当前位置: 仪器信息网 > 行业主题 > >

非氨酯二聚体

仪器信息网非氨酯二聚体专题为您提供2024年最新非氨酯二聚体价格报价、厂家品牌的相关信息, 包括非氨酯二聚体参数、型号等,不管是国产,还是进口品牌的非氨酯二聚体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非氨酯二聚体相关的耗材配件、试剂标物,还有非氨酯二聚体相关的最新资讯、资料,以及非氨酯二聚体相关的解决方案。

非氨酯二聚体相关的论坛

  • 巯基丙酮二聚体的疑问

    附件是原料巯基丙酮用酒精稀释后进的gcms,请问巯基丙酮二聚体的峰到底是14.866还是22.072,或者说两者都是?还有,根据香料通则,这个东西的含量要达到95%,根据图上看有个很大的巯基丙酮,含量应该不到95%,巯基丙酮是本来就有的呢还是二聚体分解出来的?大家做原料控制的时候怎么做的呢?

  • 减少PCR产物中引物二聚体的方法

    1.从引物自身着手,重新设计引物,这是最根本解决这一问题的办法。2.可能模板有问题,模板浓度过小,适当加大模板量。3.Taq酶,引物,Mg2+浓度可能过高,可降低它们的浓度。4.将上下引物混合后,在100℃的沸水中煮5分钟,然后迅速拿出至于冰块之上瞬时冷却,这时再加入反应体系当中,引物二聚体就会消失的。理由:引物可能会发生发夹结构,自身环化等结构,在100℃的沸水中煮5分钟可使引物变为单链,以减少二聚体。不过有人认为在PCR仪上95度变性5min也同样达到目的,而且成功试过通过延长退火时间也可以消除引物二聚体。5.所配MIX中加5%的甘油或者5%的DMSO,可以增强特异性。6.PCR反应体系的配制在冰上进行,最后加Taq酶,PCR结束后,产物勿放置在室温下过长时间,有人认为室温下有些Taq酶会将多余的引物合成为二聚体。7.增加循环数。8.降低退火温度后有条带,则应逐渐提高温度,若提高温度的同时产物量减少,则考虑增加Mg2+浓度(根据扩增片断长度而定,片段长则相应镁离子浓度应该高一些)。9.若降低退火温度,发现还是只有引物二聚体,而且镁离子的浓度在20-25mmol/l没有区别,则考虑Buffer等试剂没有完全融解、混匀,导致吸取的试剂浓度不对。10.以上次的PCR产物作模板二次PCR,可以提高引物与模板的特异性,减少引物二聚体,如果两次时间间隔短的话,可以把原产物稀释100-1000倍,如果间隔较长可以稀释50-100倍。

  • 这个是二聚体吗?

    这个是二聚体吗?

    ES-做的,224.9同位素相差是0.5,450.9同位素相差1,这个是二聚体吗?分子量是452?大神解释下http://ng1.17img.cn/bbsfiles/images/2015/03/201503201055_538947_2359430_3.jpg

  • 双电质谱如何判断是不是二聚体,文章急需数据!!!望大牛帮忙解答

    我的化合物是属于含金属锂离子的复合物,然后又加了溴离子,(即得到了这样的二聚体,其他实验已证实该二聚体的存在),做了高分辨质谱发现了双电荷的峰,这个双电荷的 峰正好是显示含2个锂离子的二聚体的分子量那么我能不能判断我的东西在加了溴离子之后可以形成二聚体注:我的化合物不能络合两个金属锂离子,不加溴离子之前的高分辨质谱中也没发现二聚体的峰

  • 是二聚体还是带了两个电荷

    在解析ESI低分辨时,如何区分有二倍关系的是二具体,还是因为出现了多点带电,比如说,我打了个ESI+低分辨300-500有个离子峰M/Z=415.2,响应强度为2.40e3。而600-1000范围有两个较强的离子峰M/Z=785.4,M/Z=807.4,响应强度为681。从785.4和807.4可判断出807.4为加Na,785.4为加H,415.2也是加Na。那么分子量到底是多少,按二聚体算的话,分子量应该为392,。如果说是415.2带了两个电荷,那么分子量是不是应该就是784。(请高手给讲讲,这ESI源打质谱如何判断分子量)图上传不上

  • 聚氨酯IR常见基团吸收

    跟大家分享一下,聚氨酯的IR分析 v3250-3500 ms OH伸缩振动、NHCO的顺式NH伸缩振动。 v2940、2860 s CH2、CH3伸缩振动。 v2240-2280 s NCO特征吸收峰。 v2120 s 碳化二亚胺吸收峰。 v1770-1785 s 脲二酮环(二聚体)中的C=O。 v1715-1750 vs 酯基C=O、酰胺I键C=O。 v1689-1710 s 异腈脲酸酯(三聚体)中C=O(1408-1430也有峰) v1600-1615 苯环C=C骨架伸缩振动。 v1520-1560 ms 酰胺II键(N-H)变形振动。 v1450-1470 CH2变形振动、CH3非对称变形振动。 v1380 CH3对称变形振动 v1225-1235 聚酯C-O伸缩或OH变形振动 v1060-1150 宽s C-O-C(脂肪族醚)吸收峰。

  • 求助书籍《聚氨酯弹性体及其应用》和《聚氨酯树脂及其应用》

    1. 书名: 聚氨酯弹性体及其应用 作者:傅明源,孙酣经 编著 出版社:化学工业出版社 书号:7502578455 简介:本书主要阐述了聚氨酯混炼胶、聚氨酯浇注胶和聚氨酯热塑胶的合成配方和工艺、加工配方和工艺的具体数据和计算公式;聚氨酯革、聚氨酯胶黏剂、聚氨酯泡沫弹性体、聚氨酯涂料、聚氨酯水乳胶、聚氨酯灌浆材料和聚氨酯弹性纤维等的制作工艺、反应原理;简要介绍了新型聚氨酯弹性体;各种聚氨酯制品的加工方法及其应用。还介绍了合成聚氨酯的原材料的成品的分析,以及聚氨酯的工业卫生等。书中对TPUR半预聚法生产、聚氨酯革生产、反应注射成型(RIM)和增强的反应注射成型(RRIM)方法的生产作了较多介绍。 \r\n 本书除对第二版内容作适当补充修正外,还增加了聚氨弹性体助剂、聚氨酯预聚体以及田径场地塑胶跑道、篮球、排球、羽毛球和网球场地的聚氨酯塑胶铺面、聚氨酯地板和地板砖、聚氨酯防水材、聚氨酯嵌缝材和聚氨酯防腐材与新世纪展望等内容。 \r\n 本书实用性强,内容丰富,可供从事聚氨酯生产、科研、加工应用的工程技术人员和技术工人使用,也可供大专院校及中专高分子专业的师生参考。2. 书名: 聚氨酯树脂及其应用  ISBN:7502537449  著作者:李绍雄 刘益军  出版社:化学工业  出版日期:2002-05-01    页数:743  内容简介:第1章 绪论1.1 聚氨酯树脂的发展史1.2 我国聚氨酯工业的发展史1.3 国外聚氨酯树脂的生产与市场1.4 国内聚氨酯树脂的生产与市场1.5 聚氨酯树脂的技术发展动态第2章 聚氨酯化学2.1 异氰酸酯基本反应2.2 催化剂及温度对反应的影响2.3 聚氨酯分子结构与性能的关系第3章 基本原料3.1 概述3.2 异氰酸酯3.3 聚酯多元素3.4 聚醚多醇3.5 其它低聚物多元醇3.6 助剂第4章 聚氨酯泡沫塑料4.1 概述4.2 泡沫形成的化学机理4.3 软质聚氨酯泡沫塑料4.4 硬质聚氨酯泡沫塑料4.5 聚氨酯半硬泡4.6 聚氨酯泡沫的阻燃4.7 聚氨酯泡沫塑料的应用第5章 弹性体5.1 概述5.2 弹性体原料及原料对性能的影响5.3 浇注型聚氨酯弹性体5.4 热塑性聚氨酯5.5 混炼型聚氨酯弹性体5.6 聚氨酯弹性体的应用第6章 聚氨酯涂料6.1 概述6.2 聚氨酯涂料的分类与特性6.3 聚氨酯涂料的原料6.4 氨酯油6.5 双组分聚氨酯涂料6.6 封闭型聚氨酯涂料6.7 湿固化型聚氨酯涂料6.8 催化固化型双组分聚氨酯涂料6.9 聚氨酯沥青涂料6.10 聚氨酯弹性涂料6.11 水性聚氨酯涂料6.12 聚氨酯粉体涂料6.13 聚氨酯涂料的应用第7章 聚氨酯胶粘剂7.1 概述7.2 聚氨酯胶粘剂粘接机理7.3 多异氰酸酯胶粘剂7.4 双组分聚氨酯胶粘剂7.5 单组分聚氨酯胶粘剂7.6 聚氨酯胶粘剂7.7 聚氨酯密封胶第8章 聚氨酯人造革与合成革8.1 概述8.2 聚氨酯革的主要原料8.3 干法生产聚氨酯人造革8.4 湿法聚氨酯革第9章 聚氨酯弹性纤维9.1 概述9.2 聚氨酯弹性纤维的基本原理9.3 聚氨酯弹性的纤维的制造9.4 聚氨酯弹性纤维的性能与检验9.5 聚氨酯弹性纤维纱线及应用第10章 聚氨酯铺地材料10.1 概述10.2 主要原料10.3 胶面层浆料制备工艺10.4 聚氨酯跑道的铺设10.5 聚氨酯地板第11章 聚氨酯防水材料11.1 概述11.2 焦油聚氨酯防水材料11.3 沥青聚氨酯防水材料11.4 聚醚型聚氨酯防水材料11.5 聚氨酯防水材料标准和施工11.6 油溶性聚氨酯灌浆材料11.7 水溶性聚氨酯灌浆材料11.8 亲水性聚氨酯材料第12章 水性聚氨酯12.1 概述12.2 水性聚氨酯制备用原料12.3 水性聚氨酯的制备12.4 水性聚氨酯的性能12.5 水性聚氨酯的交联12.6 聚氨酯与其它聚合物共混或共聚分散液12.7 水性聚氨酯的应用第13章 反应注射成型聚氨酯13.1 概述13.2 原料体系13.3 RIM生产设备及工艺参

  • 如何分离同源性二聚体和异源性二聚体

    我正在制备双特异抗体,采用半分子互换方法,即一半A 一半B,但是交联后,仍有少量的A和B的污染,因为我是想得到需要的双特异性抗体,因此需要纯化,请问如何才能做到? 据说可以用分析型CIEX实现 不知道具体的方法和原理如何 望指教,谢谢 我的联系方式时 13936179062 微信 电子邮件是 13936179062@139.com

  • 如何解释质谱图中的二聚体?

    如何解释质谱图中的二聚体?

    我有一个质谱图,已知分子离子峰在不同模式下分别为291和293,那么二聚体峰如何解释呢?见附图。

  • 耐高温型聚氨酯性能如何?

    聚氨酯全称为聚氨基甲酸酯 ,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。聚氨酯材料,用途非常广,可以代替橡胶,塑料,尼龙等,对于工业上使用的都是机器上使用的而且是长期使用的,所以对于长期使用条件下聚氨酯耐温性能要求会高些。耐高温型聚氨酯的性能如何?  常规普通型聚氨酯长期使用温度80℃以下,短期使用温度可以达到120 ℃,如果市面上有一款耐高温型聚氨酯可以在长期使用温度下80℃及其80℃以上的条件下保持正常运行,耐高温型聚氨酯的性能是处于领先水平的。

  • 【分享】聚氨酯化工英语

    acid number 酸值 acylurea 酰(基)脲 aqurous ployurethane 水溶性聚氨酯 alliphanate 脲基甲酸酯 amide 酰胺 amine equivalent 胺当量 amine value 胺值 bitolylene diisocyanate 3,3-二甲基-4,4-联苯二异氰酸酯 biuret 缩二脲 1,4-butylene glycol(1,4-BG)or1,4-Butylene diol(1,4-BDD) 1,4-丁二醇 caprolactone ployester 己内酯型聚酯 caster oil 蓖麻油 carbodiimide 碳化二亚胺 casting molding machine 浇注机 casting PU(CPU) 浇注型聚氨酯 casting table 浇注平台 centrifugal casting 离心浇注 chain extender 扩链剂 cohension energy 内聚能 compression moulding 加压模塑(成型) cream time 乳白时间 crosslinking agent 交联剂 cyclohexyl diisocyanate (CHDI) 环己烷二异氰酸酯 4,4-dicyclohecylmethane diisocyanate (H12MDI) 4,4-二环己基甲烷二异氰酸酯,即氢化MDI demould time 脱模时间 3,5-diamino-p-chloroisobutylbenzoate(Baytec-1604) 3,5-二氨基对氯苯甲酸异丁酯 1,4-diazobicyclo-2,2,2-octane(DABCO) 1,4-二氮杂-(2,2,2)-双环辛烷,即三亚乙基二胺 dibutyltin dilaurate(DBTDL) 二丁基锡二月桂酸酯 3,3-dichloro-4,4-dianilino methane(MOCA) 3,3-二氯-4,4-二氨基二苯甲烷 4,4-methylene bis(2-Chloroaniline) 4,4-亚甲基双(二-氯苯胺) die C tear strength 撕裂强度(直角形) dihydromethyl propionic acid(DMPA) 二羟甲基丙酸 1,4-dihydroxybutane 1,4-丁二醇 dimethyl methyl phosphonate(DMMP) 甲基膦酸二甲酯 3,5-dimetylthio toluene dianiline(DMTDA) 3,5-二甲硫基甲苯二胺 4,4-diphenylmethane diisocyanate(MDI) 4,4-二苯(基)甲烷二异氰酸酯 domain 微区 domain structure 微区结构 dynamic properties 动态力学性能 elongation at break(Eb)扯断伸长率 extrusion moulding 挤出成型 extruding moulding machine 挤出机 fine mesh sieve screen 条缝筛 flexible PU foam 软质聚氨酯泡沫,聚氨酯软泡 glycerin -monoallylether 甘油-单烯丙基醚 gel time 凝胶时间 hard segment domains 硬段微区 hardness(shore A) 硬度(邵尔A) 1,6-hexamethylene diisocyanate(HDI) 1,6-六亚甲基二异氰酸酯 high pressure impingement mixing(HPIM) 高压碰撞混合 horizontal centrifruge with one sprindle 单轴卧式离心机 hydrogen boad 氢键 hydroquinore dihydroxyethylether 氢醌二羟乙基醚 hydroxyl number 羟值 hydroxyl-terminated polybutadiene 端羟基聚丁二烯 imitation leather 人造革,假皮 ingredient 配合剂 injection moulding 注塑成型 injection moulding machine 注塑机 integral skin foam 自结皮泡沫,整皮泡沫 isocyanurate equivalent 异氰酸酯当量 isocyanate index 异氰酸酯指数 isophorone diisocyanate(IDDI)(3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate) 异佛尔酮二异氰酸酯 liquid injection moulding 液体注射成型 liquid PU 液体聚氨酯 low free TDI prepolymer 低游离TDI预聚体 low-monol polypropylene glycol 低一元醇聚丙二醇 microcellular PUE 微孔聚氨酯弹性体 micro phase separate 微相分离 millable PU(MPU) 混炼型聚氨酯 modulus 300%(M300) 300%模量(300%定伸应力) morphological structure 形态学结构 1,5-naphalene diisocyanate(NDI) 1,5-萘二异氰酸酯 number average molacular weight 数均分子量 papa-phenylene diisocyanate(PPDI) 对苯二异氰酸酯 paracrystalline 次晶 percent free NCO NCO,%或NCO(%) percent NCOin prepolymer 预聚物中NCO基百分含量 percentage free NCO 游离NCO基百分含量 perment set 永久变形 phenyl mercury acetate 醋酸苯汞 phenyl mercury propionate 丙酸苯汞 polybutadiene glycol 聚丁二烯二醇,即端羟基聚丁二烯 polybutylene adipate(glycol) 聚己二酸丁二醇 酯(二醇 ) polybutylene glycol(PBG) 聚丁二醇 ploycaprolactone(glycol) 聚己内酯(二醇 ) polyester(diol) 聚酯(二醇) ployether 聚醚 ployether PU 聚醚型聚氨酯 polyethylene propylene adipate (Glycol) 聚己二酸乙二(醇 )丙二(醇 )酯(二醇) polyisocyanurate 聚异氰 脲酸酯 polymeric glycol 聚合二醇、低聚(物)二醇、大分子二醇 ployol 多元醇 polytetramethylene glycol(PTMG) 聚四亚甲基二醇 polyoxytetramethylene glycol(POTMG) 聚氧四亚甲基二醇 polytetrahydrofuran(PTHF) 聚四氢呋喃 polytetramethylene ether Glycol(PTMEG) 聚四亚甲基醚二醇 polyphenylmethane polyisocyanate(PAPI) 多苯基多亚甲基多异氰 酸酯 polypropylene glycol 聚丙二醇 polypropylene oxide glycol 聚氧化丙烯二醇 polyurethane(PU) 聚氨基甲酸酯,简称聚氨酯 post vure 后硫化 pot life 釜中寿命 prepolymer 预聚物,预聚体 PU adhesive 聚氨酯粘合剂 PU coating 聚氨酯涂料 PU elastomer 聚氨酯弹性体 PU fiber 聚氨酯纤维 PU foam 聚氨酯泡沫 PU ionomers 离子型聚氨酯,聚氨酯离聚体 PU plastic 聚氨酯塑料 PU rubber 聚氨酯橡胶 o-xylylene Diisocyanate(XDI) 对苯二亚甲基二异氰酸酯 quasi-prepolymer 半预聚体,半预聚物 reaction injection moulding(RIM) 反应注射模塑或反应注射成型 rigid block 硬(嵌)段 rigid PU foam 硬质聚氨酯泡沫,聚氨酯硬泡 rigid Segment 硬链段 rise time 起发时间 rotary injection reaction 旋转注射反应 injection molding 注射成型 rotary table 旋转平台 rotational casting 回转浇注 segmented PU 嵌段聚氨酯 semi-flexible(or semirigid)foam 半硬泡 set time 固化时间 soft segment(or flexible segment) 软链段,软段 spray coating 喷涂 stannous octoate 辛酸亚锡 tack-free time 不粘手时间 tensile strength 拉伸强度 tensioning screen 张力筛 rensioning screen with square 方孔张力筛 thermoplastic PU(TPU) 热塑性聚氨酯 3,3-tolidine-4,4-diisocyanate(TODI)(3,3-dimethyldiphenyl-4,4-diisocyanate) 3,3-二甲基联苯-4,4-二异氰酸酯 toluene diisocyanate 甲苯二异氰酸酯 triethylene diamine 三亚乙基二胺 trimethylolpropane monoallylether 三羟甲基丙烷单烯丙基醚 tripropamol amine 三异丙醇胺 two-component low pressure dispensing machine 双组分低压浇注机 two-component spraying machine 双组分喷涂机 urea 脲 urethane 氨基甲酸酯,简称氨酯 urethane bond 氨基甲酸酯键 urethane link 氨基甲酸酯基,简称氨酯基 urethane group 氨基甲酸酯基 urethane-urea 氨酯-脲 uretidione ring 脲二酮环 uretonimine 脲酮亚胺 water-blown PU 水发泡聚氨酯 water dispersed PU 水系聚氨酯 weight average molacular weigth 重均分子量

  • 日本聚氨酯进口商,日本聚氨酯厂家

    聚氨酯材料是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。  [url=http://www.akaojapan.com/][b][color=#3366ff]聚氨酯[/color][/b][/url]的质量直接影响着产品的质量,这种聚氨酯有机高分子材料大多用于工业上,18个行业全面的数据,有比较多的,聚氨酯可以用来替代橡胶等作为原料生产。 我国与日本都是制造聚氨酯的大国,各自有着不同的生产技术,常规的聚氨酯是不能抗高温条件,或者不能防水的,抗高温与防水是两种性能。如果同时能够拥有抗高温与防水性能的是较先进的。而我国有多少是做日本聚氨酯进口商、日本聚氨酯厂家的?

  • 学位论文:聚氨酯海绵基体低磷化学镀镍工艺及机理研究

    是湖南大学的硕士学位论文,从万方下载的,页面是散的,没有合并成一个文件。【 摘 要 】 该文采用聚氨酯海绵为基体材料,以次磷酸钠为还原剂,在碱性化学镀镍溶液中对低磷化学镀镍磷合金工艺进行了详细的研究.同时,该文还采取线性电位扫描研究方法,对化学镀镍沉积过程中磷析出的可能机理进行了初步的探讨.在制备泡沫镍材料的过程中,首先要求在聚氨酯海绵基体上低磷化学镀镍制备导电层.该文针对聚氨酯海绵基体的特殊性,研究并确定了合适的前处理工艺和镀层成分镍和磷分析的分光光度法.降低化学镀镍镀层磷含量的主要方法是选择合适的络合剂.对于以聚氨酯海绵为基体的化学镀镍,研究认为,三乙醇胺是较好的选择.该研究采用正交试验方法,筛选并确定了镀层磷含量为1.5﹪的最佳低磷化学镀镍配方,并研究了硫酸镍浓度、次磷酸钠浓度、三乙醇胺浓度和温度对镀层磷含量的影响.[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=34322]聚氨酯海绵基体低磷化学镀镍工艺及机理研究[/url]

  • 【求助】蛋白质聚合体中单体间化学键的种类鉴定

    多方求助无果,希望有高人指点。急急我们实验室在做重组人复合α干扰素(cIFN)的聚合与降解研究。cIFN单体中有两条分子内二硫键,它们在巯基乙醇作用下可以被还原打开,并且在空气中会形成分子间二硫键,进而引起cIFN聚合。再向这些聚合体中添加过量巯基乙醇后绝大多数的聚合体都被离解成单体,但是通过还原SDS-PAGE仍可以看到有微量的二聚体。理论上还原条件下二硫键是不存在的,所以我们推测这个二聚体应该是其他化学键引起的。我想知道的是:1、蛋白质除了二硫键是否还有其他的化学键可以引起蛋白质共价聚合体。2、用什么方法可以鉴定蛋白质聚合体中单体间的化学键?[em0812][em0812][em0811][em0811][em0811]

  • 【转帖】乙烯基单体改性水性聚氨酯的研究

    乙烯基单体改性水性聚氨酯的研究关键字:乙烯,单体,聚氨酯,研究 0引言 聚氨酯具有突出的力学性能,但水性聚氨酯的耐水性、耐化学品性等性能有待提高,而乙烯基树脂具有较好的耐水性、耐化学品性等,因此,聚氨酯和乙烯基树脂两者的有机结合,可使材料的力学性能有显著提高。本文采用种子聚合的方法,用甲基丙烯酸甲酯和苯乙烯对聚氨酯进行共混接枝改性,并用红外光谱分析了聚氨酯及改性聚氨酯中的微相分离和氢键,揭示结构与性能的关系。 1实验部分 1.1原料 甲苯二异氰酸酯(TDI):上海化学试剂厂 聚醚多元醇(PPG):上海高桥石化三厂 二羟甲基丙酸(DMPA):国产 三乙胺(TEA):广州化学试剂厂 乙二胺(EDA):广州化学试剂厂 苯乙烯(St):广州化学试剂厂 N-甲基-2-吡咯烷酮(NMP):Nacalal.TesqueInc 甲基丙烯酸甲酯(MMA):广州化学试剂厂。 1.2水溶性聚氨酯树脂(PUR)分散体的合成 将聚醚多元醇装入配有温度计、搅拌器的250mL三口烧瓶中,在120℃,660Pa真空下脱气脱水2h。通入氮气并加入计量好的甲苯二异氰酸酯于65℃左右反应1.5h左右,用正丁胺滴定法判断反应终点。加入溶有适量DMPA的NMP反应1.5h左右。降温至40℃,加入TEA和适量NMP溶剂,反应40min。降温并向体系中加入去离子水,然后加入TEA扩链。制得呈微蓝光的水乳液。 1.3甲基丙烯酸甲酯(MMA)改性 取一定量的PUR分散体、MMA和溶有引发剂的水溶液,加入三口烧瓶中,升温到65℃,反应2.5h,然后补加一定量的引发剂水溶液并升温至75℃,反应0.5h。 1.4苯乙烯(St)改性 过程同1.3甲基丙烯酸甲酯改性。 1.5性能测试 1.5.1分散体黏度测试 用NDJ-79型旋转式黏度计,测得各分散体在(25±1)℃下的黏度。 1.5.2拉伸强度测试 将制备好的聚氨酯乳液胶膜用80×4型的裁剪刀裁好,放在真空干燥器中真空干燥24h,然后在XLL-100A型拉力试验机上测定其拉伸强度及延伸率。延伸率的计算公式如下: E=(L2-L1)/L1×100% 式中:E——延伸率/%,L1——试样的原长,L2——试样断裂时的拉伸长度,拉伸速度为室温下300mm/min。 1.5.3粘接强度的测定试片采用PVC薄片,尺寸为100mm×25mm,粘合部分为12.5mm×25mm,表面先用砂纸打磨,再用工业丙酮处理表面污物,粘合的试片在接触压力下于45℃热烘48h,然后在室温下真空干燥24h,用XLL-100A型拉力试验机测定T型剥离强度,室温下拉伸速率为100mm/min。1.5.4吸水率的测定 把样品膜在真空下干燥24h,室温测定样品膜的质量,然后把样品膜浸泡于室温下的去离子水中,24h后再称其质量,两者的质量差即为吸水率(Ω)。其计算公式如下: Ω=(m2-m1)/m1×100% 式中:Ω——样品膜的吸水率,m1——样品膜的原来质量,m2——样品膜浸泡后的质量。 1.5.5FTIR实验 实验装置为PERKIN-ELMER-1700红外光谱仪,扫描方式,噪音过滤。红外样品的制备是将样品制成薄膜,在60℃下真空除水。实验数据由仪器上的微机处理。 2结果与讨论 2.1甲基丙烯酸甲酯共混接枝改性的影响MMA改性水性分散体的配方及性能见表1。 表1 MMA改性水性PU分散体的配方及性能 由表1可见,随着MMA用量的增加,分散体的黏度呈现下降趋势。根据内乳化聚合机理分析:MMA含量的增加能更有效地抑制离子化作用,这一作用使得一些键卷曲,分散粒子膨胀,分散颗粒单位面积的离子数目减少,使体系的黏度下降。 由表1还可看出,在固含量基本不变的情况下,用MMA改性水性PU能较大程度地降低体系的黏度。这意味着可以通过用MMA改性的方法来提高水性PU的固含量,同时保证体系稳定。MMA改性PU对膜的机械性能影响见表2。 表2 MMA改性PU对膜的机械性能的影响注:-因脆性太大,无法成膜。 1—拉伸强度 2—延伸率图1MMA/PU的比值与膜的拉伸强度和延伸率的关系 图2MMA/PU的比值与T型剥离强度和吸水率的关系 1—T型剥离强度 2—吸水率 图1和图2表明,由于PMMA本身有较强的粘附性能,与水的亲合能力比PU材料低,硬度比PU材料大,用MMA对PU进行改性处理后,膜的拉伸强度、T型剥离强度以及吸水率都得到明显的改善。制品膜的延伸率随着MMA的用量增加而降低。2.2苯乙烯共混接枝改性的影响 St改性水性PU分散体的配方及性能见表3。 表3 St改性水性PU分散体的配方及性能注:St/PU为固含量比 表3显示:用St对PU改性对体系黏度的影响与用MMA改性PU的影响相同。这也证明了应用内乳化机理解释该现象的合理性。 值得注意的是,用MMA和St分别对PU分散体改性,均在乙烯基单体/PU的比值为0.5的时候,观察到分散体的黏度出现一个较大的值,这可能是由于乙烯基单体与PU水分散体在种子聚合的条件下,提高了粒子的粒径和分散性。因为粒子表面存在着—COOH和三乙胺中和后形成的盐基离子对存在,并且由于总表面积增大,使原来包埋在分散体颗粒内部的盐基分布到分散体颗粒的表面,导致分散体颗粒和水的缔合作用增强,使自由水减少,从而使黏度升高。当乙烯基单体用量多到一定程度时,分散体颗粒粒子表面的盐基离子对数量相对单位表面积减少较多,而且乙烯基单体的极性相对PU较低,其含量的增加会使分散体粒子与水的缔合作用减弱,同时由于粒径增大,黏度下降。 1—拉伸强度 2—延伸率图3 St/PU的比值与拉伸强度和延伸率的关系 1—T型剥离强度 2—吸水率图4St/PU的比值与膜的T型剥离强度和吸水率的关系 从图3和图4可见,用St对PU改性和用MMA对PU改性的影响大致相同,不同的是用St对PU改性在St/PU为0.6和0.8之间时,拉伸强度和T型剥离强度都出现一个最大值,然后减小。这是由于当St用量较小时,接枝-共混的共聚组成在同步互穿网络中起内增塑剂的作用,固化收缩诱发产生的内应力能较低[6],使强度提高 随着用量的增大,根据Gnaffith理论,如St、MMA一类的刚性分散相在结构上存在缺陷,而且分布不均匀,在受到应力时,起应力集中剂的作用,产生大量的小裂纹及剪切带,使强度降低。然而在用MMA改性时未出现这种现象,可能的原因是MMA中的羰基的存在使它与PU之间的界面相容性好,降低了应力集中作用。2.3红外光谱分析 对MMA改性、St改性和未改性的样品进行FTIR分析,谱图如图5、6、7所示。 图5 未改性膜的红外光谱 图6 MMA改性膜的红外光谱 图7 St改性膜的红外光谱 本文主要研究3个特征谱带,即VNH、VCO、VO吸收带,VNH的吸收峰在3460cm-1处,氢键化的VNH-B约在3310cm-1左右而且为反式结构,VCO的吸收峰在1660~1780cm-1处,氢键化约在1724cm-1而且为无序区的氢键化 1000~1110cm-1处吸收峰属于C—O—C的伸缩振动(VO),氢键化约在1050cm-1处,2856~2960cm-1处的峰归属于VCH(对称和反对称)。 从以上3个谱图上可以看出,在3300cm-1左右处有强的吸收峰,而在3460cm-1处几乎看不到吸收峰存在,这说明脲基上的NH已几乎完全氢键化。St改性的谱图在3306cm-1处的氢键化吸收峰相对于PU来说向波数低的方向移动,在图6的红外图谱中也看到了同样的现象,这说明在改性材料中—NH—形成的氢键作用力比PU更大。其原因可能是:St和MMA的分子极性与脲基的极性相去甚远,相对于脲键而言,与聚醚软段的极性更接近,并且由于St和MMA在聚氨酯软段上接枝,“埋没”大量的醚氧键和软段微区中的部分羰基,St和MMA的加入将导致—NH—与—O—之间形成的氢键数目相对减少,因为—NH—与—O—之间形成的氢键要弱于—NH—与—CO—之间形成的氢键,所以导致吸收峰向低波数移动。 另外还可以看到,在1724cm-1左右处有一明显的吸收峰,说明硬段相溶有一定数量的软段,这表明乙烯基聚合物与PU中的硬段链有一定的相容性,使得PU硬段有序程度降低。这种有序程度的降低,反映了PU与乙烯基聚合物之间形成了化学键能,提高了它们之间的相容性与共混程度。3结语 采用种子聚合的方法,乙烯基单体改性水性聚氨酯能提高水性PU的力学性能、降低吸水率。改性后的水性聚氨酯材料中均存在着氢键行为,其中甲基丙烯酸甲酯的氢键作用强,有较好的相容性,苯乙烯的氢键作用小,相分离程度最大。 涂料附着力不理想,本文就此问题进行了研究,分析了影响附着力的因素,并提出了相应的解决方法。 目前,关于树脂在金属表面附着的原理很多。如机械咬合粘接理论、静电理论、吸附理论、扩散理论、酸碱使用理论和化学键理论等[1]。总的说,附着力是机械连接、静电吸引和化学键合共同作用的结果。附着力强度是润湿程度、两表面的相对表面力学能和润湿动力学的函数,在附着力的定义上,附着力应该是指涂装金属暴露在高湿环境或溶液中的附着力,俗称湿附着力,即指将涂装金属置于介质环境后,表现出来的附着力,目前通用的一些测定涂层附着力的方法,大多测试的是干涂层体系的数值,本实验所描述的附着力数值是用划圈法所测定的干涂层数值。

  • 我做聚氨酯弹性体,求购设备

    我做聚氨酯弹性体,求购检测NCO的设备,了解到用近红外光谱仪可以检测NCO含量,论坛里有经销类似的设备的吗?联系我呀!!!! qq826884981

  • 【求助】合成聚氨酯三聚体用GPC定量分析

    各位大虾,我最近在合成聚氨酯三聚体,由于实验室有GPC,想用GPC对合成的聚氨酯三聚体含量进行分析,但最近得到的结果不理想,三聚体峰和单体峰重叠比较明显,只好采用分峰软件分峰,个人认为通过分峰拟合得到的三聚体含量并不很准确,请问有什么办法解决这个问题,不知道改变GPC的一些设置参数有没有效果。

  • 【原创大赛】聚醚型聚氨酯分析新进展

    【原创大赛】聚醚型聚氨酯分析新进展

    使用聚醚多元醇合成的聚氨酯一般被称作聚醚型聚氨酯,在聚醚型聚氨酯的分析过程中,最常用的仪器有NMR、Py-GCMS、MS、MALDI-TOF等,单体的种类一般通过Py-GCMS与MS进行定性,通过NMR进行定量。 聚醚多元醇的性能与起始剂密切相关,也与分子中氧化烯烃链段长度及排列结构有关。聚醚多元醇的官能度取决于合成时所选择起始剂的活泼氢数目。不同聚醚型聚氨酯产品中使用的聚醚多元醇的结构有所不同,在设计产品的时候往往选用多种聚醚复配使用。对复杂混合聚醚进行结构解析难度不小,而对于聚氨酯预聚体与树脂中的聚醚多元醇的解析则难度更大。 我们选取了几十款市面上常用的聚醚多元醇,对各种聚醚多元醇进行了原样的表征;然后将其与不同的异氰酸酯反应合成了不同的预聚体,对不同的预聚体进行了表征;最后针对预聚体进行了扩链合成了树脂,再针对树脂进行了表征,提高了微谱分析整体对该类产品定性定量的准确度。一、HNMR 不同单体(环氧丙烷、环氧乙烷、四氢呋喃)合成的聚醚多元醇在NMR上的主体出峰明显不同,如下图,为三种常用的聚醚多元醇(204、210、220)的NMR出峰,其中三种聚醚的起始剂均为1,2-丙二醇,单体均为环氧丙烷,分子量分别为400、1000、2000。可以看出在NMR图谱上面3.7ppm附近的出峰面积比例有明显的变化,该位置体现了聚醚多元醇的端位的出峰,根据该位置的出峰可以区别聚醚的结构。[align=center][img=,690,352]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120944210335_7386_2879355_3.jpg!w690x352.jpg[/img][/align] 当我们将以上聚醚多元醇与MDI进行预聚反应生成端-NCO聚氨酯时,聚醚多元醇的端位羟基与NCO发生了反应,端位化学位移到了5.0ppm左右。而当我们将MDI换成HDI,情况则又有变化,该数据可以用于预聚体的结构解析。我们也用小分子二元醇对预聚体进行扩链,对扩链之后的树脂的NMR图谱也进行了深入的研究。一、MALDI-TOF 由于含量低,且单体出峰容易遮挡,聚醚的起始剂解析难度大,MALDI-TOF是解析的主要手段。 在MALDI-TOF图谱上,聚醚的特征出峰一般是间隔58(环氧丙烷)、44(环氧乙烷)的多组特征峰,通过计算解析可以得到聚醚的起始剂的分子量。图2.1、2.2分别为聚醚210与聚醚220的MALDI-TOF图谱,解析可知起始剂的分子量均为76(或134),判断可能为丙二醇或三羟甲基丙烷等,结合羟值等参数可知为丙二醇,图2.3为聚醚210与聚醚220与MDI反应生成预聚体的MALDI-TOF图谱,可明显找到MDI-210-MDI与MDI-220-MDI的出峰,进一步通过NMR等图谱可以解析出两种聚醚的比例。我们对市面上大部分常用聚醚均进行了如上表征,可以将聚醚起始剂、单体种类比例、分子量、封端等信息解析清楚。[align=center][img=,690,223]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120944522185_2255_2879355_3.jpg!w690x223.jpg[/img][/align][align=center]图2.1[/align][align=center][img=,690,304]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120945309075_7358_2879355_3.jpg!w690x304.jpg[/img][/align][align=center]图2.2[/align][align=center][img=,690,242]http://ng1.17img.cn/bbsfiles/images/2018/07/201807120946094565_5977_2879355_3.jpg!w690x242.jpg[/img][/align][align=center]图2.3[/align] 针对于更复杂的情况,如多种聚醚预聚体,或聚醚型聚氨酯树脂等,我们一般采取水解的方法,在经过多种后续处理后将聚氨酯中的聚醚还原,然后进行多种测试、解析。 除此之外,我们还对以上结构的物质进行了CNMR、Py-GCMS等多种测试并研究,这对我们在聚醚型聚氨酯产品分析中起到了很大的帮助。[list][*]声明:本文资料为“上海微谱化工技术服务有限公司”原创,未经允许不得私自转载。否则我司将保留追究其法律责任的权利。[/list]

  • 【转帖】聚氨酯泡沫塑料的阻燃

    聚氨酯泡沫塑料的阻燃聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,未经阻燃处理的聚氨酯是可燃物,遇火会燃烧并分解,产生大量有毒烟雾,特别是聚氨酯软泡开孔率较高,可燃成分较多,燃烧是由于较高的空气流通性供给氧气,且不易自熄,给灭火带来困难。1. 阻燃原理一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。在聚氨酯泡沫塑料中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。含卤素阻燃剂主要在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,茂密体中溴(Br)质量分数应达12% -14%,或氯(cl)质量分数达18% ~ 20%。当磷- 卤联用时,由于存在一定的协同效应,故0. 5%P +(4% - 5%)Br 或1%P +(8% - 12%)CI 即可使聚氨酯泡沫具有自熄性。典型的磷- 氮阻燃体系可有聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气:在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。2. 添加阻燃剂制备阻燃泡沫塑料人们发现,含磷、氮、卤素、锑、铝,硼等元素的塑料制品具有较好的阻燃性能,一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。2.1 添加液态有机阻燃剂在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯。如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3—二氯丙基)磷酸酯,可使硬泡的氧指数达26:添加15%该阻燃剂可使软泡的阻燃性能达到UL94HF - 1 或ASTMDl692阻燃要求。卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚胺酯软泡的阻燃。典型的产品有:四(2 - 氯乙基)二亚乙基醚二磷酸酯,含磷12%,氯27%;四(2 - 氯乙基)亚乙基二磷酸酯,含磷13%、氯30. 5%。其他产品如3 - 亚丙基二磷酸酯、四(1,3 - 二氯- 2 - 丙基)—亚乙基二磷酸酯、2 - 亚乙基二磷酸酯,在聚氨酯泡沫特别是在软泡中具有良好的阻燃效果。相对于100 份聚醚多元醇,在配方中加入12 份上述阻燃剂中的一种,可使软泡的氧指数大于23,软泡的燃烧速率降低到原来的50%以下,可使软泡自熄;添加量为20%时,水平燃烧速率下降64%。阻燃剂用量15 ~ 10 份时,氧指数可达25。甲基磷酸二甲酯是一种不含卤素的高磷液态阻燃剂,磷元素的质量分数高达25%,因此用量小,软泡种添加5% - 10%的DMMP,可达到离火自熄的效果。在硬泡加入5%的DMMP,相当于加入14%TCEP 火加入18%磷酸三(2,3 - 氯丙基)酯所达到氧指数24. 5 的相似阻燃效果。加阻燃剂延缓了泡沫的热分解,使得起始分解温度提高。在一定程度内,泡沫中阻燃剂含量越高,则阻燃性越高。阻燃剂对制品的某些物性有不良影响,所以一般应在保证泡沫物性的前提下,尽可能少地使用阻燃剂而达到阻燃效果。液态添加型阻燃剂的加入对发泡工艺的影响不大,但由于阻燃剂的增塑作用,将使得泡沫的硬度降低;并且阻燃剂添加量多时会明显延缓发泡时间。卤代磷酸酯类阻燃剂虽然与多元醇等原料有良好的混溶型,常温下为液态,但泡沫燃烧时,阻燃剂也分解,产生大量烟雾和腐蚀刺激性气体,因此国内外近年来关注无卤阻燃剂,包括含磷、氮元素的阻燃剂及无机阻燃剂。2.2 添加固态阻燃剂固态阻燃剂添加到液态原料中容易沉淀,一般在发泡前或发泡时加入。在组合聚醚中加入固态阻燃剂后一般需不停搅拌,以使料液均匀。固态阻燃剂会使物料粘度增加,降低了泡沫物料的流动性,添加无机阻燃填料对泡沫性能有一定的负面影响。颗粒越细越有利于阻燃性能的发挥,并且减轻对泡沫物性的不利影响。三聚氰胺是一种用于模塑聚氨酯泡沫的固体阻燃剂,主要通过分解吸热发挥阻燃效果。三聚氰胺研成微细颗粒,加入到聚醚多元醇中,进行发泡,它多用于软泡的阻燃。2.3 固态和液态阻燃剂复合使用固态阻燃剂使物料粘度加大,而液态阻燃剂降低料液粘度,它们可结合使用,不仅具有协同效应,而且可调节反应物料的粘度,得到高阻燃的聚氨酯泡沫塑料。天津消防科学研究所采用高用量固态阻燃剂与液态阻燃剂相结合的方法,研制出难燃、低烟硬质聚氨酯泡沫塑料,泡沫的阻燃性能高,氧指数可达30 以上,甚至50,可以通过建材GB8624 难燃B1 级试验;烟密度小,发烟速度低,比一般阻燃产品降低了数倍;耐火隔热性能优良。由于采用了大量粉末阻燃填料,不适合于喷涂、连续化生产,但可机械混合灌注成型。2.4 阻燃剂复合使用时的协同作用不同的阻燃元素,不同的阻燃剂复配使用,会产生良好的协同效应。如磷化物与含氮化物等一起使用,有显著的协效作用。磷、卤阻燃剂共同使用时,阻燃效果更佳。固体阻燃剂三氧化锑粉末与卤化物配合使用才能发挥较好的阻燃效果。有研究表明,采用粉碎并经表面处理的三聚氰胺分散于聚醚多元醇中,并添加含溴、氯和磷的复合阻燃剂T201,泡沫物性没受阻燃剂影响,可制得泡沫氧指数达26 的阻燃聚氨酯软泡,达到汽车座椅所要求得阻燃性能。但不是所有的不同类型的阻燃剂都产生协同效应。据报道,在通常情况下,含卤代磷酸酯不与锑化合物产生协同阻燃效应。其原因可能是当被阻燃的材料受热时,所含得卤代磷酸酯与锑化合物作用生成不挥发的磷酸锑,从而阻碍锑化合物进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发挥阻燃作用所致。3. 结束语在对聚氨酯泡沫塑料进行阻燃时,不仅需尽可能减少阻燃处理对发泡工艺和泡沫性能的不利影响,还必须注意环保,采用高效、低卤或无卤阻燃剂。聚氨酯泡沫塑料用于许多领域,作为一种日常生活中接触到的材料,国内外对聚氨酯泡沫塑料的阻燃越来越重视,在许多应用领域都有严格的阻燃要求。对阻燃问题不重视,就会给使用这种泡沫塑料的场所带来了火灾隐患。

  • 聚氨酯进口商

    聚氨酯材料是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。  [url=http://www.akaojapan.com/][b][color=#3366ff]聚氨酯[/color][/b][/url]的质量直接影响着产品的质量,这种聚氨酯有机高分子材料大多用于工业上,18个行业全面的数据,有比较多的,聚氨酯可以用来替代橡胶等作为原料生产。  能够抗高温与耐水性,热稳定性的聚氨酯有没有?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制