当前位置: 仪器信息网 > 行业主题 > >

氨曲南对照品

仪器信息网氨曲南对照品专题为您提供2024年最新氨曲南对照品价格报价、厂家品牌的相关信息, 包括氨曲南对照品参数、型号等,不管是国产,还是进口品牌的氨曲南对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氨曲南对照品相关的耗材配件、试剂标物,还有氨曲南对照品相关的最新资讯、资料,以及氨曲南对照品相关的解决方案。

氨曲南对照品相关的资讯

  • 化学药品研发中对照品(标准品)有关技术要求
    药物的质量研究与质量标准的制订是药物研发的主要内容之一,药品标准物质也是质量标准和质量研究中不可分割的一部分,是药品质量标准的物质基础。药品标准物质在新药研究中与产品定性、杂质控制及量值溯源密切相关,标准物质的运用贯穿于质量研究与质量标准的制订工作中。一、概述标准品、对照品系指用于药品鉴别、检查、含量测定的标准物质,即药品标准中使用的具有确定的特性或量值,用于对供试药品赋值、定性、评价测定方法或校准仪器设备的物质,其中标准品系指用于生物检定、抗生素或生化药品中含量或效价测定的标准物质。《药品注册管理办法》规定“中国药品生物制品检定所负责标定和管理国家标准物质”,“申请人在申请新药生产时,应当向中国药品生物制品检定所提供制备该药品标准物质的原材料,并报送有关标准物质的研究资料”。但在新药研究中,普遍存在对照品(标准品)的应用超前于中检所制备和标定的情况,鉴于新药研究的连续性以及标准物质在新药研究中涉及量值溯源、产品定性、杂质控制及其在药品质量控制中的重要性,标准物质的制备和标定与药品的质量研究、稳定性研究乃至药理毒理学研究中剂量的确定等临床前基础研究间存在密切关系,因此,药品对照品(标准品)的研究(制备与标定)也是药品审评的一项重要内容。二、对照品来源1、所用对照品(标准品)中检所已经发放提供,且使用方法相同时,应使用中检所提供的现行批号对照品(标准品),并提供其标签和使用说明书,说明其批号,不应使用其他来源者;如使用方法与说明书使用方法不同(如定性对照品用作定量用、效价测定用标准品用作理化测定法定量、UV法或容量法对照品用作色谱法定量等),应采用适当方法重新标定,并提供标定方法和数据;若色谱法含量测定用对照品用作UV法或容量法,定量用对照品用作定性等,则可直接应用,不必重新标定。2、申报临床研究时,如中检所尚无供应,为不影响注册进度,可先期与中检所接洽制备和标定,申报时提供标定报告、标签(应标明效价或含量、批号、使用效期)和使用说明书;也可与省所合作标定,申报时提供标准品或对照品研究资料,“说明其来源、理化常数、纯度、含量及其测定方法和数据”;标定有困难时,可使用国外药品管理当局或药典委员会发放的对照品(标准品)或国外制药企业的工作对照品(标准品),进行标准制订和其他基础性研究,但应提供其标签(应标明其含量)和使用说明书,能保证其量值溯源性;也可使用国外试剂公司(如sigma公司等)提供的对照品(标准品),但应提供试剂公司该批对照品(标准品)的检测报告(用作含量测定时,应有确定的含量数据),如为高纯度试剂,提供了国外试剂公司检测报告(用作含量测定时,应有确定的含量数据)时,也可使用,并应能保证其量值溯源性,但申请人应及时与中检所接洽对照品(标准品)的标定事宜,临床研究期间完成此工作。3、直接申报生产品种,如中检所尚无供应,可参照2中要求进行,并提供相应研究资料,但申请人在标准试行期间应与中检所接洽并完成的标定事宜。三、对照品(标准品)标定的技术要求1、创新药物应说明对照品(标准品)原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱),提供标定方法的研究和验证资料(如与原料药质量研究项下相同,可不再提供)、含量测定数据及经统计分析得到的对照品(标准品)含量结果,并说明进行临床前药学研究、药理毒理学研究所用样品的含量是否用该批对照品(标准品)确定或可用该批对照品(标准品)进行量值溯源。纯度测定方法应选用色谱法,并采用两种以上不同分离机理或不同色谱条件并经验证的色谱方法相互验证比较,同时采用二极管阵列检测器或其它适宜方法检测HPLC法的色谱峰纯度,而后根据测定结果经统计分析确定对照品(标准品)原料的纯度。对于组份单一、纯度较高的药物,对照品(标准品)标定方法宜首选可进行等当量换算、精密度高、操作简便快速的容量法。可根据药物分子中所具有的官能团及其化学性质,选用不同的容量分析方法,但应符合如下条件:(1)反应按一个方向进行完全;(2)反应迅速,必要时可通过加热或加入催化剂等方法提高反应速度;(3)共存物不得干扰主药反应,或能用适当方法消除;(4)确定等当点的方法要简单、灵敏;(5)标化滴定液所用基准物质易得,并符合纯度高、组成恒定且与化学式符合、性质稳定(标定时不发生副反应)等要求。标定方法的选择要关注如下事项:(1)供试品的取用量应满足滴定精度的要求(消耗滴定液约20ml);(2)滴定终点的判断要明确,提供滴定曲线。如选用指示剂法,应考虑其变色敏锐,并用电位法校准其终点颜色;(3)为排除因加入其它试剂而混入杂质对测定结果的影响,或便于剩余滴定法的计算,可采用“将滴定的结果用空白试验校正”的办法;(4)要给出滴定度(采用四位有效数字)的推导过程。标定结果要根据3个以上实验室各不少于15组测定结果经统计分析,去除离群值和可疑值后的结果,并报告可信限。如该药物没有可进行等当量换算并符合要求的容量法时,可采用反复纯化的原料,色谱法确定纯度后扣除有关物质、炽灼残渣、水分和挥发溶剂等后的理论含量确定为标准品含量,以此为基准进行对照品(标准品)的换代和量值传递。用于抗生素微生物检定法的第一代基准标准品可参照上述方法标定,如为多组份抗生素,其组份比例应与拟上市产品组份比例一致或接近,或以其中某一组份纯品为基准标准品,但要注意标准品换代时量值传递的恒定。仅用于鉴别定性的化学对照品,注重其结构确证的研究资料,纯度和含量的要求一般可适当降低。杂质对照品,用作限度要求时,应提供其来源(合成路线)、结构确证的研究资料,应具备较高的纯度和含量,并提供纯度和含量的的测定结果,提供质量控制标准。2、其他类别药物用于抗生素微生物检定法的标准品须用上市国的国家标准品或原发厂的工作标准品为基准标准品进行标定。标定时采用的原料药应符合相应要求,并提供原料的制备路线、精制方法、质检报告,提供理化常数和纯度的测定数据及分析结果(包括相关图谱)。标定须用现行版中国药典附录收载的“抗生素微生物检定法”-三剂量法,并提供详细的方法学研究,包括检定菌和培养基的选择、剂量和剂距选择、缓冲液选择(如与质量研究项下相同,可不再提供)。每次标定结果均应照“生物检定统计法-量反应平行线测定法(3.3)”法进行可靠性测验及效价计算。对照品是质量标准的重要组成部分,从日常工作中发现,研发单位在对照品的制备、研究、标定、使用及保存过程中,仍存在部分问题。作为对照品,其研究工作的质量以及质量标准的高低直接影响新药研究的质量,对其提出技术要求是为了保证药品的质量控制与新药研究的结果准确有效,需重视起来。
  • 专家视角丨药物研发过程中的化学对照品探讨
    精准药物分析的工作,离不开稳定的分析系统和可靠的标准物质(标准品/对照品等)。标准物质具有复现、保存和传递量值的基本作用,对实现测量结果的溯源性,保证测量结果在时间与空间上的连续性与可比性,进而确保测量结果的准确可靠、有效与国际互认具有关键作用。 岛津为制药行业客户提供稳定可靠的标准品/对照品制备解决方案:制备液相系统(Prep LC)、质谱引导的制备液相系统(MS-trigger Prep LC),超快速制备纯化液相色谱系统(UFPLC)、制备超临界流体色谱(Prep SFC)。 超快速制备纯化液相色谱系统(UFPLC)可在线完成从分离、浓缩、纯化到回收的制备全过程。 2020年,中国药科大学药物分析系吴春勇博士于新药仿药CMC实操讨论群进行了精彩而全面的主题分享,并发表在“新药仿药CMC实操讨论”公众号,经过“新药仿药CMC实操讨论”的授权,在此分享吴春勇博士的《化学药物研发过程中的对照物探讨》。 概述案例 对于吴春勇博士的《化学药物研发过程中的对照物探讨》,新药仿药CMC实操讨论群也进行了较为热烈的探讨。PPT正文后续延申的讨论内容如下(基本按照时间先后顺序列出)。 沈晓斌博士(前FDA资深审评员,FDA报批咨询顾问):very nice.吴博士论述的非常全面、非常细。我们就说比如说在FDA做review的时候呢,我们个人不会接触那么全面,各种各样的方式,这个标准品的这个去就是抽点它的含量呀,就是拿到他的COA,通常不会把各种方法都是看过一遍的。 就是它这个PPT呢,把所有的东西都给想细细的捋了一遍,个人觉得就是这是一个对知识体系的全面的补充,有些东西,因为你以前没有接触过,你不会考虑那么细,当在FDA的时候你看到的是公司怎么做,然后你来评估他是否合理,是否可以接受,或者跟FDA的现有要求,来评估。 想要就说一点,FDA本身他不去说去该怎么去定量,这个标准品他只是负责审评,就是评审你(的资料),外界可以自己去建议你想要的方式,但是你要有足够多的科学依据,然后他(FDA)来评估是否可以接受,就是完全靠自己来论述清楚。 另外就是说国内看起来,这个我以前对国内这个没有太多的,而且也没有特别去关注,因为我这个工作最早才从FDA报批方面的东西,吴教授这个主题一讲,觉得国内在有些方面其实要求是似乎是比USP、FDA的要求更细更多一些,有一种感觉就是弯道超车已经超了,在有些方面实际上是做的更好。只不过,过去这些年,西方就是设定了这种既定的质量标准,那其他国家,就因为你要照着西方去做仿药嘛,你就必须根据他的规则来走,更多的是这方面的区别。 孙亚洲老师(长沙晶易首席科学家):意见1:研发人员买的非法定对照品,外标法测定杂质含量时,很多人直接采用了COA的赋值,也直接采用相应的测定结果订入了标准,有些不妥。包括批检验,最初的朔源需要是法定对照或者经过标定的对照品。 意见2:在吴博士的ppt中,对于非法定来源的如百灵威,sigma等买到的杂质对照品,拿到后是否需要再行进行研究工作或者分析一下是否存在风险,似乎没有提出来。这个问题建议大家是否深入思考一下。 群主补充:只有经过标化赋值且可溯源(过程,方法,验证)的,风险才是最低的。 群主补充:尽管杂质测定中,如5%的误差是可以接受的(这属于科学性的范畴);但不等同于对照品/标准品可以草率拿来,草率采用他人的赋值,这完全是两个范畴。也许某份杂质对照品中含水量10%,无机成分包括前处理过程带来的硅胶等30%,若草率定量,杂质的真实含量会被低估如40%。 沈晓斌博士:同意以上的观点。 群友1:通过药品杂质的公司购买的对照品,我们就碰到了,欧美的一家知名公司提供的对照品结构出现偏差,我们通过多次比对都无法拿到和代谢产物吻合的结果,多次交涉和讨论之后才发现该公司的产品是另外一个同分异构体。 吴春勇博士(中国药科大学药物分析系副教授):看来概率虽然小,这个问题还是客观存在的。 沈晓斌博士:提供化合物的公司没有责任和义务。使用者必须做该做的来证明给监管机构标准品的使用是合理的。 刘国柱博士(长沙晨辰医药创始人、技术总监):我请教吴博士一个问题,目前国内杂质对照品市场非常混乱,大部分购买的杂质对照品都是经几手倒卖才到厂家手里,对照品塑源存在问题,谱图与赋值真实性也存在问题,请问对此引入的风险有何看法? 群友2:在购买对照品的时候,在COA的同时能否得到该合成方法的信息,这个在技术层面上是有难度的。没有哪个合成公司愿意提供产品合成路线给对方的。 群友3:好多杂质对照品本身不稳定,需要在-20℃保存,有可能在运输过程中就发生了变化,拿到的第一时间应该进行确认,遇到好几次这种情况。 吴春勇博士:在现有的条件下,购买的商业化对照品全部自己赋值,实践上还是存在相当的困难,成本上也没法控制。所以我个人观点:1)尽量选择知名公司;2)自己对风险进行评估,尤其是校正因子与各国药典不同,或者结构上与待测药物的生色团类似,分子量相当,校正因子却有显著不同。 【插话:知名公司依旧有风险或风险大】 是的,分享的那个案例,购买公司是业界相当知名的! 群友4:购买杂质时能同时获得合成信息的可能性非常小,最多提供四大谱(还不带解谱的),那就需要公司内部有比较强大的解谱能力,有碰到过解谱结果和供应商提供的不一致的情况,所以购买“商业化”的杂质对照风险是很大,市场良莠不齐,缺乏有效的管控。 群友5:我们碰到问题的那家公司就是业界知名对照品公司,也有出失误的概率。 刘国柱博士:另请教吴博士及大家一个问题,目前国内许多企业对于杂质对照品的结构确证,很多时候都只做了质谱与NMR氢谱与碳谱,不做二维;而事实上不做二维NMR谱,NMR信号是无法归属的,从而不足以确定杂质结构,有可能确证的结构是错的;请问这个问题大家如何看待? 吴春勇博士:我个人只要做结构确认,一定做二维。 刘国柱博士:那我和您观点一致,强烈呼吁大家做结构确证一定要做二维。 购买的杂质对照品一般只提供质谱与NMR氢谱与碳谱,不做二维与结构解析;在此习惯引导下,国内许多企业自已做杂质结构确证也只做个质谱与NMR氢谱与碳谱,个人观点这是存在风险的做法。 代孔恩(安士研发总监):法规有明确规定必须这么表征,很多标准品量很小,做全应该不容易。【插话:情况多,复杂,没法一刀切】 黄常康博士(南京百泽医药创始人):有些杂质是定向合成的,或者是有文献数据的。我觉得根据实际情况来判断需不需要。不用二维定不了结构的,该做就做,有些简单的杂质,其实氢谱已经足够了,质谱只是多一个证据。 自己做的话,还需要加上做结构确证的杂质的钱,很多时候会差很多。 群友6:对照品的检测分析,既要有普遍性的,也要特殊性的,这个普遍性与特殊性的界点怎么界定,很难有一个文件化的说法。 以上讨论内容来源: 新药仿药CMC实操讨论公众号
  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 现代中药对照品与标品资源库落户中山
    全国规模最大的现代中药及天然产物活性物质对照品与标准品资源库,将落户中山健康科技产业基地。  全国标准样品技术委员会天然产物标样专业工作组常务副组长张天佑在接受记者采访时说,我国个别中药药品近年来相继出现的问题,正是标准缺失所致。从现代中药及天然产物活性物质中提取有效成分制作对照品与标准品,使之成为溯源性的根据、分析检测仪器的校准标准物质和质量控制的标准,可为中药新药研发、生产提供标准,“这是中药走向国际市场,突破国际技术壁垒的途径。”  国家药监局原副局长任德权称,选择在中山建立这个资源库,不仅因为中山国家健康科技产业基地已经具备承载这个项目的成熟条件,而且由于中山毗邻港澳,可联合粤、港、澳的资源共同打造一个国家级的标准平台,为中国争取在国际标准化中的话语权。  “这样,中药出口就拿到了‘国际通行证’。”中山国家健康科技产业基地公司总经理梁兆华形象地比喻。  该项目由中山健康科技产业基地、全国标准样品技术委员会、中山大学药学院和广东新龙和药业有限公司合作,项目运营后,3至5年内可以建成拥有几千种对照品与标准品的资源库。该项目有望在今年“328”招商经贸洽谈会上签约。
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • SGLC全面销售岛津分析仪器专用试剂、标准品和对照品
    岛津分析仪器专用试剂、标准品和对照品是由岛津企业管理(中国)有限公司联合四川中测标物科技有限公司共同推出。由中国测试技术研究院确保质量,按照岛津仪器性能特点研发生产。用于评估分析仪器的分析能力和工作状态,确保仪器达到设计需要的分析能力和精密度,保证分析仪器处于稳定可靠、灵敏准确的优良工作状态。 岛津(上海)实验器材有限公司作(简称SGLC)为岛津集团在中国成立的专门经营销售岛津分析仪器纯正部件、色谱消耗品及相关小型仪器的子公司。现全面负责岛津分析仪器专用试剂、标准品和对照品在国内的对外销售业务。 岛津分析仪器专用试剂、标准品和对照品现已涵盖的机种类型有岛津GC、GC-MS、GC-MS/MS,HPLC,LCMS-IT-TOF,LC-MS、LC-MS/MS,UV,AAS,ICP-OES,ICP-MS,TOC等机型。包括仪器重现性测试标准物质、灵敏度测试标准物质、调谐标准物质和验收标准物质等。具体产品选择请参考“岛津分析仪器专用试剂、标准品和对照品”产品目录。(下载产品目录) SGLC一直秉持为仪器分析客户提供更丰富的解决方案,此次引入岛津仪器专用试剂产品,将进一步扩充产品阵容,为分析仪器领域的客户提供更多专业利器。
  • 同田,第一家在国外设立代理商的中国中药对照品企业
    上海同田生物技术有限公司(Shanghai Tauto Biotech Co., Ltd)于2008年底已在西班牙,比利时,韩国,泰国,新加坡,瑞士,南非,捷克,意大利。印度等十一个国家设立代理商,共同致力于同田生物公司对照品业务的国际市场开拓和产品品牌建设,是第一家在国外设立代理商的中国中药对照品企业!现面对全国诚招各地代理商,我们将提供优惠的代理政策及完善的服务,望共同拓展国内对照品市场,携手共创美好的未来!招商电话:021-51320588-8026 E-mail:sales2@tautobiotech.com URL: www.tautobiotech.com
  • 396万!甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目
    项目编号:2022zfcg00371项目名称:甘肃省药品检验研究院2022年实验用试剂、耗材、对照品项目预算金额:396.48(万元)最高限价:396.48(万元)采购需求:具体品目、技术参数和数量详见招标文件第五章 技术规格书合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否
  • 药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会召开
    p  由天津市滨海新区科学技术协会和中国蛋白药物质量联盟主办,北京医恒健康科技有限公司和天津市滨海新区蛋白药物质量和产业技术创新研究会承办的“药品研发中杂质与杂质对照品研究监控、新理念新技术研讨会”于12月10日在天津巨川百合酒店胜利召开。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/bc2519d0-e110-45f9-a4b9-a587227c56be.jpg" title="培训现场.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "培训现场/span/strong/pp  本次研讨会来自全国各地的医药企事业单位及科研院所的药品研发人员、注册申报人员、质量控制人员、项目负责人等有关人员参加了本次研讨会。10日上午,研讨会开幕式由中国蛋白药物质量联盟秘书长史晋海博士主持,介绍了出席此次会议开幕式的嘉宾,包括天津市滨海新区科学技术协会学会处侯立群处长,三位演讲专家余立老师、周立春老师,山广志老师。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/3ed2bb10-7c99-43a4-a149-f4b53818d3c8.jpg" title="史晋海博士主持.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "史晋海博士主持/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/d08b2e76-4772-4265-a184-7061d03658ea.jpg" title="余立老师2 .jpg"/br//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "余立老师/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/b04550f4-a0d4-4b49-96d8-975893232c64.jpg" style="" title="周立春老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "周立春老师/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201712/insimg/94d80e5c-6b2f-49ab-8f61-a6f64f658cb3.jpg" title="山广志老师.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "山广志老师/span/strong/pp  无论是创新药研发还是仿制药一致性评价,无论是原料药还是制剂产品,无论是药品临床前开发还是上市后质量监控,杂质的研究无疑都是重头戏。也是药品申报资料中出现问题最多的模块。由于药品中杂质含量的水平比较活性成分而言大多都是百分之几、千分之几、甚至更低数量级的,一种药品中含有几种、十几种、乃至几十种杂质,所以药品杂质的定性定量都远比活性成分难度要大的多。余立老师就杂质研究与控制思路为与会人员进行的讲解。br//pp  杂质定向控制越来越细,质量标准中特定杂质越规定越多,定位,定量,测定响应因子,哪个也少不了杂质对照品。类杂质对照品的制备、纯化、结构确证,特别是赋值方法都有哪些要求,还有杂质对照品分装、保存时的注意事项的相关细节,山广志老师就在这次研讨会中介绍了这方面的常见问题与案例分析。/pp  微信群中常有问杂质研究与杂质检测方法学验证方面的的问题。但微信交流信息局限大,讨论不方便也不具有系统性,解决一两个问题其他问题还是不明白。周立春老师用她30多年的一线审评与实验室工作经验为与会人员讲解了杂质研究与杂质检测的方法学验证。/pp  会后问答环节讨论热烈。与会者意犹未尽,期待更多交流机会。/pp  生物医药产业是天津市八大优势支柱产业之一,更是滨海新区重点发展产业。本次研讨会将创造机会,促进天津市滨海新区与顶级生物制药企业和专业人才的合作,极大地推动相关领域健康快速发展。此次会议搭建了具有国内影响力的生物医药专业交流平台,既利于增强新区医药企业实施创新发展及国际化战略的信心,又扩大新区医药企业在生物医药领域中的影响力,大力促进新区医药产业的健康发展。/pp /p
  • 压电位移台常用术语中英文对照表
    压电位移台常用术语中英文对照表Absolute accuracy : Deviation between the actual position and the desired one. If a stage has to move 100µm but it moves only 99.99µm (measured through an ideal scale), then the inaccuracy is 10nm. The permanent positioning error along an axis is designated as accuracy. Absolute accuracy is aff¬ected by calibration errors, linearity errors, hysteresis, Abbe errors and positioning noise. 绝dui精度:实际位置与所需位置之间的偏差。 如果一个平台必须移动 100µm,但它仅移动 99.99µm(通过理想标尺测量),则误差为 10nm。 沿轴的泳久定位误差称为精度。 绝dui精度受校准误差、线性误差、滞后、阿贝误差和定位噪声的影响。Backlash : Backlash is a positioning error occurring upon change of direction. Backlash can be caused by insufficiently preloaded thrust or inaccurate meshing of drive components, for example gear teeth. Piezoconcept’s flexure motion translation mechanism and piezo actuator designs are inherently backlash free. 齿隙:齿隙是在运动方向改变时发生的定位误差。 齿隙可能是由于预载推力不足或驱动部件(例如齿轮齿)啮合不准确造成的。 Piezoconcept 的弯曲运动平移机构和压电致动器设计本质上是无间隙的。Bandwidth : The frequency range to which the amplitude of the stage' s motion is dropped by 3dB. It reflects how fast the stage can follow the driving signal. 带宽:载物台运动幅度下降的频率范围为3dB。 它反映了平台能够以多快的速度跟随驱动信号。Drift : A position change over time, which includes the e¬ffects of temperature change and other environmental e¬ffects. The drift may be introduced from both the mechanical system and electronics. 漂移:位置随时间的变化,包括温度变化和其他环境影响的影响。 漂移可能来自机械系统和电子设备。Friction : Friction is defined as resistance between contacting surfaces during movement. Friction may be constant or speed dependent. Because they use flexure, the nanopositioners from Piezoconcept are friction free. 摩擦力:摩擦力定义为运动过程中接触表面之间的阻力。 摩擦力可以是恒定的或取决于速度的。 因为使用柔性连接,Piezoconcept 的纳米定位器是无摩擦的。Hysteresis : The positioning error between forward scan and backward scan. A closed-loop control is an ideal solution for this problem and is done by using a network of High Resolution silicon sensor to provide feedback signals. 滞后:前向扫描和后向扫描之间的定位误差。 闭环控制是该问题的理想解决方案,它通过使用高分辨率硅传感器网络提供反馈信号来完成。Linearity error : The error between the actual position and the first-order best fit line (straight line). Our nanopositioning products are calibrated with laser interferometry and the non linearity errors are compensated down to 0.02% of the full travel.线性误差:实际位置与一阶蕞佳拟合线(直线)之间的误差。 我们的纳米定位产品使用激光干涉仪进行校准,非线性误差补偿低至全行程的 0.02%。Orthogonality error : The angular off¬set of two defined motion axes from being orthogonal to each other. It can be interpreted as a part of crosstalk. 正交性误差:两个定义的运动轴相互正交的角度偏移。 它可以解释为串扰的一部分。Position noise : The amplitude of the stage shaking when it is on a static command. It is usually measured and specified with Peak-To-Peak value. It is a combination of the sensor noise, driver electronics noise and command noise, etc. The position noise of our stages is very limited due to the very high Signal-To-Noise ratio of the Silicon HR sensors we use. 位置噪声:在静态命令下载物台晃动的幅度。 它通常用峰峰值来测量和指定。 它是传感器噪声、驱动器电子噪声和命令噪声等的组合。由于我们使用的 Silicon HR 传感器具有非常高的信噪比,我们平台的位置噪声非常有限。Range of motion : The maximum dISPlacement of the nanopositioners. 运动范围(行程):纳米定位器的蕞大位移。Resolution : The minimum step size the stage can move. 分辨率:舞台可以移动的蕞小步长。Resonant frequency : Piezostage are oscillating mechanical systems characterized by a resonant frequency. The resonant frequency that we give is the lowest resonant frequency that can be seen on a nanopositioner. In general, the higher the resonant frequency of a system, the higher the stability and the wider working bandwidth the system will have. The resonant frequency of a piezostage is determined by the square root of the ratio of sti¬ness and mass. 谐振频率:压电级是以谐振频率为特征的振荡机械系统。 我们给出的共振频率是在纳米定位器上可以看到的蕞低共振频率。 一般来说,系统的谐振频率越高,系统的稳定性和工作带宽就越宽。 压电级的共振频率由刚度和质量之比的平方根决定。Silicon HR sensor : Piezoconcept use temperature compensated High-Resolution silicon sensors network for reaching highest long-term stability. This measuring device is capable of measuring position noise in the picometer range and its response is not dependent of the presence of pollutants, air pressure changes like other high-end sensors can be. Si-HR 传感器:Piezoconcept 使用温度补偿高分辨率硅传感器网络,以达到蕞高的长期稳定性。 该测量装置能够测量皮米范围内的位置噪声,并且其响应不依赖于污染物的存在,应对改变气压带来的影响与其他高端传感器一样。Step response time : The step response time is the time needed by the nanopositioner to do the travel from 10% of the commanded value to 90% of the commanded value. The step response time reflects the dynamic characteristics of the system and is relatively to the installation method and load of the stage.阶跃响应时间:阶跃响应时间是纳米定位器从指令值的 10% 到指令值的 90% 所需的时间。 阶跃响应时间反映了系统的动态特性,并且与位移台的安装方式和负载有关。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。相关技术文
  • 岛津应用:盐酸氨溴索片在4种溶出介质中的体外溶出研究
    盐酸氨溴索(Ambroxol Hydrochloride)于20世纪80年代在德国上市,后在法国、日本等国家陆续上市,是目前临床作用较强的祛痰药。其作用机理为增加呼吸道黏膜浆液腺的分泌,减少粘液腺分泌,促进肺表面活性物质分泌,增加支气管纤毛运动,使痰液易于咳出。盐酸氨溴索片为固体制剂,其体外溶出度的考察不仅是评价产品质量的一个重要指标,还是我国食品药品监督管理局规定的仿制药一致性评价中需要与原研药对比的一个重要指标。盐酸氨溴索的结构式 本研究根据国食药监注[2013]34号文《国家食品药品监督管理局关于开展仿制药质量一致性评价工作的通知》要求制定的仿制药质量一致性评价—盐酸氨溴索片一致性评价参比制剂/溶出曲线测定(草案)制定实验方案。使用岛津SNTR-8400溶出度仪和LC-30A超高效液相色谱系统开展盐酸氨溴索片体外溶出的研究。盐酸氨溴索片经溶出实验,用超高效液相色谱 LC-30A系统进行含量测定。在四种介质中分别对两组33μg/mL 浓度的盐酸氨溴索对照品连续测定3次作为对照,结果显示使用岛津SNTR-8400溶出度仪以及岛津LC-30A超高效液相色谱系统在测定盐酸氨溴索片体外溶出曲线时具有良好适应性和重复性,能够满足国家规定药物体外溶出曲线测定的相关要求。岛津SNTR-8400溶出度仪 了解详情,敬请点击《盐酸氨溴索片在4种溶出介质中的体外溶出研究》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 红外光谱官能团对照表——永恒的经典还是过时的工具?
    红外光谱官能团对照表是用于解释化合物红外光谱的图形工具。这些图表提供了不同官能团特征分子振动所产生的相对应的吸收峰位置。随着尖端技术和先进仪器的不断发展,分析技术的日益提升,红外光谱官能团对照表尽管看似有些落伍,但其实用性却已成功经受了时间的考验。下面,我们将探究为何这种“化石般古老的”光谱解释工具能够长期沿用,为何它们在如今快节奏的世界中仍然存在很高科学价值。红外光谱官能团对照表的永恒魅力过去,人们在使用FTIR光谱仪进行红外光谱测试时,需要参照样品红外光谱官能团对照表来鉴定材料。不仅如此,这些官能团对照表在鉴定官能团方面具有非常可靠的参照价值。由于包含大量信息且内容高度浓缩,这些图表还成为分享信息和进行现场分析的理想工具。为什么呢?因为只需扫一眼谱图的特征峰,即可快速查到所需答案。在大学校园里,这种简单直观的查询方法非常方便。它可以指导学生如何解释官能团,以及如何更方便地获取复杂的数据,并让学生学会识别不同官能团的特征峰,从而为化合物分析奠定坚实的基础。在实验室中,红外光谱官能团对照表仍然发挥着它的价值。在有机化学、制药和材料科学研究中,红外光谱官能团对照表依然是不可或缺的工具。例如,研究人员可利用该工具,快速识别和确认新合成化合物中的官能团。为此,他们只需将FTIR光谱中观察到的峰值与红外光谱对照图上的特征吸收频率进行比较。这种对比验证对于确保准确合成新化合物至关重要,并且有助于排除故障和优化工艺。在识别官能团方面,尤其是在无法使用高级软件或大规模谱库的情况下,使用红外光谱官能团对照表的方法省时又省力。现代化学分析中不太起眼的老工具尽管红外光谱官能团对照表对比分析方法一直存在,但不可否认的是,在当今FTIR技术背景下,它们已成为一种不太起眼的老工具。利用现代FTIR仪器,我们能够毫不费力地在包含大量化合物信息的庞大数据库中进行检索。这些数据库中甚至还包含一些罕见的、特殊的化合物结构。这些软件通过便捷的自动化分析,简化了鉴定过程,此外,光谱比较、峰值标定和定量分析等功能还有助于增强我们对样品的了解。布鲁克OPUS软件(所有布鲁克光谱仪器都安装了该软件)是一款将丰富的常用功能,与用户友好的界面,高级扩展功能无缝衔接的优秀软件。在此基础上,布鲁克公司开创性的开发出业界首款用于红外光谱的触控软件OPUS TOUCH。通过该软件,您能够以前所未有的方式,直观便捷地控制您的红外分析过程。即使是初次使用FTIR光谱仪的用户,也能够便捷、快速并准确的操控仪器。按步骤轻松完成FTIR分析。1:选择光谱测试工作流;2:选择测试方法,预览测试谱图;3:查看谱图分析结果;4:生成PDF报告结论红外光谱官能团对照图表具有快捷、直观、官能团参考对比价值和节省成本的优点。因此在研究机构等领域,它们仍然具有非常高的实用性。相比之下,现代谱库检索工具可提供全面的光谱数据库、自动化分析和更高的准确性。您选择哪种工具呢?归根结底,这取决于化合物鉴定所涉及的具体要求、资源和复杂程度。但无论您选择哪种工具,布鲁克将始终为您提供合适的解决方案。
  • 全自动农药残留检测仪需要做空白对照吗
    全自动农药残留检测仪需要做空白对照吗,全自动农药残留检测仪需要做空白对照。空白对照是指不给予任何处理的对照,这在动物实验以及实验室方法研究中常采用,以评定测量方法的准确度以及观察实验是否处于正常状态等。全自动农药残留检测仪在检测食品中农药残留量时,为确保检测结果的准确性和可靠性,通常需要进行空白对照。具体来说,空白对照在全自动农药残留检测仪中的作用可能包括:评估仪器性能:通过空白对照,可以评估仪器在无任何农药残留的情况下,其测量值是否稳定,是否符合预期,从而判断仪器是否处于正常的工作状态。校正误差:在检测过程中,可能会存在各种误差,如仪器误差、试剂误差、操作误差等。通过空白对照,可以及时发现并校正这些误差,提高检测结果的准确性。设定阈值:空白对照的结果可以作为设定阳性阈值的参考。阳性阈值是指判断食品中农药残留是否超标的临界值。通过空白对照,可以确定在无任何农药残留的情况下,仪器的测量值范围,从而设定合理的阳性阈值。此外,一些全自动农药残留检测仪具有空白对照自动检测功能,可以自动进行空白对照操作,并将结果保存于系统中,方便后续分析和查询。这种设计可以进一步提高检测效率和准确性。综上所述,全自动农药残留检测仪需要做空白对照,以确保检测结果的准确性和可靠性。
  • 【激光氨气分析】AE: 华北农区秋冬季地气氨交换规律
    原文:中国科学院大气物理研究所 题注:宁波海尔欣光电科技有限公司和中科院大气物理研究所和深入合作,研发了一款便携式、高精度、快响应的HT8700开路多通池激光氨分析仪,并以HT8700为核心部件,集成开发了一套基于大气湍流方法(涡动相关法)的氨通量观测系统,这是目前测量地气氨交换通量的理想方法。 本文介绍了一个发表在Atmospheric Environment的研究工作。该项目采用了HT8700和涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据。============================================================================== 华北是我国氨的热点区域,大气中的氨含量高,空间覆盖范围广,这与区域内高强度的农业活动密切相关,如农业施肥、畜牧养殖等。高浓度的大气氨和由此引发的过量活性氮沉降,会导致重霾污染天气,也深刻改变了氮素的生物地球化学循环。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。 相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 鉴于此,中国科学院大气物理研究所联合中国农业大学、中国科学院亚热带农业生态研究所等单位,采用自主研制的开路激光氨分析仪(Wang et al.,2021)和基于大气湍流理论的涡动相关技术,在华北农区开展秋冬季地气氨交换通量高频观测,研究站点位于河北省曲周县,该地区的氨排放和沉降问题尤为突出。 研究团队成功获取了典型玉麦轮作农田在冬小麦播种施肥期间的氨挥发通量数据,并估算出由此损失的氮占氮肥施用量的0.57-0.71%,该结果远远低于同类观测研究的估算结果,这在很大程度上归因于优化后的施肥管理措施,为评估农业氨减排途径的有效性提供了观测证据。得益于观测设备在测量精度和频率上的优良性能,研究团队还首次获得农区高时间分辨率(半小时)的氨干沉降通量数据集,监测到平均沉降速率为14 g N ha-1 d-1,并发现迥然不同于自然生态系统的干沉降日变化规律。未来,利用该自主仪器及方法开展长期定位观测,可为氨干沉降通量的联网观测研究提供有效的验证数据,有助于提升对氨沉降时空变化规律的认识。 图1 基于自主研制仪器的氨湍流通量观测系统 图2 华北典型农区秋冬季氨浓度和氨通量半小时平均观测值(子图b和c中的通量值与子图a相同,纵轴坐标数值范围不同) 图3 华北典型农区秋冬季氨浓度和氨干沉降通量日变化趋势 上述研究成果近期发表于Atmospheric Environment,论文一作为大气物理研究所王凯博士和中国农业大学王敬霞研究生,通讯作者为中国农业大学刘学军教授。研究得到国家大气重污染成因与治理攻关项目(DQGG0208)、国家重点研发计划项目(2018YFC0213301、2017YFD0200101)、国家自然科学基金(41975169、42175137)等项目的资助。 相关文献:1. Wang K., Wang J., Qu Z., Xu W., Wang K., Zhang H., Shen J., Kang P., Zhen X., Wang Y., Zheng X., Liu X., 2022. A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment 278, 119070. 2. Wang K., Kang P., Lu Y., Zheng X., Liu M., Lin T., Butterbach-Bahl K., Wang Y., 2021. An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology 308–309: 108570.
  • 荧光定量PCR,你做对照了吗?
    前言吾日三省吾身,定量实验做对照了吗?在荧光定量PCR实验中遇到没有曲线、曲线异常等情况,我们总是会在第一时间去看阳性对照和阴性对照的扩增情况来分析原因。由此可见,实验中做对照的重要性不言而喻。在荧光定量PCR实验中,我们通常会按照如下的流程进行实验:样品采集,运输,样品处理,核酸提取,反转录(RNA 病毒),扩增 ,结果读取。为了提高实验结果的精准度,我们通常会通过设置对照的方式对检测的各个环节进行监控。阴性对照荧光定量PCR的灵敏度较高,对实验室的污染也非常敏感,阴性对照可以用来监控和发现污染的发生。常用的阴性对照包括以下几种:无模板对照(No Template Control, NTC)使用水代替荧光定量 PCR反应中的核酸,其它试剂按比例正常加入,用于监控扩增反应体系中的污染。正常情况下,NTC孔不会有扩增;当NTC出现扩增,则预示体系中有污染。在SYBR Green实验中,引物二聚体的形成也可能导致NTC出现扩增。阴性样本对照(Negative Sample Control)阴性样本对照指不含有目的基因或者靶序列的样本,也可以是样本保存液。和含有目的基因的样本一起进行核酸提取等过程。如果出现扩增,则说明实验过程中存在污染,结合NTC结果进行判断。无逆转录酶对照(No Reverse-Transcriptase Control, No RT)当进行RNA定量实验时,如果引物和探针设计在同一个外显子上,扩增有可能来源于未去除干净的DNA,此时可以设置无逆转录酶对照。无逆转录酶对照中不加逆转录酶。由于没有cDNA,DNA聚合酶无法扩增mRNA,则不应发生扩增。如果检测到扩增,则样本中可能含有未去除干净的DNA。阳性对照阳性对照必然是阳性的结果,用于排除假阴性。如果检测出来了这个样本不是阳性,则说明实验有问题,不可靠。阳性样本对照(Positive Sample Control)阳性内对照虽然可以在一定程度上反应核酸提取效率,但是却很难反馈提取流程中对核酸释放的效率。为了能更好的反映提取效率,可以选择已知阳性的样本或者保存在相似基质中已知浓度的病原体,作为单独的样本进行提取和后续的RT-PCR,通过Ct值评断实验流程。内参基因(Endogenous Control)内参基因可以用于反应样本本身的质量,比如拭子是否刮取到样本、RNA在运输和保存过程中是否有严重的降解等问题。内参基因一般选择在取样组织或细胞中均有足量表达的基因,且其表达量不受环境、实验处理条件和取样时间等因素影响,常用内参基因如表1所示。没有某个内参基因是万能的,内参基因需要根据样本类型和实验处理方式进行评估和选择。实验中通过内参基因的Ct值来判断取样和样本降解情况。在相对定量实验中,内参基因亦可用于对取样量进行均一化。▲ 表1: 已报道的部分物种qPCR内参基因扩增对照(Amplification Control)可使用含有扩增片段的质粒、假病毒或者基因组DNA/cDNA作为扩增阳性对照,监控荧光定量PCR的体系是否正常。当扩增对照没有扩增,或者Ct值大于预期,则说明定量PCR体系存在问题。内部阳性对照(Internal Positive Control, IPC)如果想监控每一份样本的整个实验过程,可以在提取之前在每个样本中加入一段外源DNA或RNA(不含目的片段),并在定量PCR时进行单管多重PCR,同时检测目的基因和这段序列。在每个样本中加入特定拷贝数的IPC,进而从该段序列的Ct值判断对应样品孔中的核酸富集和扩增效率。
  • 多通道近位抽取高精度脱硝氨逃逸在线分析系统技术应用
    p  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的意义/span/strongbr//pp  当前,随着我国经济的持续发展,能源压力日趋紧张,环境污染已严重危害到我国人民的健康和生活质量。近年来河北、山东、北京等地被持续的大范围雾霾天气所笼罩,引发全社会的广泛关注。二氧化硫、氮氧化物和可吸入颗粒物这三项是雾霾主要组成。为了降低经济快速发展带来的雾霾、臭氧层破坏、温室效应及酸雨现象,我国要求使用燃煤的工厂(主要是火电厂和水泥厂)安装脱硝装置,降低氮氧化物的排放。/pp  国内外应用较多且工艺成熟的选择性催化还原法(SCR)和选择性非催化还原法(SNCR)烟气脱硝,均需要向烟气中喷入还原剂氨,使烟气中的氮氧化物还原成氮。/pp  为了保证氮氧化物充分反应,提高脱硝效率,需要实现还原剂氨注入量的最优化。如果喷氨过多,则会产生氨逃逸,造成更严重的危害:/pp  1.逃逸的氨与烟气中的SOsub3/sub反应生成NHsub4/subHSOsub4/sub,当后续烟道烟温降低时,NHsub4/subHSOsub4/sub就会附着在空气预热器表面和飞灰颗粒物表面。/pp  2.NHsub4/subHSOsub4/sub可以沉积并积聚在催化剂表面,引起催化剂的失活。/pp  3.NHsub4/subHSOsub4/sub在低于150℃时,以液态形式存在,腐蚀空气预热器,并通过与飞灰表面物反应而改变飞灰颗粒物的表面形状,最终形成一种大团状粘性的腐蚀性物质。/pp  4.这种飞灰颗粒物和在空气预热器换热表面形成的NHsub4/subHSOsub4/sub会导致空气预热器的压损急剧增大。/pp  5.逃逸的氨导致飞灰化学性质发生改变,使得飞灰不能作为建材原料而得到利用。/pp  所以,脱硝工艺喷氨量的控制,既要保障脱硝效率最高,又不能过量喷氨造成新的危害,需要对氨逃逸进行实时准确的在线分析。作为脱硝工艺中必不可少的关键监测设备,氨逃逸的准确稳定测量,对提高工业效率和安全生产有着重要的意义。/pp  strongspan style="color: rgb(0, 112, 192) "氨逃逸分析的现状/span/strong/pp  目前电力行业脱硝工艺基本上已经装配了氨逃逸在线分析系统,但在实际运行过程中这些氨逃逸在线分析系统往往存在着一些普遍性问题:/pp  1.氨逃逸数据为0或某个固定值,或只有仪表自身噪声信号,没有真正检测出逃逸氨,给性能验收和环保验收带来麻烦。/pp  2.增大或减少喷氨量,氨逃逸数据无变化,没有趋势相关性,无法为电厂控制喷氨流量提供科学的数据参考。为了NOx达标排放可能会喷氨过量,造成氨水浪费和形成大量铵盐对后面设备造成严重腐蚀。/pp  3.传统氨逃逸不能随时通标气进行验证,不能确保数据的准确性。/pp  通过对这些氨逃逸设备实地调研分析,发现这些设备主要采用原位测量方式,将设备的发射端和接收端分别安装在烟道上,采取对射的方式。这种测量方式会有以下几种影响:/pp  1.测量点位置粉尘量大,激光透射率不足,导致无法测量。/pp  2.为了解决透射率不足无法测量的问题,很多原位式分析仪采用斜角安装方式,即在烟道一角采取对射安装。这种方式测量的氨逃逸不具有代表性,不能反映烟道截面的真实状况,同时粉尘对测量仍然会造成影响。/pp  3.测量精度和测量下限与光程相关,光程越长,测量精度和测量下限越好。采用斜角安装方式测量光程短,测量下限和精度不够,无法满足氨逃逸精确测量的需求。/pp  4.现场振动和热膨胀因素,会造成激光对射不准,影响正常使用。/pp  5.无法通标气标定和验证。/pp  正是由于上述原因,原位式脱硝氨逃逸分析仪在实际使用中遇到了众多的困难,为了解决这些问题,国内一些企业将国外进口的分析仪进行改造,自己设计加工样气室,采用抽取式去除粉尘,抽取样气进入样气室测量,但是由于自身不掌握TDLAS核心技术,在改造过程中存在诸多技术问题及测量光程不够等因素,也没有取得良好的测量效果。/pp  strongspan style="color: rgb(0, 112, 192) "多通道近位抽取高精度测量技术应用/span/strong/pp  针对上述问题和现状,北京大方科技有限责任公司基于自身掌握的TDLAS核心技术,将多通道近位抽取及多次反射高精度测量技术应用于氨逃逸在线分析,成功解决上述问题,并得到了广泛应用。/pp  一、采用高精度多次反射长光程技术/pp  鉴于脱硝工程中氨逃逸对环境和设备的巨大危害,环保部对脱硝工艺中氨逃逸量有严格的规范。环保部2010年1月发布的环发[2010]10号《火电厂氮氧化物防治技术政策》以及2010年2月发布的标准HJ562-2010《火电厂烟气脱硝工程技术规范----选择性催化还原法》皆要求SCR氨逃逸控制在2.5mg/msup3/sup(干基,标准状态)以下。因此,脱硝工程中的氨逃逸量极低(ppm量级),这对氨逃逸分析仪的测量精度提出了极高的要求。/pp  目前测量氨逃逸通常采用可调谐二极管激光吸收光谱技术(TDLAS技术),其基本原理是朗伯-比尔定律(Beer-Lambert’s law),依据朗伯-比尔定律,当单色光穿过均匀气体介质时透射光强和入射光强的关系, 如方程(1)、(2)所示:/pp style="margin-left:13px text-indent:21px line-height:150% text-autospace:none"span style="font-size:21px line-height:150% font-family:仿宋" img src="http://img1.17img.cn/17img/images/201710/noimg/f1b1356f-e59a-4815-a181-8722c53bd3d8.jpg" title="公式.png"/ /span/pp  其中,P 为气体的压力;/pp  T 是样品气体的温度;/pp  Xabs 是被测气体在样品气体中的摩尔百分比;/pp  L 为光程长度;/pp  S 为吸收谱线的强度;/pp  fn为吸收谱线的线型函数。/pp  由公式可知光程长度越长,气体的吸收强度越强,所得到信号的信噪比越好,也就是说测量光程越长,测量精度越高。大方科技自主开发多次反射高温样气室,激光在样气室中多次反射,如图1为多次反射技术样气室中光路轨迹仿真图,光程可达30米,极大的提高了测量精度和检测下限。通过光程的提高,很大程度的解决了传统氨逃逸光程短、测量精度不足的问题。/pp style="text-align: center " img src="http://img1.17img.cn/17img/images/201710/noimg/5c6248b5-acb0-4782-b0e4-1b81f607f144.jpg" title="图1.png"/ /pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1.大方科技多次反射技术样气室中光路轨迹仿真图/span/pp  二、多通道近位抽取测量技术应用/pp  针对原位式氨逃逸在线分析系统受烟尘和烟道震动影响等因素,大多数氨逃逸在线分析系统已采用抽取式技术路线,将烟气抽出经过预处理后进行测量,很好的解决了上述问题。目前已有的抽取式氨逃逸在线监测系统多采用单点取样,将一根取样探杆沿烟道长边中心位置插入至烟道核心区域,虽然和传统的原位式氨逃逸分析仪安装在烟道角落位置相比,目前单点核心区域抽取更具代表性,但对于大型机组烟道尺寸很大(通常长边可达13米以上)的情况下,烟道内流场分布复杂,截面上氨逃逸浓度也不尽相同,为了更准确的代表烟道中氨逃逸的浓度,需要实现多点测量。如果单点测量是一台通用测量设备,那么多点测量则是一台高端设备,满足高质量、高要求用户的需求。/pp  大方科技在抽取式技术路线基础上,通过产品小型化、外置过滤装置、减震安装装置设计、近位恒温控制、流路控制等成功实现多通道近位测量技术。近位测量实现取样气体从取样探杆出来直接进入分析气室,不需要伴热管线,减少了系统的响应时间,降低氨气吸附的风险,降低伴热管线堵塞及损坏的可能,提高了系统的可靠性和耐用性。取样点的位置和取样探杆的长度可根据现场情况设计,既可实现同一烟道多点同时测量,也可以实现多烟道多通道测量,且每个取样点可独立反吹。通道数量可以1~6任意扩展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/noimg/9f23d8c0-cf6c-42b2-ac42-dc46822639d5.jpg" title="图片2.png"//pp style="text-align: center " span style="color: rgb(0, 176, 240) " 图2.大方科技近位抽取氨逃逸在线分析系统主机实物图/span/pp  大方科技率先开展氨逃逸的多点取样测量,成功实现了两点、三点、四点以及网格取样的应用,测量准确有代表性,得到了用户的高度评价。/pp  三、复杂烟气工况高温近位抽取预处理技术应用/pp  由于我国燃煤种类及燃烧工艺的复杂多样性,烟气具有高温、高湿、高腐蚀、高粉尘的特点,且每家的工况环境各异,这给氨逃逸的在线监测带来了不确定性。氨分子极易溶于水且具有极强的吸附性,因此要求整个系统中不能存在冷点,也不能降温除水,需要在高温下完成测量。由于烟气中存在大量的粉尘,要求预处理系统既能够将粉尘过滤掉,避免造成光学器件的污染,又不能堵塞,加大现场的维护量。烟气中含有SO3、NH3等腐蚀性气体,且湿度大,要求整个烟气流路需要做防腐处理。所以,开发适合我国烟气工况,且适应强的氨逃逸在线分析系统,其首要难点之一是烟气预处理系统的开发。/pp  针对上述复杂工况,大方科技结合自身在烟气预处理多年摸爬打滚的经验,成功开发了稳定可靠的近位抽取预处理系统。抽取气体直接进入气室,不需要经过伴热管线,烟气接触的流路全程高温伴热250℃以上无冷点,避免氨气吸附和损失,保证样气真实性。系统滤芯采用碳化硅过滤器,在高温下不会与SO2、NH3等腐蚀性气体发生化学反应,且滤芯采用后置安装,无需专业工具拆卸,更换和清理极其方便。每个通道皆具有自动反吹控制,反吹间隔和反吹时长根据工况设置,有效避免滤芯堵塞。/pp  对于氨逃逸监测而言,复杂的烟气工况环境是造成故障率攀升的主要原因。所以,预处理系统的稳定性和耐用性是氨逃逸监测设备的核心竞争力之一。大方科技近位抽取式预处理技术的应用,极大的提高了系统稳定性,结合多次反射长光程技术的应用,保障了测量结果的准确,为合理喷氨提供了科学的数据支撑。图3为大方科技氨逃逸在线分析系统现场趋势图,红色为喷氨量曲线,黄色为氨逃逸曲线,当系统的喷氨量发生变化时,氨逃逸数据曲线也相应地变化,从图上看喷氨量和氨逃逸曲线趋势一致,相关性高,为系统的安全、经济运行提供有价值的数据参考。/pp style="text-align: center "  img src="http://img1.17img.cn/17img/images/201710/noimg/f84c9423-8972-473b-83c6-2c3ca3349309.jpg" title="图3.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图3.大方科技氨逃逸在线分析系统现场趋势图/span/pp style="text-align: right "span style="color: rgb(0, 176, 240) "span style="color: rgb(0, 0, 0) "【供稿来源:北京大方科技有限责任公司】/spanbr//span/p
  • 品生医疗正式推出多组学战略子品牌——氨探生物
    10月12日,品生医疗多组学战略子品牌——氨探生物线上发布会顺利举办。品生医疗集团正式宣布推出专注于以蛋白质组学为核心的分子表型多组学临床转化全流程服务的战略子品牌——氨探生物,氨探生物将作为新一代多组学平台级企业,致力于提供生物标志物发现与转化全流程解决方案,服务于生命科学基础研究、药物研发和临床诊疗,以实现分子表型水平的精准诊疗。作为品生医疗旗下战略级业务,氨探生物将与母公司品生医疗集团共同推动多组学研究为驱动的精准诊疗新生态的建立。  发布会上,中国科学院院士、中国科学院大连化学物理研究所研究员张玉奎对此次氨探生物的发布表示祝贺:近年来,分析化学和生命科学的交叉领域已经成为研究的重点。以质谱技术为核心技术的蛋白质组学推动了精准医学的发展,解决了传统组学研究稳定性差、通量低、成本高的瓶颈问题,有效填补了生命健康科学研究中的技术转化鸿沟。希望此次品生医疗多组学战略子品牌氨探生物的成立,能加快推动多组学研究与技术转化,为质谱技术在临床科研、药物研发、伴随诊断等领域拓宽应用场景。  中国医药创新促进会执行会长宋瑞霖表示:信息技术和生命科学产业的跨界融合将颠覆我国传统的药械监管和研发、临床诊疗和疾病预防模式,必将为满足全球百姓日益增长的健康需求作出重要贡献。药促会拟于2022年12月13日在第七届中国医药创新与投资大会期间成立医药数字化及创新疗法专业委员会,促进IT和BT产业间跨领域联动合作,助力数据和现代化技术手段驱动的药械产业数智化新发展格局,为数字化技术赋能药械创新和满足全球百姓对生命健康日益增长的美好追求做出新的贡献。品生医疗作为药促会在质谱精准医疗领域的新兴企业代表,致力于借助前沿多组学技术平台,融合数据挖掘、生信分析等新兴技术手段,推动全球药物创新研发,肩负着推动我国药械产业创新发展的责任和使命。希望品生医疗与氨探生物能够不忘初心,充分发挥现代化先进专业技术优势,与药促会大家庭共同为推动我国经济社会和医药卫生事业发展作出新的贡献!  2015 年,精准医疗被确立为我国的国家级发展战略,以蛋白质组学为代表的多组学技术在“精准医疗”中具有广阔的应用前景,在早诊早筛、创新药物研发及伴随诊断的全周期价值链中发挥着重大作用。  近几年,由于蛋白质组学在疾病诊断和药物开发方面的应用性不断提高,全球蛋白质组学市场显著增长,国内蛋白质组学市场也呈现火热之势。但是由于蛋白质组学技术的复杂性,其作为新兴转化医学技术仍然存在诸多挑战。据了解,商业化的高性能质谱平台是目前主流的蛋白质组学分析平台,但存在操作复杂、通量低、成本高等等问题,限制了蛋白质组学在临床研究、特别是临床大样本研究中的应用。  蛋白质组学发展需要创新技术来赋能,克服传统商业化科研型组学平台的发展困境,以适合标准化、大规模临床转化研究。品生医疗创始人、董事长兼CEO成晓亮博士回顾了氨探生物的创办原因:“品生医疗的核心技术团队是国内最早一批从事蛋白质组学、代谢组学研究的技术专家,来自国内外一流的组学研究机构,对基于质谱的分子表型组技术有着多年的积累和经验。随着品生医疗在临床质谱常规检测领域逐渐成熟,进一步开始了前沿领域新型标志物开发和转化的探索。在此背景下,成功孵化氨探生物,将团队多年积累的组学技术、科研创新、IVD产业化经验有机结合,攻克了新型标志物的临床转化难题,打通了新型标志物从发现、到验证、再到转化的全流程。”  成博士表示:“我们希望在保持和扩大品生医疗在精准医疗多组学研究转化、临床质谱技术开发市场技术、市场领先优势的前提下,继续促进蛋白质组学与代谢组学等多组学技术的融合,推动其在临床应用的进一步提升。”  品生医疗首席技术官张伟博士详细介绍了氨探生物在多组学研究和转化领域的技术优势。  氨探生物研发的qPharos组学航标灯技术利用特殊同位素定位在前处理、质谱检测、数据分析等实验全流程实现了实时精确校准,从根本上解决了实验各环节的重现性、稳定性问题。基于qPharos技术自主开发建设的qULTRA组学平台,进一步通过整体优化、国产替代、自主谱图库搭建、生信大数据算法创新,具备高灵敏度、高稳定性、高通量、绝对定量等独特优势,高效、持续地生产分子表型组数据。qULTRA平台能够实现各类型临床样本的蛋白质组学、翻译后修饰组学、代谢组学、脂质组学的分子表型多组学检测,目前该平台已经过全球多中心验证,确保生物标志物的发现与转化流程的可靠性。  据了解,基于qPharos组学航标灯技术以及qULTRA精准组学发现与验证平台,氨探生物打通了临床蛋白质组学、代谢组学从非靶发现、到靶向验证建模、再到临床规模化应用的完整研究路径,提供了精准组学一站式解决方案。  品生医疗精准组学中心总监周岳博士分享了氨探生物在分子表型组临床研究中的最新进展。该全流程服务平台已经服务诸多标杆医院临床研究,并在心血管、妇幼、神经退行性疾病等领域开发转化了创新诊断应用。  同时,《“十四五”医药工业发展规划》特别提出发展创新药等创新技术方向,将免疫治疗、细胞治疗在内的前沿核心技术和药物列为重点发展对象,以期解决长期困扰制药界的靶点和耐药性的系统性难题,为患者提供更好疗效和更低副作用的疾病治疗方案。周岳博士介绍,在创新药研发内卷,靶点扎堆的行业背景下,未来的新药研究,已经逐步从基于遗传信息的基因组、转型到基于蛋白、代谢的分子表型组,而国内在该领域才刚刚起步,亟需一流的分子表型组平台支持该领域的研究。据悉,氨探生物已经在和国内外药企合作,运用多组学技术推动新药研发源头创新。
  • 纳氏试剂分光光度比色法检测污水中氨氮时的影响因素有哪些?
    纳氏试剂分光光度比色法测定水中氨氮时,虽然步骤较为简单,但实验条件还是有一定的要求,任何一处细节出现偏差,都会对测量结果产生影响。下面结合我公司的氨氮测定仪 6b-50型(v9),对纳氏试剂分光光度法测定水中氨氮含量时影响测定准确度的因素和解决的办法进行了总结,与大家共同探讨。原理介绍纳氏试剂比色法是一种测定饮用水、地面水和废水中铵的方法。其原理是:以游离的氨或铵离子等形式存在的铵氮与纳氏试剂反应生成黄棕色络合物,该络合物的色度与铵氮的含量成正比,可用目视比色和分光光度法测定。目视比色法测定时,最低检出浓度为0.2mg/l,上限浓度为2 mg/l;分光光度法测定时,最低检出浓度为0.05 mg/l,上限浓度为2 mg/l。本方法已定为国家标准分析方法。 仪器准备 6B-50型(v9)氨氮测定仪 江苏盛奥华环保科技有限公司 影响因素1:实验用水及试剂的质量检验氨氮专用试剂主要包含两种:n1-100样 / n2-100样,我司提供的是固体粉末状试剂,需要用户自行加入100ml蒸馏水配置成液体试剂备用。配置过程中如有少量沉淀,去除即可。配置完成后避光、阴凉处或放置冰箱低温1-2度保存。试剂如果变色浑浊过期使用,实验数据是不准确的。因此试剂配置、存放、使用过程中都需要注意,避免造成不必要的麻烦。 影响因素2:实验环境氨是实验室最常用的易挥发性试剂,而氨氮的分析应在无氨的实验室环境中进行,室内不应含有扬尘、石油类及其它的氮化合物,严禁在使用含氨试剂(如测定总硬度:使用氨缓冲溶液)的实验室中做氨氮项目的分析,所使用的试剂、玻璃器皿等也要单独存放,避免交叉污染,影响试剂空白值、样品测定值。影响因素3:玻璃器皿的洗涤所使用的玻璃器皿应先用(1+9)盐酸浸泡后,再用无氨水冲洗数次才能使用,否则,也会造成空白值偏高或平行性较差的情况。影响因素4:滤纸对空白值的影响氨氮实验需将水样过滤后测定,所用滤纸一般都含有铵盐,可能引起过滤空白值升高,所以需做过滤空白对照实验,以扣除滤纸影响。实验表明,不同滤纸之间铵盐含量差别很大,有些含量较高的滤纸虽经多次用水洗涤,仍达不到实验要求,因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次,减少滤纸的影响。我们选用经稀hcl浸泡并洗净的0.45um醋酸乙酯纤维滤膜过滤水样,解决了用滤纸过滤产生的高空白值问题。不仅过滤空白值低,而且重复性好,所以推荐使用0.45um醋酸乙酯纤维滤膜过滤。 影响因素5:反应条件的控制(1)反应时间对实验的影响测定氨氮时,反应时间不宜过长。6B-50型氨氮测定仪实验中,取定量的空白和水样,先后加入n1试剂1ml,n2试剂1ml。摇匀常温下静置10分钟即可倒入比色皿,放入仪器中测量读数。因而,测定水中氨氮时,显色时间不宜过长,进而保证达到分析的精密度和准确度。(2) 反应体系的ph值对实验的影响我司化验员经过多年的反复实验,发现水样ph值的变化对测定结果有明显影响,水样呈中性或碱性,得出的测定结果相对偏差符合分析要求,呈酸性的水样无可比性,所以对于水样应特别注意调节反应体系的ph值,最好将溶液显色控制在ph值为11.8~12.4。准确检测水中氨氮的含量,有利于更加有效地指导生产,确保安全、优质供水。 结 论纳氏试剂分光光度法测定氨氮应注意和解决的常见问题: ⑴试剂的正确配制决定着方法精密度和准确度,特别要注意理解实验原理、正确掌握试剂配制的要领。⑵注意主要试剂性状,选购合格的试剂。⑶降低空白实验值可提高实验精密度,对实验用水、试剂空白和过滤滤纸要注意检查。⑷反应条件、时间、体系ph决定反应平衡和反应生成物的稳定性,控制反应在最佳条件下进行,尽可能提高操作准确度,确保分析结果的精密度、准确度、稳定性和可靠性。
  • 格林美回应环保投诉:荆门公司年底彻底杜绝氨排放 专家称尚存现实困难
    p  8月30日,《每日经济新闻》独家报道了格林美(002340,SZ)全资核心子公司荆门市格林美新材料有限公司(以下简称荆门格林美)屡遭周边居民环保投诉、项目环评未将厂区外住宅纳入评估等问题,引起各界关注。/pp  9月5日,荆门格林美副总经理柳涛对《每日经济新闻》记者表示,荆门格林美一直是达标排放,但含硫、含氨排放仍对周边居民造成影响,目前公司已关停燃煤锅炉,新的中水回用系统正在建设,预计今年12月建成运营后可彻底杜绝氨味排放。/pp  公司:年底彻底杜绝氨排放/pp  根据荆门市环保局《2017年第一季度12369环保举报热线公众举报受理情况》统计显示,今年1~3月份,荆门格林美已经被当地居民通过12369电话投诉8次,投诉人大多来自周边住宅区,投诉内容主要为排放气体带有刺激性气味,经环境监察支队核实,部分投诉属实。/pp  对此,格林美有关负责人介绍,荆门格林美周边居民闻到的刺激性气味,主要为含硫、含氨、含油及药味等多种混合味道,来源包括格林美在内的多家工厂和养猪场,其中格林美主要排放的是吹脱处理工序中的含硫排放及废水处理中的含氨气体排放。/pp  8月30日,本报独家报道了《格林美年环保投入过亿 核心子公司仍屡遭投诉》和《格林美荆门项目环评可能有瑕疵 厂区外有住宅区未纳入评价范围》。该组报道刊发后,其存在环保投诉情况再次引起各界关注。/pp  柳涛称,目前公司已关停燃煤锅炉,新的中水回用系统正在建设,预计今年12月建成运营后可彻底杜绝氨味排放。/pp  记者注意到,近年来荆门格林美南区、北区附近均出现了住宅区,如南面的聚盛国际,北面的碧波春城,西面的凤凰城,部分小区受排放影响严重且未纳入格林美项目环评范围。/pp  格林美副总经理鲁习金在9月5日公众开放日表示,按照环评的卫生防护距离的要求,格林美项目距离住宅区最少是100米,有的要求300米,在住宅区距工厂越来越近的情况下,格林美必须正视排放扰民的现实,强化环保治理。/pp  据鲁习金介绍,格林美拟在未来三年继续增加投资5亿元,实施6个重大环保项目,包括环保智慧云平台、废渣综合处置系统、循环设施等,最大限度减少排放。/pp  专家:尚存现实困难/pp  9月5日,格林美在荆门园区拆除了一座废气处理厂房的燃煤锅炉烟囱。柳涛告诉记者,燃煤锅炉排放虽然达标,但天气不好时还是有硫的味道,所以从去年开始工厂就开始关停并淘汰燃煤锅炉,建设天然气锅炉,现在已经没有硫排放了。/pp  而周边居民主要投诉的是氨排放,对此柳涛表示,荆门格林美今年投资了5000多万元建设中水回用系统,今年4月已投入使用一套日处理废水1000吨的系统,另一套系统还在建设中,预计12月完成。/pp  根据规划,该全套系统设计为日处理废水5000吨,满足现有产能所需。柳涛介绍,该系统利用膜工艺对废水进行分离,淡水直接回用,浓水进入MVR系统进行蒸发,以解决氨排放的难题。/pp  对此,一不愿具名的注册环评工程师在接受《每日经济新闻》记者采访时表示,荆门格林美提出的上述环保工艺确实能在一定程度减少氨气排放,比如加入酸碱、加上吸收塔等措施,确实有一些功效,但要达到完全不扰民,目前的工艺还存在现实困难,“至少吸收塔的回收率就不可能达到100%。”/p
  • 利用高频光腔衰荡光谱技术同步观测北京和上海大气氨浓度
    氨气是形成二次气溶胶的重要前体物,也是城市大气环境治理的关键物种。中国科学院大气物理研究所组织实施的全国大气氨观测研究网络(AMoN-China)通过被动离线采样发现,城市已成为大气氨排放热点区域。然而,被动采样周期较长(周-月),难以捕捉大气氨浓度在日尺度上的快速变化。同时,以往研究常观察到大气氨浓度在早上5:00-12:00快速增加,这一早高峰现象是否具有普遍性亟待更多高频观测站点资料的验证。鉴于此,中国科学院大气物理研究所研究员潘月鹏课题组与华东师范大学教授吴电明团队合作,基于高频光腔衰荡光谱技术在北京和上海两个超大城市开展了大气氨浓度同步观测实验(测量频率1Hz,精度0.03ppb,图1)。这两个城市位于华北平原氨排放热点区域的南北边缘,是研究区域传输和局地排放对大气氨浓度叠加影响的理想站点。图1. 基于光腔衰荡光谱法测量北京和上海的大气氨浓度2020年5月观测结果发现,北京大气氨平均浓度(23.1±10.3 ppb)接近上海(12.0±5.0 ppb)的两倍,与卫星观测的氨气柱浓度和自下而上统计的氨气排放量的空间分布一致。研究还发现两个城市同时存在氨气早高峰现象,其发生频率大于50%,机动车排放是导致氨气浓度早高峰形成的主要原因。早晨边界层打破后,随着对流发展,富含氨气的残留层向下传输也对早高峰有一定贡献。上述结果促进了我们对城市大气氨浓度动态变化特征及背后驱动因素的科学认识,其高频观测数据可用于提升大气化学传输模型的模拟精度,有助于评估大气氨污染的生态环境效应并为氨减排策略的制定提供参考。该研究成果发表于Atmospheric Environment (JCR一区,IF=5.755)。中国科学院大气物理研究所2019级硕博连读生孙倩为该论文第一作者,潘月鹏研究员和华东师范大学吴电明教授为共同通讯作者。该研究受到北京市自然科学基金(8232050),国家自然科学基金(42077204)和大气边界层物理和大气化学国家重点实验室开放基金(LAPC-KF-2022-09)的共同资助。
  • 湖南株洲市食品药品检验所为食品监管行刑衔接提供高效技术支撑
    近日,从湖南省株洲市食品药品检验所(以下简称株洲市食检所)获悉,今年1至10月,该所共受理公安机关行刑衔接食品检品183批次,检出不合格样品150批次。其中,受理检品涉及公安机关办理食品案件24起,列入公安部督办案件并发动集群战役案件1起,列入湖南省公安厅督办案件4起,用最默契的协作方式、最简捷的流程受理、最高效准确的检测结果和最优质的技术服务,在食品监管行刑衔接机制中积极作为,取得了明显成效。自市场监管联合公检法司4部门挂牌成立行刑衔接联络室、建立行刑衔接机制以来,株洲市食检所把做好公安部门食品案件的检验纳入中心工作,要求从受理、检验、审核等各个环节全力以赴给予支持,案件办理需要检多少批次,就安排多少批次,全部免费检验。由于食品检验机构采用食品补充检验方法对涉案食品进行检验,其检验结果可以作为定罪量刑的参考,因此该检验方法的重要性不言而喻。株洲市食检所把着力点放在利用食品补充检验方法发现有效线索上,利用该所人才技术装备优势,尽可能扩大食品检测范围。目前,对138个壮阳类成分、100多个激素类成分、50多个减肥类成分等备齐了标准品、对照品及耗材,完善了检测方法,有效满足公安部门食品案件检验的需要。在此基础上,完善衔接会商机制,充分发挥公安、市场监管、检验检测的各自优势,互通信息、默契配合,形成监管合力的有效倍增。每次受理食品案件检品时,该所技术骨干会同公安、市场监管部门进行多方会商,分析案情,寻找疑点,确立检测方向。近年来,查办的“极品伟哥”和“减肥胶囊”两起公安部督办食品违法犯罪案件就是这样从一瓶、一盒样品的举报线索中发现的。该所技术人员正在检测行刑衔接样品。朱诗朔 摄为更好地满足公安部门食品案件检验需要,株洲市食检所增开绿色通道,简化优化行刑衔接食品样品的受理、检验、审核、审批、发送工作流程,不仅保障最快受理收检涉案样品,还降低检验数量门槛,只要有需求,哪怕是几粒、几片样品,检验所均采取先受理、先检验、先出数据,待案件突破后再发正式报告书的模式,最大限度满足公安部门食品案件办理需求。案情瞬息万变,检测工作就是与时间赛跑。为了快速、准确地出具检测结果,为公安机关办理食品案件提供法律依据,株洲市食检所组织专业骨干,对食品样品进行分析研判预判,对食品检验标准方法进行验证,摸准检测条件,优化检验流程,检验人员加班加点,检验仪器24小时不停机,用最短的时间完成样品检测,第一时间出结果,第一时间出报告。同时,强化检验人员责任意识,规范流程,建立完善一套严密的审查复核责任机制,对每一批检品、每一个分析项目、每一处流程环节绝不容半点马虎和懈怠,确保食品检验工作做到万无一失。检验人员始终保持严谨认真的工作态度和一丝不苟的工作作风,每一份检验原始记录由食品专业技术人员进行自校和互核,每一个不合格样品由食品专业技术人员交叉复检复核,审核、授权签字人员认真把关,确保检验结果的真实性和准确性。为做好食品行刑衔接检测工作,株洲市食检所通过业务培训、能力比对等多种方式培养人才、锻炼队伍、提升能力,以此来提高服务水平。该所近年来组织参加39次由市场监管总局和湖南省市场监管局组织的能力验证活动,均获得满意结果,多次在省市业务考核和技能比武中名列前茅,成为相关部门办理食品违法犯罪大案要案的坚实后盾。
  • 曼陀罗叶中药材质量标准发布
    近日,云南省药品监督管理局发布中药材曼陀罗叶的质量标准,自2021年01月04日起实施。曼陀罗叶为茄科植物白曼陀罗或毛曼陀罗的叶。具有镇咳平喘,止痛拔脓之功效。常用于喘咳、痹痛、脚气,脱肛、痈疽疮疖。胃肠及胆道绞痛后,用开水冲服叶片粉末,也能起到很好的缓解作用。目前,多用于支气管炎、支气管哮喘、风湿性关节炎等疾病的治疗。曼陀罗叶即可内服也可外用,内服需谨遵医嘱注意用量,如过量摄入,会有中毒危险。具体中药材质量标准如下:云南省药品监督管理局中药材质量标准(云YNZYC-0032-2005-2021) 曼陀罗叶 MantuoluoyeDATURAE STRAMONII FOLIUM 【来源】本品为茄科植物曼陀罗Datura stramonium L.的干燥叶。7~8月采摘,干燥。【性状】本品呈灰绿色至深绿色,多皱缩、破碎。完整叶片展平后呈菱状卵形,长8~20cm,宽4~15cm,先端渐尖,基部楔形不对称,边缘有不规则重锯齿,齿端渐尖,两面均无毛。质脆、易碎。气微,味苦、涩。【鉴别】取本品粉末0.2g,加50%乙醇20ml,浸泡1小时,时时振摇,滤过,滤液挥去乙醇,加水10ml,用氨试液调pH值至8~9,用三氯甲烷振摇提取两次,每次15ml,合并三氯甲烷液,置水浴上蒸干,残渣加甲醇0.5ml使溶解,作为供试品溶液。另取曼陀罗叶对照药材0.2g,同法制成对照药材溶液。再取硫酸阿托品加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,吸取供试品溶液和对照药材溶液各4μl与对照品溶液2μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(10:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照药材和对照品色谱相应的位置上,分别显相同颜色的斑点。【检查】 水分 照水分测定法(《中国药典》四部附录)测定,不得过10.0%。总灰分 不得过13.0%(《中国药典》四部附录)。酸不溶性灰分 不得过1.0%(《中国药典》四部附录)。莨菪碱限度 取本品粉末2g,精密称定,置具塞锥形瓶中,精密加50%乙醇100ml,称定重量,浸渍1小时,超声处理20分钟,放至室温,称重,用稀乙醇补足减失重量,摇匀,滤过,精密量取续滤液50ml,挥去乙醇,用氨试液调pH值至8~9,用三氯甲烷振摇提取3次(20ml、20ml、10ml),合并三氯甲烷液,蒸干,残渣加甲醇定容至1ml,作为供试品溶液。另取硫酸阿托品对照品,加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,精密吸取供试品溶液2μl、对照品溶液5μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(17:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照品色谱相应的位置上,出现的斑点应小于对照品的斑点或不出现斑点。【浸出物】照醇溶性浸出物项下的热浸法(《中国药典》四部附录)测定,用乙醇作溶剂,不得少于13.0%。【含量测定】 照高效液相色谱法(《中国药典》四部附录)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(含0.035mol/L磷酸钠和0.0087mol/L的十二烷基硫酸钠,0.5%磷酸,0.15%三乙胺)(35:65)为流动相;检测波长为216nm;理论板数按氢溴酸东莨菪碱峰计算应不低于3000。对照品溶液的制备 取氢溴酸东莨菪碱和硫酸阿托品对照品适量,精密称定,加流动相制成每1ml含氢溴酸东莨菪碱0.08mg, 硫酸阿托品0.2mg的溶液,即得。供试品溶液的制备 取本品粉末(过二号筛)约1g,精密称定,置锥形瓶中,加入2mol/L盐酸溶液10ml,超声处理(功率300W,频率45kHz)30 分钟,滤过,残渣和滤器用2mol/L盐酸溶液25ml分五次洗涤,合并滤液和洗液,用浓氨试液调PH至9,用三氯甲烷振摇提取4次,每次15ml,合并三氯甲烷液,回收溶剂至干,残渣用流动相溶液溶解,转移至5ml容量瓶中,加流动相至刻度,摇匀,滤过,取续滤液,即得。测定法 分别精密吸取上述对照品溶液与供试品溶液各10μl,注入液相色谱仪,测定,按外标法计算含量。按干燥品计算,本品含硫酸阿托品((C17H23NO3)2.H2SO4)不得少于0.13%,含氢溴酸东莨菪碱(C17H21NO4• HBr)不得少于0.04% ,含硫酸阿托品与氢溴酸东莨菪碱之和应为0.17%~0.40%。【性味与归经】苦、辛,温;有毒。归肺、心经。【功能与主治】平喘止咳,散寒止痛。用于喘咳,脘腹疼痛,痛经,寒湿痹痛。【用法与用量】0.3~0.6g。外用适量。【注意】青光眼忌用。【贮藏】置干燥处。
  • 中国化学试剂工业协会印发2023年第二批中国化学试剂工业协会团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等14项团体标准项目
    各有关单位: 按照《中国化学试剂工业协会团体标准管理办法(2021 年修订版)》(中试协字〔2021〕 63 号)的要求,现予批准印发中国化学试剂工业协会 2023 年第二批团体标准《化学试剂 气相色谱用对照品 N,N-二甲基甲酰胺》等 14 项团体标准。请起草单位抓紧落实和实施项目计划,在标准制定过程中加强与有关方面的协调,广泛听取意见,保证标准质量和水平,按时完成团体标准制定任务。标准项目计划执行过程中有关问题,请及时与中试协团标委办公室联系。联系方式:联系人:朱传俊电话:18526778029中试协团标办公室邮箱:hxsjtbw@163.com中国化学试剂工业协会2023年8月16日文件66 2023年印发第二批14项团体标准制定计划通知.pdf
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 【干货分享】浅谈氨法脱硫工艺中稀释抽取式湿度计对工艺控制的帮助
    前言在CEMS(烟气连续排放监测) 系统中,湿度测量往往由于传感器寿命短,校准困难等问题,大多数情况下,工艺操作人员都对其测量数据存疑,很少从工艺角度分析数据的准确性,分析结果也几乎不会用于工艺控制的参考。稀释抽取式湿度计,由于在样品抽取时已经完成了大比例的稀释,样气中的湿度和颗粒物含量都极低,所以其运行条件好,传感器寿命长,且方便校零。在氨法脱硫工艺的实际使用中,稀释法烟气连续排放监测系统中配置的抽取式湿度计,因其良好的性能和极少的维护量,既能满足法规要求的污染物排放监测功效,又能帮助工艺人员实现对氨法脱硫工艺的运行优化控制。氨法脱硫工艺原理氨法脱硫工艺的原理简单讲,就是向烟道内加入适量的NH3(氨)、H2O、O2等物质,经过物理吸收、化学反应等复杂过程后,将烟气中含有的SO2去除,实现SO2的减排。其主要的化学反应如下:1)中和:SO2+H2O=H2SO3(亚硫酸) NH3+H2O=NH3H2O(氨水)2NH4OH+H2SO3=(NH4)2SO3(亚硫酸铵)+2H2O(NH4)2SO3+2H2SO3=2NH4HSO3(亚硫酸氢铵)+H2O2)氧化:2(NH4)2SO3+O2=2(NH4)2SO42NH4HSO3+O2=2NH4HSO4NH4HSO4+NH3H2O =(NH4)2SO4+H2O2NH4OH+SO3=(NH4)2SO4+H2O湿度叠加是造成抽取式湿度计结果出现偏差的主要原因在氨法脱硫工艺中,排放口的烟气工艺温度一般都控制在50℃左右。如果采用直插式的湿度计测量烟道中的湿度,且工艺控制中 NH3H2O处于过量状态(这种工艺控制是不合规的),低温环境,又处于稳定工况,此时 NH3H2O以稳定的液态形式存在。直插式湿度计的测量结果仅仅是气态水的含量值,而烟气中的 NH3H2O对湿度计测量不会产生示值影响。但是,对于抽取式的湿度计来讲,根据HJ76-2017的要求,其取样探头、取样探杆等需要加热(120℃以上)。当工艺控制中NH3H2O过量了,烟气中部分NH3H2O被抽取到经过加热的探头、探杆后,由于温度的升高,NH3H2O很容易分解,生成气态的NH3和H2O。其反应原理如下:这时到达湿度计检测传感器的实际湿度是烟气中的实际湿度和NH3H2O分解产生的湿度之和,这就导致其测量结果出现系统性的偏差。抽取式湿度计可快速判断喷氨量的投用情况,为工艺提供控制参考这里分享两个测试案例:例一. 陕西某氨法脱硫排放口测试NH3.H2O明显过量的情况下,现场对抽取式探头的加热温度进行人为调整,温度从50℃~150℃~50℃顺序进行变化。在工况稳定时,发现湿度会随温度升高而升高,随温度的降低而降低,直到控制温度和烟气温度接近后,湿度不会再变化,大约12%左右,其过程见下面测试趋势图:点击查看大图在测试过程中,我们同时用便携的直插式湿度计进行了同步比对。期间直插式湿度计的示值一直保持在11%左右,没有出现明显上升和下降。我们的稀释抽取系统所配置的湿度计,检测的是水气的体积比,而体积浓度的特点是其测量结果不会随温度的变化而变化。但实际的测试中却出现了湿度随温度变化的现象,那么这个变化是怎么产生的呢?通过分析,我们认为其主要原因是过量的 NH3H2O,在样品稀释抽取过程中因为加热而出现了结合水的分解,产生了湿度叠加,造成湿度计示值增加。例二. 广东某氨法脱硫排放口测试在这个现场,我们没有调整探头等的加热温度,其温度一直保持在145℃,但工艺调整了NH3.H2O的喷入量,从下面的趋势明显看出,当NH3升高时,湿度也在升高,当NH3下降时,湿度也在下降,并且完全同步,至此,可以得出结论,湿度的升高就是NH3.H2O分解产生的湿度叠加的结果。点击查看大图通过上面两个现场测试的实例可以看出,稀释法CEMS中的抽取式湿度计能够直观和快速的判断氨法脱硫工艺中喷氨量的投用情况,可以为工艺提供很好的控制参考。三大原因告诉您为何抽取式湿度计测量结果仍然值得信赖,对氨法脱硫工艺仍有很高的参考价值相信文章看到现在,会有人提出一个质疑:抽取式湿度计测量不准确,它所测湿度值叠加了 NH3H2O的加热释放湿度,不能用于折干计算。对于这个质疑,这里从以下三方面做下澄清:首先,本篇讨论的是在喷氨巨幅过量情况下出现的问题。正常工艺控制情况下,我们希望氨逃逸量能控制在ppm级别,而湿度测量是百分级的,少量的 NH3H2O过量,对湿度计的浓度贡献微乎其微,如上面的例二就是例证。而只有当氨水出现巨幅过量时,才会使湿度计的浓度呈现明显的升高。而氨法脱硫工艺中,氨水的浓度会有差异,但一般都会控制在5%~25%区间,来实现SO2减排的目的。以上面的例一为例,湿度值从原先12%增加到了40%,增加了至少28%,那么NH3的逃逸量也相应的增加了1.4%~7%,这个逃逸量相对于NH3来讲实在太大了,浪费太多,根本无法接受,其等级不亚于系统事故。而且对于50°C的烟气而言,饱和湿度情况下,湿度体积浓度约为12~15%左右。当CEMS各项指标均在合理范围内时,其折算结果自然没有问题。如果达到20~40%的湿度读数,显然数据是不正常的,那么这个时候必须要对CEMS及喷氨脱硫工艺系统进行检查,不能只考虑CEMS设备测量,而不去关注喷氨系统的控制问题。其次,我们应看到喷氨量合理控制的重要性。因为设备突发故障或偶发操作失误,出现的巨幅过量喷氨,不仅浪费了大量的NH3,而且NH3排放到环境中,对环境和人体的伤害也很大,大量的排放,其二次污染比其它污染物更大。及时、高效识别出工艺操作中出现的问题,充分利用好稀释抽取式系统潜在功能优势,帮助工艺操作人员及时采取合理的措施调整操作,规避风险,稀释法抽取式湿度在此发挥出了明显的优势。再次,有些地区的职能部门,也看出了这个问题,为此,出台了一些措施要求(摘要如下图),来限值NH3的排放。关于这个要求,它是非常合理,且远见卓识。既然是合理和正确的,它肯定会有全面推广的空间。稀释法抽取式湿度在氨法脱硫系统中,恰恰可以为逃逸NH3是否有明显过量提供反馈,同时准确地能为排放限值提供数据依据,完全切合这种新要求的需求。结合前面的论述和对质疑的解答,我们可以看到在氨法脱硫工艺中,采用抽取式湿度计来测量湿度,不论是对工艺控制还是环保监测,都有很大的帮助,至少有这两大方面:一、 合理减少氨水的喷入量,可以减少企业的直接运营投入和因腐蚀、堵塞等等导致的设备更新、维护的间接运营成本;二、 避免环保案件的发生。如果将过量的氨水排入大气,会导致大气的二次污染,引发环保案件,合理控制,将会减少该类事件发生。综上所论,在氨法脱硫工艺系统中,对于烟气连续排放监测系统采用稀释抽取式湿度计,不仅可以真正起到污染物排放监测辅助参数的作用,而且对工艺控制,对企业降低运营成本和减少环保案件发生帮助尤为突出。也正因为此,在氨法脱硫工艺,采用稀释抽取式湿度计是最佳选择。互动福利赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 氨排放大国如何应对“坏空气推手”
    p  近日,雾霾再度降临京津冀地区,环保部3月16日发布的空气质量预报显示,京津冀地区未来十天内的空气质量呈前期较差、后期转好态势。/pp  雾霾取代“两会蓝”,治霾话题也再次发酵。追究雾霾成因,最常关注的是燃煤、机动车、工业生产和扬尘。在刚刚结束的今年全国两会上,中国科学院院士、中科院地球环境研究所所长周卫健提出,该所研究团队耗时四年对我国北方雾霾形成机理进行研究发现,农业污染源在细颗粒物(PM2.5)形成过程中起很大作用,其“贡献率可达20%以上”。但在现实中,该因素在研究和治理中被忽视。/pp  据悉,中科院团队在西安、北京两地进行外场观测,获得大量研究数据,氮肥氨气促PM2.5生成等研究成果,已以论文《从伦敦雾到中国霾持续的硫酸盐形成》发表在美国国家科学院院报上。/pp  ——新闻热点——/pp  我国是全球最大的氨排放国/pp  周卫健研究团队发现,在北方雾霾天气中,尤其是在湿度较大的冬季,往往可监测到硫酸盐浓度暴增现象。这些高浓度的硫酸盐,主要是大气中二氧化硫经光化学反应氧化形成的。/pp  研究还发现,与伦敦雾滴的大颗粒相比,“中国霾”粒子比雾滴小得多,属纳米级,pH值偏中性。这是由于二氧化硫转化为硫酸所产生的小粒子呈现酸性,空气中又存在较高浓度的氨气,中和了硫酸形成硫酸盐。/pp  作为大气中唯一的碱性气体,氨气可以同水及酸性物质反应。正是这种独特的化学特性,使氨气扮演了“坏空气推手”的角色。对此,中科院大气物理所研究员王跃思解释说,1体积水能溶解700体积的氨,这意味着当大气湿度增高时,氨更容易与水进行反应,水又吸收了二氧化硫和二氧化氮,变成液相的亚硫酸和亚硝酸。在合适的氧化反应条件下,亚硫酸、亚硝酸就会转化成硫酸、硝酸,与氨发生中和反应,生成颗粒态的硫酸铵、硝酸铵,成为了PM2.5。/pp  据北京大学环境学院团队研究发现,2006年我国氨排放总量为980万吨,超过北美与欧洲的总和。我国在近20年时间里,一直是全球最大的氨排放国。哈佛大学的研究报告显示,从2005年至2008年间,我国每年氨排放量约1020万吨,与此同时,美国、欧盟的数字分别为340万吨、376万吨。/pp  研究发现,我国区域氨气排放源上升快、影响大,可能来源于近海养殖、畜牧业、农业、汽车(三元催化过量)、工业脱硝(还原剂用氨水或尿素过量)等。王跃思说,目前京津冀区域氮沉降每平方公里每年达6.1吨,是发达国家有记录以来的最高水平。氮沉降主要来源就是氨气,氨气的70%都来自于农业、养殖业。/pp  北京市环保局去年启动了“京津冀区域大气氨排放特征与控制对策研究的课题”,研究显示大气中的氨气主要来自生物圈,排泄物当中的尿素和化肥的使用不当被认为是氨气排放的主要来源。/pp  ——现实困难——/pp  氨排放的测量难度非常大/pp  近年来,中科院、北京大学、清华大学、中国农业大学等都在做氨排放清单的研究。但编制排放清单绝非易事,其中每个环节都有很多不确定性因素,最终出来的清单,准确性到底有多高,也很难评估。/pp  氨排放清单编制首先对农业施肥、畜牧业、工业等排放源分类,然后用每一类别的排放因子乘上活动水平,便得出排放总数。以肉牛养殖为例,先测量出每头肉牛排放的氨,再用其乘上全国肉牛总数。/pp  北京大学环境学院教授宋宇说,氨排放因子的测量非常困难,“氨的测量就很困难,氨是寿命较短的气体,测量过程中还有吸附。”/pp  计算也十分复杂。如肉牛在不同生长期,喂的饲料不同,会导致不同氨水平释放。方法不完善,基础数据也可能有问题。我国广大农村以散养为主,目前并没有足够现实数据支撑。在这种情况下,要摸清农村畜禽养殖排放氨的量,难度大。/pp  ——专家建议——/pp  多学科合力攻克雾霾成因/pp  全国政协委员、蓝光集团董事局主席杨铿连续第四年针对雾霾治理提出提案,在今年两会上,他表示,雾霾成因复杂,需要政府环保、科技部门加强对雾霾成因进行系统深入研究。/pp  周卫健也建议,我国雾霾形成机制异常复杂,四年研究依然不能完全解决雾霾课题。应集中多学科的科学家攻克“我国北方雾霾的成因、发展趋势、环境影响与应对”研究项目。/pp  推清洁生产促农业氨减排/pp  其实国家一直倡导农业氨减排。《大气十条》指出,全面推行清洁生产。积极开发缓释肥料新品种,减少化肥施用过程中氨的排放 《北京市2013—2017年清洁空气行动计划》提出,农业氨减排等技术,边研究边应用。/pp  北京市环保科学研究院研究员张增杰等在发表的《农业源氨排放控制对策初步研究》论文中建议,我国应大力推行种养结合模式,调整畜禽养殖布局和规模,提高农田有机肥施用比例,减少化肥的施用 施用化肥时,测土配方,提高缓释肥的使用,控制施用强度等 基于畜禽养殖粪便管理系统的氮物质流,从饲喂、畜禽圈舍、粪污存储、粪肥土地利用4个方面着手采取相应的控制措施。其中畜禽养殖氨控制措施主要包括降低畜禽日粮中的粗蛋白质含量,从源头上减少氮的摄入等 编制粪肥科学还田技术指南,及农业源氨排放控制指定文件等。/pp  重拳治理机动车氨排放/pp  王跃思认为,工业、机动车所占氨排放比重可能比当前认为的高。“工业氨逃逸越来越多,如电厂等在脱硝中喷液态氨,想让氨和氮氧化物反应生成氮气,但控制不好,氮气没生成,氨逃逸出来了。”机动车排放升级到国四标准,柴油发动机要加脱硝装置,但反应过程中会出现反应剂尿素逃逸,尿素很容易分解出氨。“汽油标号越高,硫含量越低,氨排放会相应增多。”这是由于在使用三元催化剂时,想让氮氧化物还原成氮气,事实上很容易还原成氨,与工业合成氨的化学反应接近。/pp  因此,杨铿建议,抓主要污染源,从源头上出重拳治理雾霾。尽快完善机动车尾气排放的专项立法,特别是在雾霾严重地区要加快制定实施细则,重点严抓执行和检查。国五汽柴油标准从今年1月1日起在全国范围内全面执行,该标准实施后,在全国范围内应禁止国三机动车买卖、过户 在有条件的一、二线城市,禁止国四机动车买卖、过户。/pp  杨铿还建议各地成立由公安交通管理、环保部门牵头的专项执法检查小组,以治理“酒驾”力度治理环境污染。对发动机燃烧质量、机动车尾气排放情况进行不定期拉网式检查,对排放不达标机动车上路行驶的,依法惩处。/p
  • 辽宁将建30个省级雾霾对照监测站和5个跨界监测站
    p  辽宁省环保厅21日发布,2016年将从治、防、管、建、查、改等多个方面推进环保工作,其中包含抗霾、控煤、控车、降尘、加强在线监控等多种措施。/pp  strong全省将建30个省级雾霾对照监测站/strong/pp  省厅和沈阳、大连形成预报预警能力,其他12个市今年底前形成预报预警能力。同时,今年大连、丹东、阜新、铁岭和朝阳市要抓紧建设a title="" target="_self" href="http://www.instrument.com.cn/application/SampleFilter-S02004-T000-1-1-1.html"strong雾霾跨界监测站/strong/a,同时全省还要建设30个省级雾霾对照监测站。/pp  启动《辽宁省污水综合排放标准》修订工作,做好《施工及堆料场地扬尘排放标准》发布和备案工作,以环境标准倒逼污染行业转型升级。/pp  strong加强总量控制 增加VOC和总氮指标/strong/pp  “十三五”总量减排指标,增加一项voc指标,局部地区还要增加总氮指标。省厅抓紧向各市分解,力争上半年省政府与各市政府签订减排目标责任书。/pp  以燃煤电厂超低排放改造为重点,在能源领域实施环保综合提升工程,提高能源利用效率。/pp  加快推行排污许可制度。今年从主要污染物起步,把国家下达给我省的总量减排指标落实到相关企业,然后逐步向其他行业领域扩展,力争到2020年覆盖全省所有固定污染源企业。同时,今年要力争在全省启动排污权有偿使用与交易工作。/pp  strong强化网格化环境监管/strong/pp  借助互联网平台,建立“互联网+”监管体系。沈阳正在利用“大数据”,建设“智慧城市”。我们要在沈阳搞试点,省市环保部门共同努力,力争今年底破题,然后向其他城市推广。/pp  strong加快在线监控能力建设/strong/pp  一是以燃煤设施、钢铁、火电、水泥、平板玻璃、污水处理厂提标改造为重点,同步安装在线监控设施,并与环保部门联网。二是从今年起,环保部将按季度公布主要污染物排放超标国家重点监控企业名单,要求省级环保部门在门户网站同步公布。各市要督促重点排污单位加强监测,加强日常监管,督促重点排污单位按照规定方式依法公开排放信息,主动接受社会监督。三是构建省级“环保云”,尽快建成全省统一的实时在线环境监控系统。/p
  • 出口氨糖类产品须获欧盟食品注册
    日前,欧盟已开始对我国出口的动物源性氨基葡萄糖系列产品提出注册要求,江苏省企业的产品由于未在欧盟注册屡屡遭扣押和退运。  氨糖类产品是从虾蟹壳等原料中提取出来的生物制品,制成保健品后可用于对骨关节的保健。我国上世纪90年代开始规模生产,目前的产业规模已达100亿元,主要分布在江苏、浙江、福建等省,产品主要出口欧美国家和地区,市场份额高达80%至90%。  由于国内食品分类及HS编码分类的问题,该类企业长期未按食品类产品接受检验检疫部门的监管,企业之前也未主动申请出口食品企业备案。但欧盟从2011年起,陆续制修订其动物源性食品法规,对我国出口的动物源性氨基葡萄糖系列产品提出了严格的注册要求。  为此,江苏检验检疫局提醒,欧盟计划于今年11月对中国推荐的出口食品注册企业实施官方检查。此前,出口动物源性氨基葡萄糖系列产品的企业应加强与检验检疫部门的联系,充分掌握国外标准要求,避免盲目生产和出口。同时,企业应按照食品安全管理和欧盟注册要求,改进生产条件,提高管理水平,积极做好对外注册准备。
  • 蓝天保卫战中不可忽视的一个战场——氨逃逸
    pstrong/strongstrong  易被忽视的“大气污染元凶”/strong/pp  众所周知,机动车尾气排放、工业污染、燃煤污染、施工扬尘等是我国大气污染的主要来源。然而,还有一个重要污染源,一直被社会忽视,却是中国空气污染拼图中极重要的一块,更是PM2.5指数被持续推高的重要密码--氨气。据了解,氨气与空气中的酸反应生成的硫酸铵、硝酸铵在重污染天气可占到PM2.5质量浓度的40%以上。/pp  除了形成PM2.5外,氨气还是一种具有刺激性的有毒有害气体,对人体具有腐蚀性作用,经呼吸道吸入后会伤害人的呼吸系统甚至脑神经系统。/pp  strong工业氨逃逸问题日益突出/strong/pp  在我国,空气中氨的主要来源是农业施用的大量氮肥,约占氨气污染的60%,其次就是工业企业的氨逃逸问题。/pp  氮氧化物(NOx)是大气污染的主要成分之一,随着我国对大气污染治理的重视不断加强,我国提出了“超低排放”的概念,率先对燃煤电厂排放的烟尘、氮氧化物、硫化物、汞等大气污染物做了严格的要求,并不断向非电行业比如钢铁、水泥行业推进。/pp  随之而来的氨逃逸也引起了广泛的关注。据了解,在氮氧化物超低排放改造工程中,选择性催化还原技术(SCR)、选择性非催化还原技术(SNCR)和炉内燃烧控制技术这三种脱硝工艺被广泛采用,而前两种技术都需要用到氨水这一原料。为了达到环保超低排放的要求,大多数电厂往往会在脱硝过程中加入过量的氨水,导致烟气中存在多余的氨气排入大气,这一现象被称为span style="color: rgb(255, 0, 0) "strong氨逃逸/strong/span。随着电力行业超低排放改造的基本完成,和非电力行业节能改造工程的推行,大量脱硝工艺的运行导致氨逃逸问题逐渐严重起来。/pp  strong排放标准率先公布 检测标准亟待出台/strong/pp  据了解,河南、山东、河北三省率先出台了地方性氨逃逸排放限制要求。2019年3月,河南省发布的《2019年大气污染防治攻坚战实施方案》中规定,2019年年底前,水泥窑废气在基准氧含量10%的条件下,氨逃逸不得高于8mg/msup3/sup。这是自超低排放概念在水泥行业推出后,地方首次将氨逃逸问题列入监测要求 同样在2019年3月,山东省发布《火电厂大气污染物排放标准DB 37/664-2019》,增加了氨逃逸和氨厂界浓度控制指标要求 2020年3月,河北印发《水泥工业大气污染物超低排放标准》、《平板玻璃工业大气污染物超低排放标准》和《锅炉大气污染物排放标准》三项地方标准,均在严格了烟气颗粒物、二氧化硫、氮氧化物排放限制的基础上,增加了氨逃逸控制指标。这意味着不仅在脱硝工艺过程中需要对氨逃逸现象进行监测,工厂总排放口的气体氨含量也需要进行监控,以往喷洒过量氨水以达到去除氮氧化物的做法将受到严格管控。/pp  为此企业开始在烟气排放管道装设氨逃逸在线监测系统,用以监测氨气排放浓度。目前氨气的检测方法有激光法、红外法、电化学法、光腔衰荡光谱法等,由于氨在空气中的浓度低且易于吸附,因此如何对氨检测仪器进行校准和精度检验,是行业内公认的难题。当前业内对准确检测氨浓度的方法并无统一意见,基于此,行业有关专家对上述地方出台的监测标准也提出了质疑。专家认为如果仅仅列出了排放限制,并未规定具体的、经过验证的检测方法,相关标准的颁布恐会流于形式,而无法对氨逃逸控制起到有效帮助。/pp  虽然目前在线氨逃逸监测技术仍待完善,市场还不成熟。但据了解,氨逃逸的监测问题已经得到有关部门的重视,相信在不久的将来,环境空气中氨气在线监测的相关标准会逐步颁布实施。/ppstrong相关仪器专场:span style="color: rgb(0, 112, 192) text-decoration: underline "a href="https://www.instrument.com.cn/zc/654.html" target="_blank" style="color: rgb(0, 112, 192) text-decoration: underline "氨气分析仪/氨分析仪/a/span/strong/pp style="text-align: center "strongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/5095ac24-d08a-4023-9106-e9840df09f71.jpg" title="绿仪社.jpg" alt="绿仪社.jpg"//strong/ppstrong/strong/pp style="text-align: center "  span style="font-family: 楷体, 楷体_GB2312, SimKai "扫二维码加绿· 仪社为好友 及时了解科学仪器市场最新动态!/span/p
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制