人群,参考ICHM7与S9制定致突变杂质的控制策略。亚硝胺类杂质参照发布的《化学药物中亚硝胺类杂质研究技术指导原则(试行)》执行。(3) 元素杂质参照ICH Q3D 指导原则,通过科学和基于风险的评估确定制剂中元素杂质的控制策略,包括原料药、辅料、包装系统、生产设备等可能引入的元素杂质。腹膜透析液、肠外营养类注射剂或参比制剂已标识铝元素含量的,仿制药应在质量标准中制定铝元素检查项。(4) 溶出度申请人可基于参比制剂的溶出特性开发建立溶出度方法。如采用药典标准、FDA溶出度数据库或日本IF文件等公开途径已公布溶出度方法,建议申请人开展方法适用性研究;如不采用已公布溶出度方法,则需提供相应依据;如缺乏可参考的溶出度方法,建议申请人基于药物pH-溶解度曲线、漏槽条件等信息,参考相关溶出度技术指导原则并结合制剂产品特性开发溶出度方法。研究过程需关注方法区分力的考察。3.3 质量对比研究自制制剂应与参比制剂进行全面的质量对比(含杂质谱对比),两者质量应一致。参比制剂原则上应提供多批次样品的考察数据,充分考察与制剂产品紧密相关的关键质量属性。自制制剂的杂质种类原则上应不超过参比制剂,杂质含量应不超过参比制剂的杂质限度。若自制制剂出现超过鉴定限度或界定限度的新杂质,申请人应分析其产生原因,采取相应措施降低杂质含量,必要时需提供安全性试验数据来论证杂质的安全性。参照相关技术指导原则要求开展自制制剂和参比制剂的溶出曲线比较研究。溶出曲线对比考察参比制剂应提供多批样品数据,也应考察参比制剂溶出行为批内和批间均一性。溶出曲线相似性判定应符合《普通口服固体制剂溶出度试验技术指导原则》、《普通口服固体制剂溶出曲线测定与比较指导原则》等相关要求。3.4 质量标准限度制定申请人应在全面掌握制剂产品关键质量属性的基础上,结合多批次样品的质量研究结果和稳定性考察结果,制定科学、合理、可控的质量标准。质量标准限度的确定应基于对药品安全性、有效性及与参比制剂质量一致性的考虑,包括分析方法的系统误差。有关物质、致突变杂质和元素杂质等检测项目限度确定需结合试验结果或文献依据,并考虑给药途径、给药剂量和临床使用情况等。一般通过与参比制剂进行比较确定杂质限度。如已收载于药典标准等公开资料,应对药典方法进行比较研究,确定合理的分析方法,限度设定应不高于药典标准限度。有关物质的可接受限度通常应符合ICH Q3B和/或欧盟抗生素指导原则等要求,必要时申请人需提供安全性试验数据来论证杂质的安全性。在溶出曲线研究的基础上,根据参比制剂的溶出特性、临床试验批和/或人体生物等效性试验用样品的溶出度结果,合理制定溶出度标准。4. 稳定性制剂稳定性研究包括影响因素试验、加速试验和长期试验,必要时应进行中间条件试验考察。申请人可以参考ICH Q1A、Q1B和《化学药物(原料药和制剂)稳定性研究技术指导原则》开展稳定性研究。提交制剂注册申请时,申请人一般应提供3批样品6个月加速试验和不少于6个月长期试验条件下的稳定性研究资料(包括典型图谱)。加速试验和长期试验应在符合GMP条件下进行,试验样品应为能够代表商业化生产规模的注册批次,建议生产不同批次的制剂采用不少于2批次的原料药。根据稳定性研究结果和参比制剂信息确定贮藏条件,仿制药的稳定性应不低于参比制剂。通常应提交稳定性试验方案和稳定性承诺。根据制剂产品特性,考察包装系统对贮藏和运输的适用性。五、化学药品5类研究与评价技术要求化学药品5 类属于境外已上市药品,包括5.1 类和5.2 类,申请人应参考国际通行及国内现行相关技术指南的要求开展研究,其中化学药品5.2 类需在选择确认合适参比制剂的基础上,还应参考本技术要求中“化学药品3 类研究与评价技术要求”相关内容开展药学研究。在申请上市许可阶段,申请人应按照《M4:人用药物注册申请通用技术文档(CTD)》格式编号及项目顺序整理并提交申报资料,包括可反映供中国上市产品情况的现行版CTD 药学研究资料,汇总CPP 证书载明国家首次上市后至申报进口期间发生的工艺改进、质量提升等药学重大变更(包括经药监机构批准的变更内容等)历史简介,必要时提供药学重大变更研究资料。提供代表性批次样品的批分析数据,包括关键临床试验批(如境外III期临床试验批、境内临床试验批)、进口检验批、工艺验证批样品的列表汇总信息,说明进口中国的药品与境外上市药品在生产线、原辅包、处方工艺和质量控制等方面的异同。
  • 滨松诠释与众不同的服务理念:服务必须是增值的——视频访滨松光子学商贸(中国)有限公司市场部经理王斯
    p  strong仪器信息网讯/strong 科学仪器市场竞争日趋激烈,仪器用户的需求已从仪器硬件产品延伸至售前、售中、售后等全方位的服务,营造全行业仪器企业优质的服务文化将会是下一阶段全新的突破。这就需要各仪器制造商将创新技术、产品应用、售后服务等紧密结合,将优质的服务理念全程贯穿分析仪器用户使用的各个环节。/pp  为了将“坚持创新,深耕技术 优化服务流程,缩短响应时间 诚信经营,杜绝虚假宣传 规范标准,完善售后”的理念付诸于行动中。2019年1月10日,由仪器信息网主办的“科学仪器企业优质服务倡议书签约仪式”在北京京仪大酒店隆重举行。/pp  滨松光子学商贸(中国)有限公司(以下简称:滨松中国)携手国内外30家知名仪器企业,签订《科学仪器企业优质服务倡议书》。活动期间,仪器信息网编辑有幸采访到滨松中国市场部经理王斯,请他谈一谈滨松中国的用户服务理念及2018年表现情况。/pp  经过与王斯的沟通,我们了解了滨松中国在服务理念上的特别之处。王斯说,“滨松是一个工业品的元器件供应商,我们认为服务不是叠加于产品之上的,而是独立于产品存在的,是一种增值服务。服务不是用来弥补产品缺陷的,而是要给客户提供一种超越其期望的体验。如果服务不能是增值的,就没有任何意义。”/pp  作为一个光器件为主的工业品企业,滨松和一般的工业品企业有一定的差别。王斯介绍到,一般的仪器类企业是一个正金字塔的结构,仪器的制造商在金字塔的顶端,下面是不同级别的供应商,包括模组、材料、外包服务等的供应商。滨松本身做的是光电器件,这是一个非常细分的领域,面对的市场体量和规模并不大,而用光电核心部件做成的模组、组件、设备所面临的应用和市场却是非常大的,滨松面临的其实是一个倒金字塔的结构。在这种结构下,滨松愿意发挥自己的专有技术,推动中国光产业的发展。/pp  据介绍,滨松中国总部设在北京,除了有销售团队外,还有大约20人的销售技术团队。随着信息社会的变化,滨松也在不断的完善自己的客户服务体系。除了提供线下的服务以外,产品技术团队还在2018年专门建设了线上网站,跟客户和合作伙伴分享产品及应用技术信息。据悉,2019年滨松还准备在北京和上海分别建设两个中心实验室,为客户提供样品测试、模拟方面的服务,包括模拟客户的实际使用场景等,为客户提供一体化的解决方案。/pp  谈到滨松,很多人都会想起光电倍增管。确实,滨松在光电倍增管领域有非常高的市场占有率,几乎成为光电倍增管的代名词。但实际上,滨松有四个事业部,包括电子管事业部、固体事业部、系统事业部以及激光事业部,并且在不断的丰富自己的产品线,向半导体和激光行业扩展。/pp  2018年,滨松在中国销售额首次突破10亿,与2017年同期相比销售额增长30%。面对中国经济的高速增长,滨松认为未来在医疗、分析、体外诊断、环保、激光加工等方面有非常好的前景和市场。/pp  从服务的角度来说,滨松在深圳和上海分别开设了分公司来推动本土化的服务。“我们认为我们自身的优质产品以及本土化的服务,是我们的核心竞争力。我们会继续发挥这样的服务,并应用滨松国际化的视野,为中国的客户提供更优质的服务。”/pp  详细内容请查看视频:/ppscript src="https://p.bokecc.com/player?vid=316C92511B751E079C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptbr//ppbr//p
  • 1200万!甘肃农业大学干旱生境作物学国家重点实验室超高分辨质谱仪采购项目
    一、项目基本情况项目编号:2024zfcgjkky00008项目名称:甘肃农业大学干旱生境作物学国家重点实验室科研仪器共享平台建设项目预算金额:1200.0(万元)最高限价:1200.00(万元)采购需求:超高分辨质谱仪数量1套(进口产品已论证)合同履行期限:合同签订后90日历日内本项目(是/否)接受联合体投标:否二、获取招标文件时间:2024-06-05至2024-06-12,每天上午00:00至12:00,下午12:00至23:59地点:甘肃省公共资源交易网(https://ggzyjy.gansu.gov.cn)在线免费方式:社会公众可通过甘肃省公共资源交易网免费下载或查阅招标文件。拟参与甘肃省公共资源交易活动的潜在投标人需先在甘肃省公共资源交易网上注册,获取“用户名+密码+验证码”,以软认证方式登录;也可以用数字证书(CA)方式登录。这两种方式均可进行我要投标等后续工作。售价:0(元)三、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:甘肃农业大学地 址:甘肃省兰州市安宁区营门村1号联系方式:0931-76552382.采购代理机构信息名 称:甘肃明招项目管理咨询有限公司地 址:甘肃省兰州市七里河区西津西路194号中天健广场8幢10楼1020室联系方式:189190626843.项目联系方式项目联系人:连雪松电 话:18919062684
  • 血络通胶囊含量的测定
    血络通胶囊是由人参和银杏叶提取物经制备而成的中成药,具有益气,活血,通络之攻效,用于轻度脑动脉硬化症初期属气虚血滞所致的头痛,眩晕,健忘,肢体麻木,神疲乏力,舌质暗紫等症。文中参照血络通胶囊国家药品标准草案公示稿,分别用UltimateXB-C18和月旭UltimatePG-C18两款色谱柱测定其中的总黄酮醇苷含量和人参皂苷含量,结果均能满足检测需求。一、总黄酮醇苷色谱条件色谱柱:月旭Ultimate XB-C18(4.6×250mm,5μm)。流动相:0.4%磷酸溶液/甲醇=50/50;检测波长:360nm;柱温:30℃;流速:1.0ml/min;进样量:10μL。谱图和数据槲皮素、山柰素、异鼠李素混合对照品溶液结论用月旭UltimateXB-C18(4.6×250mm,5μm)色谱柱,在该色谱条件下测定,能满足检测需求。二、人参皂苷色谱条件月旭UltimatePG-C18(4.6×250mm,5μm)检测波长:203nm;柱温:30℃;流速:1.0ml/min;进样量:10μL。谱图和数据人参皂苷Re、Rb1混合对照品溶液结论用月旭Ultimate PG-C18(4.6×250mm,5μm)色谱柱,在该色谱条件下测定,能满足检测需求。三、产品信息
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制