当前位置: 仪器信息网 > 行业主题 > >

铁蛋白质控品

仪器信息网铁蛋白质控品专题为您提供2024年最新铁蛋白质控品价格报价、厂家品牌的相关信息, 包括铁蛋白质控品参数、型号等,不管是国产,还是进口品牌的铁蛋白质控品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铁蛋白质控品相关的耗材配件、试剂标物,还有铁蛋白质控品相关的最新资讯、资料,以及铁蛋白质控品相关的解决方案。

铁蛋白质控品相关的资讯

  • 乳铁蛋白国标发布!美正生物为您提供检测解决方案
    近日,《GB 5009.299-2024 食品安全国家标准 食品中乳铁蛋白的测定》国标发布,于2024年8月8日正式实施。标准规定:使用肝素亲和柱富集净化,高效液相色谱法测定。美正生物可提供“国标符合”乳铁蛋白检测解决方案01肝素亲和柱柱容量高柱容量>2mg,验证回收率≥95%。样本适用性广满足婴幼儿配方食品、巴氏杀菌乳、调制乳、发酵乳、乳饮料等样本的检测需求。准确度高样本及加标回收率在80%-120%之间。富集净化效果好乳铁蛋白标准品色谱图样本上样色谱图精密度高批内批间变异系数均小于10%02牛乳铁蛋白标准品满足国标纯度≥95%铁含量≤35mg/100g的规定。03其他耗材美正还可提供前处理柱操作架、乳铁蛋白基体质控样本、滤膜、水相针头滤器等检测过程中会使用到的小设备及耗材。欢迎咨询!
  • 微流控芯片技术在蛋白质药物质控中的应用前景
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "药品标准直接关乎药品质量,它是从源头上控制药品的安全性,有效性及质量可靠性的尺度。随着生物技术药物的发展,生物制品安全问题也越来越引起人们的重视。目前经批准的生物技术药物主要为重组蛋白质药物与单克隆抗体,该类药物的开发已成为当今生物技术及制药工业中最为活跃的领域之一,显示出巨大的社会效益和经济效益。但由于该类药物的结构复杂,用量很小,且生物体内有大量相似物质的干扰,其为质量控制和检测增加了难度。它需要应用生物化学、免疫学、微生物学和分子生物学等多门学科的理论和技术,进行综合性监测分析和评价,确保生物技术药物的安全有效性。而微流控芯片的研究和发展给蛋白质药物质控开拓了新的思路。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 微流控是一个快速发展的跨学科领域,融合贯穿了物理、化学、生物医学和微系统工程学科等。所谓“微流控芯片”,又称芯片实验室(Lab-on-a-Chip),是指把生物和化学领域中所涉及的样品制备、生物与化学反应、分离检测等基本操作单位集成或基于一块几平方里面的芯片上,用以完成不同的生物或化学反应过程,并对其产物进行分析的一种技术。其最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统。结合不同分析检测手段(如:光学检测法、电化学检测法以及质谱检测法等),对样品进行快速、准确、高通量以及多维度分析。它不仅使生物样品于试剂的消耗降低至纳升甚至皮升级,而且使分析速度大大提高,分析费用大大降低。充分体现了当今分析设备微型化、集成化和便携化的发展趋势。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 随着蛋白质药物研究的发展,对产品进行质量控制也趋于自动化和微型化,实时快速地对产品进行分析测定,为医药、临床病理等蛋白质领域研究提供了强有力的手段。微流控芯片作为一种集成、快速、高效、高通量、试剂用量小的微型实验室,将极大地促进蛋白质药物质控的研究。我们希望能够通过建立相应的微流控芯片平台,针对重组蛋白质药物或单抗药品一些关键质量属性(如:电荷变异体分析、糖基化鉴定、聚集体和片段分析等),通过研制具有溯源性的高准确度测量装置和方法,提高测量结果的准确度和精准度,支撑蛋白质药物的安全性、有效性评价以及服务产业发展。span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 550px height: 310px " src="https://img1.17img.cn/17img/images/202011/uepic/968aed89-2fd2-4dd2-8585-b5b54bbc4bad.jpg" title="图片12.png" alt="图片12.png" width="550" height="310" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: center text-indent: 0em "图1:微流控芯片-质谱联用平台。在芯片上集成不同的功能单元, 分别进行药物灌输、生物/化学反应、样品预富集及ESI-MS在线检测。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: right "(文稿:张炜飞)/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/8750474c-7644-477e-be6c-8cc21824717b.jpg" title="11.jpg" alt="11.jpg"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "欢迎各位专家、同仁报名参会!/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:http://tdmsqs.ncrm.org.cn。/p
  • 多肽药物质控丨当混合多肽遇见蛋白质测序仪
    在多肽类药物的生产质控中,氨基酸序列的测定是必不可少的检测项目。对于常规组成单一的合成多肽药物来说,氨基酸序列的分析较为简单,可通过Edman降解法或质谱法进行测定,其中Edman降解法被认为更加直接可靠。但对于组成复杂的混合多肽药物来说,比如,醋酸格拉替雷(Glatiramer acetate,简写为GA),由于多肽组成形式复杂多变,可能具有超过一万亿个不同序列的独特多肽,如果对每种多肽成分的氨基酸序列进行精确测定,似乎既不可能,其实也无必要,我们需要考虑新的方法对混合多肽进行整体表征。 n 快速了解醋酸格拉替雷醋酸格拉替雷是一种人工合成的多肽类制剂,由Glu(谷氨酸)、Ala(丙氨酸)、Tyr(酪氨酸)和Lys(赖氨酸)四种氨基酸随机聚合而成,原研药由以色列药厂TEVA研发制造(商品名Copaxone),于1996年获美国FDA核准用于治疗多发性硬化症(MS),其2020年全球销售额达到13.37亿美元,2021年7月,TEVA的“醋酸格拉替雷注射液”在中国的上市申请获得受理。多发性硬化症是一种常见的以中枢神经系统炎性脱髓鞘为主要特征的自身免疫性疾病,临床表现包括视物模糊,感觉、运动异常,智能、情感等高级功能障碍,在中青年人群中多发,且有较高致残率。醋酸格拉替雷被认为是通过改变造成MS发病机制的免疫过程而起作用的,其疗效与耐受性在临床上获得了十足的肯定。 醋酸格拉替雷是一种由Tyr、Lys、Glu、Ala随机聚合而成的多肽混合物(CAS号:147245-92-9) 醋酸格拉替雷的第一个仿制药Glatopa (由Sandoz 公司和 Momenta公司共同开发)于2015年上市,由于原研药的专利到期,未来将有更多的仿制药上市。 n 醋酸格拉替雷的合成与质量评估在醋酸格拉替雷的生产过程中,通过聚合及解聚反应,可以将其分子量控制在一个较窄的范围(平均分子量4700~11000 Da)。生产工艺的改变以及所用试剂的变化都有可能使药物的组分比例发生变化。利用Edman降解法,通过监测N端每一个循环的4种氨基酸的组成比例以及变化趋势,可以对药品质量进行评估。 岛津解决方案 l 蛋白质测序仪对醋酸格拉替雷进行质量评价的原理Edman降解法是进行N端氨基酸序列分析的经典方法,岛津以其为原理设计的全自动蛋白质测序仪(以下简称PPSQ),由液相系统和可执行自动化Edman降解反应的主机组成,将氨基酸从多肽链的N端依次切割下来,通过色谱的保留时间判定氨基酸种类,结果直接可靠。PPSQ除了对N端氨基酸序列进行定性分析外,利用液相色谱稳定的定量能力,还可以对多肽特定循环氨基酸的摩尔生成量及组成比例进行定量分析。 岛津在售蛋白质测序仪PPSQ-51/53A Edman降解反应图解 l 样品前处理取适量稀释后的样品加入经聚凝胺处理的玻璃纤维膜上,干燥后安装到PPSQ反应器上进行分析。实验仅作示例,共测试了3个批次的原研药Copaxone以及4个批次的某在研仿制药,每个批次测试N端前6个循环。 反应器构造图 l 实验结果 1)N端氨基酸组成定性分析醋酸格拉替雷原研药每个循环均检测到Glu、Ala、Tyr、Lys等4种氨基酸,这与药品由Glu、Ala、Tyr、Lys等4种氨基酸随机聚合而来,结果一致。 醋酸格拉替雷原研药Copaxone与某在研仿制药N端氨基酸分析色谱图示例(1-6循环)(黑色:原研药Copaxone;红色:某在研仿制药;DTT、DMPTU、DPTU为试剂峰) 2)各循环中每种氨基酸的相对摩尔含量的分析根据仪器自动生成的氨基酸生成量,计算每种氨基酸的摩尔含量,例如,Glu的相对摩尔含量为: 根据氨基酸的相对摩尔含量,绘制各循环中各氨基酸生成量的趋势图,如下。 醋酸格拉替雷Copaxone 与某在研仿制药N端前6个循环相对氨基酸水平分析(纵坐标:相对摩尔含量;横坐标:循环数) 3)原研药与某在研仿制药的比较从趋势图来看,仿制药各循环氨基酸生成量趋势,与原研药整体相似,但GA仿制药-批次1的Glu的相对含量略低,GA仿制药-批次4的各循环Tyr的相对含量略高,批次1中Glu的偏低与批次4中Tyr的偏高是否正常,需要对原研药进行多批次实验,以判断是否超出正常范围。GA仿制药-批次2及GA仿制药-批次3的Tyr生成量趋势与其他样品有明显不同,提示仿制药生产工艺可能存在与原研不同的地方。 结 语通过醋酸格拉替雷N端各氨基酸生成量的趋势变化的分析比较,可为仿制药的开发及生产质控提供参考,醋酸格拉替雷N端相对氨基酸水平分析亦可作为醋酸格拉替雷仿制药与原研药一致性评价的依据。这也为我们今后分析类似混合蛋白或多肽药物提供了参考思路。 参考文献:J. Andersona, C. Bell, et al., Demonstration of equivalence of a generic glatiramer acetate (Glatopa™ ), Journal of the Neurological Sciences 359 (2015) 24–34 撰稿人:顿俊玲 *本文内容非商业广告,仅供专业人士参考。
  • 超大孔填料在蛋白质分离纯化中的应用
    p /pp  层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。/pp span style="color: rgb(0, 176, 240) "strong 层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题/strong/span/pp  随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。/pp  为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。/ppspan style="color: rgb(0, 176, 240) "strong  病毒及病毒样颗粒的分离纯化/strong/span/pp  根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。/pp  例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。/pp style="text-align: center "img width="576" height="450" title="1.jpg" style="width: 415px height: 282px " src="http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg"/  /pp style="text-align: center "重组乙肝病毒表面抗原在不同孔径离子交换填料上/pp style="text-align: center "  的吸附动力学[1]/pp style="text-align: center "img width="497" height="345" title="2.jpg" style="width: 387px height: 289px " src="http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg"/ /pp style="text-align: center " 重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的/pp style="text-align: center "  ELISA回收率[1]/pp  对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。/pp style="text-align: center "  span style="font-size: 14px "strong灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程/strong/span/pp  与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性:/pp  1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。/pp  2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。/pp style="text-align: center " span style="font-size: 14px "strong 表面曲率变化对蛋白接触面积的影响/strong/span/pp  3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。/pp  4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。/ppspan style="color: rgb(0, 176, 240) "strong  快速分离蛋白质及pDNA/strong/span/pp  除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。/pp  例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。/pp style="text-align: center "img width="588" height="170" title="3.jpg" style="width: 473px height: 144px " src="http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg"//pp span style="color: rgb(0, 176, 240) "strong 超大孔填料应用前景与展望/strong/span/pp  近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。/pp  根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面:/pp  (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。/pp  (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。/pp  (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。/pp  (4)制备规模整体柱的开发及其在生物下游技术中的应用。/pp  目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。/ppspan style="color: rgb(0, 176, 240) "strong  部分商品化的超大孔层析介质/strong/span/pp  strong超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。/strong/pp  参考文献/pp  [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79./pp  [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1)./pp  [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125./pp  [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77./pp  [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107./pp/p
  • 研究成果:低降温速率冷冻制样消除蛋白质快速漂移
    近期,QRB discovery在线发表了中国科学院生物物理研究所研究员章新政课题组题为Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames的研究论文。研究发现了在冷冻电镜成像过程中导致电子束诱导蛋白质样品快速漂移的新机制,并提出通过降低冷却速率制备无快速漂移的冷冻电镜样品的新方法。该方法可以有效恢复辐照损伤最少,含最多高分辨信号的成像数据质量,提升重构分辨率,实现辐照损伤敏感氨基酸的高分辨重构,高分辨信号的恢复也为冷冻电镜达到原子分辨率奠定了基础。  1980年代,有科学家把含水样品快速投入到-183℃的液态乙烷中,制备包埋在玻璃态冰中的低温样品来减少生物样品受高能电子束照射产生的损伤。一般认为,降温速率越快越容易产生玻璃态冰,但是玻璃态冰中的蛋白质在电子束照射初期会产生快速漂移,无法矫正,使冷冻电镜前几帧成像模糊而无法有效应用于三维重构。电子束曝光初期的冷冻电镜数据具有最小的辐照损伤,含有最主要的高分辨信号,所以电子束诱导的快速漂移是实现原子分辨率结构解析以及易辐照损伤氨基酸高分辨重构所需要克服的壁垒,有科学家称其为冷冻电镜中的“Key outstanding problem”。  经过近5年的攻关,研究人员发现快速漂移源自玻璃态冰在急速冻结时产生的应力,该应力和过高的降温速率相关,可以通过降低冷却速率来减少。通过优化冷冻制样技术,降低冷冻过程中样品的降温速率,研究实现了蛋白质快速漂移的消除(如图)。在降低冷却速率制备得到的冷冻样品中,数据分析展示出冷冻电镜前几帧数据被有效恢复,从恢复的电子密度图中可以清晰看到在普通冷冻样品结构中无法得到的辐照损伤敏感的氨基酸侧链信息。  研究工作得到国家重点研发计划、国家自然科学基金委员会重点项目、中科院战略性先导科技专项(B类)、中科院基础前沿科学研究计划项目的支持。  论文链接 降低样品冷却速率消除快速漂移示意图。a.通过降低样品冷却速率,冷冻电镜前几帧数据明显恢复。b-c.增加载网与镊子的传热在载网形成的冷却速率梯度和在不同冷却速率下GDH样品前几帧的恢复情况。d-e.提高液态乙烷温度至-110℃时制备的铁蛋白样品,以及在不同温度下铁蛋白前几帧的恢复情况。f.冷冻电镜前几帧恢复后,易受辐照损伤的氨基酸侧链密度图对比
  • 《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》(征求意见稿)
    各有关单位:根据《中国认证认可协会团体标准管理办法》规定,经中国认证认可协会批准立项,青岛海关技术中心等单位已完成《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》团体标准的起草工作,形成征求意见稿,现公开征求意见。有关事项通知如下:一、《牛乳基婴幼儿配方乳粉中乳铁蛋白含量的测定液相色谱-质谱/质谱法》团体标准征求意见稿及编制说明等有关材料可从中国认证认可协会网站下载,网址信息如下:http://www.ccaa.org.cn/images/jsbz/stbzgl/2023/03/24/1679628059381007576.rar二、请填写《意见反馈表》(见附件),并于2023年4月25日前通过电子邮件反馈至标准起草组。联系人:张鸿伟联系电话:18562789917 电子邮箱:light04@126.com附件:意见反馈表中国认证认可协会2023年3月24日
  • 蛋白和肽类药物及诊断试剂研发与质控国际研讨会(PPTD-2016)第二轮会议通知
    蛋白和肽类药物及诊断试剂研发与质控国际研讨会(PPTD)将于6月1日至3日于四川成都盛大召开。  为推动我国体外诊断与蛋白质药物事业的发展,加强计量技术及分析表征技术对体外诊断与蛋白质药物质量控制及标准化的支撑,更好地促进我国体外诊断和蛋白质药物研发生产等相关技术交流,中国计量科学研究院和国际计量局将联合举办“蛋白和肽类药物及诊断试剂研发与质控国际研讨会(PPTD)”。  会议将邀请来自国际检验医学溯源联合委员会(JCTLM)、国际计量局(BIPM)、美国药典委员会(USP)、中国科学院、中国工程院、美国国家标准与技术研究院(NIST)、世界各国国家计量院、世界知名生物医药企业等学术界、计量界及企业界从事临床诊断和药物研发的权威专家做主题报告。  一、时间:2016年6月1日-3日  二、地点:成都香格里拉大酒店  三、主办单位:国际检验医学溯源联合委员会(JCTLM)  国际计量局(BIPM)  中国计量科学研究院(NIM)  承办单位:中国分析测试协会(CAIA)  协办单位:全国临床医学计量技术委员会  四、会议主题:  大会主题:蛋白和肽类药物及诊断试剂的研发与质控  分会主题:A:蛋白和肽类药物表征和质控方法研究  B:蛋白和肽类诊断标准研究  C:体外诊断试剂(IVDs)发展与质量控制  已确认的报告信息“报告人机构题目詹启敏院士中国医学科学院精准医疗发展战略及标准化需求张玉奎院士中国科学院大连物理化学研究所蛋白质组学定性和定量分析新方法研究PerditaBarran英国曼彻斯特生物技术研究院基于离子淌度-质谱分析法(IM-MS)—对蛋白/肽类的定性与定量研究Graham.Beastall国际临床化学联合会(IFCC)国际临床化学联合会(IFCC)检验医学标准化项目陈文祥研究员卫计委临床检验中心临床实验室蛋白分析物标准物质的可比性方法及互通性研究邓玉林教授北京理工大学基于合成生物学的生物传感器和放大器及其临床应用李红梅研究员中国计量科学研究院肽和蛋白质纯度标准物质研制林金明教授清华大学一种适用于宫颈癌筛查和预后判断的基于微芯片电泳系统的人乳头瘤病毒鉴定方法的建立Randie.Little美国密苏里大学糖尿病诊断中C肽的测量:参考方法的开发与影响因素LaurieLocascio美国国家标准与技术研究院(NIST)美国国家标准技术研究院(NIST)复杂生物治疗药物测量项目Gary.Myers美国临床化学协会(AACC)精准检测结果对诊疗的影响:国际检验医学溯源性联合委员会(JCTLM)与体外诊断试剂标准化MichaNuebling世界卫生组织(WHO)世界卫生组织的体外诊断标准KevinPagel德国柏林自由大学基于离子淌度技术分离并(半)定量分析碳水化合物和糖肽异构体Mauro.Panteghini意大利米兰比可卡大学酶学标准化的研究进展与影响因素钱小红研究员军事医学科学院蛋白质糖基化修饰整体及位点特异性鉴定与表征H.Schimmel欧盟标准物质与测量研究院(IRMM)b-2-微球蛋白,一种多发性骨髓瘤和淋巴瘤诊断标志物的标准化研究颜光涛教授北京301医院光激发化学荧光法研究进展及临床应用Cristian-GabrielArsene德国联邦物理技术研究院(PTB)人生长激素标准化中的挑战与进步陈宝荣教授北京航天总医院酶学参考系统在临床酶学标准化中的应用C.M.Cobbaert荷兰莱顿大学医学中心(LUMC)将定量临床化学蛋白质组学(qCCP)引入诊断程序过程中的要求与指南董梦秋研究员北京生命科学研究所化学交联和质谱联用在蛋白结构分析中的应用杭海英博士/研究员中国科学院生物物理研究所基于细菌和哺乳动物细胞的两种高亲和力抗体筛选平台的建立RalfJosephs国际计量局(BIPM)对用作校准的肽的表征研究LaurieLocascio美国国家标准与技术研究院(NIST)精准医疗的测量标准吕永琴副教授北京化工大学分子印迹纳米生物探针和表面增强拉曼光谱技术选择性检测蛋白质标志物S-R.Park韩国标准科学研究院(KRISS)韩国标准与科学研究院(KRISS)蛋白质计量和参考物质的发展屈锋教授北京理工大学毛细管电泳在蛋白和肽类药物分析中的应用MilenaQuaglia英国政府化学家实验室(LGC)脑尿钠肽(BNP32)—心脏功能标志物检测的参考方法研究H.Schimmel欧盟标准物质与测量研究院(IRMM)C-反应蛋白测量的标准化研究苏志国教授中国科学院过程工程研究所超大分子量蛋白的表征与质控ClaudiaSwart德国联邦物理技术研究院(PTB)血红蛋白、转铁蛋白和血浆铜蓝蛋白参考方法的研究进展王惠民主任医师南通大学医学院蒙特卡洛方法在评定参考方法测量结果不确定度中的应用KatleenVanUytfanghe比利时国立根特大学(UGENT)甲状腺功能检查的标准化JunWheeler英国国家生物制品检定所(NIBSC)肽的精准分析对疫苗研制与发布的支撑杨福全研究员中国科学院生物物理研究所脂溶性蛋白质和多肽药物的分析及其质量控制张丽华研究员中国科学院大连物理化学研究所功能性材料在靶蛋白纯化中的应用赵美萍教授北京大学人血清中核酸修复酶的快速检测方法邹迎曙研究员北京市医疗器械检验所25-羟基维生素D标记荧光法的特异性研究  五、大会日程:6月1号(大会报告)6月2号(分会报告)6月3号(上午大会报告,下午分会报告)上午9:00-9:30开幕式8:30-12:00A/B/C主题分会并行8:30-12:30大会报告,优秀Poster颁奖9:30-12:00大会报告下午12:00-14:00午餐12:00-14:00午餐12:30-14:00午餐14:00-17:30大会报告14:00-17:25A/B/C主题分会并行14:00-17:25A/B/C主题分会并行  六、会议注册  有意参会者可通过网上在线注册或发送参会回执进行注册,注册链接:http://www.ncrm.org.cn/pptd2016。邮件请发至:pptd2016@nim.ac.cn  注册截止日期:5月10日  七、会议缴费  注册缴费采取汇款和现场缴费两种方式,由会议承办单位中国分析测试协会收取并开具发票。  缴费标准:  4月20日前:1600元/人(学生1000元/人),以汇款凭证为准。  4月20日后:1800元/人(学生1200元/人)。  汇款信息  户名:中国分析测试协会  开户行:工行阜外大街支行  帐号:0200049209024907457  汇款请注明:PPTD成都会议  现场注册报到时请与会代表携带本人身份证,学生代表需携带学生证。已交费代表请带好汇款凭证,以备核对。现场注册时间:5月31日全天。  八、住宿及交通信息  会议地址:四川省成都市香格里拉大酒店:成都市滨江东路9号  会议优惠价:单间:370元/间/天,含早 标准间:470元/间/天,含早  会议统一订房截止日期:2016年5月10日,后期不能保证房源及价格,请于此前提交第二轮参会回执。  5月31日全天机场设接机巴士,前往香格里拉大酒店。  九、论文摘要,Poster及赞助商招募:  本次会议接收论文摘要,摘要提交截止日期为2016年4月15日。优秀论文将推荐发表于国际国内优秀期刊。  会议免费提供Poster展示区,请根据网站模板自行制作。会议特设优秀Poster奖10名,每名奖金1000元人民币,欢迎大家踊跃投稿。  摘要提交,模板下载,请登录:http://www.ncrm.org.cn/pptd2016  会议设有展览专区,诚招赞助商。联系人:徐蓓,电话:010-64524790,13661171398。  十、会务组联系方式:  电话:010-64524707,010-64524795  邮箱:pptd2016@nim.ac.cn  更多信息更新请关注会议官方网站:http://www.ncrm.org.cn/pptd2016  附:参会回执  第二轮参会回执姓名性别Email电话单位名称发票抬头发票邮寄地址是否有口头报告□是□否报告题目:是否提交论文摘要□是□否是否需要Poster展位□是□否住宿要求入住时间:2016年____月____日,离开时间:2016年____月____日,共__晚单住□合住□住宿宾馆信息:成都香格里拉大酒店(会议优惠价:单间:370元/间/天,含早;标准间:470元/间/天,含早)注:为保证房源,请务必于5月10日前提交住宿登记信息
  • 李灵军团队新成果:CIU与AIU两种去折叠方法在蛋白质构象表征中的比较研究
    大家好,本周为大家分享一篇发表在Journal of the American Society for Mass Spectrometry上的文章,Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization ,文章的通讯作者是美国威斯康星大学的李灵军教授和南开大学的李功玉教授。近年来,离子迁移质谱(Ion mobility−mass spectrometry, IM−MS)不断发展,成为了探究生物分子结构和稳定性的有力工具。IM-MS实验中测量得到的漂移时间可以转换为与分析物的大小或形态相对应的碰撞截面值(CCS)。碰撞诱导去折叠(collision-induced unfolding, CIU)通过将碰撞能量(CE)应用于气相分析物,研究其在去折叠过程中CCS值的变化,从而提供更多的结构细节。尽管电荷分离的CCS分布代表了气相中丰富的结构信息,但预测具有最接近native状态结构的蛋白质离子电荷态仍然存在困难。另一种方法是记录所有蛋白质电荷状态的四极杆无选择全离子去折叠方法(all ion unfolding, AIU)。如图1所示,本文中作者首先比较了四极杆选择对去折叠的影响及其产生的数据质量。然后,作者引入了一种CCS积累方法,用一个新的CCS参数——CCSacc(accumulated CCS)进行去折叠数据解析,该参数对所有观察到的电荷状态的数据进行汇总,以更好地区分气相中蛋白的结构和构象。作者发现,使用这种CCSacc方法生成的去折叠差异图更稳健,对nESI过程中产生的蛋白质电荷状态的变化具有更高的耐受性。此外,作者观察到用于比较的整体信号强度的增加,使去折叠指纹图谱质量得到改善。另外,这种CCSacc方法保留了电荷分离的CIU信息,也可以按需提取。图1.AIU和CIU工作流程比较图2a展示在不同的碰撞电压下,HSA的CCSacc的分布。CCSacc是综合的气相离子特征,以红色表示。通过CCSacc特征可以分析每个离子对结构的贡献,有助于全面了解现有的HSA结构异质性。通过计算HSA的CCSacc数据可以创建一个新的去折叠指纹图谱,将其与HSA的两种主要电荷态进行比较(图2c)发现,如果只分析单个电荷状态数据,而不将收集到的所有信息合并,就会导致信息丢失。CIU50值揭示的构象稳定性信息也显示了累积指纹图谱与单电荷态指纹图谱的差异,进一步强调了考虑所有电荷态结构信息的必要性。(图3)图2.CCSacc结构分析AIU指纹图谱结合CCSacc数据处理可以更全面地阐明蛋白质变体之间的构象差异。为了证明这一点,作者获取了BSA和HSA的AIU数据,然后提取CCSacc数据,用CIUSuite软件进行定量分析。总的来看,基于CIU50的构象稳定性比较和基于RMSD的整体去折叠指纹图谱比较都清楚地表明,AIU和CCS的累积能够提供更全面的结构信息,并对生物相似性蛋白的细微结构差异进行全面表征。图3.利用CCSacc全面比较HSA和BSA结构最后,作者将CCSacc应用于唾液化的糖蛋白bovine transferrin(bTF),快速分析糖基化对蛋白质结构的影响。图4a显示了bTF的非变性质谱图以及相应的漂移时间热图。先前的糖链研究证明,转铁蛋白是一种具有多种糖型的异质性蛋白,作者的非变性质谱数据(图4a)也明确支持多种糖型的存在。接下来,作者在AIU操作模式下追踪bTF的逐步去折叠行为(图4b-e)。图4f展示了通过CCSacc获得的累积去折叠指纹图谱。可以清楚地观察到,四种不同的构象主导了bTF去折叠过程。CCSacc弥补了不同离子种类观察到的结构差异。此外,构象特征CCS分析和相应的基于CIU50的稳定性分析表明,CCSacc主导的数据与传统CIU分析中常用的最丰富的电荷态所得数据不匹配。这些差异应该主要源于离子种类的贡献,而不是最丰富的离子种类,结果突出了在溶液中使用单一电荷态作为整个蛋白质种类的结构特征时存在的潜在偏差和/或结构损失。图4.通过CCSacc探究唾液酸化糖蛋白的结构CCSacc策略可以更好地维持蛋白质的天然构象,并降低由于仪器条件或溶液中蛋白质电荷态变化造成的影响。在提高去折叠指纹图谱的信噪比并丰富拓扑结构信息的情况下,该策略可以得到更广泛的应用。参考文献:Ashley Phetsanthad, Gongyu Li, Chae Kyung Jeon, et al. Comparing Selected-Ion Collision Induced Unfolding with All Ion Unfolding Methods for Comprehensive Protein Conformational Characterization. Journal of the American Society for Mass Spectrometry, 2022.
  • 安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会
    安捷伦公司大力支持亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议 2011年5月6-9日,亚太地区蛋白质学会(APPA)第三次学术会议及中英蛋白质学术会议在世博之城上海隆重召开。本届会议由&ldquo 亚太地区蛋白质科学联合会(Asia Pacific Protein Association, APPA)和国际蛋白质学会(The Protein Society)主办、中国生化学会蛋白质专业委员会(The Chinese Protein Society)承办。本次会议以&ldquo Proteins and Beyond&rdquo 为主题,诚邀国内外蛋白质组学领域众多顶尖专家学者,围绕业内热点问题成功举行了一次高端学术盛宴,会议议题主要围绕蛋白合成/质控、蛋白翻译后修饰、蛋白相互作用、蛋白工程、蛋白定量、疾病蛋白质组学与药物发现、生物制药等热门领域。 安捷伦公司作为会议的主赞助商以及蛋白质组学领域的重要方案供应商,在本届会议上再次为广大用户呈现其蛋白质组学全面、完备、专业的解决方案。针对蛋白定量这一行业热点课题,安捷伦公司凭借其最新超高灵敏度6490三重四极杆质谱技术、灵活强大的软件功能以及高通量全自动样品前处理技术在这一应用上具有突出及独特的优势。 在5月8日下午的大会学术报告专场,来自安捷伦公司的蛋白质组学应用工程师陶定银博士为在场听众进行了题为《安捷伦6490三重串联四级杆质谱仪在超痕量蛋白定量分析中的应用》的精彩报告:全新一代安捷伦6490三重串联四级杆质谱仪集多种高精技术于一体,与不同流速范围的液相色谱仪&ldquo 无缝&rdquo 匹配,在纳流、微流及常规流速范围内均可提供高灵敏、高重现的超痕量蛋白定量分析结果。配合安捷伦的全自动样品前处理机器人,使用户彻底摆脱繁冗的手工处理,获得重现性优异的分析结果。Agilent 6490创新型串联质谱简介1.概况 2010年5月24日 安捷伦科技公司在美国犹他州盐湖城举行的第58届美国质谱年会上推出了基于iFunnel技术的6490三重四极杆液质联用系统。 iFunnel是一种革命性的大气压离子进样技术,可以在大多数应用上极大提高灵敏度。与旧型号相比,6490系统减少了25%的占地面积,但灵敏度却提高了10倍以上。革新产品6490展示了其尖端应用能力,即检测灵敏度可达到10-21mol(Zeptomol)及ppq级别,这种水平的灵敏度过去只能在昂贵的加速器质谱系统上实现。2.应用价值与意义 6490的尖端性能为富于高灵敏度挑战的分析工作带来的新的成功可能。比如环境领域通常要求灵敏度在ppt级别;制药/生物医药等领域,有时需要做到微小剂量、吸入药物检测和干血斑点分析等等。常规分析中这种高灵敏度也为临床、食品安全和蛋白质/肽定量分析带来了新机遇,而且全面提高了耐受性和样品制备效率。有关安捷伦6490三重四极杆质谱更多信息,请参考:http://www.chem.agilent.com/en-US/Products/Instruments/ms/Pages/6490.aspx有关安捷伦蛋白质组学方案更多信息,请参考:http://www.chem.agilent.com/zh-cn/solutions/proteomics/pages/default.aspx关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 蛋白质免疫亲和活性浓度绝对测量方法的建立
    p style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-align: left text-indent: 2em "span style="text-indent: 2em "近期,中国计量科学研究院武利庆及其合作者杨屹、苏萍等发表系列文章(Anal.Bioanal.Chem. 412(2020)2777-2784、Talanta 178(2018)78-84、Microchem. J. 157(2020)104954),介绍了基于表面等离子共振光谱法和数字ELISA的蛋白质免疫亲和活性浓度绝对测量方法。/spanbr//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "蛋白质是一类重要的生物大分子,免疫分析是其常用的定量分析手段,在测量和质控中不仅关心目标蛋白的含量,更为关注它的活性与功能,其量值的准确对于保证人民大众健康与安全具有重要意义。活性浓度测量手段的匮乏限制了蛋白质产品活性量值的质控与标准的建立。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "针对这一难题,作者以G2-EPSPS、人肌红蛋白为例,通过表面等离子共振,在部分传质限制条件下,通过扩散速率等测定直接计算出可被抗体识别的目标蛋白浓度,即免疫亲和活性浓度;或采用寡聚核酸标记抗体,借助邻位连接技术和数字PCR技术,以数字ELISA的方式直接测定样本中目标蛋白的免疫亲和活性浓度。两种方法均无需外部标准品,是一种绝对测量手段。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 241px " src="https://img1.17img.cn/17img/images/202010/uepic/06042747-02ad-460f-82a4-752c907691ff.jpg" title="图片1.png" alt="图片1.png" width="600" height="241" border="0" vspace="0"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "图1 基于表面等离子共振技术的蛋白免疫活性浓度测定原理图span style="text-align: center text-indent: 0em " /span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/82c05090-1aa2-4789-9467-c4fd8c632095.jpg" title="图片2.png" alt="图片2.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "图2 基于数字ELISA技术的蛋白免疫活性浓度测定原理图/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "蛋白质免疫亲和活性浓度的绝对测定将有助于准确表征蛋白质与其抗体之间的相互作用,保证免疫分析的准确可靠,同时有助于蛋白质产品的活性量值的质控与标准的建立。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)” 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站a href="http://tdmsqs.ncrm.org.cn" target="_blank"http://tdmsqs.ncrm.org.cn/a注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/c475b4b8-ad00-4d02-bdea-04a9663c0909.jpg" title="图片5.png" alt="图片5.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "欢迎各位专家、同仁报名参会!/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong学者简介:/strong/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "武利庆,研究员,中国计量科学研究院前沿计量科学中心蛋白质室主任/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "杨屹,教授,北京化工大学化学学院/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "苏萍,副教授,北京化工大学化学学院/span/p
  • 【安捷伦】抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手!
    针对 2019 新型冠状病毒(2019-nCoV),研究人员正在紧锣密鼓地研究病毒致病机理、疫苗及治疗药物等。在这个过程中,靶标样本的质量一如继往地决定了研究的最终成败及可靠性。无论是疫苗开发,抑或是核酸与细胞层面的致病机理研究,都离不开对蛋白质与核酸样本的质量控制。自动化电泳产品线控制靶标样本质量 针对新冠肺炎的研究争分夺秒,利用自动化的质量控制平台控制靶标样本质量可大大节省获取结果的时间,同时保障结果的准确性与重现性。安捷伦自动化电泳产品线可以快速对 DNA、RNA、蛋白质样本进行分析,获得包括浓度与分子量在内的数字化信息,并直观显示样本在电场下迁移形态的数字化图像信息,同时针对二代测序技术(NGS)等对核酸完整性程度依赖性高的应用,还提供以 0-10 的数值来直观反映样本完整性的参数,以实现对样本质量的快速且全面的评估(参见 RIN 值 与 DIN 值 )。一、助力测序文库的质量控制,缩短病毒基因测序时间在此次“战疫”中,基于二代测序技术(NGS)的宏基因组测序大大缩短获取病毒序列的时间,为核酸检测试剂盒的开发与病人的确诊赢得了宝贵的时间。病毒变异的监测工作仍将持续、大规模地使用二代测序技术,甚至包括纳米孔测序技术和三代测序技术。无论采用何用技术,对测序文库的上机前质量控制是保证最终结果可靠、问题可追溯的必不可少的环节。目前疫情仍旧不容乐观,研究人员面临着样本量激增、测序压力大、质控样本多的情况,针对这些问题,安捷伦 4200 TapeStation 中-高通量和 Fragment Analyzer 5300/5400 高-超高通量自动化核酸质控平台可以为新冠病毒文库的质量控制提供有力的保障。图 1. 利用 4200 TapeStation 系统对来源于肿瘤FFPE样本的最终上机前的二代测序文库进行质量控制,所得到的结果确认了全部 80 个样品和 6 个阳性对照样品的 DNA 文库均已成功制备。质控数据包括样本的浓度及分布、分子量及分布。二、缩短蛋白质检测与质控时间,加快抗体研发在抗体的研发过程中,对抗体蛋白的检测与质量控制必不可少。针对蛋白质分析,传统的 SDS-聚丙烯酰胺凝胶电泳(PAGE) 制胶过程繁琐、电泳时间长。安捷伦 2100 生物分析仪可以替代 SDS-PAGE 的工作,通过蛋白质分子量大小的变化查看蛋白质的糖基化,对抗原抗体等进行质量控制,并提供从考马斯亮蓝级到银染色级蛋白质含量和纯度的检测灵敏度。图 2. 在还原剂二硫苏糖醇 (DTT) 存在的条件下,使用 2100 生物分析仪系统配合 Protein 80 (P80)、Protein 230 (P230) 和高灵敏度 Protein 250 (HSP-250) 试剂盒对人骨髓瘤 IgG2 进行分析。所示为每种分析的代表性电泳图。在还原条件下,所采用的全部三种蛋白质分析均能够清晰分离 IgG2 的轻链 (LC)和重链 (HC)。P230 和 HSP-250 分析中均可观察到高分子量聚合物,而 P80 分析则分辨出与 IgG2 样品相关的低分子量(摩尔质量)杂质。 三、控制转录产物 RNA 的质量,确保下游分析的成功在病毒致病机理、机体免疫应答和信号通路调节的研究中,转录产物 RNA 的质量控制对下游分析的成败至关重要。安捷伦最早在 2100 生物分析仪上推出了 RNA 完整性参数 RIN 值(RNA Integrity Number),经过在全球 20 年的应用, RIN 值已成为业内公认的 RNA 完整性参数。安捷伦最新一代 TapeStation 核酸分析系统,不仅能够提供 RNA 完整性参数,更满足了样本数量变化大的实验室对通量灵活性的需求,可在单个样本检测成本不变的情况下,实现 1-96 个任意数量样本的检测。图 3. 4 组总 RNA 浓度相同(300 ng/μL)但质量(降解程度)不同的大鼠总RNA样本使用安捷伦 4200 TapeStation 系统分析。分析所得的 RIN 完整性当量RINe如胶图中所示。可以看到,RNA 的完整性随着 RINe 数值的降低在胶图与峰图中都呈现明显的递降。安捷伦自动化电泳产品线可以满足不同客户的通量与应用需求,应用类型包括:- 二代测序样本质控(样本片段化文库构建的各环节,以及终文库等的质控)- 三代测序的长片样本质控(测序前样本制备的各环节质控)- 常规片段分析(PCR 产物,酶切产物等)- 生物样本库(样本入库、出库,以及保存过程中的质控)- 基因分型( AFLP、RFLP、STR、SSR 等) 寡核苷酸大小与纯度分析- 通过蛋白分子量大小的变化查看蛋白的糖基化,抗原抗体等的质控分子光谱产品用于疫苗生产的质控环节 在疫苗研发及之后的生产过程中,安捷伦分子光谱产品可以帮助研究机构和生产企业做好核酸和蛋白质定量,保证生产率和准确性。其中,安捷伦 Cary 60 UV-Vis 和 Cary 630 FTIR 凭借其可靠性,已部署在全球众多制药 QA/QC 实验室中,并具有可选软件来满足中国数据完整性法规要求。紫外可见分光光度计是现代分子生物实验室的常规仪器,主要用于测定核酸的纯度、含量以及蛋白质的含量,为检测试剂盒的研发和生产提供质量保证。一、纯度检测核酸的最大吸收峰在 260 nm,蛋白质的最大吸收峰在 280 nm 处。纯的 RNA 样品,260 nm 与 280 nm 吸光度比值(A260/A280)为 2.0;纯的 DNA 样品,A260/A280 为 1.8,所以,A260/A280 可以作为 DNA、RNA 纯度检测的重要指标。核酸和蛋白质在 320 nm 都没有吸收,在测试中,可以选择性的将 320 nm 的吸光度用于背景扣除。二、浓度检测对于标准样品来说,当 260 nm 处的吸光度值(A260)为 1 时,dsDNA 浓度约为 50μg/mL,ssDNA 浓度约为 37 μg/mL,RNA 浓度约为 40 μg/mL,寡核苷酸浓度约为 30 μg/mL(底物不同有差异)。据此,测定提纯后样品在 260 nm 处的吸光度值,可以计算出 RNA/DNA 的浓度。紫外可见分光光度计可以快速得到样品在 190-1100 nm 范围内每个波长下的吸光度值,为试剂盒中 RNA 纯度和核酸浓度检测提供快速解决方案。图 4. 安捷伦紫外可见分光光度计 5 次扫描 400 μL DNA 样品光谱图表 1. 安捷伦紫外可见分光光度计 5 次测试 400 μL DNA 样品纯度和浓度图 5. Agilent Cary 3500 UV-Vis(左)和 Agilent Cary 630 FTIR(右)推荐阅读:1. 快速测定口罩中的环氧乙烷残留,让医务人员和大家更安心https://www.instrument.com.cn/netshow/SH100320/news_521849.htm 2. 重要通知:疫情期间安捷伦售后服务安排https://www.instrument.com.cn/netshow/SH100320/news_521419.htm3. 重要通知 :疫情期间安捷伦采购直通车 -- 网上订购耗材https://www.instrument.com.cn/netshow/SH100320/news_521418.htm 关注“安捷伦视界”公众号,获取更多资讯。
  • 云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量
    【山东云唐*新品推荐YT-Z12T】云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量→点击此处进入客服在线咨询优惠专区。山东云唐专业厂家自主研发生产农药残留检测、食品安全检测、植物生理等仪器仪表,品质保障,价格实惠,售后无忧,欢迎新老客户来电咨询!山东云唐智能让诚信为高质量发展护航,我们将努力提供更卓越的产品质量和更人性化的售后服务给广大客户,为社会创造更大的价值。云唐仪器|食品蛋白质检测仪可快速准确检测奶粉中蛋白质含量  随着科技的不断发展,食品蛋白质检测仪在食品安全检测领域发挥着越来越重要的作用。其中,对于奶粉中蛋白质含量的快速准确检测,食品蛋白质检测仪更是扮演着至关重要的角色。本文将详细介绍食品蛋白质检测仪的工作原理、优势及其在奶粉蛋白质含量检测中的应用。  食品蛋白质检测仪在奶粉蛋白质含量检测中具有显著的优势。首先,它大大提高了检测效率。相较于传统的检测方法,如Kjeldahl法、Lowry法等,食品蛋白质检测仪能够在短时间内完成大量样品的检测,从而满足现代化生产线上对奶粉质量监控的需求。其次,仪器具有高度的准确性。通过精确的光电测量和荧光检测技术,食品蛋白质检测仪能够确保测量结果的准确性,避免因人为因素或操作不当导致的误差。此外,食品蛋白质检测仪还具有操作简便、自动化程度高等特点,使得检测过程更加便捷高效。  在奶粉蛋白质含量检测中,食品蛋白质检测仪的应用具有重要意义。奶粉作为婴儿成长发育的重要营养来源,其蛋白质含量直接影响到婴儿的健康状况。因此,对奶粉中蛋白质含量的准确检测显得尤为重要。食品蛋白质检测仪能够快速、准确地检测出奶粉中的蛋白质含量,为奶粉生产厂家提供及时、可靠的质量监控手段。同时,对于消费者而言,了解奶粉中蛋白质的含量有助于他们选择合适的奶粉产品,为婴儿的健康成长提供保障。  此外,食品蛋白质检测仪还可以用于奶粉生产过程中的质量控制。在奶粉生产过程中,通过定期对原料、半成品和成品的蛋白质含量进行检测,可以及时发现生产过程中的问题,采取有效措施进行调整和改进,确保奶粉产品质量的稳定性和可靠性。同时,食品蛋白质检测仪还可以用于奶粉产品的批次管理和追溯,确保产品的质量和安全可追溯。  总之,食品蛋白质检测仪在奶粉蛋白质含量检测中发挥着重要作用。它不仅能够提高检测效率和准确性,为奶粉生产厂家提供及时、可靠的质量监控手段,还能为消费者选择合适的奶粉产品提供有力支持。随着科技的不断进步和食品安全意识的提高,食品蛋白质检测仪将在食品安全检测领域发挥更加重要的作用,为保障人们的饮食安全贡献力量。
  • “蛋白质的生成、修饰与质量控制”项目启动
    近日,国家重大科学研究计划2012年度项目“蛋白质的生成、修饰与质量控制”启动会在北京召开。项目首席科学家由中国科学院生物物理研究所英籍学者柯莎(Sarah Perrett)担任,该项目将主要开展细胞对蛋白质合成、折叠、修复、降解及修饰不同环节的质量控制,应激条件下蛋白质质量控制体系调控,蛋白质异常修饰对质量控制体系的影响及其相关疾病发生发展的机制等关键科学问题研究工作。  蛋白质是生命活动的执行者,蛋白质质量控制失调与神经退行性疾病密切相关。对蛋白质的生成、修饰与质量控制开展系统研究,将加强对蛋白质在细胞内从生成到降解整个过程的全局性认识,更加系统地阐释神经退行性疾病等蛋白质错误折叠相关疾病的发生与发展机制,为相关疾病的诊断和药物开发等提供新的理论依据。
  • 北京蛋白质组研究中心第二期蛋白质组信息学培训班(第一轮通知)
    时间:2014年5月20-23日  地点:北京蛋白质组研究中心(北京市昌平区科学园路33号,中关村生命科学园内)  主办单位:  北京蛋白质组研究中心(BPRC)  蛋白质组学国家重点实验室(SKLP)  中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  北京蛋白质组研究中心是蛋白质组学国家重点实验室,国际联合研究中心,国际人类肝脏蛋白质组计划(HLPP)执行总部。建立了世界上最大的人类蛋白质组数据库及数据管理平台,和国际领先的蛋白质相互作用网络构建和分析平台。对人类肝脏蛋白质组进行了系统的生物信息研究,包括蛋白质鉴定、修饰、定位、相互作用网络、代谢通路及肿瘤标志物发现等研究。讲师团队长期致力于蛋白质组数据分析及相关知识发现,为国际人类肝脏蛋白质组计划提供了全方位的生物信息支持。2012年,集体获中国电子学会电子信息科学技术奖一等奖:蛋白质组学计算方法的研究及其支撑平台的构建和应用 2007年,集体获北京市科学技术一等奖:蛋白质组支撑技术及其在人类重要疾病与生理过程研究中的应用。  前言  本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。  培训对象  从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  迫切希望提升生物信息分析能力的学者  培训内容  质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。  课程安排时间培训内容2014年5月20日9:00-10:00蛋白质组信息学概论10:00-12:00质谱数据处理-搜库与质控13:00-15:00蛋白质组定量分析(以无标定量为主)15:00-16:00蛋白质翻译后修饰分析16:00-17:00蛋白质鉴定上机实习2014年5月21日9:00-11:00质谱数据深度挖掘11:00-12:00蛋白质定量上机实习13:00-15:00蛋白质组数据分析/生物标志物发现15:00-17:00蛋白质组数据分析上机实习2014年5月22日9:00-10:30 蛋白质组数据库/数据提交10:30-12:00数据库及数据提交实习13:00-15:00蛋白质组软件包的使用(TPP等)15:00-17:00TPP安装及使用实习2014年5月23日9: 00-10:30蛋白质相互作用网络和蛋白质组学知识挖掘的基础知识10:30-12:00蛋白质相互作用的生物信息学资源介绍13:00-14:00Cytoscape软件使用介绍14:00-17:00蛋白质相互作用数据分析上机  培训费  4月18日前注册:每人4200元,学生3900元。  4月19日至5月20日之间注册:每人4500元,学生4200元。  其他优惠:同一单位2人以上参加,每人优惠200元。  提前注册截止日期:2014年4月18日,以银行汇款凭证为准。  网上注册地址: http://61.50.138.116/training/cn/  培训费用包含:培训资料、培训期间的午、晚餐。  可协助安排住宿,住宿费用自理。需住宿的学员请在网上注册时填写住宿信息。  报到时间和地点  报到:5月19日全天,北京扬子江药业海诺康会馆(北京市昌平区生命园路16号,中关村生命科学园内) 20日8:30-10:00,北京蛋白质组研究中心。  住宿:北京扬子江药业海诺康会馆,标准间298元/天(含早餐)。  学生报到时须持学生证。  学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。  注意事项  培训结束后颁发北京蛋白质组研究中心和蛋白质组学国家重点实验室培训证书,需要中国生物化学与分子生物学会继续教育证书的学员报到时需要另交1张2寸免冠照片及20元工本费。  中心通过了ISO/IEC 17025实验室认可,为社会各界提供科研技术服务。参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站: http://www.bprc.ac.cn/guidance/list.php?catid=27  汇款信息  帐 号:0200004909200041055  账户名称:北京蛋白质组研究中心  开户银行:工商银行北京市永定路支行  注:汇款时请务必注明&ldquo 信息学培训班&rdquo 和学员姓名。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。  如需发票请注明发票抬头,培训结束后统一开具发票(培训费、注册费、会议费、技术服务费等),有其他特殊要求请声明。  联系方式  联系电话: 注册:周建平(010)80705277  咨询:史冬梅(010)80705888  传 真:(010)80705155  电子邮件:bprctrain@163.com  通信地址:北京市昌平区科学园路33号(102206)
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K, et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel J V, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 复旦大学杨芃原团队等创建精准N糖蛋白质组学分析方法
    p  复旦大学化学系教授杨芃原团队、中科院计算技术研究所研究员贺思敏团队、国家蛋白质科学中心(上海)研究员黄超兰团队合作研究,创建了基于质谱的高通量糖基化肽段分析方法pGlyco2.0,为精准N糖蛋白质组学提供了新技术。今天,相关研究成果以《pGlyco2.0:基于综合质控和一步质谱法的精准N糖蛋白质组学糖肽分析方法》为题发表于《自然· 通讯》。/pp  据悉,杨芃原、贺思敏和黄超兰为共同通讯作者。杨芃原为该文的Lead Contact。/pp  糖基化是最复杂的蛋白后修饰之一。与其他蛋白后修饰相比,糖基化不但会产生宏观不均一性(每个蛋白上可能有多个后修饰位点),更会产生海量的微观不均一性(每个位点上可能有几十甚至上百种不同的后修饰基团)。此外,糖链本身的离子化效率很低。这些因素的结合使得糖基化分析的通量和质量远低于蛋白质组学的常规分析水平。/pp  这项研究通过深入研究和测试质谱条件,开发基于阶梯能量的一步质谱采集法,提高了糖肽鉴定的通量和开发具有自主产权的pGlyco2.0糖肽检索引擎,从糖链、肽段、糖肽三个层面对糖肽数据库检索进行精确质控,从而大幅提升了N糖蛋白质组学分析的通量和质量。/pp  同时,研究人员首次将重标元素应用于糖肽鉴定准确度分析,为该领域的质控分析提供了新的方法及标准。/pp  专家表示,这项研究报道了目前最大的糖基化数据集:在1%的假阳性率下,在小鼠的五个脏器种鉴定到了超过一万条N糖肽。/pp/p
  • 生物大数据挖掘寻找控制蛋白质死亡之门的钥匙
    p  蛋白质是自然界中最神秘的物质之一,几乎所有的生命活动都有它的身影。正如人有生死,生物体内的蛋白质也有出生与死亡。蛋白质的出生是一个精准的从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)进而翻译合成蛋白质的过程。当蛋白质的功能使命完成后,需要被及时降解掉(死亡),否则,蛋白质过早或者过晚降解均会导致其功能失常,进而导致“阿尔兹海默综合征”、“克雅士病”等多种疾病的产生。/pp  泛素-蛋白酶体途径是真核生物最重要的蛋白质降解途径。在这个途径中,蛋白质被特异进行泛素标记(即泛素化修饰),进而被送到蛋白酶体进行降解。该途径是一种能量(ATP)依赖的特异、高效的蛋白质降解途径, 发现该途径的三位科学家阿龙· 切哈诺沃、阿弗拉姆· 赫尔什科与欧文· 罗斯共享了2004年诺贝尔化学奖。在此途径中,泛素连接酶发挥了“扳机”似的重要作用,特异地进行底物蛋白质的识别,并启动后续的降解过程,是打开蛋白质死亡之门的钥匙。然而由于泛素连接酶与底物蛋白质间的低亲和力,至今尚无有效的高通量的实验鉴定方法。/pp  近年来,生物大数据的积累使得我们有望利用知识挖掘思想对这一问题进行理论探索。军事科学院国家蛋白质科学中心贺福初院士、李栋研究员团队对泛素连接酶与底物的相互作用涉及的蛋白质网络、蛋白质结构和序列等多个层面的生物大数据开展了系统分析,给出了3856对潜在的介导泛素连接酶与底物相互作用的结构域组合,鉴定了底物蛋白序列上10480个潜在的泛素连接酶识别特征,发现了泛素连接酶与底物在生物学网络中倾向于形成特定的拓扑性质。进而基于这些特征发展了首个人类泛素连接酶-底物相互作用的预测和展示系统(UbiBrowser,http://ubibrowser.ncpsb.org)。该项研究有助于人们从多个角度认识泛素连接酶对底物的调控作用,发现两者之间的选择关系,并进而掌握开启蛋白质死亡之门的“钥匙”。/pp  本项研究也是贺福初院士、李栋研究员团队利用生物大数据挖掘生物学知识的再次成功尝试。2008年,该团队整合基因组上下文等生物学特征,成功进行了蛋白质相互作用可靠性评估(Molecular & Cellular Proteomics, 2008, 7: 1043-1052)。2009年,该团队利用结构域预测了蛋白质组尺度内相互作用蛋白间的信号流走向(Molecular & Cellular Proteomics, 2009, 8: 2063-70)。2013年,该团队利用logistic回归方法,整合蛋白质功能等多层次生物学证据,对蛋白质组尺度的自相互作用蛋白进行了系统挖掘 (Mol Cell Proteomics, 2013,12:1689-700)。近年来,在国家科技部”中国人类蛋白质组计划”重点专项项目的支持下,该团队致力于通过整合深度学习等数据分析算法,以生物医学知识图谱为核心,构建面向生物医学大数据知识智能发现的“高速公路”。/pp  本项研究8月24日发表在国际著名的《自然》子刊《自然?通讯》(Nature Communications)上,共同第一作者是军事科学院国家蛋白质科学中心李杨博士、卢亮博士和首都医科大学谢萍副教授。贺福初院士和李栋研究员为共同通讯作者。该工作得到国家国际科技合作专项、精准医学重点专项和国家自然科学基金的支持。/ppbr//p
  • 《乳与乳制品中蛋白质的快速测定方法》进行审查
    12月17日,河北省质量技术监督局组织有关专家对衡水市承担的省地方标准《乳与乳制品中蛋白质(非氮元素)的快速测定方法》进行了审查。  与会专家对标准文本和编制说明进行了逐字逐句的审定。专家们一致认为:该标准的编写规则符合国家有关方针、政策、法律和法规,与国家有关标准协调一致;该标准创新设置了适合现场和实验室快速定量的甲醛值法和紫外分光光度法相结合测定蛋白质快速新方法,具有很高的实用性,简便、快速,在防止乳与乳制品掺假实际工作中有很大的作用。现场和实验室原料乳及液态奶(非氮元素)的快速定量,可有效防止原料乳及液态奶蛋白质掺假,对促进乳品行业健康发展具有很大的社会效益和经济效益。  同时,专家认为该标准应在适用范围上做进一步调整,建议调整为原料乳及液态奶;标准内容应增加甘氨酸、水解动植物蛋白液的掺假定性试验;提供其他实验室对检验方法的验证试验数据。
  • 北京蛋白质组研究中心招聘博士后和研究人员
    北京蛋白质组研究中心蛋白质翻译后修饰研究室招聘博士后和研究人员  实验室概况:  北京蛋白质组学研究中心是由军事医学科学院与北京大学、清华大学等单位于2005年成立的综合性研究机构,是人类肝脏蛋白质组计划(HLPP)的国际总部和蛋白质组学国家重点实验室的主体。在国家相关部门的大力支持和我国蛋白质组学科学工作者的多年努力下,该中心已经成为以蛋白质组学研究为特色的、多学科交叉的国际知名的的综合研究机构。  蛋白质翻译后修饰研究室创建于2010年,由新近回国的中国蛋白质组学专业委员会秘书长、“973”首席科学家徐平教授领导。该研究室主要利用生物化学、遗传学和蛋白质组学的手段研究蛋白质翻译后修饰,特别是蛋白质泛素化过程中泛素链的合成、降解以及泛素链与被修饰蛋白质底物间的特异性决定的酶学机制,解析肝病等中国人高发的重大疾病过程中蛋白质翻译后修饰失控及其致病的生物学机理。研究室装备有完整的细胞、分子生物学研究必需的仪器和包括Waters公司的nano Acquity UPLC、Thermo Fisher Scientific的LTQ Orbitrap Velos和SageN Sorcerer搜索引擎在内的先进的蛋白质组学研究技术平台,在蛋白质组学、定量蛋白质组学和蛋白质翻译后修饰研究领域具有先进独特的技术。研究室组建以来得到国家“973”计划、“863”计划、蛋白质组学国家重点实验室基金、国家自然科学基金以及科技部国际合作项目等多项经费的支持。  现因工作需要,拟在分子生物学、蛋白质组学和仪器分析方向招聘2-3名博士后和2名工作人员。  应聘博士后和工作人员应具备的条件:  1. 有志于科学研究事业,具有较强的责任心和进取精神,具有开拓创新、独立的工作能力和良好的合作精神,品学兼优,身体健康,年龄一般不超过35周岁。  2. 近一年内获得 (或即将获得) 生物学或基础医学专业博士学位,有志于从事蛋白质组学研究。有海外学习、研究经历者优先考虑。  3. 具有所从事研究方向国际主流杂志以第一作者论文发表记录,并有较好的英语阅读、写作及听、说交流能力。  4. 因工作需要,仪器分析专业的应聘者,男性优先。  待遇  薪酬待遇将根据应聘者的能力、技术水平、资历和研究所相关规定商定。  联系人:常蕾  电话:010-80727777-1314 E-mail:15801311156@163.com  实验室主页:http://www.bprc.ac.cn/expert/show.php?itemid=4  地址:北京市昌平区科学园路33号,北京蛋白质组研究中心  应聘程序  有意应聘者请通过电子邮件发送一份详细简历(包括教育和工作经历、论文发表情况及其他成果)和一份简要科研与工作计划到15801311156@163.com。中心专家委员会将对应聘者的材料进行评审。我们对通过第一轮的面试者安排面试。
  • 新研究提供调控大脑疾病中有毒蛋白质的分子机制
    所周知,细胞会自然衰老和死亡,但细胞蛋白质的适当调节对我们衰老时保持大脑健康至关重要。在神经退行性疾病中,蛋白质聚集体(或错误折叠蛋白质的团块碎片)扩散到邻近的细胞,但对这些有毒物质是如何转移的科学家们仍然知之甚少。  近日,发表在《美国国家科学院院刊(PNAS)》上的一项研究中,来自美国罗格斯大学新布伦瑞克分校的研究人员首次从分子水平上了解了在阿尔茨海默症和帕金森病等神经退行性疾病模型中,有毒蛋白质是如何调控的。在这项研究中,研究人员对秀丽隐杆线虫模型进行了研究,线虫受到压力的神经细胞可以将神经毒性蛋白质以囊泡的形式挤压出来,这些囊泡被称为exoophers。研究人员还研究了特定的压力如何影响exoophers被挤压出来。他们发现,形成exoophers需要特定的细胞信号,而出人意料的是,禁食可以显著增加exoophers的产生。此外,这项研究还发现了三种在禁食期间增加exoophers产生的细胞途径。  该研究第一作者、罗格斯大学新布伦瑞克分校分子生物学和生物化学系博士后研究员Jason Cooper说“在神经退行性疾病中,有毒蛋白质会扩散到邻近细胞以促进细胞死亡。鉴于在衰老和神经退行性疾病中管理蛋白质聚集体的重要性以及对这些聚集体如何转移的生物学知之甚少,对转移机制的详细了解可能会揭示以前的未被识别的治疗靶点”。   论文链接:  https://www.pnas.org/content/118/36/e2101410118
  • 我国或将实现蛋白质测序仪器和试剂国产化
    基因测序技术飞速发展,使得几十个甚至上百个基因的测序能够在几天之内完成,近日,&ldquo 蛋白质测序仪器和试剂国产化&rdquo 项目实施工作会议在北京大学顺利落幕,会议得到了北京大学前沿交叉学科研究院方竞院长的大力支持。  90年代人类基因组计划,中国科学家承担了1%的任务 而2010年代的人类蛋白组计划,则是由中国科学家领军 20年来,从承担人类基因组计划1%到人类蛋白组计划的领袖全球,证明了中国科学的长足进步,也体现了中国科学家的卓越贡献。此次工作会议是科研与产业化结合非常好的范例,由国内蛋白组领域的重要企业参会,并成立了&ldquo 中国人类蛋白质计划企业工作组&rdquo ,由知名企业担任企业工作组组长,努力打破生物质谱被国外企业垄断的局面,迅速将相关的研究成果运用于临床诊断。  &ldquo 蛋白质测序仪器和试剂国产化&rdquo 项目,基于&ldquo 中国人类蛋白质组计划&rdquo ,项目共分9个课题,其中&ldquo 激光解析基体辅助离子源-蛋白测序仪器&rdquo 课题,是一重点研究方向,将会加大蛋白质组学在临床领域的研究与应用,快速推动生物质谱技术在临床医疗领域的应用。  利用对人体DNA分子的鉴定来辅助诊断的技术(分子诊断技术)在上个世纪就已经出现了,比如,FISH等核酸杂交技术已经可以进行染色体和基因水平的分析。上世纪90年代,定量PCR技术的兴起大大加快了突变鉴定的速度,可以进行DNA上单个位点突变的鉴定,被广泛应用于临床。本世纪初,人类基因组草图绘制的完成标志着第一代基因测序技术的成熟,对一个或几个基因的测序开始应用在临床上,对基因突变测量的分辨率得以提升,在传染病的鉴定以及癌症等致命性疾病的靶向治疗中应用广泛。  除了精度的提高,基因芯片技术的发明使得同时检测许多基因的变化成为可能。如今新一代测序技术的进展使得大规模测序的速度急剧提高,成本急剧降低,越来越多的疾病找到了可用于诊断或分型的分子标志物,同时检测几十个基因的微小变化也不再困难,对传染病病原体的鉴定变得更加快速,许多遗传性疾病都可以实现无创的产前诊断。  科技的进步应用于医疗领域需要经过一段时间,与IT等领域不同,医疗领域是政府监管最为严格的领域,合规性是临床应用上绕不开的问题。一项技术的成熟必须得到政府监管部门的认可才能得到应用,而新技术的批准、质控可溯源体系的建立、收费标准的建立等需要耗费时间。新一代测序的应用涉及到测序仪器、测序试剂、生物信息软件与数据库的相互配合,虽然这项技术在21三体综合症的产前诊断等应用方面展现出了极好的前景,但我们必须承认,在从基因序列到疾病的探索中,还有许多未知的问题需要解决。
  • 2017年度“蛋白质机器与生命过程调控”重点专项公示
    p  5月27日,国家科技管理信息系统公共服务平台公布了国家重点研发计划“蛋白质机器与生命过程调控”重点专项2017年度拟立项项目公示清单,总项目立项经费超过7亿元(其中有两个项目需要项目实施2年后评估然后再确立总经费)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/7e9b4428-3241-48f9-98cf-de7b39e500f6.jpg" style="" title="1.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/ccefce90-e826-4b1e-b338-7bdb09223ccb.jpg" style="" title="2.jpg"//pp/pp  最近一段时间,学术界同仁对各种“人才计划”也就是俗称的“帽子”比较上心,经过统计,上述35个项目的首席科学家中拥有国家级人才计划(包括:院士、国家“千人”、长江学者、杰青、“青年千人”)的占据了27位(77.1%),余下的8位中有两人入选中科院“百人计划”(中科院高能所董宇辉研究员和中科院大连化物所张丽华研究员),有两人入选地方“千人”(中科院上海生化细胞所陈洛南研究员和四川大学宋旭教授),有两人虽未获得上述“人才计划”,但是已经做过“973”首席(南开大学沈月全教授和重庆医科大学副校长谢鹏教授),有一位首席仅获得过武汉市的某人才计划(中科院武汉数理所的张许研究员),另位一位青千首席虽暂时没有拿到“青千”,但是下一次拿到应该问题不大(北京大学季雄研究员,他是“吴瑞奖”获得者,UCSD付向东教授在武汉大学指导的博士,Richard Young的博后)。/pp  35个项目中,有8个青年项目,这八个首席科学家中除了北京大学的季雄之外,其余清一色为国家“青年千人”,值得一提的是中科院遗传发育所的田烨研究员还是2010“吴瑞奖”获得者,当年NIBS张宏研究员的博士。还有一个比较有意思的是,青年首席厦门大学黄烯教授是邓兴旺院士的博后,而邓兴旺院士也在本次35个项目中担任“光信号参与高等植物生长发育调控的蛋白质机器鉴定及作用机制研究”的首席科学家。特别值得一提的是,中科院生物物理所章新政研究员以“青年千人”的身份拿到的是大项目而非青年项目的首席科学家。/pp  总的来说,通过简单的分析这些“帽子”可以粗略的得出一些信息,也就是说没有任何国字号的“帽子”而担任首席科学家也是有的,但是概率极其低。重大项目首席科学家比较常见的帽子是“院士”、“杰青”和“长江学者”,而国家“千人计划”这个帽子在上述重大项目的首席科学家中还比较少见,本次似乎只有中科院植物所的沈建仁研究员和北京大学邓兴旺院士(美国科学院院士、国家千人、长江学者)。/pp  另外,8个青年项目几乎全部给了“青千”,看来本土培养的青年人才仍需努力啊!/p
  • 可控蛋白质功能的纳米“计算机”研制成功
    创建用于精准医疗的纳米级计算机,长期以来一直是许多科学家和医疗机构的梦想。现在,美国宾夕法尼亚州立大学研究人员首次研制出一种纳米“计算机”,可控制参与细胞运动和癌症转移的特定蛋白质的功能。这项发表在16日《自然通讯》上的研究,为构建用于癌症和其他疾病的复杂设备铺平了道路。  宾夕法尼亚州立大学医学院尼古莱多霍利安教授及其同事创造了一个类似晶体管的“逻辑门”,可执行计算操作,由多个输入控制一个输出。  多霍利安称,这个逻辑门是一个重要的里程碑,因为它展示了在蛋白质中嵌入条件去操作并控制其功能的能力。这将给更深入地了解人类生物学和疾病,以及精准疗法的开发带来可能性。  逻辑门包括两个传感器域,旨在响应两个输入——光和药物雷帕霉素。研究团队瞄准了蛋白质焦点黏附激酶(FAK),因为它涉及细胞黏附和运动,这是转移性癌症发展的初始步骤。  研究人员首先在编码FAK基因中引入一个名为uniRapr的雷帕霉素敏感域,该域之前由实验室设计和研究过。然后,研究人员引入对光敏感的域LOV2。对两个域进行优化后,研究人员将它们组合成一个最终的逻辑门设计。  研究团队将修改后的基因插入HeLa癌细胞,并使用共聚焦显微镜在体外观察细胞。他们分别研究了每个输入对细胞行为的影响,以及组合输入的综合影响。  研究发现,他们不仅可以使用光和雷帕霉素快速激活FAK,而且这种激活导致细胞内部发生变化,从而增强了它们的黏附能力,最终降低了运动性。  研究人员称,这是第一次证明可在活细胞内构建一种可控制细胞行为的功能性纳米“计算机”。
  • 恒美-食品中蛋白质检测仪减少人工操作-新品
    点击了解更多产品详情→食品中蛋白质检测仪 食品中蛋白质检测仪是一种高效、精确、可靠的检测设备,对奶粉的检测有着重要的帮助。首先,蛋白质检测仪可以准确地测定奶粉中的蛋白质含量,确保奶粉的营养成分符合标准。其次,蛋白质检测仪可以检测奶粉中是否含有过量的添加剂或有害成分,如三聚氰胺等,从而确保奶粉的安全性。 此外,食品中蛋白质检测仪还可以检测奶粉的质量和纯度,确保奶粉的品质符合市场需求和消费者期望。因此,蛋白质检测仪在奶粉生产和质量控制中起着重要的作用,有助于提高奶粉的质量和安全性,保障消费者的健康和权益。 另外,食品中蛋白质检测仪还具有高效、自动化的特点,可以大幅度提高奶粉生产企业的生产效率和生产能力。通过蛋白质检测仪检测奶粉的过程,可以减少人工操作,降低人为误差的发生,提高检测的精度和准确性。此外,蛋白质检测仪还具有数据处理和分析功能,可以对检测结果进行统计和分析,为奶粉生产企业提供更全面、更准确的质量控制数据和方案。因此,蛋白质检测仪在奶粉生产和质量控制中的应用前景广阔,有望成为奶粉生产企业的必备设备和核心技术。
  • “蛋白质机器与生命过程调控”重点专项拟立项的2018年度项目公示
    p  根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于印发 国家重点研发计划管理暂行办法 的通知》(国科发资[2017]152号)等文件要求,现将“纳米科技”等5个重点专项的2018年度拟立项项目信息进行公示(详见附件)。!--国家重点研发计划管理暂行办法--/pp  公示时间为2018年5月4日至2018年5月8日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:/pp strong “蛋白质机器与生命过程调控”重点专项/strong/pp  联系人:江海燕/pp  联系电话:010-68104344/pp  传真:010-68104461/pp  电子邮件:jianghy@htrdc.com/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong国家重点研发计划“蛋白质机器与生命过程调控”重点专项拟立项的2018年度项目公示清单/strong/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/a1efb113-5fe2-4cc6-b72d-e0087f255126.jpg"//pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/ff513d04-a090-4fe5-9a92-5655f01fa651.jpg"//pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/9ca9551e-bdcf-4568-a55b-78a575a43daa.jpg"//pp  附件:a style="color: rgb(0, 176, 240) text-decoration: underline " href="http://img1.17img.cn/17img/files/201805/ueattachment/65c47604-509e-4abd-ade3-0e9bce0a35bf.pdf"span style="color: rgb(0, 176, 240) "国家重点研发计划“蛋白质机器与生命过程调控”重点专项 拟立项的2018年度项目公示清单.pdf/span/a/pp /p
  • 蛋白和肽类药物及诊断试剂研发与质控国际研讨会圆满闭幕
    仪器信息网讯 在结束了各分会场报告后,参加“蛋白和肽类药物及诊断试剂研发与质控国际研讨会”的450余名代表再次齐聚一堂,聆听精彩的大会报告。  会议现场  中国工程院副院长、本次研讨会学术委员会主席刘旭院士为大会致辞。  中国工程院副院长刘旭院士  刘旭院士说到,蛋白和肽类药物及诊断试剂以其精准性、便易性和高效性极大提高了疾病诊断准确性和预防水平,在现代医疗体系中占据越来越重要的位置,在生物医药产品中所占比例也不断加大。2014年,我国体外诊断产品市场规模达到306亿元 预计2019年将达到723亿元,年均复合增长率高达18.7%。近年来,我国越来越多的企业投入到蛋白和肽类药物及体外诊断试剂的开发和生产中来,其品种和市场份额也逐年显著提高。以此同时,随着蛋白、肽类药物和体外诊断试剂行业的发展,尤其大量治疗性肽和蛋白药物的研发和上市,对产品标准、测量技术提出迫切需求,准确表征和控制技术成为制约产品质量和产品研发推广的关键点与难点,也是国内外普遍面临的热点问题和重点方向。  本次“蛋白和肽类药物及诊断试剂研发与质控国际研讨会”本着搭建学术交流平台、提升质控整体水平、促进产业稳定发展的目标,吸引了全球范围内450余名从事新技术研发、计量标准研究、质量控制研究和应用研究的专家学者、管理者及产业界代表参加,盛况空前。  本次会议以蛋白和肽类药物、诊断试剂研发及质量控制为主题。会议报告内容涵盖该领域前沿的测量方法研究、标准需求、测量与质量控制技术的进展、还体现了在体外诊断、蛋白质药物标准化的典型行业应用。会议主题将传统的检测技术提升至科学、精准的表征和评价体系,尤其是突出了计量在该领域的主要作用。计量是研究测量及其应用的科学,目标是保证全球范围内的质量检测活动的量值准确统一,在蛋白及肽类药物安全性和有效性评价相关测量技术的研究及标准化方面起着重要的支撑作用。相信,它将会对推动生物医药产品质量与安全水平的提升,以实现我国蛋白及肽类药物的安全、有效和质量可控,推动我国医药产业发展、提升国产蛋白及肽类药物和诊断试剂的国际竞争力起到重要的作用。  组织研究、讨论工程科学技术领域的重大、关键性问题是中国工程院的重要职能之一,医药产业的健康有序发展也是中国工程院关注的重点。蛋白和肽类及诊断试剂在生物医药产业中占有重要的比例,关系着医疗诊断和人类健康,一方面预示着未来发展方向,同时也存在许多挑战。三天的学术盛会,建立了蛋白和肽类药物前沿研究与工程化转化的桥梁和纽带,同时也将为研发、质控、产业化等全领域专家奠定合作共赢的基础,为全面提升产品研发水平和质量,促进行业发展,保障人民健康起到非常积极的作用。  最后,刘旭院士代表中国工程院祝贺本次大会圆满成功!  接下来,由中国计量科学研究院化学计量与分析科学研究所所长李红梅研究员介绍“优秀墙报奖”评奖规则,由中国科学院张玉奎院士宣布获奖名单,并由中国工程院副院长刘旭院士、检验医学溯源联合委员会执行委员会主席Gary Myers博士、中国计量科学研究院副院长吴方迪研究员、岛津公司代表等人为获奖者颁奖。  颁奖仪式  当天的大会报告分别由韩国标准科学研究院CCQM蛋白质组主席Sang-Ryoul Park博士、清华大学林金明教授、中国计量院李红梅研究员和检验医学溯源联合委员会执行委员会主席Gary Myers博士主持。  主持人 左起分别为Sang-Ryoul Park博士、林金明教授、李红梅研究员、Gary Myers博士  本日大会报告内容同样精彩纷呈,十余位领域内知名专家为到会者做出了专业分享。报告专家有:北京理工大学的邓玉林教授、欧洲标准局联合研究中心欧洲委员会科学主任Heinz Schimmel、中国计量科学研究院李红梅研究员、解放军总医院生化科主任颜光涛、意大利米兰比可卡大学Mauro Panteghini、军事医学科学院放射与辐射医学研究所的应万涛副研究员、中国科学院张玉奎院士、美国密苏里州立大学Randie Little教授、国际临床化学联合会Graham Beastall博士、中国食品药品检定研究院副院长王佑春研究员以及英国曼彻斯特生物技术研究院Perdita Barran博士。  北京理工大学邓玉林教授  欧洲标准局(IRMM)联合研究中心Heinz Schimmel博士  中国计量科学研究院李红梅研究员解放军总医院生化科主任颜光涛  意大利米兰比可卡大学Mauro Panteghini  军事医学科学院应万涛副研究员  美国密苏里州立大学Randie Little教授  国际临床化学联合会Graham Beastall博士  中国食品药品检定研究院副院长王佑春研究员  英国曼彻斯特生物技术研究院Perdita Barran博士 会议组织团队合影
  • “蛋白质组学研究技术与方法进展”会议精彩视频出炉
    p style="text-indent: 2em "6月18日,仪器信息网主办的“蛋白质组学研究技术与方法进展”主题网络研讨会成功召开,会议为期半天,共吸引近700人报名参会。会议现场,网友纷纷积极提问,与在线专家形成良好的互动氛围。br//pp style="text-indent: 2em "为方便更多从事蛋白质组学研究的科研人员学习相关技术,现特将会议内容剪辑整理,点击strong报告题目/strong或strong报告图片/strong即可进入视频页面。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/13b79024-5ab6-46a9-ba61-aa729fa12726.jpg" title="1.jpg" width="550" height="413" border="0" vspace="0" alt="1.jpg"//a/pp style="text-align: center "报告嘉宾:邓海腾(清华大学 )/pp style="text-align: center "报告题目:《a href="https://www.instrument.com.cn/webinar/video_112929.html" target="_blank"功能蛋白质组学技术的进展和挑战》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着质谱技术的发展,高通量地检测细胞、体液和组织中的蛋白表达谱已经成为常规分析,蛋白质组学的研究重心开始从揭示蛋白的表达水平转移到蛋白的生物学功能研究上。在本次讲座中,我将和大家一起探讨常用的功能蛋白质组学方法和在分子生物学研究中的应用,以及功能蛋白质组学分析面临的挑战。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/e6517efa-7c9c-4df5-8b90-784a1ff0e53d.jpg" title="2.jpg" width="550" height="413" border="0" vspace="0" alt="2.jpg"//a/pp style="text-align: center "报告嘉宾:申华莉(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112930.html" target="_blank"《拟靶向质谱定量技术用于大规模生物标志物筛选》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "血液包含了人体各器官实时的生理病理状态信息,是最理想的检测目标样本。目前的血清标志物研究方法通量小、效率低,导致血清标志物发现少,向临床转化效率低。我们利用MRM技术的特点实现血清中标志物的高灵敏、高精确定量,并通过时间窗口的设置大幅度提高MRM检测的通量。这一策略可以实现高灵敏、高通量的血清标志物筛选。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/3ecece59-eff5-4527-b974-047f2710ee1a.jpg" title="3.jpg" width="550" height="413" border="0" vspace="0" alt="3.jpg"//a/pp style="text-align: center "报告嘉宾:田瑞军(南方科技大学 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112932.html" target="_blank"《基于生物质谱技术的动态蛋白质复合物分析及生物医学应用》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "蛋白质复合物是介导细胞微环境信号转导网络的关键分子机制,一般都经历一个由细胞间、细胞膜、细胞质到细胞核的“链条式”激活和动态组装的过程。目前针对细胞信号转导的蛋白质组学研究大多集中于对蛋白质表达量及其翻译后修饰的分析,仅能阐述通路节点的变化,无法诠释信号蛋白的动态组装和信号传递过程。本团队致力于开发基于生物质谱技术的蛋白质组学新方法和新技术,并专注于其在动态蛋白质复合物及肿瘤微环境信号转导研究方面的应用。最近,我们设计合成出一种具有酪氨酸磷酸化识别蛋白结构域SH2、光交联基团和富集基团的化学生物三功能亲和探针,实现了对疏水性动态受体膜蛋白复合物及相关药物靶点蛋白的高效富集和质谱精准鉴定;发展了样品前处理新技术SISPROT,实现了微纳克级别亲和富集样品前处理的集成化和通量化操作,并实现了受体膜蛋白相关复合物分钟级别动态变化规律的高准确度定量表征;发展了通用的受体膜蛋白复合物多维度协同富集和蛋白质组学分析方法,并成功地用于胰腺癌肿瘤微环境受体膜蛋白复合物的规模化发现。上述研究发现并验证了胰腺癌的新药靶点和疾病标志物白血病抑制因子LIF,并促成了首个针对胰腺癌的anti-LIF抗体药物的美国一期临床试验。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/79709921-762a-47fe-b158-b7195b607ca9.jpg" title="4.jpg" width="550" height="413" border="0" vspace="0" alt="4.jpg"//a/pp style="text-align: center "报告嘉宾:陆豪杰(复旦大学 ) /pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112935.html" target="_blank"《定量蛋白质翻译后修饰组学》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "对蛋白质翻译后修饰的定量分析可以帮助我们了解和调控生命过程。蛋白质翻译后修饰使蛋白功能多样以满足复杂的生命过程,同时使得蛋白质的结构复杂。基于生物质谱的组学技术,极大推动翻译后修饰的规模化定量分析。我们发展了一系列方法用于蛋白质后修饰组的定量研究,包括蛋白质的糖基化、泛素化、棕榈酰化、4-羟基壬烯醛(HNE)修饰以及蛋白质的N/C末端。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/b27ac34d-5153-4f1c-9d16-8a679f98d718.jpg" title="6.jpg" width="550" height="413" border="0" vspace="0" alt="6.jpg"//a/pp style="text-align: center "报告嘉宾:隋欣煜(安捷伦)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112933.html" target="_blank"《安捷伦蛋白组学样品前处理自动化解决方案》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "AssayMAP Bravo生物样品前处理工作站,由96通道的注射器式移液头、微量色谱小柱、功能全面的工作站台面和为生物制药专家量身定制的操作软件组成,利用自动化操作来减少人为实验操作带来的误差,提升实验结果的稳定性,减少污染的可能性,同时利用自动化精准的时间控制和操作,来优化实验流程,提高实验室运行效率,同时适应未来趋势,节省时间和体力让实验人员从事更加有深度的分析和探索职能。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo仪器功能介绍;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo实验的稳定结果;/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "●AssayMAP Bravo在蛋白组学前处理的应用和文献解读;/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/9d190992-caea-4b22-afb1-1f04a98f1095.jpg" title="5.jpg" width="550" height="413" border="0" vspace="0" alt="5.jpg"//a/pp style="text-align: center "报告嘉宾:陈宁(布鲁克· 道尔顿)/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112931.html" target="_blank"《布鲁克4D-Proteomics™ 研究方案及dia-PASEF@、prm-PASEF@最新技术进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "随着分析技术的不断发展,高分辨率质谱已成为蛋白质组学研究的核心仪器。由于生物样本的高复杂性和宽动态范围,蛋白质组学的深度研究仍面临极大挑战。捕集型离子淌度的引入,带领着传统蛋白质组学进入了4D新时代,带来了鉴定深度、定量准确性、扫描速度、仪器稳定性等性能的全面提升。本次报告将主要介绍4D-ProteomicsTM研究方案,以及dia-PASEF® 、prm-PASEF® 技术进展。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202006/uepic/074d05d3-7121-4343-adc9-0205390abdb5.jpg" title="7.jpg" width="550" height="413" border="0" vspace="0" alt="7.jpg"//a/pp style="text-align: center "报告嘉宾:周岳(赛默飞 )/pp style="text-align: center "报告题目:a href="https://www.instrument.com.cn/webinar/video_112934.html" target="_blank"《突破蛋白质组学分析的极限——赛默飞蛋白质组学技术最新进展》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "赛默飞近几年在蛋白质组学领域开发了多种新技术来突破蛋白质组分析的极限。FAIMS Pro离子淌度可以接在Orbitrap质谱的前端选择特定的离子进入质谱,提高了蛋白质组学的覆盖度和定量准确性,同时也提高了质谱的稳定性。Orbitrap Eclipse独有的实时检索算法(RTS)使TMT定量的覆盖度和准确度可以兼得,加上TMT 16plex标记试剂的推出,使得TMT定量具有更高的通量。靶标定量一直是蛋白质组学的最后一环也是最关键的一环,基于Orbitrap质谱的独有SureQuant定量方法可以在很短的梯度内绝对定量500多个蛋白,同时不需要太多方法优化,该方法可以很快地在实验室间进行方法转移。/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em "点击链接,观看全部“蛋白质组学研究技术与方法进展”网络会议视频: a href="https://www.instrument.com.cn/webinar/Video/Video/Collection/10572" target="_blank"https://www.instrument.com.cn/webinar/Video/Video/Collection/10572/a/p
  • 利用自上而下质谱对蛋白质高阶结构和动力学进行时间分辨表征的微流控平台
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Microfluidic Platform for Time-Resolved Characterization of Protein Higher-Order Structures and Dynamics Using Top-Down Mass Spectrometry [1],文章的通讯作者是北京大学生物医学前沿创新中心的王冠博教授和中国科学院深圳先进技术研究院的门涌帆副研究员。  蛋白质的高阶结构和动力学特性对理解蛋白质的生物学功能和揭示其潜在机制至关重要。自顶向下质谱法(Top-down MS)在完整蛋白水平和肽段碎片水平都能获得结构信息。非变性Top-down MS可以分析蛋白质复合体的结构以及完成亚基鉴定和修饰分析。自顶向下氢/氘交换质谱(Top-down HDX MS)为构象或结合界面分析提供了高空间分辨率,并实现了构象特异性表征。微流控芯片可以为这些质谱工作流程的前端反应提供优越的平台。然而,目前大多数质谱微芯片装置是为Bottom-up或Top-down蛋白质组学设计的。本文中,作者提出了一种用于蛋白质高阶结构和动态Top-down MS分析的芯片设计策略。它适用于时间分辨的非变性质谱和HDX质谱,该设计旨在有效电离完整的蛋白质复合物,灵活控制多种反应物流动,并在较大的流速范围内精确控制反应时间在亚微升/分钟。本文通过对单克隆抗体、抗体-抗原复合物和共存蛋白构象等体系的分析来验证该装置的性能。  TDK-MS(Top-down and kinetic MS)芯片的结构如图1A所示,该方法可以有效电离完整的蛋白质,包括单克隆抗体(mAb)和抗体-抗原复合物(图1 B, C)。  图1. 完整蛋白质和蛋白质复合体在非变性条件下的高效电离  虽然分析蛋白质组合化学计量学和监测构象变化需要保持蛋白质高阶结构和非共价相互作用的完整性,然而为了推导结构信息或在串联MS中展开蛋白质以提高碎裂效率,往往需要不同程度的变性来产生亚复合体,因此变性剂的浓度和变性的时间对变性程度至关重要。本文中,作者采用交错人字微结构(Herringbone microstructure, HM)(图2A, B),并对其性能进行了评估(图2C−E)。如此高的混合效率为进一步微型化芯片混合模块提供了可能。在监测Mb的变性时,作者使用TDK-MS芯片和商用混合三通管平行混合holo-Mb溶液(5 μM)与乙腈(ACN),并比较它们在混合比例变化时的响应(图2F)。TDK-MS芯片在非变性和变性条件之间切换的快速响应通过NIST mAb的变性得到了证明,在向NIST mAb溶液中添加甲酸后,响应时间小于5分钟(图2G)。  图2. 高效混合和快速响应的流体控制  微芯片的灵活通道设计允许引入独立控制的溶液。例如,尽管酸和有机溶剂都能诱导变性,但这两种变性剂同时存在时,对变性途径的影响是不同的。Mb和Hb是血红素蛋白,其中血红素基团分别非共价连接在1条多肽链和4条非共价组装链上,因此这是研究共存复合体解离动力学和亚基构象变化的理想模型。将5 μM holo蛋白溶液与ACN和FA按一定的混合比例依次混合,可以通过解离产物的出现和蛋白质离子电荷态分布的变化来表征复杂的解离和蛋白质的展开。在固定ACN浓度下,随着FA浓度从0.01增加到0.3% (v/v),依次观察到的主要现象是血红素丢失、apo-Mb展开以及折叠的holo-Mb转化为展开的apo-Mb(图3A)。相比之下,在FA浓度恒定的情况下,当ACN从1增加到50%时,Mb主要表现为血红素损失,只有中等程度的apo-Mb展开,这可能是由于展开的部分迅速聚集(图3B)。  图3. (A)增加FA浓度,固定ACN浓度和(B)增加ACN浓度,固定FA浓度时获得的Mb和Hb的质谱图。  在HDX MS检测中,TDK-MS芯片提供了快速和有效的氘代及淬灭,精确控制HDX反应时间,并在2H-标记形式下高效电离完整蛋白质(图4)。  图4. 2H标记完整的(A)Mb、(B)Hb α亚基和(C)Hb β亚基在不同反应时间下的HDX质谱图  由于过大的流速不利于电离效率,并且有可能会增加堵塞或流动中断的风险,因此流速应保持在最佳范围内,这又限制了混合通道中HDX时间的可调节范围,从而影响了HDX动力学分析的灵活性。为了解决这一问题,作者设计了一个具有多个不同长度反应通道的混合模块,在不更换芯片的情况下,除了改变流速外,还可以通过通道切换在更大范围内调整反应时间。在原型芯片中,5个不同长度的通道可以在对蛋白质电离和流动稳定性都最优的流速下,产生从几秒到几分钟不等有效的HDX时间(图5)。  图5. Top-Down HDX MS 分析  本文中作者开发的策略将有利于生物大分子结构的精细分析,并有助于质谱微芯片的方法开发。
  • 国家蛋白质科学研究(上海)设施公开招聘技术人员
    p  国家蛋白质科学研究(上海)设施(简称:上海设施,网址:http://www.ncpss.org/)是国家重大科技基础设施,是全球生命科学领域首个综合性的大科学装置。上海设施位于浦东新区张江高科技园区中区西部(上海市海科路333号)。/pp  上海设施旨在成为具有国际竞争力的蛋白质科研设施,同时拥有国际一流的蛋白质科学设施平台以保障国内外科研用户的高效实验平台及高质量科研设施的需求;聚集培养生命科学与生物技术特别是蛋白质研究的人才,提升国家蛋白质研究能力;进而促进我国蛋白质基础研究的飞跃发展。上海设施将立足于国家生命科学与生物技术及相关研究领域雄厚的研究基础和创新实力,成为兼具蛋白质科学研究、技术及成果的转化、集成和应用平台的国家级的重要科学研究单元。/pp  上海设施现因工作扩展的需要,面向社会公开招聘规模化蛋白质制备系统运行管理人员2名和复合激光显微镜系统流式细胞仪技术员1名。受聘者将有机会接受此技术的全面培训。/pp strong 一、招聘岗位名称及人数:/strong/pp  规模化蛋白质制备系统:/pp  开放仪器运行管理员1名/pp  哺乳系统运行管理员1名/pp  复合激光显微镜系统:/pp  流式细胞仪技术员 1名/pp strong 二、岗位职责:/strong/pp  strong开放仪器运行管理员岗位职责:/strong/pp  1. 负责设施多台晶体学生物仪器对外开放及技术支持;/pp  2. 负责设施多台对外开放蛋白相互作用仪器的技术支持;/pp  3. 负责用户课题的预约和机时的统计;/pp  4. 负责系统备品备件的预算、采购执行、仓库管理及报销等工作;/pp  5. 完成领导安排的其他工作。/pp strong 哺乳系统运行管理员岗位职责:/strong/pp  1. 负责哺乳细胞自动化蛋白表达筛选系统的项目运行;/pp  2. 负责设施动态光散射仪的对外开放及技术支持;/pp  3. 负责设施静态光散射仪的对外开放及技术支持;/pp  4. 负责超速离心机对外开放及维护;/pp  5. 完成领导安排的其他工作。/pp strong 流式细胞仪技术员岗位职责:/strong/pp  1. 主要负责荧光激发细胞分选仪的操作、管理服务及样品制备;/pp  2. 负责流式细胞仪的操作,用户培训和技术支持;/pp  3. 负责普通荧光显微镜的操作、管理服务及技术支持,保证设备正常运行及日常维护;/pp  4. 参与并协调系统公共行政事务(如预算、采购、预约系统等),与设施相关职能部门对接,收集整合系统宣传信息,与设施宣传对接;/pp  5. 完成领导安排的其他工作。/pp strong 三、任职条件:/strong/pp  strong开放仪器运行管理员和哺乳系统运行管理员任职条件:/strong/pp  1. 生物学相关专业,硕士或以上学历;/pp  2. 能熟练掌握哺乳动物细胞实验的优先;/pp  3. 有生物仪器管理运行经验优先;/pp  4. 熟练掌握蛋白表达及纯化试验优先;/pp  5. 具备自动化生物运行经验优先;/pp  6. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;/pp  7. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;/pp  8. 身体健康,能长期稳定工作。/pp  strong流式细胞仪技术员任职条件:/strong/pp  1. 生物学相关专业,硕士或以上学历;/pp  2. 掌握流式细胞分选技术,有流式、显微镜理论及操作基础,能熟练操作显微镜相关的中小型仪器;/pp  3. 具有良好的独立工作能力、创新工作精神;工作积极主动,具有团结奉献精神,乐于学习和接受新事物;/pp  4. 为人诚实,工作认真踏实、积极主动,责任心强,善于团队合作;/pp  5. 良好的英文文献阅读和理解能力;/pp  6. 身体健康,能长期稳定工作。/pp strong 四、招聘方式及程序/strong/pp strong /strong1. 应聘材料:/pp  (1)《附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201711/ueattachment/b344f994-0a67-469c-b76a-16c42f66aa14.docx"应聘人员信息登记表.docx》(见附件);/a/pp  (2)应聘函,包括对应聘岗位的理解、认识及工作设想等;/pp  (3)个人简历(包括联系电话、电子邮箱);/pp  (4)有关材料:身份证复印件、学历及学位证书复印件、相关资格证书复印件、获奖证书复印件等。/pp  2. 资格审查/pp  对应聘者进行资格审查,通过初审者,将另行通知面试时间和地点。/pp  3. 请将上述材料的电子版或扫描件发至hr-ncpss@sibcb-ncpss.org(请在应聘材料和邮件主题栏注明应聘岗位和姓名,按如下格式:“姓名—应聘部门—应聘岗位”),本岗位招满前有效。/pp  4. 谢绝来电来访,应聘材料恕不退还,招聘单位将予以保密。/pp  5. 上述岗位按照公开报名、资格审查、面试、决定聘任的程序和方法进行。/pp /p
  • 北京蛋白质组研究中心第六期蛋白质组信息学培训班
    北京蛋白质组研究中心  第六期蛋白质组信息学培训班  时间:2017年11月7-10日  地点:北京蛋白质组研究中心(北京市昌平区科学园路38号,中关村生命科学园内)  主办单位  国家蛋白质科学中心· 北京(凤凰中心)  北京蛋白质组研究中心(BPRC)  蛋白质组学国家重点实验室(SKLP)  中国生物化学与分子生物学会蛋白质组学专业委员会(CNHUPO)  国家蛋白质科学中心?北京(简称“凤凰中心”)/北京蛋白质组研究中心(BPRC)坐落在国家科技创新示范区——中关村生命科学园,是我国生命科学领域的国家科技基础设施,也是国际人类肝脏蛋白质组计划执行总部、蛋白质组学国家重点实验室和首都科技条件平台。  凤凰中心/BPRC在以院士领衔,入选“千人计划”、国家杰青、北京市科技新星为骨干的专家团队带领下,在生命科学领域不断开拓,建立了高通量、高分辨率、高精度的蛋白质组学,以高性能“天河”超级计算机为核心的生物信息学,蛋白质相互作用,多功能多层次显微成像,流式分选,模式生物构建,抗体药物筛选等技术体系与平台。我们愿与从事生命科学研究的有识之士一起,推动生命科学新发现、新技术、新产品的涌现,实现“创造历史,引领世界”的梦想。  培训目的  本课程为生命科学研究人员介绍如何合理利用和开发蛋白质生物信息学资源。课程着眼于实际数据库搜索、工具使用、大型数据库分析、生物学网络构建、可视化和数据分析等。采取小班授课,专人指导 理论课与实践课相结合,讲师与学员研讨的方式进行 精心挑选相应的上机软件,提供充足的实际操作机会 让每位学员学有所成。  培训对象  ●从事生命科学、农学、医学等领域科研工作者和高校教师及研究生  ●迫切希望提升生物信息分析能力的学者  培训内容  质谱数据深度分析、蛋白质注释及功能分析、蛋白质相互作用网络构建及分析、蛋白质组研究主题信息服务和专业数据库研发。  课程安排2017年11月6日15:00-17:00软件安装2017年11月7日主持人:杨冬邵晨主题:蛋白质组信息学蛋白质鉴定时间主讲人培训内容9:00-10:00讲座邵晨●课程介绍●蛋白质组学●蛋白质组信息学工作流程10:00-10:45讲座邵晨工作流原理●序列数据库●肽段鉴定●蛋白组装●蛋白定量●质量控制和标准10:45-11:00茶歇11:00-11:45讲座杨冬工作流原理●翻译后修饰●数据挖掘●数据注释●聚类和其他分析11:45-12:30练习杨冬常用的生物信息数据库和工具12:30-13:30午餐13:30-14:30讲座杨冬Mascot:实践中的搜索工具14:30-15:15练习杨冬搜索工具的环境15:15-15:30茶歇15:30-16:30讲座杨冬搜索工具实际应用16:30-17:15讲座OmicsBean题目待定17:15结束2017年11月8日主持人:朱云平主题:定量蛋白质组时间主讲人培训内容9:00-10:00讲座常乘标记定量蛋白质组学:母离子标记方法10:00-10:45讲座常乘标定定量蛋白质组学:子离子标记方法10:45-11:00茶歇11:00-11:45练习常乘马洁冯晓东MaxQuant上机练习11:45-12:30练习常乘马洁冯晓东MaxQuant上机练习12:30-13:30午餐13:30-14:30讲座常乘非标定量蛋白质组学14:30-15:15练习常乘差异表达蛋白的统计分析15:15-15:30茶歇15:30讲座常乘PANDA和PANDA-view介绍16:30练习常乘马洁冯晓东PANDA和PANDA-view上机练习17:15结束2017年11月9日主持人:冯晋文主题:工作流数据发布时间主讲人培训内容9:00讲座冯晋文TPP(transproteomepipeline)数据分析平台介绍10:00练习冯晋文●基于X!Tandem肽段鉴定●基于peptideProphet肽段验证10:45-11:00茶歇11:00练习冯晋文蛋白质定量●Libra蛋白质组装●ProteinProphet11:45练习冯晋文实际操作12:30-13:30午餐13:30讲座冯晋文Firmiana简介14:30练习冯晋文Firmiana上机练习15:15-15:30茶歇15:30讲座HenningHermjakob数据存储与索引:ProteomeXchangeandOmicsDI16:30练习马洁实际操作:基于Iprox的数据存储17:15-18:00Phototime2017年11月10日主持人:李栋主题:网络和通路时间主讲人培训内容9:00讲座李栋蛋白质网络的构建与分析10:00讲座李栋蛋白质数据集深度挖掘10:45茶歇11:00练习李栋网络工具介绍:●KEGG,Reactome●STRING11:45练习李栋上机练习12:30午餐13:30讲座刘中扬Cytoscape简介14:30练习刘中扬Cytoscape上机练习15:15-15:30茶歇15:30-16:30练习HenningHermjakobReactomepathwayanalysis17:15结束  培训费用  ●即日起至11月6日之间注册:每人4500元,学生4000元。  ●网上注册地址:http://111.198.139.71/training/cn/  ●培训费用包含:培训资料、培训期间的午、晚餐。  ●住宿费用自理,请自行联系酒店登记住宿信息。  报到时间和地点  ●报到:11月6日全天,凤凰中心/BPRC  ●培训:11月6-7日,凤凰中心/BPRC(北京市昌平区科学园路38号,中关村生命科学园内)。  ●住宿:北京梧桐苑商务酒店(紧邻凤凰中心大楼),预订电话:010-61777200(预定时请说明参加此次培训)  ●学员自备笔记本电脑(具有WiFi无线网络功能)用以操作练习。  注意事项  · 学员可使用自己的数据进行练习,在主讲人时间允许的情况下可给予一定的指导。  · 参加本期培训班的学员可以享受中心提供的技术服务优惠政策。技术服务项目请看网站:http://www.bprc.ac.cn/guidance/list.php?catid=27或http://www.ncpsb.org/cn/%E6%9C%8D%E5%8A%A1  汇款信息  帐号:0200004909200041055  账户名称:北京蛋白质组研究中心  开户银行:工商银行北京市永定路支行  注:汇款时请务必注明学员姓名、单位和“信息学培训班”字样。汇款后将汇款凭据传真至中心,或将扫描电子版发送至邮箱bprctrain@163.com,以确保汇款安全到账。  如需发票请注明发票抬头,培训结束后统一开具发票(培训费、会议费等)。  联系方式  联系电话:注册:(010)61777015  咨询:(010)61777010  传真:(010)61777050  电子邮件:bprctrain@163.com  通信地址:北京市昌平区科学园路38号(102206)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制