当前位置: 仪器信息网 > 行业主题 > >

联吡啶标准品

仪器信息网联吡啶标准品专题为您提供2024年最新联吡啶标准品价格报价、厂家品牌的相关信息, 包括联吡啶标准品参数、型号等,不管是国产,还是进口品牌的联吡啶标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合联吡啶标准品相关的耗材配件、试剂标物,还有联吡啶标准品相关的最新资讯、资料,以及联吡啶标准品相关的解决方案。

联吡啶标准品相关的资讯

  • 全国特殊食品标准化技术委员会发布国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿
    国家标准计划《保健食品中吡啶甲酸铬含量的测定》由 TC466(全国特殊食品标准化技术委员会)归口 ,主管部门为国家市场监督管理总局(特殊食品司)。主要起草单位 中轻技术创新中心有限公司 、中国食品发酵工业研究院有限公司 、北京市疾病预防控制中心 、中轻检验认证有限公司 。附件:国家标准《保健食品中吡啶甲酸铬含量的测定》编制说明.pdf国家标准《保健食品中吡啶甲酸铬含量的测定》征求意见稿.pdf
  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 瞄准分析化学研究国际前沿热点
    日前召开的全国科技奖励大会上,由中国科学院长春应用化学研究所杨秀荣院士主持完成的“生物分子识别的分析化学基础研究”项目喜获国家自然科学奖二等奖。 “生物分子识别的分析化学基础研究”项目属于分析化学学科,是分析化学研究的国际前沿热点。该项目立足于学科发展,面向国家和社会需求,瞄准分析化学中高灵敏度、高选择性、高通量的科学问题,发展基于生物分子识别的新型分析材料、分析方法和分析仪器。 在这个项目中,有多项重要科学发现:一是首次成功利用微波热解法制备出无毒、具有荧光和电化学发光双重性质的碳点;发展了非共价技术制备稳定的、对氧还原具有高催化活性的铂纳米立方体修饰碳纳米管的材料;该系列材料在生物分子识别研究中发挥了重要作用。 二是发现了三联吡啶钌电化学发光新型共反应剂:二丁基乙醇胺。使用该试剂,三联吡啶钌在铂电极上的电化学发光响应是使用传统共反应剂三丙胺的100倍,在提高电化学发光灵敏度方面具有重要意义。 三是构筑了新型功能化纳米传感器,并将其成功用于高灵敏度、高选择性的生物分子识别分析:发展了杂交双链DNA功能化荧光银纳米簇的制备新方法,实现了对镰刀型细胞贫血症基因的单碱基突变的识别。该方法对于基因单碱基变异的识别具有普适性;设计与合成了新型纳米多功能荧光探针:SiO2/ED-TA/Eu3+,可以选择性识别炭疽热孢子标志物,检测灵敏度比传统方法提高了2个数量级,2分钟即可完成检测,并实现了检测的可视化;开发了基于三重氢键识别的功能化金纳米粒子检测三聚氰胺的比色方法,裸眼检测限比美国安全标准低2个数量级,实现了低成本、准确、原位检测奶制品中三聚氰胺的目的。 四是发展出具有荧光、表面增强拉曼和共振光散射等多种检测手段,非放射性的生物芯片技术,提高了检测的准确性,达到了对生物分子识别进行高通量研究的目的。 五是研制出实时、在线的分子识别电化学分析仪。有关该仪器的科技部专家组验收意见认为“该仪器是具有自主知识产权的一项重要科技成果,填补了该类仪器国内外空白。”
  • 江西省生态环境厅公开征求《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》等五项地方生态环境标准意见
    各有关单位:根据《江西省市场监管局关于下达2023年第六批江西省地方标准制修订计划的通知》(赣市监标函〔2023〕20号)要求,我厅组织编制了《生态环境监测质量管理技术规范》等五项地方生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登陆我厅网站“政务公开-公示公告”(http://sthjt.jiangxi.gov.cn)栏目检索查阅。请于2024年7月12日前将意见建议书面反馈我厅,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。联系人:邓 磊、刘燕红;电 话:0791-86866660、0791-86866791;邮 箱:Fenzc2023@163.com。附件:1.生态环境监测质量管理技术规范(征求意见稿)2.《生态环境监测质量管理技术规范(征求意见稿)》编制说明3.水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)4.《水质 吡啶的测定 顶空/气相色谱-质谱法(征求意见稿)》编制说明5.水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)6.《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法(征求意见稿)》编制说明7.水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)8.《水质 高锰酸盐指数的测定 氧化还原自动滴定法(征求意见稿)》编制说明9.土壤和沉积物 碲的测定 酸溶/原子荧光法(征求意见稿)10.《土壤和沉积物 碲的测定 酸溶/原子荧光法》(征求意见稿)》编制说明11.意见反馈表12.征求意见单位名单江西省生态环境厅2024年6月11日(此件主动公开)
  • 新疆理化所基于探针结构精细调控实现高氯酸盐可视化检测
    高氯酸盐具有强氧化性和高稳定性,是广泛应用于固体推进剂、军工生产、航天器材、烟花爆竹等领域的重要含能材料之一。据美国爆炸数据中心统计,以高氯酸盐/氯酸盐作为原料直接或间接参与的爆炸案达全球爆炸案总量的63.4%。因此,开展对痕量高氯酸盐固体的高灵敏、准确的现场检测对保障国家公共安全具有重要的现实意义。中国科学院新疆理化技术研究所爆炸物传感检测团队长期致力于痕量危化品检测方法研究,在危爆品、特别是非制式爆炸物的高灵敏、快速、识别检测原理和器件设计方面发展了系列新的解决方案(Adv. Mater. 2020, 32, 1907043、Adv. Sci. 2020, 2002991、Angew. Chem. Int. Ed. 2022,DOI: 10.1002/anie.202203358等)。近期在高氯酸盐现场可视化检测方面取得进展,提出了一种基于自组装配合物探针与水凝胶耦合作用协同调控的超高灵敏比色-荧光双模可视化传感新策略,成功实现了超痕量高氯酸盐的现场双模可视化检测。该团队以三联吡啶铂(II)辅助配体为切入口,结合量子化学计算,系统研究了不同辅助配体对水溶液中三联吡啶铂(II)自组装产物Pt-Pt金属作用导致的MMLCT态光谱能量和发光稳定性的影响,阐明了辅助配体调控高氯酸根诱导聚集产物发光性质的一般性规律。研究发现,异硫氰酸根为辅助配体时,高氯酸根诱导聚集的三联吡啶铂(II)自组装产物具有能量最低且最稳定的MMLCT吸收/发射光谱,而溴为辅助配体时,自组装产物的MMLCT发生强度最高。因此,结合反阴离子调控,获得了具有良好水溶性的三联吡啶铂(II)配合物高氯酸盐比色-荧光双模可视化探针,实现了对高氯酸盐的高灵敏、高特异、快速、双模可视化传感。在此基础上,该团队提出了利用水凝胶反应介质与探针之间的耦合效应对传感材料发光信号局域增强的提升策略。通过将该铂(II)配合物探针与具有均一网络结构的PVA水凝胶耦合,利用自组装生成的微米级一维纤维状聚集体与水凝胶网络的相互作用,实现了对发光产物的完全锚定,实现了对0.75 μm(0.73 fg)高氯酸盐单颗粒的比色-荧光双模传感信号的直接观测,对空气中高氯酸盐悬浮微粒的检测限低至0.02 fg。该研究提出的辅助配体精细调控提升自组装阴离子探针双模可视化传感性能的策略,不仅可为具有特异双模光学响应信号的阴离子探针设计提供指导,还发展了基于单颗粒响应信号直接观测的超灵敏嗅觉传感方法,可为其他超痕量难挥发化学物质传感提供借鉴。此外,爆炸物传感检测团队以该研究为核心,与新疆公安厅共同发布自治区地方标准1项(DB 65/T 4451-2021《氯酸盐和高氯酸盐的检测目视化学比色法》),为相关行业提供了高氯酸盐检验鉴定操作规范。系列研究成果分别发表在《Journal of Materials Chemistry A》(杂志封底)和《Sensors and Actuators B: Chemical》上,博士研究生苏珍为第一作者,导师窦新存研究员和李毓姝副研究员为共同通讯作者,相关理论计算部分与太原科技大学李坤教授合作完成。研究工作得到国家自然科学基金委、中国科学院及自治区相关项目的资助。论文链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta00843bhttps://www.sciencedirect.com/science/article/pii/S0925400521002975封底链接:https://pubs.rsc.org/en/content/articlelanding/2022/ta/d2ta90087d
  • 江西省市场监督管理局发布《水质 吡啶的测定 顶空/气相色谱-质谱法》等6项江西省地方标准征求意见稿
    各有关单位及专家:《生态环境监测质量管理技术规范》《水质 吡啶的测定 顶空/气相色谱-质谱法》《水质 丙烯醛、丙烯腈和乙醛的测定 顶空/气相色谱法》《水质 高锰酸盐指数的测定 氧化还原自动滴定法》《土壤和沉淀物 碲的测定 酸溶原子荧光法》《危险废物全过程监管物联网终端技术规范》地方标准现已形成征求意见稿,欢迎各有关单位及专家对标准进行审阅,并于2024年7月13日前返回具体的修改意见。审评中心联系人:高汉、胡昭君、刘磊联系电话:0791-85773380 电子邮箱:jxbzhy@126.com起草单位联系人:罗木根联系电话:18507000681地址:江西省标准技术审评中心,南昌市南昌县金沙二路1899号。 2024年6月13日附件:附件 (1).zip1.标准文本和编制说明2.省地方标准(征求意见稿)意见汇总表
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 农业农村部公开征求《食品安全国家标准 植物源性食品中威百亩残留量的测定 气相色谱法(征求意见稿)》等三项标准意见
    根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》等相关规定,我司组织拟定了《食品安全国家标准 植物源性食品中二氯吡啶酸等11种农药残留量的测定 液相色谱-质谱联用法(征求意见稿)》等3项农药残留检测方法国家标准。现公开征求意见,请于2024年8月30日前将意见反馈国家农药残留标准委员会秘书处。联系人:罗媛媛电话:010-59194077传真:010-59194107电子邮箱:nyclbz@agri.gov.cn附件:食品安全国家标准 植物源性食品中威百亩残留量的测定 气相色谱法(征求意见稿).docx食品安全国家标准 植物源性食品中二氯吡啶酸等 11种农药残留量的测定 液相色谱-质谱联用法(征求意见稿).docx食品安全国家标准 植物源性食品中敌螨普异构体和6种敌螨普酚残留量的测定 液相色谱-质谱联用法(征求意见稿).docx农药残留检测方法国家标准征求意见表.docx农业农村部种植业管理司2024年7月29日
  • 740项行业标准集中复审 这些仪器标准拟修订/废止
    按照《工业和信息化部办公厅关于开展工业和通信业推荐性标准集中复审工作的通知》(工信厅科函〔2016〕321号)的程序和要求,工信部科技司日前对740项推荐性行业标准集中复审,确定继续有效379项、修订142项、废止219项。  本次复审共涉工程建设、节能与综合利用、安全生产、产品4个领域,其中产品领域有8项仪器标准拟废止,15项仪器标准计划修订,52项继续有效,仪器涉及色谱、光谱、电化学、热分析等。  仪器信息网摘录部分仪器标准如下:产品领域推荐性行业标准集中复审结论汇总表标准编号标准名称标准化技术组织复审结论主要理由继续有效修订废止修订拟列入计划年度SH/T1055-1991工业用二乙二醇中水含量的测定微库仑滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1141-2015工业用裂解碳四烃类组成测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1157.2-2015生橡胶丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的测定第2部分:凯氏定氮法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1483-2004工业用异丁烯中含氧化合物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1484-2004工业用异丁烯中异丁烯二聚物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.2-1995工业用二乙烯苯中各组分含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.3-1995工业用二乙烯苯中聚合物含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.4-1995工业用二乙烯苯中特丁基邻苯二酚含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.5-1995工业用二乙烯苯中溴指数的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1486.2-2008石油对二甲苯纯度及烃类杂质的测定气相色谱法(外标法)全国化学标准化技术委员会石油化学分技术委员会√    SH/T1489-1998石油对二甲苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1493-2015碳四烯烃中微量羰基化合物含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.5-1997尼龙66盐中假二氨基环己烷含量的测定紫外分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.6-1997尼龙66盐中硝酸盐含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.7-1997尼龙66盐UV指数的测定紫外分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.10-2012精己二酸第10部分:水分含量的测定热失重法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.2-1997精己二酸含量的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.3-1997精己二酸氨溶液色度的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.5-1997精己二酸中铁含量的测定2,2联吡啶分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.7-2012精己二酸第7部分:硝酸含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.8-1997精己二酸中可氧化物含量的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1550-2012工业用甲基叔丁基醚(MTBE)纯度及杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1551-1993芳烃中溴指数的测定电量滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1613.2-1995石油邻二甲苯纯度及烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1627.2-1996工业用乙腈纯度及有机杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1628.4-1996工业用乙酸乙烯酯酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1727-2004丁二烯橡胶微观结构的测定红外光谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1745-2004工业用异丙苯纯度及杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1746-2004工业用异丙苯过氧化物含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1747-2004工业用异丙苯苯酚含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1748-2004工业用异丙苯酚含量和过氧化氢异丙苯含量的测定高效液相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1754-2006工业用仲丁醇纯度的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1756-2006工业用丁酮纯度与杂质的测定-气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1760-2007合成橡胶胶乳中残留单体和其他有机成分的测定毛细管柱气相色谱直接液体进样法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1762-2008橡胶氢化丁腈橡胶(HNBR)剩余不饱和度的测定红外光谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1765-2008工业芳烃酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1766.2-2008石油间二甲苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1767-2008工业芳烃溴指数的测定电位滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1773-20121,2,4-三甲基苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1774-2012塑料聚丙烯等规指数测定低分辨率脉冲核磁共振法全国塑料标准化技术委员会石化塑料树脂产品分技术委员会√    SH/T1775-2012塑料线型低密度聚乙烯(LLD)组成的定量分析碳-13核磁共振波谱法全国塑料标准化技术委员会石化塑料树脂产品分技术委员会√    SH/T1778-2014化学级丙烯纯度与烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1782-2015工业用异戊二烯纯度和烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1784-2015工业用异戊二烯中微量抽提剂含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1786-2015工业用异戊烯纯度和烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1787-2015工业用异戊烯中含氧化合物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1790-2015工业用裂解碳五中烃类组分的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1793-2015工业用裂解碳九组成的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1796-2015工业用三乙二醇纯度与杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1798-2015工业用1-己烯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1759-2007用凝胶渗透色谱法测定溶液聚合物分子量分布全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√   该标准系合成橡胶基础通用方法,适用范围为所有溶液聚合物分子量。等同采用ISO11344:2004。鉴于标准广泛的适用性,建议转化为国家标准。SH/T1148-2001工业用乙苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2015  SH/T1155-1999合成橡胶胶乳密度的测定全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会 √2017  SH/T1482-2004工业用异丁烯纯度及其烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1492-2004工业用1-丁烯纯度及烃类杂质测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1547-2004工业用1-丁烯中微量甲醇和甲基叔丁基醚的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1548-2004工业用1-丁烯中微量丙二烯和甲基乙炔的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1549-1993工业用轻质烯烃中水分的测定在线分析仪使用导则全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1054-1991工业用二乙二醇中乙二醇和三乙二醇的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1496-1992工业用叔丁醇酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1497-2002工业用叔丁醇含量及其杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1752-2006合成生胶中防老剂含量的测定高效液相色谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会 √2018  SH/T1628.2-1996工业用乙酸乙烯酯纯度及有机杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1674-1999工业用环己烷纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1769-2009工业用丙烯中微量羰基硫的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1612.10-2005工业用精对苯二甲酸b*值的测定色差计法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第7部分:b*值的测定色差计法》GB/T30921.7-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.3-1995工业用精对苯二甲酸中金属含量的测定原子吸收分光光度法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第2部分:金属含量的测定》GB/T30921.2-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.5-1995工业用精对苯二甲酸中钛含量的测定二安替吡啉甲烷分光光度法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第4部分:钛含量的测定二安替吡啉甲烷分光光度法》GB/T30921.4-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.7-1995工业用精对苯二甲酸中对羧基苯甲醛和对甲基苯甲酸含量的测定高效液相色谱法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定》GB/T30921.1-2014已于2014年发布实施,因此本标准可废止。SH/T1612.8-2005工业用精对苯二甲酸中粒度分布的测定—激光衍射法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第6部分:粒度分布的测定》GB/T30921.6-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1687-2000工业用精对苯二甲酸(PTA)中对羧基苯甲醛和对甲基苯甲酸含量的测定高效毛细管电泳法(HPCE)全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定》GB/T30921.1-2014已于2014年发布实施,因此本标准可废止。SH/T1771-2010生橡胶玻璃化转变温度的测定差示扫描量热法(DSC)全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会   √该标准和GB/T29611-2013《生橡胶玻璃化转变温度的测定差示扫描量热法(DSC)》均等同采用了国际标准ISO22768:2006制定。因此该标准废止。YS/T574.8-2009电真空用锆粉化学分析方法次甲基蓝分光光度法测定硫量全国有色金属标准化技术委员会√    JB/T7088-1993局部放电检测仪全国电动工具标准化技术委员会 √2017  JB/T6864-1993气象仪器系列型谱机械工业气象仪器标准化技术委员会   √目前已没有用户或生产方参照或按照此标准对气象仪器型谱分类,也没有被其它标准所引用使用;标准中所列产品多为国外生产,并没有遵照此标准执行(已被QX/T7-2001气象仪器系列型谱代替)  附件:推荐性行业标准集中复审结论.docx
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。  联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。  该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 全国特殊食品标准化技术委员会关于筹建《保健食品中辅酶Q10的测定》等十四项国家标准起草工作组的通知
    下载相关附件14 项保健食品分析方法标准修订项目清单序号计划号项目名称120230857-T-424保健食品中褪黑素的测定220230858-T-424保健食品中吡啶甲酸铬含量的测定320230859-T-424保健食品中盐酸硫胺素、盐酸吡哆醇、烟酸、烟酰胺和咖啡因的测定420230860-T-424保健食品中辅酶 Q10 的测定520230861-T-424保健食品中甘草酸的测定620230862-T-424保健食品中番茄红素的测定720230863-T-424保健食品中绿原酸的测定820230864-T-424保健食品中泛酸钙的测定920230865-T-424保健食品中淫羊藿苷的测定1020230866-T-424保健食品中肌醇的测定1120230867-T-424保健食品中免疫球蛋白 IgG 的测定1220230868-T-424保健食品中脱氢表雄甾酮(DHEA)的测定1320230869-T-424保健食品中大豆异黄酮的测定方法 高效液相色谱法1420230870-T-424保健食品中葛根素的测定
  • 农业部发布29项色谱质谱食品安全检测标准
    2013年10月16日,农业部网站发布消息称,《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项标准业经食品安全国家标准审评委员会审定通过。并经农业部、卫生和计划生育委员会审查批准,发布为中华人民共和国食品安全国家标准,自2014年1月1日起实施。  附件:《牛奶中左旋咪唑残留量的测定 高效液相色谱法》等29项兽药残留检测方法标准目录 序号标准名称标准编号1食品安全国家标准牛奶中左旋咪唑残留量的测定高效液相色谱法GB 29681-20132食品安全国家标准水产品中青霉素类药物多残留的测定高效液相色谱法GB 29682-20133食品安全国家标准动物性食品中对乙酰氨基酚残留量的测定高效液相色谱法GB 29683-20134食品安全国家标准水产品中红霉素残留量的测定液相色谱-串联质谱法GB 29684-20135食品安全国家标准动物性食品中林可霉素、克林霉素和大观霉素多残留的测定气相色谱-质谱法GB 29685-20136食品安全国家标准猪可食性组织中阿维拉霉素残留量的测定液相色谱-串联质谱法GB 29686-20137食品安全国家标准水产品中阿苯达唑及其代谢物多残留的测定高效液相色谱法GB 29687-20138食品安全国家标准牛奶中氯霉素残留量的测定液相色谱-串联质谱法GB 29688-20139食品安全国家标准牛奶中甲砜霉素残留量的测定高效液相色谱法GB 29689-201310食品安全国家标准动物性食品中尼卡巴嗪残留标志物残留量的测定液相色谱-串联质谱法GB 29690-201311食品安全国家标准鸡可食性组织中尼卡巴嗪残留量的测定高效液相色谱法GB 29691-201312食品安全国家标准牛奶中喹诺酮类药物多残留的测定高效液相色谱法GB 29692-201313食品安全国家标准动物性食品中常山酮残留量的测定高效液相色谱法GB 29693-201314食品安全国家标准动物性食品中13种磺胺类药物多残留的测定高效液相色谱法GB 29694-201315食品安全国家标准水产品中阿维菌素和伊维菌素多残留的测定高效液相色谱法GB 29695-201316食品安全国家标准牛奶中阿维菌素类药物多残留的测定高效液相色谱法GB 29696-201317食品安全国家标准动物性食品中地西泮和安眠酮多残留的测定气相色谱-质谱法GB 29697-201318食品安全国家标准奶及奶制品中17&beta -雌二醇、雌三醇、炔雌醇多残留的测定气相色谱-质谱法GB 29698-201319食品安全国家标准鸡肌肉组织中氯羟吡啶残留量的测定气相色谱-质谱法GB 29699-201320食品安全国家标准牛奶中氯羟吡啶残留量的测定气相色谱-质谱法GB 29700-201321食品安全国家标准鸡可食性组织中地克珠利残留量的测定高效液相色谱法GB 29701-201322食品安全国家标准水产品中甲氧苄啶残留量的测定高效液相色谱法GB 29702-201323食品安全国家标准动物性食品中呋喃苯烯酸钠残留量的测定液相色谱-串联质谱法GB 29703-201324食品安全国家标准动物性食品中环丙氨嗪及代谢物三聚氰胺多残留的测定超高效液相色谱-串联质谱法GB 29704-201325食品安全国家标准水产品中氯氰菊酯、氰戊菊酯、溴氰菊酯多残留的测定气相色谱法GB 29705-201326食品安全国家标准动物性食品中氨苯砜残留量的测定液相色谱-串联质谱法GB 29706-201327食品安全国家标准牛奶中双甲脒残留标志物残留量的测定气相色谱法GB 29707-201328食品安全国家标准动物性食品中五氯酚钠残留量的测定气相色谱-质谱法GB 29708-201329食品安全国家标准动物性食品中氮哌酮及其代谢物多残留的测定高效液相色谱法GB 29709-2013
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • MALDI-FTICR-MS评估除草剂在蔬菜中吸收代谢行为
    小白菜活体微毛细管采样和快速分析示意图。研究团队 供图 近日,广东省化学测量与应急检测技术重点实验室科研团队研究建立了一种活体微量毛细管采样(MCS)结合基质辅助激光解吸/电离傅里叶变换离子回旋共振质谱(MALDI-FTICR-MS)分析新技术。相关研究发表于《食品化学》(Food Chemistry)。  百草枯和敌草快均为联吡啶类阳离子季铵盐,具有高水溶性和低挥发性,属于非选择性触杀灭生型除草剂,因其价格低廉,曾在全球范围内作为除草剂被广泛使用。百草枯和敌草快对人和动物具有很强的毒性,易对生态环境造成危害并通过食物链威胁人体健康。  研究发现,小白菜对百草枯和敌草快的吸收能力有显著性差异,相对更容易吸收敌草快,且两者在不同小白菜个体之间也存在显著性的吸收差异。研究人员开发出MCS活体采样和MALDI-FTICR-MS快速分析技术。该技术具有成本低、样本用量少、快速、高通量、高灵敏等特点,全分析流程20分钟内完成。  长时间的暴露实验发现,一组小白菜根系持续暴露在百草枯和敌草快污染(初始浓度均为100 μg/L)的水环境中,该组小白菜根系会持续吸收该两种污染物,当两者在小白菜茎内汁液的浓度分别达到约500 μg/kg时,会使植株枯萎死亡。  进行消除实验时,将吸收有百草枯和敌草快的活体小白菜根系浸泡在空白培养液中培养,小白菜茎内汁液的两种除草剂浓度逐渐降低,而空白培养液中会检出百草枯和敌草快,说明除草剂会被小白菜通过根系以原型的形式排出体外。  依据消除跟踪实验测试结果,计算出百草枯和敌草快的半衰期分别为1.32d和1.86 d。在消除实验的第18天,百草枯和敌草快在活体小白菜体内仍有检出,说明两者均难以通过小白菜自身的正常代谢达到完全清除和降解。  该研究技术可实时监测活体植物体内联吡啶季铵盐类除草剂的浓度,评估其在植物体内的吸收和消除行为,为农业生产中因除草剂使用而带来的人体暴露风险提供了有价值的依据。
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 【瑞士步琦】SFC应用——苯基吡啶的纯化
    SFC应用—苯基吡啶的纯化3-苯基吡啶与4-苯基吡啶都是生产高附加值精细化工产品的重要有机原料,随着农药、医药等精细化工行业的蓬勃发展,对两者的需求日益增高。两者的沸点接近(分别为 144.14℃ 和 145℃),性质相似。依靠传统的分离方法,如精馏、普通的溶剂萃取无法将其分离。而采取化学转化法则会有污水量大、产率低等缺点。虽然邻苯二甲酸法和铜盐法研究较多,但相对来说步骤比较繁琐。现如今通过 SFC 可以有效将两者进行分离,高效快速的同时也解决了有机溶剂污水处理量大等难题。1SFC 分离条件设备Sepiatec SFC-50色谱柱AS-HUV波长254nm改性剂MeOH,5%进样体积15 ul流速8 ml/min压力100bar温度40℃2实验结果▲图1.SFC 在 5% MeOH 等度条件下对 3-苯基吡啶与 4-苯基吡啶分离色谱图3叠加进样▲图2. 3-苯基吡啶与 4-苯基吡啶在 6 次叠加进样状态下的分离色谱图4结论与传统的分离方式相比,通过超临界流体色谱可以快速有效的将 3-苯基吡啶与 4-苯基吡啶进行分离,并将分离时间控制在 4min 之内,除此之外,较少的改性剂使用也为用户解决溶剂成本及后续废液处理等烦恼。通过叠加进行功能,在保证两者分离度的情况下可以更加快速的对样品进行制备,避免非必要的时间等待,叠加进样功能可将每次进样时间控制在 1.6min 以内。
  • 改写教科书:张新星团队在大气微液滴中制备极不稳定的吡啶负离子
    前言2021年12月8日,南开大学化学学院硕士研究生赵玲玲打开质谱仪,开展日常的实验。当天的实验内容是在微液滴表面使用吡啶(Py)捕捉空气中的二氧化碳。然而在开始收集数据的第一时间,赵玲玲就观测到了质量为79的吡啶负离子的质谱峰。她的导师张新星研究员指着电脑屏幕上最强的那个峰道:“吡啶负离子在大气里是不可能生成的,这瓶吡啶肯定是坏了。”… … 一些小分子的负离子极不稳定本科普通化学原理和物理化学教科书均指出,像苯、吡啶这样的稳定分子,所有的成键轨道均被电子占满。若要得到它们的负离子,电子必须要填入能量极高的最低未占据轨道(LUMO),即π*反键轨道。然而这个过程需要吸收很大的能量,从而使得这些分子的电子亲和能(得到电子的能力)是很大的负值(如图1所示)。即使在极低温、高真空的环境中,科学家们此前也只通过电子照射吡啶蒸汽的方式观测到瞬态存在的吡啶负离子(Py-),并且估算了它的寿命和分子发生一次振动所需要的时间数量级相仿,即瞬间的10飞秒(1秒的一百万亿分之一)。因此在大气或水中制备吡啶负离子,违反了此前教科书中的基本常识。图1:典型分子轨道能级图吡啶负离子在微液滴表面的生成使用十分简单的氮气喷雾和质谱检测的方法,南开大学张新星团队的硕士研究生赵玲玲在大气中生成了含有吡啶的微小水滴,并在质谱中观测到了极强的Py-信号(图2)。由于这个结果十分惊人,张新星起初并不相信这些信号是真实的。然而在赵玲玲上百次的尝试之后,信号仍然存在。因此,张新星致电了斯坦福大学的美国科学院院士Richard Zare教授。Zare团队的博士后学者宋肖炜博士很快地就重复出了实验。宋博士说,在重复出实验的那一刻,“已经80多岁的Zare,开心地像个孩子”。 张新星指出,根据实验室质谱仪检测离子所需要的最短时间, Py-负离子的寿命至少高达50毫秒,比之前人们认为的10飞秒提高了一万亿倍。为了进一步证明Py-的存在,赵玲玲还使用二氧化碳捕捉到了Py-,并生成了产物(Py-CO2)-。为了避免是空气中的微量污染物促成了Py-负离子的生成,张新星课题组还搭建了一套进样口在手套箱中的质谱装置,仍然得到了极高的Py-负离子信号,证明了该反应是微液滴表面自发进行的过程。图2:A,简单的氮气喷雾产生微液滴的装置。B,吡啶负离子的质谱峰。C,吡啶负离子绝对信号强度随着浓度的变化。D,吡啶负离子生成效率随着浓度的变化。E,吡啶负离子的信号强度随着载气气压(液滴大小)的变化。F,吡啶负离子的信号强度随着温度的变化。神奇的微液滴化学近几年来,斯坦福大学的Richard Zare教授和普渡大学的Graham Cooks教授发现很多原本在水溶液中难以进行的化学反应,在通过气体喷雾或者超声雾化产生的微小水滴中(如图3中我们日常所用的加湿器产生的水雾)可以自发发生,甚至可以被加速到原本的一百万倍。而且水滴的尺寸越小,这些现象越明显。Zare认为,微液滴的表面自然带有高达109 V/m的电场。相比之下,在空气中生成闪电的击穿电压仅有106 V/m。微液滴表面的电场是如此庞大,甚至可以撕裂水中的氢氧根(OH-),生成一个自由电子和一个羟基自由基(OH)。自由电子具有极高的还原性,而OH具有极高的氧化性,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了神奇的矛盾统一体(unity of opposites)。加州大学伯克利分校的Teresa Head-Gordon教授在近期发表的论文中,也从理论上证实了微液滴表面极高电场的存在。张新星和Zare认为,该实验是微液滴表面自发生成的电子还原了吡啶生成了Py-。Zare同时也猜测,吡啶分子的振动激发态很有可能也帮助了其负离子的生成。此外,如果微液滴表面的OH-真的可以被撕裂生成一个自由电子和一个羟基自由基,那么这个羟基自由基就可能进一步氧化吡啶。赵玲玲通过改变质谱极性,也确实观测到了这些氧化产物,为微液滴“神奇的矛盾统一体”提供了进一步坚实的证据。图3:家庭中常见的产生微液滴的加湿器深远影响在记者的采访中,张新星表示,化学是一门创造新物质的科学,基于教科书常见的原理,很多时候化学家们在合成出某个物质之前,就可以根据现有的、被广泛接受的物理化学和量子力学原理,以及分析装置自身可以测量的时间和空间尺度的极限去预测这个化合物是否可以存在,可以存在多久,以及即使存在但能否可以被科学家们观测到。然而,这些预测真的靠谱吗?教科书写的金科玉律就一定正确吗?原本认为即使在真空绝对零度也只能短暂存在的吡啶负离子,被发现在大气中的水滴上就可以生成,这个例子告诉我们,充分理解现存科学,但是又敢于质疑现存的科学,是推动科学认知边界的有力途径。Sprayed Water Microdroplets Containing Dissolved Pyridine Spontaneously Generate the Unstable Pyridyl Radical Anion 作者:赵玲玲, 宋肖炜, 宫矗, 张冬梅, 王瑞靖, Richard N. Zare, 张新星, PNAS, 2022, 119, e2200991119(点击了解论文)
  • 大连化物所提出光催化烯烃的卤代/吡啶双官能化新策略
    近日,中国科学院大连化学物理研究所仿生催化合成创新特区研究组研究员陈庆安团队在光催化烯烃的卤代/吡啶双官能化方面取得新进展,发展出通过调控氧化淬灭活化模式和自由基极性交叉途径,实现光催化非活化烯烃的卤代/吡啶双官能化反应新策略。该策略作为对传统Heck型反应的补充,通过自由基反应过程避免了中间体β-H消除带来的底物限制,高效地将卤代基和吡啶基团区域选择性地加成到烯烃双键。  由简单底物快速构建复杂分子是有机化学的重要研究方向。其中,烯烃的催化官能化反应由于底物成本低且来源广泛而备受关注。虽然经典的Heck反应和还原型Heck反应提供了烯烃的芳基化和氢芳基化的有效途径,但这些方法均涉及了卤原子的消除,产生了不可避免的废弃物。此外,碳卤键的选择性构建十分重要,它是多种官能团转化的重要反应位点。因此,在不牺牲卤原子的情况下,实现烯烃双键同时构建新的C-C和C-X键具有重要意义。  陈庆安团队长期致力于发展不同催化体系,以实现烯烃选择性催化转化与合成。在前期相关研究(Angew. Chem. Int. Ed.,2019;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021;Angew. Chem. Int. Ed.,2021)基础上,该团队最近利用卤代吡啶和非活化烯烃作为简单的反应底物,采用光催反应策略来实现非活化烯烃的卤代/吡啶双官能化。科研人员通过添加三氟乙酸,促进卤代吡啶底物发生质子化,使铱光催化剂更易于发生氧化淬灭,激发质子化的卤代吡啶产生亲电性吡啶自由基,进一步与富电子的非活化烯烃发生加成;氧化态的铱光催化剂可将生成的烷基自由基中间体氧化为碳正离子,进一步捕获体系中的卤负离子,实现C-C键和C-X键(X=Cl,Br,I)的选择性构建。此外,科研人员还进行了Stern-Volmer荧光淬灭、循环伏安法、量子产率测定等机理探究实验和动力学研究,解释了反应途径调控的机制和反应机理。为进一步验证该反应的实用性,科研人员开展了一系列转化实验:利用烯烃的卤代吡啶双官能化产物的碳卤键,可发生进一步的消除反应,以及与亚磺酸盐、硫氰酸盐、苯硫酚和叠氮钠的取代反应得到相应的转化产物。  相关研究成果以Photo-Induced Catalytic Halopyridylation of Alkenes为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金、辽宁省博士科研启动基金等的支持。  论文链接
  • 借标准台阶冲上龙头
    江苏高淳县在南京市并不算是一个有良好工业基础的县,县属企业总量也不多,但近年来却先后有5家企业成为相关国家标准的主起草单位,分别牵头制定了9项国家标准。  最近,高淳县南京固柏橡塑制品有限公司(以下简称固柏橡塑)厂房一片繁忙,在同行企业开始停产或减产的时候,该公司生产车间却每天24小时开足马力生产。  看到质监工作人员到来,该公司董事长张收才热情相迎。他对记者说了一句话:“以前质监局的人来了,我是不出来迎接的,现在哪怕是一个普通工作人员来,我也要出来跟他谈一谈。”其中的原因是在高淳县质监局的指引下,凭借走标准化之路,固柏橡塑这个原先论规模在全国只能算中上等的企业,迅速发展成为行业中的龙头企业,销售业绩蒸蒸日上。  说到走标准化道路,张收才用4个阶段来概括:“从无所谓,到正视,到投入精力,再到现在见到效果、尝到甜头。” 2005年,张收才想过做标准,但当时心里主要想的还是如何提高产量。直到2007年5月,高淳县质监局局长周骏贵的一番话,让他意识到走标准化道路对企业发展的重要性。随后在高淳县质监局的帮助和指导下,经过一年多的努力,固柏橡塑主持起草的“工业用橡胶板”国家标准,在2008年4月正式批准发布,并于当年10月1日正式实施。该公司当年的销售就实现100%,收入较2007年翻了一倍,达到6300万元,上缴国家税收近400万元。面对金融危机,该公司的外贸订单却比以前增长200%以上。“现在我们的业务经理出门跑业务,只要把我们制定的标准带过去就可以了。这对我们来说,危机就是机遇。”张收才的喜悦之情溢于言表。  目前,固柏橡塑已申请筹建“弹性铺装材料”国家专业委员会,目前进入公示阶段。2010年,该公司还要增加两条生产线,争取上缴税收1000万元。  自2007年初高淳县委、县政府把名牌战略作为高淳县经济发展的“三大引擎”之一以来,高淳县质监局引导企业采用国际标准、国外先进标准,帮助企业开展技术创新并参与制定国家标准。该局还利用服务中掌握的信息,搭建产品配套信息平台,向社会推荐高淳县质量过硬的名优产品。在当地质监局的大力推动下,除固柏橡塑外,红太阳、红宝丽、大地水刀、高淳陶瓷4家企业也分别牵头制定了3-甲基吡啶、吡啶、太阳能热水器用硬质聚氨酯泡沫塑料、一异丙醇胺、二异丙醇胺、超高压水切割机、蜂窝陶瓷、日用瓷器等国家标准,成为高淳的经济名片。  企业形象地比喻说:“做产品赚1分,做品牌赚1毛,做标准赚1块。”5家企业尝到了参与国家标准制定、赢得市场话语权的甜头,不少客户就冲着国家标准制定企业的名头而来,这些企业订单大增,同时也走出了价格竞争的怪圈。
  • 听说食品界的大咖下周都来这了!(附会议日程)
    为促进全国食品质量与安全等管理部门、学术界和企业界的交流,促进全国食品科技的发展和提高食品工业的竞争力,共同提高食品质量与安全保障能力,《食品安全质量检测学报》编委会在2015年、2016年成功举办两届会议的基础上,定于2017年7月25日-28日在广西桂林召开全国“第三届食品质量与安全学术研讨会”,会议由《食品安全质量检测学报》编委会与桂林理工大学主办,会议主题为“食品质量与安全领域的研究创新与能力建设”。会议由《食品安全质量检测学报》编辑部和桂林理工大学化学与生物工程学院、广西高校食品安全与检测重点实验室、北京网杰文化传媒有限公司承办。  一、会议时间、地点  时间:2017年7月25日-29日,25日报到,29日离店  地点:桂山华星酒店(桂林市七星区穿山路42号)  二、会议主办、协办、承办单位  1、主办单位  《食品安全质量检测学报》编辑委员会  桂林理工大学  2、承办单位  《食品安全质量检测学报》编辑部  桂林理工大学化学与生物工程学院  广西高校食品安全与检测重点实验室  北京网杰文化传媒有限公司  3、协办单位  广西分析测试协会  中国仪器仪表学会食品质量安全检测仪器与技术应用分会  桂林万禾农产品有限公司  4、支持媒体  仪器信息网(www.instrument.com.cn)  我要测网(www.woyaoce.cn)  三、会议日程安排时间内容地点2017年7月25日(星期二)桂山华星酒店09:00-20:00大会报到2017年7月26日(星期三)08:30-09:00开幕式主持人:张峰研究员中国检验检疫科学研究院食品安全研究所所长二层延惠殿09:00-10:40大会特邀报告主持人:林金明教授清华大学化学系09:00-09:40待定张玉奎中国科学院院士中国科学院大连化学物理研究所09:40-10:10果蔬益生菌发酵质量控制及功能与安全评价谢明勇教授南昌大学食品科学与技术国家重点实验室主任10:10-10:40酱油发酵与代谢调控研究进展赵谋明教授华南理工大学10:40-10:50茶歇10:50-11:50大会报告主持人:李建平教授桂林理工大学化学与生物工程学院院长10:50-11:20基于质谱裂解规律的食品有害物筛查技术张峰研究员中国检验检疫科学研究院食品安全研究所所长11:20-11:50AOAC检测方法在食品安全及国际贸易中的作用鲍蕾研究员雀巢研发(中国)有限公司食品安全研究院院长12:00-13:30午餐13:30-15:30大会报告主持人:王静二级教授中国农业科学院农业化学污染物残留检测与行为研究创新团队首席科学家二层延惠殿13:30-14:00基于韭菜的天然生物质量子点的制备及用于蔬菜中有机磷农药残留量的成像分析赵书林广西师范大学化学与药学学院14:00-14:30二维超高效液相色谱-离子色谱技术——在食品、药品、化妆品中多组分检测中的应用朱岩教授浙江大学化学系14:30-15:00化学发光免疫分析研究新进展林金明教授清华大学化学系15:00-15:30食品安全国内外检测方法的评估梁成珠研究员AOAC中国分部主席15:30-15:40茶歇15:40-18:00大会报告主持人:鲍蕾研究员雀巢研发(中国)有限公司食品安全研究院院长15:40-16:10我国农药残留的控制王静二级教授中国农业科学院农业化学污染物残留检测与行为研究创新团队首席科学家16:10-16:40食品分析样品前处理方法研究李攻科教授中山大学化学学院分析科学研究所所长16:40-17:00助力食品安全检测新技术——岛津OnlineSFE/SFC在线前处理分离联用系统介绍郝红元博士岛津公司华东区LCMS产品应用经理17:00-17:30小型原子光谱分析技术在环境与食品中有毒元素分析中的应用郑成斌教授四川大学化学学院17:30-18:00免疫分析及免疫传感新方法研究唐点平教授福州大学化学学院副院长18:00-20:00晚餐2017年7月27日(星期四)08:00-09:00大会特邀报告主持人:李攻科教授中山大学化学学院分析科学研究所所长二层延惠殿08:00-08:30中欧食品安全合作项目吴永宁研究员国家食品安全风险评估中心技术总师08:30-09:00基于光电化学技术的DNA分析朱俊杰教授南京大学研究生院副院长09:00-09:10茶歇09:10-12:00食品安全检测先进设备与技术分会场主持人:姚亮珀金埃尔默二层延惠殿09:10-09:35上转换荧光纳米材料的研制及其在农药残留快速检测中的应用王鸣华南京农业大学植物保护学院09:35-10:00基于纳米材料的重金属离子电化学传感器王穗萍湘潭大学化工学院生物与食品工程系10:00-10:25核酸高通量快速检测技术研究及应用杨立桃上海交通大学10:25-10:45Perkinelmer食品检测应用方案介绍姚亮珀金埃尔默10:45-11:10基于代谢组学技术寻找蜂蜜标志性代谢物及其在掺假鉴别中的应用耿越山东师范大学11:10-11:35基于红外光谱技术对复杂重金属污染体系中的健康贝类的快速检测陈孝敬温州大学11:35-12:00g-C3N4@SiO2应用于椰子汁中酸性植物调节剂的固相萃取研究余琼卫武汉大学09:10-12:00食品中的有害物质检测分会场主持人:袁杰无锡中德伯尔生物技术有限公司二层七星厅09:10-09:35MOFs固定三联吡啶钌电化学发光检测三聚氰胺研究谭学才广西民族大学化学化工学院09:35-10:00生物毒素辐射降解产物解析及安全性评价哈益明中国农业科学院农产品加工研究所10:00-10:25几种化学生物传感新技术的开发及初步应用研究张云桂林理工大学化学与生物工程学院10:25-10:45基于激光频率标准的光谱吸收方法在食品安全领域应用探讨袁杰无锡中德伯尔生物技术有限公司10:45-11:10碱液处理活性炭柱固相萃取GC-MS/MS检测食品中的N-亚硝胺王宗义北京农学院11:10-11:35基于“一步净化”的农产品中真菌毒素检测技术研究王蒙北京农业质量标准与检测技术研究中心11:35-12:00食用油中反式脂肪酸的气相色谱检测及形成机理研究郭芹中国农业科学院农产品加工研究所12:00-13:30午餐13:30-16:45食品安全与微生物控制分会场主持人:严婷赛默飞世尔科技(中国)有限公司市场经理二层延惠殿13:30-14:00从农场到餐桌的禽肉中弯曲菌流行调查与风险分析黄金林扬州大学生物科学与技术学院14:00-14:30恒温扩增技术在微生物检测中的研究与应用杜欣军天津科技大学食品工程与生物技术学院14:30-15:00基于分子识别模式的食源性病原菌检测新方法付志锋西南大学药学院15:00-15:15茶歇15:15-15:45待定严婷赛默飞世尔科技(中国)有限公司市场经理15:45-16:15食源性致病菌副溶血性弧菌低温应激蛋白生物学功能的解析陈兰明上海海洋大学食品学院16:15-16:45沙门氏菌耐药质粒的筛查与鉴定施春雷上海交通大学农业与生物学院食品科学与工程系13:30-16:15食品安全与营养分会场主持人:刘光明集美大学食品与生物工程学院二层七星厅13:30-14:00基于龙须菜寡糖的鱼类保鲜剂研发刘光明集美大学食品与生物工程学院14:00-14:30表面拉曼光谱散射光谱在氨基酸检测中的应用罗杨合贺州学院14:30-15:00果汁加工业技术标准跟踪与对比分析李庆鹏中国农业科学院农产品加工研究所15:00-15:15茶歇15:15-15:45带鱼蛋白亚铁螯合肽对泥鳅消化道及免疫特性影响的研究林慧敏浙江海洋大学食品与医药学院15:45-16:15鸡蛋发酵食品的研制仝其根北京农学院  四、会务费收费标准及报名方式  1、会议注册费  会议注册费1900元/人,在校学生(出示学生证)1500元/人。  食宿统一安排,费用自理。  2、报名方式  此次会议启用网络报名形式,以短信方式推送报名连接:尊敬的姓名老师,您好!第三届食品质量与安全学术研讨会dsjsp.huiyiguanjia.com点击报名,感谢参与。  请大家收到短信后点击打开即可报名以及查看大会介绍。  联系人:林灵(15911082680)、杨翠娜(18519500048)、海洪(13507733348)  E-mail:foodsq_3@126.com  联系电话:010-57175223010-62943110  3、费用交纳方式  (1)银行转账  收款单位:北京网杰文化传媒有限公司  开户银行:中国工商银行股份有限公司北京北新桥支行  账号:0200004309020109896  备注:会议注册费  (2)现场交纳  附件:  1、报名表:报名表.docx  2、会议日程:会议日程.pdf
  • 2024年5月份有338项标准将实施——农林牧渔及食品标准独领风骚
    2024年5月份有338项标准将实施 ——农林牧渔及食品标准独领风骚我们通过国家标准信息平台查询到,在2024年5月份将有338项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:5月份新实施标准一览通过上述图表我们发现,5月份主要是以农林牧渔及食品相关的为主,占比达到了69%(234条)。在这些新实施标准中有水产、农产品农副产品及农药、食品饲料及乳制品等质量及检测方法标准,标准中使用了大量的生命科学类仪器检测。另外还有16%(55条)医药和7%(24条)环境监测标准也将实施。在5月份新实施标准中,涉及大量的科学仪器检测,如:液相色谱-串联质谱仪 、气相色谱-质谱联用仪 、气相色谱仪 、液相色谱 、荧光定量PCR 、红外光谱 、分光光度 、荧光免疫层析 、生物芯片试剂盒 、免疫分析 、拉曼光谱 、X 射线荧光光谱 、原子吸收光谱 等仪器设备。具体2024年5月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(1个)TB/T 1869.7-2023铁路信号变压器 第7部分:BE系列扼流变压器农林牧渔食品标准(234个)SC/T 9447-2023 水产养殖环境(水体、底泥)中丁香 酚 的测定 气相色谱 - 串联质谱法 SC/T 9446-2023 海水鱼类增殖放流效果评估技术规范 SC/T 9112-2023 海洋牧场监测技术规范 SC/T 7002.7-2023 渔船用电子设备环境试验条件和方法 第 7 部分:交变盐雾( Kb ) SC/T 7002.11-2023渔船用电子设备环境试验条件和方法 第11部分:倾斜 摇摆SC/T 5005-2023 渔用聚乙烯单丝及超高分子量聚乙烯纤维 SC/T 4033-2023 超高分子量聚乙烯钓线通用技术规范 SC/T 2123-2023 冷冻卤虫 NY/T 574-2023 地方流行性牛白血病诊断技术 NY/T 572-2023 兔 出血症诊断技术 NY/T 4451-2023 纳米农药产品质量标准编写规范 NY/T 4450-2023 动物饲养场选址生物安全风险评估技术 NY/T 4449-2023 蔬菜地防虫网应用技术规程 NY/T 4448-2023 马匹道路运输管理规范 NY/T 4447-2023 肉类气调包装技术规范 NY/T 4446-2023 鲜切农产品 包装标识技术要求 NY/T 4445-2023 畜禽屠宰用印色用品要求 NY/T 4444-2023 畜禽屠宰加工设备 术语 NY/T 4443-2023 种牛术语 NY/T 4442-2023 肥料和土壤调理剂 分类与编码 NY/T 4440-2023 畜禽液体粪污中四环素类、磺胺类和 喹 诺酮类药物残留量的测定 液相色谱 - 串联质谱法 NY/T 4439-2023 奶及奶制品中乳铁蛋白的测定 高效液相色谱法 NY/T 4438-2023 畜禽肉中 9 种生物胺的测定 液相色谱 - 串联质谱法 NY/T 4437-2023 畜肉中龙胆紫的测定 液相色谱 - 串联质谱法 NY/T 4436-2023 动物冠状病毒通用 RT-PCR 检测方法 NY/T 4432-2023 农药产品中有效成分含量测定通用分析方法 气相色谱法 NY/T 4431-2023 薏苡仁中多种酯类物质的测定 高效液相色谱法 NY/T 4430-2023 香石竹斑驳病毒的检测 荧光定量 PCR 法 NY/T 4429-2023 肥料增效剂 苯基磷酰二胺( PPD )含量的测定 NY/T 4428-2023 肥料增效剂 氢醌( HQ )含量的测定 NY/T 4427-2023 饲料近红外光谱测定应用指南 NY/T 4426-2023 饲料中二 硝托胺 的测定 NY/T 4425-2023 饲料中 米诺地尔 的测定 NY/T 4424-2023 饲料原料 过氧化值的测定 NY/T 4423-2023 饲料原料 酸价的测定 NY/T 4422-2023 牛蜘蛛腿综合征检测 PCR 法 NY/T 4421-2023 秸秆还田联合整地机 作业质量 NY/T 4420-2023 农作物生产水足迹评价技术规范 NY/T 4419-2023 农药桶混助剂的润湿性评价方法及推荐用量 NY/T 4418-2023 农药桶混助剂沉积性能评价方法 NY/T 4417-2023 大蒜营养品质评价技术规范 NY/T 4416-2023 芒果品质评价技术规范 NY/T 4415-2023 单氰胺可溶液剂 NY/T 4414-2023 右旋 反式氯丙炔 菊酯原药 NY/T 4413-2023 噁 唑 菌酮原药 NY/T 4412-2023 抑霉 唑 水乳剂 NY/T 4411-2023 抑霉 唑 乳油 NY/T 4410-2023 抑霉 唑 原药 NY/T 4409-2023 苏云金杆菌可湿性粉剂 NY/T 4408-2023 苏云金杆菌悬浮剂 NY/T 4407-2023 苏云金杆菌母药 NY/T 4406-2023 萘 乙酸钠可溶液剂 NY/T 4405-2023 萘 乙酸( 萘 乙酸钠)原药 NY/T 4404-2023 抗倒酯微乳剂 NY/T 4403-2023 抗倒 酯 原药 NY/T 4402-2023 甲 哌 鎓可溶液剂 NY/T 4401-2023 甲 哌 鎓原药 NY/T 4400-2023 氟 啶 虫酰胺水分散粒剂 NY/T 4399-2023 氟 啶 虫酰胺悬浮剂 NY/T 4398-2023 氟 啶 虫酰胺原药 NY/T 4397-2023 氟虫 腈 种子处理悬浮剂 NY/T 4396-2023 氟虫 腈 悬浮剂 NY/T 4395-2023 氟虫 腈 原药 NY/T 4394- 2023 代森锰锌 霜 脲 氰可湿性粉剂 NY/T 4393- 2023 代森联可湿性 粉剂 NY/T 4392- 2023 代森联水 分散粒剂 NY/T 4391- 2023 代森联原药 NY/T 4390-2023 丙炔氟草胺 可湿性粉剂 NY/T 4389-2023 丙炔氟草胺 原药 NY/T 4388-2023 苯 醚甲环唑 水分散粒剂 NY/T 4387-2023 苯 醚甲环唑 微乳剂 NY/T 4386-2023 苯 醚甲环唑 乳油 NY/T 4385-2023 苯 醚甲环唑 原药 NY/T 4384-2023 氨氯吡啶酸可溶液剂 NY/T 4383-2023 氨氯吡啶酸原药 NY/T 4382-2023 加工用红枣 NY/T 4381-2023 羊草干草 NY/T 394-2023 绿色食品 肥料使用准则 NY/T 3213-2023 植保无人驾驶航空器 质量评价技术规范 NY/T 1668-2023 农业野生植物原生境保护点建设技术规范 NY/T 1236-2023 种羊生产性能测定技术规范 LS/T 8013-2023 气膜钢筋混凝土圆顶仓工程施工与验收规范 LS/T 8012-2023 气膜钢筋混凝土圆顶仓设计规范 LS/T 8005-2023 农户小型粮仓建造技术规范 LS/T 6148-2023 粮油检测 粮食中铅的测定 时间分辨荧光免疫层析快速定量法 LS/T 6147-2023 粮油检测 粮食中 T-2 毒素的测定 时间分辨荧光免疫层析快速定量法 LS/T 6146-2023 粮油检验 粮食中霉菌计数 荧光快速检测法 LS/T 3323-2023 食品工业用玉米蛋白 LS/T 3322-2023 冷冻熟面条 LS/T 3321-2023 马铃薯全粉 LS/T 3127-2023 鹰嘴豆 LS/T 3126-2023 油用杏仁 LS/T 1233-2023 粮油储藏 粮食仓储企业危险源辨识与评价方法 SN/T 5658.3-2023 蒸馏酒质量鉴别方法 第 3 部分:多酚总量的测定 分光光度法 SN/T 5658.2-2023 蒸馏酒质量鉴别方法 第 2 部分:橡木浸出物的测定 超高效液相色谱法 SN/T 5658.1-2023 蒸馏酒质量鉴别方法 第 1 部分: 18 种挥发性成分含量的测定 气相色谱法 SN/T 5656-2023 食品中 5 种杂粮成分定性检测方法 实时荧光 PCR 法 SN/T 5655.13-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 13 部分:胡桃 SN/T 5655.12-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 12 部分:开心果 SN/T 5655.11-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 11 部分:夏威夷果 SN/T 5655.10-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 10 部分:巴西坚果 SN/T 5655.9-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 9 部分:榛子 SN/T 5655.8-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 8 部分:腰果 SN/T 5655.7-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 7 部分:扁桃仁 SN/T 5655.6-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 6 部分:乳 SN/T 5655.5-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 5 部分:大豆 SN/T 5655.4-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 4 部分:花生 SN/T 5655.3-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 3 部分:蛋类 SN/T 5655.2-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 2 部分: 甲壳纲类动物 SN/T 5655.1-2023 商品化试剂盒检测方法 预包装食品致敏原免疫分析法 第 1 部分: 麸 质 SN/T 5649-2023 动物源食品 中克百威 及代谢物 3- 羟基克百威 残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5643.5-2023 出口食品中化学污染物的快速检测方法 第 5 部分: 4 种真菌毒素含量的测定 生物芯片 试剂盒法 SN/T 5643.4-2023 出口食品中化学污染物的快速检测方法 第 4 部分: 西布曲明 的测定 拉曼光谱法 SN/T 5643.3-2023 出口食品中化学污染物的快速检测方法 第 3 部分:苋菜红的测定 拉曼光谱法 SN/T 5643.2-2023 出口食品中化学污染物的快速检测方法 第 2 部分:碱性嫩黄 O 的测定 拉曼光谱法 SN/T 5643.1-2023 出口食品中化学污染物的快速检测方法 第 1 部分:砷、镉、汞、铅含量的测定 X 射线荧光光谱法 SN/T 5642.7-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 7 部分:副干酪乳杆菌 SN/T 5642.6-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 6 部分: 嗜 酸乳杆菌 SN/T 5642.5-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 5 部分:鼠李糖乳 杆菌 SN/T 5642.4-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 4 部分:植物乳杆菌 SN/T 5642.3-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 3 部分:动物双 歧 杆菌 SN/T 5642.2-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 2 部分:两双 歧 杆菌 SN/T 5642.1-2023 出口乳制品中乳酸菌检测方法 数字 PCR 计数法 第 1 部分:青春双 歧 杆菌 SN/T 5638-2023 冰葡萄酒中 20 种醛酮类物质的测定 气相色谱 - 质谱 / 质谱法 SN/T 5637-2023 6 种常见黑松露成分定性检测方法 实时荧光 PCR 法 SN/T 5636-2023 16 种鱼类成分定性检测方法 实时荧光 PCR 法 SN/T 5604-2023 东北林蛙物种鉴定方法 实时荧光 PCR 法 SN/T 5521-2023 进口麦卢卡蜂蜜中 5 种特征物质的测定 液相色谱 - 质谱 / 质谱法 SN/T 5520-2023 动物源食品中苯乙醇胺 A 的测定 液相色谱 - 质谱 / 质谱法 SN/T 5519-2023 出口植物源性食品 中氰氟草酯 和 氰氟 草酸残留量的测定 SN/T 5518-2023 出口植物源食品中 棉隆及其 代谢物残留量的测定 气相色谱 - 质谱 / 质谱法 SN/T 5517-2023 出口水产品及其制品中甲基汞的测定 全自动甲基 汞分析仪法 SN/T 5515-2023 出口食品中氟 唑 菌酰胺残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 5514-2023 出口食品中产毒素真菌快速检测方法 实时荧光 PCR 法 SN/T 5513-2023 出口禽肉中弯曲 菌 计数方法 SN/T 5512-2023 出口动物源食品中那西肽残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 4544.3-2023 商品化试剂盒检测方法 菌落总数 方法三 SN/T 1988-2023 出口动物源食品中头 孢 类抗生素残留量的测定 液相色谱 - 质谱 / 质谱法 SN/T 1681-2023蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 5599-2023 进境鲜冻肉类产品名称规范 SN/T 5561-2023 出口食品中乙 嘧 硫磷残留量的测定 气相色谱法 DB32/T 4727-2024 鳜鱼传染性脾肾坏死病诊断及综合防控技术规程 DB32/T 4726-2024 畜禽粪污 沼 液果 蔬 生产施用技术规范 DB32/T 4735-2024 优良食味粳稻生态种植技术规程 DB32/T 4732-2024 设施蔬菜园区农业机械配置规范 DB32/T 4731-2024 农机专业合作社机务管理规范 DB32/T 4730-2024 南美白对虾小型温棚健康养殖技术规范 DB32/T 4724-2024 草莓生产中微生物菌剂(肥)应用技术规程 DB5308/T 77—2024 桉树速生丰产林培育技术规程 DB42/T 235-2024 地理标志产品 京山桥米 DB42/T 582-2024 猕猴桃主要真菌性病害防控技术规程 DB42/T 1428.1-2024 猕猴桃轻简高效生产技术规程 第 1 部分:高枝牵引技术 DB42/T 2230.1-2024 麦茬复种 第 1 部分:夏直播棉 DB42/T 2228.4-2024 农副产品加工流通管理规程 第 4 部分:加工或保藏的水果 DB42/T 2228.3-2024 农副产品加工流通管理规程 第 3 部分:动、植物油脂 DB42/T 2228.2-2024 农副产品加工流通管理规程 第 2 部分:谷物粉制品 DB42/T 2228.1-2024 农副产品加工流通管理规程 第 1 部分:加工或保藏的蔬菜 DB42/T 2227.2-2024 食用菌菌种质量检验规范 第 2 部分:荷叶离褶伞 DB42/T 2217-2024 稻田迟直播油菜生产技术规程 DB42/T 2216-2024 普通白菜机械化生产技术规范 DB42/T 2215-2024 甘蓝型油菜品种真实性及其实质性派生品种 MNP 鉴定法 DB42/T 2214-2024 甘蓝类蔬菜 集约化穴盘育苗 技术规程 DB42/T 2213-2024 设施草莓 / 西瓜模式栽培技术规程 DB6521/T 071-2024 葡萄平茬嫁接技术规程 DB6521/T 070-2024 红巴拉多葡萄栽培技术规程 DB6521/T 069-2024 紫霞玫瑰葡萄栽培技术规程 DB6521/T 068-2024 火州翠玉 葡萄栽培技术规程 DB6521/T 067-2024 顺行龙干葡萄栽培技术规程 DB4413/T 43-2024 滨海旅游海鲜餐饮经营规范 DB4413/T 42-2024 糯 小麦种植技术规范 DB44/ 613-2024 畜禽养殖业污染物排放标准 DB41/T 2620-2024 沿 黄稻虾共 作生态种养技术规程 DB41/T 2617-2024 饲料霉变防控及霉菌毒素脱毒技术规范 DB41/T 2616-2024 杨树锈病综合防治技术规程 DB41/T 2615-2024 山桐子育苗技术规程 DB41/T 2614-2024 银木栽植 养护技术规程 DB41/T 2612-2024 薄壳山核桃容器苗培育技术规程 DB41/T 2611-2024 食用林产品抽样技术要求 DB41/T 2609-2024 设施西瓜、甜瓜水肥一体化设备配置与运行规程 DB41/T 2608-2024 设施蔬菜冬春季防灾减灾技术规范 DB41/T 2607-2024 蓝 莓 组培快 繁 技术规程 DB41/T 2606-2024 丘陵山地朝天 椒 生产技术规程 DB41/T 2605-2024 蜡梅 种质资源描述规范 DB41/T 2604-2024 规模化养殖池塘尾水生态处理技术规范 DB41/T 2597-2024 沼气用玉米、小麦秸秆黄 贮技术 规程 DB41/T 2596-2024 鹅常见病毒病防控技术规程 DB41/T 2595-2024 猪急性腹泻综合征诊断技术 DB41/T 2594-2024 规模化牛场布鲁氏菌病、结核病净化技术规范 DB41/T 2593-2024 黄山松培育技术规程 DB41/T 2592-2024 月季品种观赏性评价技术规程 DB41/T 2591-2024 石榴盆栽技术规程 DB41/T 2588-2024 苍术栽培技术规程 DB41/T 2587-2024 怀地黄种栽繁育技术规程 DB41/T 2586-2024 黄精种子育苗技术规程 DB41/T 2585-2024 大口黑鲈四种病毒性疾病防控技术规范 DB41/T 2583-2024 荷斯坦犊牛饲养管理技术规程 DB41/T 2582-2024 湖北紫荆培育技术规程 DB41/T 2581-2024 迁飞性昆虫的雷达观测技术规范 DB41/T 2577-2024 麦套朝天 椒 机械化直播生产技术规程 DB41/T 2576-2024 冬小麦 - 夏玉米 籽粒双 机收栽培技术规程 DB11/T 2171.3-2023 粮食节约减损规范 第 3 部分:加工环节 DB11/T 2171.2-2023 粮食节约减损规范 第 2 部分:运输环节 DB11/T 2171.1-2023 粮食节约减损规范 第 1 部分:储存环节 DB36/T 779-2023 毛红椿培育技术规程 DB36/T 1888-2023 长豇豆大棚栽培技术规程 DB36/T 1887-2023 油菜 - 中稻生产技术规程 DB36/T 1886-2023 湿地松种子园营建技术规程 DB36/T 1885-2023 辣椒水肥一体化栽培技术规程 DB36/T 1884-2023 苦瓜大棚秋延后栽培技术规程 DB36/T 1883-2023 黄瓜设施越夏栽培技术规程 DB36/T 1882-2023 黑皮冬瓜设施栽培技术规程 DB36/T 1881-2023 黑斑 侧褶蛙米尔 伊丽莎白 菌 分离鉴定技术规范 DB36/T 1880-2023 稻草全量还田下的油菜直播生产技术规程 DB36/T 1879-2023 测土配方施肥系统县域数据库规范 DB36/T 1878-2023 蛋鸭笼养技术规程 DB36/T 1876-2023 食品生产企业食品安全风险分级评定规范 DB36/T 848-2023 早稻集中育秧和移栽气象等级 DB36/T 1872-2023 旱地 “ 甘薯 — 油菜 ” 轮作生产技术规程 DB36/T 1871-2023 “ 早春红芽芋 — 晚粳稻 ” 轮作栽培技术规程 DB36/T 1870-2023 井冈蜜柚平衡施肥技术规程 DB36/T 1869-2023 香菇菌种生产技术规程 DB36/T 1868-2023 西方蜜蜂成熟 蜜 生产技术规程 DB36/T 1867-2023 白莲蜜蜂授粉技术规程 DB36/T 1866-2023 中华蜜蜂育王技术规程 DB36/T 1864-2023 切花石蒜栽培技术规程 DB36/T 1859-2023 特殊食品经营管理规范 DB36/T 1858-2023 特殊食品经营示范主体评价规范 DB36/T 1857-2023 校园食品安全总监(食品安全员)培训管理规范 DB4110/T 63-2023 玉米腐植酸 控释参混肥 施用技术规程 DB4110/T 62-2023 小麦玉米两熟制高产高效栽培技术规程 DB41/T 2598-2024 豫选黄河鲤 2 号 DB64/T 1980—2024 枸杞春季花期霜冻气象指标 DB41/T 1346-2024 稻田紫云英 - 水稻秸秆协同还田利用技术规程 DB64/T 1984—2024 酿酒葡萄晚霜冻灾 害调查 规范 环境环保标准(24个)NY/T 4435-2023 土壤中铜、锌、铅、铬和 砷含量 的测定 能量色散 X 射线荧光光谱法 NY/T 4434-2023 土壤调理剂中汞的测定 催化热解 - 金汞齐富集原子吸收光谱法 NY/T 4433-2023 农田土壤中镉的测定 固体进样电热蒸发原子吸收光谱法 SN/T 5523-2023水中铜绿假单胞菌的测定 酶底物法DB32/T 4729-2024 河湖生态疏浚工程施工质量检验与评定规范 DB32/T 4728-2024 河道保护规划编制导则 DB32/T 4740-2024 耕地和林地损害程度鉴定规范 CJ/T221-2023 城镇污泥标准检验方法 DB44/ 2462-2024 水产养殖尾水排放标准 DB64/T 702—2024 畜禽养殖污染防治技术规范 DB64/T 1981—2024 土壤水分自动观测站建设规范 DB64/ 819—2024 煤质活性炭工业大气污染物排放标准 DB64/ 1996—2024 燃煤电厂大气污染物排放标准 DB64/ 1995—2024 水泥工业大气污染物排放标准 DB41/ 2555-2023 医疗机构水污染物排放标准 DB37 4676—2023 海水养殖尾水排放标准 DB36/T 1865-2023 湿地碳汇监测 技术规程 DB41/T 2602-2024 湖泊水生态系统修复工程设计导则 DB41/T 2601-2024 农村水系综合治理设计导则 DB41/T 2613-2024 沿黄生态廊道建设导则 DB41/T 2579-2024 高山环境质量自动监测站防雷技术规范 DB32/T 4725-2024 池塘养殖尾水生态处理技术规范 DB41/T 754-2024 在用固体燃料工业锅炉节能评价规程 DB41/T 900-2024 旋流燃烧方式锅炉冷态试验导则 医药卫生标准(55个)GB 9706.222-2022 医用电气设备 第 2-22 部分:外科、整形、治疗和诊断用激光设备的基本安全和基本性能 专用要求 WS 10014-2023 学校及托幼机构饮水设施卫生规范 WS 10013-2023 公共场所集中空调通风系统卫生规范 WS 10012-2023 地方性 砷 中毒病区判定和划分 WS/T 10011.5-2023 公共卫生检测与评价实验室常用名词术语标准 第 5 部分:分子生物学检测 WS/T 10011.4-2023 公共卫生检测与评价实验室常用名词术语标准 第 4 部分:毒理学安全性评价 WS/T 10011.3-2023 公共卫生检测与评价实验室常用名词术语标准 第 3 部分:微生物检测 WS/T 10011.2-2023 公共卫生检测与评价实验室常用名词术语标准 第 2 部分:理化检测 WS/T 10011.1-2023 公共卫生检测与评价实验室常用名词术语标准 第 1 部分:基础术语 WS/T 10010-2023 卫生监督快速检测通用要求 WS/T 10009-2023 消毒产品检测方法 WS/T 10008-2023 7 岁 -18 岁儿童青少年体力活动水平评 WS/T 10007-2023 中小学生体育锻炼运动负荷卫生要求 WS/T 10006-2023 环境化学污染物参考剂量推导技术指南 WS/T 10005-2023 公共场所集中空调通风系统清洗消毒规范 WS/T 10004-2023 公共场所集中空调通风系统卫生学评价规范 WS/T 10003-2023 环境健康名词术语 WS/T 10002-2023 克山病病区控制和消除 WS/T 10001-2023 疾病预防控制机构实验室仪器设备配置和管理 SN/T 5605-2023 蝾螈壶菌检疫技术规范 SN/T 5602-2023 豇豆花叶病毒属病毒 RT-PCR 筛查方法 YY/T 1883-2023 Rh 血型 C 、 c 、 E 、 e 抗原检测卡(柱凝集法) YY/T 1874-2023 有源植入式医疗器械 电磁兼容 植入式心脏起搏器、植入式心律转复除颤 器和心脏再同步器械的电磁兼容测试细则 YY/T 1866-2023 一次性使用无菌 肛肠套扎器 胶圈或弹力线式 YY/T 1789.5-2023 体外诊断检验系统 性能评价方法 第 5 部分:分析特异性 YY/T 1411-2023 牙科学 牙科治疗机水路生物膜处理的试验方法 YY/T 1268-2023 环氧乙烷灭菌的产品追加和过程等效 YY/T 0893-2023 医用气体混合器 独立气体混合器 YY/T 0862-2023 眼科光学 眼内填充物 YY/T 0128-2023 医用诊断 X 射线辐射防护器具 装置及用具 YY/T 1012-2021 牙科学 手机连接件联轴节尺寸 YY 9706.272-2021 医用电气设备 第 2-72 部分:依赖呼吸机患者使用的家用呼吸机的基本安全和基本性能 专用要求 YY 9706.270-2021 医用电气设备 第 2-70 部分:睡眠呼吸暂停治疗设备的基本安全和基本性能 专用要求 YY 9706.252-2021 医用电气设备 第 2-52 部分 : 医用病床的基本安全和基本性能 专用要求 YY 9706.247-2021 医用电气设备 第 2-47 部分:动态心电图系统的基本安全和基本性能 专用要求 YY 9706.234-2021 医用电气设备 第 2-34 部分 : 有创血压监护设备的基本安全和基本性能 专用要求 YY 9706.221-2021 医用电气设备 第 2-21 部分:婴儿辐射 保暖台 的基本安全和基本性能 专用要求 YY 1045-2021 牙科学 手机和马达 YY/T 0671-2021 医疗器械 睡眠呼吸暂停治疗 面罩和应用附件 DB32/T 4737.1-2024 社区慢性病患者自我管理工作规范 第1部分:总则 DB32/T 4736-2024 医疗卫生信用评价规范 DB42/T 2218-2024 中药材 艾草种植技术规程 DB14/T 2997—2024 特色针法操作规程 中风利咽通窍针 DB14/T 2996—2024 医疗机构 灸 疗场所设置要求 DB14/T 2995—2024 灸疗技术 操作规范 中药泥 灸 DB14/T 2994—2024 灸疗技术 操作规范 通督 灸 DB14/T 2993—2024 灸疗技术 操作规范 麦粒 灸 DB14/T 2992—2024 医疗肿瘤多学科诊疗工作规范 DB64/T 1986—2024 老年友善医疗机构建设评价规范 DB36/T 1875-2023 结核病定点医疗机构医院感染预防与控制规范 DB36/T 1855-2023 困境儿童监护风险干预指南 DB41/T 2603-2024病媒生物预防控制机构服务规范DB41/T 2610-2024 养老机构康复辅助器具配置服务规程 DB41/T 2621-2024 产前诊断(筛查)技术医疗机构服务规范 SN/T 4445.4-2023 进口医疗器械检验技术要求 第 4 部分:输液泵 冶金矿产标准(4个)DB36/T 1860-2023 稀土产品链的可追溯性体系设计与实施指南 DB36/T 863-2023 黄蜡 石质量 等级划分与评定 DB41/T 2599-2024 煤矿地震监测站网技术规范 DB41/T 2578-2024 铝合金深井铸造工艺系统安全规程 化工塑料标准(3个)SN/T 5660-2023进出口危险化学品检验规程 甲酸SN/T 5659-2023进出口危险化学品检验规程 发火液体 基本要求DB32/T 4723-2024 石墨 烯 材料包装储运通用要求 轻工纺织标准(1个)SN/T 5615-2023 进出口纺织品 再生纤维素纤维定性分析 显微镜法 能源标准(3个)DB64/T 1979—2024 风能太阳能开发项目选址气候可行性论证技术指南 DB32/T 4722-2024 固定式海上风力发电机组 安装技术规范 DB32/T 4721-2024 海上风电场 雷电预警系统技术规范 机械车辆标准(2个)DB31/T 310021-2024 纯电动公交车运营管理规范 DB14/T 2998—2024 电动自行车消防安全管理指南 其他标准(11个)SN/T 5622-2023 化学分析实验室标准物质的选择和使用 SN/T 5603-2023 进出境旅客行李物品中有害物质气味 嗅探技术 规程 DB36/T 1877-2023 直投式橡塑复合改性沥青混合料应用技术规范 DB36/T 744-2023 废旧轮胎橡胶沥青路面施工技术规范 DB31/T 310023-2024 绿色产品和服务认证规范 DB41/T 2584-2024 装配式桥梁现浇部分超高性能混凝土施工技术规范 DB41/T 2600-2024 地震应急指挥技术系统建设要求 TB/T 3385.1-2023 铁路无线电监测 第 1 部分:总体要求 TB/T 3295-2023 铁路大型施工机械 箱梁 运梁车 SN/T 5624-2023 检测实验室质量安全风险管理 通则 SN/T 4499-2023 技术性贸易措施工作规程 国外技术性贸易措施影响企业统计调查 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 仪器情报,科学家利用LTSTM等先进设备分析了吡啶氮掺杂石墨烯膜在高效CO₂捕获中的机理!
    【科学背景】随着全球气候变化问题日益突显,碳捕集技术成为减缓气候变化的重要手段之一。因此,研究人员一直致力于寻找能够高效、低成本地分离CO2的技术,以减少温室气体排放并促进碳中和。传统的CO2分离技术通常依赖于热力学过程,如化学吸收和物理吸附,但这些方法往往需要大量的能源消耗,成本高昂。因此,开发基于膜的CO2分离技术成为一种备受关注的方向,因为这种技术不依赖于热能,有望降低捕集成本。传统的膜材料如聚合物薄膜和金属有机框架等已经显示出潜在的应用前景,但它们的CO2渗透率受到选择层厚度的限制,难以进一步提高。此外,实现高CO2/N2分离因子的挑战在于难以兼顾高选择性和高渗透率。因此,本研究针对这些问题提出了一种创新的解决方案。瑞士洛桑联邦理工学院Kuang-Jung Hsu,Kumar Varoon Agrawal等研究团队利用二维孔隙结构,通过控制孔边缘的异原子掺杂来增强CO2与孔的结合亲和力。他们选择了石墨烯作为研究对象,通过将吡啶氮引入孔边缘,促进了CO2与孔之间的竞争性吸附。这种方法提高了CO2的装载量,使得即使在稀薄的CO2气流中也能实现高CO2渗透率和高CO2/N2分离因子。此外,他们采用了可扩展的化学方法,成功制备了厘米级的高性能膜,为实际应用奠定了基础。【科学亮点】(1)在本研究中,首次利用氨在室温下处理氧化的单层石墨烯,成功地在孔边缘引入了吡啶氮。这一方法使得孔边缘的吡啶氮取代成为可能。(2)实验结果表明,吡啶氮的引入导致了CO2与孔之间的高度竞争性但定量可逆的结合,这与理论预测一致。通过高分辨率X射线光电子能谱(XPS)确认了吡啶氮的引入。同时,低温扫描隧道显微镜(LTSTM)观察到了CO2的吸附和解吸过程,验证了吡啶氮引发的高亲和力。(3)此外,实验还显示了即使在稀薄的CO2气流中,也能实现高装载量,进而实现了高CO2渗透率和高CO2/N2选择性。由于化学反应的可扩展性,实验在厘米级膜上展示了高性能。【科学图文】图1:在吡啶-N-取代的石墨烯上,吸附CO2。图2. 在吡啶-N-取代的石墨烯上,吸收CO2。图3. 在吡啶-N-取代的石墨烯上,定量可逆的CO2吸附。图4:过能量色散光谱(EDS)和拉曼光谱确认吡啶氮取代石墨烯中的氮官能团。图5:吡啶氮取代石墨烯的CO2吸附和气体传输特性。图6: 竞争性CO2吸附,吡啶-N-取代石墨烯具有极好的碳捕获性能。【科学结论】这项研究为开发高效的碳捕集技术提供了科学价值。通过在石墨烯孔边缘引入功能异原子,特别是吡啶N,作者成功地改善了CO2在孔中的吸附性能,从而实现了高渗透率和高选择性的分离效果。这一发现不仅为膜科学提供了新的思路和方法,还将激发分子模拟和实验来进一步探索竞争性吸附的机制,为膜技术的进一步发展提供了重要的指导。此外,研究中采用的化学反应是基于气态反应物的,这使得相关技术具有了高度可扩展性,并且可适用于大面积样品的制备。因此,这项研究的成果不仅将对膜领域有所贡献,还将为其他领域,如高性能吸附剂、传感器和催化剂的开发提供有价值的参考。原文详情:Hsu, KJ., Li, S., Micari, M. et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01556-0
  • 深圳普门新品eCL8000全自动电化学发光免疫分析仪亮相标记免疫分析专业委员会2018学术峰会
    p  2018年6月29日-7月1日,中国分析测试协会标记免疫分析专业委员会2018学术峰会在江苏宜兴召开。在29日的新产品发布中,深圳普门科技卢国强介绍了普门电化学发光免疫分析技术与临床应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/f1f5972a-842c-4974-99a8-706633407511.jpg" title="1.jpg"//pp style="text-indent: 2em "2017年7月,深圳普门拥有完整自主知识产权的全自动电化学发光免疫分析仪eCL8000上市,其成为中国第一款供临床实验室使用的电化学发光免疫分析仪。eCL8000采用基于三联吡啶钌的直接电化学发光法,可同时支持10种试剂上机,最大样品位30个,最大反应位100个,最大测试速度为86测试/小时,是具有完全自主知识产权的中国第一款全自动电化学发光免疫分析仪。/p
  • 食品安全标准与监测评估司关于假肠膜明串珠菌等28种“三新食品”的公告
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对假肠膜明串珠菌申请新食品原料、聚天冬氨酸钾等16种物质申请食品添加剂新品种、环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物等11种物质申请食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。附件: 假肠膜明串珠菌等28种“三新食品”的公告文本.pdf国家卫生健康委2023年2月7日附件 1新食品原料假肠膜明串珠菌 假肠膜明串珠菌中文名称假肠膜明串珠菌拉丁名称Leuconostoc pseudomesenteroides其他需要说 明的情况1. 批准列入《可用于食品的菌种名单》,使用 范围包括发酵乳、风味发酵乳、干酪、发酵 型含乳饮料和乳酸菌饮料 ( 非固体饮料),不包括婴幼儿食品。2. 食品安全指标须符合以下规定:铅(Pb,干基计),mg/kg ≤1总砷(As,干基计),mg/kg ≤1.5沙门氏菌,/25 g ( mL)0金黄色葡萄球菌,/25 g ( mL)0单核细胞增生李斯特氏菌,/25 g ( mL)0附件 2 聚天冬氨酸钾等 16 种食品添加剂新品种一、食品添加剂新品种序号名称功能食品分类号食品名称最大使用量 (g/L )备注1聚天冬氨酸钾PotassiumPolyaspartate稳定剂和凝固剂15.03.01葡萄酒0.3—二、食品工业用酶制剂新品种序号酶来源供体1氨基肽酶Aminopeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae2蛋白酶 Protease李氏木霉 Trichoderma reesei樟绒枝霉 Malbranchea sulfurea3磷脂酶 A2Phospholipase A2李氏木霉 Trichoderma reesei烟曲霉Aspergillusfumigatus4麦芽糖淀粉酶 Maltogenic amylase酿酒酵母Saccharomycescerevisiae嗜热脂解地芽孢杆菌Geobacillusstearothermophilus5木聚糖酶 Xylanase地衣芽孢杆菌Bacillus licheniformis地衣芽孢杆菌 Bacillus licheniformis6乳糖酶 (β-半乳糖苷 酶 ) Lactase(beta-galactosidase )Papiliotrematerrestris—7羧肽酶Carboxypeptidase米曲霉 Aspergillus oryzae米曲霉 Aspergillus oryzae8脱氨酶 Deaminase米曲霉 Aspergillus oryzae—三、食品用香料新品种序 号名称功能食品分类号食品名称最大使用量备 注12- 己基吡啶 2-Hexylpyridine食品用香料—配制成食品用香精应用于各类食品中( GB 2760-2014 表 B. 1食品类别除外)按生产需要适量使用—
  • 秦皇岛兽药残留检测方法获国际标准
    秦皇岛检验检疫局研究 的“家禽组织中二氯二甲吡啶酚残留高效液相色谱检测方法”,被国际公职分析 化学家联合会(简称国际AOAC)批准为国际AOAC标准方法。 据介绍,这是秦皇岛检验检疫局继1998年成功制定我国第一个国际AOAC先进标准,即“农产品中拟除虫菊酯类农药多残留气相色谱检测方法”后, 获准的我国第二个国际AOAC标准。这项技术解决了精确检测食品中兽药残留 等一系列的科学难题。
  • 环保部征求8项国家环保检测标准意见
    为执行《中华人民共和国环境保护法》,保障人体健康,提高环境管理水平,规范环境监测工作,环境保护部决定修订《水质 吡啶的测定 顶空气相色谱法》等8项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2009年3月15日前反馈我部。  联系人:环境保护部科技标准司 谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传真:(010)66556213  附件:1.征求意见单位名单     2.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)     3.《水质 吡啶的测定 顶空气相色谱法》(征求意见稿)编制说明     4.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)     5.《水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯、二硝基氯苯的测定 液液萃取和固相萃取气相色谱法》(征求意见稿)编制说明     6.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)     7.《水质 氨氮的测定 蒸馏-中和滴定法》(征求意见稿)编制说明     8.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)     9.《水质 氨氮的测定 水杨酸分光光度法》(征求意见稿)编制说明     10.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)     11.《水质 氨氮的测定 纳氏试剂分光光度法》(征求意见稿)编制说明     12.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)     13.《环境空气 臭氧的测定 紫外光度法》(征求意见稿)编制说明     14.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)     15.《环境空气 氨的测定 次氯酸钠-水杨酸分光光度法》(征求意见稿)编制说明     16.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)     17.《环境空气 氨的测定 纳氏试剂分光光度法》(征求意见稿)编制说明
  • 世界上第一个单原子X射线揭示了最小水平的化学
    原子可能没有骨骼,但我们仍然想知道它们是如何组合在一起的。这些微小的粒子是构成所有正常物质(包括我们的骨头)的基础,理解它们将有助于我们理解更大的宇宙。我们目前可以使用高能X射线来帮助我们理解原子和分子,以及它们是如何排列的,捕捉衍射光束来重建它们的晶体结构。上图:六个铷和一个铁原子的超分子组装体。扫描隧道显微镜显示了一个铁原子的清晰信号。现在,科学家们已经使用X射线来表征单个原子的特性,表明这项技术可以用来在物质最微小构件的水平上理解物质。由俄亥俄大学和美国阿贡国家实验室的物理学家托卢洛普阿加伊(Tolulope Ajayi)领导的一个国际团队表示:“在这里,我们证明X射线可以用来表征一个原子的元素和化学状态。”X射线被认为是在原子水平上表征材料的合适探针,因为它们的波长分布与原子的大小相当。有几种技术可以用X射线照射物体,看看它们是如何在很小的尺度上组合在一起的。其中之一是同步加速器X射线,其中电子沿着圆形轨道加速,直到它们发出明亮的高能光。上图:铁超分子组装示意图,铁原子为红色,铷为青色。为了分辨真正精细的尺度,物理学家托卢洛普阿加伊和他的同事使用了一种将同步辐射X射线与原子尺度成像显微镜技术相结合的技术,称为“扫描隧道显微镜”。这采用了一种优秀的尖端导电探针,该探针与测试材料的电子相互作用,称为“量子隧道”。在非常接近的地方(比如半纳米),电子的精确位置是不确定的,会将其涂抹在材料和探针之间的空间中;原子的状态就可以在产生的电流中进行测量。这两种技术统称为“同步加速器X射线扫描隧道显微镜(SX-STM)”。放大的X射线激发样品,针状探测器收集产生的光电子。这是一项令人兴奋的技术,它开启了一些令人难以置信的可能性:去年,该团队发表了一篇关于使用 SX-STM 旋转单个分子的论文。这一次,他们做得更小,试图测量单个铁原子的性质。他们分别创建了超分子组装,包括铁和铽离子在一个原子环中,也就是所谓的配体。1个铁原子和6个铷原子通过三联吡啶配体连接;铽、氧和溴通过吡啶-2,6-二甲酰胺配体连接。然后,对这些样品进行 SX-STM 处理。上图:左图-铽超分子组装示意图,铽为青色,溴为蓝色,氧为红色。左图-铽超分子组装的SX-STM图像。探测器接收到的光与照射在样品上的光是不一样的。一些波长被原子核中的电子吸收,这意味着在接收到的X射线光谱上有一些较暗的线。研究小组发现,这些较暗的线条分别与铁和铽吸收的波长一致。吸收光谱也可以分析,以确定这些原子的化学状态。对于铁原子,有趣的事情发生了。只有当探头尖端正好位于铁原子的超分子结构上方并且非常接近时,才能探测到X射线信号。研究人员说,这证实了隧道机制中的探测。因为隧穿是一种量子现象,这对研究量子力学具有重要意义。研究人员表示:“我们的工作,将同步加速器X射线与量子隧道过程联系起来,并开启了未来的X射线实验,以同时表征材料在单原子极限下的元素和化学性质。”这项研究发表在《自然》杂志上。
  • 环保部就6项水质检测标准征求意见
    环境保护部办公厅函  环办函[2012]792号  关于征求《水质 钴的测定 5-氯-2-(吡啶偶氮)-1,3-二氨基苯分光光度法》(征求意见稿)等4项国家环境保护标准意见的函  各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《水质 钴的测定 5-氯 -2-(吡啶偶氮)-1,3-二氨基苯分光光度法》等4项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2012年8月10日前反馈我部科技标准司。  联系人:环境保护部科技标准司谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传真:(010)66556213  联系人:环境保护部环境标准研究所戴天有  联系电话:(010)84926324  附件:1.征求意见单位名单  2.水质钴的测定5—氯—2—(吡啶偶氮)—1,3—二氨基苯分光光度法(征求意见稿)  3.《水质钴的测定5—氯—2—(吡啶偶氮)—1,3—二氨基苯分光光度法》(征求意见稿)编制说明  4.水质铊的测定石墨炉原子吸收分光光度法(征求意见稿)  5.《水质铊的测定石墨炉原子吸收分光光度法》(征求意见稿)编制说明  6.水质汞、砷、硒、铋和锑的测定原子荧光法(征求意见稿)  7.《水质汞、砷、硒、铋和锑的测定原子荧光法》(征求意见稿)编制说明  8.水质丁基黄原酸的测定紫外分光光度法(征求意见稿)  9.《水质丁基黄原酸的测定紫外分光光度法》(征求意见稿)编制说明  二○一二年七月三日  主题词:环保 标准 意见 函  附件一:  征求意见单位名单  住房城乡建设部办公厅  水利部办公厅  各省、自治区、直辖市环境保护厅(局)  各省、自治区、直辖市环境监测站(中心)  各环境保护重点城市环境监测站(中心)  新疆生产建设兵团环境监测中心站  辽河保护区管理局  中国环境科学研究院  中国环境监测总站  中日友好环境保护中心  环境保护部对外合作中心  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  国家环境分析测试中心  环境保护部标准样品研究所  中国疾病预防控制中心  农业部环境保护科研监测所  中国科学院生态环境研究中心  中国城市规划设计研究院  国家城市给水排水工程技术中心  上海市环境科学研究院  北京市理化分析测试中心  北京中兵北方环境科技发展有限责任公司  中国船舶重工集团公司第七一八研究所  泰州市环境监测中心站  上海市浦东新区环境监测站  河北先河环保科技股份有限公司  湖北天虹环保设备有限公司  聚光科技(杭州)股份有限公司  岛津国际贸易(上海)有限公司  安捷伦科技(中国)有限公司  (部内征求监测司的意见)环境保护部办公厅函环办函[2012]791号关于征求《水质 物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定 半静态法》(征求意见稿)等两项国家环境保护标准意见的函  各有关单位:  为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《水质 物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定 半静态法》等两项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2012年7月30日前反馈我部科技标准司。  联系人:环境保护部科技标准司谷雪景  通信地址:北京市西直门内南小街115号  邮政编码:100035  联系电话:(010)66556214  传真:(010)66556213  联系人:环境保护部环境标准研究所戴天有  联系电话:(010)84926324  附件:1.征求意见单位名单  2.水质物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定半静态法(征求意见稿)  3.《水质物质对淡水鱼(真骨总目、鲤科)急性致死毒性的测定半静态法》(征求意见稿)编制说明  4.用鱼和海水双壳类软体动物进行生物浓缩试验(征求意见稿)  5.《用鱼和海水双壳类软体动物进行生物浓缩试验》(征求意见稿)编制说明  二○一二年七月三日  主题词:环保 标准 意见 函  附件一:  征求意见单位名单  水利部办公厅  各省、自治区、直辖市环境保护厅(局)  各省、自治区、直辖市环境监测站(中心)  各环境保护重点城市环境监测站(中心)  新疆生产建设兵团环境监测中心站  辽河保护区管理局  中国环境科学研究院  中国环境监测总站  中日友好环境保护中心  环境保护部对外合作中心  环境保护部南京环境科学研究所  环境保护部华南环境科学研究所  国家环境分析测试中心  环境保护部标准样品研究所  中国疾病预防控制中心  中国科学院生态环境研究中心  南京大学环境学院  农业部环境保护科研监测所  广东省微生物研究所  宁波出入境检验检疫局技术中心  深圳市疾病预防控制中心  泰州市环境监测中心站  上海市浦东新区环境监测站  (部内征求监测司的意见)
  • 生态环境部发布10项国家生态环境标准
    为支撑相关生态环境质量标准和污染物排放标准实施,近期,生态环境部发布《环境空气和废气 吡啶的测定 气相色谱法》(HJ 1219-2021)、《环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法》(HJ 1220-2021)、《环境空气 降尘的测定 重量法》(HJ 1221-2021)、《固体废物 水分和干物质含量的测定 重量法》(HJ 1222-2021)、《环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法》(HJ 1223-2021)、《环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法》(HJ 1224-2021)、《环境空气 臭氧的自动测定 化学发光法》(HJ 1225-2021)、《水质 硫化物的测定 亚甲基蓝分光光度法》(HJ 1226-2021)、《水质 挥发性有机物的应急测定 便携式顶空/气相色谱-质谱法》(HJ 1227-2021)、《突发环境事件应急监测技术规范》(HJ 589-2021)等10项国家生态环境标准。   《环境空气和废气 吡啶的测定 气相色谱法》(HJ 1219-2021)为首次发布,适用于环境空气、无组织排放监控点空气和固定污染源有组织排放废气中吡啶的测定,具有分析速度快、分辨率高、分离度好等特点。   《环境空气 6种挥发性羧酸类化合物的测定 气相色谱-质谱法》(HJ 1220-2021)为首次发布,适用于环境空气和无组织排放监控点空气中6种挥发性羧酸类化合物的测定,方法便捷、灵敏度高,可支撑《合成树脂工业污染物排放标准》(GB 31572-2015)、《石油化学工业污染物排放标准》(GB 31571-2015)等污染物排放标准实施。   《环境空气 降尘的测定 重量法》(HJ 1221-2021)适用于环境空气中降尘的测定。与《环境空气 降尘的测定 重量法》(GB/T 15265-94)相比,本标准细化了采样点布设等规定,修改完善了仪器设备和质量控制要求,提高了方法的操作性,可满足当前大气环境管理工作中的降尘监测需求。   《固体废物 水分和干物质含量的测定 重量法》(HJ 1222-2021)为首次发布,适用于常见固体废物中水分和干物质含量的测定,不适用于挥发性有机物含量高、易燃易爆的固体废物样品中水分和干物质含量的测定。本标准可为固体废物的分析、处理处置提供更加科学的水分和干物质含量测定方法。   《环境空气 有机氯农药的测定 高分辨气相色谱-高分辨质谱法》(HJ 1224-2021)为首次发布,适用于环境空气气相和颗粒物中25种有机氯农药的测定。本标准作为有机氯农药超痕量分析方法,可为我国履行《关于持久性有机污染物的斯德哥尔摩公约》,开展低浓度样品监测提供可靠的依据。   《环境空气 臭氧的自动测定 化学发光法》(HJ 1225-2021)为首次发布,适用于环境空气中臭氧的自动测定。本标准抗干扰能力强,与紫外光度法具有较好的一致性,可作为紫外光度法的有益补充。   《水质 硫化物的测定 亚甲基蓝分光光度法》(HJ 1226-2021),适用于地表水、地下水、生活污水、工业废水和海水中硫化物的测定。与《水质 硫化物的测定 亚甲基蓝分光光度法》(GB/T 16489-1996)相比,本标准修订了适用范围和检出限,增加了前处理方法等内容,可支撑《地表水环境质量标准》(GB 3838-2002)、《污水综合排放标准》(GB 8978-1996)等水环境质量和水污染物排放标准实施。   《环境空气 挥发性有机物的应急测定 便携式气相色谱-质谱法》(HJ 1223-2021)、《水质 挥发性有机物的应急测定 便携式顶空/气相色谱-质谱法》(HJ 1227-2021)和《突发环境事件应急监测技术规范》(HJ 589-2021),适用于突发环境事件应急监测。HJ 1223-2021和HJ 1227-2021为首次发布,可对VOCs进行现场定性分析,并准确定量。HJ 589-2021为首次修订,规定了突发环境事件应急监测关键环节的技术要求。3项标准可为突发环境事件应急处置提供技术支撑。   上述10项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 《食品安全国家标准食品中农药最大残留限量》等107项国标发布(附编号名称)
    根据《中华人民共和国食品安全法》规定,经食品安全国家标准审评委员会审查通过,现发布《食品安全国家标准食品中农药最大残留限量》(GB 2763-2016)等107项食品安全国家标准。其编号和名称如下:  GB 2763-2016(代替GB 2763—2014)食品安全国家标准 食品中农药最大残留限量  GB 23200.1-2016食品安全国家标准 除草剂残留量检测方法 第1部分:气相色谱-质谱法测定 粮谷及油籽中酰胺类除草剂残留量  GB 23200.2-2016食品安全国家标准 除草剂残留量检测方法 第2部分:气相色谱-质谱法测定 粮谷及油籽中二苯醚类除草剂残留量  GB 23200.3-2016食品安全国家标准 除草剂残留量检测方法 第3部分:液相色谱-质谱/质谱法测定 食品中环己酮类除草剂残留量  GB 23200.4-2016食品安全国家标准 除草剂残留量检测方法 第4部分:气相色谱-质谱/质谱法测定 食品中芳氧苯氧丙酸酯类除草剂残留量  GB 23200.5-2016食品安全国家标准 除草剂残留量检测方法 第5部分:液相色谱-质谱/质谱法测定 食品中硫代氨基甲酸酯类除草剂残留量  GB 23200.6-2016食品安全国家标准 除草剂残留量检测方法 第6部分:液相色谱-质谱/质谱法测定 食品中杀草强残留量  GB 23200.7-2016食品安全国家标准 蜂蜜、果汁和果酒中497种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.8-2016食品安全国家标准 水果和蔬菜中500种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.9-2016食品安全国家标准 粮谷中475种农药及相关化学品残留量的测定气相色谱-质谱法  GB 23200.10-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中488种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.11-2016食品安全国家标准 桑枝、金银花、枸杞子和荷叶中413种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.12-2016食品安全国家标准 食用菌中440种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.13-2016食品安全国家标准 茶叶中448种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.14-2016食品安全国家标准 果蔬汁和果酒中512种农药及相关化学品残留量的测定 液相色谱-质谱法  GB 23200.15-2016食品安全国家标准 食用菌中503种农药及相关化学品残留量的测定 气相色谱-质谱法  GB 23200.16-2016食品安全国家标准 水果和蔬菜中乙烯利残留量的测定液相色谱法  GB 23200.17-2016食品安全国家标准 水果和蔬菜中噻菌灵残留量的测定液相色谱法  GB 23200.18-2016食品安全国家标准 蔬菜中非草隆等15种取代脲类除草剂残留量的测定 液相色谱法  GB 23200.19-2016食品安全国家标准 水果和蔬菜中阿维菌素残留量的测定液相色谱法  GB 23200.20-2016食品安全国家标准 食品中阿维菌素残留量的测定液相色谱-质谱/质谱法  GB 23200.21-2016食品安全国家标准 水果中赤霉酸残留量的测定液相色谱-质谱/质谱法  GB 23200.22-2016食品安全国家标准 坚果及坚果制品中抑芽丹残留量的测定液相色谱法  GB 23200.23-2016食品安全国家标准 食品中地乐酚残留量的测定液相色谱-质谱/质谱法  GB 23200.24-2016食品安全国家标准 粮谷和大豆中11种除草剂残留量的测定 气相色谱-质谱法  GB 23200.25-2016食品安全国家标准 水果中噁草酮残留量的检测方法  GB 23200.26-2016食品安全国家标准 茶叶中9种有机杂环类农药残留量的检测方法  GB 23200.27-2016食品安全国家标准 水果中4,6-二硝基邻甲酚残留量的测定 气相色谱-质谱法  GB 23200.28-2016食品安全国家标准 食品中多种醚类除草剂残留量的测定气相色谱-质谱法  GB 23200.29-2016食品安全国家标准 水果和蔬菜中唑螨酯残留量的测定液相色谱法  GB 23200.30-2016食品安全国家标准 食品中环氟菌胺残留量的测定气相色谱-质谱法  GB 23200.31-2016食品安全国家标准 食品中丙炔氟草胺残留量的测定气相色谱-质谱法  GB 23200.32-2016食品安全国家标准 食品中丁酰肼残留量的测定气相色谱-质谱法  GB 23200.33-2016食品安全国家标准 食品中解草嗪、莎稗磷、二丙烯草胺等110种农药残留量的测定 气相色谱-质谱法  GB 23200.34-2016食品安全国家标准 食品中涕灭砜威、吡唑醚菌酯、嘧菌酯等65种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.35-2016食品安全国家标准 植物源性食品中取代脲类农药残留量的测定液相色谱-质谱法  GB 23200.36-2016食品安全国家标准 植物源性食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.37-2016食品安全国家标准 食品中烯啶虫胺、呋虫胺等20种农药残留量的测定 液相色谱-质谱/质谱法  GB 23200.38-2016食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定液相色谱-质谱/质谱法  GB 23200.39-2016食品安全国家标准 食品中噻虫嗪及其代谢物噻虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.40-2016食品安全国家标准 可乐饮料中有机磷、有机氯农药残留量的测定气相色谱法  GB 23200.41-2016食品安全国家标准 食品中噻节因残留量的检测方法  GB 23200.42-2016食品安全国家标准 粮谷中氟吡禾灵残留量的检测方法  GB 23200.43-2016食品安全国家标准 粮谷及油籽中二氯喹磷酸残留量的测定气相色谱法  GB 23200.44-2016食品安全国家标准 粮谷中二硫化碳、四氯化碳、二溴乙烷残留量的检测方法  GB 23200.45-2016食品安全国家标准 食品中除虫脲残留量的测定液相色谱-质谱法  GB 23200.46-2016食品安全国家标准 食品中嘧霉胺、嘧菌胺、腈菌唑、嘧菌酯残留量的测定气相色谱-质谱法  GB 23200.47-2016食品安全国家标准 食品中四螨嗪残留量的测定气相色谱-质谱法  GB 23200.48-2016食品安全国家标准 食品中野燕枯残留量的测定气相色谱-质谱法  GB 23200.49-2016食品安全国家标准 食品中苯醚甲环唑残留量的测定气相色谱-质谱法  GB 23200.50-2016食品安全国家标准 食品中吡啶类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.51-2016食品安全国家标准 食品中呋虫胺残留量的测定液相色谱-质谱/质谱法  GB 23200.52-2016食品安全国家标准 食品中嘧菌环胺残留量的测定气相色谱-质谱法  GB 23200.53-2016食品安全国家标准 食品中氟硅唑残留量的测定气相色谱-质谱法  GB 23200.54-2016食品安全国家标准 食品中甲氧基丙烯酸酯类杀菌剂残留量的测定气相色谱-质谱法  GB 23200.55-2016食品安全国家标准 食品中21种熏蒸剂残留量的测定 顶空气相色谱法  GB 23200.56-2016食品安全国家标准 食品中喹氧灵残留量的检测方法  GB 23200.57-2016食品安全国家标准 食品中乙草胺残留量的检测方法  GB 23200.58-2016食品安全国家标准 食品中氯酯磺草胺残留量的测定液相色谱-质谱/质谱法  GB 23200.59-2016食品安全国家标准 食品中敌草腈残留量的测定气相色谱-质谱法  GB 23200.60-2016食品安全国家标准 食品中炔草酯残留量的检测方法  GB 23200.61-2016食品安全国家标准 食品中苯胺灵残留量的测定气相色谱-质谱法  GB 23200.62-2016食品安全国家标准 食品中氟烯草酸残留量的测定气相色谱-质谱法  GB 23200.63-2016食品安全国家标准 食品中噻酰菌胺残留量的测定液相色谱-质谱/质谱法  GB 23200.64-2016食品安全国家标准 食品中吡丙醚残留量的测定液相色谱-质谱/质谱法  GB 23200.65-2016食品安全国家标准 食品中四氟醚唑残留量的检测方法  GB 23200.66-2016食品安全国家标准 食品中吡螨胺残留量的测定气相色谱-质谱法  GB 23200.67-2016食品安全国家标准 食品中炔苯酰草胺残留量的测定气相色谱-质谱法  GB 23200.68-2016食品安全国家标准 食品中啶酰菌胺残留量的测定气相色谱-质谱法  GB 23200.69-2016食品安全国家标准 食品中二硝基苯胺类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.70-2016食品安全国家标准 食品中三氟羧草醚残留量的测定液相色谱-质谱/质谱法  GB 23200.71-2016食品安全国家标准 食品中二缩甲酰亚胺类农药残留量的测定气相色谱-质谱法  GB 23200.72-2016食品安全国家标准 食品中苯酰胺类农药残留量的测定气相色谱-质谱法  GB 23200.73-2016食品安全国家标准 食品中鱼藤酮和印楝素残留量的测定液相色谱-质谱/质谱法  GB 23200.74-2016食品安全国家标准 食品中井冈霉素残留量的测定液相色谱-质谱/质谱法  GB 23200.75-2016食品安全国家标准 食品中氟啶虫酰胺残留量的检测方法  GB 23200.76-2016食品安全国家标准 食品中氟苯虫酰胺残留量的测定液相色谱-质谱/质谱法  GB 23200.77-2016食品安全国家标准 食品中苄螨醚残留量的检测方法  GB 23200.78-2016食品安全国家标准 肉及肉制品中巴毒磷残留量的测定气相色谱法  GB 23200.79-2016食品安全国家标准 肉及肉制品中吡菌磷残留量的测定气相色谱法  GB 23200.80-2016食品安全国家标准 肉及肉制品中双硫磷残留量的检测方法  GB 23200.81-2016食品安全国家标准 肉及肉制品中西玛津残留量的检测方法  GB 23200.82-2016食品安全国家标准 肉及肉制品中乙烯利残留量的检测方法  GB 23200.83-2016食品安全国家标准 食品中异稻瘟净残留量的检测方法  GB 23200.84-2016食品安全国家标准 肉品中甲氧滴滴涕残留量的测定气相色谱-质谱法  GB 23200.85-2016食品安全国家标准 乳及乳制品中多种拟除虫菊酯农药残留量的测定气相色谱-质谱法  GB 23200.86-2016食品安全国家标准 乳及乳制品中多种有机氯农药残留量的测定气相色谱-质谱/质谱法  GB 23200.87-2016食品安全国家标准 乳及乳制品中噻菌灵残留量的测定荧光分光光度法  GB 23200.88-2016食品安全国家标准 水产品中多种有机氯农药残留量的检测方法  GB 23200.89-2016食品安全国家标准 动物源性食品中乙氧喹啉残留量的测定液相色谱法  GB 23200.90-2016食品安全国家标准 乳及乳制品中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱法  GB 23200.91-2016食品安全国家标准 动物源性食品中9种有机磷农药残留量的测定 气相色谱法  GB 23200.92-2016食品安全国家标准 动物源性食品中五氯酚残留量的测定液相色谱-质谱法  GB 23200.93-2016食品安全国家标准 食品中有机磷农药残留量的测定气相色谱-质谱法  GB 23200.94-2016食品安全国家标准 动物源性食品中敌百虫、敌敌畏、蝇毒磷残留量的测定液相色谱-质谱/质谱法  GB 23200.95-2016食品安全国家标准 蜂产品中氟胺氰菊酯残留量的检测方法  GB 23200.96-2016食品安全国家标准 蜂蜜中杀虫脒及其代谢产物残留量的测定液相色谱-质谱/质谱法  GB 23200.97-2016食品安全国家标准 蜂蜜中5种有机磷农药残留量的测定 气相色谱法  GB 23200.98-2016食品安全国家标准 蜂王浆中11种有机磷农药残留量的测定 气相色谱法  GB 23200.99-2016食品安全国家标准 蜂王浆中多种氨基甲酸酯类农药残留量的测定液相色谱-质谱/质谱法  GB 23200.100-2016食品安全国家标准 蜂王浆中多种菊酯类农药残留量的测定 气相色谱法  GB 23200.101-2016食品安全国家标准 蜂王浆中多种杀螨剂残留量的测定 气相色谱-质谱法  GB 23200.102-2016食品安全国家标准 蜂王浆中杀虫脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.103-2016食品安全国家标准 蜂王浆中双甲脒及其代谢产物残留量的测定 气相色谱-质谱法  GB 23200.104-2016食品安全国家标准 肉及肉制品中2甲4氯及2甲4氯丁酸残留量的测定液相色谱-质谱法  GB 23200.105-2016食品安全国家标准 肉及肉制品中甲萘威残留量的测定 液相色谱-柱后衍生荧光检测法  GB 23200.106-2016食品安全国家标准 肉及肉制品中残杀威残留量的测定 气相色谱法  特此公告。  国家卫生计生委  农业部 食品药品监管总局  2016年12月18日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制