当前位置: 仪器信息网 > 行业主题 > >

丙烯酸标准品

仪器信息网丙烯酸标准品专题为您提供2024年最新丙烯酸标准品价格报价、厂家品牌的相关信息, 包括丙烯酸标准品参数、型号等,不管是国产,还是进口品牌的丙烯酸标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合丙烯酸标准品相关的耗材配件、试剂标物,还有丙烯酸标准品相关的最新资讯、资料,以及丙烯酸标准品相关的解决方案。

丙烯酸标准品相关的资讯

  • 关于征求《水质 丙烯酸的测定 离子色谱法(征求意见稿)》等四项国家生态环境标准意见的通知
    各有关单位:  为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《水质 丙烯酸的测定 离子色谱法》等四项国家生态环境标准征求意见稿,现征求各有关单位意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。其他各有关单位和个人也可提出意见和建议。  请于2022年3月21日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档同时发送至联系人邮箱。  联系人:生态环境部监测司 杜祯宇  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:1.征求意见单位名单     2.水质 丙烯酸的测定 离子色谱法(征求意见稿)     3.《水质 丙烯酸的测定 离子色谱法(征求意见稿)》编制说明     4.环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)     5.《环境空气颗粒物(PM2.5)中有机碳、元素碳连续自动监测技术规范(征求意见稿)》编制说明     6.环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)     7.《环境空气颗粒物(PM2.5)中水溶性离子连续自动监测技术规范(征求意见稿)》编制说明     8.环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)     9.《环境空气颗粒物(PM2.5)中无机元素连续自动监测技术规范(征求意见稿)》编制说明  生态环境部办公厅  2022年2月17日  (此件社会公开)  附件1征求意见单位名单  中国气象局办公室  生态环境部各流域海域生态环境监督管理局监测与科研中心  各省、自治区、直辖市生态环境监测站(中心)  新疆生产建设兵团生态环境第一监测站  各环境保护重点城市生态环境监测站(中心)  中国科学院生态环境研究中心  中国环境科学研究院  中国环境监测总站  生态环境部环境发展中心  生态环境部南京环境科学研究所  生态环境部华南环境科学研究所  国家环境分析测试中心  河北环境工程学院
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 文献解读丨生物活性聚甲基丙烯酸甲酯骨水泥治疗骨质疏松性椎体压缩性骨折
    研究背景 目前全球骨缺损手术每年约为2000万例,为保持原有骨骼的结构与功能的完整,骨修复就必须依赖于移植材料,因而临床治疗中对于具有支撑作用的骨植入材料需求量巨大。植入材料的特性对于骨修复具有重要影响,是再生医学研究中的关键问题,也是临床骨修复的核心要点。聚甲基丙烯酸甲酯 (PMMA) 骨水泥是临床上出现很早、使用非常广泛的骨水泥制品,其安全性和临床效果已经得到普遍认可。但是过高的弹性模量、相对较低的生物活性都限制了它在临床使用上的进一步应用和发展。骨组织的修复和再生是一个动态过程,始于骨祖细的增殖和迁移,最终分化为成熟骨细胞。虽然骨组织具有较强的再生能力,但是当大段骨组织损伤造成大范围骨缺损时,为保持原有骨骼的结构和功能,骨的修复就必须依赖于移植材料。植入材料的特性对于骨修复具有重要影响,该过程的影响成为再生医学研究中的关键问题,也是临床骨修复的核心要点。骨植入材料主要有自体骨、异体骨(同种异体骨、异种骨)和合成材料等。自体骨一直被认为是骨移植材料的金标准,但来源有限,取骨后容易出现穿孔、伤口感染、脓肿、出血等相关并发症,植入困难、创伤大等,也使其在临床上的应用受到限制。随着组织工程技术的不断发展,人工骨不仅可以实现大批量生产,而且往往具有新的研究不断赋予的生物相容性、成骨诱导性等特点,使得人工骨普遍应用于临床骨修复以及作为骨外科填充材料。 鉴于上述缺点,材料和医学科学家尝试了多种PMMA骨水泥改性策略,通过改变单体、添加生物活性材料或有机材料等策略来优化PMMA骨水泥的生物机械性能和生物学活性。 方法与结果 本研究以PMMA骨水泥作为支持材料,在其中添加具有生物活性的矿化胶原(MC)材料,通过基础实验研究复合骨水泥的材料学表征以及体内外活性,通过将该材料应用于临床,探究临床的实用性以及价值。采用兔骨质疏松模型对复合骨水泥材料MC-PMMA在体内的生物相容性及成骨性能进行评价。 采用岛津InspeXio SMX-225 CT FPD HR对骨水泥进行扫描重建,统计骨水泥的孔隙率。如图1所示,PMMA骨水泥的孔隙率与MC-PMMA骨水泥的孔隙率几乎相同(5.61±0.16%比7.22±0.53%)。与PMMA骨水泥相比,MC-PMMA具有较低的CT值(9.36±0.13对5.46±0.22)。图1 岛津micro-CT扫描材料结果 体内实验中,更重要的评价环节为影像学评价。在4周,8周,12周时处死兔子,选择有材料的椎体,在Micro-CT定位下确定材料的位置,并进行硬组织切片和染色。采用岛津InspeXio SMX-225 CT FPD HR扫描样品,扫描后经三维等值画图软件重建并进行成骨体积分析测定。通过X线透视及CT扫描影像评估样品植入前后的形状、骨密度,并通过成骨体积的测量进行定量分析。 术后各组在各个时间点的典型扫描三维重建结果如图2A所示,骨水泥材料牢固地结合到骨组织上,没有明显的间隙。通过显微CT进行的三维渲染显示了缺损和骨水泥的位置。在图2A中,骨水泥具有以红色和黄色显示的高CT值,而骨是黑色的。随着骨水泥被骨替代,颜色变为绿色,蓝色,最后变为黑色,表明CT值逐渐降低。在4周时,两组标本的骨水泥CT值和体积相似。在8周时,MC-PMMA组的CT值下降,但在PMMA组中几乎相同。在12周时,MC-PMMA组的CT值与以前相似的区域更多。然而,PMMA组的CT值保持不变。骨水泥的界面外观和CT值的差异表明MC-PMMA组中的材料吸收和骨再生比PMMA组更多。在手术后4,8和12周,MC-PMMA骨水泥组的椎体重建三维图像的定量显示比PMMA骨水泥组有更多的骨形成(图2B-E)。手术后4周,MC-PMMA组的骨量百分比和骨小梁厚度较高。然而,骨小梁厚度或骨小梁分离没有差异。手术后8周和12周,与PMMA组相比,MC-PMMA组的骨小梁厚度显着增加,骨量百分比增加,骨小梁数较高,骨小梁分离度较低,表明随着时间的推移MC-PMMA组的骨生长增加。图2 micro-CT三维重建结果和计算结果 总结与讨论 本研究通过向广泛用于PVP和BKP的PMMA骨水泥品牌的粉末中添加矿化胶原来开发基于生物活性PMMA的骨水泥。与PMMA骨水泥相比,MC-PMMA骨水泥的压缩模量显着降低,而处理时间大致相同。MC-PMMA骨水泥促进细胞增殖和分化,并加速骨质疏松兔模型中椎骨的修复和小规模临床试验中患者的OVCF。我们的研究结果表明,MC-PMMA骨水泥有望用于临床转化。 微焦点X射线CT装置inspeXio SMX-225CT FPD HR Plus高分辨率,图像清晰擅长复合材料的拍摄操作简单、试验速度快 文献题目《Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures》 使用仪器岛津inspeXio SMX-225CT FPD HR Plus 第一作者诸进晋,杨淑慧 原文链接:https://doi.org/10.7150/thno.44276
  • 《化妆品中丙烯酰胺标准物质的研制》通过鉴定
    日前,由上海市计量院承担的国家质检总局科技项目《化妆品中丙烯酰胺标准物质的研制》顺利通过专家鉴定。  本项目主要针对占化妆品总量70-80%的霜膏、水剂类化妆品作为基体、以美国化妆品成分安全委员会(CIR)订定化妆品中可接受的丙烯酰胺残留上限(5µ g/g)作为参考依据,成功研制了特性量值均为5.0μg/g的带基体的化妆品标准物质,其均匀性、稳定性均达到国家级标准物质技术规范的要求。  本项目的水剂及膏霜两种基体中丙烯酰胺标准物质的成功研制,将为各检测实验室化妆品中丙烯酰胺检测提供可靠的量值溯源,有效促进我国化妆品行业的检测规范,且能够严格、准确、可靠地监控化妆品中丙烯酰胺含量,为化妆品行业的产品质量把好质量关,从而保障人民生活健康,具有良好的实用价值与广泛应用前景。
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 《GB/T 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》最新标准解读
    引言氢化丁腈橡胶(简写为HNBR),是丁腈橡胶中分子链上的碳碳双键加氢饱和得到的产物,故也称为高饱和丁睛橡胶。 氢化丁腈橡胶具有良好耐油性能(对燃料油、润滑油、芳香系溶剂耐抗性良好);并且由于其高度饱和的结构,使其具良好的耐热性能,优良的耐化学腐蚀性能(对氟利昂、酸、碱的具有良好的抗耐性),优异的耐臭氧性能,较高的抗压缩永久变形性能;同时氢化丁腈橡胶还具有高强度,高撕裂性能、耐磨性能优异等特点,是综合性能极为出色的橡胶之一。 《GBT 39694 氢化丙烯腈-丁二烯橡胶(HNBR)通用规范和评价方法》介绍了氢化丁腈橡胶以性能特性分为通用类和特殊,按照丙烯腈含量进行了分级以及命名与牌号的规则。阐述了生橡胶和硫化橡胶评价方法。 岛津解决方案 傅里叶变换红外光谱仪傅里叶变换红外光谱仪发射红外光,样品受到频率连续变化的红外光照射时,其分子吸收了某些频率的辐射,引起分子之间的振动和转动,然后通过分析特征吸收可以鉴定化合物的结构,定量成分。,氢化丁腈橡胶的红外图谱应具有明显的丙烯腈(AN)、丁二烯(BD)和氢化丁二烯(HBD)的特征吸收谱带。IRTracer-100 ★ 卓越的灵敏度和可靠性高灵敏度,高速度,高分辨率岛津先进的技术,确保干涉仪的优化和长期稳定性★ 新时代的软件工作站网络化的LabSolutions IR工作站软件标配高质量的标准光谱库快速准确的光谱检索新技术丰富多彩的自动宏程序,省时省力★ 满足多样的应用需求解决“是不是”和“是什么”这两大应用问题强大的单组份和多组分同时定量功能,可实时显示浓度和判定结果良好的可扩展性 差示扫描量热仪差示扫描量热仪(DSC)是材料测试必不可少的工具,此类仪器广泛应用于材料研发、生产及质控。DSC作为质控仪器方法的趋势仍在继续增加。 作为一种新理念,岛津打破了“自动取样器是昂贵、笨重并且专用的机器”的传统观念,推出了代表“内置自动进样器”概念的DSC-60 A Plus。并且,DSC-60 A Plus还使用先进的软件功能来节约成本,提高效率;并且机身小巧,可安装在有限的空间内。 DSC-60 A Plus ★ 通过改进型的DSC探测器提高灵敏度和分辨率★ 优异的信噪比★ 内置的冷却装置★ 操作简单方便的探测器清洁★ 可通过网络传输数据★ 基于OLE的动态报告功能★ 更大兼容Windows的32位应用程序★ 与TA-50系列兼容 试验机岛津材料试验机至今已有100多年的历史,在行业内的探究,钻研,积累了十分丰富的技术与经验。岛津试验机产品线丰富,有电子/液压万能试验机,疲劳实验器,显微维氏硬度计与超显微维氏硬度计,门尼粘度计毛细管流变仪等多系列产品。本文内容非商业广告,仅供专业人士参考。
  • Vocus PTR-TOF对工业园区环境大气中丙烯监测案例详解
    丙烯是一种无色、无臭、稍带有甜味的有机化合物,分子式为C3H6。丙烯是三大合成材料的基本原料之一,应用范围非常广泛,如常见的聚丙烯生产,丙烯腈、环氧丙烷、异丙醇、苯酚、丙酮、丁醇、辛醇、丙烯酸及其酯类、丙二醇、环氧氯丙烷和合成甘油等的制备1。因此,丙烯也是工业区一种比较常见的污染物,属极易燃品,且具有低毒性,丙烯的泄漏会带来潜在的爆炸和健康风险。当前,对丙烯的测量主要依赖于固定站点气相色谱法,如较为通用的搭配低碳色谱柱的GC-FID/PID法。但较长的色谱分离时间限制了其实时捕捉丙烯的瞬时变化特征,也就无法给园区业主提供及时的决策反馈。另一方面,受限于配套的质谱检测器或者离子源等部件属性,现市面上常见的VOCs走航解决方案对以丙烯为代表的低碳烷烃和烯烃的测量和准确分析存在分析难点和数据疑问。Vocus PTR-TOF质谱仪以较高的时间分辨率和质量分辨率,能够对大气中常见VOCs以及多种园区特征物种的瞬时变化进行实时精确分析。丙烯的质子亲核势为751.6 kJ/mol,属于PTR-TOF仪器可检测的物种之一。本文中我们将详细介绍Vocus PTR-TOF对丙烯的定性定量测量能力和定点结合走航案例。 图1. 质子化丙烯分子峰(m/Q 43.054)在Vocus PTR-TOF谱图上的响应以及相对应的同位素峰丙烯的质子亲核势大于水,能够有效的与水合氢离子(H3O+)发生质子转移反应,在’软’质子转移反应条件下检测到的质子化分子离子峰是C3H7+,其精确质量为m/Q 43.054。实际上在质荷比43整数位置上,除丙烯外,还有其他的物质或者干扰峰存在,比如m/Q43.018, 这是一个含氧的干扰峰,其分子组成为C2H3O+。 由图1可见,这两个峰可以清晰的被VocusPTR-TOF质谱仪分开,二者同位素分布也符合的很好。值得说明的是,如需要清楚分开上述这两个峰,质谱仪的质量分辨率需要达到1500Th/Th或更高(参考‘VOCs走航中同标称质量分子(不完全)列表’一文)。简而言之,Vocus PTR-TOF高分辨率质谱仪就像一套高倍放大镜,能够清晰的将目标物与其他微小干扰峰区别开来,这也是实时分析质谱仪精确定性分析的关键所在。这也意味着,受这些潜在的同标称质量的离子碎片或其他干扰物影响,质量分辨率不到1000的实时分析质谱仪会经常出现‘虚高值’或者‘误报’的情况。值得注意的是,丙烯为代表的C2和C3烷烃、烯烃一般需要特别的低碳色谱柱配合FID检测器才能进行有效监测2,而现市面上的走航应用较多的便携式直接进样EI-四级杆质谱对于丙烯或其他短链烷烯烃检测难度较大。 图2. Vocus PTR-TOF丙烯的灵敏度多点标准曲线利用Vocus PTR-TOF质谱仪,我们测试了丙烯标准气体的灵敏度多点标准曲线,结果如图2所示。可见,Vocus PTR-TOF质谱仪对丙烯有较好响应,其灵敏度可达3245cps/ppbv, 线性关系达到0.9996。高灵敏度意味着较高的响应,这对环境大气中单个ppbv级别的丙烯检测来说,具有非常大的检测优势。图3. Vocus PTR-TOF与GC-FID/MS同期检测的丙烯时序图最后,我们进行在线GC-FID/MS与Vocus PTR-TOF平行运行的检测数据对比(图3)。由于GC-MS/FID的数据时间分辨率为1小时,从图中大致可以看出,两个仪器检测的丙烯浓度具有较好的一致性(一般零点为GC校准时段)。而Vocus PTR-TOF质谱仪的秒级响应,在GC两次报数的空档期内,给园区业主和业务部门提供了更多更及时污染物浓度变化信息(参考‘秒级响应PTR-TOF质谱法为工业园区预警管控和源解析提供新思路’一文)。这对工业园区污染物的泄露或其他事故的提前预警至关重。一旦观测到有超出预警范围的浓度时,园区工作人员就可以通过Vocus PTR-TOF发出的实时数据及时采取预警措施,从而为工业园区安全生产带来保障,最大程度的减少对生命安全,生产设备和经济效益的潜在损害。同时,将Vocus PTR-TOF搭载到走航车,从而实现对工业园区区界,厂界和各重点点位的多污染因子(包括丙烯)进行动态网格化监测。如图4所示,我们在某园区内监测到两处丙烯浓度高值污染点,可通过此类方式来发现高污染源,进而有目标性的开展重点监测和排放管控工作。图4. Vocus PTR-TOF质谱仪在某工业园区内丙烯走航监测浓度分布图。绿色线条高度越高,意味着该点位丙烯浓度越高。小结工业园区内以丙烯为代表的低碳烷烃和烯烃的精确测量是现市面上VOCs走航解决方案的一个技术难点。Vocus PTR-TOF所特有的高质量分辨率,‘亚’秒级仪器响应速度和ppt级别的检测限是其成为复杂大气基体中准确鉴别并定量分析痕量丙烯的首选技术之一。除此之外,Vocus PTR-TOF也是园区内异味物质快速检测的优选手段(参考‘国内40种典型恶臭异味物质Vocus PTR-TOF检测能力一览’一文)。 感谢中科三清科技提供文中部分数据! 参考文献1 https://baike.baidu.com/item/%E4%B8%99%E7%83%AF/2276398?fr=aladdin2 https://www.restek.com/en/chromablography/chromablography/to-15--pams--to-11a--chinas-hj759--pams--hj683-part-2-deans-switching-and-to-15pams/
  • 卫生部就拟批准食品添加剂规格标准公开征求意见
    卫生部监督局  关于公开征求拟批准食品添加剂规格标准意见的函  卫监督食便函〔2010〕151号  各有关单位:  根据《食品安全法》及其实施条例的规定,经审核,拟批准食品添加剂聚丙烯酸钠的规格标准,现公开征求意见,请于2010年5月23日前按下列方式提出意见和建议。  传 真:010-87720035  邮 箱:gb2760@gmail.com    二○一○年五月十三日  附件:  食品添加剂聚丙烯酸钠规格标准  一、生产工艺:  丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。  二、规格要求
  • 上海市食品接触材料协会立项《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》等两项团体标准
    各有关单位:根据《上海市食品接触材料协会团体标准管理办法》的相关规定,协会组织专家组对《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准进行了立项评审。经评审,两项团体标准的申报材料符合立项条件,批准立项。请编制单位按照协会工作要求,严把标准质量关,确保标准的适用性和有效性,按期完成标准的起草编制工作。同时,欢迎有关单位积极申报,参与上述两项团体标准的起草编制工作。特此公告。联 系 人:陈宁宁 黄 蔚联系电话:021-64372212邮 箱:safcmxh@163.com通信地址:上海市徐汇区永嘉路627号301室邮 编:200031上海市食品接触材料协会2024年3月29日上海市食品接触材料协会关于《食品接触材料及制品 甲基丙烯酰胺迁移量的测定》、《食品接触材料及制品 间苯二甲酸二甲酯迁移量的测定》团体标准的立项公告.pdf
  • 食品接触材料检测行业37项标准通过审定
    近日,食品接触材料检测行业标准审定会在江苏省常州市召开。汤礼军、魏红兵、陈少鸿、宋志刚、董辉、钟怀宁、刘伟、程维勇、孙忠松、卞学东、祖立武、曹国庆、陶强、马强、蒋伟、唐树田、宋欢、张旭龙、陈文等19位专家组成了审定委员会,下列37项标准通过本次审定:  1、食品接触材料检测方法 辅助材料 荧光增白剂迁移量的检测 液相色谱法(深圳检验检疫局)   2、食品接触材料检测方法 高分子材料 4,4'二氨基二苯甲烷迁移量的测定 液相色谱法(广东检验检疫局)   3、食品接触材料检测方法 高分子材料 非奶嘴用含氯橡胶制品中2-巯基咪唑的测定 液相色谱法(深圳检验检疫局)   4、食品接触材料检测方法 高分子材料 铬、锆和钒的测定 ICP-AES法(福建检验检疫局)   5、食品接触材料检测方法 高分子材料 聚苯乙烯制品(PS)中甲苯、乙苯、丙苯、异丙苯、苯乙烯、总挥发性物质的测定 气相色谱法(广东检验检疫局)   6、食品接触材料检测方法 高分子材料 聚对苯二甲酸乙二醇酯(PET)树脂及其制品中乙醛的测定(江苏检验检疫局)   7、食品接触材料检测方法 高分子材料 聚甲基丙烯酸甲酯(PMMA)中甲基丙烯酸甲酯的测定 气相色谱法(上海检验检疫局)   8、食品接触材料检测方法 高分子材料 聚氯乙烯制品(PVC)中磷酸甲苯酯的测定 气相色谱法(浙江检验检疫局)   9、食品接触材料检测方法 高分子材料 磷酸甲酚酯的测定 液相色谱法(山东检验检疫局)   10、食品接触材料检测方法 高分子材料 偏二氯乙烯的测定 液相色谱法(山东检验检疫局)   11、食品接触材料检测方法 高分子材料 三乙胺及三正丁胺的测定 液相色谱法(广东检验检疫局)   12、食品接触材料检测方法 高分子材料 食品模拟物中初级芳香胺的测定 气相色谱-质谱法(广东检验检疫局)   13、食品接触材料检测方法 高分子材料 食品模拟物中二氨基乙醇的测定 气相色谱法(江苏检验检疫局)   14、食品接触材料检测方法 高分子材料 食品模拟物中甲基丙烯酸甲酯的测定(厦门检验检疫局)   15、食品接触材料检测方法 高分子材料 食品模拟物中抗氧化剂的测定 气相色谱法(天津检验检疫局)   16、食品接触材料检测方法 高分子材料 双(羟苯基)甲烷-双(2,3-环氧丙基)醚迁移量的测定 气相色谱法(珠海检验检疫局)   17、食品接触材料检测方法 高分子材料 油脂接触下的试验方法(山东检验检疫局)   18、食品接触材料检测方法 高分子材料 总乳酸迁移量的测定 液相色谱法(山东检验检疫局)   19、食品接触材料检测方法 高分子材料中溶剂残留的测定 气相色谱法(上海检验检疫局)   20、食品接触材料检测方法 高分子材料中锑的测定原子荧光光度法(浙江检验检疫局)   21、食品接触材料检测方法 金属材料 苯酚的测定气相色谱法(宁波检验检疫局)   22、食品接触材料检测方法 金属材料 表面涂料中环氧氯丙烷的测定 液相色谱法(宁波检验检疫局)   23、食品接触材料检测方法 金属材料 金属基质的聚合涂层 总迁移物试验条件和试验方法选择指南(江苏检验检疫局)   24、食品接触材料检测方法 金属材料 氯乙烯迁移量的测定 气相色谱法(河北检验检疫局)   25、食品接触材料检测方法 挠性包装密封件破裂试验(山东检验检疫局)   26、食品接触材料检测方法 鲜切制品自发气调控制式食品包装的测试(山东检验检疫局)   27、食品接触材料检测方法 纸、再生纤维材料 聚合涂层 总迁移物试验条件和试验方法选择指南(山西检验检疫局)   28、食品接触材料检测方法 纸、再生纤维材料 抗氧化剂的测定 气相色谱法(山西检验检疫局)   29、食品接触材料检测方法 纸、再生纤维材料 食品模拟物中抗氧化剂的测定 气相色谱法(山东检验检疫局)   30、食品接触材料检测方法 纸、再生纤维材料 荧光增白的纸和纸板牢度的测定(上海检验检疫局)   31、食品接触材料检测方法 纸、再生纤维材料 有机氯农药残留的测定 气相色谱法(吉林检验检疫局)   32、食品接触材料检测方法 纸、再生纤维材料 杂酚油的测定 气相色谱法(山东检验检疫局)   33、食品接触材料检测方法 纸、再生纤维材料中砷的测定 原子荧光光度法(厦门检验检疫局)   34、食品接触材料中4-甲基二苯甲酮迁移量的测定(江苏检验检疫局)   35、食品接触材料 高分子材料 食品模拟物中偏二氯乙烯的测定 气相色谱法(宁波检验检疫局)   36、食品接触材料 食品模拟物中环氧大豆油迁移量的检测 气相-质谱联用法(广东检验检疫局)   37、木郑皇品表面涂层中总铅含量快速筛选检测方法 X射线荧光光谱法(江苏检验检疫局)。
  • 国家标准草案征集:《食品中铅污染控制规范》《食品中丙烯酰胺污染控制规范》
    各有关单位:   《食品中铅污染控制规范》《食品中丙烯酰胺污染控制规范》2项食品安全国家标准起草组已初步完成标准起草,现就制定的标准文本草案公开征求意见,请于9月23日前扫码填写意见。   感谢您的支持!   附件:征求意见表二维码   中国食品科学技术学会   2021年9月16日   附件: 附件2-《食品安全国家标准 食品中丙烯酰胺控制规范(草案)》.pdf附件1-《食品安全国家标准 食品中铅污染控制规范(草案)》.pdf征求意见表二维码
  • 2024年6月份有377份标准将实施 ——农林牧渔食品及化工占据47%
    2024年6月份有377份标准将实施——农林牧渔食品及化工占据47% 我们通过国家标准信息平台查询到,在2024年6月份将有377项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:6月份新实施标准一览表在6月份新实施标准中,农林牧渔及食品标准独占27%(有103条将要实施),涉及农业设备、农产品规范、蜂蜜饲料等检测,需要引起我们关注的是“GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 ”和“GB 7300. X -2023 饲料添加剂 系列标准 ”。有16条环境环保标准将实施,涉及气体、水质、土壤及废弃污染物标准,发布了气体取样标准“GB/T 43306-2023 气体分析 采样导则 ”、气体检测标准“GB/T 43362-2023 气体分析 微型热导气相色谱法 ”和水处理剂检测方法“GB/T 43098.2-2023 水处理剂分析方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) ”。在医药卫生实施标准中,有医学实验室质量控制、分子体外诊断 检验、PCR 仪器 检测等。在冶金矿产实施标准中,涉及多款光谱仪器检测方法,如电感耦合等离子体原子发射光谱法 、原子吸收光谱法 、原子荧光光谱法 、分光光度法 ;除此之外还有滴定法、容量法、重量法、库仑法和X 射线荧光光谱法 等。还有19%的化工塑料标准(73条)也将实施,有气相色谱法 、拉曼光谱法 、原子吸收光谱法 、X 射线荧光光谱法 等大量的科学仪器检测方法。具体2024年6月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(6个)GB/T 26334-2023 燃气表安装配件 DL/T 1133—2023 钢弦式仪器 测量仪表 DL/T 1046—2023引张线式水平位移计DL/T 1047—2023水管式沉降仪DL/T 2687—2023 柔性测斜仪 GB/T 26794-2023 燃气表用计数器 农林牧渔食品标准(103个)GB/T 21397-2023 棉花收获机 GB/T 19794-2023农业灌溉设备 定量阀 技术要求和试验方法GB/T 24671-2023农业灌溉设备 承压灌溉系统图形符号GB/T 27612.1-2023 农业灌溉设备 喷头 第 1 部分:术语和分类 GB/T 18688-2023农业灌溉设备 灌溉阀的压力损失 试验方法GB/T 27612.3-2023 农业灌溉设备 喷头 第 3 部分:水量分布特性和试验方法 GB/T 8586-2023 探鱼仪工作频率分配及其防止声波干扰技术规范 GB/T 27612.4-2023 农业灌溉设备 喷头 第 4 部分:耐久性试验方法 GB/T 23191-2023 美味牛肝菌 GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 GB/T 20392-2023 棉纤维物理性能试验方法 大容量纤维 测试仪法 GB/T 43418-2023 亚麻纤维组成成分的检测方法 GB/T 10645-2023 电热食品烤炉分类和型号编制方法 GB/T 18690.4-2023 农业灌溉设备 微灌用过滤器 第 4 部分:颗粒介质过滤器 GB 7300.504-2023 饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌 GB 7300.503-2023 饲料添加剂 第 5 部分:微生物 屎肠球菌 GB 7300.502-2023 饲料添加剂 第 5 部分:微生物 植物乳杆菌 LS/T 8014-2023 高标准粮仓建设标准 LS/T 1715-2023 粮食仓储基础代码 LS/T 1234-2023 植物油储存品质判定规则 GH/T 1447-2023 农业科技成果转化信息服务平台建设与运 维技术 规范 GH/T 1446-2023 农业科技成果转化信息服务平台资源共享技术指南 GH/T 1445-2023 桐柏玉叶茶 GH/T 1444-2023 速冻荠菜加工技术规程 GH/T 1443-2023 蛹 虫草粉 GH/T 1442-2023 青梗菜热风 干燥技术 规程 GH/T 1441-2023 冻干蛹虫草生产技术规程 GH/T 1440—2023 黑蒜 GH/T 1439—2023 小茴香 DB22/T 3636-2024 玉米品种 长单 551 DB22/T 3635-2024 番茄晚疫病诊断与防治技术规程 DB22/T 3634-2024 玉米 - 大豆轮作模式下大豆覆秸免耕生产技术规程 DB22/T 3633-2024 直播水稻萌发期耐低温和耐低氧性鉴定评价技术规程 DB22/T 3632-2024 花生耐低温绿色高效生产技术规程 DB5308/T 79—2024 普洱咖啡标准化种植示范园建设指南 DB5308/T 78—2024 咖啡鲜果集中加工厂建设规范 DB63/T 2281-2024 察尔汗水采盐田晒矿工艺 DB63/T 2279-2024 铁棒 锤 栽培技术规程 DB63/T 2278-2024 小叶黑柴胡栽培技术规程 DB63/T 2277-2024 五 脉绿绒 蒿 栽培技术规程 DB63/T 2275-2024 湟水河流域水生植物栽培技术规程 DB63/T 2274-2024 枸杞产业标准体系 DB63/T 2273-2024 森林资源保护发展标准体系 DB63/T 2272-2024 天然林数据库 DB63/T 2271-2024 高山天幕毛虫防治技术规范 DB3505/T 15—2024 中国番鸭(永春白番鸭) DB3505/T 13—2024 铁观音茶叶气候品质等级 DB3505/T 11—2024 晋江紫菜区域公用品牌管理规范 DB3505/T 9—2024 淡水养殖资源价值评估技术规范 DB41/T 2668-2024 玉米南方锈病综合防控技术规程 DB41/T 2663-2024 成熟蜂蜜生产技术规范 DB41/T 2661-2024 黄淮稻麦轮作 区灰飞虱 测报和防控技术规程 DB41/T 2659-2024 羊肚 菌 生产技术规程 DB41/T 2658-2024 药用菊花主要病虫害综合防治技术规程 DB41/T 2655-2024 桃 胚培养及移栽技术规程 DB41/T 2654-2024 苹果炭疽病综合防治技术规程 DB41/T 2653-2024 桃 省力化树形管理技术规程 DB41/T 2652-2024 卫矛造型树培育技术规程 DB41/T 2651-2024 花生 秧 青贮生产技术规程 DB41/T 2643-2024 农田地膜残留调查监测技术规程 DB41/T 2642-2024 规模化养猪场臭气防治技术规范 DB41/T 2641-2024豫西黑猪DB41/T 2640-2024 黄瓜杂交制种技术规程 DB41/T 2639-2024 朝天 椒 三系配套制种技术规程 DB41/T 2636-2024 露地韭菜病虫害绿色防控技术规程 DB41/T 2632-2024 小麦种质资源鉴定技术规程 DB41/T 2631-2024 小麦免(少) 耕沟播生产 技术规程 DB41/T 2630-2024 林地生态养鹅技术规范 DB41/T 2627.7-2024 望春玉兰 第 7 部分:花蕾采收贮藏技术规程 DB41/T 2627.6-2024 望春玉兰 第 6 部分:病虫害防治技术规程 DB41/T 2627.5-2024 望春玉兰 第 5 部分:用材林培育技术规程 DB41/T 2627.4-2024 望春玉兰 第 4 部分:药用林栽培技术规程 DB41/T 2627.3-2024 望春玉兰 第 3 部分:园林绿化苗木培育技术规程 DB41/T 2627.2-2024 望春玉兰 第 2 部分:苗木繁育技术规程 DB41/T 2627.1-2024 望春玉兰 第 1 部分:良种选育技术规程 DB41/T 2626-2024 主干树形苹果栽培技术规程 DB41/T 2623-2024 高标准农田气象保障标准体系建设指南 DB41/T 2622-2024 高标准农田示范区气象保障能力建设规范 DB53/T 1236-2024 大球盖菇栽培技术规程 DB53/T 1235-2024 夏播马铃薯栽培技术规程 DB53/T 1234-2024 草莓杂交育种技术规程 DB53/T 1233-2024 芦笋栽培技术规程 DB53/T 1232-2024 罗望子种质资源描述规范 DB53/T 1231-2024 鲟鱼养殖技术规程 DB53/T 1230-2024 烟田蛴螬类地下害虫防控技术规程 DB53/T 1229-2025 暗褐脉柄牛肝菌菌种生产技术规程 DB53/T 1228-2024 番茄潜叶蛾防控技术规程 DB53/T 1227-2024 番茄潜叶蛾监测调查技术规程 DB53/T 1226-2024 马铃薯块茎蛾防控技术规程 DB53/T 1225-2024 马铃薯块茎蛾监测调查技术规程 DB31/T 1039-2024 主要花坛花卉质量等级 DB31/T 348-2024 水产品池塘养殖通用技术规范 DB31/T 1463-2024 蟠桃冷链物流技术规程 DB 5103/T 42-2023 油茶低效林改造技术规程 DB36/T 910-2023 棉花板地精量播种种植技术规程 DB36/T 1909-2023 双季鲜食玉米复种下肥田萝卜栽培技术规程 DB36/T 1908-2023 番茄大棚春提早栽培技术规程 DB36/T 1907-2023 双季稻 “ 两减 一 抗 ” 栽培技术规程 DB36/T 1906-2023 丝瓜设施越夏栽培技术规程 DB36/T 1905-2023 大叶蕹菜良种繁育及早春栽培技术规程 DB36/T 1895-2023 食品生产企业体系检查工作规范 DB36/T 1894-2023 食品小作坊集中加工区建设管理规范 DB36/T 1891-2023 预制 菜冷链运输 配送管理规范 环境环保标准(16个)GB/T 43362-2023 气体分析 微型热导气相色谱法 GB/T 43361-2023 气体分析 道路车辆用质子交换膜燃料电池氢燃料分析方法的确认 GB/T 43098.2-2023 水处理 剂分析 方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) GB/T 43359-2023 印染废水膜法集成装备 GB/T 28924-2023 钢铁企业 能效指数 计算导则 GB/T 43306-2023 气体分析 采样导则 GB/T 43305-2023 废弃化学品相容性试验规程 DB41/T 2666-2024 工业集聚区地下水环境监测技术规范 DB41/T 2665-2024 大气 挥发性有机物走航自动 监测技术规范 DB41/T 2664-2024 可渗透反应墙地下水监测技术规范 DB41/T 2644-2024 黑膜沼气废水处理工程运行与维护技术规程 DB41/T 2629-2024 污染场地地下水修复技术可行性评估规范 DB41/T 2628-2024 集体土地定级与基准地价评估技术规范 DB41/ 2575-2024 水产养殖尾水污染物排放标准 DB32/T 4630-2023 分散式污水 MBR 处理技术规程 DB63/T 2276-2024 建设项目占用湿地生态影响评价技术规范 医药卫生标准(19个)GB/T 43312-2023 医疗器械用钢丝绳 GB/T 18639-2023 狂犬病诊断技术 GB/T 43279.3-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 3 部分:分离血浆循环游离 DNA GB/Z 43280-2023 医学实验室 测量不确定度评定指南 GB/T 43279.2-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 2 部分:分离基因组 DNA GB/T 43279.1-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 1 部分:分离细胞 RNA GB/T 43278-2023 医学实验室 风险管理在医学实验室的应用 GB/T 43449-2023 法庭科学 毒物分析实验室质量控制规范 GB/T 19267.1-2023 法庭科学 微量物证的理化检验 第 1 部分:红外吸收光谱法 GB/T 20405.1-2023 失禁者用尿液吸收剂 聚丙烯酸酯高吸水性粉末 第 1 部分: pH 值的测定方法 WS/T 828—2023 妊娠期糖尿病妇女体重增长推荐 值标准 YY/T 1818-2022 牙科学 口腔数字印模仪 DB41/T 2656-2024 医疗器械生产企业产品注册自检体系要求 DB36/T 1904-2023 实验动物 支原体荧光定量 PCR 检测方法 DB36/T 1903-2023 实验动物 小鼠肝炎病毒荧光定量 PCR 检测方法 DB36/T 1902-2023 实验动物 嗜肺巴斯 德杆菌荧光定量 PCR 检测方法 GB/T 11748-2023 激光治疗设备 二氧化碳激光治疗机 GB/T 12257-2023 激光治疗设备 氦氖激光治疗机 DB41/T 2657-2024 欧美杨细菌性溃疡病综合防治技术规程 石油天然气标准(3个)GB/T 29021-2023 石油天然气钻采设备 游梁式抽油机 GB/T 29549.1-2023 海上石油固定平台模块钻机 第 1 部分:设计 GB/T 43303-2023 石油天然气钻采设备 抽油杆 冶金矿产标准(51个)GB/T 43349-2023 石灰质材料 中和值的测定 滴定法 GB/T 43321-2023 铜及铜合金钎焊推荐工艺规范 GB/T 43320-2023 焊缝无损检测 超声检测 薄壁钢构件自动相控阵技术的应用 GB/T 25715-2023 离心铸造球墨铸铁 管用管模 GB/T 7731.17-2023 钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法 GB/T 43311-2023 球墨铸铁管设计方法 GB/T 3653.3-2023 硼铁 硅含量的测定 高氯酸脱水重量法 GB/T 3654.8-2023 铌铁 钛含量的测定 变色酸光度法和二安替比林甲烷光度法 GB/T 5686.5-2023 锰铁、锰硅合金、氮化锰铁和金属锰 碳含量的测定 红外线吸收法、气体容量法、重量法和库仑法 GB/T 21837-2023 铁磁性钢丝绳电磁检测方法 GB/T 28417-2023 碳素轴承钢 GB/T 18115.6-2023 稀土金属及其氧化物中稀土杂质化学分析方法 第 6 部分: 铕 中 镧 、 铈 、 镨 、钕、钐、 钆 、 铽 、 镝 、 钬 、 铒 、 铥 、 镱 、 镥 和 钇 量的测定 GB/T 6150.1-2023 钨 精矿化学分析方法 第 1 部分:三氧化钨含量的测定 钨酸铵灼烧重量法 GB/T 2516-2023普通螺纹 极限偏差GB/T 9460-2023 铜及铜合金焊丝 GB/T 5686.9-2023 锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法) GB/T 43412-2023 金属薄板电阻点焊推荐工艺规范 GB/T 43411-2023 电子束选区 熔化增材制造 机床 通用技术条件 GB/T 16457.2-2023 金刚石圆锯片基体 第 2 部分:用于烧结锯片 GB/T 43432.3-2023 金属材料 巴氏硬度试验 第 3 部分:标准硬度块的标定 GB/T 43432.2-2023 金属材料 巴氏硬度试验 第 2 部分:硬度计的检验与校准 GB/T 3260.11-2023 锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和 钴含量 的测定 电感耦合等离子体原子发射光谱法 GB/T 42513.2-2023 镍合金化学分析方法 第 2 部分:磷含量的测定 钼 蓝分光光度法 GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 4437.1-2023 铝及铝合金热挤压管 第 1 部分:无缝圆管 GB/T 3195-2023 铝及铝合金拉(轧)制圆线材 GB/T 32182-2023 轨道交通用铝及铝合金板材 GB/T 4324.2-2023 钨 化学分析方法 第 2 部分:铋和 砷含量 的测定 GB/T 26029-2023 镍钴锰三元素复合氧化物 GB/T 2054-2023 镍及镍合金板 GB/T 43360-2023 增材制造 用 锆及锆合 金粉 GB/T 2882-2023 镍及镍合金管 GB/T 3310-2023 铜及铜合金棒材超声检测方法 GB/T 6150.3-2023 钨 精矿化学分析方法 第 3 部分:磷含量的测定 磷 钼 黄分光光度法和电感耦合等离子体原子发射光谱法 GB/T 43358-2023 稀土矿及稀土产品 总 α 、总 β 放射性的测定 厚源法 GB/T 23947.3-2023 无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法 GB/T 43356-2023 钢筋腐蚀盐溶液周期浸润试验方法 GB/T 43354-2023 铜合金弹性带材平面弯曲疲劳试验方法 GB/T 13296-2023 锅炉、热交换器用不锈钢无缝钢管 GB/T 3286.12-2023 石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 GB 175-2023 通用硅酸盐水泥 GB 25323-2023 有色重金属冶炼企业单位产品能源消耗限额 GB 21351-2023 变形铝及铝合金单位产品能源消耗限额 GB 21350-2023 铜及铜合金加工 材单位 产品能源消耗限额 GB/T 42536-2023 车用高压储氢气瓶组合阀门 GB/T 9816.1-2023 热熔断体 第 1 部分:要求和应用导则 GB/T 26330-2023 银、银合金 / 铜、铜合金复合带材 GB/T 43302-2023 增材制造 用钛及 钛合金丝材 GB/T 43301-2023 钼 及 钼合金管靶 化工塑料标准(73个)GB/T 43289-2023 塑料 实验室条件下测定暴露于海洋环境基质中塑料材料分解率和崩解程度的试验方法 GB/T 43288-2023 塑料 农业和园艺地膜用土壤生物降解材料 生物降解性能、生态毒性和成分控制的要求和试验方法 GB/T 43287-2023 塑料 在实际野外条件海洋环境中塑料材料崩解度的测定 GB/T 43313-2023 碳化硅抛光片表面质量和微管密度的测试 共焦点微分干涉法 GB/T 43309-2023 玻璃纤维及原料化学元素的测定 X 射线荧光光谱法 GB/T 43308-2023 玻璃纤维增强热塑性单向 预浸料 GB/T 43310-2023 玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法( ICP-OES ) GB/T 41312.2-2023 化工用设备渗透性检测方法 第 2 部分:纤维增强热固性塑料设备 GB/T 13465.12-2023 不透性石墨材料试验方法 第 12 部分:导热系数 GB/T 13871.3-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 3 部分:贮存、搬运和安装 GB/T 14795-2023 天然橡胶 术语 GB/T 3510-2023 未硫化橡胶 塑性的测定 快速塑性计法 GB/T 4202-2023 玻璃纤维产品代号 GB/T 23986.2-2023 色漆和清漆 挥发性有机化合物( VOC )和 / 或半挥发性有机化合物( SVOC )含量的测定 第 2 部分:气相色谱法 GB/T 23948-2023 无机化工产品 水不溶物测定通用方法 GB/T 7746-2023 工业无水氟化氢 GB/T 3392-2023 工业用丙烯中烃类杂质的测定 气相色谱法 GB/T 3394-2023 工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法 GB/T 17529.5-2023 工业用 丙烯酸及酯 第 5 部分:工业用丙烯酸 2- 乙 基己酯 GB/T 17529.2-2023 工业用 丙烯酸及酯 第 2 部分:工业用丙烯酸甲酯 GB/T 17529.3-2023 工业用 丙烯酸及酯 第 3 部分:工业用丙烯酸乙酯 GB/T 17529.1-2023 工业用 丙烯酸及酯 第 1 部分:工业用丙烯酸 GB/T 17529.4-2023 工业用 丙烯酸及酯 第 4 部分:工业用丙烯酸正丁酯 GB/T 29419-2023 塑木复合材料 铺板、护栏和围栏体系性能 GB/T 29418-2023 塑木复合材料 挤出型材性能测试方法 GB/T 1964-2023 多孔陶瓷 室温压缩强度试验方法 GB/T 43341-2023 纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法 GB/T 43314-2023 硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法 GB/T 43272-2023 唑 草酮原药 GB/T 43274-2023 无机土壤调理剂 总钙和镁含量的测定 GB/T 43273-2023 农药冻融稳定性测定方法 GB/T 22620-2023 联苯菊酯乳油 GB/T 22619-2023 联苯菊酯原药 GB/T 23554-2023 乙烯利可溶液剂 GB/T 24750-2023 乙烯利原药 GB/T 29381-2023 戊 唑 醇悬浮剂 GB/T 22176-2023 二甲戊 灵乳油 GB/T 30000.31-2023 化学品分类和标签规范 第 31 部分:化学品作业场所警示性标志 GB/T 43282.1-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 1 部分:采用分析释放二氧化碳的方法 GB/T 43251-2023 纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法 GB/T 17530.2-2023 工业 丙烯酸及酯的 试验方法 第 2 部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法 GB/T 43282.2-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 2 部分:采用测定密闭呼吸计内需氧量的方法 GB/T 43363-2023 废弃化学品中铜、锌、镉、铅、铬等 12 种元素形态分布的测定 连续提取法 GB/T 43316.6-2023 塑料 耐环境应力开裂( ESC )的测定 第 6 部分 : 慢应变速率法 GB/T 43316.5-2023 塑料 耐环境应力开裂( ESC )的测定 第 5 部分 : 恒定拉伸变形法 GB/T 43316.4-2023 塑料 耐环境应力开裂( ESC )的测定 第 4 部分 : 球压或 针压法 GB/T 43316.3-2023 塑料 耐环境应力开裂( ESC )的测定 第 3 部分 : 弯曲法 GB/T 42918.2-2023 塑料 模塑和挤出用热塑性聚氨酯 第 2 部分:试样制备和性能测定 GB/T 43307-2023 精细陶瓷纤维 单丝室温拉伸性能的测定 GB/T 43296-2023 精细陶瓷室温弯曲疲劳性能试验方法 GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法GB/T 41312.3-2023 化工用设备渗透性检测方法 第 3 部分:塑料及其衬里设备 GB/T 1965-2023 多孔陶瓷 室温弯曲强度试验方法 GB/T 21461.1-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 1 部分:命名系统和分类基础 GB/T 13871.4-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 4 部分:性能试验程序 GB/T 21461.2-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 2 部分:试样制备和性能测定 GB/T 43450-2023 化学品 急性眼刺激体外细胞试验 TRPV1 活性检测法 GB/T 21617-2023 危险品 固体氧化性试验方法 GB/T 43355-2023 塑料和其他无孔材料表面抗病毒活性的测定 GB/T 43316.2-2023 塑料 耐环境应力开裂( ESC )的测定 第 2 部分 : 恒定拉伸负荷法 GB/T 15231-2023 玻璃纤维增强水泥性能试验方法 GB/T 3519-2023 微晶石墨 GB/T 31402-2023 塑料和其他无孔材料表面抗菌活性的测定 GB/T 43316.1-2023 塑料 耐环境应力开裂( ESC )的测定 第 1 部分 : 通则 GB/T 24692-2023 表面活性剂 家庭机洗餐具用洗涤剂 性能比较试验导则 GB/T 42474.6-2023 爆炸危险化学品汽车运输安全监控系统 第 6 部分:通信中心与监控客户端 间数据 接口 GB/T 42474.4-2023 爆炸危险化学品汽车运输安全监控系统 第 4 部分:监控客户端 GB/T 42474.1-2023 爆炸危险化学品汽车运输安全监控系统 第 1 部分:通用技术要求 GB/T 42474.5-2023 爆炸危险化学品汽车运输安全监控系统 第 5 部分:车载装置与通信中心间数据接口 GB/T 42474.2-2023 爆炸危险化学品汽车运输安全监控系统 第 2 部分:车载装置 GB/T 42474.3-2023 爆炸危险化学品汽车运输安全监控系统 第 3 部分:车载装置安装 GB/T 43300-2023 陶瓷平板膜 纯水通量试验方法 GB/T 4893.4-2023 家具表面漆膜理化性能试验 第 4 部分:附着力交叉切割测定法 轻工纺织标准(1个)GB/T 24168-2023 纺织染整助剂产品中邻苯二甲酸酯的测定 电力半导体标准(36个)DL/T 5869—2023 水电工程安全监测仪器封存与报废技术规程 DL/T 2700—2023 水电站泄水建筑物水力安全评价导则 DL/T 2702—2023 水电站大坝运行安全管理导则 DL/T 2701—2023 水电站水工建筑物水下检查技术规程 DL/T 2713—2023电力用便携式电动绞磨GB/T 43318-2023 燃气轮机联合循环电站 热力性能试验 GB/T 5008.3-2023 起动用铅酸蓄电池 第 3 部分:重载车辆产品品种规格和端子尺寸 GB/T 19520.22-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-110 部分:智慧房屋用住宅机架和机柜 GB/T 5008.2-2023 起动用铅酸蓄电池 第 2 部分:产品品种规格和端子尺寸、标记 GB/T 19520.21-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-109 部分:嵌入式计算设备的机箱尺寸 GB/T 19520.20-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-108 部分: R 型插箱 和插件的尺寸 GB/T 43346-2023 起停用铅酸蓄电池 技术条件 GB/T 5008.1-2023 起动用铅酸蓄电池 第 1 部分:技术条件和试验方法 GB/T 30547-2023 高压直流输电系统滤波器用电阻器 GB/T 43344-2023 继电器用磁性材料(铁和钢)规范 GB/T 43342-2023 带有远程操作功能的家用和类似用途电器自动控制器的安全要求 GB/T 43343-2023 高压绝缘电阻表 GB/T 43334-2023 独立型微电网能量管理系统技术要求 GB/T 21218-2023电气用未使用过的硅绝缘液体GB/T 12940-2023 银 石墨电 触头技术条件 GB/T 30553-2023 基于电压源换流器的高压直流输电 GB/Z 6113.404-2023 无线电骚扰和抗扰度测量设备和测量方法规范 第 4-4 部分:不确定度、统计学和限值建模 投诉的统计和保护无线电业务的限值计算模型 GB/Z 40104.103-2023 太阳能光热发电站 第 1-3 部分:通用 气象数据集数据格式 GB/T 17626.11-2023 电磁兼容 试验和测量技术 第 11 部分: 对每相输入 电流小于或等于 16 A 设备的电压暂降、短时中断和电压变化抗扰度试验 GB/Z 17626.33-2023 电磁兼容 试验和测量技术 第 33 部分:高功率瞬态参数测量方法 GB/T 42731-2023 微电网技术要求 NB/T 11404-2023 火力发电工程执行概算编制导则 DL/T 5043-2023 换流站初步设计内容深度规定 NB/T 11403-2023 海上柔性直流换流站设计规程 NB/T 11402-2023 火力发电厂安全设施设计专篇编制导则 NB/T 11401-2023 热电厂储热系统设计规范 NB/T 11400-2023 电力数据中心设计规程 NB/T 11399-2023电源规划研究内容深度规定DL/T 5580.3-2023 燃煤耦合生物质发电生物质能电量计算 第 3 部分:农林废弃残余物蒸汽耦合 GB/T 43266-2023 永磁体磁偏角的测量方法 GB/T 43264-2023 永磁体表面磁场分布测试方法 能源标准(12个)NB/T 11470—2023 采煤工作面瓦斯抽采顶板高位定向长钻孔技术规范 NB/T 11469—2023 可解吸瓦斯含量测定装置 NB/T 11468—2023 水力驱动机械扩孔增 透技术 要求 NB/T 11467—2023 地面钻井 扩孔增抽卸压 瓦斯技术规范 NB/T 11466—2023 采动区 地面瓦斯抽采直井施工技术规范 NB/T 11465—2023 煤矿 采动区 地面 L 型顶板水平井抽采瓦斯技术方法 DB63/T 2282-2024 煤制甲醇二氧化碳尾气生产纯碱技术规程 GB/T 15558.5-2023 燃气用埋地聚乙烯( PE )管道系统 第 5 部分:系统适用性 GB/T 15558.3-2023 燃气用埋地聚乙烯( PE )管道系统 第 3 部分:管件 GB/T 15558.2-2023 燃气用埋地聚乙烯( PE )管道系统 第 2 部分:管材 GB/T 15558.4-2023 燃气用埋地聚乙烯( PE )管道系统 第 4 部分:阀门 GB/T 15558.1-2023 燃气用埋地聚乙烯( PE )管道系统 第 1 部分:总则 机械车辆标准(54个)GB/T 43404-2023 轻型汽车道路负载 底盘 测功机再现 GB/T 18329.1-2023 滑动轴承 多层金属滑动轴承 第 1 部分:合金厚度 ≥0.5mm 的结合质量超声无损检验 GB/T 43325-2023 铸造机械 铸件清理用切割、磨削和精整设备 安全技术规范 GB/T 43324-2023 箔片轴承 气体动压止推轴承性能 静态承载能力、摩擦力矩、摩擦因数和寿命测试 GB/T 25684.14-2023 土方机械 安全 第 14 部分:小型机具承载机的要求 GB/T 43323-2023 涂附磨具 通用安全要求 GB/T 43322-2023 气焊设备 空气焊 炬 GB/T 43319-2023 铸造机械 熔模和消失模铸造设备 安全技术规范 GB/T 43330.1-2023 船舶压载水处理系统 第 1 部分:要求 GB/T 12538-2023 道路车辆 质心位置的测定 GB/T 43232-2023 紧固件 轴向应力超声测量方法 GB/T 43234-2023 成型模 斜导柱 GB/T 25851.2-2023 流动式起重机 起重机性能的试验测定 第 2 部分:静载荷作用下的结构能力 GB/T 17758-2023 单元式空气调节机 GB/T 14910-2023 滑动轴承 厚壁多层轴承衬背技术要求 GB/T 10901-2023 离心机 性能测试方法 GB/T 10894-2023 分离机械噪声测试方法 GB/T 2484-2023 固结磨具 形状类型、标记和标志 GB/T 25622.1-2023 土方机械 司机手册 第 1 部分:内容和格式 GB/T 783-2023 起重机械 基本参数系列 GB/T 29712-2023 焊缝无损检测 超声检测 验收等级 GB/T 2493-2023 磨具回转强度试验方法 GB/T 29711-2023 焊缝无损检测 超声检测 焊缝内部不连续的特征 GB/T 23538-2023 普通磨料 球磨韧性测定方法 GB/T 11345-2023 焊缝无损检测 超声检测 技术、检测等级和评定 GB/T 25774.2-2023 焊接材料的检验 第 2 部分:钢的单面单道焊和双面单道焊焊接接头力学性能试样的制备 GB/T 15622-2023 液压缸 试验方法 GB/T 26949.7-2023 工业车辆 稳定性验证 第 7 部分:双向和多向运行叉车 GB/T 10827.5-2023 工业车辆 安全要求和验证 第 5 部分:步行式车辆 GB/T 18329.2-2023 滑动轴承 多层金属滑动轴承 第 2 部分:合金厚度 ≥2mm 的结合强度破坏性试验 GB/T 43081-2023道路车辆灯泡和光源 尺寸、光电性能要求GB/T 43254-2023 电动汽车用驱动电机系统功能安全要求及试验方法 GB/T 43248-2023电动汽车和混合动力汽车 无线电骚扰特性 用于保护30MHz以下车外接收机的限值和测量方法GB/T 15548-2023 往复式内燃机驱动的三相同步发电机通用技术条件 GB/T 16826-2023 电液伺服 万能试验机 GB/T 23921-2023 三轮汽车 半轴 GB/T 23930-2023 三轮汽车 转向器 GB/T 9081-2023 机动车燃油加油机 GB/T 43398-2023 乘用车行李移动对乘员伤害的安全要求 GB/T 24966-2023 光栅车辆检测器 GB/Z 41082.2-2023 轮椅车 第 2 部分:按 GB/Z 18029.5 测得的尺寸、质量和操作空间的典型值和推荐限制值 GB/T 43388-2023 家用汽车产品严重安全性能故障判断指南 GB/T 42612-2023 车用压缩氢气塑料内胆碳纤维全缠绕气瓶 GB/T 42610-2023 高压氢气瓶塑料内胆和氢气相容性试验方法 JT/T 1483-2023 公共汽车易燃挥发物监测及报警装置 DB41/T 2634-2024 充电设施信息互联互通规范 DB41/T 2633-2024 充电设施统一编码规则 DB41/T 2646-2024 绝缘起重机小车绝缘部件装配技术要求 DB41/T 2645-2024 起重机用防爆抓斗技术要求 DB36/T 743.1-2023 高速公路机电系统维护技术规范 第 1 部分:通用技术要求 DB36/T 596-2023 道路照明施工安装与验收技术规范 DB41/T 2635-2024 县域示范性公用集中式电动汽车充电站建设规范 GB/T 20914.5-2023 冲模 氮气弹簧 第 5 部分:氮气弹簧安全规范 GB/T 43299-2023机动车玻璃电加热性能试验方法其他标准(3个)DB36/T 1893-2023 检验检测数据资产评估认证指南 DB3505/T 10—2024 检验检测机构样品管理规范 GB/T 22553-2023 利用重复性、再现性和正确度的估计值评定测量不确定度的指南 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 咖啡中的"隐形杀手":丙烯酰胺
    近日,根据福建省消费者权益保护委员会与福州市消费者权益保护委员会的联合调查,他们通过线上和线下途径,对福州市20家咖啡销售点的59款现场制作的咖啡产品进行了抽样检测(包括线下30款和线上29款)。这些样品涵盖了“瑞幸”、“星巴克”、“幸运咖”、“COTTI COFFEE”等多个知名品牌。(来源:福建省消费者权益保护委员会) 令人关注的是,在这次检测的59款样品中,未发现反式脂肪酸(低于0.0013g/100g的检测限),然而却都检出了较低浓度的致癌物质“丙烯酰胺”。被查出的”丙烯酰胺“,是一种有机化合物,损害人体神经系统,为白色结晶性粉末,溶于水、乙醇、乙醚、丙酮,不溶于苯、己烷。它是一种潜在致癌物,属于2A类致癌物,即:虽然在动物试验中具有明确致癌作用,在人群研究结果中还没得定论。丙烯酰胺存在于很多食物中,除了咖啡外,油条、薯条、烧烤等食物都含有。丙烯酷胺检测方法般包括以下几种:1.液相色谱法: 采用高效液相色谱技术,通过分离、净化、测定来确定丙烯酷胺的含量。2.毛细管电泳法: 采用毛细管电泳技术,通过分离、净化、测定来确定丙烯酷胺的含量。3.光谱法:采用紧外、红外、拉是等光谱技术,通过吸收、散射、振动等特征来确定丙烯酷胺的含量。4.化学发光法:采用化学发光技术,通过与相关反应物的化学反应产生化学发光信号来确定丙爆酷胺的含量。5.气相色谱-质谱联用法:采用气相色谱-质谱联用技术,通过分离、净化、测定来确定丙烯酷胺的含量。小编整理了咖啡中检测丙烯酰胺的解决方案供大家参考: 1. 咖啡中丙烯酰胺含量的测定 2. 根据DIN EN ISO 18862标准,对咖啡中丙烯酰胺的自动SPE净化和LC-MS/MS测定 3. 月旭“舌尖上的卫士”为您把关食品中丙烯酰胺的残留更多丙烯酰胺检测相方案请点击查看涉及相关产品:三重四极杆液质联用仪QSight 400(珀金埃尔默)GERSTEL自动进样器 MPS robotic (GERSTEL( 哲斯泰) )月旭固相萃取装置 (月旭科技 ) 在福建省消费者权益保护委员会微信公众中也提到了,目前我国暂未对咖啡中丙烯酰胺有限制性或禁止性规定。同时,也提醒广大消费者,现制现售咖啡口感醇香浓郁,但不宜多喝,应科学、合理饮用。在购买现制现售咖啡需关注以下几点: 1、消费者在进行咖啡消费前要学习了解一些基本的咖啡常识,比如常见咖啡分类及区别(如美式咖啡、卡布奇诺、拿铁、摩卡等)、了解阿拉比卡和罗布斯塔咖啡豆的区别、留意添加牛奶、风味糖浆等原料的咖啡能量及含糖量相对较高等。 2、消费者在购买咖啡时,要注意查看商家菜单或外卖平台选项上有无含糖分、咖啡因等提示警示,并根据个人口味喜好及身体状况,选择合适的咖啡产品。孕妇及哺乳期妇女、儿童、青少年等敏感人群应尽量不饮用或减少饮用咖啡。 3、不要长期过量饮用咖啡,按每日咖啡因的安全摄取量不超过400 mg,一般每天1至2杯,比较安全。同时咖啡中含有咖啡因、草酸等物质,过量饮用会影响钙质的吸收,增加患骨质疏松的风险、会使人体长时间兴奋、失眠、焦虑,严重的还会造成抑郁、记忆力减退等问题。 4、养成正确咖啡饮用方式。平时喝咖啡水温要控制好,最好不要超过65度,否则会影响口腔粘膜、胃肠粘膜,甚至造成粘膜损伤。注意喝咖啡的时间,尽量选择在用餐后,避免在晚上睡觉前或早上空腹时喝咖啡。酒之后不宜喝咖啡,人在饮酒后会进入精神亢奋状态,如再喝咖啡的话,只会加重人体的兴奋状态,对人体器官的伤害很大。 同时建议各现制现售咖啡商家在严格把控咖啡豆/粉、牛奶、糖浆等原料质量的同时,要在产品销售目录上对香草拿铁等含糖量较高产品、咖啡因含量及不适宜人群等予以警示或作出明确标示,以供消费者选择参考。行业应用栏目简介:(http://www.instrument.com.cn/application/) 【行业应用】是仪器信息网专业的行业导购平台。汇聚了行业内国内外主流厂商的优质解决方案及相应的仪器设备。建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、石化等二十余个使用仪器相对集中的行业领域。并以样品和标准为主线,为用户查找仪器提供一个独特的维度,也为仪器产品提供一个全新的展示渠道。
  • AS塑料制品丙烯腈单体总量不能超标
    近日,宁波慈溪检验检疫局在对辖区某食品接触材料企业出口美国和科威特的两批次真空保鲜罐产品进行安全卫生项目检测时,连续检出不合格,其AS材质塑料部件检测项目“丙烯腈单体总量”结果分别超出美国标准FDA 21 CFR 177.1040和我国国家标准GB17327-1998《食品容器、包装材料用丙烯腈-苯乙烯成型品卫生标准》中的限量要求。  AS(丙烯腈-苯乙烯共聚物)是一种具有高透明度、耐油性和耐化学腐蚀性的塑料原料,在食品用具中广泛使用,如食品餐具、塑料水杯等。AS塑料中可能残留的丙烯腈则是一种对健康有着严重危害的化学物质,一旦人体摄入过量,轻者头晕、恶心,重者直接造成呼吸中枢的麻醉,出现四肢阵发性强直抽搐、昏迷。为此,中国、欧盟、美国、韩国及日本等国家和地区均将该物质纳入对食品接触AS塑料的必检项目,并严格限制其迁移量或总量。  经查找原因,问题出在使用了不符合食品接触材料标准的AS原料。原料采购时企业盲目相信供方提供的合格检测报告,却没有核实检测项目是否符合进口国相关标准。最终该两批产品被判不合格、不准出境,企业为此遭受较大损失。  检验检疫部门提醒相关食品接触材料企业,加强进口国标准及具体检测项目的了解学习,原料采购时仔细核对供方提供的检测报告。必要时可以在大量生产前对原材料中容易超标的项目如“丙烯腈单体总量”进行委托检测。
  • 聚丙烯酰胺水解度的测定
    一、背景介绍聚丙烯酰胺(PAM)是一种线型高分子聚合物,在常温下为坚硬的玻璃态固体,产品有胶液、胶乳和白色粉粒、半透明珠粒和薄片等。由于聚丙烯酰胺结构单元中含有酰胺基、易形成氢键、使其具有良好的水溶性和很高的化学活性,易通过接枝或交联得到支链或网状结构的多种改性物,在石油开采、水处理、纺织、造纸、选矿、医药、农业等行业中具有广泛的应用,有“百业助剂”之称。聚丙烯酰胺在国外应用最多的领域是水处理,国内在此领域的应用正在推广。聚丙烯酰胺在水处理中作为助凝剂与其它絮凝剂配合使用,可以大大降低絮凝剂的使用量,但其水解度过小会导致混凝或助凝效果较差,水解度过大又会增加制作成本,故需要对聚丙烯酰胺的水解度进行检测。 二、方法介绍● 依据标准:GB/T 17514-2008《水处理剂 聚丙烯酰胺》● 测试方法:取样约0.03g置于100mL水中溶解,用盐酸标准溶液滴定至pH为4.1时,即为终点。 三、聚丙烯酰胺水解度的测定(1)仪器及试剂● ZDJ-5B型自动滴定仪● JB-21上搅拌器(选配)● 231-01 pH玻璃电极+232-01参比电极● pH标准缓冲溶液、盐酸标准滴定溶液、基准无水碳酸钠试剂、样品 (2)测试步骤● 对pH电极进行标定,● 将100mL水倒入滴定杯中置于搅拌器上,开启搅拌器。称取约0.03g粉状试样,精确至0.2mg。加入到滴定杯中,使其完全溶解。采用预设终点模式,设置好参数后用盐酸标准溶液滴定溶液滴定至终点。 (3)测试结果图1 水解度滴定曲线 (4)注意事项由于聚丙烯酰胺水解后,随时间的延长而粘度越大,下搅拌难以维持转速,所以本次实验推荐用上搅拌进行测试,需要额外配置上搅拌装置。 四、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 2023离子色谱标准解读上:从国标看IC新的市场机会
    仪器信息网联合中国仪器仪表学会分析仪器分会离子色谱专家组于2024年3月12-13日召开“第五届离子色谱技术进展及应用”主题网络研讨会,共同探讨离子色谱的最新技术进展及热点应用等大家关心的话题。敬请期待!!!(点击可查看会议议程及报名方式)。离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境、化工、能源、生物、医药、食品、化妆品等领域;同时,与MS、AFS的联用技术等也丰富了离子色谱的应用领域,开发了一系列具有实用性的分析方法。(点击进入离子色谱专场)1983年,中国核工业第五研究所刘开禄研究员带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1。经过40年的发展,我国离子色谱行业已经步入高质量发展阶段。2018年6月7日,国家标准GB/T 36240-2018 离子色谱仪发布。该标准规定了离子色谱仪的要求、试验方法、检验规则和标志、包装、运输和贮存等,适用于所有的离子色谱仪,包括电导检测器、紫外-可见光检测器和电化学检测器。该标准为离子色谱仪的生产、检测和使用提供了统一的要求和规范,有助于提高产品的质量和可靠性,减少不同厂家、不同品牌之间的差异和矛盾,进一步规范了离子色谱仪的市场。近些年来,离子色谱方法标准也在持续完善中。据不完全统计,离子色谱近5年发布国家标准19项,行业标准35项。这些标准主要涉及石油化工、冶金、环保/水工业、矿业/地质、农业、食品、公共安全、电子/电气、卫生/医药等行业。详细的行业分布如下图。一、国标:新增了多项检测指标2023年3月17日,国家市场监督管理总局(国家标准化管理委员会)批准发布《GB/T 5750-2023生活饮用水标准检验方法》(以下简称“饮用水检验新标”),代替GB/T 5750-2006《生活饮用水标准检验方法》,自2023年10月1日起实施。1985年首次发布为GB/T 5750—1985,2006年第一次修订为GB/T 5750.1~GB/T 5750.13—2006,本次为第二次修订。饮用水检验新标作为生活饮用水检验技术的推荐性国家标准,与GB 5749-2022《生活饮用水卫生标准》配套,是GB 5749-2022的重要技术支撑,为贯彻实施GB 5749-2022、开展生活饮用水卫生安全性评价提供检验方法。该标准新增了多项离子色谱检测指标,其中无机非金属指标部分增加高氯酸盐指标;有机物指标丙烯酸新增离子色谱检测方法;农药指标草甘膦新增离子色谱检测方法;消毒副产物指标一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸新增离子色谱检测方法,进一步扩大了离子色谱行业的应用范围。二、离子色谱新的市场机会(1)对于供水行业,2023版GB/T 5750的实施带来了水质分析工作全流程要求更加规范、实现新增指标的方法全覆盖的时间窗口期短且要求高、新增高效检测方法对水源水检测覆盖不足等挑战。供水行业需覆盖从原水到用户龙头的全过程,并兼顾检测能力和检测效率,对实验室现有的检测方法进行全面优化和替代。(2)对于供水行业检测部门,应加快推进标准应用实施工作,深入理解新标准下的质量控制要求,将其贯穿于供水检测工作全流程中,对拟选用的标准方法进行方法的适用性验证,加强优化离子色谱技术的应用,以确保新增指标检测方法全覆盖。(3)第三方检测实验室需依据新标准尽快完成新增方法的验证工作,扩大检测能力范围。三、新增指标对于饮用水安全具有重要意义(1)高氯酸盐高氯酸盐是近两年才引起社会高度关注的污染物。2022年3月,国家卫健委发布《生活饮用水卫生标准》(GB 5749—2022),首次将高氯酸盐纳入管控指标,并设定标准限值70 微克/升。环境中的高氯酸盐污染基本上是人为活动导致的。其中,最主要的是将高氯酸盐作为强氧化剂,用于火箭推进剂、烟花制造、军火工业、爆破作业等领域,以及将其作为添加剂的润滑油、染料涂料等产品的生产过程,通过各种方式进入环境中,导致污染分布与产业布局紧密相连。此外,用智利阿塔卡马沙漠硝石等为原料的化肥,施加后也会将部分高氯酸盐带入环境中。高氯酸盐的主要危害是影响人体甲状腺的正常功能,原因在于高氯酸盐的电荷和离子半径与碘离子非常接近,可以与碘离子竞争直接进入人体的甲状腺,阻碍人体对碘的吸收,使人体缺碘而导致甲状腺肿大,俗称“大脖子病”。因此高氯酸盐的检测对于人体健康具有重要意义。(2)丙烯酸水中丙烯酸的来源包括生物来源和人为污染源排放,生物来源主要是浮游植物分解DMSP产生,人为来源主要是人为将含有丙烯酸的工业废水排入河流以及近岸海域。丙烯酸是一种重要的基础有机原料,我国丙烯酸产能已达到19.5万吨/年。丙烯酸的危害主要是对水体和生物体的危害,丙烯酸对眼睛、鼻粘膜有刺激性,对淡水藻类等生物也有较大毒性,其急性毒性L(E)C50值甚至能够达到0.1 mg/L。离子色谱法测定丙烯酸,操作简便,无需复杂前处理,灵敏度高、选择性好、重复性佳,且所用试剂绿色环保,成本低。(3)草甘膦水中草甘膦主要来源于农药残留。据部分科学家认为草甘膦对4000多个基因产生损伤影响,导致很多严重的疾病(如阿尔海默症,帕金森症,自闭症等),因此生活饮用水及水源中草甘膦的检测显得尤为重要。草甘膦是许多使用广泛除草剂中的有效活性化学成分,对多年生根杂草非常有效,广泛用于橡胶、桑、茶、果园及甘蔗地。草甘膦在全球130个国家广泛的使用在杀虫剂领域,美国大约占20%的使用量,约2.8亿磅,人均1磅。研究发现,全美70%的家庭饮用水中检测到草甘膦,浓度在0.085-0.33ppb,美国环保部设置了0.4ppb的上限。采用阴离子交换色谱法分离水样中的草甘膦,经柱后衍生,用荧光检测器检测,简便高效。(4)卤代乙酸类(包括一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)自来水厂采用的饮用水消毒工艺在保障居民供水安全和降低介水传染病方面发挥了重要作用,被誉为20世纪公共卫生领域内最伟大的成就之一。然而,饮用水消毒工艺过程中所使用的氯、二氧化氯、氯氨、臭氧等消毒剂能够与水中的有机前体物发生反应而生成消毒副产物(disinfection byproducts,DBPs)。饮用水中DBPs的出现使人们对其暴露所带来的健康危害产生了很大的担忧。目前,研究已发现卤代乙酸类具有发育毒性,主要表现为吸收胎和畸形发生率增加、软组织和各种器官发育异常、胎仔出生体重和身长降低等。因此为了保障生活饮用水的卫生安全,对饮用水中卤代乙酸进行监测非常重要。附表 2023年发布的离子色谱检测国标(部分)序号行业标准名称发布日期1水工业GB/T 5750.5-2023生活饮用水标准检验方法第5部分 无机非金属指标(氟化物、硫酸盐、氯化物、硝酸盐、高氯酸盐)第6部分 金属和类金属(锂、钠、钾、镁、钙)第8部分 有机物指标(丙烯酸)第9部分 农药指标(草甘膦)第10部分 消毒副产物指标(亚氯酸盐、氯酸盐、溴酸盐、一氯乙酸、二氯乙酸、三氯乙酸、一溴乙酸、二溴乙酸)2023-03-172石油化工GB/T 35212.4-2023天然气处理厂气体及溶液分析与脱硫、脱碳及硫磺回收分析评价方法 第4部分:用离子色谱法测定醇胺脱硫溶液中钠、镁、钙离子组成2023-05-233冶金GB/T 3884.12-2023铜精矿化学分析方法 第12部分:氟和氯含量的测定 离子色谱法和电位滴定法2023-08-06
  • 关于发布《食品安全国家标准 食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准的公告(2016年第15号)
    p  根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准。其编号和名称如下:/pp  GB 4806.1-2016 食品安全国家标准 食品接触材料及制品通用安全要求/pp  GB 4806.3-2016 食品安全国家标准 搪瓷制品/pp  GB 4806.4-2016 食品安全国家标准 陶瓷制品/pp  GB 4806.5-2016 食品安全国家标准 玻璃制品/pp  GB 4806.6-2016 食品安全国家标准 食品接触用塑料树脂/pp  GB 4806.7-2016 食品安全国家标准 食品接触用塑料材料及制品/pp  GB 4806.8-2016 食品安全国家标准 食品接触用纸和纸板材料及制品/pp  GB 4806.9-2016 食品安全国家标准 食品接触用金属材料及制品/pp  GB 4806.10-2016 食品安全国家标准 食品接触用涂料及涂层/pp  GB 4806.11-2016 食品安全国家标准 食品接触用橡胶材料及制品/pp  GB 4789.15-2016 食品安全国家标准 食品微生物学检验 霉菌和酵母计数/pp  GB 5009.156-2016 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则/pp  GB 9685-2016食品安全国家标准 食品接触材料及制品用添加剂使用标准/pp  GB 14934-2016 食品安全国家标准 消毒餐(饮)具/pp  GB 31604.11-2016 食品安全国家标准 食品接触材料及制品 1,3-苯二甲胺迁移量的测定/pp  GB 31604.12-2016 食品安全国家标准 食品接触材料及制品 1,3-丁二烯的测定和迁移量的测定/pp  GB 31604.13-2016 食品安全国家标准 食品接触材料及制品 11-氨基十一酸迁移量的测定/pp  GB 31604.14-2016 食品安全国家标准 食品接触材料及制品 1-辛烯和四氢呋喃迁移量的测定/pp  GB 31604.15-2016 食品安全国家标准 食品接触材料及制品 2,4,6-三氨基-1,3,5-三嗪(三聚氰胺)迁移量的测定/pp  GB 31604.16-2016 食品安全国家标准 食品接触材料及制品 苯乙烯和乙苯的测定/pp  GB 31604.17-2016 食品安全国家标准 食品接触材料及制品 丙烯腈的测定和迁移量的测定/pp  GB 31604.18-2016 食品安全国家标准 食品接触材料及制品 丙烯酰胺迁移量的测定/pp  GB 31604.19-2016 食品安全国家标准 食品接触材料及制品 己内酰胺的测定和迁移量的测定/pp  GB 31604.20-2016 食品安全国家标准 食品接触材料及制品 醋酸乙烯酯迁移量的测定/pp  GB 31604.21-2016 食品安全国家标准 食品接触材料及制品 对苯二甲酸迁移量的测定/pp  GB 31604.22-2016 食品安全国家标准 食品接触材料及制品 发泡聚苯乙烯成型品中二氟二氯甲烷的测定/pp  GB 31604.23-2016 食品安全国家标准 食品接触材料及制品 复合食品接触材料中二氨基甲苯的测定/pp  GB 31604.24-2016 食品安全国家标准 食品接触材料及制品 镉迁移量的测定/pp  GB 31604.25-2016 食品安全国家标准 食品接触材料及制品 铬迁移量的测定/pp  GB 31604.26-2016 食品安全国家标准 食品接触材料及制品 环氧氯丙烷的测定和迁移量的测定/pp  GB 31604.27-2016 食品安全国家标准 食品接触材料及制品 塑料中环氧乙烷和环氧丙烷的测定/pp  GB 31604.28-2016 食品安全国家标准 食品接触材料及制品 己二酸二(2-乙基)己酯的测定和迁移量的测定/pp  GB 31604.29-2016 食品安全国家标准 食品接触材料及制品 甲基丙烯酸甲酯迁移量的测定/pp  GB 31604.30-2016 食品安全国家标准 食品接触材料及制品 邻苯二甲酸酯的测定和迁移量的测定/pp  GB 31604.31-2016 食品安全国家标准 食品接触材料及制品 氯乙烯的测定和迁移量的测定/pp  GB 31604.32-2016 食品安全国家标准 食品接触材料及制品 木质材料中二氧化硫的测定/pp  GB 31604.33-2016 食品安全国家标准 食品接触材料及制品 镍迁移量的测定/pp  GB 31604.34-2016 食品安全国家标准 食品接触材料及制品 铅的测定和迁移量的测定/pp  GB 31604.35-2016 食品安全国家标准 食品接触材料及制品 全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)的测定/pp  GB 31604.36-2016 食品安全国家标准 食品接触材料及制品 软木中杂酚油的测定/pp  GB 31604.37-2016 食品安全国家标准 食品接触材料及制品 三乙胺和三正丁胺的测定/pp  GB 31604.38-2016 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定/pp  GB 31604.39-2016 食品安全国家标准 食品接触材料及制品 食品接触用纸中多氯联苯的测定/pp  GB 31604.40-2016 食品安全国家标准 食品接触材料及制品 顺丁烯二酸及其酸酐迁移量的测定/pp  GB 31604.41-2016 食品安全国家标准 食品接触材料及制品 锑迁移量的测定/pp  GB 31604.42-2016 食品安全国家标准 食品接触材料及制品 锌迁移量的测定/pp  GB 31604.43-2016 食品安全国家标准 食品接触材料及制品 乙二胺和己二胺迁移量的测定/pp  GB 31604.44-2016 食品安全国家标准 食品接触材料及制品 乙二醇和二甘醇迁移量的测定/pp  GB 31604.45-2016 食品安全国家标准 食品接触材料及制品 异氰酸酯的测定/pp  GB 31604.46-2016 食品安全国家标准 食品接触材料及制品 游离酚的测定和迁移量的测定/pp  GB 31604.47-2016 食品安全国家标准 食品接触材料及制品 纸、纸板及纸制品中荧光增白剂的测定/pp  GB 31604.48-2016 食品安全国家标准 食品接触材料及制品 甲醛迁移量的测定/pp  GB 31604.49-2016 食品安全国家标准 食品接触材料及制品 砷、镉、铬、铅的测定和砷、镉、铬、镍、铅、锑、锌迁移量的测定/pp  特此公告。/pp  国家卫生计生委 食品药品监管总局/pp  2016年10月19日/pp  附件:《食品安全国家标准 食品接触材料及制品通用安全要求》(GB 4806.1-2016)等53项食品安全国家标准/p
  • 全自动高温乌氏粘度计在聚乙烯PE、聚丙烯PP行业的应用
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。化学式为:(C2H4)n,在工业上,也包括乙烯与少量α-烯烃的共聚物。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。聚丙烯,(简称PP)是丙烯通过加聚反应而成的聚合物。化学式为(C3H6)n,密度为0.89~0.91g/cm3, 易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃ 。聚丙烯是一种性能优良的热塑性合成树脂,为无色半透明的热塑性轻质通用塑料。在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。聚丙烯具有耐化学性、耐热性、电绝缘性、高强度机械性能和良好的高耐磨加工性能等。主要应用于应用在食品包装、家用物品、汽车、光纤等领域。聚乙烯和聚丙烯的应用面非常广泛,近年来发展也很迅速,许多企业也在不断增加对新技术研发的投入,其中粘度测试是一项非常重要的检测项目。国标GB/T 1632.3-2010规定聚乙烯和聚丙烯使用毛细管黏度计测定聚合物稀溶液黏度。关于PP/PP粘度标准的解读:使用毛细管乌氏粘度计,在135℃下测定溶剂以及规定浓度的聚合物溶液的流出时间,根据这些测定的流出时间和聚合物溶液的已知浓度计算比浓黏度和特性黏度。在室温下,聚乙烯和等规聚丙烯不溶于任何目前所知的溶剂。因此在试验中必须采取措施以防止因聚合物析出而导致溶液浓度发生改变。中旺全自动高温乌氏粘度计IVS800H在PP/PE中的解决方案许多企业一般使用半自动或手动的粘度仪,在135℃的油槽上进行粘度的测试,对人员以及环境都存在着安全隐患。IVS800H它是一款全自动的高温乌氏粘度计,实现自动恒温、自动进样、自动测试、自动清洗、自动干燥的操作流程,有效地避免了高温操作下引起的意外。另外它还能规避样品的析出,确保了数据的准确性。那么我们来详细的介绍下一个完整的PP/PE的粘度流程:仪器的配置:中旺DP25自动配液器、中旺聚合物溶样器、中旺全自动高温乌氏粘度计IVS800H。测试流程:配液:用万分之一天平称取聚丙烯PP样品,放入到溶样瓶中,用DP25自动配液器(移液精度≤0.1%)移取定量剂到溶样瓶中;溶样:中旺聚合物溶样器溶解PP/PE样品,采用金属浴,多孔位,转速、溶样时间、溶样温度可按要求设定。温度最高可达185℃。黏度测试:将彻底溶解好的PP/PE样品置入全自动高温乌氏粘度计IVS800H样品仓中,启动仪器,实现自动进样,采用进口不锈钢光纤可自动测试,计时精度可达0.001S,确保了数据的准确性,全程无需人员值守,并且系统自带软件,自动得出测试结果;测试结果IVS800H全自动高温乌氏粘度计连接电脑端,可自动得出测试结果并进行数据储存,便于多样化粘度数据分析;并且出分析报告。清洗黏度管乌氏粘度管固定在IVS800H高温乌氏粘度仪中,客户无需拆装取出,可自动清洗、自动排废、自动干燥。告别了乌氏粘度管耗材的时代。
  • GC/MS法测定杀菌剂残留标准将实施
    由青海检验检疫局制定的应对日本肯定列表制度第二批检验检疫行业标准《进出口食品中甲氧基丙烯酸酯类杀菌剂残留量测定方法——气相色谱-质谱法》经国家认证认可监督管理委员会的审定,将于今年6月1日起实施。  据业内人士介绍,该标准在广泛验证和实际应用的基础上,依据国内最大残留量的要求,提出了合理的测定底限,制定了进出口食品中甲氧基丙烯酸酯类杀菌剂残留量测定方法——气相色谱-质谱法。该标准结构严谨,技术路线正确,测定方法合理可行,填补了出入境检验检疫行业标准的空白,达到国内领先水平。
  • 卫生部公布14种食品添加剂质量规格标准
    根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现公布磷酸酯双淀粉等14个食品添加剂的质量规格标准。   特此公告。  附件:磷酸酯双淀粉等14个食品添加剂的质量规格标准.doc 一、磷酸酯双淀粉项目指标干燥失重/(g/100g) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤ 0.5磷酸盐残留量(以P计)/(%) ≤马铃薯和小麦淀粉0.5;其他淀粉0.4注:用三偏磷酸钠或三氯氧磷为酯化剂 二、醋酸酯淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5乙酰基含量/(%) ≤2.5乙酸乙烯酯/ (mg/kg) ≤(仅限用乙酸乙烯酯作为酯化剂)0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 三、辛烯基琥珀酸淀粉钠和辛烯基琥珀酸铝淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg)≤20砷/(mg/kg) (以As计) ≤0.5铅/(mg/kg) ≤1.0辛烯基琥珀酸基团/(%) ≤3.0辛烯基琥珀酸残留量/(%) ≤0.3注:生产辛烯基琥珀酸淀粉钠时,辛烯基琥珀酸酐用量不超过3.0%(占淀粉干基,w/w);生产辛烯基琥珀酸铝淀粉时,辛烯基琥珀酸酐用量不超过2.0%,硫酸铝用量不超过2.0%(均为占淀粉干基,w/w)。 四、氧化羟丙基淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯丙醇/(mg/kg) ≤1.0羧基含量/(%) ≤1.1羟丙基含量/(%) ≤7.0注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w),用过氧化氢作氧化剂,使用量中的活性氧不超过0.45%(占淀粉干基,w/w);用环氧丙烷作醚化剂,使用量不超过25%(占淀粉干基,w/w)。 五、羧甲基淀粉钠项目指标干燥失重/(%) ≤10SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯化物(以cl计)/(%) ≤0.43硫酸盐(以SO4计)/(%) ≤0.96注:一氯乙酸为醚化剂。 六、淀粉磷酸酯钠项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.5;其他淀粉0.4注:用正磷酸、磷酸钠、磷酸钾或三聚磷酸钠酯化。 七、氧化淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5羧基含量/(%) ≤1.1注:用次氯酸钠作氧化剂,使用量中的有效氯不超过5.5%(占淀粉干基,w/w)。 八、酸处理淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5注:采用盐酸、正磷酸或硫酸处理。 九、乙酰化双淀粉己二酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5乙酰基含量/(%) ≤2.5己二酸盐/(%) ≤0.135注:用已二酸酐(用量占淀粉干基不超过0.12%,w/w)交联,乙酸酐(用量占淀粉干基不超过8.0%,w/w)酯化。 十、羟丙基淀粉项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/( mg/kg ) ≤30重金属(以Pb计)/(mg/kg)≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5氯丙醇/(mg/kg) ≤1.0羟丙基含量/(%) ≤7.0注:用环氧丙烷作醚化剂(用量占淀粉干基不超过25%,w/w)。十一、磷酸化二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤ 马铃薯和小麦淀粉0.5;其他淀粉0.4注:采用三聚磷酸钠和三偏磷酸钠作酯化剂。 十二、乙酰化二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单体淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg)≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.14;其他淀粉0.04乙酰基含量/(%) ≤2.5乙酸乙烯酯残留量/(mg/kg) ≤(仅限用乙酸乙烯酯作酯化剂)0.1 注:用乙酸酐作酯化剂时,其用量不超过8.0%(w/w,占淀粉干基),用乙酸乙烯酯作酯化剂时,其用量不超过7.5%(w/w,占淀粉干基)。 十三、羟丙基二淀粉磷酸酯项目指标干燥失重/(%) ≤谷类淀粉: 15.0;土豆淀粉: 21.0;其他单品淀粉: 18.0SO2残留量/(mg/kg) ≤30重金属(以Pb计)/(mg/kg) ≤20铅/(mg/kg) ≤1.0砷/(mg/kg) (以As计) ≤0.5磷酸盐残留量(以P计)/ (%) ≤马铃薯和小麦淀粉0.14;其他淀粉0.04羟丙基含量/(%) ≤7.0氯丙醇/(mg/kg) ≤1.0注:采用三氯氧磷(用量占淀粉干基不超过0.1%,w/w)或三偏磷酸钠酯化交联,环氧丙烷醚化(用量占淀粉干基不超过10%,w/w)。 十四、聚丙烯酸钠项 目指 标硫酸盐(以SO4计),w/ % ≤0.49重金属(以Pb计)/(mg/kg) ≤20.0砷(以As计)/(mg/kg) ≤2.0残存单体,w/ % ≤1.0低聚合物,w/ % ≤5.0干燥失重,w/ % <6.0烧灼残渣,w/ % ≤76.0pH(0.1%水溶液)8~100.2%水溶液粘度(60rpm.20℃)250~430 cps注:生产工艺,丙烯酸+NaOH→中和催化剂→聚合→精制→干燥→粉碎→成品。 分送:各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局,部直属各单位。卫生部办公厅 2010年7月21日印发
  • 国家标准化管理委员会对《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准复审结论进行公示
    各有关单位:根据国家标准复审工作计划,国家标准化管理委员会已组织完成了《水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法》等41项国家标准的复审工作,现将复审结论进行公示。如对复审结论有不同意见,请于2024年5月19日前,通过下方意见反馈功能,将意见反馈至国标委。国家标准化管理委员会2024-03-20部分相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 11934-1989水源水中乙醛、丙烯醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止2GB/T 11935-1989水源水中氯丁二烯卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止3GB/T 11936-1989水源水中丙烯酰胺卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止4GB/T 11937-1989水源水中苯系物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止5GB/T 11938-1989水源水中氯苯系化合物卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止6GB/T 11939-1989水源水中二硝基苯类和硝基氯苯类卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止7GB/T 11940-1989水源水中巴豆醛卫生检验标准方法 气相色谱法国家卫生健康委员会废止废止过渡期: 公告后12个月废止8GB/T 11941-1989水源水中硫化物卫生检验标准方法国家卫生健康委员会废止废止过渡期: 公告后12个月废止
  • 化妆品中丙烯酰胺等禁用物质或限用物质检测方法发布
    关于印发化妆品中丙烯酰胺等禁用物质或限用物质检测方法的通知  国食药监许[2011]96号各省、自治区、直辖市食品药品监督管理局(药品监督管理局):  为规范化妆品中禁用物质和限用物质检测技术要求,提高化妆品卫生质量安全,化妆品中丙烯酰胺等禁用物质或限用物质的检测方法已经国家食品药品监督管理局化妆品标准专家委员会审议通过,现予印发。  附件:1.化妆品中丙烯酰胺的检测方法     2.化妆品中甲醛的检测方法     3.化妆品中挥发性有机溶剂的检测方法     4.化妆品中钕等15种稀土元素的检测方法     5.化妆品中邻苯二甲酸酯类物质的检测方法     6.化妆品中三氯卡班的检测方法     7.化妆品中苯氧异丙醇的检测方法     8.化妆品中奎宁的检测方法     9.化妆品中6-甲基香豆素的检测方法     10.化妆品中苯甲醇的检测方法     11.化妆品中苯甲酸及其盐的检测方法  国家食品药品监督管理局  二○一一年二月二十一日
  • 卫计委对35项食品安全国家标准征求意见
    国家卫生计生委办公厅关于征求《食品理化检验方法 总则》等35项食品安全国家标准(征求意见稿)和2项标准修改单意见的函国卫办食品函〔2014〕527号  工业和信息化部、农业部、商务部、质检总局、食品药品监管总局(国务院食品安全办)办公厅,粮食局、标准委、认监委办公室,各有关单位:  根据《食品安全法》及其实施条例的规定,我委组织拟订了《食品理化检验方法总则》等35项食品安全国家标准(征求意见稿)和2项标准修改单,现征求你单位意见并向社会公开征求意见(征求意见稿及编制说明可从国家卫生计生委网站http://www.nhfpc.gov.cn下载)。请于2014年7月15日前将意见反馈表(附件38)以传真或电子邮件形式反馈我委。  传 真:010-52165414、52165424  电子信箱:spbz@cfsa.net.cn、zqyj@cfsa.net.cn  附件:1.《食品理化检验方法 总则》征求意见稿及编制说明.rar  2.《食品微生物学检验 微生物酶源制剂中抗菌活性的测定》征求意见稿及编制说明.rar  3.《食品微生物学检验 小肠结肠炎耶尔森氏菌检验》征求意见稿及编制说明.rar  4.《食用淀粉》征求意见稿及编制说明.rar  5.《食用盐》征求意见稿及编制说明.rar  6.《方便面》征求意见稿及编制说明.rar  7.《食品添加剂 皂荚糖胶》征求意见稿及编制说明.rar  8.《食品添加剂 甘草酸三钾》征求意见稿及编制说明.rar  9.《食品添加剂 二甲基二碳酸盐(维果灵)》征求意见稿及编制说明.rar  10.《食品添加剂 天门冬酰苯丙氨酸甲酯乙酰磺胺酸》征求意见稿及编制说明.rar  11.《食品添加剂 罗汉果甜苷》征求意见稿及编制说明.rar  12.《食品添加剂 沙蒿胶》征求意见稿及编制说明.rar  13.《食品添加剂 1,2-二氯乙烷》征求意见稿及编制说明.rar  14.《食品添加剂 聚氧乙烯聚氧丙烯胺醚》征求意见稿及编制说明.rar  15.《食品添加剂 甘草酸铵》征求意见稿及编制说明.rar  16.《食品添加剂 不溶性聚乙烯聚吡咯烷酮》征求意见稿及编制说明.rar  17.《食品添加剂 柠檬酸钾》征求意见稿及编制说明.rar  18.《食品添加剂 L-半胱氨酸盐酸盐》征求意见稿及编制说明.rar  19.《食品添加剂 半乳甘露聚糖》征求意见稿及编制说明.rar  20.《食品添加剂 红花黄》征求意见稿及编制说明.rar  21.《食品添加剂 姜黄》征求意见稿及编制说明.rar  22.《食品添加剂 姜黄素》征求意见稿及编制说明.rar  23.《食品添加剂 硅酸镁》征求意见稿及编制说明.rar  24.《食品添加剂 膨润土》征求意见稿及编制说明.rar  25.《食品添加剂 焦糖色(普通法、苛性亚硫酸盐法、氨法、亚硫酸铵法)》征求意见稿及编制说明.rar  26.《食品添加剂 6号轻汽油(己烷类溶剂)》征求意见稿及编制说明.rar  27.《食品添加剂 单辛酸甘油酯》征求意见稿及编制说明.rar  28.《食品添加剂 己二酸》征求意见稿及编制说明.rar  29.《食品添加剂 石油醚》征求意见稿及编制说明.rar  30.《食品添加剂 丙烷》征求意见稿及编制说明.rar  31.《食品添加剂 丁烷》征求意见稿及编制说明.rar  32.《食品添加剂 1-丁醇(正丁醇)》征求意见稿及编制说明.rar  33.《食品添加剂 乙醚》征求意见稿及编制说明.rar  34.《食品营养强化剂 低聚半乳糖》征求意见稿及编制说明.rar  35.《食品辐照加工卫生规范》征求意见稿及编制说明.rar  36.《食品添加剂 聚丙烯酸钠》(GB 29948-2013)第1号修改单.doc  37.《食品添加剂 麦芽糖醇和麦芽糖醇液》(GB 28307&mdash 2012)第1号修改单.doc  38.食品安全国家标准征求意见反馈表.docx  国家卫生计生委办公厅  2014年6月18日
  • 9项国家生态环境标准发布,涉及多类别仪器检测方法
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,《土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法》等9项标准为国家生态环境标准批准发布,自 2024年6月1日起实施。一、 土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023)此标准规定了测定土壤和沉积物中 19 种金属元素总量的电感耦合等离子体质谱法,适用于土壤和沉积物中银(Ag)、砷(As)、钡(Ba)、铍(Be)、铋(Bi)、镉(Cd)、铬(Cr)、钴(Co)、铜(Cu)、锂(Li)、锰(Mn)、钼(Mo)、镍(Ni)、锑(Sb)、锶(Sr)、铅(Pb)、铊(Tl)、钒(V)和锌(Zn)共 19 种金属元素的测定。此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为中国环境监测总站、生态环境部华南环境科学研究所、湖南省生态环境监测中心、河南省生态环境监测中心,验证单位为湖北省生态环境监测中心站、河南省济源生态环境监测中心、辽宁省生态环境监测中心、宁夏回族自治区生态环境监测中心、天津市生态环境监测中心、北京市生态环境监测中心。此标准自2024年6月1日起实施。二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ/T 195—2005)此标准规定了测定水中氨氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中氨氮(以N 计)的测定,方法的检出限为 0.02 mg/L,测定下限为 0.08 mg/L。自此标准实施之日起,《水质 氨氮的测定 气相分子吸收光谱法》(HJ/T 195—2005)废止。此标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:江西省生态环境监测中心、安徽省生态环境监测中心、湖北省生态环境监测中心站。本标准验证单位:重庆市生态环境监测中心、广东省生态环境监测中心、辽宁省大连生态环境监测中心、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。三、 水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ/T 199—2005)本标准规定了测定水中总氮的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中总氮(以N 计)的测定。采用高温高压消解,取样量为 20.0 ml 时,方法检出限为 0.05 mg/L,测定下限为0.20 mg/L;采用在线紫外消解,方法检出限为 0.05 mg/L,测定下限为 0.20 mg/L。本标准主要起草单位:江西省生态环境监测中心、重庆市生态环境监测中心、辽宁省大连生态环境监测中心。本标准验证单位:湖南省生态环境监测中心、湖北省生态环境监测中心站、四川省生态环境监测总站、江西省宜春生态环境监测中心、广东省汕头生态环境监测中心站、甘肃省酒泉生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ/T 200—2005)本标准规定了测定水中硫化物的气相分子吸收光谱法,适用于地表水、地下水、生活污水、工业废水和海水中硫化物(以S2-计)的测定。方法的检出限为 0.005 mg/L,测定下限为 0.020 mg/L。本标准主要起草单位:江西省生态环境监测中心、辽宁省大连生态环境监测中心、重庆市生态环境监测中心。本标准验证单位:安徽省生态环境监测中心、山西省生态环境监测和应急保障中心、湖北省生态环境监测中心站、甘肃省酒泉生态环境监测中心、广东省汕头生态环境监测中心站、辽宁省抚顺生态环境监测中心。本标准自 2024 年 6 月 1 日起实施。五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023)本标准规定了测定固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的高效液相色谱法,适用于固定污染源有组织排放废气和无组织排放监控点空气中丙烯酸和甲基丙烯酸的测定。进样体积为 10 µl 时,丙烯酸和甲基丙烯酸的最低检出浓度分别为 0.011 mg/L、0.017 mg/L。固定污染源有组织排放废气采样体积为 30 L(标准状态下的干排气),试样定容体积为50 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.02 mg/m3、0.03 mg/m3,测定下限分别为0.08 mg/m3、0.12 mg/m3。无组织排放监控点空气采样体积为 30 L(标准状态下的干排气),试样定容体积为10 ml 时,丙烯酸和甲基丙烯酸的方法检出限分别为 0.004 mg/m3、0.006 mg/m3,测定下限分别为0.016 mg/m3、0.024mg/m3。本标准主要起草单位:广东环境保护工程职业学院。本标准验证单位:广东省广州生态环境监测中心站、广东省佛山生态环境监测站、广东省东莞生态环境监测站、广西壮族自治区南宁生态环境监测中心、广东省科学院生态环境与土壤研究所、广西大学。本标准自 2024 年 6 月 1 日起实施。六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023)本标准规定了测定环境空气和废气中 6 种丙烯酸酯类化合物的气相色谱法,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中丙烯酸甲酯、丙烯酸乙酯、甲基丙烯酸甲酯、丙烯酸丙酯、丙烯酸丁酯和甲基丙烯酸丁酯等 6 种丙烯酸酯类化合物的测定。环境空气和无组织排放监控点空气采样体积为 20 L,解吸体积为 1.0 ml,进样量为1.0 μl 时,方法检出限为 0.02 mg/m3,测定下限为 0.08 mg/m3;固定污染源有组织排放废气的进样体积为1.0 ml 时,方法检出限为 1 mg/m3~2 mg/m3,测定下限为 4 mg/m3~8 mg/m3。本标准主要起草单位:江苏省苏州环境监测中心。本标准验证单位:江苏省无锡环境监测中心、上海市浦东新区环境监测站、江苏康达检测技术股份有限公司、苏州市华测检测技术有限公司、浙江省生态环境监测中心和江苏省泰州环境监测中心。本标准自 2024 年 6 月 1 日起实施。七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023)本标准规定了开展区域环境空气臭氧自动监测质量评估的的工作流程、仪器和设备、质量评估目标、评估区域及点位抽样、现场检查与比对、质量评估、评价质量保证与质量控制,适用于以紫外光度法等为原理的环境空气臭氧自动监测的质量评估。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、河北省生态环境应急与重污染天气预警中心。本标准自 2024 年 6 月 1 日起实施。八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023)本标准规定了采用臭氧传递标准校准下级臭氧传递标准的操作技术要求,适用于校准环境空气监测臭氧传递标准,浓度范围为 1 nmol/mol~500 nmol/mol。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:中国环境监测总站、北京市生态环境监测中心、山东省生态环境监测中心、中国环境科学研究院。本标准自 2024 年 6 月 1 日起实施。九、 生态遥感地面观测与验证技术导则(HJ 1320—2023)本标准规定了陆地生态遥感地面观测与验证工作各环节的基本要求,包括地面验证场(站)选址、验证样地样方布设、观测参数、观测方法、基础设施建设、遥感产品验证及验证精度评价等,适用于指导基于生态遥感及地面观测技术的全国及区域遥感产品验证、遥感监测等相关工作。本标准为首次发布。本标准由生态环境部生态环境监测司、法规与标准司组织制订。本标准主要起草单位:生态环境部卫星环境应用中心、中国科学院地理科学与资源研究所、中国科学院空天信息创新研究院、山西省生态环境监测和应急保障中心(山西省生态环境科学研究院)、四川省生态环境科学研究院、江苏省环境监测中心。本标准自 2024 年 6 月 1 日起实施。附:一、土壤和沉积物 19种金属元素总量的测定 电感耦合等离子体质谱法(HJ 1315—2023).pdf二、水质 氨氮的测定 气相分子吸收光谱法 (HJ 195—2023代替HJ_T 195—2005).pdf三、水质 总氮的测定 气相分子吸收光谱法(HJ 199—2023代替HJ_T 199—2005).pdf四、水质 硫化物的测定 气相分子吸收光谱法 (HJ 200—2023代替HJ_T 200—2005).pdf五、固定污染源废气 丙烯酸和甲基丙烯酸的测定 高效液相色谱法 (HJ 1316—2023).pdf六、环境空气和废气 6种丙烯酸酯类化合物的测定 气相色谱法 (HJ 1317—2023).pdf七、区域环境空气臭氧自动监测质量评估技术要求(HJ 1318—2023).pdf八、环境空气监测臭氧传递标准校准技术规范(HJ 1319—2023).pdf九、生态遥感地面观测与验证技术导则(HJ 1320—2023).pdf
  • 468项国家标准批准发布 涉及光谱、色谱、核磁、质谱等分析方法
    2023年11月27日,国家市场监督管理总局(国家标准化管理委员会)批准《液压缸 试验方法》等468项推荐性国家标准。从468项推荐性国家标准中多项涉及了分析检测方法,如傅里叶红外光谱、拉曼光谱法、电感耦合等离子体发射光谱法、红外吸收光谱、核磁共振氢谱法等光谱分析方法。详细内容如下:序号国家标准编号国家标准名称代替标准号实施日期1GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法2024-06-012GB/T 23947.3-2023无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法2024-06-013GB/T 19267.1-2023法庭科学 微量物证的理化检验 第1 部分:红外吸收光谱GB/T 19267.1-20082024-06-014GB/T 3286.12-2023石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法2024-06-015GB/T 3260.11-2023锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和钴含量的测定 电感耦合等离子体原子发射光谱法2024-06-016GB/T 6150.3-2023钨精矿化学分析方法 第3部分:磷含量的测定 磷钼黄分光光度法和电感耦合等离子体原子发射光谱法GB/T 6150.3-20092024-06-017GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法 和电感耦合等离子体原子发射光谱法2024-06-018GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法2024-06-019GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法2024-06-0110GB/T 43309-2023玻璃纤维及原料化学元素的测定 X 射线荧光光谱法2024-06-0111GB/T 43310-2023玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法(ICP-OES)2024-06-0112GB/T 43275-2023玩具塑料中锑、砷、钡、镉、铬、铅、汞、硒元素的筛选测定 能量色散 X 射线 荧光光谱法2023-11-2713GB/T 43341-2023纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法2024-06-0114GB/T 5686.9-2023锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法)2024-06-0115GB/T 7731.17-2023钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法2024-06-0116GB/T 43314-2023硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法2024-06-0117GB/T 43098.2-2023水处理剂分析方法 第2部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法(ICP-MS)2024-06-0118GB/T 43448-2023蜂蜜中 17-三十五烯含量的测定 气相色谱质谱法2024-06-0119GB/T 23986.2-2023色漆和清漆 挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定 第2部分:气相色谱GB/T 23986-20092024-06-0120GB/T 3392-2023工业用丙烯中烃类杂质的测定 气相色谱法GB/T 3392-20032024-06-0121GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法GB/T 3394-20092024-06-0122GB/T 17530.2-2023工业丙烯酸及酯的试验方法 第2部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法GB/T 17530.2-19982024-06-0123GB/T 43362-2023气体分析 微型热导气相色谱法2024-06-01
  • 2023年色谱标准盘点:司法鉴定和石化两大领域标准占近七成
    色谱是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。该技术广泛应用于石化、食品、环境、生物医药等领域。按两相状态分类,色谱可分为气相色谱、液相色谱和超临界流体色谱。本文整理的2023年色谱标准仅包括气相色谱和液相色谱(离子色谱除外)的国家标准和行业标准,且不涉及与质谱等其他技术联用的标准。2023年离子色谱标准盘点已单独成文并发布,详见2023 年 离子色谱标准解读上:从国标看 IC 新的市场机会和2023 年 离子色谱标准解读下:从行业标准看在线离子色谱市场机会。编辑对2023年发布的色谱标准进行盘点,数据主要统计自各网站公开信息,如有遗漏、错误欢迎在留言区补充。据不完全统计,2023年发布的气相色谱和液相色谱相关标准总计74项,其中气相色谱标准40项,液相色谱标准34项,具体内容见下图。行业应用分析74项标准中除1项气相色谱柱校准规范外,主要涉及六大行业,如下图所示,主要包括司法鉴定、石化、食品、农林、生活用品和环境行业,其中司法鉴定和石化两大重点领域标准数量占近七层。(1)司法鉴定行业2023年所发布的色谱标准中,司法鉴定行业发布的标准最多,主要有30项,详细内容见下表。《国家标准化发展纲要》实施以来,公安部不断强化公共安全行业标准的研制、供给和实施。这些标准主要由全国刑标委归口,涉及毒物毒品、微量物证、痕迹等专业领域,是刑标委支撑实战、服务诉讼,不断优化标准体系、持续加强标准供给的集中体现。这些标准的发布,为刑法、刑事诉讼法、禁毒法、治安管理处罚法的实施提供了全方位的技术支持,成为侦查、诉讼、审判过程的科学依据和操作守则。30项标准中涉及气相色谱有14项,液相色谱有16项。司法鉴定行业主要使用的仪器是色谱仪和质谱仪,定量分析只使用色谱仪,而定性分析要色谱仪和质谱仪混用。序号标准类别标准名称发布日期1行业标准GA/T 819-2023法庭科学 纤维上染料检验 薄层色谱和液相色谱法2023/3/12行业标准GA/T 2030-2023法庭科学 疑似毒品中杜冷丁检验气相色谱和气相色谱-质谱法2023/3/13行业标准GA/T 2038-2023法庭科学 疑似毒品中曲马多检验 气相色谱和气相色谱-质谱法2023/3/14行业标准GA/T 2043-2023法庭科学 疑似止咳水中可待因检验 气相色谱和气相色谱-质谱法2023/3/15行业标准GA/T 2035-2023法庭科学 疑似毒品中咖啡因检验液相色谱和液相色谱-质谱法2023/3/16行业标准GA/T 2026-2023法庭科学 疑似毒品中苯环利定检验气相色谱和气相色谱-质谱法2023/3/17行业标准GA/T 2031-2023法庭科学 疑似毒品中杜冷丁检验液相色谱和液相色谱-质谱法2023/3/18行业标准GA/T 2036-2023法庭科学 疑似毒品中尼美西泮检验气相色谱和气相色谱-质谱法2023/3/19行业标准GA/T 2040-2023法庭科学 疑似毒品中异丙嗪检验 液相色谱和液相色谱-质谱法2023/3/110行业标准GA/T 2044-2023法庭科学 疑似止咳水中可待因检验 液相色谱和液相色谱-质谱法2023/3/111行业标准GA/T 2039-2023法庭科学 疑似毒品中曲马多检验 液相色谱和液相色谱-质谱法2023/3/112行业标准GA/T 2028-2023法庭科学 疑似毒品中丁丙诺啡检验气相色谱和气相色谱-质谱法2023/3/113行业标准GA/T 2027-2023法庭科学 疑似毒品中苯环利定检验液相色谱和液相色谱-质谱法2023/3/114行业标准GA/T 2037-2023法庭科学 疑似毒品中尼美西泮检验 液相色谱和液相色谱-质谱法2023/3/115行业标准GA/T 2032-2023法庭科学 疑似毒品中二氢埃托啡检验气相色谱和气相色谱-质谱法2023/3/116行业标准GA/T 2029-2023法庭科学 疑似毒品中丁丙诺啡检验液相色谱和液相色谱-质谱法2023/3/117行业标准GA/T 2051-2023法庭科学 疑似易制毒化学品中溴素检验 气相色谱和气相色谱-质谱法2023/3/118行业标准GA/T 2033-2023法庭科学 疑似毒品中二氢埃托啡检验液相色谱和液相色谱-质谱法2023/3/119行业标准GA/T 2022-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA检验 气相色谱和气相色谱-质谱法2023/3/120行业标准GA/T 2024-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验 气相色谱和气相色谱-质谱法2023/3/121行业标准GA/T 2023-2023法庭科学 疑似毒品中5F-AMB和5F-APINACA 检验液相色谱和液相色谱-质谱法2023/3/122行业标准GA/T 2025-2023法庭科学 疑似毒品中5-MeO-DiPT和5-MeO-MiPT 检验液相色谱和液相色谱-质谱法2023/3/123行业标准GA/T 2021-2023法庭科学 疑似毒品中2'-氯地西泮和4'-氯地西泮检验 气相色谱和气相色谱-质谱法2023/3/124行业标准GA/T 2045-2023法庭科学 疑似易制毒化学品中1-苯基-2-丙酮等8种物质检验 气相色谱-质谱和液相色谱法2023/3/125行业标准GA/T 2041-2023法庭科学 疑似恰特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验气相色谱和气相色谱-质谱法2023/3/126行业标准GA/T 2042-2023法庭科学 疑似怡特草中卡西酮、去甲伪麻黄碱和去甲麻黄碱检验 液相色谱和液相色谱-质谱法2023/3/127行业标准GA/T 2020-2023法庭科学 疑似毒品中 2-氟苯丙胺等168种新精神活性物质检验 气相色谱-质谱、红外光谱和液相色谱法2023/3/128行业标准GA/T 2047-2023法庭科学 疑似易制毒化学品中苯乙腈、3-氧-2-苯基丁酰胺、3-氧-2-苯基丁酸甲酯检验 气相色谱和气相色谱-质谱法2023/3/129行业标准GA/T 2046-2023法庭科学 疑似易制毒化学品中N-苯乙基-4-哌啶酮和4-苯胺基-N-苯乙基哌啶检验 红外光谱、气相色谱-质谱和液相色谱法2023/3/130行业标准GA/T 2075.3-2023法庭科学 常见易燃液体及其残留物检验 第3部分:热脱附-气相色谱/质谱法2023/3/1(2)石化行业2023年发布的色谱标准中,石化行业占20项,其中气相色谱18项,液相色谱2项,详细内容见下表。在石化行业的分析检测中,GC是非常重要的。气相色谱技术在石化分析方面的应用主要涉及气体分析、汽油组成分析、烃类物质分析、含氧化合物分析等。其应用范围也较为广泛,由于其分离和定量能力以及高性价比,从石油勘探、石油加工、化学工业研究到生产控制和产品质量把关都有不可替代的地位。尤其值得一提的是NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法的发布。对于成分复杂的样品体系,样品基质是多样化的,一维色谱峰容量有限,会出现严重的组分共流出现象。最新理论和实验证明,全二维气相色谱在相同的分析时间和检测限的条件下,全二维的峰容量可以达到传统一维色谱的10倍;而一维色谱要获得同样的峰容量,理论上需要用到比目前长100倍的分离柱、高10倍的柱头压、和1000倍的分析时间。序号标准类别标准名称发布日期1国家标准GB/T 27894.3-2023天然气 用气相色谱法测定组成和计算相关不确定度 第3部分:精密度和偏差2023/3/172国家标准GB/T 42307-2023肥料和土壤调理剂 尿素基肥料中缩二脲含量的测定 高效液相色谱法2023/3/173国家标准GB/T 42357-2023|非水溶性染料纯度的测定 液相色谱法2023/3/174国家标准GB/T 9722-2023化学试剂 气相色谱法通则2023/8/65国家标准GB/T 23961-2023低碳脂肪胺含量的测定 气相色谱法2023/9/76国家标准GB/T 8038-2023焦化甲苯 烃类杂质含量的测定 气相色谱法2023/9/77国家标准GB/T 17530.2-2023工业丙烯酸及酯的试验方法第2部分:工业用丙烯酸酯有机杂质及纯度的测定气相色谱法2023/11/278国家标准GB/T 23986.2-2023色漆和清漆挥发性有机化合物(VOC)和/或半挥发性有机化合物(SVOC)含量的测定第2部分:气相色谱法2023/11/279国家标准GB/T 3392-2023工业用丙烯中烃类杂质的测定气相色谱法2023/11/2710国家标准GB/T 3394-2023工业用乙烯、丙烯中微量一氧化碳、 二氧化碳和乙炔的测定气相色谱法2023/11/2711国家标准GB/T 43362-2023气体分析微型热导气相色谱法2023/11/2712行业标准NB/SH/T 6069-2023石油馏分氮和烃沸程分布的测定 气相色谱法2023/2/613行业标准NB/SH/T 6070-2023石油馏分硫和烃沸程分布的测定 气相色谱法2023/2/614行业标准SH/T 1674-2023工业用环己烷纯度及烃类杂质的测定 气相色谱法2023/4/2115行业标准SH/T 1628.2-2023工业用乙酸乙烯酯 第2部分:纯度及有机杂质的测定 气相色谱法2023/4/2116行业标准HG/T 4095-2023化工用在线气相色谱仪2023/12/2017行业标准YB/T 6137-2023煤焦油 联苯、苊、芴含量的测定 气相色谱法2023/12/2018行业标准NB/SH/T 0713-2023汽油中苯和甲苯含量的测定气相色谱法2023/12/2819行业标准NB/SH/T 6078-2023喷气燃料中苯系和萘系烃组成的测定全二维气相色谱法2023/12/2820行业标准SN/T 5681-2023工业单羧脂肪酸含量的测定 气相色谱法2023/12/29(3)食品行业食品行业的7项标准中,气相色谱标准4项,液相色谱标准3项;发布单位包括海关、农业部等。序号标准类别标准名称发布日期1行业标准GH/T 1393-2022蜂蜜中阿洛酮糖含量的测定 高效液相色谱法2023/2/92行业标准GH/T 1405-2022果蔬贮藏过程中乙烯释放速率的测定 气相色谱法2023/2/93行业标准NY/T 4311-2023动物骨中多糖含量的测定液相色谱法2023/2/174行业标准JJF 2022-2023白酒分析气相色谱仪校准规范2023/3/155行业标准SN/T 5561-2023出口食品中乙嘧硫磷残留量的测定 气相色谱法2023/11/16行业标准SN/T 5658.1-2023蒸馏酒质量鉴别方法 第1部分:18种挥发性成分含量的测定 气相色谱法2023/11/17行业标准SN/T 5658.2-2023蒸馏酒质量鉴别方法 第2部分:橡木浸出物的测定 超高效液相色谱法2023/11/1(4)农林业农林业发布的7项标准中均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1行业标准NY/T 4310-2023饲料中吡啶甲酸铬的测定高效 液相色谱法2023/2/172行业标准NY/T 4305-2023植物油中2,6-二甲氧基-4-乙烯 基苯酚的测定高效液相色谱法2023/2/173行业标准NY/T 4354-2023禽蛋中卵磷脂的测定高效液相色谱法2023/4/114行业标准NY/T 4357-2023植物源性食品中叶绿素的测定高效液相色谱法2023/4/115行业标准NY/T 4355-2023农产品及其制品中嘌呤的测定高效液相色谱法2023/4/116行业标准NY/T 4352-2023浆果类水果中花青苷的测定高效液相色谱法2023/4/117行业标准NY/T 4356-2023植物源性食品中甜菜碱的测定高效液相色谱法2023/4/11(5)生活用品行业生活用品行业发布的标准均使用液相色谱进行分析检测。序号标准类别标准名称发布日期1国家标准GB/T 42423-2023化妆品中二氯苯甲醇和氯苯甘醚的测定 高效液相色谱法2023/3/172国家标准GB/T 42425-2023化妆品中功效组分辛酰水杨酸、苯乙基间苯二酚、阿魏酸的测定 高效液相色谱法2023/3/173国家标准GB/T 42462-2023化妆品色谱分析结果确认准则2023/3/174行业标准QB/T 5831-2023口腔清洁护理用品 牙膏中三氯蔗糖的测定 高效液相色谱法2023/4/215行业标准QB/T 5832-2023口腔清洁护理用品 牙膏中厚朴酚、和厚朴酚含量的测定 高效液相色谱法2023/4/216行业标准QB/T 5833-2023口腔清洁护理用品 牙膏中p-氯-m-甲酚、六氯酚、双氯酚、溴氯芬、苄氯酚、氯二甲酚6种氯酚类防腐剂含量的测定 高效液相色谱法2023/4/21(6)环境行业环境行业发布的标准共3项,其中液相色谱1项,气相色谱2项(包括在线/便携气相1项);随着对环保要求越来越严格,在线/便携等设备将在环境检测等领域发挥巨大的作用。序号标准类别标准名称发布日期1行业标准HJ 1316-2023固定污染源废气丙烯酸和甲基丙烯酸的测定高效液相色谱法2023/11/272行业标准HJ 1317-2023环境空气和废气6种丙烯酸酯类化合物的测定气相色谱法2023/11/273行业标准HJ 1332-2023固定污染源废气 总烃、甲烷和非甲烷总烃的测定便携式气相色谱-氢火焰离子化检测器法2023/12/5
  • 赛默飞LCMS和GCMS法测定烘焙食物中的丙烯酰胺
    陈冰、秦玉荣 事件回顾:距离3月31日“星巴克致癌”刷屏事件已经过去一个大半个月了,朋友圈消停了,网友们也似乎忘记这件事了。然而赛默飞对待食品安全问题向来严谨。追本溯源,事件的起因是一种叫做丙烯酰胺的物质。那么,丙烯酰胺到底是什么? 丙烯酰胺是食物发生“美拉德反应”时的一个副产物。 咖啡里的丙烯酰胺是在烘焙的过程中产生的。美国癌症学会(ACS)指出,只要一个食物里有淀粉,有氨基酸,经过了高温烹饪,那就会产生微量丙烯酰胺,在油炸和烘焙的食品里尤其容易产生。国际癌症研究机构(IARC)把丙烯酰胺列在了致癌名单里,但没有把那些含丙烯酰胺的食物也一起列上。美国癌症学会的原话是:“目前没有任何一种癌症类型的风险增加,是明确和摄入丙烯酰胺相关的。”所以说,抛开剂量谈毒性就是 不(shua) 靠(liu) 谱(mang)。 可是,由于丙烯酰胺分子量较低,极性较高,且缺乏明显的发色团(共轭双键、三键、苯环)等性质,使得定量分析丙烯酰胺很困难。传统上用于测定丙烯酰胺含量的方法有酶联免疫法、溴化法、紫外分光光度法、气相色谱法等。但这些方法检测线高而且操作复杂。那么,有没有一种方法既简单高效又有很高的灵敏度及准确性?且看赛默飞的液质+气质完美解决方案:LCMSMS篇:TSQ Altis/Quantis 赛默飞最新一代三重四极杆液质系统1.检测条件:色谱柱:Syncronis C18 (100x2.1mm,3μm ) 流动相:水 甲醇;梯度洗脱流速:300 μL/min;进样量:20 μL质谱条件(ESI+): 表1.离子源设置的参数喷雾电压/V4000气化温度/℃350鞘气/arb30辅助气/arb5反吹气/arb0离子传输管温度/℃350碰撞气体(Ar)/mTorr1.5扫描模式SRM表2. SRM模式中的离子对信息化合物母离子(Parent)子离子(Product )碰撞能量(CE)S-Lens 电压 丙烯酰胺72.255.3*117544.55427.455*标记为定量离子 2检测结果在所建立方法下,丙烯酰胺仪器检出限为0.05ppb,线性范围为:0.1ppb-1000ppb。分别如图1、图2所示:图1:0.05ppb丙烯酰胺提取离子质谱图图2:0.1-1000ppb浓度范围内丙烯酰胺线性关系图图3:低浓度0.1-5ppb范围放大图(丙烯酰胺线性关系图)选择高于检出限5倍检出限和20倍检出限,即0.25ppb和1ppb重复进样6针计算RSD值,分别为3.5%和1.9%,重复性很好,结果如图4和图5所示。图4:丙烯酰胺0.25ppb进样6针重复性(3.5%)图5:丙烯酰胺1ppb进样6针重复性(1.9%)接下来请看GCMS篇: Thermo Scientific ISQ 7000单四极杆GC-MS系统1)依据《GB 5009.204-2014》标准,前处理衍生化方法,GCMS采用EI SIM监测模式,监测离子见下表:衍生后化合物EI SIM监测模式2-bromo-propenamide106,133, 150,1522-bromo-13C3-propenamide108,136, 153,155色谱图如下:2)拓展标准,前处理依然采用衍生化方法,由于食品样品基质复杂,干扰严重,采用CI源能消除干扰,提高灵敏度,因此GCMS采用PCI SIM监测模式,监测离子见下表,5ppb标准品提取色谱图见下图:衍生后化合物PCI SIM监测模式2-bromo-propenamide167,1692-bromo-13C3-propenamide170,172已经颁布的食品中丙烯酰胺的检测范围为10-50ppb, 而在PCI SIM模式下,方法检出限为2ppb,线性范围为5-1000ppb,如figure 6:3)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用EI SIM监测模式,监测离子见下表:化合物EI SIM监测模式Acrylamide71,55, 443C3-acrylamide74,58 方法检出限为5ppb,线性范围为5-500ppb,如figure 3: 4)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用NCI SIM监测模式,监测离子见下表:化合物NCI SIM监测模式Acrylamide703C3-acrylamide73 方法检出限为2ppb,线性范围为2-500ppb,如figure 4:另外,由于CI源具有高度选择性,可以降低基质干扰提高灵敏度,下图为未衍生化的薯条样品EI SIM和NCI SIM的谱图比对,图中可见,NCI模式下,基线噪音很低,化合物的响应很高,大大提高了灵敏度。针对食品中丙烯酰胺分析,Thermo Scientific ISQ 7000单四极杆GC-MS系统提供各完美解决方案。Thermo Scientific ISQ 7000 优势:1. 具有NeverVent技术,真空锁(VPI)和V-Lock技术可以同时实现不泄真空换离子源(以及EI/CI的切换)和不泄真空换色谱柱功能,业界唯一技术2. 专利的PPINICI技术,单次进样实现不同保留时间和不同扫描时间内正负离子切换,业界唯一技术3. 电子流量同时控制 两种 CI 反应气,分析过程中反应气流速可调 ,业界唯一技术4. “S”型离子通道设计,有效消除中性噪音,提高信噪比和灵敏度,业界唯一技术5. 独一无二的双灯丝设计,灯丝朝向相同的方向以提高性能并受到电子透镜的保护6. ExtractaBrite 离子源和高性能AEI源具备高效的分析物电离能力和高聚焦的离子束,降低了仪器检出限,并确保更高的稳定性以防止可能的污染。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制