当前位置: 仪器信息网 > 行业主题 > >

蛋白胨盐溶液

仪器信息网蛋白胨盐溶液专题为您提供2024年最新蛋白胨盐溶液价格报价、厂家品牌的相关信息, 包括蛋白胨盐溶液参数、型号等,不管是国产,还是进口品牌的蛋白胨盐溶液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合蛋白胨盐溶液相关的耗材配件、试剂标物,还有蛋白胨盐溶液相关的最新资讯、资料,以及蛋白胨盐溶液相关的解决方案。

蛋白胨盐溶液相关的资讯

  • TOPAS发布ATM 240S KCL盐溶液气溶胶发生器新品
    ATM-240S 盐溶液(KCL)气溶胶发生器——Aerosol generators一、仪器描述ATM-240S适用于发出盐溶液气溶胶颗粒,尤其适合于用盐溶液颗粒评价过滤性能中,包括KCL气溶胶颗粒。根据最新的国际标准ISO 16890,需用0.3~10.0μm的KCL气溶胶颗粒对一般通风的滤材和过滤器进行过滤性能的评价,应用ATM-240S,可将KCL溶液雾化从而产生所需的KCL颗粒。 二、仪器应用l 持续产生高度稳定的气溶胶【VDI 3491 Part 2】l 可产生大粒径盐颗粒 最大10μml 颗粒物产生速率在较大的范围内l 产生气溶胶盐颗粒含较少的水分,无需配置干燥装置l 易操作、易清理、易维护l 预热时间较短l 满足ISO 16890的测试要求 三、仪器规格参数型号ATM-240S 流量为50m3/h,试验时间为30s时的KCL颗粒分布压缩空气5 bar, 0.5 m3/h,无油洁净压缩空气体积流量200-300 L/h储液量100~300 ml颗粒粒径0.1~10.0 μm颗粒物产生速率3*103~1.3*105个/cm3设备尺寸900x400x300 mm气溶胶出口直径 13 mm颗粒类型KCL溶液或蒸馏水ATM-240S原理图简介盐溶液通过内置泵被吸入发生装置中,并通过喷嘴雾化成气溶胶颗粒,较大液体颗粒通过重力作用重新回到溶液中,较小颗粒则通过细管被输出,盐固体颗粒通过去除水分而得到,为了干燥,额外的干燥空气被送入细管中,由于喷嘴的特殊设计,使得非常小的KCl溶液就可以得到较高的颗粒输出量。创新点:1.满足国际最新标准ISO 16890的要求,可产生0.1~10微米的KCL颗粒,完全满足测试要求2.产生的气溶胶颗粒携带少量水分,无需配置干燥装置就能满足要求3.设备具有易操作、易维护保养的优势ATM 240S KCL盐溶液气溶胶发生器
  • 如何使用反向移液技术更精准的移取蛋白溶液
    每支移液器的液程通常都用纯水和正向移液技术校准过。因此我们推荐使用正向移液技术移取水性溶液,如缓冲液,稀释酸或碱。当移取不同于水的液体时,由于具有不同的液体特性,其移液量可能偏离所选的量程。比如一些生物溶液的移液,可能会在移液器尖端或试管中产生气泡或泡沫,这将使移液量产生偏差。在这种情况下,我们推荐使用反向移液技术移取高粘度或者容易产生泡沫的液体。反向移液技术减少了喷溅,泡沫和气泡形成。这种方法尤其适用于移取小体积的液体。 下面先介绍一下正向移液和反向移液技术的操作。1.将按钮压至第一停点。2.将吸头浸入液面下1cm处,缓慢释放按钮使其滑回原位。将吸头从液体中移出,接触容器边缘除去多余的液体。3.排液时,吸头紧贴容器壁先轻按按钮至第一停点,略作停顿后, 将按钮按至第二停点(这个操作会将吸头内的液体彻底排尽),将吸头从容器中沿容器壁移出。4.松开按钮至准备位置。1.将按钮压至第二停点。2.将吸头浸入液面1cm处,缓慢释放按钮使其滑回原位。这将时液体充满吸头。将吸头从液体中取 出,接触容器边缘去掉多余液体。3.放液到接收容器时平稳地轻按按钮至第一停点。保持在这个位置。一些液体会残留在吸头中不能被放出。4.残留在吸头内的液体能够被吹回原溶剂中或者同吸头一起丢弃。5.松开按钮到准备位置。 选择合适的移液器对于微量移液的精准性也很重要,Thermo Scientific F系列移液器的超强吹出设计则满足了微量移液对精准性的需求。低于50&mu l液程的Thermo F系列移液器均采用双活塞设计,与其它普通移液器相比,其空气吹出能力增大50%-60%,因此在小体积的液体吹出时会非常干净完全,大大提高了移液的精准性。 我们使用Thermo Scientific Finnpipette F2 1-10 &mu l移液器,配合Thermo Scientific Finntip Flex 10吸头,同时分别使用正向移液和反向移液,移取1%牛血清白蛋白(BSA,Sigma A7030)进行移液精准性测试。图1 表明当使用反向移液技术时,移液量的变化比使用正向移液技术处于更狭窄的一个范围。 图2 表明使用两种移液方式的不精确度。不精确度是估量移液的重复性的。反向移液技术可以使不精确度相对于正向移液技术降低50%。 这是因为,BSA溶液含有易被疏水移液器吸头壁吸附的疏水成分。当使用正向移液技术时,每次移液后少量的液体易残留在吸头中。这种趋势会增加吹出液体体积之间的偏差,因为当重复移液时吸头中累积的残余液体可能增加下一次移液的移液量。而反向移液技术中有额外的液体被吸入吸头中,这些额外的液体作用似一个蓄水池它使连续移液的移液量均等。这个蓄水池也能阻止空气在吹出液体的最后从吸头口进入,这样可以降低液体起泡的可能性。这使反向移液技术在移取小液量液体时尤其有用。由此可见,选择Thermo Scientific F2移液器,同时配合反向移液技术,可较好的提高移取蛋白溶液的精确度和重复性。 这是个移液器的王国,每个人都能找到最适合自己的移液器。这是一个富于创新的品牌,传承40年移液器的深厚底蕴。&ldquo 先锋源于创新,全新精准体验&rdquo 是赛默飞世尔科技移液器的真实写照。Thermo Scientific Finnpipette的历史可追溯到1971年,凭借着以人为本的设计理念,坚持不断创新,缔造了许许多多世界&ldquo 第一&rdquo 的记录。我们推出了全球第一支连续可调微量移液器、第一支多道移液器、第一支可整支高压消毒的移液器、第一支彩色标记移液器。Finnpipette特别重视客户反馈,不断努力改善产品。我们始终追求提高性能、精准性和客户满意度。更多Thermo Scientific移液解决方案请查看:Thermo移液器。
  • RapiGest SF试剂:促进溶液中蛋白酶解的有利工具
    Ying Qing Yu与Martin Gilar 美国马萨诸塞州米尔福德沃特世公司简介 本应用纪要中,我们介绍了沃特世专利RapiGest&trade SF试剂的物理化学性质及其应用领域。2002年,我们首次推出RapiGest SF,这一创新产品是帮助酶消解的有利工具,可促进溶液中蛋白的消解,它能够改善样品制备过程中蛋白的溶解度。 RapiGest SF提高酶解速率与完全程度的机理详见图1。温和的蛋白变性可打开蛋白结构并暴露酶切位点,以供酶切。在RapiGest SF溶液中,酶对变性的耐受性优于普通蛋白,并能保持活性。在加入酶之前高温加热RapiGest SF溶液可使球蛋白更为完全变性,之后需将酶与样品一起进行37 ° C的孵育。图1 蛋白底物在RapiGest SF溶液中变性􀉼 之后对蛋白酶切更为敏感超过200多家行业内杂志引用了使用RapiGest SF进行样品溶解的案例,大部分为蛋白组学的应用。最近,许多制药实验室使用RapiGest SF用于蛋白药物的确证。因为酶消化的速度的提高并在LC、MS分析前极易清除,RapiGest SF已被多个应用领域广泛接受,其中包括高级序列研究的LC/UV/MS蛋白药物的肽图分析。讨论 什么是RapiGest SF? RapiGest SF是酸性不稳定表面活性剂,在酸性条件下极易水解。1这种独特的性质,在需要的时候,可用于从溶液中清除表面活性剂。RapiGest SF的结构及其水解副产物见图2。酸性不稳定的性质可在pH2条件下,45分钟内达到完全降解。 该表面活性剂可降解为两个产物:dodeca-2-one和3-(2,3-二羟基丙基)丙磺酸钠。前者与水不能互溶,可通过离心清除。后者在水溶液中溶解度很高,而在反相LC模式下不保留。酶消解后的水溶液可直接进行HPLC、LC/MS或MALDI-TOF MS进行分析。消解后的清除 样品分析前无需额外去清除表面活性剂(如透析)。在分析前,酶消解后通常经过酸(如甲酸、三氟乙酸(TFA)或盐酸(HCl))的酸化,降解RapiGest SF。建议降解条件pH &le 2。胰蛋白酶消解的兼容性 胰蛋白酶是最常见的蛋白水解酶,可用于肽图分析和蛋白组学的应用。我们研究了在添加RapiGest SF的情况下胰蛋白酶的活性作用,并与文献中最常见的变性剂的作用做了对比。本检测基于胰蛋白酶诱导N-&alpha -苯甲酰-L-精氨酸乙基乙酯(BAEE)在50 mM重碳酸胺(pH 7.9)中的室温水解。胰蛋白酶活性的变化通过UV 253 nm下测量BAEE水解率进行计算。在选择的变性溶液中,胰蛋白酶活性与对照样品进行对比(非变性剂)。结果见于表1。 表1中的数据说明低浓度下(0.1%) RapiGest SF不抑制胰蛋白酶的活性。这与结构上类似的表面活性剂SDS不同,SDS是很强的变性剂,可会使胰蛋白酶失活。尿素、乙腈或盐酸胍也是胰蛋白酶消化的变性剂。但是乙腈是强洗脱剂会干扰消解样品进行反相LC分析。正如我们所知,尿素可使蛋白共价修饰,盐酸胍也和SDS一样可以使酶失活。 本实验说明蛋白酶的活性受到蛋白溶液中所用变性剂的影响。RapiGest SF在从低到高的浓度下均不改变酶活性,因此,最佳的蛋白消解条件是无需过量酶即可达到酶解的结果。快速蛋白消解 对蛋白酶解存在抗性的蛋白使用RapiGest SF试剂,可在数分钟内消解完全。完全消解球蛋白、马肌红蛋白只需要5分钟内即可完成。该试剂辅助的消解结果与对照见图3。由于肌红蛋白是球蛋白,众所周知,若没有表面活性剂将难以消解。在对照反应中,与胰蛋白酶孵育9小时后只有少量的蛋白可以消化。使用了RapiGest SF试剂,总体的消解的效率显著提升。在蛋白药物肽图中的序列覆盖范围更大 RapiGest SF在蛋白组学的样品前处理中广泛使用,是有效的蛋白溶解变性剂。最近越来越多的生物制药实验室在肽图分析中采用了RapiGest SF。一些发表的论文记录了使用RapiGest SF进行蛋白药物消解的优势。4,5经报导的RapiGest SF浓度范围为0.05 -1%,取决于蛋白疏水性与浓度。 我们发现浓度范围为0.05 -1%的RapiGest SF足以使各种大小的蛋白变性,高浓度RapiGest SF适合全细胞蛋白提取的实验。 单抗(mAbs)肽图分析一直以来都因为难以消解这些大疏水蛋白而难以实现。肽图分析的目的是确认蛋白序列并发现所有存在后翻译修饰(PTMs)的蛋白。图4举例说明了RapiGest SF辅助的人单抗消解的实例。样品制备与分析的参数以UPLC和四级杆Tof质谱分析的参数已列表作为指导。 图4显示实验中总序列覆盖率为98%。数据分析通过BiopharmaLynx&trade v.1.2软件得到。高序列覆盖率(98%)说明单抗完全消解。LC/MS分析中没有发现错误酶切的多肽或完整未被酶切的蛋白。剩下的2%未确认的序列为少数二个氨基酸的肽或单个氨基酸(R或K),而无法在反相柱上保留。样品制备 人单抗样品(10 &mu L, 21 mg/mL)在含有0.1% (w/v) RapiGest SF 的50 &mu L 50 mM重碳酸铵中溶解。将2 &mu L 0.1 M的二流苏糖醇(DTT)加入样品,样品在50 ° C加热30分钟,加入4 &mu L 0.1 M的碘代乙酰胺,在样品冷却至室温后样品在黑暗中静至40分钟。 样品中加入8 &mu g胰蛋白酶(胰蛋白酶浓度= 1 &mu g/&mu L),样品在37 ° C孵育过夜。消解样品与1%甲酸与10%乙腈混合(1:1,v:v)。用Milli-Q水(Millipore)稀释至5 pmol/&mu L后进行LC/MS分析。LC 条件 LC 系统 沃特世 ACQUITY UPLC系统 色谱柱 ACQUITY UPLC BEH 300 C18 肽分离专用柱, 2.1 x 100mm (P/N = 186003686) 柱温 40 ° C 样品进样 2 &mu L (10 pmol) 溶液A 0.1% 甲酸水溶液 溶液B 0.1% 甲酸乙腈溶液 流速 200 &mu L/min 梯度 0-2分钟:2%B 2 &ndash 92分钟:2 -35% B 92 -102分钟:35 - 50% B 102.1 -105 分钟:90% B 105.1-110分钟:2% B MS条件 MS系统 沃特世SYNAPT&trade MS (V型) 毛细管电压 3.2 kV 源温度 120 ° C 去溶剂温度 350 ° C 去溶剂气 700 L/hr MS 扫描速率 1 秒/次 锁定质量通道 100 fmol/&mu L Glu-Fib多肽(m/z 785.8426, z = 2),流速20 &mu L/min 与其他的蛋白酶合用 我们测试了RapiGest SF与多种蛋白酶的适配性,如Asp-N, Lys-C与Glu-C。在酶解前使用RapiGest SF变性蛋白获得了有效的消解结果。 蛋白去糖基化的用途 RapiGest SF也用于测试其它酶,如PNGase F,该酶用于酶切糖蛋白N-连接的糖基。2图6说明了去糖基化鸡蛋卵清蛋白。在RapiGest SF介质中PNGase F消解2小时后观察到了完全的去糖基化反应。 结论  RapiGest SF促进了蛋白酶解的速度与完全程度,能够得到蛋白药物序列覆盖率很高的肽图分析。  RapiGest SF是适用于蛋白组学、糖蛋白与生物制药应用的领域  几乎无需消解后样品处理,简单样品酸化,足以从溶液中去除RapiGest SF。多种情况下LC/MS分析前只需简单稀释。  RapiGest SF简化了样品制备方法,可提高分析通量;使用该方法提高实验室工作效率并提高数据质量。 参考文献 1. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC. Enzyme-friendly, mass spectrom- etry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal. Chem. 2003 75: 6023-6028. 2. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC, A complete peptide mapping of membrane proteins: a novel surfactant aiding the enzymatic digestion of bacteriorhodopsin. Rapid Commun.Mass Spectrom. 2004 18: 711-715. 3. Yu YQ, Gilar M, Kaska J, Gebler JC. A rapid sample preparation method for mass spectrometry characterization of N-linked glycans. Rapid Commun. Mass Spectrom. 2005 19: 2331-2336. 4. Bailey MJ, Hooker AD, Adams CS, Zhang S, James DC. A platform for high- throughtput molecular characterization of recombinant monoclonal antibodies, J. Chrom. B. 2005 826: 177-187. 5. Huang HZ, Nichols A, Liu DJ. Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest SF assisted digestion. Anal. Chem. 2009 81 (4): 1686-1692.
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • SPE应用文集004:从稀释水溶液中萃取和浓缩蛋白质
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。《从稀释水溶液中萃取和浓缩蛋白质》(Extraction and Concentration of Protein from Dilute Aqueous Solution)应用领域:生物/生物科技目标分析物:牛血清白蛋白BSA样品基质:水萃取柱:BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mL安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱样品制备:配置20mL BSA溶液(1mg/1mL),以0.025M pH=7磷酸缓冲溶液为溶剂小柱活化:加入10mL甲醇活化,5mL 0.5M pH=7磷酸盐缓冲溶液活化,6mL 0.025M pH=7磷酸盐缓冲溶液平衡,保持过程中小柱始终处于润湿状态上样与清洗:关闭真空泵,加入5mL 0.025M pH=7磷酸盐缓冲溶液,装上75mL储液器,缓慢抽出20mL的样品,用4mL0.025M pH=7磷酸盐缓冲溶液淋洗,移去储液器洗脱:用2 X 0.5mL 异丙醇:水:三氟乙酸 60:40:0.1,收集洗脱液分析方法:UV以上即为固相萃取步骤,相关产品信息如下:B7216-06 BAKERBOND spe&trade Wide-Pore Butyl (C4), 500 mg, 6 mLB7120-00 75mL储液器及适配器B3246-01 磷酸二氢钾, ' BAKER ANALYZED' B9093-03 甲醇, ' BAKER ANALYZED' HPLCB9095-03 异丙醇, ' BAKER ANALYZED' HPLCB9470-00 三氟乙酸, ' BAKER ANALYZED' HPLCB4218-03 水, ' BAKER ANALYZED' HPLC您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_172268.htm关于J.T.Baker :  杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • PeproTech无动物成分蛋白大促销
    细胞治疗的福音--PeproTech多种无动物成分(Animal Free)蛋白大促销细胞治疗是将人体细胞经体外培养、诱导增殖活化后回输入人体的一种治疗肿瘤等疾病的方法,因安全、有效,并能提高生活质量而广为人们所关注和采用。细胞治疗离不开细胞培养,而培养过程中细胞因子或活性蛋白的加入不可或缺,这些细胞因子或活性蛋白目前基本上都是重组表达而来。左图显示细胞因子和活性蛋白的传统表达法。在该法的表达阶段,对于原核细胞表达,培养时需在培养基中加入蛋白胨;而真核细胞表达时,则需在培养液中加入牛血清。蛋白胨和牛血清都是动物成分,因此用传统表达法表达出来的细胞因子或活性蛋白不可避免的会混入动物成分。举个简单的例子,如果想用传统方法表达人IL-2,则最后得到的重组人IL-2中可能会有牛的IL-2或其它成分,这样的人IL-2用于临床时可能会给患者带来安全问题,治疗效果也可能会受到影响。无动物成分(Animal Free)的细胞因子和蛋白则是在传统表达法的基础上,对原核和真核细胞的培养体系进行了改进,其中不加入蛋白胨和牛血清,因此最后所得的细胞因子和蛋白中不会含有动物成分,这样也就具有了以下几个突出的优势:1. 传统蛋白可能会给患者引入疯牛病病毒或其他未知病原体,而无动物成分(Animal Free)蛋白不会。2. 传统蛋白中的动物抗原可能会引起临床使用时的异种排斥和过敏反应,而无动物成分(Animal Free)蛋白不会。3. 传统蛋白中的痕量动物激素或其它活性成分可能会给患者带来副作用,而无动物成分(Animal Free)蛋白不会。为给国内的细胞治疗,无论是免疫细胞治疗,还是干细胞治疗提供更安全的、更经济实惠的蛋白产品,PeproTech公司推出无动物成分(Animal Free)蛋白促销活动,与传统蛋白同价。抓住这次机会,以更优惠的价格获得PeproTech高端产品。 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014040008.html
  • 可溶性冻干丝素蛋白的应用领域及水分含量检测
    丝素是最早利用的动物蛋白质之一,它作为纤维材料在纺织领域中具有无可比拟的优越性。随着科学技术的进步和人们对蚕丝结构、性质研究的不断深入,丝素在生物材料及医药领域中的应用越来越引人注目。 丝素蛋白可用作手术缝线、隐形眼镜、人工皮肤等,还可以与其他材料混合制作人工肌肉。丝素具有独特的氨基酸组成和丝阮蛋白的二级结构,并且其中部分氨基酸对人体具有保健、医药功效,丝素蛋白作为生物医药材料的研究更加广阔而深入,特别在创面覆盖材料、药物释放材料、活性酶的载体及其生物传感器的应用、生物材料等方面的研究已取得了十分显著的成效。 丝素蛋白冻干粉是丝素蛋白再经技术处理后,通过冷冻干燥技术制备出来的丝素蛋白的冻干态,丝素蛋白冻干粉结构稳定,可溶于水,同时在室温下能长期保存和运输。丝素蛋白冻干粉经水调配后会再次形成丝素蛋白溶液,继而用于生物材料的制备和其他科学研发领域。广泛应用于组织工程、化妆品等领域,本文为您提供专业的应用方法来检测丝素蛋白冻干粉中的水分含量。使用仪器:禾工AKF-2010V智能卡尔费休水分测定仪配置:全封闭安全滴定池组件;铂针电极;滴定池搅拌台;10ul微量注样针;样品称量舟;电子天平(0.1mg)使用试剂:滴定剂:容量法单组份试剂,当量3mg/ml;溶剂:无水甲醇; 实验步骤:使用AKF-2010V水分仪的“吸溶剂”功能向滴定池内注入约40ml的无水甲醇溶剂,再通过”打空白“功能滴定至终点,以去除滴定池内的水分,仪器就绪并保持终点的状态,用经过干燥处理的微量进样针精确抽取5ul的纯水,拭干针头后放入天平称量选择仪器标定仪功能,将纯水注入到滴定池内液面以下,拭干针头后放入天平称量,将前后两次称量只差作为纯水的重量输入到仪器,开始标定。重复操作3-5次,仪器自动保存标定结果并计算出平均值作为试剂的滴定度。用称量舟称取一定量的样品加入滴定池,将进样前后称量舟的重量之差作为样品进样量输入仪器,并开始测量。 结果表明通过使用禾工AKF-2010V直接进样法测量,不但为分析测试人员省去了宝贵的时间,还同样有效的检测出了丝素蛋白冻干粉当中的含水量。
  • 案例:冷冻干燥机冻干蛋白酶的操作流程
    冷冻干燥蛋白酶是在生物制药、生物化学实验和分子生物学研究等领域中常见的操作,该过程能够保留蛋白酶的活性,延长其保存时间。以下是冷冻干燥蛋白酶的一般操作流程:1. 准备工作:选择蛋白酶: 根据实验需求选择合适的蛋白酶,确保其适用于冷冻干燥的过程。准备样品: 准备含有蛋白酶的溶液。注意溶液的浓度和成分,确保其适用于冷冻干燥处理。 2. 冷冻:样品冷冻: 将蛋白酶溶液以合适的体积倒入冷冻盘或其他冷冻容器中,然后放入冷冻设备冷阱室中,确保冷冻过程中样品均匀冷却。冷冻温度: 控制冷冻温度,通常是零下温度,使蛋白酶迅速冻结。 3. 冷冻干燥:转移: 将冷冻的样品迅速从冷阱室内转移到冷冻干燥机的干燥架上。真空抽气: 启动冷冻干燥机的真空泵,建立真空环境,抽除样品中的水分。升温阶段: 开始升温(提供样品中水分升华时所需的热量),使蛋白酶在真空条件下升华,从而去除水分。等温阶段: 在升温后的一定温度下保持稳定,确保样品中的水分充分升华。 4. 收集和存储:冷冻干燥结束: 当冷冻干燥结束后,停止真空,关闭冷冻干燥机。收集样品: 从冷冻干燥机中取出样品。注意避免受潮,尽快妥善保存。存储: 将冷冻干燥后的蛋白酶样品存储在防潮、密封的容器中,最好在-20°C以下的低温环境中保存,以确保长期稳定性。 注意事项:操作过程中要防止样品过度升温,以免影响蛋白酶的活性。确保冷冻干燥机和其他设备的清洁和维护,以保证实验的准确性和重复性。操作过程中要避免样品受到空气湿度的影响,尽量在湿度低的环境中进行。这个操作流程是一般性的指导,具体操作可能因使用的冷冻干燥机型号和蛋白酶种类而略有不同。在操作过程中,请参考设备和试剂的使用说明书,确保按照正确的步骤进行操作。
  • 实用建议:如何合理设计稳定的冻干蛋白配方(一)
    为什么要用冻干的方法制备稳定的蛋白药物产品?在蛋白药物治疗的早期研发中,有必要设计一种在运输和长期储存期间稳定的配方。显然,水溶剂的液体产品对于生产来说是很容易且经济的,对于终端使用者也是十分方便的。水溶剂的液体产品存在的问题1. 大多数的蛋白以液体状态存在时,易于化学(脱酰胺或氧化)和/或物理降解(聚合,沉淀) 2. 如果严格控制水溶剂蛋白的储存条件,并且对配方进行合理设计,可以减缓其降解,但是在实际的运输过程中,精确控制储存条件通常是行不通的,蛋白会因受到多种应力的作用而变性,包括摇动,高低温,冷冻等 3. 尽管会设计配方和运输条件尽可能规避这些应力导致的损害,但是仍然不能足够阻止在长期储存过程中造成的损害。例如,在某些情况下,尽量减少化学降解的条件会导致物理损伤,反之亦然,那么就无法找到提供必要的长期稳定性的折衷条件。解决方案:冻干配方设计合理的冻干配方,理论上可以解决以上存在的所有这些问题。在干燥的样品中,降解反应可以得到充分的抑制或减缓,蛋白产品在室温状态可以仍然维持其稳定性,保存期可达到数月或数年的时间。而且,在运输过程中,短期的温控偏离,冻干的蛋白样品通常也不会受到损害。即使在两种或多种降解途径需要不同条件才能实现最大热力学稳定性的情况下,干燥产品中反应速率的降低也可以实现长期的稳定性。因此,一般来说,当配方前研究表明在液体配方中不能获得足够的蛋白稳定性时,冷冻干燥提供了颇有吸引力的替代方案。冻干蛋白配方可能遇到的问题然而,相对水针剂产品,只需要简单灌装即可来说,冻干过程较为复杂,且耗时、成本高,再有,一个十分关心的问题,如果配方中没有合适的稳定赋形剂,大多数蛋白制剂在冻干的过程中至少部分会因冻结应力和脱水应力而变性,结果通常是不可逆的聚合,通常是在冻结之后立即聚合或在储存过程中,小部分蛋白分子发生聚合。因为大多数的蛋白药物是非肠道给药,即使只有百分之几的蛋白聚合也是不可以接受的。因此,只是简单的设计一个配方,允许蛋白能承受冻干过程中的应力,但是无法确保冻干后的样品能有长期的稳定性。一个较差的冻干配方,蛋白很容易发生反应,须要求在零度以下储存,这样的配方应当认为是不成功的。本文将提供一些实践的指导,用于配方的设计,可以在冻结和干燥过程中保护蛋白,并且在室温条件下长期储存和运输过程中具有很好的稳定性。再有,会简要地讨论,配方设计须考虑到工艺条件的物理限制,已获得最终低水分含量的良好蛋糕。我们将不讨论冻干工艺的设计和优化,也不会偏离关于赋形剂选择的实用建议,以解决关于这些化合物稳定蛋白质的机制的争论。有丰富经验的药物科学家可能跟这篇文章的内容也没有很大的关系,但是可以将蛋白药物产品推向市场,然而,我们的目标主要是针对对于稳定的冻干蛋白配方设计还不太了解以及具有很大挑战的那些研发人员提供一个很好的开始。 配方设计的主要制约因素有哪些?当合理设计冻干配方时,需要考虑的因素很多,从整体来看,工作会比较复杂,但如果能很好的理解决定最终成功的主要限制因素,那么就会容易很多。01蛋白的稳定性首先记住蛋白产品选择冻干方法的主要原因是其不稳定性,整个配方中最敏感的成分也是蛋白质,那么在配方设计中首要关心的是赋形剂的选择,能够提供蛋白好的稳定性。02最终药物配置在配方研发开始之前,须确定好最终药物的配置,需要考虑的问题包括给药途径(常为非肠道给药),共同给药的其他物质,产品体积,蛋白浓度,冻干盛装容器(西林瓶、预充针或其它)等,如果最终药物需要多次使用,在配方中需要加入防腐剂,这个可能会降低蛋白的稳定性。03配方张力在选择赋形剂时,可能会考虑设计等张溶液,甘露醇和甘氨酸通常是良好的张力调节剂,这些赋形剂经常优于NaCl,因为NaCl具有较低的共晶融化温度和玻璃态转变温度,使得冻干更难进行。另外,如果样品中含有相对低的蛋白量,经常会加入填充剂,避免在冻干的过程中蛋白损失,甘露醇和甘氨酸同时也可以充当这个角色,因为他们会最大程度的结晶并且形成机械强度较高的蛋糕结构。然而,须意识到单独使用晶体类的赋形剂通常不能够在冻干过程和储存期间给蛋白提供足够的稳定性。04产品的蛋糕结构最终冻干的样品须具有优雅的外观结构,较强的机械强度并且没有出现任何塌陷和/或共晶融化,水分残留要相对较低(1g水/100g 干物质),如果产品发生塌陷,不仅外观不能接受,而且会导致样品最终的水分含量较高,复水时间延长。05产品玻璃化转变温度为了确保干燥后蛋白具有长期稳定性,非晶态成分(包含蛋白)的玻璃转化温度要高于计划的储存温度。水是无定形相的增塑剂,需要保持较低的水分含量确保样品的Tg 要高于运输和储存的最高温度。06产品塌陷温度一般来说,达到最终的目标,在整个冻干过程中,需要维持产品温度在其玻璃转化温度以下。在干燥过程中,当冰晶升华时,对于非晶态样品,产品温度须维持在其塌陷温度以下,塌陷温度通常与热致相变温度(也就是最大冻结浓缩无定形相的玻璃态转变温度Tg’)一致,同时,也有必要维持产品温度在任何晶体成分的共晶融化温度以下。在实际中,这些温度可以通过差示扫描量热仪DSC或冻干显微镜来测定。在配方开发中有必要测定产品的塌陷温度。 冻干显微镜Lyostat5及搭配使用的DSC模块为什么要测定塌陷温度?在低于产品的塌陷温度下干燥是需要付出代价的,产品的温度越低,干燥的速度越慢,干燥的成本就越高。通常,在-40℃以下干燥是不实际的,同时样品能降低到的温度还受一些物理条件的限制,比如冻干机的性能以及产品的配方。在配方开发过程中,药物研发人员应该与工艺工程师(设计冻干工艺人员)紧密配合,并且清楚了解放大化生产型冻干机与实验室研发冻干机的区别是非常重要的,通常情况下,生产型冻干机和实验室冻干机在工艺参数控制方面会有所不同,一部分原因是生产型冻干机较大,在冻干过程中每瓶样品的产品温度差异较大。因此,如果对冻干过程熟悉的研发人员可以提供有用的信息帮助配方科学家做出正确的判断,避免由于误判导致将较好的配方排除在外。对于塌陷温度较低的产品,也有一些方法,如可以通过控制过程参数来实现短时快速干燥。配方设计需平衡蛋白稳定性和塌陷温度很明显,配方设计的一个目标是保证蛋白稳定性的前提下提供较高的塌陷温度,产品的塌陷温度主要取决于配方的组成,如果蛋白的含量超过所有溶质的20%,会对Tg’有较大的的影响。尽管单纯的蛋白溶液通常用DSC很难测出Tg’,根据实验得出,增加蛋白含量,对于大多数的配方来说,均可以提高Tg’。通过外推法得到纯的蛋白溶液的Tg’,大约为-10℃,远远高于大多数的单一赋形剂的Tg’(如蔗糖的Tg’为-32℃),因此,从工艺过程的经济角度考虑,更期望配方中较高的蛋白质和稳定剂比例,然而,蛋白的稳定性通常随着稳定剂与蛋白含量比例的增加而提高,因此须在高的塌陷温度和较好的稳定性方面做出平衡。并且,如下文讨论的内容,随着蛋白浓度的增加,蛋白质在预冻过程中抵抗冻结应力损伤的能力就会得到改善,那么在高蛋白浓度和高稳定剂和蛋白重量比的情况下,稳定性是最好的,这样,就会导致整个配方较高的固形物浓度,给工艺带来困难,总浓度超过10%的配方将比较难冻干。如何改变Tg'?在升华之前对配方进行一些处理可以改变Tg’,如经常使用的退火处理,在退火处理过程中,会从无定形相中移走一小部分成分,如使用甘氨酸作为晶体的填充剂,取决于预冻的方法,可能一部分的甘氨酸分子会保留在样品的无定形相中,甘氨酸具有相对较低的Tg’(-42℃),因此让甘氨酸尽可能的结晶是非常重要的,这样可以提高样品中无定形相的Tg’,加快干燥,节省成本。对于赋形剂结晶,设计理想完善的方案,可以用DSC模仿冻结和退火工艺的条件来进行,这个方法可以参考Carpenter 和 Chang的文章内容。 在哪些步骤蛋白需要维持稳定性?实际上,从灌装到最终干燥的产品复水,每一步均会对蛋白造成损伤,并且要求配方的成分能够抑制蛋白的降解。在快速处理步骤(如灌装,预冻,干燥和复水等)中,主要的问题通常是物理损害,如低聚物的形成和/或蛋白沉淀;通常,蛋白从液体到固体的转变,相对与减缓化学变化,更多的会减缓蛋白的物理变化的速率,因此,储存过程中的化学降解经常是更严重的稳定性问题。在储存期间或复水时,蛋白也会发生聚合。在预冻和干燥过程中,受到冻结和干燥应力的作用,蛋白的结构很容易遭到破坏,如果在这些过程中,能够抑制蛋白去折叠(变性),那么降解过程就会达到最小化,因此,配方设计主要的关注点就是在这些过程中能够保护蛋白,在干燥后的样品中具有较高的Tg及较低的含水量,能阻止样品内部发生化学反应,更好的保持蛋白的天然性能。01在预冻过程中的蛋白的稳定性特定的蛋白是否易受冷冻破坏的影响取决于许多因素,除了在配方中包含适当的稳定剂外。一般来说,会考虑三个很重要的参数:蛋白浓度,缓冲液的种类以及预冻方法。蛋白浓度增加蛋白质的浓度能够提高蛋白对冻结变性的抵抗力,可以通过简单地测定冻融后蛋白聚合的百分比,该百分比与蛋白质浓度呈反比。通常,如果预冻过程中去折叠的蛋白分子部分与浓度无关,那么预计增加蛋白浓度会增加蛋白聚合。然而,现在人们认为,增加蛋白质浓度会直接减少冷冻诱导的蛋白质去折叠。据推测,冻结阶段的损伤包括蛋白在冰水界面的变性,假设只有有限数量的蛋白分子在这个界面变性,增加蛋白的初始浓度会导致较低比例的变性蛋白。处于实际的目的,将蛋白浓度作为一个重要的考虑因素,在配方开发过程中尽可能保持较高的浓度,就显得特别简单了。缓冲液种类缓冲液的选择也是非常关键,主要引起问题的是磷酸钠和磷酸钾,在预冻和退火过程中,二者的pH值会有明显的变化。对于磷酸钠,其二元碱形式的容易结晶,导致在冷冻样品中,剩余的无定形相中的pH会降到4或更低。对于磷酸钾,其二氢盐结晶后,pH会变到接近9. pH改变的风险以及对蛋白的损害可以通过提高最初的冷却速度,限制退火步骤的时间,降低缓冲液的浓度等来控制,所有这些措施可以降低盐类结晶的机会。快速冷冻,不进行退火也限制了蛋白质在暴露在冷冻状态下的时间。尽管其他的赋形剂能够辅助抑制pH的改变,较好的方法是避免使用磷酸钠和磷酸钾。在预冻阶段pH有较小变化的缓冲液包括柠檬酸盐,组氨酸,Tris溶液等。预冻方法排除由于pH变化造成的问题,在实验中发现,预冻过程中,蛋白质受破坏的程度跟冷却的速率有关系,较快的冷却速度形成的冰晶体较小,冰的比表面积越大,受破坏的程度越大,这个推测是由于蛋白在冰水界面变性导致。冷却的速度通常受冻干机设备本身性能的限制,然而,一些对冷冻敏感的蛋白,即使慢速冷却也会导致其变性。02、在干燥和储存过程中蛋白的稳定性尽管整个蛋白分子在预冻过程中保持了其原有的结构,然而,在后续的脱水干燥过程中如果不加入合适的稳定剂也会面临变性的风险。简单的说,当去除蛋白分子的水合外层时,蛋白质天然的结构便遭到破坏。对多个蛋白的红外光谱研究表明:无合适的稳定剂存在时,在干燥的蛋白样品中,其结构将会遭到去折叠。如果样品迅速复水,损伤的程度(如,聚合百分比)与干燥蛋白质的红外光谱的非天然表现直接相关。因此,降低复水后结构的破坏需要减小预冻和主干燥过程中蛋白结构的去折叠。而且,即使样品立即复水后100%的天然蛋白分子被恢复,干燥的固体中也会有相当一部分去折叠的分子。在复水过程中分子内的再折叠可以主导分子间的相互作用,从而导致聚集,在复水后表现为100%的天然分子。适当的赋形剂可以阻止或至少减轻蛋白结构的去折叠,配方是否成功可以通过红外光谱检查干燥后蛋白的二级结构来立即判断,更重要的是,发表的一些研究显示,干燥样品的长期稳定性取决于干燥过程中天然蛋白的保留量,如果干燥后的蛋白样品存在结构上的去折叠,即使样品在低于其Tg温度以下储存,蛋白也会很快被破坏,因此,红外光谱法可作为蛋白配方的另外一种工具,研发人员可以在冻干后对样品进行检测,确定其结构是否遭到破坏。欢迎先关注我们,下一期内容将继续为大家带来“实用建议:如何合理设计稳定的冻干蛋白配方(二)”,详细分享:蛋白样品冻干的首选赋形剂有哪些、基于成功蛋白冻干配方会导致最终失败的一些细节问题等。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 更多关于冻干技术分享平台的介绍请点击下方阅读:● 冻干免费技术内容获取-莱奥德创金字塔冻干技术分享平台► 点击阅读如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 实用建议:如何合理设计稳定的冻干蛋白配方(二)
    本篇继上一篇“实用建议:“如何合理设计稳定的冻干蛋白配方(一)”继续为大家分享蛋白样品冻干的理想赋形剂有哪些、基于成功蛋白冻干配方会导致Final失败的一些细节问题等。 》》》对于蛋白样品,理想的赋形剂有哪些?从冻干对蛋白的所有危险以及我们需要在各个环节考虑的所有因素来看,快速开发一个稳定的蛋白配方看起来似乎是不可能的。幸运的是,如果我们能够采用合理的方法对配方进行很好的设计,大多数的配方问题是可以得到快速解决。这里,我们主要是对初始配方成分的选择提供基础。在一些情况下,初始的配方很有可能就是走向市场的Final产品。给定的组分,进行不同微小的修改,已经被成功地用于蛋白药物。需要强调的是对于冻干配方,在能够提供良好稳定性和结构的情况下,成分越简单越好。所加入的赋形剂都须要有数据证明对配方起有益的作用。01给定蛋白质维持稳定性的具体条件对于一些通用型的稳定剂,可以有效地保护绝大多数的蛋白质,在选择这些稳定剂之前,我们有必要通过优化影响蛋白物理和化学稳定性的具体因素来选择合适的稳定剂。影响蛋白物理和化学稳定性的具体因素:1. 避免极端的pH值可以显著降低蛋白脱氨基的几率。而且,通过优化溶液的pH值,可以显著提高蛋白在冻干过程中抵抗去折叠的能力。2. 还应该研究其他能提高蛋白质稳定性的特异性配体(通过增加去折叠的自由能)。肝素和其他聚阴离子对生长因子的稳定性影响就是一个很好的例子。3. 其它需要考虑的重要因素是离子强度对蛋白的去折叠和聚合的影响。须意识到,在预冻过程中,由于冰的形成将溶液浓缩,离子强度可增加50倍。因此负责原料药纯化和做药物配方前研究的人员已经对这些问题有了深刻的认识,配方科学家应该在着手设计冻干配方之前与他们进行沟通。即使在针对蛋白质稳定性优化的特定的溶液条件下,但是如果样品需要幸免于冻干的损害并长期保存,有必要加入一些其它的保护剂。首先,我们考虑一些已经用在冻干蛋白配方中的成分,但它们不能提供蛋白的稳定性,而且可能会促进蛋白在储存期间的破坏。我们将提供一个简单、有效的思路,并且讨论选择这些成分的原理。02不能提供蛋白稳定性的赋形剂部分多聚物作为赋形剂的优缺点在冻干工艺的快速开发过程中,为了获得一个强壮的蛋糕结构,一些多聚物,如葡聚糖,羟乙基淀粉,因具有较高的塌陷温度,导致Final产品的Tg也会比较高,常常是受欢迎的赋形剂。不好的是,这些多聚物在冻干过程中不能抑制蛋白结构的去折叠,因此在后续的储存中不能提供稳定性。无法抑制冻干诱导变性的原因大概是聚合物过大而无法与蛋白质氢键合,无法代替脱水过程中损失的水,或者是因为聚合物与蛋白质形成了分离的无定形相。尽管当这些多聚物单独使用时不是一种很好的稳定剂,但是经证实,如果其结合双糖稳定剂可以具有较好好的作用。冻干过程中的有效稳定剂对大量的化合物进行测定,显示在冻干过程在较有效的稳定剂是双糖,但是避免使用还原性糖。还原性糖在冻干过程中可以有效抑制蛋白结构的去折叠,但是在干燥样品的储存过程中,可以通过美拉德反应(糖的羰基和蛋白质上的游离氨基)降解蛋白,结果形成含有降解蛋白的棕色糖浆,而不是含活性蛋白的白色蛋糕状结构。通常,我们减缓这个过程的方法是将样品储存在零度以下,这就失去了产品冻干的意义,这些还原性的糖包括:葡萄糖,乳糖,麦芽糖,麦芽糊精等。在早期的研究中,晶体类的填充剂如甘露醇,甘氨酸在冻干过程中不能提供蛋白很好的稳定性,但是,一些配方使用了这两种物质的混合物,并且成功地推向了市场。在这些案例中,甘露醇和甘氨酸适当的比例可以导致一大部分的化合物保持无定形状态。这部分无定形状态的化合物足以抑制冻干过程中蛋白的去折叠并且提供长期储存的稳定性。但是建议谨慎选择这种方法,因为达到合适的工艺条件再加上合适的赋形剂比例,既耗时又很难办到的。03赋形剂的合理选择如何合理的选择赋形剂?案例分享举个具体的案例说明,假设:1. 蛋白药物的浓度定在2mg/ml;2. 主要的降解途径是冻干后或复水后蛋白的聚合以及储存期间蛋白的脱氨基;3. 优化具体的条件(如用柠檬酸盐缓冲液控制pH为6)只能将冻干和复水后聚合程度降到10%,尽管样品在低于Tg温度的20℃下进行储存脱氨基速度仍然不能接受。加入晶体类的膨胀剂,如甘露醇,保持样品强壮的结构及良好的外观。在这种情况下,主要缺少的成分是非还原性双糖,其在干燥样品中会与蛋白形成无定形的结构,作为主要的稳定剂,主要选择蔗糖或海藻糖。它们在预冻阶段能够很有效地保护蛋白并且能够很好的抑制复水过程中蛋白结构的去折叠。预冻阶段的保护取决于初始糖的总浓度,有时,超过5%(w/t)的浓度可以尽可能大程度地保持蛋白的稳定性。相反,在干燥阶段,蛋白的保护取决于Final糖和蛋白的质量比。一般来说,糖和蛋白的重量比至少为1:1时,可以提供较好的稳定性,当达到5:1时,可以达到很佳的稳定性。保持蛋白的浓度不变,选取一定范围的糖浓度进行筛选和检测,通过干燥样品中天然结构保留率以及复水后蛋白聚合降低的程度来确定最合适的浓度。一般来说,合适的糖浓度,可以在冻干过程中提供蛋白很好的稳定性,并且如果Final样品的Tg高于储存温度,在后期的储存期间也可以提供蛋白较好的稳定性。例如,假定最高的储存温度为30℃,那么Final产品的Tg >50℃应该是稳定的,但前提是Final样品的含水量需要达到允许的水平,因为水分的存在会降低样品的Tg。可以使用DSC检测每种样品的Tg值。蔗糖/海藻糖如何选择?蔗糖和海藻糖,作为两种常用的稳定剂,均有其优势和劣势,可根据不同的情况进行选择:● 在任何水分含量的样品中,海藻糖均会有较高的Tg,因此较为容易冻干。另外Tg >50℃的条件可以允许样品有较高的残留水分。然而,技术工程师应该能够针对这两种双糖设计经济有效的工艺。如果样品中蛋白浓度较高,可以提高Tg,这样就会弱化海藻糖的作用;● 与蔗糖相比,海藻糖更能抵抗酸解,双糖水解后会产生还原性的单糖,这是需要避免的。通常情况下,如果pH不是很低,如pH4左右或更低,这个应该不是很大的问题;● 蔗糖在冻干过程中抑制蛋白去折叠方面看似比海藻糖更有优势,当蛋白在预冻阶段非常不稳定(需要较高的糖浓度)和/或蛋白浓度较高时,这种优势更明显。海藻糖的相对不稳定性是由于在预冻和干燥过程中其更易于与蛋白之间产生相分离。对于给定的配方,这是否会有问题不能被预测,因此,每种制剂配方都需要检查其保护蛋白的能力。表面活性剂的作用在这里,我们案例中的配方可能就比较完整了,就像许多蛋白质的情况一样。然而,我们假设,即使蔗糖完全抑制可检测的蛋白质去折叠,正如用红外光谱对干燥固体的结构分析所评估那样,在复水后,仍然有1%的聚合蛋白。因为在原始的样品中是没有任何聚合的,假设在冻干过程中,一小部分蛋白发生了去折叠,在复水后,部分这些分子又重新折叠,但是部分聚合在一起。这个实际上看起来是个很普遍的问题,就像在冻干之前一些处理造成的聚合。幸运的是,通过在配方中加入一些非离子型表面活性剂,如聚山梨醇酯(吐温)通常可以抑制蛋白的聚合。要求的浓度通常比较低(<0.5% w/v),通过将表面活性剂滴定到包含所有其它组分的冻干制剂中,可以识别出理想浓度。应避免加入过量,因为表面活性剂在室温下是液体的状态,如果浓度较高,会降低配方的玻璃态转变温度。然而,通常在优化蛋白质稳定性所需的非常低的浓度下,不会有问题。表面活性剂看作是画龙点睛,通常在冻干产品配方中加入表面活性剂是有利的,可以抑制处理过程中界面引起的去折叠和聚集(如起泡夹带或瓶-液界面引起的)。最重要的是表面活性剂在冻干/复水过程中抑制聚合的能力,目前还不太清楚表面活性剂的保护在哪一步起作用的。有资料证明,表面活性剂在冻融及复水过程中可减少蛋白聚合并且在预冻阶段有助于抑制蛋白的去折叠,对干燥固体中聚集物特定红外波段的检查表明,表面活性剂可以抑制冻干过程中产生的聚集。在复水过程中,曲折叠分子的聚合能通过表面活性剂得到抑制,猜测是通过分子之间的相互作用和/或作为一种润湿剂,加速冻干产品的溶解。如果显示表面活性剂在复水过程中是有益的,则可以通过在稀释剂中加入表面活性剂来达到这种效果。 》》》还有哪些意想不到的危险可能会导致失败?尽管根据上述给出的建议,对于给定蛋白,我们可以设计出成功的配方,但是,还有其他一些问题可能会导致Final失败,特别是在长期储存期间。● 赋形剂中经常会有一些污染物,这些会导致蛋白快速的化学降解,糖类和甘露醇中会含有过渡金属元素,表面活性剂可能被过氧化物污染,所有的这些可以促进蛋白的氧化;● 在储存过程中,水分从胶塞转移到产品,引起水分参与的降解,直接损坏蛋白,并且降低蛋白的Tg,加速蛋白的降解,特别是当储存温度高于Tg 时;● 即使在高温(如40℃)下的储存稳定性研究中,一切都表现出理想的状态,但有一个常见的,但很少报道的事件可能是灾难性的,这个问题可以用下面的故事来说明。产品在实验室中在40℃下储存可以保持几个月的稳定性,在冬季,产品在运输过程中也保持良好的稳定性,没有来自消费者的问题报告,然而,有时在夏季,运输后,在室温下储存仅2周后发现产品过度降解,用差示扫描量热仪DSC对一开始的干燥粉末进行了检查,给出了合理的解释,结果发现,制剂中的甘露醇没有全部结晶,而是形成了Tg约为45℃的亚稳玻璃态,当在夏季运输过程中,超过了这个温度时,甘露醇变发生结晶,最先与甘露醇结合的水被转移到了剩余的无定形相中,蛋白相的水含量增加,降低了它的玻璃化转变温度,因此,加速了蛋白质的降解。这个问题可以使用DSC设计合理的退火方案使甘露醇再预冻阶段全部结晶来避免,另外也可以通过调整甘露醇的浓度,降低残留水分含量,使甘露醇即使在45℃的条件下也不会结晶。 》》》对于给定的蛋白药物,这些信息足够吗?对于大多数的蛋白,上面给出的建议一般会设计出成功的配方,但是,每种蛋白都有其独特的物理化学特性和稳定性要求。因此,针对每种不同的蛋白,配方也需要自定义设计。结合蛋白本身的特性知识以及选择合理的赋形剂可以快速设计出稳定的冻干蛋白配方。最后,在快速冻干工艺中保持干物质的物理性质和在干燥后获得天然的蛋白质之间需要折衷,研究表明:当蔗糖结合葡聚糖一起使用时,由于蔗糖的作用,蛋白质的天然结构可以保留在干燥的固体中;葡聚糖的存在提高了制剂的Tg,并提供了一种无定形的填充剂,快速干燥的同时保留了所需的蛋糕性质;其他的一些聚合物有可能提供与葡聚糖相同的优势,如羟乙基淀粉也具有较高的Tg,通常比葡聚糖更容易接受用于肠胃外给药。期望可以合理地利用这些多聚物作为Tg的调节剂,使得制剂更稳定,更容易快速冻干。莱奥德创冻干技术分享关注“莱奥德创冻干工场“,立即获取冻干线上技术分享内容。基于对于冻干研发的一些考量,莱奥德创创建了金字塔冻干技术分享平台:包含了从冻干理论基础,到配方和工艺开发,再到放大及生产,以及进阶的设备管理和线上线下专题内容分享。内容结合了来自Biopharma的冻干理论指导体系、来自于莱奥德创产品经理及应用工程师的实践经验总结及国内外专家的专题内容。获取方式Step 1:关注公众号 扫码关注莱奥德创公众号Step 2:点击菜单栏“冻干讲堂” Step 3:点击你感兴趣的内容Banner Step 4:开始学习 如果您对上述设备或冻干服务感兴趣,欢迎随时联系德祥科技/莱奥德创,可拨打热线400-006-9696或点击下方链接咨询。译自:《Rational Design of Stable Lyophilized Protein Formulations:Some Practical Advice》 John F.Carpenter,Michael J.Pikal,Byeong S.Chang,Theodore W.RandolpH pHarmaceutical Research, Vol.14,No.8,1997* 如有理解错误之处,还请参考原文关于莱奥德创冻干工场上海莱奥德创生物科技有限公司专注于提供前沿的冻干设备应用和制剂开发相关服务,依托于合作伙伴加拿大ATS集团SP品牌和英国Biopharma Group等的紧密合作,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。莱奥德创在上海及广州设有实验室,拥有专业的技术团队及国内外专家支持体系。莱奥德创面向生物制药、食品科学等各个领域行业客户,提供冻干研发、放大、委托生产及培训等服务。前期研发● 产品配方特征研究:共晶点温度(Te)、塌陷温度(Tc)、玻璃态转化温度(Tg'、Tg)测定等;● 实验室工艺开发:冻干工艺开发:冻干制剂配方开发,工艺确定,申报材料撰写;● 冻干工艺优化:利用中试冻干机上PAT工具优化及缩短工艺;● 冻干产品质量指标测试:水分含量,冻干饼韧度分析;● 咨询服务:如产品外观问题、产品质量问题、其他troubleshooting等;工艺放大/技术转移● 冻干工艺转移/放大: 远程技术指导+现场服务;● 小批量冻干生产(NON-GMP),临床一期生产(GMP);其他业务● 企业小团队线上线下培训服务:冻干原理,工艺开发,设备使用维护等;● 冻干设备租赁服务。400-006-9696www.lyoinnovation.com莱奥德创冻干工场中国(上海)自由贸易试验区富特南路215号自贸壹号生命科技产业园4号楼1单元1层1002室德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。德祥始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 【瑞士步琦】巴爷爷的博客——喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用
    喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用蛋白多肽应用”Bart 的第 100 篇博客文章!在这个很有纪念意义的时间点,Bart 继续对喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用进行剖析,完成他的蛋白多肽三部曲《如何让您的蛋白质配方稳定持久更持久?》和《当你制定蛋白质和多肽配方时,你是“喷雾干燥党”还是“冷冻干燥党”呢?》,让我们一同看看这次 Bart 给我们带来哪些应用干货吧!亲爱的读者们,我简直不敢相信,但我正坐下来写博客的第 100 篇文章!我们在这里涵盖了色谱,旋转蒸发,冷冻干燥和喷雾干燥的主题,我希望我们在接下来的 100 篇文章中继续这样做。由于这是一个有点特别(好吧,非常特别)的帖子,我决定做一些与往常不同的事情。我想和大家分享一下我最近读到的一篇非常有趣的研究论文中的发现,我认为把这篇文章专门献给我们的新成员:喷雾干燥。首先,文献链接如下:文献链接https://www.mdpi.com/2227-9717/9/3/425/htm(Sweeny C, et al. Using Peptidomics and Machine Learning to Assess Effects of Drying Processes on the Peptide Profile within a Functional Ingredient. Processes 2021, 9(3), 425 https://doi.org/10.3390/pr9030425)其次,让我告诉你他们所发现的令人兴奋的事情,是关于冷冻干燥和喷雾干燥对生物活性肽的影响以及为什么你首先应该关注这部分。 高蛋白成分因其在食用时的营养和功能益处而越来越受欢迎。然而,这些蛋白成分及其酶解产物在加工处理中可能会碰到问题,特别是在干燥过程中,因为这一步有可能会导致蛋白质变性和肽聚合。 问喷雾干燥和冷冻干燥是将一种成分转化为粉末的常用方法?提高产品稳定性提供更有效的运输选择 由于减少了水分活性,提高了产品的保质期在之前发布的一篇文章中,我已经解释了喷雾干燥和冷冻干燥的工作原理。但我将在这里再次总结这些技巧:_喷雾干燥 冷冻干燥 工作原理将溶液或悬浮液从液体转化为干燥状态,其中液体悬浮液在热干燥腔体中雾化,蒸发液滴并产生低水分含量的细颗粒水通过升华在低压环境中以冰冻状态被去除 优势快速 简单 制备定制尺寸的颗粒 包埋成分以保护其免受环境影响的可能性 相对便宜 有助于保持多肽的物理化学和生物活性的稳定性技术限制可能导致关键活性物质损失 可能导致原料中存在的营养价值成分损失 会破坏热敏性蛋白 在技术上具有挑战性 相对来说成本更高 实验过程漫长 需要较少的监督和管理 应用推荐适合低成本、高规模生产适用于关注产品稳定性和较小产品体积的应用范畴其他考虑因素包括物化性质,如溶解度、味道、密度和颜色等,需要评估冷冻干燥和喷雾干燥效果,以确定符合最终产品所需的配方。 现在,上面提到的文献中, 研究者使用肽组学和机械学习技术来观察植物蛋白水解物的干燥方法是否会影响肽谱和随后的预测功能。 研究者想要研究冷冻干燥和喷雾干燥技术不仅对样品的物理特性和蛋白质含量有影响,而且还会对肽含量产生影响。生物活性肽是活性成分功能的组成部分。天然多肽具有抗衰老、抗癌、抗炎、抗氧化、降胆固醇等特性。许多多肽物质已被证明具有一种及以上的生物活性。 有趣的是,研究者没有发现喷雾干燥和冷冻干燥制备的产品在肽谱成分和功能上有很大差异。 他们确实指出了他们在自己的研究和现有的科学工作中注意到的不同点,关于冷冻干燥和喷雾干燥对制剂的几个影响差异,包括:影响差异喷雾干燥样品颜色稍深 部分报道称喷雾干燥中随着干燥温度升高热诱导蛋白质聚集(多肽数量减少) 与喷雾干燥相比,冷冻干燥制剂中含有Asp、His 和 Lys 氨基酸的肽有所增加(如先前报道的那样,Lys 在喷雾干燥过程中特别容易受到损害) 制备得到的冷冻干燥制剂稍趋向于链更长、分子量更高、带更多正电荷的肽(可能会考虑到冷冻干燥比喷雾干燥更温和) 与冷冻干燥制剂相比,喷雾干燥制剂所得的是具有更大比例的负电荷肽(通常与喷雾干燥粉末相关的是可能有助于增加粉体溶解度) 冻干制剂制备的多肽所带负电荷略少,为0.24,这与多肽长度、分子量和物理特性的增加相关,可能导致与冻干粉末相关的溶解度降低 当使用生物信息学方法时,预测喷雾干燥的疏水性增加了 1.74%,这可能与喷雾干燥制剂里多肽中疏水氨基酸(Ala, Met, Phe, Pro, Try和Val)的轻微增加有关 根据预测,喷雾干燥和冷冻干燥的抗炎生物活性相当 以上就是冷冻干燥和喷雾干燥一个很好的对比,主要重点针对生物活性成分多肽成分。 下次见!
  • “蛋白样品冻干过程”干货分享!——深度解析相分离现象及影响因素
    冻干可以通过去除样品中的水分,限制分子的流动性,减慢药物成分的物理/化学反应来延长产品的保质期,然而固体状态的配方也不是一直稳定的,由于在干燥过程中,蛋白质暴露在许多应力作用下,在长期的储存过程中,仍然容易发生物理/化学反应。在冻干及储存过程中,我们常常会加入一些稳定剂来保护蛋白免受应力的影响,主要有两种稳定机理来解释:水替代假说和玻璃化假说;但是两种稳定机制都需要将蛋白质分子分散在稳定剂中,使得蛋白质和稳定剂都处于相同的单一无定形相,即不发生相分离。那么相分离是如何发生的?为什么会发生?相分离主要发生在冻干的预冻步骤,在一定程度上取决于冻干的工艺和配方成分。1、相分离的机理 图1:冻干分为三个步骤冻干主要分为三个步骤:预冻,主干燥及次级干燥。(如图1所示)在预冻过程中,溶液被降到一个很低的温度,晶核形成并且生长,样品中的溶质浓度不断浓缩,可以达到初始浓度的约50倍,如果在热力学和动力学上均利于反应发生的条件下,高浓度的溶质可以导致相分离。2、相分离热力学当溶液为成分A 和成分B的混合物,会发生下面的相互作用(如图2所示)。熵和焓之间的竞争决定了相分离的过程。相分离的热力学基于混合物的自由能(弗洛里-哈金斯理论),聚合物由于尺寸大小和连通性,不能充分利用可用体积,大分子量聚合物的熵变化较小,因此,混合物热力学更容易受到较大焓贡献的支配,当ΔGmix 0: 热力学上有利于相分离 (A-A和B-B相互作用优于A-B相互作用)。 图2:溶液A和B发生的相互作用如果相分离是热力学自发以及动力学上利于反应(足够的移动性和时间),蛋白和稳定剂会分离成两个不同的相,富含稳定剂的无定形相以及富含蛋白的无定形相,后者由于缺乏稳定剂的保护,蛋白更易于降解。(如图3所示)图3:蛋白和稳定剂会分离成两个不同的相3、相分离的检测方法无定形-无定形物质的相分离不容易检测,由于检测方法有限,证据不足,目前主要有如下检测方法:检测技术方法局限性调制DSC配方中有多个Tg’表示有多个无定形相通常,富含蛋白的相不能被DSC检测到,因为在Tg’温度下具有较小的ΔCP;要求高浓度的蛋白配方。拉曼成像技术非重叠成分峰的线谱分析范围:2-50微米;不能检出低于检测限的成分波动。固体核磁共振利用弛豫时间来探测2-5 nm, 20-50 nm分子大小物质的混溶性动态实验需要大量的样品。X射线衍射/散射在纳米尺度上探测结构特征对于两个组分,均包含重要的结构层次,无法区分相分离;成本高,动态实验。SEM肉眼观察物质的形态结果会存在模棱两可的现象;需要较大的容易辨认的相。电介质技术依赖于电场中的分子迁移率响应存在不确定性。4、工艺参数对相分离的影响过冷度-----成核温度❖热力学冻结温度和首次成核温度之间的差值为过冷度;(如图4所示)❖较高的成核温度会更易导致相分离;(由于溶质在远高于Tg’温度下进行浓缩) 图4:过冷度冷却速度❖控制达到给定过冷度的速度;❖缓慢的冻结速度会更容易导致相分离;退火❖主要用于填充剂结晶,控制冰晶形态或增加冰晶体的大小,缩短一次干燥时间;❖如果两相热力学更稳定,退火时间和迁移率的增加可能会提供相分离的机会;灌装体积❖较大的灌装体积会对相分离有较大的影响,因为在样品中具有较大的热梯度。案例分享成核温度和冷却速度对相分离的影响对已知的相分离聚合物体系 1:1 PVP29K:DEX10K(100 mg/ml) 进行研究,将冷却台放在拉曼显微镜下进行观察。(如图5所示) 图5:已知相分离聚合物体系在拉曼显微镜下的观察成核温度对相分离的影响 图6:成核温度对相分离的影响与每个单一组分相比,成核温度较高的一组(-5℃)对相分离具有较大的影响;其余的成核温度对相分离影响较小。(如图6所示)冷却速度对相分离的影响 图7:冷却速度对相分离的影响所有的冷却速度均会在一定程度上提高相分离的倾向,但是影响较小。(如图7所示)*结论在没有热历史的情况下,成核温度和冷却速率对相分离的影响较小。成核温度和灌装体积对相分离的影响 图8:成核温度和灌装体积对相分离的影响较大的灌装体积(1ml VS 0.2ml)和较高的成核温度(-5℃ VS -10 ℃)会导致相分离,可能是由于样品内部存在较大的温度梯度。(如图8所示)5、配方成分对相分离的影响在冻干过程中配方成分的兼容性是阻止相分离的关键,如研究表明聚合物体系的不混溶性随着聚合物分子量的增加而增加。对于蛋白而言,相分离的倾向性可能与稳定剂大小,静电相互作用(盐类),稳定剂类型(填充剂、表面活性剂),稳定剂浓度,蛋白质特性(等电点,大小),配方PH值等有关。案例分享——配方组分对相分离的影响❖实验进行了系统的研究,探索蛋白质:糖的比例以及蛋白质(分子量,电荷)和糖(分子量,单糖亚基和长度)的特性如何影响配方在冻干过程中的混溶性。(如图9,10,11所示)❖蛋白质和糖(200mg /mL)的混合物按以下比例(w:w):蛋白质:糖——0:1,1:9,1:4,1:2.3,1:1.5,1:1,1:5:1,2.3:1,4:1,9:1❖多个Tg’的存在表明存在相分离。 图9 图10 图11实验表明● 在所有的蛋白-糖体系均观察到了相分离现象(两个不同的Tg’),尽管不同的比例出现相分离的时间不同;● 不同蛋白-糖混合物Tg’的宽度不同,有可能多个Tg’会重叠在一起,形成一个较宽的Tg’, 导致无法检测到相分离现象;● 其中在牛血清蛋白和海藻糖混合物中,当二者比例为1:1.5和1:1 时,观察到存在相分离现象;(如图12所示) 图12● 对于蛋白-糖体系中,二者比例从1:2.3 到4:1 均观察到存在相分离现象;(如图13所示) 图13结论● 对于几乎所有被研究的体系中,当配方中蛋白质和糖的比例为1:1和1.5:1时确定会发生相分离现象,这表明蛋白质和糖的比例和系统的相分离倾向之间可能存在相关性;● 在系统的相分离趋势和以下属性之间似乎没有明显的相关性: # 蛋白质电荷/等电点 # 蛋白质分子量 # 糖的分子量 # 单糖亚基;● 在几乎所有研究的配方中,当蛋白和糖的比例为1:1时会发生相分离;● 本研究结果表明,冻干蛋白配方中应加入过量的稳定剂。6、冻干蛋白配方中相分离的重要性● 相分离取决于具体的操作过程和组分;● 在预冻过程中,温度/时间和浓度是关键因素,会影响系统相分离的趋势;● 蛋白和稳定剂的物理化学特性会影响相分离;● 在冻干过程中保护不足会导致长期储藏过程中不稳定性的增加;● 当缺乏稳定剂时,蛋白在干燥过程中会发生改变(即形成反应型结构),这可能会导致储存过程中潜在的稳定性问题;● 需要了解相分离如何影响冻干制剂的保质期;● 相分离检测是稳定性欠佳的指标;● 未检测到的相分离会影响蛋白质稳定性和整体产品质量;● 需要更好的检测方法!当前的方法可以证明样品存在相分离,但不能证明样品不存在相分离。参考文献[1] Padilla,A.M.et.Al.(2011).”The Study of Phase Separation in a Model Polymer Phase Separating System Using Raman Microscopy and a Low-Temperature Stage: Effect of Cooling Rate and
  • J.T.Baker原子吸收标准溶液清凉促销中
    火热一夏,J.T.Baker原子吸收标液清凉促销中(2010.8.1-2010.8.31)可靠精确的标准产品的有效性对仪器分析的成功非常关键!在各种元素分析应用领域,需要使用分析标准产品为定量分析做出标准曲线以及对仪器进行标定。标准产品必须稳定并且所要测试元素的浓度必须非常准确。 J.T.Baker原子吸收标准产品用99.99%光谱的纯金属和盐溶于特别挑选的基质中配制而成。我们的标准产品包括35种元素,浓度为1,000 &mu g/mL,采用150mL瓶装。 所有的标准产品均经标准产品认证,可追溯至美国标准技术研究院(NIST)标准参考物质(SRM)编号,该编号印在产品标签上。为了更好的回馈广大客户的支持,为中国大陆检测事业尽一份绵薄之力,在2010年这个夏天中,J.T.Baker中国特推出原子吸收标液(AAS标液)冰点促销活动,活动期间凡购买J.T.Baker原吸标准溶液均可享受七折优惠,产品列表如下:J.T.Baker原子吸收标液B6440-04 铝AAS标准溶液1,000 UG/ML 150ML B6441-04 镝AAS标准溶液1,000 UG/ML 150ML B6442-04 砷AAS标准溶液1,000 UG/ML 150ML B6443-04 钡AAS标准溶液1,000 UG/ML 150ML B6444-04 铍AAS标准溶液1,000 UG/ML 150ML B6445-04 铋AAS标准溶液1,000 UG/ML 150ML B6446-04 硼AAS标准溶液1,000 UG/ML 150ML B6447-04 镉AAS标准溶液1,000 UG/ML 150ML B6448-04 钙AAS标准溶液1,000 UG/ML 150ML B6449-04 铬AAS标准溶液1,000 UG/ML 150ML B6450-04 钴AAS标准溶液1,000 UG/ML 150ML B6451-04 铜AAS标准溶液1,000 UG/ML 150ML B6452-04 金AAS标准溶液1,000 UG/ML 150ML B6453-04 铁AAS标准溶液1,000 UG/ML 150ML B6454-04 镧AAS标准溶液1,000 UG/ML 150ML B6455-04 铅AAS标准溶液1,000 UG/ML 150ML B6456-04 锂AAS标准溶液1,000 UG/ML 150ML B6457-04 镁AAS标准溶液1,000 UG/ML 150ML B6458-04 锰AAS标准溶液1,000 UG/ML 150ML B6459-04 汞AAS标准溶液1,000 UG/ML 150ML B6460-04 钼AAS标准溶液1,000 UG/ML 150ML B6461-04 镍AAS标准溶液1,000 UG/ML 150ML B6462-04 钯AAS标准溶液1,000 UG/ML 150ML B6463-04 铂AAS标准溶液1,000 UG/ML 150ML B6464-04 钾AAS标准溶液1,000 UG/ML 150ML B6465-04 硒AAS标准溶液1,000 UG/ML 150ML B6466-04 硅AAS标准溶液1,000 UG/ML 150ML B6467-04 银AAS标准溶液1,000 UG/ML 150ML B6468-04 钠AAS标准溶液1,000 UG/ML 150ML B6469-04 锶AAS标准溶液1,000 UG/ML 150ML B6470-04 钍AAS标准溶液1,000 UG/ML 150ML B6471-04 锡AAS标准溶液1,000 UG/ML 150ML B6472-04 钛AAS标准溶液1,000 UG/ML 150ML B6473-04 钒AAS标准溶液1,000 UG/ML 150ML B6474-04 锌AAS标准溶液1,000 UG/ML 150ML J.T.Baker充分理解您的需求并拥有一系列用于原子吸收法和ICP法测试应用的J.T.Baker 标准产品。为方便您的测试,我们提供单元素AAS标准产品以及单元素和多元素等离子标准产品,包括许多专门用于EPA标准和EPA合同实验室项目(CLP)的标准产品。联系方式杰帝贝柯化工产品贸易(上海)有限公司 地址:上海市浦东新区浦东南路999号新梅联合广场14层A座[200120] 电话:021-58783226 传真:021-58777253 E-Mail:sales.jtbs@covidien.com关于J.T.Baker   杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国MallinckrodtBaker Inc的全资子公司。MallinckrodtBaker Inc拥有的J.T.Baker和Mallinckrodt 两大品牌有130多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 稀释溶液的SAXS测量
    对溶解酵素溶液进行SAXS测试,可计算其回转半径(Rg) 和粒子间距离分布函数(PDDF)。 介绍 小角X射线散射(SAXS)是目前用来研究生物体系和更具体蛋白质溶液的众所周知的技术。SAXS能够测定大分子的形貌结构 ,即通过对所研究的蛋白质进行包膜重建。采集标准溶菌酶蛋白数据,来定义其Rg 和 PDDF。 测量&结果 利用Xenocs毛细管流动样品池测量浓度分别为1.5、3.0 和 5.0 mg/ml样品溶液,缓冲液为40 mM醋酸和50mM pH 4.0的NaCl。 表1. 溶解酵素的回转半径取决于浓度及曝光时间。 利用PRIMUS1软件计算得到结构参数Rg。表1记录了不同曝光时间下得到的各浓度样品的数据。数据与同步辐射得到的Rg = 1.43 nm2高度一致。短短10分钟的曝光时间就足以确定这些基本的结构参数。 PRDF p(r)是使用GNOM1软件计算得到。从图1中可以看到,不同浓度下得到的曲线重叠,这证明了低浓度样品测试可以采集到一致的数据。图1. 浓度为1.5, 3.0和5.0 mg/ml样品的PDDF。曝光时间为30分钟。图2. 浓度为5mg/ml样品的PDDF。曝光时间为10分钟和30分钟。 图2显示了浓度为5mg/ml时两种不同曝光时间的比较结果。这些曲线基本重合,说明了10min的曝光时间足以提供相关数据。 深入研究 Nano-inXider完全集成了Xenocs纯净光技术,可以对高度稀释体系进行精确的生物大分子研究。此外,Xenocs低噪音流动样品池的使用降低了容器散射,进一步推动了BioSAXS在实验室中测量的极限。
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced Protein Aggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4, G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(20%的序列覆盖率)。此外,在MS2的谱图中并没有观察到单体的峰,这说明共价键的断裂比蛋白质的展开和亚基的分离更快,这种效应也在之前的可溶性蛋白和膜蛋白研究中呈现。为了探究位点裂解的偏好,作者将片段离子丰度通过电荷态进行了归化一,发现了高频的断裂位点来自于经典的选择性断裂位点X|P和D|X,而剩余的断裂往往发生在A|G、F|G和V|G的位点,说明N端到甘氨酸有更高的断裂偏好。为了观察断裂的位置和蛋白质的二级结构之间的关系,作者沿着氨基酸序列构建了每个片段相对于原点位置的相对丰度图,多个电荷态的离子则通过归化一的方法进行求和。(图3)由此观察到了大多数的片段断裂出现在跨膜区域的α-螺旋处,其中8号α-螺旋的T|P和V|G,以及6号α-螺旋的L|G和F|G断裂产生了丰度最高的几个片段。此外,将这些片段的相对丰度映射到三聚体的结构上发现,片段来自于蛋白质的内部而非表面。分子动力学的研究表明了其中的机制,在高温下蛋白质的跨膜区域的α-螺旋保持了稳定的结构,而非跨膜区域的α-螺旋则失去了大部分的螺旋结构。先前的研究表明了α-螺旋外侧的质子化的氨基酸可以稳定α-螺旋的结构。由此,作者推测质子不光可以稳定蛋白质的螺旋结构,而且可以沿着蛋白质的骨架迁移来诱导电荷远程破碎。  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 质谱技术进展:低温CE-MS应用于溶液内标记氢氘交换质谱
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry1,文章的通讯作者为乌普萨拉大学的Erik T. Jansson博士。  氢氘交换质谱(HDX-MS)适用于研究蛋白质在溶液中的动力学和相互作用,其能够快速分析非变性蛋白中位于蛋白表面的氨基酸序列,广泛应用于蛋白动态表位、活性位点的表征。HDX-MS平台通过低温UPLC分离提供自动化、在线的样品处理和分析。目前,HDX-MS装置的工作流程主要基于Peltier冷却的超高效液相色谱(UPLC)模块的LC-MS方法,但该系统价格昂贵,成本较高,并且在低温条件下,流动相粘度增加导致高背压(可达-20,000 psi),降低了LC的分离效率。而毛细管电泳(CE)在HDX领域有着更好的应用潜力。CE是一种成熟的分离多种类型分子的方法,在蛋白质组学研究中具有独特的价值。CE基于分析物在电场中的不同迁移率进行分离,分离速度取决于分析物的尺寸和电荷。20世纪90年代初,CE-MS开始应用于肽段水平的蛋白质和蛋白质复合物的分析。自此,CE-MS在多肽和蛋白异质体的检测中就显示出比反相LC-MS高10~100倍的灵敏度。近年来,HDX-MS领域的研究人员也聚焦于探究CE用于HDX-MS工作中的潜在优势。本文利用熔融硅毛细管电泳在零摄氏度下完成了氘代肽段和蛋白的淬灭、酶切和分离,该平台具有较好的成本效益,易于装配于任何MS。  CE装置的主要配件包括丙烯酸气密匣(图1A)、毛细管液相分离装置(图1C)和P-727聚醚醚酮三通组件(图1D)。丙烯酸气密匣用于接收N2,内部放有一个不锈钢小瓶装纳氘代背景电解液,能够允许高电压传导到分离毛细管。P-727聚醚醚酮三通组件联通高压电源和N2源,提供分离电压和N2,在毛细管出口产生离子。  图1.Peltier冷却CE外壳+进样槽的结构。(A) 丙烯酸气密匣。(B) Peltier冷却单元所粘附的铝壳体的截面。(C) 毛细管液相分离装置。(D) 同轴三通阀nano电喷雾针。  完成该毛细管平台(图1)的加工和组装后,作者评估了其性能,并将其与先前在微芯片电泳装置上发表的报道进行了比较。首先是峰值容量的评估。使用血管紧张素II(ATII)和甲硫啡肽(ME)作为分离标记的淬灭肽标准品,在0 ℃下,以1 % FA、25% ACN (BFS毛细管)和10% HAc(LPA毛细管)组成的氘代背景电解液(BGE)计算峰容量。与BFS毛细管相比,LPA毛细管除了峰容量值增加外,其序列覆盖率也明显增加。作者比较了0 ℃ CE到0 ℃ LC和微芯片电泳的峰容量值。结果显示,CE的上峰容量虽小于微芯片电泳方法,但序列覆盖率更高。而与LC相比,CE的峰值容量大大提高。  氘质子在淬灭时和分析时中的回交(BE)也是HDX实验重点考察的因素之一。作者使用缓激肽(BK)、ATII和ME作为肽标准品对BE进行了评估。在0 ℃、20 kV的条件下对BFS毛细管和LPA毛细管分别进行测试。结果表明,ATII在BFS和LPA毛细血管上的BE分别为20 %和34 %。ATII在LPA毛细管上的BE值与已报道的商业和实验室改装的UPLC平台的数据(28~36 %)相似,而在BFS毛细管上则接近直接进样完全氘代标准品达到的BE水平。此外,由于注入到毛细管中的样品量与LC所使用的样品量相比很低,在检测的质谱中没有出现任何残留的迹象。  作者对溶液中牛血红蛋白(Hb)进行了HDX,随后又进行了淬灭、胃蛋白酶酶切、低温毛细管电泳分离与质谱(MS)检测。图2显示了根据Kyte-Doolittle疏水性指数选择的6个肽段在不同分离条件下相应的电泳图谱和氘代速率。从图中可以看出,LPA毛细管上分离的肽段峰形更对称,信号强度比BFS毛细管上高一个数量级左右。与BFS毛细管相比,LPA涂层的毛细管整体的氘标记保留绝对值较低,但氘代速率没有检测到差异。虽然BFS毛细管迁移时间更快,但由于BFS毛细管在样品进样之间需要更多的冲洗步骤,因此分析时间比使用LPA毛细管要长。  图2.强度归一化的提取离子电泳图谱,显示了BFS和LPA毛细血管之间迁移时间的差异,以及标记Hb的消化性中的6个代表性肽的HDX动力学图。橙色的迹线显示了使用BFS毛细管分离的结果,紫色的迹线显示了使用LPA涂层毛细管分离的结果。肽段序列的注释及其对应的Kyte-Doolittle疏水性指数显示在右方。(左)在500 s标记时间点显示了代表性的峰形和迁移时间。(右)BFS毛细管中的氘代保留更高。误差棒表示一个标准差,每个时间点n = 3。有些多肽在所有孵育时间内只存在于LPA涂层中,因此上述六个面板其中的两个面板没有在BFS毛细管中的痕迹。α 136 - 141在BFS毛细管上分离的特定样品在500 s时间点显示,但在以后的时间点没有足够的质量,从最终的数据集中省略,因此HDX动力学图不包括该肽段。β 35 - 40没有被检测到,也未被包括在HDX动力学图中。  最后,本文研究了HDX CE-MS平台在表征结构相关信息方面的作用。作者比较了非变性条件下的Hb样品与用6 M尿素置于变性条件下的Hb样品的相对氘代值。研究发现,在非变性状态下更容易受到HDX保护的位点与Hb亚基的相互作用位点相吻合。具体来说,α-Hb上的R32-Y43和L92-D127以及β- Hb上的R29-E42和D98-Q130与这两个单体相互结合的位置相吻合。数据显示(图3),与局部区域的尿素暴露状态相比,Hb的非变性状态对HDX的敏感度降低。这一发现验证了该方法可作为结构蛋白质组学研究的潜在工具——能够表征分子结合和构象动力学,如蛋白质-配体相互作用中遇到的问题。  图3. Hb的HDX数据在PDB 1FSX上的映射。在非变性条件下用D2O标记的Hb与用6 M尿素变性后标记的Hb进行比较。颜色刻度表示50,000 s氘掺入后,天然/尿素D吸收量的比值。  总的来说,本研究提供了低温CE - MS应用于溶液内标记HDX的理论证明。尽管BFS毛细管提供了快速的肽段分离和标记肽段的最小氘损失,但研究结果表明LPA涂层的毛细管在HDX CE - MS中更有优势。有很多途径能够实现该平台的进一步优化,包括但不限于BGE优化(pH、有机质含量、浓度)、浓缩/脱盐步骤、固定化/嵌入式蛋白酶消化、升级Peltier元件以实现更低温的分离、集成无鞘电喷雾界面、交替毛细管涂层和评估更长或更短的毛细管。进一步研究蛋白质化学中常见的盐和溶质分离的耐受性也将是未来优化的一个重点。  撰稿:陈凤平  编辑:李惠琳,罗宇翔  文章引用:Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry  参考文献  1. Aerts, J. T. Andren, P. E. Jansson, E. T., Zero-Degree Celsius Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry. Anal. Chem. 2022.
  • 婴幼儿食品和乳品中乳清蛋白的测定
    乳清蛋白是采用先进工艺从牛奶中分离提取出来的珍贵蛋白质,以其具有高生物价、高消化率、高蛋白质功效比和高利用率等优点,被誉为“蛋白zhi王”,是公认的人体优质蛋白质补充剂之一。其含量的高低决定了婴幼儿奶粉的品质,相关国标通过酸水解以后的氨基酸来评价乳清蛋白的含量,月旭科技推出的检测方法检测更加快捷可靠。样品前处理称取0.1g试样(含蛋白质7.5mg-25mg的样品),于水解管中,在冰水浴中冷却 30min后加入2mL已经冷却的过甲酸溶液,盖好瓶塞后置于0℃±1℃冰箱中,冰浴16h。向各水解管中加入0.3mL氢溴酸,振摇后冰浴 30min,在60℃±2℃氮吹仪上浓缩至干。向水解管内加入6moL/L盐酸10mL,冲入氮气1min 后,拧紧螺丝盖,将水解管放在110℃±1℃的恒温干燥箱内水解24h后取出冷却至室温。将水解液用超纯水转移并定容至25mL容量瓶中,混匀,滤纸过滤。吸取滤液1mL于60℃±2℃氮吹仪上浓缩至干,残留物用1mL超纯水溶解,待衍生。标准品溶液用超纯水配置磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL,待衍生。衍生方法分别将月旭科技氨基酸衍生方法包中 A、B两种衍生试剂用稀释剂稀释至原来浓度的 1/5;精密量取混标溶液及样品溶液各160μL,加入稀释后的衍生溶液 A、B 各100μL,混匀,室温反应60min;然后加入正己烷溶液 400μL,旋紧盖子后振摇10s,室温静置分层,取下层液200μL,加入800μL水中,混匀;再移取200μL加入到800μL水中,混匀,用0.45μm 有机滤膜过滤,即得。色谱条件色谱柱:月旭Ultimate AQ-C18(4.6×250mm,3μm)。柱温:40℃;紫外检测器:254nm; 流速:1.0mL/min; 进样量:5μL。谱图和数据1. 磺基丙氨酸、天冬氨酸、丙氨酸、脯氨酸、苯丙氨酸标准品溶液1μmoL/mL。2. 样品水解结论用月旭Ultimate AQ-C18(4.6×250mm,3μm)色谱柱,在该色谱条件下测定,能满足实验需求。
  • 免疫球蛋白含量测定——安东帕Abbemat系列全自动折光仪
    共同战疫 2020年 免疫球蛋白含量快速测定安东帕Abbemat系列全自动折光仪 随着新型冠状病毒感染的肺炎确诊越来越多,医疗物资需求也越来越大,其中,静注人免疫球蛋白是目前防控新冠状病毒感染肺炎的重要药品之一。人免疫球蛋白人免疫球蛋白是取健康献血员的新鲜血浆或保存期不超过2年的冰冻血浆,每批最少应由1000名以上健康献血员的血浆混合。用低温乙醇蛋白分离法分段沉淀提取免疫球蛋白组分,经超滤或冷冻干燥脱醇、浓缩和灭活病毒处理等工序制得,其免疫球蛋白纯度应不低于90%。然后配制成蛋白浓度为10%的溶液,加适量稳定剂,除菌滤过,无菌灌装制成。人免疫球蛋白作为重要的医疗用品,选择合适的含量检测方法具有重大意义。目前,中国药典明确规定人血浆中蛋白可采用折射仪法进行测定。折光率作为物质浓度和纯度的表征,可用于物质含量的测定。将折光仪用于免疫球蛋白含量的测定,不但操作简单,其快速、准确的优势,可帮助制药企业节约大量时间成本,这在需要大量生产与检测免疫球蛋白的特殊时期,尤为关键!
  • nanoDSF技术助力蛋白结晶的研究
    01研究背景稳定的、高纯度、单分散的生物样品显示出更高的结晶倾向[1]。早期阶段识别那些更有可能产生晶体的结构或变体能够节省大量的人力和时间成本。目前的很多方法,如凝胶过滤、DSF等技术可以帮助识别最优性质的样品,但是存在样品消耗量大或者外源染料与溶剂不兼容等问题。NanoTemper开发的nanoDSF差示扫描荧光技术,基于蛋白的内源荧光检测Tm值,通过Tm值的绝对数值和变化来确定优先结晶的缓冲条件或者蛋白变体等。接下来,我们通过两篇文献来了解nanoDSF如何助力结晶条件的筛选。02案例解读https://doi.org/10.1038/s41467-023-35915-4IF: 16.6 Q1非特异性磷脂酶C (NPC) 是植物特有的一类磷脂酶。尽管对NPCs的研究揭示了其在植物生长发育中的基本作用,但相比于其它磷脂酶(A1/A2/D/PI-PLC)水解底物的分子机制研究,NPCs是迄今为止唯一一类尚未被阐明的磷脂酶。湖北洪山实验室、作物遗传改良全国重点实验室蛋白质科学研究团队联合油菜团队的研究成果解析研究了NPC4的晶体结构和工作机制,为真核生物磷脂水解酶家族的分子机制提供了新见解。 研究中获得了NPC41-415和NPC41-496 两组结晶,对比结晶结果,发现NPC41-415没有磷酸化,且CTD结构域没有观察到电子密度。SDS-PAGE结果显示,蛋白在结晶过程中被部分降解,可能导致晶体中缺少CTD结构域。对比结晶条件发现NPC41-415的结晶中不存在KH2PO4,同时KH2PO4不影响NPC4活性。因此,作者推测KH2PO4可能会增强NPC4的稳定性。NPC4为膜蛋白,一般膜蛋白的表达和纯化得率均比较低,因此需要使用蛋白消耗量少的热稳定分析技术以最大程度的节约膜蛋白样品。nanoDSF技术样品检测浓度可低至5ug/ml,10μl,大大节约蛋白样品。研究人员利用nanoDSF技术检测了KH2PO4对NPC蛋白热稳定性的影响,每个条件仅需5.6ug NPC4蛋白样品。加入KH2PO4后,Tm值从51.1℃提高到55.3℃,表明NPC4在KH2PO4存在下更稳定,也解释了缺少KH2PO4时蛋白降解的原因。图示:KH2PO4提高NPC41-496 稳定性:nanoDSF结果显示,NPC41-496 Tm为51.1℃;在有50mM KH2PO4 存在下提高到55.3℃03案例解读https://doi.org/10.1038/s41598-023-41616-1IF: 4.6 Q2水通道蛋白2(APQ2)调控水的重吸收进而调控机体的水代谢平衡。AQP2基因的点突变可能导致肾性尿崩症(NDI)。为了进一步了解AQP2突变导致NDI的分子机制,作者通过对三种AQP2突变体(T125M、T126M和A147T)进行结晶,以了解突变AQP2的结构和功能关系,为NDI背后的机制提供了分子见解。为了提前了解突变对AQP2蛋白稳定性以及其对后续结晶的影响,研究人员使用nanoDSF技术比较了三种突变体的热稳定性差异。需要注意的是AQP2同样为膜蛋白,其储存溶液中含有去垢剂OGNG等成分,而nanoDSF技术是基于蛋白的内源荧光进行Tm检测,对去垢剂等兼容,无需优化检测条件,可快速获得重复性高的Tm结果。nanoDSF结果显示所有的热变性曲线显示出相似的形状。然而,Tm和Tonset在不同突变体之间存在差异。野生型AQP2的稳定性最高,其次为T126M和T125M, A147T的热稳定性最低。 图示:nanoDSF检测WT AQP2以及其突变体的热稳定性接下来,作者对AQP2以及其突变体进行结晶。在与野生型AQP2相同的条件下,只有T125M和T126M产生了足以用于结构测定质量的晶体,与野生型AQP2的结构高度相似。T126M晶体的衍射分辨率最高,为(~ 3-3.3 &angst ),其次是T125M (~ 3.7-4 &angst )。A147T晶体质量最低,衍射x射线约为5-7 &angst 。结晶结果与三种蛋白质结构的热稳定性非常一致,即蛋白质的热稳定性降低可能会降低其成功结晶的能力[2][3]。03案例小结&技术优势在上述两篇文献中,作者使用nanoDSF技术检测了膜蛋白在不同缓冲条件或者突变体的热稳定性,并且均可与后续的结晶结果对应。nanoDSF对缓冲溶液兼容,如去垢剂,无需额外优化条件,仅需非常少量的样品,即可快速完成Tm检测。明星产品PR Panta更是整合了4大检测模块(DLS、SLS、Backreflection和nanoDSF),仅需一份样品即可获得多种参数,更清楚了解结晶前样品情况,挑选最佳条件蛋白或条件进行结晶。PR Panta蛋白稳定性分析仪[1] Zulauf M, D'Arcy A (1992) J Cryst Growth 122:102–106[2] Dupeux, F (2011) Acta. Crystallogr. D Biol. Crystallogr. 67, 915–919.[3] Deller, M. C. (2016).Acta. Crystallogr. F Struct. Biol. Commun. 72, 72–95.
  • 月旭推出球状蛋白亲水改性硅胶色谱柱-Ultimate SEC
    Ultimate SEC色谱柱是硅胶基质的体积排阻色谱柱,也可以称之为&ldquo 球状蛋白亲水改性硅胶柱&rdquo (中国药典门冬酰胺酶指定色谱柱)。其色谱填料为高纯度、具有良好稳定性的硅胶微球表面键合亲水性聚合物。月旭公司采用特殊的表面修饰技术,确保了该填料具有良好的稳定性和批与批之间的重现性。 Ultimate SEC填料采用独特的化学键合技术,在硅球表面键合了亲水性聚合物以及亲水性二醇基官能团。双重键合机制使水溶性高分子聚合物、蛋白、生物酶、多肽等生物样品的非特异性吸附极小,因而可广泛应用于水溶性聚合物及生物大分子的分离和测定。Ultimate SEC色谱填料的特点1) Ultimate SEC色谱填料由含二醇基官能团的刚性球形硅胶微球表面覆盖亲水性高分子聚合物所组成;2) Ultimate SEC色谱填料内径为5 &mu m或3 &mu m的硅胶微球,能够获得最高的分离效率。3)Ultimate SEC 120 Å 小孔径色谱柱适合分离头孢类等极性目标物;300 Å 适合分离蛋白、多肽等生物大分子;4) Ultimate SEC产品目前有120 Å 、300 Å 、500 Å 和1000 Å 四种孔径规格的色谱柱。Ultimate SEC色谱填料的技术参数Ultimate SEC色谱柱使用注意事项1)使用前,请把色谱柱用纯水冲洗40-60个柱体积,以确保柱填料能够充分被润湿,防止色谱柱在使用过程中造成固定相塌陷;2)色谱柱在用纯水流动相分析时,需要充分地用纯水流动相平衡色谱柱,待基线充分平稳后进样分析;3)由于该类型色谱柱一般用的流动性是纯水相的缓冲盐,因而色谱柱在使用完以后需要用纯水流动相充分冲洗色谱柱,以保证缓冲盐被充分的清除,防止缓冲盐对色谱柱固定相造成的伤害;4)长时间不使用色谱柱时, 该类型色谱柱保存方式类似于常规的色谱柱,即高比例的有机溶剂-水溶液中,一般有机溶剂的比例为90%。Ultimate SEC色谱柱可替代市场上同类型产品1) Ultimate SEC 120 Å 可替代的其他厂家色谱柱有:日本东曹Tosoh公司的TSK gel G2000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-802.5、Sepax SRT SEC-150等;2) Ultimate SEC 300Å 可替代的类型有: 日本东曹Tosoh公司的TSK gel G3000SWxl、日本昭和电工Shodex公司的 PROTEIN KW-803、Sepax SRT SEC-300等;3) Ultimate SEC 500Å 可替代的类型有:日本东曹Tosoh公司的TSK gel G4000SWxl、Sepax SRT SEC-300、日本昭和电工Shodex公司的PROTEIN KW-804;Ultimate SEC型色谱柱性能评价色谱柱:Ultimate SEC(7.8× 300 mm,5 &mu m,300 Å );流动相:150 mM磷酸盐缓冲溶液,pH 7.0(具体配置方法为:称取17.997 g磷酸二氢钠,用超纯水定容至1000 mL,然后用1 M氢氧化钠调节至所需pH值);检测波长:214 nm;流速:0.8 mL/min;柱温:室温(25 oC);进样量:10 &mu L。样品处理方法:四种标准物质的浓度均为1.0mg/mL,解冻至室温后直接进样; 四种标准物质色谱图(1.甲状腺球蛋白;2.牛血清蛋白;3.核糖核苷酸酶A;4.尿嘧啶)
  • 奥素科技完成近亿元A轮融资|启动单细胞蛋白组学领域加速键
    1月2日,佛山奥素博新科技有限公司(以下简称奥素科技)宣布完成近亿元A轮融资。本轮融资由鲁信创投领投,老股东启明创投、线性资本、同创伟业等持续加码,凯乘资本(WinX Capital)担任财务顾问。本轮融资后,奥素科技将进一步加速在单细胞蛋白组学领域的商业化推广,提供差异化的产品和服务,填补实验室样本预处理、功能发现及验证等需求的空白,力争将中国制造的先进生命科学仪器推向全球市场。奥素科技成立于2021年,具有全球领先的有源数字微流控液滴操控平台,在两年多时间内已连续获得四轮融资,股东包括诸多顶级VC及知名产业投资人。公司推出的第一款商业化产品Boxmini™ SCP,是全球首款全流程微流控片上单细胞蛋白组学样本前处理工具,高效协助用户实现高通量、快速、精确的微量样本控制,一站式完成复杂的单细胞蛋白质样本前处理工作,且对无标记和TMT标记处理方案均可适配,产品推出后备受市场关注。对于本次融资,奥素科技创始人兼CEO马汉彬博士表示:“将消费电子半导体技术引入到生命科学领域,奥素团队已经完成了0到1的积累:特别是在单细胞蛋白质组学样本前处理应用场景,我们通过有源数字微流控微芯片上纳升样本精准操控及全流程集成能力,获得了海内外多位头部PI的认可并产生了对整个领域有促进意义的实验结果;在单细胞多组学、微生物及合成生物学等其他领域,奥素也将与不同的下游伙伴携手前行,加速新产品的开发及商业化落地。我们将在新老股东的支持下,利用产品技术优势,迅速开拓海内外市场,以单细胞蛋白质组学产品为突破点,通过开放式数字微流控共享平台打造半导体技术的生物芯片生态,让生命科学实验室及医疗检验自动化快速迈入消费电子时代。”此前,在仪器信息网第六届细胞分析网络大会(iCCA2023)的【单细胞分析技术】专题会场中,马汉彬研究员分享《 基于有源数字微流控的单细胞分选和操控系统》的主题报告。(详情点击)马汉彬 中国科学院苏州生物医学工程技术研究所 研究员马汉彬研究员课题组也在2023年成功研发出了一套基于大面积薄膜晶体管开关阵列的有源数字微流控平台,在Analytical Chemistry发表并被选为当期的封面论文。(详情点击)本轮领投方,鲁信创投副总经理邱方表示:“鲁信创投作为国有控股的专业创投机构,一贯秉持以创业投资形式,支持我国自主的研究平台、仪器设备成果应用转化,将实现我国高水平科技自立自强的任务放在首位。奥素科技掌握有源数字微流控的核心底层技术,有潜力将实验室自动化推进到一个全新的局面,形成新的研究平台。公司推出的单细胞蛋白组学产品,为单细胞多组学等前沿研究提供先进工具,在包括鲁信已投企业在内的下游客户中引起强烈关注,体现出国产科学仪器的高水平自立自强,即将迎来新的局面。鲁信创投将支持奥素科技,打好科学仪器设备国产化攻坚战。”启明创投合伙人陈侃表示:“启明创投作为上轮领投方,已连续两轮增资奥素科技。公司凭借强大的研发能力和优秀的执行力,快速的推出了单细胞领域的尖刀产品,面向一片蓝海市场。我们对公司未来充满信心,继续助力公司海外市场的商业化,期待奥素科技将“中国智造”先进科学仪器推向世界。”线性资本董事总经理郑灿表示:“线性资本作为天使轮领投方,坚定认为投资要找到正确的人。我们亲眼见证了马汉彬博士从一名科研工作者向现代企业家的转变。马汉彬博士的为人、科学素养、前沿视野和企业家精神令我们印象深刻。在他带领下,公司首先推出了具有划时代意义的单细胞蛋白质组学解决方案,为全球蛋白组学领域研究再填一把火。我们本轮继续增持,推动奥素科技向先进科学仪器标杆企业迈进。”同创伟业北京医药基金合伙人郗砚彬表示:“我们始终认为,奥素科技的数字微流控芯片系统,有望成为下一代生命科学微反应器的关键载体,持续为科学研究、医药工业等提供创新解决方案。公司的单细胞蛋白组学产品,将蛋白组学研究推进到了切实可行的单细胞颗粒度,使客户能够不再受工具所限,以全新的角度验证所知和探索未知。我们本轮继续增持,期待奥素科技能够让先进技术在应用层面全面开花。”凯乘资本创始合伙人邹国文表示:“凯乘资本很荣幸连续第三轮担任奥素科技融资的财务顾问,见证了奥素从初创、一路飞速发展及商业化;作为数字微流控行业头部企业,奥素能够穿越市场周期,在不到三年的时间连续获得四轮融资,充分体现了资本端对公司的高度认可。期待奥素在下游领域的进一步拓展,成为世界领先的生命科学工具企业。”关于鲁信创投:鲁信创投是山东省鲁信投资控股集团有限公司控股的省内最大、国内具有重要影响力的专业创投机构,是国内资本市场首家上市的创投机构(股票代码:600783.SH)。成立20余年以来,管理运作各类基金已达40余只,基金规模约200亿元,覆盖医疗健康、军民融合、先进制造、电子信息、新能源、新材料等细分产业,境内外上市公司40余家,在医疗健康领域先后投资了思路迪、硅基仿生、中科新生命、爱博泰克、唯迈医疗、美东汇成、英赛斯、荣昌生物等一批优秀企业。
  • 融智生物推出MALDI-TOF MS法糖化血红蛋白定量分析解决方案
    p  近日,融智生物宣布正式推出MALDI-TOF MS法定量分析糖化/非糖化血红蛋白解决方案。/pp  空腹血糖和餐后血糖是反映某一具体时间的血糖水平,容易受到进食和糖代谢等相关因素的影响。而由于人体红细胞的寿命一般在120天,在红细胞死亡前,血液中HBA1c含量也会保持相对不变,因此HBA1c水平反映的是在检测前120天内的平均血糖水平。所以说空腹和餐后两小时血糖只是诊断糖尿病的标准,而衡量糖尿病控制水平的标准是糖化血红蛋白。目前欧美等发达国家以糖化血红蛋白率诊断糖尿病。糖化/非糖化血红蛋白定量分析已在欧美发达国家取代传统的血糖测试。在中国,越来越多的诊断也开始使用糖化/非糖化血红蛋白定量分析。/pp  传统上,糖化/非糖化血红蛋白分析的主流技术是免疫法和高效液相色谱法。相较而言,高效液相色谱法精度更高,方法亦相对简单,目前,高效液相色谱法正快速取代免疫法。/pp  与目前的传统技术相比,融智生物基于新一代全谱可定量飞行时间质谱平台QuanTOF推出的质谱法,具有更高灵敏度、更高效率、更低成本、更简单操作以及更高通量等诸多优势。strong/strong/pp style="text-align: center "img width="500" height="333" title="quantof.jpg" style="width: 500px height: 333px " src="http://img1.17img.cn/17img/images/201803/insimg/1f511bc3-2b2d-4bfd-a2b4-7cb02e7ed6ae.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strong融智生物新一代全谱可定量飞行时间质谱平台QuanTOF/strong/pp  所需要的设备除了QuanTOF主机外,只需一台离心机,要求最简化,在试剂方面,也仅需要纯水和基质。/pp  在定量精度方面,融智生物经多次验证结果显示,QuanTOF的定量重现性接近甚至高于高效液相色谱,完全可做到对传统方法的替代,span style="color: rgb(31, 73, 125) "strong该方法尤其适合于样本量较大、对测试成本敏感的大型用户。/strong/span/pp style="text-align: center "img width="600" height="532" title="1.jpg" style="width: 600px height: 532px " src="http://img1.17img.cn/17img/images/201803/insimg/72717b18-1acc-4633-bd62-6bc22b6c5887.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongQuanTOF方法与其他方法优劣比较/strong/pp  strongiTIPS:对糖化/非糖化血红蛋白定量分析方法的推出,意味着MALDI-TOF MS具备对更多蛋白的定量分析可行性。/i/strong/pp  span style="color: rgb(31, 73, 125) "ispan style="font-family: 黑体, SimHei "附:MALDI-TOF-MS检测糖化血红蛋白方法/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  一、标准曲线制定/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  /span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "1、将6个不同水平的糖化血红蛋白标准品,用去离子水稀释200倍,形成稀释标准品待测液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  2、将稀释标准品待测品与SA基质,按照1:8充分混合,形成待测样品溶液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  3、将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  4、编辑程序进行质谱上机检测,根据所得实验建立标准曲线得到线性关系公式。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  二、样品检测/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  1. 血清的制备,将人全血用去离子水稀释200倍,形成稀释血样待测品。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  2. 将稀释血样待测品与SA基质,按照1:8充分混合,形成待测样品溶液。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  3. 将待测样品溶液点在靶板上,静置直至液点完全干燥结晶。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  4. 编辑程序进行质谱上机检测。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  5. 根据质谱图得出,糖基化蛋白峰面积(A)/糖基化蛋白峰面积(A)+非糖基化蛋白峰面积(B)。/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/ppspan style="color: rgb(31, 73, 125) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "  6. 计算得出糖化血红蛋白的质谱值=A/A+B,计算得到糖化值。/span/i/spanspan style="color: rgb(0, 0, 0) "ispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/iispan style="color: rgb(31, 73, 125) font-family: 黑体, SimHei "/span/i/span/p
  • 远慕生物:血红蛋白测定哪些方法?
    1.氰化高铁血红蛋白HiCN测定法:除SHb外推荐参考方法,具有操作简单、显色快、结果稳定可靠、读取吸光度后可直接定值等优点。致命的弱点是氰-化钾(KCN)试剂有剧-毒,使用管理不当可造成公害。氰化高铁血红蛋白测定法操作(1)直接测定法①加转化液:试管内加5ml?HiCN转化液②采血与转化:取全血20μl,加到盛有转化液的试管底部,用上清液反复冲洗吸管3次,充分混合,静置5min。③测定:以符合WH0标准的分光光度计,波长540nm处,光径(比色杯内径)1.000cm,HiCN转化液或蒸馏水调零,测定吸光度(A)。④计算:根据样本的吸光度(A)直接计算出血红蛋白浓度(g/L)(A为测定管吸光度,44为毫摩尔消光系数,64458/1000为1mol/L Hb溶液中所含Hb克数,251为稀释倍数。)(2)HiCN标准液比色法测定HiCN参考液(50g/L、100g/L、150g/L、200g/L),分别测得540nm处的吸光度,以参考液血红蛋白含量为横坐标,吸光度为纵坐标,绘制标准曲线或求出K值。①标准曲线绘制和K值计算②样本吸光度③通过标准曲线查出样本血红蛋白浓度,或用K值计算,血红蛋白浓度Hb(g/L)=K×A。 注意事项(1)HiCN贮存:转化液贮存在棕色有塞玻璃瓶中,不能贮存在塑料瓶中,否则会使CN-丢失,测定结果偏低。HiCN转化液在4℃保存一般可数月,不能在0℃以下保存,因为结冰可使高铁氰-化钾还原,试剂失效。(2)标本:异常血浆蛋白质、高脂血症、白细胞数超过30×109/L、脂滴等可产生浊度,干扰Hb测定。(3)HiCN转化液是一种低离子强度、pH近中性的溶液(7.2±0.2)。样本中白细胞过高或球蛋白异常增高时,HiCN比色液会出现浑浊。(4)氰-化钾试剂是剧,测定后的废液应收集于广口容器中,首先以水稀释废液(1:1),再按每升上述稀释液加次氯酸钠35ml,充分混匀,敞开容器,放置15h以上,使CN-氧化成C02和N2挥发,或水解成C032-和NH4+,再排入下水道。废液不能直接与酸性溶液混合,因为氰化-钾遇酸可产生剧毒的氰氢酸气体。2.十二烷基-硫酸钠血红蛋白SDS测定法:具有操作简单、呈色稳定、准确性和精-确性符合要求、无公害等优点。但由于摩尔消光系数尚未最后确认,不能直接用吸光度计算Hb浓度,而且SDS试剂本身质量差异较大,会影响检测结果。3.HiN3最大吸收峰542nm,显色快,结果稳定。
  • 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白: ELISA的样本实验准备 在收集样本前都必须有一个完整的计划,必须清楚要检测的成份是否足够稳定。对收集后当天就进行检测的样本,及时储存在4℃备用。对于隔天再检测的样本,及时分装后冻存在-20℃备用,有条件的,最好-71℃冻存备用。标本反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。 8.用酶联仪在450nm波长依序测量各孔的光密度(OD值)。 在加终止液后15分钟以内进行检测。 注: 1. 用户在初次使用试剂盒时,应将各种试剂管离心数分钟,以便试剂集中到管底。 2. 每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。 3. 为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。 4. 未使用完的酶标板或者试剂,请于2-8℃保存。标准品、生物素标记抗体工作液、辣根过氧化物酶标记亲和素工作液请依据所需的量配置使用。请勿重复使用已稀释过的标准品、生物素标记抗体工作液或、辣根过氧化物酶标记亲和素工作液。 5. 建议检测样品时均设双孔测定,以保证检测结果的准确性。 洗板方法 手工洗板方法:吸去(不可触及板壁)或甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将推荐的洗涤缓冲液至少0.3ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中。 计算 以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。 注意事项 1. 当混合蛋白溶液时应尽量轻缓,避免起泡。 2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。 3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。 4. 请每次测定的同时做标准曲线,最好做复孔。 5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。 6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。 7. 底物请避光保存。 8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • PNAS|沈庆涛团队引入“退火”技术提高冷冻电镜解析蛋白分辨率
    退火——在冶金学中很常见——将金属或合金加热到设定温度,保持该温度,然后将金属冷却到室温,以改善材料的物理性质,有时还改善材料的化学性质。退火材料倾向于采用同质状态并容易组装成三维 (3D) 或二维 (2D) 晶体。人们可以通过原子力显微镜 (AFM)、X 射线衍射 (XRD) 或电子显微镜 (EM) 轻松地观察到这种规则堆积。退火是否对生物大分子,尤其是蛋白质表现出类似的影响,是一个迷人的科学问题。2022年2月22日,上海科技大学沈庆涛研究员团队等在PNAS发表题为Annealing synchronizes the 70S ribosome into a minimum-energy conformation的研究论文,将退火技术引入冷冻电镜解析蛋白质结构,在模拟退火中引入了一个类似的概念,以预测生物大分子的最小能量构象。通过实验验证,在自由能分析中,以快速冷却速率退火可以将 70 S核糖体同步到具有最小能量的非旋转状态。此结果不仅提供了一种简单而可靠的方法来稳定蛋白质以进行高分辨率结构分析,而且有助于理解蛋白质折叠和温度适应。与金属和有机聚合物不同,蛋白质和蛋白质复合物通常是由化学上不同的亚基以不同的几何形状结合在一起的离散实体。这种显着的结构异质性阻碍了通过 AFM 或 XRD 直接确定结构。相比之下,cryo-EM 分辨率的最新进展为在单分子水平上获得高分辨率蛋白质结构提供了绝佳机会。通过使用冷冻电镜比较退火前后的详细结构,可以获得退火影响蛋白质构象的直接实验证据。退火提高了局部分辨率研究中,选择来自大肠杆菌的载脂蛋白状态 70 S核糖体作为模型,其中 30 S亚基经历热驱动的亚基间旋转并表现出显着的结构灵活性以及明显的自由能。在 0°C 下将纯化的脱基态 70 S核糖体培养 5 分钟,然后立即将核糖体快速冷冻以进行低温 EM 分析,这可能保留了与玻璃化之前相同的构象(描绘为未退火状态)。筛选了收集到的 70 S核糖体颗粒通过 2D 和 3D 分类丢弃明显的垃圾和拆卸的核糖体。根据金标准傅里叶壳相关性,从 200,000 个随机选择的粒子中重建得到最终分辨率为 2.6 Å 的结构。由于缺乏稳定因素,例如信使 (mRNA) 和转移 RNA (tRNA),对未退火的 70 S核糖体的局部分辨率估计表明,在 2.6 至 7.2 埃范围内的整个密度图上存在可变分辨率(图 1A )。相对于 50 S亚基,30 S亚基——尤其是它的头部结构域——没有得到很好的解析,这在其他脱辅基态核糖体中很常见。图1 退火提高了 70 S核糖体的局部分辨率为了量化不同区域的分辨率变化,通过平均选定区域内的局部分辨率值来计算局部分辨率。分析表明,50 S亚基的平均局部分辨率为 3.1 Å,而 30 S亚基的分辨率要低得多——只有 5.2 Å。此外,30 S头域的分辨率更低——平均分辨率为 6.1 Å(图 1 B )。50 S和 30 S亚基之间的亚基间棘轮是分辨率差的主要原因;30 S的亚基内漩涡亚基是次要的,这会降低头部域的分辨率。为简单起见,使用 30 S亚基的局部分辨率作为标记来监测退火对 70 S核糖体的影响。未退火的、加热的和退火的核糖体结构变化退火使柔性区域稳定退火诱导的分辨率改善在整个 70 S核糖体中并不均匀。相对于 30 S亚基的 1.5-Å 分辨率提高,良好分辨的 50 S亚基在退火后仅提高了 0.3 Å(即从 3.1 Å 值到 2.8 Å 值)(图 1 B ) . 因此,退火对具有更大结构灵活性的低分辨率区域特别有益。为了进一步验证这一推论,我们对未退火和退火 70 S之间相同子区域的平均局部分辨率进行了综合统计分析核糖体。例如,退火将不同区域的平均局部分辨率提高到 0.1、0.6、0.8、1.2 和 2.0 Å 的水平;未退火核糖体中相应区域的局部分辨率范围为 2.5 至 3.0、3.0 至 3.5、4.0 至 4.5、5.0 至 5.5 和 5.5 至 6.0 Å(图 2 A ) 。指数曲线与数据非常吻合,表明未退火的 70 S核糖体具有更大的灵活性,对应于退火后局部分辨率的更大提高。图 2 退火稳定了 70 S核糖体的柔性区域讨论不限于金属、合金或半导体,我们通过实验证明退火还可以使 70 S核糖体同步到具有窄构象分布的最小能量状态(图 3)。核糖体/核小体的结晶具有类似退火的处理,其中研究人员通常将核糖体/核小体加热到 37 °C 和 55 °C 之间,然后将它们降低到室温 (19 °C)。对 70 S核糖体进行严格退火以进行结晶将有助于探索退火对 70 S核糖体的物理和化学影响,如在冶金学中。除了 70 S核糖体,在其他生物大分子上退火,特别是那些具有动态结构的大分子,将有助于验证该方法的普遍性。图3 模型说明退火可以使核糖体同步到最小能量状态并提高局部分辨率。显示了自由能曲线(实线)和粒子分布概率(浅绿色峰)。结构灵活性虽然对蛋白质功能至关重要,但阻碍了研究人员应用结构研究在分子水平上阐明功能的能力。持续的努力——例如关键残基的突变,引入额外的二硫键,添加抗体/结合蛋白 ,或在溶液中或甘油内交联/葡萄糖梯度——对于优化样品以提高结构稳定性很有用。然而,这样的努力耗时且缺乏明确的方向,最终的结构仅限于固定状态,有时甚至会在额外的操作后发生扭曲。退火——适当加热和冷却的组合——对蛋白质没有破坏性,是一种简便而可靠的高分辨率冷冻电镜方法。有趣的是,与通过戊二醛交联的 70 S核糖体相比,退火提高了 50 S和 30 S亚基的局部分辨率。研究人员还尝试通过在低温 EM 图像处理期间对柔性区域进行局部细化来提高局部分辨率。我们对未退火和退火核糖体的灵活 30 S亚基进行了局部改进。在局部细化后,未退火核糖体的 30 S亚基的平均局部分辨率提高了 ~1 Å,达到 4.2 Å。与通过退火提高分辨率不同,局部细化本身仍然导致 30 S亚基头部域的平均分辨率不足 5.5 Å 。显然,退火和局部细化通过不同的机制提高了局部分辨率。退火可以将生物大分子驱动到最小能量状态,并且无论区域大小如何,都可以全局提高整个地图的分辨率。作为对照,局部细化在算法级别上起作用,并且仅适用于大小合理的区域。当我们对退火核糖体应用局部细化时,30 S亚基的主体和头部结构域分别提高到 2.9 和 3.9 Å。这表明退火与柔性区域的局部细化兼容,并且可以进一步优化局部分辨率以进行详细的结构分析。可以使用退火将蛋白质同步到最低能量状态,这可能有利于许多单分子方法,例如光镊和单分子荧光共振能量转移 。人们还可以使用退火来研究温度适应和蛋白质折叠,并促进分子动力学模拟中的算法开发。因此,研究人员应彻底研究退火机制并进一步优化退火条件以提高分辨率。本研究由国家重点研发计划项目2017YFA0504800(Q.-TS)、2021YFF1200403(Q.-TS)和2018YFC1406700(Q.-TS)和国家自然科学基金项目31870743(Q. .-TS)等支持。论文链接:https://www.pnas.org/content/119/8/e2111231119#sec-6
  • 11月9日开播!蛋白分析及表征技术进展主题网络研讨会
    蛋白质作为生命基本构成单元,几乎承担着所有生命活动。深入研究蛋白质的功能和结构,全面分析蛋白质间的相互作用和调控机制,不仅能更好地了解生命的奥秘,还为疾病的预防和治疗提供新思路和新方法。为帮助广大实验室用户及时了解蛋白质分析及表征技术最新进展及前沿应用,仪器信息网将于11月09日举办“蛋白分析及表征技术进展”主题网络研讨会,聚焦蛋白质的结构表征、相互作用和动态变化等前沿研究,涵盖质谱、X射线晶体衍射、核磁共振、原子力显微镜和冷冻电镜等技术分享,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/fbs (点击报名)『会议日程』蛋白分析及表征技术进展(2023年11月09日)报告时间报告方向专家单位09:30-10:00结构蛋白组学质谱仪器与方法徐伟北京理工大学 教授10:00-10:30分析型超速离心机在生物大分子药物分析中的前沿应用李文奇清华大学蛋白质研究技术中心 蛋白质制备与鉴定平台主管/高级工程师10:30-11:00分析实验中移液产品的正确选择和使用庄昕晔普兰德(上海)贸易有限公司 产品专员11:00-11:30大分子晶体学在蛋白分析中的应用范仕龙清华大学蛋白质研究技术中心 X射线晶体学平台主管/高级工程师11:30-12:00基于等温滴定微量热技术的蛋白互作分析研究吴萌中国科学院分子细胞科学卓越创新中心 高级工程师12:00-13:30午休时间13:30-14:00高速原子力显微镜的生物大分子研究焦放中国科学院物理研究所 特聘研究员14:00-14:30生物型原子力显微镜在蛋白质形貌和结构表征中的应用樊友杰布鲁克(北京)科技有限公司 高级应用/服务工程师14:30-15:00蛋白质表观分子量的核磁共振检测方法李红卫北京大学北京核磁共振中心 高级工程师15:00-15:30冷冻电镜制样技术经验交流郭振玺北京大学冷冻电镜平台 副主任/高级工程师15:30-16:00利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究谢成北京大学张文彬教授课题组 博士后『精彩报告预览』徐伟 教授北京理工大学《结构蛋白组学质谱仪器与方法》【报告摘要】:针对生理条件下微量生物分子三维结构及功能研究这个科学问题,首先发展了具有高稳定性、高重复性的液相离子迁移电泳技术与仪器,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。为了获取生物大分子较全面的立体结构,课题组进一步将离子迁移电泳与非变性质谱技术相结合,通过气相非变性质谱实验获得了分子的溶液可及表面积、通过液相迁移电泳实验获取了分子体积,再结合流体力学Stokes Flow方程,最终获取了蛋白及蛋白复合体的三维几何尺寸信息,该方法可应用于蛋白-小分子复合体结构研究和蛋白质内部几何结构解析。基于液相离子迁移原理,课题组进而开发了液相离子阱装置,在液相条件下实现了离子的富集、选择性传输与顺序弹射分析。通过该装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度提升100倍以上。报名占位李文奇 蛋白质制备与鉴定平台主管/高级工程师清华大学蛋白质研究技术中心《分析型超速离心机在生物大分子药物分析中的前沿应用》【报告摘要】:生物大分子药物包括抗体药、细胞治疗药、疫苗、重组蛋白类药物等;生物大分子药物具有分子量大,结构复杂的特点,随着生产工艺的不断优化和分析技术的进步,生物大分子药物的质量控制将日趋规范和严格,国家药品监督管理部门也在不断提升该类产品的质量控制要求。有效的质量控制分析方法是确保产品安全性和有效性的基础,报告介绍了生物大分子药物市场规模以及临床现状,结合生物大分子药物的研发流程和基本性质,针对性的对其成药性评价,制备和工艺开发提出相对应的质量控制分析方法,尤其是分析型超速离心机在生物大分子药物分析中的主要应用和发展前景,通过分析超速离心技术在国内外进而对于不同类型的生物大分子药物制定分析策略。报名占位庄昕晔 产品专员普兰德(上海)贸易有限公司《分析实验中移液产品的正确选择和使用》【报告摘要】:移液操作是实验工作的基本技能之一,同时也是最容易被忽视的技能。 液体移液仪器、体积量具在实验室移液操作中扮演着重要的角色。这决定了几乎所有化学与生物学分析测试的精度和结果的可靠性、重复性,正确的选择、使用移液产品是生化实验的必要基础。本次报告将介绍BRAND瓶口分液器、移液器、连续分液器、容量瓶、移液管等移液产品的原理和操作。报名占位范仕龙 晶体学平台主管/高级工程师清华大学蛋白质研究技术中心《大分子晶体学在蛋白分析中的应用》【报告摘要】: 大分子晶体学是一种通过生物大分子(如蛋白质和核酸)形成晶体,以获得其高分辨率三维结构的技术。在蛋白性质研究中,大分子晶体学发挥着重要的作用。 通过大分子晶体学,可以确定蛋白质的三维结构,这对于理解蛋白质的功能和作用机制非常重要;通过大分子晶体学,可以解析蛋白质与其他分子(如酶底物、配体等)的结合位点,以及相互作用的方式。这有助于揭示蛋白质的功能机理,例如酶的催化机制、信号传递等。从而指导药物设计和研发。通过解析药物与靶蛋白的结合模式,可以优化药物的结构和性能,提高药物的特异性和效力;最后大分子晶体学可以提供结构信息,帮助药物研发人员进行结构优化工作。通过研究晶体结构和结合位点的特性,可以设计和改进蛋白质受体和配体的结构,使其具有更好的稳定性、活性和选择性。 总之,大分子晶体学在蛋白性质研究中发挥着至关重要的作用,可以帮助揭示蛋白质的结构、功能机理和多样性,指导大分子和小分子药物设计和优化。报名占位吴萌 高级工程师中国科学院分子细胞科学卓越创新中心《基于等温滴定微量热技术的蛋白互作分析研究》【报告摘要】:蛋白质与其他分子的相互作用是蛋白组学研究中的重要内容,用于研究蛋白-蛋白相互作用的技术和方法有很多种。等温滴定微量热技术是最早发展起来可用于蛋白间相互作用研究的定量检测技术,具有可在溶液中无需任何标记、样品无损地进行检测的特点。本报告结合工作实际对等温滴定微量热技术(ITC)的原理、操作及应用着重进行介绍。报名占位焦放 特聘研究员中国科学院物理研究所《高速原子力显微镜的生物大分子研究》【报告摘要】:待定。报名占位樊友杰 高级应用/服务工程师布鲁克(北京)科技有限公司《生物型原子力显微镜在蛋白质形貌和结构表征中的应用》【报告摘要】:蛋白质在细胞中发挥着各种各样的功能,涵盖了细胞生命活动的各个方面,如发挥催化作用的酶和参与生物体内的新陈代谢的胰岛素,还有可以进行物质运输的分子马达蛋白。细胞免疫反应、细胞分化、细胞凋亡等过程中也都有大量蛋白质的参与。 研究蛋白质的形貌和结构以及蛋白质与其他分子之间的相互作用,有助于理解蛋白质的作用,了解蛋白质是如何行使其生物功能,这无论是对于生物学还是医学和药学,都是非常重要的。通过对蛋白力学结构的分析,可以进行功能注释和指导设计特异性的蛋白的合成。 本报告我们将向大学介绍Bruker生物型原子力显微镜在蛋白质领域的相关应用,包括蛋白质形貌的表征和原位动态过程的观察,还有单分子力谱在蛋白结构解析中的应用。 Bruker生物型原子力显微镜的全针尖扫描模式的设计能从结构上很好地与现在的主流倒置显微镜进行无缝的耦合联用,能够让我们从多变量角度对蛋白质进行解析。报名占位李红卫 高级工程师北京大学北京核磁共振中心《蛋白质表观分子量的核磁共振检测方法》【报告摘要】:蛋白质表观分子量更加真实的反映了其在接近生理条件下的存在状态。本报告介绍一种可以极大降低环境因素的影响、提高测试结果的可重复性的蛋白质表观分子量的测定方法,方法在蛋白质研究以及蛋白质类产品的研发与生产过程中具有较高的实用价值。通过该方法,发明人旨在探索一条从方法创新到实验室应用再到企业应用的途径。报名占位郭振玺 副主任/高级工程师北京大学冷冻电镜平台《冷冻电镜制样技术经验交流》【报告摘要】:冷冻电镜样品制备是冷冻电镜技术发展的瓶颈之一,制约着解析生物大分子复合物三维结构的效率。本报告将结合报告人所在冷冻电镜平台自主开展的支撑科研工作者快速制备冷冻样品的几种方法,与大家进行交流。报名占位谢成 博士后北京大学化学与分子工程学院张文彬教授课题《利用肌红蛋白铰链区域紧密的氢键网络来构建稳定的结构域交换二聚体的研究》【报告摘要】:我们探究了氢键对肌红蛋白(Mb)结构域交换二聚体的形成和稳定性的影响。当Mb二聚体铰链区氢键网络附近的 Leu137 突变为亲水性氨基酸(Glu 或 Asp)后,二聚体的稳定性增强。铰链区氢键网络更紧密的突变体中,氢键数量更多,α螺旋刚性更强,二聚体结构更加稳定。本研究证明了氢键对于设计稳定结构域交换蛋白质二聚体的重要性和实用性。报名占位扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • N端封闭蛋白序列分析进行时——台式MALDI-8020
    胰蛋白酶消化,质谱法轻松鉴定蛋白质,已经是非常成熟的工作流程。即使是刚接触MS的使用者也可以很快掌握。在质谱法鉴定蛋白的工作流程中,蛋白质鉴定是通过使用搜索引擎,例如 Mascot或Matrix Science进行简单的数据库搜索来实现的。然而,对于数据库中未列出的蛋白质鉴定需求,或需要进行蛋白质末端序列分析的这两种情况,通常采用更昂贵的高端仪器和更复杂的工作流程,需要熟练的操作员。此外,蛋白质测序仪也通常用作蛋白质末端序列分析的方法,但遇到 N 端封闭的蛋白质,去封闭是必要的。作为样品序列分析前的预处理,预处理效果取决于蛋白质类型,可能效果不佳,对操作人员有一定要求,需要一定程度的技能和经验,这些可能会限制其使用。 近年来,利用MALDI-TOF离子源(ISD:In-Source Decay)中发生的蛋白质碎裂离子,可以分析N末端被封闭或未在数据库中登记的蛋白质序列MS图谱。此外,ISD理论上不受每个样品质量的限制,因此无需胰蛋白酶消化即可直接对高质量蛋白质进行测序。结合电泳胶提取蛋白和岛津台式机MALDI-8020,通过N端封闭蛋白的分子量测定和序列分析的例子,让我们来了解下大蛋白分子直接测序技术MALDI-ISD。 将模型样品N 端被乙酰化的牛碳酸酐酶 (Sigma-Aldrich)溶解在缓冲溶液中进行电泳, 95 °C 下加热 5 分钟,然后在聚丙烯酰胺凝胶(ATTO 12.5 %,预制 e-PAGEL)上进行电泳。所得聚丙烯酰胺凝胶用考马斯亮蓝染色以检测蛋白质斑点。使用含有表面活性剂的提取缓冲溶液,我们从凝胶分离的碳酸酐酶的条带中提取蛋白质。使用氯仿/甲醇在提取缓冲溶液中沉淀蛋白质以去除表面活性剂和盐,并使用 MALDI-TOF 质谱仪进行测量。芥子酸用作 MALDI 基质用于蛋白质分子量测量,1,5-二氨基萘 (DAN) 用于 ISD 的序列分析。 图1、碳酸酐酶电泳图图2、从凝胶中提取的碳酸酐酶MS图(基质芥子酸) 接下来,从25 pmol凝胶蛋白条带中提取碳酸酐酶,与基质DAN混合,MALDI-8020线性模式进一步分析。结果如图3所示,主要检测到c离子(从蛋白质N段产生的片段)质量一致的峰。通过使用免费软件Mass++ TM和蛋白质氨基酸序列比对工具Basic Local Alignment Search Tool (BLAST),我们对从检测到的峰中获得的氨基酸序列进行了同源性搜索。 图3、MALDI-ISD鉴定结果 鉴定结果显示匹配结果最高的是碳酸酐酶。通过检测到的c离子片段质量和数据库中已有的碳酸酐酶氨基酸序列,我们可以推断出N段序列是SHHWGYGKH...,并且是N-乙酰化的。 MALDI-8020线性模式MALDI-ISD技术,无需复杂的工作流程,无需胰蛋白酶消化即可直接对高质量蛋白质(如本文所述m/z 29030示例)进行N端测序。 该方法在岛津应用专家与美国佛罗里达州立大学、日本爱媛大学高级研究支持中心生物医学分析部、利物浦大学生化与系统生物学系等共同发表的一篇文献中也有应用到。PEPPI-MS基于聚丙烯酰胺凝胶的预分馏,实现质谱法鉴定完整蛋白或蛋白复合物。凝胶分离回收14种人血清蛋白,提取后,用MALDI-8020的MALDI-ISD产生的产物离子鉴定人血清白蛋白N端氨基酸序列。 MALDI-8020是岛津MALDI家族一款体积小巧,性能卓越的特色产品。荣获2018 IBO工业设计大奖银奖。 主要特点:● 线性台式MALDI-TOF● 200Hz固态激光器,355nm波长● 进样速度快● TrueClean™ 自动源清洁功能。配备大口径离子光学系统,使仪器长期使用中源的污染风险降到最低。配备基于紫外激光器的源清洁功能,可自动快速实现源自清洁。● 静音(55dB)● 可视化工作状态 参考文献:岛津应用新闻 No.B83J. Proteome Res. 2020, 19, 3779−3791
  • Labhands全自动溶液配制仪参加绿绵科技产品发布会
    北京绿绵科技有限公司(简称:绿绵科技)是一家专业的仪器公司,本着诚信服务,追求卓越的宗旨,发扬勤奋自强,团结协作,不断进步的企业精神,多年来取得了卓越的成绩。2016年上海兰博贸易有限公司(Labhands)有幸与绿绵科技牵手,并授权其为指定区域的独家代理。7月底绿绵科技在天津成功举办了2016新产品发布会,Labhands品牌的全自动溶液配制仪有幸成为其中的一员。绿绵科技总经理欧阳先生对其公司的新品逐一介绍,很多新技术引起了台下客户的浓厚兴趣。会议间隙,很多用户立刻围了过来,对Labhands的全自动溶液配制仪工作原理、工作流程、方法编辑等问题问个不停,工程师一一解答。 附绿绵科技成长历程简介:◆2001年绿绵科技成为全球最大科学仪器和试剂公司—Thermo Fisher公司的色谱质谱产品线(原Finnigan产品线)中国区总代理◆2005年,绿绵科技引进德国Knauer公司40余年精密制造的HPLC系统硬件,开发自主知识产权的全中文色谱工作站,成为可靠性和易用性完美结合的典范。◆2007年,绿绵科技推广并代理美国Pittcon获奖产品MassWorks精确质量数测定及分子式识别系统。◆2009年,绿绵科技推出全新德国ECO GPC凝胶净化系统,为广大色谱、质谱工作者提供更优化的样品前处理解决方案。◆2009年,绿绵科技联合上海磐和科学仪器股份有限公司开发北方市场,推广各种样品前处理(GPC-SPE)、全自动热解析和苏玛罐等产品。◆2010年,绿绵科技推出全新德国ECO SPE全自动在线固相萃取-液相联用系统,为环境监测、生物医药、食品饮料等行业提供快速分析解决方案。◆2010年,绿绵科技联合华质泰科生物技术(北京)有限公司共同推出美国Pittcon金奖、R&D100金奖产品——实时直接分析质谱离子源DART。◆2010年,绿绵科技将软件界新一代服务模式SaaS和云计算平台引入分析测试行业,推出随需而变的LabOS实验室运营管理系统。◆2011年,绿绵科技推出法国F-DGSi公司的氮气/氢气/空气发生器,为广大液质联用仪、气相色谱、MP-AES等客户提供高纯、稳定、安全的气源。◆2011年,绿绵科技推出爱迪生2011年最佳新产品奖获奖产品——picoSpin微型核磁共振波谱仪。◆2012年,绿绵科技成为Excellims公司的中国区代理商,代理高分辨电喷雾离子迁移谱仪(HPIMS)。◆2012年,绿绵科技成为通用电气(GE)大中国区医疗集团全国药监系统的生命科学全线产品的授权分销商。◆2012年底,绿绵科技成为安捷伦CAG中端产品区域授权代理商,主要代理7820气相色谱仪、1220液相色谱仪、7697A顶空进样器、等产品。◆2012年底,绿绵科技成为加拿大AES公司中国总代理,代理新一代全柱成像毛细管等电聚焦电泳仪。◆2013年,绿绵科技成为New Objective(中国)公司北方地区唯一的代理商,主要代理LC-MS技术的纳喷雾离子源和消耗品。◆2013年3月,绿绵科技申请并通过了国家ISO9001质量管理体系认证,这标志着绿绵科技的售后服务水平迈上了一个崭新的台阶,客户满意度明显提升。◆2013年,绿绵科技代理的氮气发生器成为安捷伦MP-AES、液质联用仪产品的气源供应商。◆2014年,绿绵科技成为Freeslate在中国北方代理商,代理旗舰产品Core Module 3(CM 3)系统。◆2014年,绿绵科技成为通用电气(GE)大中国区医疗集团河南省及北京医院系统生命科学全线产品的授权分销商。◆2014年底,绿绵科技推出电泳生物耗材,为客户提供29种pI标记物、10种两性电解液载体、多种规格的分离柱及电泳仪分析溶液。◆2015年4月,绿绵科技第二十届全国色谱会学术报告会及仪器展览会上提出利用全柱成像毛细管电泳仪进行蛋白收集制备的突破性技术,在分离全柱进行可视蛋白的收集。◆2015年6月,绿绵科技推出电泳生物耗材新增3种pI标记物,最多可为客户提供32种pI标记物。◆2015年12月,北京绿绵科技有限公司成为瑞典Medicago AB在中国的授权代理商。◆2016年2月,绿绵科技成为安捷伦CAG中端产品区域授权代理商,主要代理7820气相色谱仪、1220液相色谱仪、配置7820GC和扩散泵5977B气质联用仪。 ◆2016年3月,绿绵科技举办公司成立15周年活动,对中国区域销售的LUMTECH液相进行免费检查的维护服务,推出氮气发生器保修合同和优惠方案。◆2016年6月,绿绵科技成为加拿大PromoChrom Technologies Ltd.公司全自动固相萃取仪在中国的独家代理商,在中国开展相关的产品销售及售后服务工作。◆2016年6月,绿绵科技取得英国牛津仪器磁共振(OXFORD Instruments Magnetic Resonance,OIMR)的核磁共振波普仪Pulsar的中国区域经销商资格。◆2016年6月,绿绵科技与上海兰博贸易有限公司达成合作协议,在指定区域内经销全自动溶液配制仪、全自动气体进样器。------
  • 李惠琳团队成果:非变性自上而下质谱用于蛋白及其复合物结构表征
    大家好,本周为大家分享一篇李惠琳课题组最近发表在Mass Spectrometry Reviews上的综述,Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes1。结构生物学的快速发展极大地促进了蛋白结构表征工具的开发。其中,基于质谱的分析方法凭借其快速、灵敏、高通量的优势从中脱颖而出。相比于原子水平的高分辨结构表征工具如X-射线晶体学、核磁共振(NMR)、冷冻电镜(Cryo-EM)等,基于质谱的分析方法能够有效地补充蛋白动力学结构变化的信息,并且不受蛋白纯度、分子量大小的限制。而相较于低分辨的蛋白表征工具如圆二色光谱、动态光散射等,基于质谱的分析方法能够提供更高的肽段或残基水平分辨率,获取额外的序列、翻译后修饰(post‐translational modifications, PTMs)、局部空间结构等信息。常见的结构质谱包括:氢氘交换质谱(hydrogen‐deuterium exchange MS, HDX-MS)、交联质谱(cross‐linking MS, CX-MS)、表面标记质谱(covalent labeling MS, CL-MS)等。已有相当多的文献对这些方法进行了详细的介绍2,3,在此不再赘述。而此篇综述将重点介绍非变性至上而下质谱(native top‐down MS, nTDMS)在蛋白及其复合物结构表征中的应用。在过去的十年,非变性质谱(native MS, nMS)特别是nTDMS发展迅速。nMS作为一个桥梁将蛋白质组学与结构生物学相连,其保留非共价相互作用的特性使其广泛用于蛋白复合物四级结构表征,如推断亚基组成、化学计量比、亚基排布等。然而,对于一些深层次的结构信息,如氨基酸序列、PTMs、配体结合位点、亚基结合界面等,仅靠单一的nMS是无法获取的。与之对应的,变性条件下的自上而下质谱(TDMS)能够在完整蛋白水平下直接获得序列以及PTMs信息,虽然有助于PTM的准确定位以及蛋白、蛋白异质体(Proteoform)的鉴别,但却丢失了涉及非共价相互作用的高级结构信息。受限于质谱仪器的发展,在早期,nMS与TDMS通常在两个独立的实验中进行,随着质量分析器以及多种活化/碎裂方式的开发,nMS与TDMS的能够有效的结合,充分发挥各自的优势,在实现多层次结构信息获取的同时,也在不断挑战更加复杂的生物体系,如核糖体、膜蛋白、内源蛋白混合物等。实验设计nTDMS已成为表征蛋白质和复合物的初级到高级结构的重要工具。随着蛋白质样品的大小和复杂性的增加,用于nTDMS的仪器不仅需要符合某些特定标准,还需要不断提高其性能以满足这些增加的需求。nTDMS分析中几个关键的步骤包括:样品前处理、ESI离子化、二级碎裂、质量检测以及数据处理。样品前处理为了维持蛋白的自然状态,通常需要在生理环境中进行nMS分析。然而,缓冲液中的非挥发性盐会产生大量盐簇并与蛋白离子形成非特异性加合物,从而抑制离子信号、降低检测的准确度和灵敏度。因此,样品前处理过程中最重要的环节就是除盐。然而适当的离子强度有助于维持蛋白的三维结构,所以通常的步骤是对蛋白进行缓冲液置换,将蛋白置换至醋酸铵或碳酸氢铵等挥发性盐溶液中。目前已开发了多种在线或离线的除盐方法,详细内容的可在综述原文中查看,此处不再赘述。除了使用非挥发性缓冲盐,减小ESI喷针孔径大小也可以提高系统耐盐能力。碎裂/活化方式二级碎裂方式是实现nMS到nTDMS的关键。常见的活化方式按照原理可分为三类:基于碰撞(CID, SID)、基于电子(ECD, ETD, EID等)以及基于光子(UVPD, IRMPD)的活化/碎裂方式。值得注意的是,CID与IRMPD都属于慢加热的活化方式,能量累积的非常慢,以至于在发生碎裂之前已经进行了能量重排,一些较弱的或者不稳定的键会优先发生断裂,最终导致非共价相互作用在活化的过程中被破坏。而SID、ExD与UVPD则属于快加热的活化方式,碎裂发生在能量重排之前,非共价相互作用得以在这一过程保留下来,碎片化程度受到非共价相互作用的限制,因此可被用于表征蛋白的空间结构。此外,将多种活化方式的结合或与离子淌度技术串联也是获取多层次结构信息的关键。质量检测与变性条件下的质谱分析相比,蛋白复合物在天然环境下通过电喷雾电离产生的电荷数相对较少,因此需要具有较大m/z 范围的质量分析仪(高达m/z = 20,000 Da甚至更高)。最初,nMS分析高度依赖基于飞行时间(time of fight, TOF)质量分析器,因为TOF具有理论上无限的m/z范围。近年来,高分辨质量分析器如轨道阱(Orbitrap)和傅里叶变换离子回旋共振(FTICR)为生物大分子的nTDMS分析带来了新的活力。在综述中,我们简要介绍了每种质量分析器的最新进展,并重点强调了FTICR和Orbitrap在nTDMS分析中的发展和应用。数据处理除了基本的硬件设施,配套的数据处理软件也十分重要。nTDMS数据处理流程通常包括以下4个步骤:同位素峰选取、去卷积、数据库搜索、验证和可视化。正文中,我们对每个步骤进行了简要描述,并重点介绍用于数据库搜索和异质体鉴别的软件。多层次结构信息的获取得益于多种活化/碎裂方式的开发,nTDMS分析可同时获得多层次的结构信息(图1)。主要有以下两种策略:第一种策略,完整蛋白复物(MS1)首先被CID或SID碎裂至亚基(MS2),亚基可进一步碎裂肽段(MS3),在MS1及MS2中可获蛋白复合物结合计量比、拓扑结构、蛋白异质性等信息,在MS3阶段则可获取蛋白序列、PTMs定位以及异质性来源等信息。第二种策略则是完整蛋白复合物(MS1)直接被UVPD或ExD碎裂成肽段(MS2),受益于UVPD以及ExD独特的碎裂方式,发生碎裂的区域主要位于蛋白复合物的表面可及区,而未发生碎裂的区域可能位于蛋白复合物的核心区域或参与亚基相互作用界面。不同的碎裂情况反映不同的空间结构,带有配体的肽段碎片可以用于配体结合位点的定位。综述中,我们详细阐述了如何利用nTDMS获得蛋白复合物的多层次结构信息以及如何将碎片信息与结构信息相关联。图1. nTDMS可提供的多维度结构信息复杂生物体系中的应用蛋白质的空间结构决定了其生物功能,而蛋白质-蛋白质/配体相互作用是大多数生物进程的基础。通过突变、翻译后修饰、或者与金属、小分子配体、蛋白质、DNA、RNA等分子发生共价或非共价的相互作用,蛋白质功能在活细胞中不断受到调节。随着MS仪器、方法的不断开发和数据处理软件的逐渐成熟,nTDMS已被广泛应用于各种生物系统,从小蛋白质、蛋白质-配体复合物到大分子组装体,如膜蛋白、蛋白酶体、核糖体、病毒衣壳,甚至是内源性蛋白混合物。它们中的许多都是极具挑战性的体系,即便是采用NMR、X-射线晶体学或Cryo-EM等生物物理方法分析也是非常困难的。因此,来自nTDMS的见解对于理解这些蛋白质和复合物至关重要。在这里,我们总结nTDMS在所有生物体系中的应用实例,旨在全面了解nTDMS在解决生物学问题方面的潜力。小蛋白的结构表征和区分最初,nTDMS主要用于50 kDa以下单体蛋白的结构表征,大部分的研究都是围绕蛋白质气相结构与溶液相结构对比展开的。根据nTDMS的碎裂情况,推断蛋白的气相空间结构,并与NRM获得的溶液结构进行对比。此外,如果在二级碎裂前增加离子预活化有助于蛋白分子的展开,以便研究蛋白气相展开路径以及获取蛋白质内部空间结构信息。得益于碎片离子对蛋白空间结构的高度敏感性,nTDMS还被用于区分不同蛋白亚型、蛋白突变体的结构差异。蛋白-小分子配体相互作用随后,nTDMS应用到了蛋白-配体复合物中,不同的配体类型适合不同的活化/碎裂方式,除了金属离子、RNA/DNA等以静电作用为主的蛋白配体能够在CID活化时存活,大部分复合物的碎裂都需要选择ECD或UVPD等方式。nTDMS可用于蛋白-配体结合计量比、亲和力、结合位点、作用机制、结构动力学/变构效应的研究。它是一种强大的结构表征工具,其在抑制剂筛选、酶催化监控、RNA-蛋白质互作机制的应用实例在正文中已有详细的介绍。蛋白-蛋白相互作用随着仪器设备的快速发展,nTDMS已应用到更大的体系如蛋白-蛋白复合物,通过组合不同的活化/碎片化技术,在一次实验中可以获得多层次的结构信息。nTDMS可以帮助区分不同的蛋白异质体,并在完整复合物、亚基、肽段三个水平上确定异质性的来源。蛋白的异质性与其生物学功能密切相关,通过调整蛋白的异质性可以实现蛋白功能的转变,具体的应用案例已在正文详细介绍。除此之外,nTDMS还可以用作蛋白-蛋白复合物结合界面、气相展开以及深层次结构探索。治疗性抗体和抗原-抗体复合物在过去的几十年中,治疗性抗体已成为最受欢迎的候选药物之一,它们的高特异性和低副作用促进了治疗性抗体的快速增长。在综述中,我们还详细地介绍了nTDMS在治疗性抗体和抗原-抗体复合物体系中的应用。nTDMS可用于抗体可变区的测序、具有不同药物计量比(DARs)的抗体耦联药物的结构表征、以及抗体-抗原复合物中互补决定区及抗原表位区的鉴别。膜蛋白无论是对于传统的结构表征工具如:X-射线晶体学、NMR还是nTDMS,膜蛋白的结构表征一直以来面临着诸多困难。膜蛋白具有低丰度以及低溶解性等特点,最常见的方法是利用与nMS兼容的膜模拟物如:去污剂胶束、纳米微盘等去溶解膜蛋白,在nTDMS分析时再将膜蛋白从胶束中释放出来,释放出的蛋白可在nTDMS中进一步碎裂获取结构信息。具体的实验流程和应用实例可在综述正文中查看。大分子组装体正文中,还介绍nTDMS在极具挑战性的大分子组装体如:核糖体、蛋白酶体、病毒衣壳中的应用实例,这些生物体系普遍存在的问题是分子量非常大(接近MDa),且具有较高的异质性。对这些大分子机器进行nTDMS分析要求仪器具有较高的质量范围以及分辨率。大分子机器的结构表征充分说明nTDMS方法无论在深度还是广度上都有极大的提升。Native top-down MS蛋白质组学值得注意的是,当质谱前端结合非变性分离技术,如native GELFrEE,尺寸排阻色谱,毛细管区带电泳,离子交换色谱等,nTDMS还可以在靶向模式或发现模式下用于复杂蛋白质组的高通量分析,如内源性蛋白混合物。nTDMS分析最大的优势在于它能区分不同的蛋白异质体,并对每种蛋白异质体进行结构表征,这是其他在肽段水平进行分析的结构质谱法如:HDX-MS, CL-MS所无法实现的。总结与展望总之,在这篇综述中我们重点介绍了nTDMS的最新进展和在不同生物体系中的应用,强调通过nMS与TDMS结合可以获得额外的多层次结构信息。新技术的出现以及仪器的进步使nTDMS能够应用于结构生物学中日益复杂的生物样本体系,包括蛋白质配体、多聚蛋白复合物、大分子组装体和内源性复合物。尽管这样,nTDMS分析仍面临着的挑战,包括但不限于前端的样品分离、离子化、去溶剂化、高质荷比分子传输、异质性样本的分析以及软件的开发。未来nTDMS将与其他的一些结构表征方法相结合以获取更加全面的结构信息。正文中对未来发展趋势进行了讨论并提到了其他一些令人兴奋的创新技术如:基于MALDI离子源的质谱成像技术用于蛋白原位分析、电荷检测质谱(CDMS)用于异质性样本分析,多重技术的结合将为蛋白质复合物的nTDMS研究开辟新的道路。我们希望这篇综述能让读者更好地理解nTDMS提供的独特结构信息,并推动该方法的广泛应用。撰稿:刘蕊洁编辑:李惠琳原文:Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. 参考文献1.Liu RJ, Xia SJ, Li HL. Native top‐down mass spectrometry for higher‐order structural characterization of proteins and complexes. Mass Spec Rev. 2022 e21793. https://doi.org/10.1002/mas.217932.Britt HM, Cragnolini T, Thalassinos K. Integration of mass spectrometry data for structural biology. Chem Rev. 2022 122(8):7952-7986. 3.Liu XR, Zhang MM, Gross ML. Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem Rev. 2020 120(10):4355-4454.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制