当前位置: 仪器信息网 > 行业主题 > >

乙酰乳糖胺

仪器信息网乙酰乳糖胺专题为您提供2024年最新乙酰乳糖胺价格报价、厂家品牌的相关信息, 包括乙酰乳糖胺参数、型号等,不管是国产,还是进口品牌的乙酰乳糖胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酰乳糖胺相关的耗材配件、试剂标物,还有乙酰乳糖胺相关的最新资讯、资料,以及乙酰乳糖胺相关的解决方案。

乙酰乳糖胺相关的资讯

  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf
  • 《乳制品中乳糖的测定-核磁共振波谱法》标准征求意见中
    近日,全国特殊食品标准化技术委员会发布了关于征求《乳制品中乳糖的测定-核磁共振波谱法》行业标准(征求意见稿)意见的通知,如下图所示:附件1 行业标准(征求意见稿)乳制品中乳糖的测定 核磁共振波谱法Determination of stachyose in food by nuclear magnetic resonance spectroscopy前  言本文件按照 GB/T 1.1-2020《标准化工作导则 第1 部分标准化文件的结构和起草规则》的规定起草。本文件由全国特殊食品标准化技术委员会提出并归口。本文件起草单位:。本文件主要起草人: 。乳制品中乳糖的测定 核磁共振波谱法1  范围本文件描述了乳制品中乳糖的测定方法——核磁共振波谱法。 本文件适用于采用核磁共振波谱法测定乳制品中的乳糖,包括牛奶、发酵乳、奶片、奶酪、奶粉中乳糖的测定。2  规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T 6682—2008 分析实验室用水规格和试验方法JY/T 0578—2020 超导脉冲傅里叶变换核磁共振波谱测试方法通则JJF 1448—2014 超导脉冲傅里叶变换核磁共振谱仪校准规范3  术语和定义本文件没有需要界定的术语和定义。4  原理在充分弛豫条件下,一维核磁共振波谱谱峰的积分面积与样品中所对应的自旋核的数目成正比。同时基于核磁共振信号强度(峰面积)互易原理,即给定线圈中核磁共振信号强度与90°脉冲宽度成反比,分别测定外标参考物质和待测样品的一维核磁共振氢谱(1H NMR)及90°脉冲宽度,采用外标法测定样品中乳糖的含量。5  试剂和材料5.1  一般要求除非另有说明,本方法所用试剂均为分析纯,水为GB/T 6682—2008规定的二级或二级以上水。5.2  试剂5.2.1  重水(D2O):纯度≥99.8%。5.2.2  3-(三甲基硅烷基)氘代丙酸钠[(CH3)3SiCD2CD2CO2Na,TSP-d4]。2 mol/L盐酸(HCl)。2 mol/L氢氧化钠(NaOH)。叠氮化钠(NaN3)。5.3  试剂配制5.3.1  TSP-d4溶液(10 g/L):称取0.5 g(精确至10 mg)TSP-d4(5.2.4)至50 mL容量瓶,加入5 mg叠氮化钠(5.2.5),用重水(5.2.1)定容,混匀。5.4  标准品5.4.1  柠檬酸标准品(C₆H₈O₇,CAS号:77-92-9):纯度≥99%。或国家有证标准物质。5.4.2  乳糖标准品(C12H22O11,CAS号:63-42-3):纯度≥98%。或经国家认证并授予标准物质证书的标准物质。5.5  标准溶液配制乳糖标准贮备液(51.2 g/L):称取512 mg(精确至1 mg)乳糖标准品(5.4.2)至10 mL容量瓶,用蒸馏水定容,混匀。现配现用。外标参考物柠檬酸溶液配制(2 g/L):称取200 mg(精确至1 mg)柠檬酸(5.4.1)至100 mL容量瓶,用蒸馏水定容,混匀。0℃~4℃密封保存,保值期1个月。乳糖系列标准工作液:准确量取上述乳糖标准储备液(5.5.1)5 mL于10 mL容量瓶中,用蒸馏水定容,摇匀后得到25.6 g/L的乳糖标准溶液。使用以上相同方法,分别得到12.8 g/L、6.4 g/L、3.2 g/L、1.6 g/L、0.8 g/L、0.4 g/L、0.2 g/L、0.1 g/L、0.05 g/L乳糖标准溶液。根据样品中乳糖含量适当调整乳糖标准工作液浓度范围及乳糖标准贮备液浓度。6  仪器设备 6.1  核磁共振波谱仪:氢(1H)共振频率不低于400 MHz;可控温,温度精度不低于±0.1 K。6.2  核磁共振样品管:外径5 mm,同心且均匀。6.3  分析天平:感量为0.1 mg和1 mg。6.4  旋涡震荡仪。6.5  pH计:精度为± 0.01。6.6  移液器:量程为10 μL~100 μL和100 μL~1 000 μL。6.7  水系微孔过滤膜:孔径0.45 μm。6.8  离心机:离心速度≥ 8 000 r/min。7  试验步骤8.%2.%3  上机样品制备牛奶和发酵乳准确称取10 g(精确至1mg)样品于50 mL的容量瓶中,再加入35 mL蒸馏水后涡旋震荡30分钟溶解,用稀盐酸调pH值为4.4至4.5后,再加蒸馏水至刻度。摇匀后取5mL,转速为8 000 r/min离心10 分钟,弃去上层脂肪和蛋白相,取出中间澄清的部分,用滤膜过滤,准确量取900 μL滤液,再加入100 μL浓度为10 g/L的TSP重水溶液(5.3.1),取600 µL于核磁管中待测。奶粉准确称取1 g样品(精确至1 mg)于50 mL容量瓶中,以下部分同纯奶和发酵乳(7.1.2)。奶片取适量样品,压碎研磨成粉末。以下部分同奶粉样品的配制(7.1.2)。奶酪取适量样品,压碎或用粉碎机粉碎。以下部分同奶粉样品的配制(7.1.3)标准样取900 µL样品溶液(5.5.2,5.5.3),100 μL浓度为10 g/L的TSP重水溶液(5.3.1),旋涡震荡至少1min.充分混匀,取600 µL于核磁管中待测。7.1  上机测定参考条件7.1.1  核磁共振样品管不旋转。7.1.2  检测温度:(300.0± 0.1)K。7.1.3  空扫次数:4次。7.1.4  扫描次数:64次。7.1.5  谱宽:8 000 Hz。7.1.6  采样点数:65 536。7.1.7  接收增益:16。7.1.8  弛豫延迟时间:≥4 s。7.1.9  水峰压制脉冲序列:预饱和加相位循环。7.2  上机测定7.2.1  按照JY/T 0578—2020的规定对探头温度进行校正;按照JJF 1448—2014的规定对1H谱灵敏度、分辨力、线性、1H谱定量重复性进行校准。7.2.2  将装有上机样品(7.1.3)的核磁共振样品管置于核磁共振仪检测腔内,设置样品管不旋转。7.2.3  设置待测样品温度为300.0 K,测样前需要等待样品温度稳定。7.2.4  新建氢谱标准实验文件。7.2.5  锁场与调谐。7.2.6  匀场。7.2.7  测定样品的90°脉冲宽度,并记录结果。7.2.8  调用有相位循环的预饱和水峰压制脉冲序列。7.2.9  在7.2条件下设定参数,根据记录结果(7.3.7)设定90°脉冲宽度,根据水峰压制效果优化水峰压制位置、压制功率等,保持各样品接收器增益值一致。7.2.10  采集并保存数据。9  数据处理9.1  数据预处理对原始数据进行傅立叶变换、相位校正和基线校正,并以TSP-d4中硅烷甲基的化学位移作为零点进行定标。9.2  定性分析对乳糖标准品和外标参考物柠檬酸的1H NMR谱(参见附录A)信号峰进行归属,得到乳糖和柠檬酸的定量相关参数(参见附录A),包括定量峰化学位移、耦合常数、氢原子数量及积分区域。应注意定量峰积分区域未受到干扰。9.3  定量峰积分根据定性分析(8.2)得到的积分区域进行积分,分别得到外标柠檬酸和乳糖定量峰积分面积。 10  结果计算10.1  校正因子(CF)的计算10.1.1  乳糖系列标准工作溶液上机样品质量浓度计算乳糖系列标准工作溶液(5.5.3)上机样品质量浓度按照公式(1)计算:… … … … … … (1)式中:CQ——外标柠檬酸溶液(5.5.2)上机样品质量浓度,单位为毫克每升(mg/L);MWQ——柠檬酸摩尔质量,单位为克每摩尔(g/mol);AS——上机样品中乳糖定量峰积分面积;AQ——外标柠檬酸溶液上机样品中柠檬酸定量峰积分面积;nHQ——外标柠檬酸溶液上机样品中柠檬酸积分区域对应的氢原子数量;nHS——上机样品中乳糖积分区域对应的氢原子数量;NSQ——外标柠檬酸溶液上机样品扫描次数;NSS——上机样品扫描次数;PS——上机样品1H 90°脉冲宽度;PQ——外标柠檬酸溶液上机样品1H 90°脉冲宽度;TS——上机样品检测温度,单位为开尔文(K);TQ——外标柠檬酸溶液上机样品检测温度,单位为开尔文(K);MWS——乳糖摩尔质量,单位为克每摩尔(g/mol)。10.1.2  回归方程绘制由公式(1)计算得到的乳糖系列标准工作溶液上机样品质量浓度(9.1.1)为横坐标,乳糖系列标准工作溶液(5.5.3)上机样品质量浓度为纵坐标,建立线性回归方程y=ɑx+β,校正因子(CF)为线性回归方程的斜率ɑ。10.2  结果计算样品中乳糖的含量按照公式(2)计算:… … … … … … … … … … … … … … … (2)式中:CS-S——样品中乳糖的含量,单位为克每千克(g/kg);CS——由公式(1)计算所得溶解并定容后的样品中乳糖含量,单位为毫克每升(mg/L);V——样品定容后的体积,单位为毫升(mL);ms——称取的样品质量,单位为克(g);CF——校正因子,线性回归方程的斜率ɑ。计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,小数点后保留一位有效数字。11  精密度在重复条件下获得的两次独立测定结果的绝对差值不超过算术平均值的10%。12  检出限及定量限12.1  固体样品奶片、奶酪及奶粉中的乳糖检出限为0.3 g/kg,定量限为1.1 g/kg。12.2  液体样品纯奶、发酵乳中乳糖检出限为0.03 mg/kg,定量限为0.1 mg/kg。附录A乳糖和柠檬酸1H NMR谱图及定量相关参数图A.1 标准品乳糖1H NMR谱图A.2 外标物柠檬酸1H NMR谱表A.1 定量相关参数化合物摩尔质量/(g/mol)δH(峰形,耦合常数)氢原子数量积分区域/Δδ检测温度/K乳糖342.34.45(d, J=7.8 Hz)14.359~4.503300.0柠檬酸192.143.01(d,J = 15.7 Hz)22.921~3.1432.84(d,J = 15.7 Hz)22.693~2.916编制说明.docx
  • 菲罗门 ACE色谱柱 乳糖的含量测定
    乳糖的含量测定方法:chp2015 二部色谱柱:ace excel nh2 5μm 150×4.6mm(货号:exl-1214-1546u) 流动相:乙腈-水(70:30)流速:1.0 ml/min 进样体积:10μl 柱温:35℃检测:ri@35℃样品:5 mg/ml,溶于流动相中 附:ace nh2 用于糖分析时,每次使用前的冲洗方案保存好的 ace nh2 柱,每次拿出来用于分析还原糖之前,应按下列步骤进行操作,以便在开始分析之前获得最佳的色谱柱性能。1. 乙腈/水(7:3),冲洗 20 倍柱体积;2. 乙腈/水(7:3),加 0.1% v/v 氨水溶液(氨水溶液浓度约 32%),冲洗 50 倍柱体积;3. 乙腈/水(7:3),冲洗 20 倍柱体积; ace nh2 柱长期保存条件:为了最大程度上延长色谱柱使用寿命,先用乙腈/水(1:1)冲洗 20 倍柱体积,再用100%异丙醇冲洗 20 倍柱体积,然后取下柱子塞紧柱堵头放置。
  • 上海通微为蒙牛提供乳糖检测设备
    2011年的金秋十月,上海通微分析技术有限公司蒸发光散射检测器在经历了5年多的发展之后,终于迎来了丰硕的成果。蒸发光散射检测器UM 3000已顺利通过蒙牛乳业集团验收,并将继续在其各地分公司采购UM 3000蒸发光散射检测器作为乳糖检测设备。 从最初的饮片厂,到现在的食品公司,制药企业和省级质监所,上海通微正在一步一个脚印的前行。上海通微UM 3000蒸发光散射检测器的各项性能指标均达到国际水平,尤其在信噪比方面我们更是处于国际领先水平。2011年,我们在UM 3000的基础上推出了新一代蒸发光散射检测器UM 5000,新机性能更高,体积也更小巧。 通微(美国)技术有限公司是微分析领域国际领先的仪器制造商,其加压毛细管电色谱,激光诱导荧光检测器是微分析领域中的佼佼者。上海通微分析技术有限公司作为其子公司,业务覆盖更多液相色谱领域,包括高效液相色谱仪,制备液相色谱仪,蒸发光散射检测器,加压毛细管电色谱和激光诱导荧光等。
  • 标准解读 | GB 5009.8-2023 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》
    近日,国家卫生健康委员会、国家市场监管总局联合发布了2023年第6号文件,关于85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009.8-2023《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》(以下称新标准)。新标准将替代GB 5009.8-2016 《食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定》和GB 5413.5-2010 《食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖、乳糖的测定》,并于2024年3月6日正式实施。那么,新标准与GB 5009.8-2016、GB 5413.5-2010比较,有哪些变化呢?增加方法数量新标准在GB 5009.8-2016高效液相法和酸水解-莱茵-埃农氏法的基础上,增加了离子色谱法和莱茵-埃农氏法,即新标准共有4种测定方法。扩大方法适用范围新标准第一法高效液相色谱法保留了饮料类,新增了糖果样品中5种糖的测定,且将GB 5009.8-2016中的谷物类、乳制品、果蔬制品、蜂蜜、糖浆等扩大至粮食及粮食制品、乳及乳制品、果蔬及果熟制品、甜味料范畴。新增的第二法离子色谱法则适用于食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定。离子色谱法利用糖类物质在碱性溶液总中呈离子状态的原理,在糖类检测中的应用越来越多。其中,离子色谱-脉冲安培法检测糖类具有灵敏度高、样品无需衍生处理等优点。仪器参考条件:新标准中第三法酸水解-莱茵-埃农氏法与GB 5009.8-2016中第二法适用范围一致,适用于食品中蔗糖的测定。新增的第四法莱茵-埃农氏法与GB 5413.5-2010 第二法适用范围一致,但是新标准仅保留了婴幼儿食品和乳品中乳糖的测定。试样经除去蛋白质后,在加热条件下,以次甲基蓝为指示剂,直接滴定已标定过的费林氏液,根据样液消耗的体积,计算乳糖含量。果糖、葡萄糖、麦芽糖和低聚半乳糖等会对乳糖的测定产生干扰。由此可见,新标准的适用范围更广。修改高效液相色谱法的标液储存时间和浓度新标准将混合标准储备液的保存时间由GB 5009.8-2016的4℃密封储存一个月延长至0℃~4℃密封条件下储存三个月。同时,新标准增加了更低浓度点的(0.200 mg/mL)混合标准工作液,且规定可根据待测液浓度适当调整混合标准工作液浓度。这条内容的修改,使得糖含量的测定更加灵活便捷。完善高效液相色谱法和酸水解-莱茵-埃农氏法试样制备和提取过程新标准取消了GB 5009.8-2016中关于固体、半固体和液体试样要取代表性样品200 g(mL)的要求,新增了对于冷冻饮品、巧克力、胶基糖果等难溶解试样的制备和提取条件,填补了GB 5009.8-2016中此类样品前处理过程的空缺。检出限、定量限修改GB 5009.8-2016高效液相色谱法仅对于检出限作出规定,新标准在此基础上,增加了定量限。因此,在测定低糖含量的样品时,应注意该要求。此外,GB 5413.5-2010和GB 5009.8-2016的滴定法规定了检出限、定量限,而新标准的滴定法删除了检出限和定量限的要求。修改滴定原理新标准第三法酸水解-莱茵-埃农氏法为食品中蔗糖的测定方法。该方法原理特别指出,棉子糖、水苏糖、低聚半乳糖、果聚糖、聚葡萄糖和抗性糊精等会对蔗糖的测定产生干扰。新标准第四法莱茵-埃农氏法为婴幼儿食品和乳品中乳糖的测定方法,该方法原理也特别指出,果糖、葡萄糖、麦芽糖、低聚半乳糖等会对乳糖的测定产生干扰。因此,在使用第三法和第四法进行测定时,要特别注意样品中是否含有上述种类的糖,注意方法适用性。点击获取更多食品新标准解读
  • 鞠熀先教授团队发展细胞表面聚糖原位检测新方法
    p  糖基化是普遍存在的翻译后修饰,蛋白质的糖基化模式决定了其结构、功能以及细胞识别和信号传导等过程,与细胞生理状态的动态响应、疾病的进程和状态密切相关。因此,对活细胞表面特定蛋白糖型的原位检测有助于加深对糖基化机制和蛋白功能的理解,也可为疾病特别是癌症的诊断和治疗提供靶标。/pp  南京大学生命分析化学国家重点实验室的鞠熀先教授研究组自2007年以来,针对这一挑战性课题,先后在国家自然科学基金和973项目资助下,通过设计两表面一分子竞争识别策略和聚糖电化学检测芯片,提出细胞表面糖基原位检测的奠基性工作(J. Am. Chem. Soc., 2008, 130, 7224 Angew. Chem. Int. Ed., 2009, 48, 6465等),曾获2013年教育部自然科学一等奖。同时,他们通过组装P-糖蛋白抗体功能化仿生界面,提出电极界面上细胞检测的新方法 并引入“化学选择性聚糖识别”,提出细胞表面多种聚糖的同时定量和聚糖密度的分析策略,该工作是2016年江苏省科学技术一等奖的主要内容。2015年以来,该研究组在细胞表面特定蛋白糖型的成像方法学研究方面取得重要的进展,发展了特定蛋白质上的糖基与多种糖型原位检测的系列方法(Chem. Sci., 2015, 6, 3769 Chem. Sci., 2016, 7, 569 Anal. Chem., 2016, 88, 2923 Angew. Chem. Int. Ed., 2016, 55, 5220)。近日,他们用核酸适配体(Apt)标记半乳糖氧化酶(GO),利用Apt识别细胞表面的特定蛋白质和GO的活性“开关”,构建了一种局域聚糖化学重构策略,实现了活细胞表面特定蛋白的糖型成像。相关工作发表在Angew. Chem. Int. Ed. 上。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/fc3bb757-60dd-4e71-aa95-f9b4658441cc.jpg" title="176385_201706191504311.jpg"//pp style="text-align: center "图1. 局域聚糖化学重构策略的原理示意图/pp  该局域聚糖化学重构工作的第一作者是2014级硕士研究生惠晶晶,丁霖副教授和鞠熀先教授为通讯作者。他们以MUC1黏蛋白为研究模型,首先利用Apt与MUC1的特异性识别将亚铁氰化钾抑制的GO定位至MUC1上。然后用铁氰化钾激活GO,催化氧化细胞表面MUC1的末端半乳糖/N-乙酰半乳糖胺(Gal/GalNAc)生成醛基,通过醛基-生物素酰肼的快速反应将FITC标记在目标Gal/GalNAc上,用化学反应活性作为信号报告系统实现了活细胞表面特定蛋白糖型的原位检测。与通常的糖代谢标记技术相比,局域聚糖化学重构策略操作简单,仅对目标蛋白上的聚糖进行标记,标记过程与细胞自身功能无关,避免了“代谢效率”的异质性问题,为不同细胞系特定蛋白上糖型表达的研究提供了重要的工具和方法模型。这是该课题组在细胞功能分子原位检测方法学研究领域的又一项重要进展。/p
  • 文献解读丨超临界流体色谱串联质谱法在普通白菜乙酰甲胺磷和甲胺磷对映体分离分析中的应用
    本文由农业农村部环境保护科研监测所课题组所作,通讯作者为耿岳博士,文章发表于Journal of Separation Science(J Sep Sci. 2022,1– 12, https://doi.org/10.1002/jssc.202200006)。 Part 01 研究背景 乙酰甲胺磷是一种广谱有机磷杀虫剂,在作物中可通过酰胺水解转化为毒性更大的代谢物甲胺磷。乙酰甲胺磷和甲胺磷均由一对对映体组成,虽然不同对映体的理化性质相同,但在活性、毒性和降解行为方面存在显著差异。因此,开发高效的乙酰甲胺磷及其代谢物甲胺磷对映体的分离和测定方法,并开展对映体选择性研究对乙酰甲胺磷及其代谢物的评估具有重要意义。目前手性分离主要采用手性色谱柱结合HPLC、GC、GC-MS/MS和LC-MS/MS进行,但对于部分手性农药存在分析时间长、分离度差等问题。 SFC-MS/MS因具有分析时间短、分离度高、有机溶剂消耗低等优点,已广泛应用于手性农药对映体的分析。本研究建立了一种绿色、灵敏、高效的SFC- MS/MS检测普通白菜中乙酰甲胺磷和甲胺磷对映体残留的方法。为了验证所建立的方法,在中国北方温室条件下,通过盆栽试验研究了乙酰甲胺磷及其代谢产物甲胺磷在普通白菜中的残留情况。此研究系利用SFC - MS/MS对蔬菜样品中乙酰甲胺磷和甲胺磷对映体的选择性进行报道,为手性杀虫剂乙酰甲胺磷的科学评价提供了基础资料。 Part 02 研究结果 1、对映体拆分方法的优化采用Nexera UC SFC-MS/MS系统,经过手性固定相、流动相、有机改性剂种类及比例、背压和柱温的优化等,确定最终的仪器条件。 1)色谱条件色谱柱:Chiralcel OD-H column (250 × 4.6 mm, 5 μm) ;流动相:A (CO2)/B乙醇= 95/ 5,v /v;流速:3 mL /min;柱温:40℃;背压:10 MPa;补偿溶剂 (0.1% 甲酸甲醇溶液) 流速:0.1 mL/min; 2)质谱条件离子源参数:雾化气流速:3 L/min (N2, 99.5%);加热气流速:10 L /min(干燥空气);接口温度:300℃;DL温度:250℃;加热块温度:400℃;干燥气体流速:10 L/min (N2, 99.5%)。 质谱参数:按上述条件,不同对映体出峰时间为:R-乙酰甲胺磷(4.20 min)、S-乙酰甲胺磷(4.91 min)、R-甲胺磷(5.97 min)、S-甲胺磷(6.68 min) 。不同条件下的对映体拆分结果见(图1)。图1 SFC-MS/MS上乙酰甲胺磷和甲胺磷对映体的色谱图、分离度和保留时间 2、方法学考察 对建立的对映体分析方法进行系统的方法学考察,包括线性、回收率、精密度、定量限等。不同对映体在溶剂和基质标准中均有良好的线性(具体见表1)。通过比较溶剂标和基质标进行基质效应评价,乙酰甲胺磷和甲胺磷对映体在普通白菜基质中表现出较强的基质抑制效应,为了消除基质效应,本研究采用基质匹配标准溶液进行定量。乙酰甲胺磷和甲胺磷对映体的定量限均为0.005 mg/kg。在3个添加水平(0.01、0.1和1 mg/kg)下对普通白菜空白样品中乙酰甲胺磷和甲胺磷进行回收率试验,评价方法的准确性和精密度。化合物在普通白菜中的日内平均回收率(RSDs)为70.4−98.5% (1.4−10.9%),日间平均回收率(RSDs)为75.4−87.5% (6.1−13.4%)。结果表明,所建立的方法精密度和重现性良好,可满足普通白菜中乙酰甲胺磷和甲胺磷对映体的测定要求。 表1 不同对映体的线性、相关系数和基质效应图2 R-乙酰甲胺磷、S-乙酰甲胺磷和Rac-乙酰甲胺磷(外消旋乙酰甲胺磷)及其代谢产物R-甲胺磷、S-甲胺磷和Rac-甲胺磷的残留量 图3 R-乙酰甲胺磷(A)、S-乙酰甲胺磷(B)、Rac-乙酰甲胺磷(C)及其代谢产物R-甲胺磷(D)、S-甲胺磷(E)、Rac-甲胺磷(F)(外消旋甲胺磷)在普通白菜中的消解曲线 3、方法应用 为验证SFC-MS/MS分析方法的有效性,对普通白菜样品中乙酰甲胺磷和甲胺磷的对映体进行了分析。结果表明,乙酰甲胺磷和甲胺磷对映体在普通白菜中的降解均符合一级动力学方程,R2在0.944 ~ 0.992之间(图3),半衰期分别为:4.39 (R-乙酰甲胺磷)、2.91 (S-乙酰甲胺磷)、3.9(Rac-乙酰甲胺磷)天、10.91(R-甲胺磷)、6.24(S-甲胺磷)和9.10(Rac-甲胺磷)天。R-乙酰甲胺磷的半衰期是S-乙酰甲胺磷的1.51倍,表明其降解具有对映体选择性;在普通白菜中甲胺磷半衰期比乙酰甲胺磷长,表明甲胺磷比其母体具有更强的持久性。 Part 03 结论 基于岛津Nexara UC系统,建立了一种快速、简便、灵敏的测定普通白菜中乙酰甲胺磷及其高毒代谢物甲胺磷对映体的分析方法,本方法可在8分钟内实现手性对映体的基线分离,每针样品仅消耗1.2 mL有机溶剂(乙醇)。同时进一步应用该方法评价了乙酰甲胺磷及其代谢产物对映体在普通白菜中的手性选择性消解规律研究。本方法具有良好的精密度和重现性,满足普通白菜样品中乙酰甲胺磷和甲胺磷对映体残留测定的要求。 关联仪器Nexera UC 所提供的解决方案• 临界流体的低粘度以实现快速分离• 提高峰容量与分离度• 利用高渗透性,对异构体或手性化合物实现快速分离• 差异化的分离模式提高灵敏度• 无分流样品导入技术提升灵敏度• 减少有机溶剂消耗,在降低成本的同时降低对环境的影响 文献题目《Enantioseparation and dissipation of acephate and its highly toxic metabolite methamidophos in pakchoi by supercritical fluid chromatography tandem mass spectrometry》 使用仪器岛津Nexera UC 作者Linjie Jiang1,2,3 Yue Geng1,2,3 LuWang1,2,3 Yi Peng1,2,3 Wei Jing4 Yaping Xu1,2,3 Xiaowei Liu1,2,31 Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, P. R. China2 Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and RuralAffairs, Tianjin, P. R. China3 National Reference Laboratory for Agricultural Testing, Tianjin, P. R. China4 Shimadzu (China) Co., LTD. Beijing Branch, Beijing, P. R. China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3、本文内容非商业广告,仅供专业人士参考。 本文内容非商业广告,仅供专业人士参考。
  • 上海发布母乳低聚糖团体标准乳粉再掀新风口?
    近日,上海市食品化妆品质量安全管理协会正式发布《婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的测定》(以下简称“标准”),母乳低聚糖(HMOs)是母乳中第三大固体成分,这是国内首个使用液相色谱法同时检测婴配粉及调制乳粉中7种HMOs的团体标准,大大增加了HMOs的推广可能性。  去年10月,HMOs正式被批准在奶粉中添加,公告一出就掀起了热潮。蒙牛、伊利、君乐宝等纷纷推出国内首款HMOs奶粉,HMOs已然成为奶粉品牌科研力、创新力、产品力等竞争最热门的领域之一。  业内分析人士指出,HMOs的应用对行业的母乳化研究起着至关重要的作用,为行业生产、检测、监管等环节提供了明确的技术指导,助力提升行业的整体技术水平,保证产品的质量和安全,为消费者提供更加优质、健康的产品。  上海发布团体标准  3月4日,上海市食品化妆品质量安全管理协会正式发布HMOs团体标准,该标准由上海市质量监督检验技术研究院、雅士利、宜品乳业、美赞臣营养品、蓝河营养品、上海花冠营养乳品、安捷伦科技等单位共同起草。  母乳低聚糖是母乳中第三丰富的固体成分,具有调节免疫系统、抗炎症、降低呼吸道感染的发病率、促进双歧杆菌的生长、有益于肠道健康、促进大脑发育等功能,对于婴幼儿的健康成长起到重大帮助作用。乳粉中母乳低聚糖的添加,能够实现对母乳结构更深入的模拟,因此其在生产加工中的应用日益广泛。  此前上海市食品化妆品质量安全管理协会发布的征求意见稿中指出,母乳低聚糖的主要添加形式为7种:2'-FL、3-FL、3'-SL、6'-SL、LNT、LNnT、DFL,但目前国内获批允许添加的仅为2'-FL和LNnT。为保证母乳低聚糖添加型产品的安全生产和质量水平,也为此类新产品的后续研发推波助澜,此次标准中建立了婴幼儿配方乳粉及调制乳粉中7种母乳低聚糖的检测方法。  目前国际上没有关于母乳低聚糖检测的相关标准,国内也尚未出台国家标准或行业标准,仅有2个团体标准,分别为天津市奶业科技创新协会的团标方法T/TDSTIA 032-2023《婴幼儿配方乳粉中7种母乳低聚糖含量的测定液相色谱-质谱法》和中国食品科学技术协会的团标方法T/CIFS 007-2022《食品中2'-岩藻糖基乳糖的测定离子色谱法》。上海市食品化妆品质量安全管理协会表示,质谱仪器价格相对昂贵,实验成本较高,离子色谱法所检测的单一原料,无法满足同时添加了多种母乳低聚糖产品的检测需求。  此次上海发布的团体标准在现有检测方法的诸多问题上做了突破性改变,较好地解决了基质干扰影响较大、无法同时检测婴配粉及调制乳粉中7种HMOs等最大难点。采用本标准的方法,母乳低聚糖的标准溶液与峰面积响应值之间存在着良好的线性关系,相关系数R2≥0.99。添加标准物质,对婴幼儿配方奶粉和调制乳粉等样品进行母乳低聚糖精密度和准确度的测定,能够符合GB/T 27404-2008中的相关规定。  乳业分析师宋亮表示,“因为HMOs的形成不一样,所以检测的方法不一样,可能会有一些偏差。但既然公布了,说明上海的检测方法和之前两个检测方法不会有任何冲突,在检测的精准度上也都会达标”。  国内乳企抢滩布局  2023年10月7日,国家卫健委官网公布2种母乳低聚糖(HMOs)原料——2'-岩藻糖基乳糖(2FL)、乳糖-N-新四糖(LNnT),正式获批用于国内奶粉产品。国产奶粉正式进入HMOs时代,蒙牛、伊利、君乐宝、宜品等奶粉品牌纷纷抢滩布局。  在众多HMOs 原料获批的生产企业中,蒙牛是首批获批企业中唯一的中国本土企业。早在2023年6月份,蒙牛自研HMOs就获得美国SELF-GRAS市场准入许可,正式进军国际市场,突破了长久上游原料“卡脖子”的困境。  蒙牛瑞埔恩研发人员向北京商报记者介绍,“我们花了一年多的时间,比较了液相色谱-串联质谱仪、离子色谱仪以及液相色谱仪三种检测设备,选择了国内外各种奶粉基质产品,做了上千次的试验,最终确定选择液相色谱仪配荧光检测器进行HMOs的检测方法推广性强”。  母乳低聚糖在国内并不陌生,在国内政策和应用落地前,已在全球100多个国家和地区批准上市,雀巢、惠氏、美赞臣、菲仕兰、雅培等外资巨头已利用跨境购渠道将这类奶粉卖到中国市场。  据了解,惠氏营养品早在30三十多年前就开展母乳低聚糖(HMOs)相关研究,发表了70多篇文献,拥有100多项专利成果。目前,惠氏及雀巢集团已在70多个国家推出HMOs相关产品,年销售高达13亿瑞郎,获得全球市场广泛认可。在中国市场,惠氏自2017年便开始了对HMOs产品的布局,在中国香港市场推出了首款启赋HMOs产品,并通过跨境渠道登陆中国大陆市场。此外,美国婴幼儿奶粉巨头雅培也较早布局了该品类。  目前,蒙牛推出了首款自主研发HMOs奶粉瑞哺恩,伊利旗下伊利金领冠推出“珍护铂萃”儿童成长配方奶粉,飞鹤推出了HMOs奶粉星飞帆卓睿4段,君乐宝推出了添加HMOs成分的小小鲁班“诠维爱未来”奶粉,国内掀起了一波HMOs奶粉上市潮。  新风口下面临挑战  近年来,在出生率持续下降、产业减能、市场萎缩的背景下,国内奶粉市场竞争愈发激烈。面对HMOs风口,乳企纷纷升级迭代新品,也引发了消费者对奶粉涨价的担忧。  2024年开年,北京商报记者从母婴渠道了解到,已有包括皇家美素佳儿、澳洲a2在内的多个奶粉品牌调价,佳贝艾特、飞鹤星飞帆等发出调价通知。  对此,宋亮表示,“添加了HMOs和奶粉涨价没有必然关系,只是给消费者多了一种选择。调价不是涨价,奶粉行业经过四年的价格战,近期价格向上浮动是正常的,价盘会逐步恢复到2020、2021年的水平”。  不过,受到原料成本、生产成本等因素影响,在国内市场竞争激烈的背景下,国内奶粉品牌确实面临挑战。2021年,国产奶粉的市场占有率一度超过60%。但据菲仕兰、达能等外资奶粉品牌近期发布的2023年财报显示,包含婴幼儿配方奶粉业务板块在中国市场的业绩却不降反增。  宋亮认为,外资乳企市场份额逐步增长有迹可循,主要是过去四五年国内乳企在打价格战,外资乳企始终控货稳价,这也正是国产奶粉面临的困境。  根据尼尔森IQ数据,2023年中国婴幼儿配方奶粉全渠道销售额下滑了13.9%,市场大盘将进一步萎缩。这对于以婴幼儿配方奶粉为主业的乳制品企业来说,无疑加剧了存量市场的竞争态势。  知名战略定位专家、福建华策品牌定位咨询创始人詹军豪向北京商报记者表示,“外资品牌在品牌知名度、产品质量、市场营销等方面具有较强的竞争力,在国内市场占据一定优势。在消费者心中,外资品牌往往代表着高品质,因此容易获得消费者的青睐。国内乳企在面临市场竞争压力的同时,还需要加大研发投入,提升产品质量和品牌形象。在国内市场竞争激烈的背景下,部分企业可能会通过涨价来提升产品形象和利润空间”。  不过,新标准的发布,对加强对婴幼儿奶粉质量的监管,确保产品安全、可靠提供了新的方法。对乳企来说,要不断优化生产工艺和产品配方,以适应市场需求。
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持!产品信息:货号品名CAS No. B691000N-Butyldeoxynojirimycin Hydrochloride210110-90-0C10H22ClNO410/100mga-葡糖苷酶1和 HIV cytopathicity抑制剂E915000N-Ethyldeoxynojirimycin Hydrochloride210241-65-9C8H18ClNO410/100mgHIV cytopathicity抑制剂C181150N-5-Carboxypentyl-deoxymannojirimycin104154-10-1C12H23NO65/50mg制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶A1875452,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture) C56H63NO1310/100mg4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体B690500N-(n-Butyl)deoxygalactonojirimycin141206-42-0C10H21NO45/50mga-D-半乳糖苷酶抑制剂B690750N-Butyldeoxymannojirimycin, Hydrochloride355012-88-3C10H22ClNO45/50mga-D-甘露糖苷酶抑制剂D236000Deoxyfuconojirimycin, Hydrochloride210174-73-5C6H14ClNO310/100mgalpha-L-岩藻糖苷酶抑制剂M166000D-Manno-&gamma -lactam62362-63-4C6H11NO55/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和M165150D-Mannojirimycin Bisulfite C6H13NO7S1/10mgalpha-甘露糖苷酶抑制剂D4550006,7-Dihydroxyswainsonine144367-16-8C8H15NO51/10mga-甘露糖苷酶抑制剂C665000Conduritol B25348-64-5C6H10O425/250mgb-葡糖苷酶抑制剂C666000Conduritol B Epoxide6090-95-5C6H10O525/250mgb-葡糖苷酶抑制剂A1552502-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate132152-77-3C16H22N2O1025/250mgglucosamidase抑制剂D240000Deoxymannojirimycin Hydrochloride73465-43-7C6H14ClNO410/100mgmammalian Golgi alpha- mannosidase 1 抑制剂M297000N-Methyldeoxynojirimycin69567-10-8C7H15NO410/100mgN-连接糖蛋白高斯过程干扰剂A1584002-Acetamido-1,2-dideoxynojirimycin105265-96-1C8H16N2O41/10mgN-乙酰葡糖胺糖苷酶抑制剂A157250O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate132489-69-1C15H19N3O75/10/100mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂A157252(Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate1331383-16-4C15H14D5N3O71/10mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂M3345154-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester C26H31NO1225mgT2DM糖苷酶抑制剂G4500004-O-&alpha -D-Glucopyranosylmoranoline80312-32-9C12H23NO91/10mg&alpha -葡萄糖苷酶抑制剂D2317501-Deoxy-L-altronojirimycin Hydrochloride355138-93-1C6H14ClNO45/50mg&alpha -糖苷酶抑制剂H942000N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt C8H18ClNO50.5/5mg&alpha -糖苷酶抑制剂H942015N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride C8H18ClNO51/10mg&alpha -糖苷酶抑制剂H942030N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride C8H18ClNO55/50mg&alpha -糖苷酶抑制剂T7952003&rsquo ,4&rsquo ,7-Trihydroxyisoflavone485-63-2C15H10O5200mg/2g&beta -半乳糖苷酶抑制剂A158380O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate351421-19-7C21H24N4O1210/100mg氨基葡萄糖苷酶抑制剂M166505Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal C13H19NO4S2.5/25mg保护的Mannostatin AB682500Bromoconduritol (Mixture of Isomers)42014-74-4C6H9O3Br200mg哺乳类 alpha-葡萄糖苷酶 2 抑制剂K450000Kifunensine109944-15-2C8H12N2O61/10mg芳基甘露糖苷酶抑制剂D2397501-Deoxy-L-idonojirimycin Hydrochloride210223-32-8C6H14ClNO410/100mg酵母葡糖a-苷酶类抑制剂S885000Swainsonine72741-87-8C8H15NO31/10mg可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂T295810[1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone149952-74-9C8H11NO410/100mg苦马豆素和衍生物合成中间体N635000Nojirimycin-1-Sulfonic Acid114417-84-4C6H13NO7S10/100mg葡糖苷酶类抑制剂V094000(+)-Valienamine Hydrochloride38231-86-6C7H14ClNO41/10mg葡糖苷酶抑制剂D4400002,5-Dideoxy-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg葡糖苷酶抑制剂D494550N-Dodecyldeoxynojirimycin79206-22-7C18H37NO410/100mg葡糖苷酶整理剂D4799552,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside111495-86-4C12H13FN2O95/50mg葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖A6532702,5-Anhydro D-Mannose Oxime, Technical grade127676-61-3C6H11NO510/100mg潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺D2365001-Deoxygalactonojirimycin Hydrochloride75172-81-5C6H14ClNO410/100mg强效的和有选择性的d半乳糖苷酶抑制剂D236502Deoxygalactonojirimycin-15N Hydrochloride C6H14Cl15NO45/25mg强效的和有选择性的d半乳糖苷酶抑制剂B445000(2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine105015-44-9C6H13NO410/100mg强有力的和特定的糖苷酶抑制剂M166500Mannostatin A, Hydrochloride134235-13-5C6H14ClNO3S1/10mg强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂A858000N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose86979-66-0C13H16N4O71/10mg人类红细胞单糖运输标签抑制剂C185000Castanospermine79831-76-8C8H15NO410/100mg溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂D4399801,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride114976-76-0C6H14ClNO45/50mg糖蛋白甘露糖苷酶抑制剂A608080N-(12-Aminododecyl)deoxynojirimycin885484-41-3C12H26N2O45/50mg糖苷酶亚氨基糖醇制备用试剂I8663501,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose53167-11-6C8H12O5100mg/1g糖苷酶抑制剂制备试剂A6483002,5-Anhydro-2,5-imino-D-glucitol132295-44-4C6H13NO410/100mg糖水解酶类抑制剂A6483502,5-Anhydro-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg糖水解酶类抑制剂M2570003-Mercaptopicolinic Acid Hydrochloride320386-54-7C6H6ClNO2S500mg/5g糖质新生抑制剂B286255N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin138381-83-6C21H23NO65/50mg脱氧野尻霉素衍生物B286260N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate153373-52-5C25H27NO82.5/25mg脱氧野尻霉素衍生物D245000Deoxynojirimycin19130-96-2C6H13NO410/100mg脱氧野尻霉素抑制哺乳类葡糖苷酶1A172200N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt209977-53-7C11H16NNaO810/100mg细菌、动物和病毒抑制剂C181200N-5-Carboxypentyl-1-deoxynojirimycin79206-51-2C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC181205N-5-Carboxypentyl-1-deoxygalactonojirimycin1240479-07-5C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC645000Conduritol A 牛奶菜醇A526-87-4C6H10O41/10mg C667000Conduritol D牛奶菜醇D4782-75-6C6H10O410mg I8688751,2-Isopropylidene Swainsonine85624-09-5C11H19NO31/10mg 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 进展|糖型解析层面的抗体middle-down质谱分析
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry。本文的通讯作者是罗氏集团的Tilman Schlothauer和Feng Yang。  治疗性单克隆抗体(mAb)分析中翻译后修饰(PTMs)的表征是一个主要的挑战,单个PTM通常采用bottom-up的方法进行分析,但PTM之间的关联性信息丢失 middle-down方法提供了分辨率、位点特异性和蛋白型异质性的良好平衡,其表征工作流程主要依赖于末端片段离子。内部片段离子的纳入提高了序列覆盖率和PTM分辨率,使其成为一种有前途的方法。先前,糖工程单克隆抗体的研究表明,一组有限的高甘露糖、乙酰氨基葡萄糖和糖基化蛋白型不同程度地影响了PTMs的敏感性质,如脱酰胺和氧化。Asn 325的脱酰胺是一种功能相关PTM,在传统bottom-up方法中由于其较短的肽段和较高的亲水性而经常被忽略,目前没有研究调查Asn 297糖型对Asn 325脱酰胺敏感性的影响。在这篇文章中,作者提出了一种纳入内部片段的middle-down工作流程,在糖型解析层面上评估mAb上Asn 325脱酰胺修饰。  图1. 糖型解析的Asn 325脱酰胺的middle-down分析流程。(A) IdeS酶切后的Fc/2序列,及相关的糖基化(Asn 297)和脱酰胺(Asn 325)位点。(B)工作流程示意图,包括样品制备、RP-LC亚基分离、MS1电荷态选择、四极杆糖型分离、MS2内部片段搜索,以及基于提取的单同位素质量离子色谱(未修饰与修饰)的定量策略。  图2. Asn 325脱酰胺鉴定中内部片段SNKAL的定性评价。未修饰(对照)、热应力样品(8w, 40°C)、HC Asn 325 Asp序列突变体的代表性MS2谱图叠加,以及修饰的内部片段离子SDKAL的模拟单同位素质量。*表示未修饰的SNKAL的+1同位素对修饰的SDKAL的单同位素具有足够的分辨率。  本研究使用标准IgG1单抗(G1m17, Km3)和突变体(HC Asn 325 Asp)。对于热应激,标准单抗在40°C的配方缓冲液中孵育2、4和8周。在IdeS酶切之前,将10%的突变单抗插入标准单抗中,生成加标样品。抗体经IdeS酶切、还原后,用标准RPLC流程分析(图1B) 针对Asn 325脱酰胺位点周围的内部片段离子的覆盖率,作者对HCD碰撞能量和捕获气体参数进行了优化。共分配了覆盖Asn 325的7个内部片段离子,根据片段强度和定量精度,与bottom-up分析确定的目标脱酰胺值相比,选择SNKAL作为Asn 325的代表性特征离子。SNKAL对无应力对照组的特异性通过包含Asp 325的序列突变体(N325D)得到证实,该突变体在未修饰的Asn 325的单同位素质量处没有片段离子(图2)。因此,排除了其他片段离子的中性丢失引起的歧义或重叠。Asn 325对照、Asp 325突变体和分离的糖型(G0F、G1F、G2F)的MS2具有高度可比性。修饰后的单同位素质量和未修饰的Asn 325的第一个同位素之间获得了足够的分辨率(图2)。  使用middle-down MS对所有糖型的相对脱酰胺评估与bottom-up分析确定的水平一致(图3)。与热应力持续时间无关,单个糖型(G0F、G1F和G2F)的middle-down脱酰胺评估没有显著差异(图4)。Asp 325突变体的插入实验证实了middle-down策略评估单个糖型脱酰胺水平差异的能力。由于未修饰的Asn 325单抗和Asp 325单抗之间的糖型相对丰度的差异,与总加标量(10%)相比,蛋白型(糖型% ×脱酰胺%)混合的比例不同。因此,在加标样品中,G0F的脱酰胺率低于10%,而由G1F和G2F的脱酰胺率高于10%(图4)。Middle-down脱酰胺评估的精度取决于糖型丰度和脱酰胺水平,单个样本的相对标准偏差范围为2.8%至16.4% (n = 9),样本间中位相对标准偏差为7.4% (n = 16)。总蛋白型丰度和相对标准偏差显示出明显的相关性,并证明了middle-down方法的敏感性,允许在0.2%的相对丰度下评估蛋白型。  图3. middle-down工作流程对Asn 325脱酰胺定量分析的能力评估。在2w、4w和8w热应力(40°C)下,应力样品bottom-up和middle-down(所有糖型)分析的相关性。数据点表示middle-down分析的技术重复的中位数(n = 9, 3天内重复3次)。误差条显示95%置信区间。CTRL显示n = 3时无应力样品的背景水平。  图4. Asn 325脱酰胺的糖型解析水平的middle-down分析。从2w, 4w和8w热应力样品和10% Asp 325加标样品中提取所有糖型和分离糖型(G0F, G1F, G2F)的相对脱酰胺结果。技术重复的中位数和95%置信区间为n = 9时[G2F在2w (n = 4)和4w (n = 8)时除外]。ns =不显著。*表示假定值范围(* 0.05, ** 0.01, **** 0.0001)。  本文引入了一种新的middle-down策略,通过利用HCD碎片的内部碎片离子来分析单克隆抗体Fc中的PTM动力学,将复杂性降低到Fc/2亚基水平,并保留了相关的蛋白质形态完整性,同时获得了bottom-up方法的分辨率和位点特异性,并成功地证明了IgG1抗体的Fc半乳糖基化变体不会影响热应激下Asn 325脱酰胺的程度。  撰稿:夏淑君  编辑:李惠琳  文章引用:Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry
  • 了解糖蛋白结构异质性和相互作用:来自native Mass的见解
    大家好,本周为大家分享一篇发表在Current Opinion in Structural Biology上的文章,Understanding glycoprotein structural heterogeneity and interactions: insights from native mass spectrometry,通讯作者是英国牛津大学化学系的Carol V . Robinson教授。  蛋白质糖基化的过程会产生具有多种组成、连接和结构的聚糖,这些聚糖具有多种生物学功能。哺乳动物的主要两类糖基化修饰为 N糖和粘蛋白型O糖(图1 a,b)。N-聚糖的分支结构、单糖延伸、岩藻糖基化和唾液酸化是主要特征 粘蛋白型O-聚糖根据其核心结构分为四类。解读聚糖异质性对于了解糖蛋白的结构和功能至关重要。高分辨率nMS在完整水平上提供聚糖组成的全景图,并且将糖蛋白结构的异质性与相互作用的化学计量和功能联系起来。这篇文章集中讨论了利用nMS阐明糖蛋白结构异质性和生物分子功能的最新进展。  图1 糖基化特征可以用native MS方法表征  一、描绘糖型组成异质性  糖蛋白的主要特征包括聚糖占据、N-聚糖分支/延伸、岩藻糖基化和唾液酸化。通过native MS 和糖蛋白组学的方法表征人胎球蛋白糖型,native MS确定全局宏观和微观异质性,而糖蛋白组学描述了位点特异性糖基化信息,可以根据特定于位点的信息对蛋白native MS谱中每种糖型的详细组成进行注释(图1c)。  使用凝集素的亲和纯化质谱(AP-MS)有助于靶向分析糖蛋白上具有感兴趣结构的糖型。例如,特异性识别α1-3岩藻糖残基的凝集素 (AAL),揭示了人类α1-酸糖蛋白(AGP)上的 α1-3岩藻糖残基的化学计量 使用与糖基β1-6分支相互作用的凝集素PHA-L,表明 β1-6 分支在所有 AGP 糖型上的普遍存在。  外切糖苷酶处理在糖组学中广泛用于区分具有不同键的单糖残基。一项最近的工作使用了α-神经氨酸酶、β-半乳糖苷酶、β-N-乙酰氨基葡萄糖苷酶和α-岩藻糖苷酶的组合外切糖苷酶,揭示了 AGP 在完整糖蛋白水平上核心和触角岩藻糖基化的化学计量。对于同时具有 N-连接和 O-连接聚糖的高度糖基化生物治疗药物,例如依那西普、使用外切糖苷酶、内切糖苷酶和蛋白酶的综合酶处理对于全面了解糖蛋白的整体异质性至关重要(图2)。  图2 (a) 依那西普的结构 (b) 唾液酸酶(一种外糖苷酶)和PNGase F(一种内糖苷酶)处理的依那西普的native MS。  2、描绘结构异质性  蛋白质O-糖基化在许多细胞表面蛋白质中普遍存在,如 SARS-CoV-2 刺突蛋白受体结合域 (S-RBD),该蛋白具有核心 1 和核心 2 粘蛋白型O糖。最近的一项突破将软着陆 MS 和扫描隧道显微镜 (STM) 相结合,能够对单个聚糖的构象和结构进行成像。  以前的报告表明,N-聚糖分支和核心岩藻糖基化受到糖基化位点局部构象的限制,远离蛋白质表面的唾液酸化和末梢岩藻糖基化被认为受蛋白质骨架结构的影响较小。随着 nMS 分辨率的进步,通过比较位点特异性和全局异质性直接重新审视这一假设是可行的。如果每个位点上的糖基化事件是独立的,那么全局异质性应该与位点特异性信息一致。对于核心岩藻糖基化IgG和携带简单 N糖的人胎球蛋白,位点特异性糖基化完美地解释了整体异质性。然而,最近对高度分支和唾液酸化的 rhEPO 和 S-RBD 的研究表明,糖基分支上唾液酸化打破了native MS 和糖蛋白组学数据之间的这种相关性。因此,这些情况表明唾液酸化并非完全独立于所有糖基化位点。  3、破译N聚糖生物合成途径 监测N-聚糖宏观和微观异质性提供了对其生物合成途径的见解。N-聚糖分支由一系列N-乙酰胺基葡萄糖转移酶催化,它们将单糖依次连接到糖基的不同分支上。对敲除了个别N-乙酰胺基葡萄糖转移酶基因的细胞表达的糖蛋白进行分析,可以揭示糖基的生物合成偏好。除了N聚糖的分支合成以外,岩藻糖基化过程也可以通过native MS揭示。人类AGP最多能携带11个岩藻糖, 用连续的外切糖苷酶消化和native MS来区分 AGP 上的核心和分支岩藻糖基化N-聚糖,揭示了岩藻糖基化在完整糖蛋白水平上的联系和化学计量(图3)。  图3 (a)人AGP结构。(b)外切糖苷酶处理可区分AGP上N糖的核心和分支岩藻糖基化。(c) 外糖苷酶消化的AGP的native MS揭示了在完整糖蛋白水平上岩藻糖基化的联系和化学计量学。  四、将糖的异质性与糖蛋白相互作用联系起来  通过保留完整的蛋白质与配体/药物的复合物,nMS 为蛋白质相互作用的化学计量和动力学提供了信息。AGP 与抗凝药物华法林的研究表明,单岩藻糖基化可减弱蛋白质-药物相互作用(图4)。  图4 (a)人 AGP在其疏水袋中特异性结合抗凝药物(华法林)。 (b) 将 AGP-华法林复合物的native MS绘制为华法林浓度的函数 (c)华法林浓度和与华法林结合的非岩藻糖基化AGP或单岩藻糖基化AGP的百分数的对应曲线。非岩藻糖基化为蓝色,单岩藻糖基化为红色。 (d) 不同糖型解离常数的比较表明,N-聚糖分支和岩藻糖基化降低了 AGP 对华法林的亲和力。  native MS的分辨率革命已经使糖组学、糖蛋白组学和top-down MS之间建立了联系,以揭示糖基的宏观异质性。未来,蛋白质糖基化的数学模型和多组学方法的整合将为我们理解“不可解析”的糖蛋白复合物提供新的思路。
  • “色谱泡泡堂游戏”活动落幕 大奖花落谁家?
    &ldquo 色谱泡泡堂游戏&rdquo 活动落幕 大奖花落谁家?由默克密理博实验室基础业务组与中国色谱网、仪器信息网合作举办的&ldquo 色谱泡泡堂游戏&rdquo 活动成功结束。此次活动页面共吸引了超过9,254次关注,超过500个的用户游戏超过20分,很多用户反应此次活动&ldquo 寓教于乐,很有意思&rdquo 、&ldquo 既有趣又长知识&rdquo 。根据既定的活动规则,现公布获奖情况如下:优胜奖5名:膳魔师保温杯(价值250元)。活动期限内成绩最高前五名获得此奖,以合作论坛回复贴中粘帖的成绩图片为准。多次发布成绩者,以最高成绩为准。芮** 江苏常隆化工有限公司徐** 沈阳东陵药业股份有限公司杨** 青岛市饲料兽药检测站杨** 常州永泰丰化工有限公司叶** 巴斯夫参与奖10名:每位超能力迷你音箱一个(价值80元)。活动期限内前300名填写了抽奖表格并把游戏成绩以回帖形式提交的用户中抽取,获得优胜奖或幸运奖的用户不参与此奖。刘** 深圳市疾病预防控制中心梁* 重庆莱美药业股份有限公司林** 广东天普生化医药股份有限公司史** 南阳张仲景中药材发展有限责任公司孙* 黑龙江八一农垦大学测试中心王* 中科院化学所师** 上海纽贝滋营养乳品有限公司康* 安徽省地勘局第一水文院实验室马** 博瑞生物医药技术(苏州)有限公司王** 上海药明康德幸运奖5名:TP-LINK迷你无线路由器(价值100元)。从所有活动期限内填写了抽奖表格的用户中随机抽奖,获得优胜奖用户不参与此奖。参与奖名单如下:郭** 四川省食品药品检验所何** 广州白云山中一药业有限公司蒋* 大连化物所李** 天津天士力现代中药资源有限公司刘** 中国药科大学现将色谱泡泡堂游戏答案公布,以飨各位用户:默克色谱柱及其对应应用化合物ZIC-HILIC两性离子型亲水作用色谱柱: 氨基酸 乙酰半胱氨酸 三聚氰胺 尿嘧啶 皮革奶乳糖 葡萄糖 磷酸葡萄糖 果糖 磷酸腺苷 草酸 柠檬酸 强极性化合物分析Chromolith RP-18e整体化色谱柱: 三七皂苷快速分析 人参皂苷快速分析 中药指纹图谱快速分析食品色素快速分析 食品防腐剂快速分析 化学合成中间体快速监控 药物代谢快速分析Purospher STAR RP-18e高纯硅胶基质: 塑化剂 中极性和弱极性化合物分析 酸性碱性中性化合物 左氧氟沙星 吡格列酮 阿托伐他汀 环丙沙星 非诺贝特Lichrospher DIOL 二醇基柱: 卵磷脂 多烯磷脂酰胆碱ChiraDEX 环糊精手性柱: 手性化合物 缬沙坦对映体
  • 德祥-安捷伦针对新乳品检测标准提供全方位解决方案
    按照国家质检总局要求目前所有已获乳制品及婴幼儿配方乳粉生产许可的企业按照相关文件要求重新提出申请并重新审查。从2011 年3 月1 日起,未重新获得生产许可的,须停止生产乳制品及婴幼儿配方乳粉。与原有细则相比,新细则产品检验项目有所增加,尤其是婴幼儿配方乳粉共有64 余项企业自检项目(婴儿配方奶粉检测国国家标准),涉及色谱、光谱、质谱等多种仪器。 目前我们厂家安捷伦科技已经做出全方位的解决方案,具体的解决方案如下,希望能帮助新老用户有所帮助,谢谢支持! 针对气相方法,我们提供如下解决方案 标准编号 标准及相关检测项 基本方法和仪器配置 标准对色谱柱的描述 安捷伦对应色谱柱 GB 5413.27&mdash 2010 婴幼儿食品和乳品中脂肪酸的测定 乙酰氯&mdash 甲醇甲酯化法或氨水&mdash 乙醇甲酯化法 GC-FID 固定液100 %二氰丙基聚硅氧烷,100 m × 0.25 mm x 0.20&mu m,或性能相当的色谱柱 HP-88 (100m x 0.25mm x 0.25um P.N.112-88A7) GB 5413.36&mdash 2010 婴幼儿食品和乳品中反式脂肪酸的测定 氢氧化钾-甲醇甲酯化法 GC-FID 填料为氰丙基芳基聚硅氧烷的毛细管柱,柱长100 m,内径0.25 mm,膜厚0.2 &mu m;或同等性能的色谱柱。 HP-88 (100m x 0.25mm x 0.25um P.N.112-88A7) GB 5413.23&mdash 2010 婴幼儿食品和乳品中碘的测定 的碘在硫酸条件下与丁酮反应生成丁酮与碘的衍生物 GC-ECD 填料为5 %氰丙基-甲基聚硅氧烷的毛细管柱(柱长30 m,内径0.25 mm,膜厚0.25 &mu m)或具同等性能的色谱柱。 HP-5 (30m x 0.25mm x 0.25um P.N.19091J-433 ) 或DB-5 (30m x 0.25mm x 0.25um P.N.122-5032) GB 5413.25&mdash 2010 婴幼儿食品和乳品中肌醇的测定 肌醇硅烷化试剂衍生 GC-FID 填料为50 %氰丙基-甲基聚硅氧烷的毛细管柱(柱长60 m, 内径0.25 mm,膜厚0.25 &mu m)或同等性能的色谱柱。 DB-23 (60m x 0.25mm x 0.25um P.N.122-2362) 针对液相方法,我们提供如下解决方案: 标准及相关检测项 基本方法和仪器配置 标准对色谱柱的描述 安捷伦相应推荐色谱柱 方法说明 婴幼儿食品和乳品中乳糖、蔗糖的测定 LC-RID or ELSD NH2柱,4.6 mm × 250 mm,5 &mu m,或具有同等性能的色谱柱 Zorbax Carbohydrate 婴幼儿食品和乳品中乳糖、蔗糖的测定方法。 婴幼儿食品和乳品中维生素A、D、E 的测定 LC-UV C18柱,250 mm × 4.6 mm,5&mu m,或具同等性能的色谱柱 (维生素A, E用反相模式) Zorbax Eclipse Plus C18 本标准适用于婴幼儿食品和乳品中维生素A、D、E的测定。维生素A,D, E用反相模式测定,维生素D则用正相模式净化. 维生素D待测液的净化 LC-UV 硅胶柱,150 mm × 4.6 mm,5 &mu m,或具同等性能的色谱柱(维生素D的测定是用正相模式) Zorbax Rx-sil 本标准适用于婴幼儿食品和乳品中维生素A、D、E的测定。维生素A,D, E用反相模式测定,维生素D则用正相模式净化. 婴幼儿食品和乳品中维生素K1 的测定 LC-FLD C18 色谱柱,150 mm × 4.6 mm,5 &mu m,或具同等性能的色谱柱 Zorbax Eclipse Plus C18, 或Zorbax SB-C18 婴幼儿食品和乳品中维生素K1 的测定高效液相色谱柱后还原荧光法定量测定维生素K1 婴幼儿食品和乳品中维生素B1 的测定 LC-FLD C18 反相色谱柱(粒径 5 &mu m,250 mm × 4.6 mm)或相当者 Zorbax SB-C18 本标准适用于婴幼儿食品和乳品中维生素 B1 的测定。 婴幼儿食品和乳品中维生素B2 的测定 LC-FLD C18 反相色谱柱(粒径 5 &mu m,250 mm × 4.6 mm)或同等性能的色谱柱 Zorbax SB-C18 本标准适用于婴幼儿食品和乳品中维生素B2 的测定。 婴幼儿食品和乳品中维生素B6 的测定 LC-FLD C18柱 (粒径5 &mu m,150 mm × 4.6 mm)或同等性能的色谱柱。 Zorbax Eclipse Plus C18, 或Zorbax SB-C18 本标准适用于婴幼儿食品和乳品中维生素 B6 的测定 婴幼儿食品和乳品中烟酸和烟酰胺的测定 LC-UV C18 柱(粒径5 &mu m,150 mm × 4.6 mm)或具有同等性能的色谱柱。 Zorbax SB-C18 本标准适用于婴幼儿食品和乳品中烟酸和烟酰胺的测 婴幼儿食品和乳品中泛酸的测定 LC-UV ODS-C18(粒径 5 &mu m, 250 mm× 4.6 mm )或具有同等性能的色谱柱。 Zorbax SB-Aq 第二法 高效液相色谱法 婴幼儿食品和乳品中牛磺酸的测定 LC-FLD 钠离子氨基酸分析专用柱(250 mm× 4.6 mm)或同等性能的色谱柱 / 本标准适用于婴幼儿食品和乳品中牛磺酸的测定.*法 OPA 柱后衍生法   LC-UV or FLD C18 反相色谱柱(粒径5 &mu m,250 mm× 4.6 mm)或同等性能色谱柱 Eclipse Plus C18或Eclipse AAA 第二法 单磺酰氯柱前衍生法 婴幼儿食品和乳品中&beta -胡萝卜素的测定 LC-UV C18柱,250 mm× 4.6 mm,5 &mu m,或具同等性能的色谱柱 Eclipse Plus C18或EclipsePAH 本标准适用于婴幼儿食品和乳品中&beta -胡萝卜素的测定。 乳和乳制品中黄曲霉毒素M1的测定 LC-QQQ ACQUITY UPLC HSS T31,柱长100 mm,柱内径2.1 mm;填料粒径1.8 &mu m,或同等性能的色谱柱 Poroshell 120 EC-C18 *法 免疫亲和层析净化 液相色谱&mdash 串联质谱法标准. *法适用于乳和乳制品中黄曲霉毒素M1 的测定;第二法适用于乳、乳粉,以及低脂乳、脱脂乳、低脂乳粉和脱脂乳粉中黄曲霉毒素M1 第四法适用于液态乳和乳粉中黄曲霉毒素M1 的测定。的测定;第三法适用于乳和乳粉中黄曲霉毒素M1 的测定;   LC-FLD C18,长25 cm,内径4.6 mm;,充3 &mu m或者5 &mu m的十八烷基硅胶,加有填充反相材料的保护柱 Eclipse Plus C18 第二法免疫亲和层析净化高效液相色谱法,适用于乳、乳粉,以及低脂乳、脱脂乳、低脂乳粉和脱脂乳粉中黄曲霉毒素M1 的测定 乳和乳制品中苯甲酸和山梨酸的测定 LC-UV C18,250 mm× 4.6mm ,5&mu m Eclipse Plus C18 本标准适用于乳与乳制品中苯甲酸和山梨酸含量的测定。 更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822邮箱:info@tegent.com.cn
  • 日立高新推出测定维C银翘片中对乙酰氨基酚和马来酸氯苯那敏的数据
    2013年6月18日,香港卫生署呼吁市民不应购买或服用一种标示为&ldquo 维C银翘片&rdquo 的口服产品。涉事药品含有两种未标示及已被禁用的西药成分非那西丁和氨基比林。但在产品包装标示的成份,包括国家药监局允许添加的维生素C、对乙酰氨基酚及马来酸氯苯那敏却并未被验出,也就是说涉事药品根本就没有维C银翘片应有的成分和药效。  维C银翘片作为常见的感冒药,其中的对乙酰氨基酚有解热镇痛作用,马来酸氯苯那敏主要用于鼻炎、皮肤黏膜过敏及缓解流泪、打喷嚏、流涕等感冒症状。除此以外,在感冒药中常见的成分还有起解热镇痛的乙柳酰胺。在次日立高新将分别介绍使用常规液相和超高速液相对感冒药中的常见成分对乙酰氨基酚、马来酸氯苯那敏、乙柳酰胺的同时测定,详细信息请参考:http://www.instrument.com.cn/netshow/SH102446/newsolution.asp?id=1304&ref=4.app.3.0  关于日立高新技术公司:  日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是&ldquo 成为独步全球的高新技术和解决方案提供商&rdquo ,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn
  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 舜宇恒平仪器乳制品检测解决方案
    舜宇恒平仪器乳制品检测解决方案 近年来,乳制品的质量安全问题受到越来越多的关注,为了加强对乳制品的质量监管,多项关于乳制品的检测标准相继出台。上海舜宇恒平科学仪器有限公司参考各项国家标准,针对乳制品中的营养物质、添加剂以及违禁物的检测,推出符合国家标准要求的解决方案,以满足广大用户的应用需求。 检测项目检测方法参考标准仪器配置 乳糖、蔗糖 高效液相色谱法GB 5413.5-2010婴幼儿食品和乳品中乳糖、蔗糖的测定 LC1620A高效液相色谱仪 RI201H示差折光检测器 Asahipak NH2P-50 4E氨基柱 维生素A、 D、E 高效液相色谱法GB 5413.9-2010婴幼儿食品和乳品中维生素A、D、E 的测定 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 Silica 5SIL4D硅胶柱 维生素B12 光密度法(微生 物法)GB 5413.14-2010婴幼儿食品和乳品中维生素B12 的测定 V2200可见分光光度计 烟酸、烟酰 胺 高效液相色谱法GB 5413.15-2010婴幼儿食品和乳品中烟酸和烟酰胺的测定 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 叶酸 光密度法(微生 物法)GB 5413.16-2010婴幼儿食品和乳品中叶酸(叶酸盐活性)的测定 V2200可见分光光度计 泛酸 光密度法(微生 物法)GB 5413.17-2010婴幼儿食品和乳品中泛酸的测定 V2200可见分光光度计 高效液相色谱法 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 维生素C 荧光光度法GB 5413.18-2010婴幼儿食品和乳品中维生素C的测定 F9600荧光分光光度计 磷 分光光度法GB 5413.22-2010婴幼儿食品和乳品中磷的测定 UV2200紫外可见分光光度计 碘 气相色谱法(与丁 酮衍生)GB 5413.23-2010婴幼儿食品和乳品中碘的测定 GC1120气相色谱仪(ECD) AE.SE-54/SE-52 毛细管色谱柱 肌醇 光密度法(微生 物法)GB 5413.25-2010婴幼儿食品和乳品中肌醇的测定 V2200可见分光光度计 气相色谱法(硅烷 化) GC1120气相色谱仪(FID) ZKAT-225毛细管色谱柱 牛磺酸 高效液相色谱法(丹磺酰氯柱前衍 生)GB 5413.26-2010婴幼儿食品和乳品中牛磺酸的测定 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 脂肪酸 气相色谱法(甲酯 化)GB 5413.27-2010婴幼儿食品和乳品中脂肪酸的测定 GC1120气相色谱仪(FID) 脂肪酸甲酯分析专用柱&beta -胡萝卜素 高效液相色谱法GB 5413.35-2010婴幼儿食品和乳品中&beta -胡萝卜素的测定 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 反式脂肪酸 气相色谱法(甲酯 化)GB 5413.36-2010婴幼儿食品和乳品中反式脂肪酸的测定 GC1120气相色谱仪(FID) 脂肪酸甲酯分析专用柱 苯甲酸、山 梨酸 高效液相色谱法GB 21703-2010乳和乳制品中苯甲酸和山梨酸的测定 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 三聚氰胺 高效液相色谱法GB/T 22388-2008原料乳与乳制品中三聚氰胺检测方法 LC1620A高效液相色谱仪 C18-120-5 4E反相柱 LC1620M三聚氰胺快速检测仪联系方式:上海舜宇恒平科学仪器有限公司 地址:上海市虹漕路456号8号楼5~6楼 电话:021-64956777 64951010 E-mail:info@hengping.com http://www.hengping.com
  • 【瑞士步琦】喷雾干燥制备鼠李糖乳杆菌微胶囊研究
    喷雾干燥技术微囊化鼠李糖乳杆菌ATCC 7469益生菌是一种活的微生物,当摄入足够的量时会对健康有益,只有在生存能力(107-1010 CUF m/L)得到保护的情况下才能发挥其作用。益生菌通常是乳杆菌和双岐杆菌,它们常与胃肠道有关;它们通常以冻干培养物的形式供应,或者被雾化并直接添加到食物中。益生菌功能食品在市场上需求量很大,酸奶和发酵乳制品通常被用作这类生物活性微生物的载体;然而,人们对在其他类型的非乳制品基质中掺入益生菌菌株越来越感兴趣,尤其是对于患有乳糖不耐受症、对酪蛋白过敏或与乳制品有关的其它问题的消费者。一些研究报告了微胶囊益生菌的应用。例如,将益生菌菌株掺入奶酪、巧克力涂层和巧克力中,以及掺入果汁、蛋黄酱、黄油、肉类和烘焙产品等非乳制品中。益生菌菌株对胃肠道健康很重要,因为它们可以预防肠道炎症,为上皮细胞提供保护,并调节抗体。它们可以产生细胞因子或趋化因子,改善乳糖不耐受,增加对结直肠癌的保护,抑制幽门螺杆菌活性,并用于治疗食物过敏和预防急性腹泻。然而,这些微生物有不幸的缺陷,特别是在菌株存活方面。喷雾干燥是微胶囊化最广泛使用的方法之一,因为其成本低,在最佳干燥条件下具有高存活率,并且在配方中加入了保护剂。近年来,乳清蛋白作为益生菌保护剂的使用获得了越来越多的兴趣,因为这些蛋白是提高益生菌活性的天然载体,并且由于结构和理化特征,可以作为胃肠道中的递送系统。蛋白质可以在干燥过程中增加益生菌的存活率,因为它们能够形成降低热应力的保护膜。糖的添加也会影响干燥的益生菌制剂的存活。研究人员肯定了糖(如肌醇、山梨醇、果糖、乳糖、葡萄糖和海藻糖)对脱水细菌细胞的保护作用。研究发现,海藻糖等糖是一种能够通过氢键与蛋白质分子相互作用的二糖;它可以在脱水和再水化过程中替代蛋白质周围的水分子,形成一种玻璃状基质,稳定生物大分子。科学家研究了使用奶酪乳清与淀粉、阿拉伯胶、麦芽糖糊精和乳清蛋白浓缩物联合干燥鼠李糖乳杆菌 64 的载体剂选择。另一方面,干燥温度是影响存活率的因素。例如,喷雾干燥的植物乳杆菌 WCFS1 再低干燥温度下表现出较高的存活率。在此背景下,本研究以 WPC、麦芽糊精和海藻糖为原料,采用喷雾干燥的方法对鼠李糖乳杆菌 ATCC 7469 进行微囊化,并评估微囊化对细胞活力和干粉性能的影响。以喷雾干燥条件(包括进口温度、空气流量和进料泵)为自变量,益生菌存活率、水分含量、水分活性和有效产量为因变量。采用响应面法对喷雾干燥包裹的鼠李糖乳杆菌的存活率进行了优化,并对粉末的稳定性进行了评估。1样品制备按最佳稳定性配方乳清浓缩蛋白:麦芽糊精:海藻糖(75:10:15)的比例采用超滤的方法制备乳制品悬浮液。将冻干的鼠李糖乳杆菌 ATCC 7469 菌株悬浮于 2ml 培养基中,在 MRS 肉汤(蛋白胨:10.0g,牛肉浸粉:10.0g,酵母浸粉:5.0g,葡萄糖:20.0g,吐温80:1.0g,磷酸氢二钾:2.0g,醋酸钠:5.0g,柠檬酸铵:2.0g,硫酸镁:0.1g,硫酸锰:0.05g,pH6.2±0.2,25℃)中重新激活制备细菌悬浮液。2实验过程在磁力搅拌下将鼠李糖乳杆菌 ATCC 7469 菌株悬浮液添加到每个乳悬浮液中,在微囊化过程期间使所述分散液保持在恒定的搅拌状态。喷雾干燥仪选用瑞士步琦 B-290,通过改变进口温度(120℃-180℃)、干燥空气流量(70%-90%,即:28-35m3/h)和进料量(10%-55%,即 3-17mL/min)来进行工艺摸索。▲S-300工艺探索采用响应面法和二次复合中心设计对益生菌微囊化进行了优化,其自变量有进口温度、空气流速和进料流量。在最优理论条件下进行了三次实验验证。图1 考察了菌株存活率的响应面变化。由图可知存活率与出口温度呈反比,低温时存活率在 69%、高温时存活率在 23%。其他科学家在使用含益生元的脱脂乳制备鼠李糖乳杆菌 GG(ATCC 53,103),70℃ 时的存活率为 76%。也跟我们的研究结果相吻合。图2 考察了水分含量的响应面变化。从图可得到进口温度与水分含量之间呈反比关系,当进口温度与进料量较高时,粉末的水分含量较低,结合存活率考虑,水分含量在 3.0%-5.8% 之间,与其他报道的数值相接近。图3 考察了水活度的响应面变化。在较高的进口温度下,进料量和气体流量得到了较低的水活度值,因素与结果之间呈反比关系。其他使用麦芽糊精、乳清蛋白浓缩物和葡萄糖的相关研究中,水活度的值与本研究中活性最高的粉末报告结果一致。3实验结果确定益生菌的包封中壁材的最佳比例对于提高微生物对抗整个胃肠道条件的稳定性很重要。在干燥过程中指定最佳条件以最大限度地提高作为壁材的蛋白质-海藻糖-麦芽糊精混合物的保护能力并因此提高鼠李糖的存活值也是重要的。因此,使用响应面方法确定干燥过程的最佳条件。表2显示了鼠李糖乳杆菌微囊化的最佳操作参数,结果表明,理论模型可以很好地近似实验值(差异<10%)。得到的最佳喷雾干燥条件是进口温度、空气流量和进料泵流量分别为169℃、33m3/h和16ml/min,存活率为70%,吸气率为84%,出口温度为52℃,总体满意度为0.96。物理性质评价如图4所示,得到的粉末水活性动力学显示了较高的吸水能力,这可能是海藻糖作为低分子量碳水化合物,表现出的分子运动和扩散效应,与用于包封基质的典型吸水行为一致。吸湿性随着储存时间的延长有增加的趋势,直到达到某种程度的平衡。因此加入了 WPC 来降低吸湿性,因为它的表面活性和形成具有较高 Tg 膜的能力。粒径和形态结果如图5显示。(a)在最佳工艺参数上制备的粉体,其微胶囊紧凑,类球形形状,具有不同的大小和不规则的表面与压痕,外表面显示无裂缝或破坏的墙壁,这是确保更高的保护和更低的气体渗透性的基础。4结论结果表明,蛋白质-海藻糖-麦芽糊精混合物是包裹鼠李糖乳杆菌的良好壁材,在干燥过程中表现出重要的热保护作用,并提高了其存活率;通过响应面方法优化的喷雾干燥工艺条件生产的微胶囊具有可接受的理化性质——水分、水活性、吸湿性和粒径等,为益生菌的微囊化提供了思路。5文献来源Microencapsulation of Lactobacillus rhamnosus ATCC 7469 by spray drying using maltodextrin, whey protein concentrate and trehalose.
  • 母乳低聚糖(HMOs)的科学共识》正式发布 产业化路径还需协同探索
    7月18日,中国食品科学技术学会组织起草的《母乳低聚糖(HMOs)的科学共识》(以下简称“共识”)在北京正式发布,为HMOs的科学研究、产品研发和原料审批提供科技支撑,同时为消费者科学认知HMOs提供指导。  回应关切发布共识 加快HMOs在我国的审批与应用  HMOs已成为婴配行业普遍关注的重要功能性配料之一,其发现、制造与应用对于促进人群健康,尤其是在改善婴幼儿健康和营养需求方面具有重要意义。HMOs已在全球多数国家上市,但在我国尚未获得批准,而严谨扎实的科学基础是其通过审批的前提。中国食品科学技术学会常务副理事长邵薇在致辞中表示,中国食品科学技术学会组织来自食品科学、医学、临床营养学以及标准法规方面等不同专业领域的相关专家及行业代表,从HMOs的基础研究、安全性及功能性、产业化情况以及国内外管理情况和应用情况等方面,做出了系统的科学总结,经过广泛而深入的讨论形成了共识。  为什么要形成这样一个共识?中国工程院院士、国家食品安全风险评估中心总顾问陈君石代表专家组表示,专家组和工作组对HMOs相关的技术内容进行了系统梳理,确保了共识的科学性。共识的发布,有利于消费者“明明白白地消费”。例如,HMOs存在于母乳中,为什么要添加到婴幼儿配方奶粉中?这是由于婴配奶粉主要是用动物的乳为原料,特别是牛乳,而牛乳中HMOs的含量非常少,所以在婴幼儿配方奶粉有必要添加HMOs。他期望,各方能够在共识的指引下,强化HMOs相关应用与研究,不断为消费者提供优质产品,推动行业高质量发展。  权威专家深入解读 HMOs的功效与安全得到全球认可  安全性是一个食品原料应用的基础。HMOs的安全性究竟如何?中国海洋大学功能性乳品与益生菌工程研究室主任张兰威在报告中指出,发酵法生产的HMOs与母乳中天然存在的HMOs在结构上完全一致。对于微生物发酵法生产的HMOs,科学界和产业界已对其用于婴幼儿配方食品的安全性开展了相关动物毒理实验和临床人群试验,结果均证实HMOs是安全的。  从营养角度来看,究竟有没有必要在食品中添加HMOs?北京大学公共卫生学教授张玉梅表示,母乳喂养追踪研究及临床研究表明,HMOs有促进双歧杆菌定殖,改善肠道菌微生态、维持肠屏障、抵抗病原菌感染、调节免疫以及神经发育、认知功能等功能。有临床研究表明,添加2'-岩藻糖基乳糖 + LNnT配方粉对牛奶蛋白过敏婴儿出生后第一年呼吸道和耳部感染具有保护作用。“科学无止境,对于人类健康的追求也无止境。未来,HMOs功能的相关研究还将继续深入。”  HMOs的研究日益深入,应用日趋广泛,那么这种原料又是如何生产出来的,在生产中应用了哪些技术?江南大学生物工程学院院长刘龙介绍,目前国际上已批准使用的HMOs主要采用微生物发酵法(合成生物学方法)制备,通过代谢途径的理性设计与优化重构,获得的工程菌株能够直接以乳糖、甘油、葡萄糖等底物为原料微生物发酵合成HMOs。由于其生产更加高效,该方法也更适合应用于大规模工业生产。经过合成生物学技术生产的HMOs安全性是可以保障的。  HMOs在国际上又是如何管理的?国家食品安全风险评估中心标准三室主任张俭波解读了部分国家和地区HMOs法规标准管理情况。张俭波介绍说,美国将HMOs作为一般认为安全(Generally Recognized as Safe, GRAS)物质管理,欧洲食品安全局、澳大利亚和新西兰食品标准局(以下简称“澳新”)将HMOs作为新食品原料(novel food)管理。美国、欧盟允许的品种较多、允许使用的范围较广,均允许在婴幼儿配方食品等使用,使用量一般设定最大使用量。在我国,对HMOs作为营养强化剂进行管理,需要依据《食品安全法》以及《食品添加剂新品种管理办法》进行上市前审批。  基础研究支撑应用 创新技术推动行业高质量发展  在回答如何确保HMOs的安全性时,北京工商大学教授罗云波谈到,通过基因工程菌进行发酵产生HMOs,通常是在封闭环境下进行生产。同时最终的产物也要经过分离、纯化,其安全性是能够保障的。  对于HMOs的工业化应用问题,张兰威认为应做到以下几点:一是加强基础研究,对其加大认识。二是弄清其量效关系。三是在工业化生产,必须进一步去发掘其潜力,降低成本,才能实现高效生产。他表示,“对HMOs的开发应用,应不限于婴配食品,还可向老年食品、特医食品等领域拓展”。  对于婴配乳粉消费问题,张玉梅表示,对于婴儿,母乳是第一选择。但如果没有母乳或母乳不足,可以选择添加了HMO的婴配乳粉。  在回答HMOs在我国的审批进展问题时,中国疾病预防控制中心营养与健康所黄建研究员表示,相关企业已向国家卫生健康委员会提交了几种HMOs(2'-FL,生产方式包括合成法和发酵法;LNnT,生产方式为发酵法)作为食品营养强化剂用于婴幼儿配方粉和调制乳粉(仅限儿童用乳粉)的申请,其中,2'-FL和LNnT在即食状态下的使用量分别为0.7~2.4 g/L和0.2~0.6 g/L。截至目前,已进行多次公开征求意见。可以预见,不久后可能会根据三新食品要求对HMOs进行审批上市。  对于HMOs的未来发展,邵薇提出三点建议。一是加快推动HMOs的审批。二是加强HMOs的研究与应用。三是同步推进HMOs的科学普及工作。以共识的发布为起点,推动HMOs在我国的应用及创新发展,真正惠及广大消费者。
  • ACQUIT Y UPLC-ELSD测定奶粉和牛奶中八种糖的含量
    ACQUIT Y UPLC-ELSD测定奶粉和牛奶中八种糖的含量赵淑军 沃特世公司,上海,中国关键词:超高效液相色谱 奶粉 牛奶 Fructose(果糖)Sorbose(山梨糖)Glucose(葡萄糖)Sucrose(蔗糖)Maltose(麦芽糖)Lactose(乳糖)Maltotriose(麦芽三糖) Maltotetraose(麦芽四糖) 实验方法材料、试剂和仪器乙腈为色谱纯,三乙胺为优级纯,实验用水为超纯水(18M&Omega ,TOC3ppb),ACQUITY UPLC超高效液相色谱系统,AcquityELSD检测器,(FILTER MIXER (425&mu l,P/N 205000403),可不用)。色谱条件液相系统: Waters ACQUITY UPLC配ACQUITY ELSD 蒸发光散射检测器色谱柱: AACQUITY UPLC BEH Amide 2.1mm x 100mm,1.7 &mu m, P/N:186004801柱温: 35˚ C分析时间 : 18 min进样量: 5ul(样品进样2ul)流动相: A:水B:0.2%TEA乙腈溶液 梯度洗脱弱洗溶剂: 乙腈/水=90/10,800&mu l强洗溶剂: 乙腈/水=10/90,500&mu l进样方式: 不充满定量环(使用针溢出)ELSD条件:增益: 500数据率: 10pps喷雾器模式: 冷却漂移管温度: 55˚ C气体压力: 30psi实验室试验温度: 20˚ C实验室试验湿度: 45%工作电源: 220V稳定电源梯度方法见下表:时间/(min) 流量/(ml/min) A% B% 曲线0 0.15 15 85 初始2 0.15 22 78 611 0.15 50 50 418 0.15 15 85 1数据处理系统Empower 2前处理方法称取2.0 g奶粉样品或5ml液态奶样品,加入20mL(对于液态奶添加15ml)1/1的乙腈水溶液溶解,手摇震荡混匀,然后涡旋混匀2分钟,室温下8000r/min离心15分钟,取上清液过0.2&mu m滤膜;对于某些样品由于糖含量很高,所以过滤后的样品可能需要用乙腈/水=70/30的溶液稀释一定倍数后,进样检测。结果与讨论标准配制八种糖标准分别称取10mg,用1/1的乙腈水定容至1ml,然后用乙腈/水=70/30的溶液稀释配制各个浓度的标准品,进行实验。八种糖UPLC分离检测色谱图及数据 图 1. 八种糖UPLC分离检测色谱图图1是八种糖50ppm混合标准品用UPLC(ACQUITY UPLC BEH Amide色谱柱)分离,ELSD检测的色谱图,按照保留时间顺序分别是:Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Sucrose(蔗糖)、Maltose(麦芽糖)、Lactose(乳糖)、Maltotriose(麦芽三糖)、Maltotetraose(麦芽四糖);包括5种单糖和3种多糖。有关数据见下表。其中较难分离的Fructose(果糖)和Sorbose(山梨糖)、Maltose(麦芽糖)和Lactose(乳糖)均分别达到1.6、1.5的分离度。方法的检出限如图2所示,为5ppm的混标色谱图,此浓度下按保留时间顺序八种糖的信噪比分别达到3、5、5、24、6、12、5和3,(进样量10ul):可见,八种糖中Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Maltose(麦芽糖)、Maltotriose(麦芽三糖)和Maltotetraose(麦芽四糖)的检测限为5ppm;此浓度下Lactose(乳糖)可达到定量限,而Sucrose(蔗糖)的定量限可以到达2ppm。方法的线性相关性浓度分别为5.000、10.000、20.000、50.000、100.000、150.000mg/L的八种糖标准品依次进样,进样量均为5&mu L,外标法定量。以峰面积A的lg值为纵坐标,浓度C的lg值为横坐标进行线性回归,得到8种糖的线性方程、复相关系数和线性曲线图如图3-图10所示,在5.000-150.000 mg/L范围8种糖均具有良好的lg-lg线性关系。实际样品检测结果从市场取某一奶粉样品,进行实际提取实验,进样检测,色谱图及结果数据见图11所示,可以看出此样品中含有蔗糖、乳糖、麦芽三糖和麦芽四糖四种糖成分,同时发现蔗糖和乳糖的含量相当高,已经超出检测器的响应范围;因此将此样品稀释100倍后再次进样检测,结果数据见图12。由图11和12的数据可以知道此奶粉中含有蔗糖16.8mg/g、乳糖140.1 mg/g、麦芽三糖和麦芽四糖的含量分别只有1.9 mg/g、1.3mg/g。某液态奶提取后,稀释100倍检测结果见图13。重现性首先用50ppm混合标准6次连续重复进样,考察标准品在本方法下的稳定性,见图14所示重叠色谱图,重复数据见表3、表4。提取奶粉实际样品,由于乳糖含量较高,将其稀释了100倍,然后在不同天次连续3天进样检测,考察本方法对于实际样品日间的重现性情况,如图15所示是该实际样品3天内3次进样的重叠色谱图,由图可见该方法对实际样品在日间具有较好的重现性。结论本方法建立了用Waters UPLC-ELSD系统检测奶粉和牛奶实际样品中Fructose(果糖)、Sorbose(山梨糖)、Glucose(葡萄糖)、Sucrose(蔗糖)、Maltose(麦芽糖)、Lactose(乳糖)、Maltotriose(麦芽三糖)、Maltotetraose(麦芽四糖)8种常见糖的的定量分析方法。方法的检出限:有6种糖达到5&mu g/g,另外两种糖Sucrose和Lactose在5&mu g/g下的信噪比可达到24和12。使用ACQUITY UPLC BEH Amide色谱柱和三乙胺流动相体系,8种糖均实现基线分离,可以用于奶粉和牛奶中常见这8种糖的含量测定。参考文献:Waters ACQUITY UPLC BEH Amide Columns Care & Use,P/N:715001371
  • 生鲜牛乳的检测方法和收购管理标准
    进一步加强生鲜乳质量安全监管,规范生鲜乳生产收购秩序,提高生鲜乳质量安全水平,保障了生鲜乳质量安全。从事生鲜乳收购、贮存、运输的生鲜乳收购站应当取得《生鲜乳收购许可证》,乳制品生产企业、奶牛养殖场、奶农、专业生产合作社,执行加强生鲜乳生产收购管理,保证生鲜乳质量安全,促进奶业健康发展,根据《乳品质量安全监督管理条例》,制定要求。第一章第六条,生产、收购、贮存、运输、销售的生鲜乳,应当符合乳品质量安全国家标准。第三章 生鲜乳收购 ,第十八条 取得工商登记的乳制品生产企业、奶畜养殖场、奶农、专业生产合作社开办生鲜乳收购站,第四条化验、计量、检测仪器设备清单。保障生鲜乳质量安全,促进奶业稳步健康发展,真正让广大人民群众喝上“放心奶”。 许多乳品收购单位还规定下述情况之一不得收购:①产犊前15d内的末乳和产后7d内的初乳;②牛乳颜色有变化,呈红色、绿色或显著黄色者;③牛乳中有肉眼可见杂质者;④牛乳中有凝块或絮状沉淀者;⑤牛乳中有畜舍味、苦味、霉味、臭味、涩味、煮沸味及其他异味者;⑥用抗菌素或其他对牛乳有影响的药物治疗期间,母牛所产的乳和停药后3d内的乳;⑦添加有防腐剂、抗菌素和其他有碍食品卫生的乳;⑧酸度超过20oT,个别特殊者,可使用不高于22oT的鲜乳。 新鲜牛乳的滴定酸度为16~18oT。不同酸度的原料乳可合理利用:——淡炼乳的原料乳,要用75%酒精试验;——甜炼乳的原料乳,用72%酒精试验;——乳粉的原料乳,用68%酒精试验(酸度不超过20oT)。——奶油的原料乳尚可用22oT的乳制造,但其风味较差。——酸度超过22oT的原料乳只能供制造工业用的干酪素、乳糖等。 食品安全国家标准《乳和乳制品酸度的测定》 GB5413.34-2010因发酵而产生的,是酸奶中的乳酸,乳制品中最重要的酸则是乳酸,乳制品的酸度滴定常用于检测奶酪和酸乳生产中的乳酸发酵过程,并且可以制造出不同味道的出品,生鲜牛乳糖酸一体机PAL-BX/ACID91可迅速进行生鲜牛乳进行糖度和酸度测量,无需要任何测量试剂,方便现场收购生鲜牛奶使用。如巴氏杀菌乳、灭菌乳、生乳、发酵乳、炼乳、奶油及干酪素酸度的测定均可使用牛乳糖酸一体机PAL-BX/ACID91进行测量,作为生产质量指标。乳酸%:牛奶的酸度除滴定酸度外,也可用乳酸的百分数来表示,与总酸度的计算方法一样,也可由滴定酸度直接换算成乳酸% (10T=0.09%乳酸)。习惯上把酸度小于0.2%以下的牛奶称为新鲜牛奶;把大于0.2%的牛奶称为不新鲜牛奶。 测试方法:a .此仪器测试糖度(Brix)时使用样品原溶液,测试酸度时需要使用去离子水(蒸馏水)或者纯水稀释50 倍(1:50),但是酸度测试值还是指原溶液的酸度。b. 便捷的稀释(1:50)可以使用配备的胶头滴管和计量附件进行。暨使用胶头滴管吸取0.2ml 样品,添加去离子水或纯水到计量附件标注的刻度线(10ml)位置。C. 精确的稀释(1:50)使用国内配套的200ul 移液器吸取样品,5000ul 移液器添加9.8ml 去离子水或纯水。 使用OFFSET, 与滴定法的差异对于特定的样品,由于测量原理的差异,仪器的测试值可能无法与滴定法测试值完全一致。 使用修正(offset)创建两种方法之间的转换表(系数)。Y = ax + bY:滴定值x: 仪器测试值a: 系数(倍数)b: 加/减的数值转换 此款牛乳糖酸一体机PAL-BX/ACID91 均有样机可以免费样品测试,欢迎租借试用,欲了解更多产品资讯,或有样品需要测试请联系ATAGO中国分公司。
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。
  • 剔除有害物作饲料添加剂 三聚氰胺奶粉可变废为宝
    昨日,三达集团在厦门称,利用膜分离纯化手段,可剔除分离三聚氰胺奶粉中的有害物质,变废为宝――变成动物饲料添加剂。蓝伟光甚至建议,不妨换一种思路处理三聚氰胺奶粉问题,批准建设一座有毒奶粉无害化处理的示范工厂。  三聚氰胺奶粉销毁遭遇技术难题,厦门市一公司建议剔除有害物质作饲料添加剂  毒奶粉、毒奶糖阴魂不散,都是三聚氰胺惹的祸。10万吨毒奶粉的销毁,竟然成为一道技术难题。昨日,三达集团在厦门称,利用膜分离纯化手段,可剔除分离三聚氰胺奶粉中的有害物质,变废为宝――变成动物饲料添加剂。  三鹿奶粉事件之后,中央部委三令五申三聚氰胺奶粉必须销毁。毒奶糖事件之后,人们才发现,各大企业封存的三聚氰胺奶粉总量超过10万吨,如何销毁处理已成为极为头痛的难题:用作燃料对锅炉损伤太大,作为水泥配料又发现生产的产品不符合质量标准,焚烧导致新的环境污染,批量填埋担心被别有用心的人挖出来……  销毁10万吨三聚氰胺奶粉,在厦门三达集团董事长蓝伟光看来,“不仅企业要承担很高的销毁成本,本身也是一种极大的浪费”。他呼吁,利用膜分离纯化手段,10万吨所谓毒奶粉可以不毒,甚至变废为宝。  他说,三聚氰胺本身是一种低毒的化工原料。如果人们能够通过现代膜分离纯化技术,把问题奶粉中的三聚氰胺含量降低到安全水平而不影响奶粉中的营养及其他有效成分,目前封存的10万吨奶粉将重新成为有用的经济社会资源。  据称,厦门三达集团早在2008年发生三聚氰胺事件的第一时间,就与乳品企业合作,经过三个月的努力,采用纳滤膜分离技术实现对三聚氰胺奶粉的无害化处理实验,将奶粉中的三聚氰胺的浓度降低到1PMM以下。  这种膜,就是一种纳滤膜。牛奶的有效成分主要为蛋白质、乳糖、维生素等大分子物质,可以被纳滤膜有效截留,而有害奶粉中的三聚氰胺相对分子量为126.15,能被纳滤膜有效脱除。  借此解决方案,即使问题奶粉中的三聚氰胺含量高达2000毫克/公斤奶粉以上,在其营养及其他成分得到有效保留的前提下,也能使三聚氰胺的含量降低至1毫克/公斤奶粉以下,符合国际上最为严格的质量控制要求。但考虑到人们的心理安全因素,蓝伟光建议作为动物饲料添加剂使用。  蓝伟光甚至建议,不妨换一种思路处理三聚氰胺奶粉问题,批准建设一座有毒奶粉无害化处理的示范工厂。
  • 美素力奶粉中惊现黑色小颗粒 厂方称是焦糖
    孩子吃的奶粉里那些黑色小颗粒到底是什么?这两天,杭州市民杨先生一家一直在为这个问题纠结着。  虽然厂家已经明确表示,这些黑色小颗粒是高温烘培产生的焦糖颗粒,绝对不会对孩子产生影响,但杨先生还是很不放心。于是,他向工商部门投诉了奶粉生产商。  奶粉中漂浮着黑色小颗粒  42岁的杨先生,中年得子,现在一家人都围着孩子转,唯恐有一点差池。今年1月,孩子出生后,杨先生一直给孩子吃美素力婴儿奶粉,之前并没发现什么问题。  3月17日早上,杨先生妻子和往常一样,给孩子冲了一瓶奶粉。因为当天刚好是在光线强烈的地方,她忽然看到了奶瓶中隐约有几个黑色的小点点在浮动。  这些黑点虽然不大,但明显不溶于水,这个发现,让一家人都乱了套,害怕这些黑点对孩子健康产生影响。  杨先生说,美素力奶粉产自荷兰,他们一家正是看中进口奶粉质量有保证才购买的。  当天晚上,他就给美素力公司的全国客服热线打了电话,但对方告诉他,黑色小颗粒是乳液高温烘培后形成的焦糖沉淀物,属于正常现象,不会对孩子的健康产生影响。  虽然对方说得板上钉钉,可杨先生一家却始终放心不下。杨先生觉得,国家有相关规定,奶粉里是不能出现不相关的杂质的,那么这些小颗粒是不是属于这个范围呢?  就算这些小颗粒确实无害,那又是不是应该在罐体上向消费者注明呢?  厂家解释黑色颗粒是焦糖  带着杨先生的这些疑问,记者前天首先拨打了美素力全国客服热线。经过沟通后,202号话务员请技术人员给记者详细解释了小黑颗粒产生的原因。  技术人员说,黑色小颗粒确实是乳液中的乳糖在高温烘培后形成的焦糖颗粒。因为这批奶粉采用的是国外比较常见的高温烘培加工法,首先对新鲜的乳液进行高温烘培,在经历好几个循环后形成奶粉。在这个物理过程中,会有一些乳糖转化为黑色或咖啡色的焦糖颗粒,工厂会采用技术手段剔除一些较大的颗粒,但一些非常细微的颗粒确实会留下来。  厂方也承认,这些小颗粒不溶于水,也无法被正常吸收,但焦糖颗粒没有害处,而且会随着新陈代谢被自然排出体外。  至于这样的问题是否应该在罐体上标明,这位工作人员表示,确实有一些进口奶粉会在罐体上标明这个事情,但他们这个牌子的奶粉没有做到,他们也会把事情向上级反映。  工商部门已介入调查  记者通过网络搜索发现,不仅是杭州地区,也不仅是美素力这个品牌,确实有不少使用烘焙制作的进口奶粉存在出现小颗粒的问题。  昨天下午,记者从工商部门了解到,杨先生已经向下城工商局长庆中队提交了相关的投诉单,而工商部门也立刻抽取了同个品牌批次的产品送鉴定部门化验,不过鉴定结果需要好几个工作日才能出来。  工商局相关负责人表示,虽然目前双方各执一词,但等鉴定结果出来后一定会给出明确答复。如果产品有问题,那么不是说赔钱这么简单,肯定会对相关产品进行查处。但要是证明产品质量没有问题,他们也会和杨先生沟通,请他放心。
  • 中国乳业的下一个10年
    p  在过去近20年里,是什么推动了中国乳品行业的发展?为什么说光明乳业错过了两个最佳的增长机遇?2012年起,乳品增速显著放缓,是哪些新品类仍取得了高速的增长,为何?/pp  在未来10年中,谁将推动中国乳品行业的前进?为什么说低温时代已经来临?除了品类的机遇,中国企业更广阔的疆场在哪里?/pp  本文从品类的角度分析过去推动中国乳品行业发展的因素,并预测未来即将上升的品类。同时,结合《品牌的起源》与《商战》理论分析过去企业起伏的原因,为企业更好的把握未来提出策略建议。/pp  在中国市场,我们发现了什么?/pp  在今年中国乳制品工业协会第二十三次年会上公布的2016 年销售收入15强的乳品企业名单中,我们发现外资企业仅有雀巢与美赞臣,两者分别以65.2亿元及53.2亿元的业绩占15强6.37%的份额。15强的市场集中度达到59.46%,因此,可以说中国本土乳品企业在中国整体乳品行业中占据着数量与体量的绝对优势。/pp  这个数据对于行外人来说,颇感意外。或许,最直接的原因是奶粉品类的高曝光度是大众产生错觉,误以为中国企业在外资企业与进口产品夹击下,处境艰难。通过我们汇总的数据可以发现,中国乳品行业主流品类中,除了奶粉品类外资占据近60%的份额以外,其他大品类都由本土企业主导。/pp  此外,中国乳品行业规模以上企业营业收入自2008年的1375.95亿元人民币增长到2016年的3503.9亿,增长超过2.5倍的。伊利、蒙牛、光明三大乳企在此期间也取得了几乎相同倍数的增长。并且,三巨头2016年的业绩总额是1346.07亿,占乳品行业收入的38.42%。伊利与蒙牛在2016年更是双双入围全球乳业十强。/pp style="text-align: center "img title="1.png" src="http://img1.17img.cn/17img/images/201803/insimg/ea2fdc94-4065-48d9-8173-1216b96f5c6c.jpg"//pp style="text-align: center "图1:规模以上乳制品企业营业收入及增长率/pp style="text-align: center "数据来源:国家统计局、中国乳制品工业协会/pp  自2012年起,中国经济增速由之前超过10%,降到2012年的7.7%。随着整体经济进入较低位增长的阶段,乳品行业也在放缓,2012年至2016年期间的平均增长率仅为8.80%。/pp  我们同样的发现,尽管在经济与行业低迷期间,部分品类仍然能取得超高额的年平均增长。相比而言,伊利、蒙牛、光明在过去近10年中几乎与整体行业持平,他们显然,并未持续取得超高额增长。/pp  一、 在过去,是什么推动了中国乳品行业的发展?/pp  “创新”似乎是一个被过多提及,同样被过多神话的概念,而我们认为最有效的创新是品类的创新——基于品类创新的产品才有更持久的生命力:可口可乐开创并主导可乐品类 雀巢开创并主导速溶咖啡 红牛开创并主导能量饮料。过往的数据不断应验了里斯关于品类的理论:“企业只有一个职能,那就是开创并主导一个新品类”。/pp  商业发展的动力是分化,分化诞生新品类,新品类的不断崛起才是推动乳品行业不断增长的源动力。我们根据不同品类的高速增长阶段,画出下图,可以看出不同阶段始终有不同的品类在主导乳品行业的增长。/pp style="text-align: center "img title="02.png" src="http://img1.17img.cn/17img/images/201803/insimg/9d0c660a-1b09-46b2-b792-f0877aa06a26.jpg"//pp style="text-align: center "图2:中国乳品市场部分品类高增长阶段/pp style="text-align: center "说明:乳饮料、乳酸菌饮料也有过高额增长,但本文未作分析。/pp  1. 常温奶的崛起与回落/pp style="text-align: center "img title="03.png" src="http://img1.17img.cn/17img/images/201803/insimg/fd668062-ea49-45af-940f-279911b16972.jpg"/  /pp style="text-align: center "图3:伊利利乐包纯牛奶/pp style="text-align: center "图片来源:飞牛网/pp  基本上在每一个版本利乐的故事中,常温奶(指常温纯牛奶)崛起的经典案例都被反复提及。/pp  在90年代及以前,中国乳品企业大多以生产低温鲜奶为主。而采用低温杀菌技术,不易长期保存,因此,销售半径有限,企业难以扩大。利乐先后帮助伊利与蒙牛实现长时间储存牛奶,利乐包装的常温奶拥有便于携带、容易储存、亦适合长途运输、价格更低等优势,彼时,正迎合了中国人均液态奶消耗量的爆发式增长趋势 ,蒙牛与伊利开启了中国乳品行业最辉煌的增长年代。/pp style="text-align: center "img title="04.png" src="http://img1.17img.cn/17img/images/201803/insimg/d447240c-163c-4116-9aa0-7b98dda8e9ac.jpg"//pp style="text-align: center "图4:中国人均液态奶年消耗量/pp style="text-align: center "图片来源:三钱二两,虎嗅网/pp  “液体乳的结构自1995年以来也发生了巨大变化。1999年,超高温灭菌乳与巴氏杀菌乳占液体乳的比例分别为21.1%和59.9%,到2004年已变成66.7%和18.1%。当年,低温奶与常温奶较量的激烈程度,不亚于今日欧美“乳品与植物蛋白”的较量。我们都知道了结果,当初坚持在低温阵营的光明乳业、三元,新希望,燕塘如今的业绩远远低于伊利与蒙牛。/pp  伊利与蒙牛的业绩分别在2003年与2004年超过光明乳业,并且在2009年时业绩均超过光明乳业的3倍。2009年,蒙牛与伊利在常温奶领域占据的份额超过70%。而在蒙牛、伊利依托常温奶快速向全国发展时,光明乳业坚持以低温巴氏奶为主,并且以华东为主战场。2008年6月,光明时任总裁郭本恒改革为常温奶、低温奶并重的策略并取得显著成果,然而,乳品行业的格局已经逐渐稳固并持续至今。/pp style="text-align: center "img title="05.png" src="http://img1.17img.cn/17img/images/201803/insimg/18201a83-6bfc-4052-ab63-5ae75393d123.jpg"//pp style="text-align: center "图5:三巨头在2000年-2009年期间的业绩变化/pp  伊利的业绩在2000年至2009年期间平均增长率达到36.89%,蒙牛更是高达126.36%。在常温奶领域,基本上应验了二元法则,只有老大、老二,没有老三。/pp  随着市场成熟度的提高,常温奶的增速也开始回落,同时分化出了“高端白奶”品类。基础白奶的增速自2008年起已显著放缓,甚至在2016年出现下滑。/pp  品类战略分析/pp  1. 常温奶是低温奶的对立面,蒙牛是伊利的对立面/pp  对立定理:任何品类,除非有一个敌人,否则无法成功。任何新品牌除非有一个敌人,否则也无法成功。常温奶确立为低温奶的对立面 蒙牛确立为伊利的对立面。蒙牛在初期就将“创内蒙古乳业第二品牌”作为口号。结果,常温奶胜出了,蒙牛不仅成了内蒙古的第二,更成为中国的第二。/pp  2. 在无人竞争的地区展开/pp  侧翼战原则:在无人竞争的地区展开。常温奶在2000年初是一片无人的战场。并且,伊利与蒙牛非常幸运,当时乳品行业的区域巨头如光明、新希望等坚持低温,反而为伊利与蒙牛留出了机会,等光明回头,已8年过去。/pp  3. 光明应该怎么做?/pp  在错过常温奶机遇后,光明应当坚持做常温奶的对立面。/pp  光明乳业在2008年放弃了坚持低温奶的策略,改为常温奶与低温奶并重,这条战略违背了对立面原则和“集中优势兵力”的原则。按照兵力法则(集中优势兵力,胜利通常属于更强大的一方),光明应该坚持做低温奶,并且将奶源与渠道扩展到全国,等待低温奶大潮的来临。而不是在蒙牛与伊利建立起全国的优势时,用自己的弱项对抗竞争对手的强项,并分散自己的兵力。/pp  在最近几年的常温酸奶商战中,伊利的安慕希与蒙牛纯甄同样利用有着强大的低线渠道优势(兵力优势)超越了光明乳业的莫斯利安。/pp  2. 儿童的短暂辉煌/pp style="text-align: center "img title="07.png" src="http://img1.17img.cn/17img/images/201803/insimg/4de31c93-44ef-4eb1-bc7e-635eb1557498.jpg"//pp style="text-align: center "图6:旺仔牛奶/pp style="text-align: center "图片来源:旺旺京东自营旗舰店/pp  实际上,目前为止,儿童奶没有国家的统一标准。并且,各企业对儿童奶定义混乱。儿童奶在各调研机构的划分中也不统一,既可能包含儿童乳饮料,也包含儿童牛奶。/pp  尼尔森以常温乳制品划分出儿童奶的类别,包含着儿童白奶、儿童常温酸奶、儿童乳酸饮和儿童风味奶。/pp  通常的说法是,儿童奶的崛起于2008年,过往描述市场的需求表述是:“孩子的普遍偏食也使‘全面营养’成为家长最大的未满足需求,亟待专为儿童研制的专属牛奶填补这些空白”[7],蒙牛未来星首开战场,随后,伊利QQ星、光明、旺旺等也加入。在2009年,常温奶总体增长缓慢,儿童奶却取得了53.2%的增长率。” 目前,该品类以旺仔牛奶为主体,销售额占比达59.4%,其次分别是伊利的QQ星(23.3%)和蒙牛未来星(12.3%)。/pp  不过,从目前尼尔森的数据来看,在2016年、2017年,儿童白奶、儿童乳酸饮、儿童风味奶平均下滑均接近2位数。唯儿童常温酸奶于2017年6月滚动年度增长率高达107%。/pp style="text-align: center "img title="08.png" src="http://img1.17img.cn/17img/images/201803/insimg/c027e35d-17cd-4b46-8495-f910d1888392.jpg"//pp style="text-align: center "图7:旺仔牛奶2010年-2016年销售额/pp  说明:旺仔牛奶的业绩原始数据多为美元,表格中为换算成人民币。2010年业绩9.31亿美元,按照2010年12月31日汇率6.6227换算 2011年业绩12.396亿美元,按照2011年12月30日汇率6.3009换算 2012年业绩15.29亿美元,按照2012年 12月31日汇率6.9343换算 2013年业绩18亿美元,按照2013年12月31日汇率6.0969换算。/pp  2007年至2011年均是旺仔牛奶的高速增长期,据报道,此间年复合增长率为33%[9]。根据FBIF搜集的公开数据,旺仔牛奶在2012年仍高速增长,但从2015年就快速回落。相比蒙牛未来星,旺仔牛奶诞生的更早,它于1996年创立,连续增长了17年,直至2014年首次下降0.8%[10],此后迅速下滑。/pp  品类战略分析/pp  1. 儿童奶不是一个品类/pp  在查询儿童奶的信息的时候,作者充满着困惑,究竟如何定义?极其纷繁复杂。作为消费者而言,一旦想起儿童奶,可能的联想是什么?换个角度,当提到旺仔牛奶、QQ星的时候,他们代表着什么品类?恐怕,很多业内人也回答不清楚。因此,品类的角度,当消费者从品类的角度思考的时候,无法快速联想起品牌。/pp  儿童奶本身是一个非常弱的品类名称。/pp  2. 旺仔牛奶没有对手/pp  旺仔牛奶没有对手,旺旺内部的伙伴也意识到这个问题。旺仔牛奶这么多年一枝独秀,但似乎不可持续。尼尔森数据显示2017年年初至6月,旺旺的儿童风味奶市场占有率高达94%。据了解,旺仔牛奶单品占旺旺的儿童风味奶的比重在95%左右,因此,几乎是以一个单品垄断了整个儿童风味奶的品类。/pp  二元法则看着挺玄乎,但是至理。可口可乐与百事可乐、伊利与蒙牛、费德勒与纳达尔。伟大品牌,伟大的人物,需要伟大的对手!/pp  作者尝试作为消费者的角度去回想,我们为什么快忘记了旺仔牛奶、营养快线、花生牛奶这些曾经红极一时的产品。原因不仅仅是品类本身的衰落,也多因缺乏对手,没有对抗,就没有关注,容易被人遗忘。/pp  3. 儿童牛奶与儿童饮品糖份高糖、配料丰富与消费趋势相违背/pp  当前的消费潮流是追求更天然的产品、更简单的产品。因此,高糖与较丰富配料的产品将逐渐淡出消费者的选择。这个趋势同样解释了包括娃哈哈营养快线在内的乳饮料下滑的原因。/pp  3. 高端白奶顺应时代的潮流/pp style="text-align: center "img title="09.png" src="http://img1.17img.cn/17img/images/201803/insimg/c5259afe-702c-4fbe-9cf5-6512b1f54024.jpg"//pp style="text-align: center "图8:不是所有的牛奶都叫特仑苏/pp style="text-align: center "图片来源:网酒网/pp  白奶:尼尔森定义为100克牛奶蛋白质不小于2.9克的牛奶(主要是纯牛奶)。/pp  2005年蒙牛“特仑苏”横空出世,就此拉开了中国高端奶的战争。“从2005年上市至今,特仑苏十多年来始终保持双位数增长”。/pp  “不是所有牛奶都叫特仑苏”这句广告语家喻户晓,更实现了与普通牛奶的强烈区隔。紧跟着蒙牛,伊利于2006年推出高端品牌金典与之抗衡。目前在高端白奶领域,也主要是由特仑苏与金典主导。/pp  按照尼尔森2017年1月到5月份的数据,高端白奶品类特仑苏销售额市占率48.2%,金典37.4%。/pp style="text-align: center "img title="10.png" src="http://img1.17img.cn/17img/images/201803/insimg/cc8421d7-f18d-4e74-93cf-4b7c4060d341.jpg"//pp style="text-align: center "图9:特仑苏2012年-2016年业绩,其中2015年业绩为根据媒体报道预估/pp  特仑苏为常温奶开拓了全新的市场,随着高端白奶的竞争加剧,为实现与特仑苏的差异化,金典推出了“有机奶”,又将高端领域的竞争拔到新的高度,如今在有机奶领域,虽有特仑苏、圣牧参与竞争,但中国市场仍是一片蓝海。/pp  中国有机奶年增速在 20%以上,2016 年中国有机奶预估达到 115 亿元,并且,从2015年到2020年还将保持16.2%的复合增长率。/pp  根据市场研究机构,欧睿国际的数据同样显示2007 - 2017 期间全球有机奶的年复合增长率为9.7%,中国更达116.3%。/pp  《2016全球有机农业研究报告》:2014年,全球有机食品市场销售总额为626亿欧元,而中国有机食品销售总额仅为37亿欧元,占比仅为6%,中国的有机奶有着广阔的增长空间。/pp  品类战略分析/pp  1. 特仑苏开创高端奶新品类:蒙牛自己向自己发起的进攻/pp  2005年,蒙牛成立才7年,业绩就与伊利缩小到13.75亿,在2006年进一步缩小到1.8亿,更是在2007年时实现超越。高端奶的出现是在蒙牛与伊利双双超越了光明,在常温奶竞争白热化的阶段。/pp  常温白奶在经历了数年高速发展后,整体增速相对回落,2005年正值中国经济高速发展,消费升级需求强劲,因此,高端奶是有效的品类升级和差异化竞争策略。高端奶虽然可能抢占了蒙牛自身的基础白奶份额,但商战的策略是,与其让别人抢走自己的市场,不如让自己抢走自己的。/pp  2. 真正的品牌是某一品类的代表/pp  特仑苏的推出淡化与蒙牛的联系,以独立的品牌名推出全新的品类,“不是所有牛奶都叫特仑苏”让特仑苏高端的形象牢牢占据消费者的心智。但特仑苏后续推出有机奶、酸奶,这点违背了品类的战略:一个品牌只能代表一个品类。消费者以品类来思考,以品牌来表达,当消费者想起有机奶和酸奶时,第一个联想都不会是特仑苏,尽管特仑苏代表着高端。但不意味着在有机奶与酸奶领域做得最好。/pp  3. 强化“有机奶”是漂亮的侧翼战/pp  提起有机奶,相信,有不少的消费者可以脱口而出:圣牧有机奶、金典有机奶。这说明不管是圣牧还是金典,都已经取得了一定的成功。伊利金典采用进入有机奶的方式避开与特仑苏的正面竞争。侧翼战原则:在无人竞争的地区展开。/pp  而新兴企业圣牧,要想与大企业竞争,更需要回避领先企业的优势阵地,有机奶对于牧场奶源有着极高要求。因此,能有效的建立起壁垒。符合游击战原则:找一个足以守得住的细分市场。/pp  4. 酸奶:低温酸奶快速增长,常温酸奶起飞/pp  酸奶分为低温酸奶与常温酸奶,低温酸奶在中国经历了近20年的发展,常温酸奶仅起步于2009年。/pp style="text-align: center "img title="11.png" src="http://img1.17img.cn/17img/images/201803/insimg/bac07ef2-e80f-4c34-8b1f-2d98d3789f06.jpg"//pp style="text-align: center "图10:2011-2017年低温酸奶销售额与增速/pp style="text-align: center "来源:东方食品饮料/pp  随着消费升级、冷链的发展,低温酸奶在中国持续增长,2011年-2016年期间增速稳定在10%以上。然而,在中国市场,当前最耀眼的明星是“常温酸奶”。/pp style="text-align: center "img title="12.png" src="http://img1.17img.cn/17img/images/201803/insimg/2718c540-15a8-4147-a6c1-c34093b84adf.jpg"//pp style="text-align: center "图11:常温酸奶的业绩与历年增长/pp  在2010年到2017年期间,常温酸奶的年均复合增长率达到93.21%。进入2017年虽有回落,但在2017年 1-5 月同比增长仍然高达32%。/pp  常温酸奶的商战颇为经典,常温酸奶在光明莫斯利安率先推出后迅速起飞。低温酸奶的发展在中国的低线城市严重受限于冷链,正如在90年代低温奶无法扩展到全国的背景一样。常温酸奶却避开了冷链的问题,得以在全国市场大规模铺开。/pp  原本,作为品类开创者的光明有着巨大的先发优势,业绩同样给予了光明回报,莫斯利安的销售额从2010的1.6亿飙升到2016年的67.23亿。/pp  或许令光明措手不及的是,眼见莫斯利安(保加利亚酸奶)的迅速崛起,伊利与蒙牛迅速采取防御措施,蒙牛于2013年推出纯甄(丹麦酸奶),伊利于2013年年底推出安慕希(希腊酸奶),凭着渠道的纵深优势,安慕希与纯甄相继于2016年与2017年上半年反超莫斯利安。/pp  安慕希2016年销售额预计在80亿[25],2017年上半年伊利安慕希在常温酸奶中市占率位居第一,约 43%,纯甄市场份额为25.8%,莫斯利安仅为21.7%。/pp  随着常温酸奶的大热,也带动了常温酸奶品类的大规模创新,也有个别取得不俗的成绩。 《财经啸侃》报道,2016年君乐宝的开菲尔常温酸奶(俄罗斯酸奶)的销售额可达15亿左右。/pp  现在全中国几乎都要被世界各国的酸奶占领了:希腊酸奶、冰岛酸奶、俄罗斯酸奶、瑞士酸奶,都是欧洲的,北美现在开始盛行澳大利亚酸奶,就是不知道会不会有“中国酸奶”。/pp style="text-align: center "img title="13.png" src="http://img1.17img.cn/17img/images/201803/insimg/1bc809ba-4e9b-40b6-a376-2510bf33201f.jpg"//pp style="text-align: center "图12:安慕希/pp style="text-align: center "图片来源:双喜商城/pp  品类战略分析/pp  1. 商业发展的动力是分化/pp  常温酸奶商战的经典程度几乎可以比拟于常温奶在中国的崛起。当全球都在酣战于低温酸奶时,中国的常温酸奶悄然崛起。/pp  然而,常温酸奶的机会正是在于中国酸奶需求的迅猛上升,同时中国冷链体系的不完善的阶段形成了巨大市场空缺(这是常温奶故事的翻版)。/pp  可以说常温奶的成功,是中国企业寻找到的一个新的无人战场。/pp  2. 渠道劣势让光明失去了第二次崛起的机会/pp  在常温酸奶领域,光明被伊利与蒙牛超越是可以理解的,因为光明的主战场始终在华南与华东,而全国范围的纵深渠道是蒙牛与伊利的优势。通过尼尔森2015年-2017年的数据我们也发现,常温酸奶在重点城市增长放缓,但在低线城市与县乡镇迅猛增长。与此同时,在华西、华北的增长速度也远高于华东和华南。因此,伊利与蒙牛在渠道上避开了与品类开创者光明的正面竞争,通过低线城市、乡镇的渠道实现弯道超车。/pp  渠道优势就是“领先者的兵力优势”,《商战》的兵力原则:没有任何原则能像兵力原则这样处于根本地位。这是一种自然法则:大鱼吃小鱼,大公司击垮小公司。/pp  可口可乐是全球领先的可乐品牌,那么,他在全球几乎所有的地方都会成为领先品牌。/pp  光明乳业失去这次机会的原因也在于蒙牛与伊利的快速防御。相对较小的企业要胜出,需要在大企业暂时没有兴趣、无暇、无力顾及的战场,或者,要在大公司有反应之前快速取得决定性的胜利,否则,只能指望着大公司太笨。/pp  5. 奶粉:稳定持续增长,却是中国最艰难的战场/pp style="text-align: center "img title="14.png" src="http://img1.17img.cn/17img/images/201803/insimg/4647c1f8-4ba2-43c4-b85d-90200a2b89b1.jpg"//pp style="text-align: center "图13:中国婴幼儿配方奶粉市场各品牌份额/pp style="text-align: center "图片来源:【中信食品】奶粉行业深度报告/pp  中国奶粉市场,目前海外品牌与国产品牌比例约为6:4。排名前10的奶粉企业,外资占据6家,并且前4均为外企。/pp  另外,根据星图数据发布的《2017年H1线上乳制品及非酒精即饮饮料市场大数据白皮书》显示,在线上,外资品牌的集中度更高,Top 10的前7家均为外资,更占据了68.1%的份额,如果了解了君乐宝从废墟上崛起的故事,就足以理解中国奶粉企业想要翻盘的艰辛。/pp style="text-align: center "img title="15.png" src="http://img1.17img.cn/17img/images/201803/insimg/0e3437b3-644d-4c92-8a85-80521898b77e.jpg"//pp style="text-align: center "图14:中国婴幼儿奶粉始终维持较高增长/pp style="text-align: center "来源:易观智库/pp  中国婴幼儿奶粉市场规模不断扩大,仍然维持高增长。对于国内企业而言,一方面是诱人的市场,同时配方奶粉注册制的实施,将使用中小品牌的退出将给市场留下一定的市场空间,另一方面国内品牌肩负着赢回国民信任的使命。/pp  中国企业并非没有机会,飞鹤乳业就凭借定位为“更适合中国宝宝体质”,不仅帮助自己,也帮助国产奶粉扳回一局。/pp  飞鹤近年业绩增长迅速,2016年业绩68亿元,较2015年增长8%,业绩排名国内乳企第5名,其高端奶粉业务2016年增长80%。2017年一季度,在高端奶粉的带动下,飞鹤乳业整体实现同比增长34%。/pp  另一家值得一提的是澳优乳业,凭羊奶粉的定位,独辟蹊径,在2012年-2016年期间实现了高达38.68%的年均增长率。2016年,其佳贝艾特婴幼儿配方羊奶销售额为7.99亿元,国内市场6.64亿元,同比增长43.9%,海外市场1.35亿元,同比增长71.6%。/pp  澳优乳业2017上半年销售17亿同比增长36%,2017年一季度,澳优乳业自有婴幼儿配方羊奶粉在中国地区销售额大幅增长72.7%。/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201803/insimg/6ae0bd4c-071e-4847-a739-8d9a78f121ce.jpg"//pp style="text-align: center "图15:澳优乳业营业额维持较高增/pp  中国乳制品工业协会理事长宋昆冈表示:“目前儿童奶粉仅占到奶粉700亿大盘的6%-10%,加之近几年,羊奶粉不上火、吸收好等极高营养价值日益被高端消费者接受和认可,市场或迎井喷。”/pp style="text-align: center "img title="002.png" src="http://img1.17img.cn/17img/images/201803/insimg/84d10bca-6c28-4629-9ce9-05fd995b9cc8.jpg"//pp  品类战略分析/pp  1. 寻找领先者的弱势/pp  飞鹤乳业董事长冷友斌在演讲中说飞鹤的定位就是研究外资品牌的优势和弱点,进行差异进行品牌定位,寻求突破。/pp  “洋奶粉的优势正是洋奶粉的劣势:进口奶粉的核心强势,就在于其全球品牌、全球品质与配方。与此强势所伴生的弱点,是进口奶粉很难去强调它们的奶粉更适合中国宝宝营养需求。”/pp  君智咨询董事长谢伟山说国产奶粉去强调品质,是错误的战略定位。从消费者心智角度分析,尽管国产奶粉品质达标,但消费者为什么要去冒风险尝试?/pp  2. 开创新品类/pp  不管是羊奶粉,还是特配奶粉、有机奶粉等等,都属于高端奶粉,并且它们分别开创了新品类。而高端奶粉 随着消费者升级,需求不断扩大,因此,它有着更大的增长空间。/pp  澳优乳业虽然不是国内羊奶粉的开创者,也并非羊奶粉的领导者,但在品类未得到大众广泛认可之前(多少消费者知道排名第一的羊奶粉?),其国际化品牌的形象让澳优吸引了更高的曝光度,因此,我们预测,澳优更有优势在未来成为羊奶粉的主导企业。/pp  3. 君乐宝不是靠品质获胜/pp  回顾君乐宝崛起的案例,实际上,君乐宝无法通过一己之力,以品质来改变消费者对于国产奶粉的信心。事实上是,君乐宝是通过学习小米通过电商卖手机,把奶粉的战场转移到电商,并且以低价策略获得成功。在当时,电商对于奶粉品类而言,就是一个狭窄的战线。而低价,就避开了洋奶粉的正面竞争。/pp  二、 在未来,谁将推动中国乳品行业的前进?/pp  是什么驱动中国的品类变化?/pp  随着中国经济水平的提升,城市化加快,人均消费能力大幅度提升,千禧一代更逐渐成为消费主力。这些都是驱动中国品类变化的最根本的因素。/pp  与此同时,当前中国特色的有:/pp  1.消费升级并不是同时进行:中国有发达的市场,也有发展中市场 /pp  2.冷链主要是在一线城市,但冷链体系在逐渐完善 /pp  3.中国乳糖不耐受的比例占90%以上 /pp  4.中国经济放缓意味着增长空间受限,大中型企业有国际化的动力。/pp style="text-align: center "img title="004.png" src="http://img1.17img.cn/17img/images/201803/insimg/5047ab8c-a3e1-400a-91fc-4d04b4e4a22a.jpg"//pp style="text-align: center "图17:中国乳品行业的未来趋势/pp style="text-align: center "说明:灰色代表已经在减少或将减少,蓝色代表正在上升或未来会上升/pp  基于以上的消费市场的变化,我们预测中国未来的主战场:/pp  未来的战场/pp  1. 低温时代来临/pp  围绕低温与常温争论的话题有无数个。但是,在全球超过90%的国家以低温巴氏奶为主,而低温巴氏奶占据了超过70%的全球当消费份额[28]。除了极少部分国家以常温奶为主,包括法国、比利时等国,但毫无疑问,低温巴氏奶注定成为全球主流。/pp  商战就是为了抢占消费者的心智。在消费者心智中,“鲜”永远是更好的,品牌不要指望赢得跟消费者的辩论。这就是为什么现在饮料界NFC与HPP果汁可以快速增长的原因,因为更“鲜”。低温奶随着冷链的完善,在未来会大规模的增长,并且将取代常温奶成为主流。/pp  图18:巴氏奶的历年数据,基本上维持较高增长/pp  数据来源:智研咨询集团与尼尔森/pp  尼尔森数据显示,2016年,中国巴氏奶规模约345亿,其中低温酸奶占据绝大多数,同时也是增速最快的,达232.5亿,同比增长9%。中国市场2011年-2016年期间,低温奶的增长基本上超过了常温奶的2倍。/pp  未来至少三个低温的细分品类有着较大增长机会:低温酸奶、低温乳酸菌饮料与冷藏白奶。/pp  a) 低温酸奶引人注目,低温乳酸菌饮料与冷藏白奶迎来机会/pp  低温酸奶:/pp  目前,国内常温酸奶的高额增长,实际上预示着低温酸奶的增长潜力。/pp  低温酸奶的竞争趋势,美国市场已经基本上帮助中国写好。Chobani为代表的希腊酸奶大量分食了达能和优诺为代表的传统酸奶。而在2014年,Chobani却面临下滑,希腊酸奶面临最大的挑战不是来源于传统酸奶的反击,而是“消费者正在快速切换早餐场景的产品选择”,同时,Chobani还陆续面临包括Stonyfiled为代表的有机酸奶,Siggi’s为代表的冰岛酸奶,Noosa为代表的澳大利亚酸奶等等新兴细分品类的挑战。/pp style="text-align: center "img title="006.png" src="http://img1.17img.cn/17img/images/201803/insimg/0ea4046b-e345-4a1b-bea2-bc9e4c934874.jpg"//pp style="text-align: center "图19:从2010到2016美国酸奶市场份额的变化/pp style="text-align: center "来源:General Mills Loses the Yogurt Wars | Fortune.com/pp  当然了,Chobani聪明的采用重塑食用场景与开发新品类,包括开发饮用型酸奶“Dink Chobani”在内的策略进行防御(自我进攻)。/pp  根据英敏特的数据,饮用型酸奶在过去5年中(2011-2016年)增长了62%,并且将在2021年达到100亿美元的体量,与此对应的是2016年勺用型酸奶的体量是82亿美元[30]。Chobani的CMO Peter McGuinness也信心满满的表示,饮用型酸奶最终会占据30-40%的酸奶市场份额[29]。/pp  在北美,预计冰岛酸奶,澳大利亚酸奶等等小众品类会分食市场,但估计难以撼动希腊酸奶的地位。因为,消费者已经无法分清楚各种类型的酸奶到底有怎样的区别。但饮用型酸奶更有可能成为一个独立而强大的品类,并与勺用型酸奶形成竞争。因为,按照里斯品类的理论来分析,只有饮用型酸奶是勺用型酸奶的更显著的对立面,消费者非常容易记住和区分。/pp  在中国市场,常温酸奶格局基本已定。低温酸奶领域仍未有全国性的领导品牌,高端品类里目前有乐纯为代表的希腊酸奶,但还较小众。/pp  有着美国市场Chobani的示范效应,同时安慕希成为中国市场常温酸奶的代表,两者都是希腊酸奶,预计未来在中国市场低温领域希腊酸奶更有机会胜出。/pp style="text-align: center "img title="007.png" src="http://img1.17img.cn/17img/images/201803/insimg/8430987b-3547-4418-afa0-da6b6c102fec.jpg"//pp style="text-align: center "图20:乐纯酸奶/pp  低温乳酸菌饮料与冷藏白奶:/pp style="text-align: center "img title="009.png" src="http://img1.17img.cn/17img/images/201803/insimg/73ed953d-a84e-484b-a1b0-8c1f33602314.jpg"//pp style="text-align: center "图21:2016 年与 2017 年 1-5 月不同品类销售额增速对比/pp style="text-align: center "图片来源:食品饮料大消费黄付生/pp  根据尼尔森与太平洋研究院的数据,2017 年 1-5 月常温酸奶和常温乳酸菌销售额同比增长分别约 32% 和 31%,属于乳品行业中增长最快的子品类。/pp  冷藏白奶目前增长并不明显,根据尼尔森数据,今年截止2017年6月,冷藏白奶仅增长了6%。光明的鲜奶品牌优倍业绩总体上升,但不平坦,2014年优倍鲜奶实现销售额11.6亿元,同比增长29%[31],但是在2015年却下降2.33%[32],2016年再上升10%,并且,其业绩主要来自于华东地区的销售[33]。/pp  本文对于低温乳酸菌、冷藏白奶增长潜力的观点都相同,包括常温酸奶,常温奶的发展都得益于过去冷链系统的不完善。当冷链更加成熟,低温乳酸菌饮料、冷藏白奶都会赢来新一轮爆发。/pp  b) 区域乳企高速成长,并购加剧,最大的翻盘机会来临/pp  “由于保质期短、对冷链运输设备要求高,低温巴氏奶的原料奶必须就近而取,且需要全程冷链运输,销售半径也只有三五百公里。”[34]这些因素导致了当前中国低温巴氏奶是一个高度分散的产业,市场集中度低。/pp  这意味着,地方乳企,更有机会守住当地市场,进而向全国进攻,甚至有机会凭借低温奶实现对乳业巨头的弯道超车。/pp  过去,低温奶是以光明、新希望以及三元为代表的区域性企业为主。但面对常温奶的放缓,低温奶市场高速增长,蒙牛与伊利早早就开始行动,并已经位列第一阵营。伊利2016年报显示:低温液态奶零售额市占份额为16.2%,比上年同期提升0.6个百分点 而蒙牛截止2015年6月底,合资公司旗下品牌产品市场占有率达24.1%,位居中国低温乳制品行业首位。/pp  在2017年3月份,蒙牛增持中国最大的原料奶生产商现代牧业的股份至61.3%,进一步扩大其在低温奶领域的控制能力。/pp  目前,区域乳业也不甘偏安一隅,新希望乳业、福建长富、重庆天友、北京三元、辉山乳业、科迪乳业正快速成长,低温奶前景的一片看好,甚至还引来了统一跨界加入,新一轮奶业大战、收购战即将上演,未来谁掌握了最大量的奶源,谁可能就主导了中国未来低温的战场/pp  2. 高端化/pp  前述的低温酸奶、鲜奶都是属于高端的品类。高端化是中国当前经济快速发展,中产阶级日益庞大之下一股势不可挡的潮流。/pp  除了酸奶与鲜奶,目前有更多的品类可以归于高端一类,包括前文提及的羊奶粉,有机奶,特配奶粉。此外,模拟母乳奶粉、奶酪、无乳糖或低乳糖等品类也有巨大的潜力。/pp  a) 模拟母乳奶粉/pp  “对宝宝来说,母乳是最好的成长食粮”,这是几乎所有的消费者都轻易认同的观念,从品类的角度来看,这是目前任何奶粉都无法取代的。因此,近年也兴起母乳喂养的潮流。对于乳品企业而言,奶粉的机会在于,告诉妈妈们,我的奶粉成份可以跟母乳一样。因此,雅培与雀巢先后推出了模拟母乳的新配方——HMOs(人乳低聚糖)配方。在国内,包括合生元与量子高科在内的企业也在直接或者间接的推动该品类的发展。如果技术得到进一步的突破,将开创一个全新的市场。但目前该品类只有少数研发实力强大的企业能做。/pp  b) 奶酪/pp style="text-align: center "img title="013.png" src="http://img1.17img.cn/17img/images/201803/insimg/b7d423ed-7481-4864-9fff-054d3efeca07.jpg"//pp style="text-align: center "图22:酪艺海鱼芝士小食/pp style="text-align: center "图片来源:天猫酪艺旗舰店/pp  奶酪被称为是“乳制品金字塔高端的产品”。/pp  市场研究机构欧睿国际的数据显示,2007-2017年间,奶酪在中国增长了841.4%,年复合增长率高达到25.1%。目前中国市场较为分散,以外资为主,Savencia(百吉福品牌的母公司)25.9%,恒天然占据9%。随着中国人收入的上升,只在《猫和老鼠》或者《谁动了我的奶酪》听过奶酪的中国人,早就迫不及待的想尝下鲜。/pp  当然,中国的乳品企业也早已跃跃欲试,光明乳业较早就推出包括小小光明在内的奶酪品牌,伊利也迅速行动,推出了“酪艺”零食。此外,光明食品集团在2015年完成以色列最大食品企业特鲁瓦(Tnuva)的收购时就有计划将其旗下的奶酪业务引入中国市场。/pp  c) 无乳糖或低乳糖乳品/pp style="text-align: center "img title="014.png" src="http://img1.17img.cn/17img/images/201803/insimg/f4dc051a-3dd7-4227-b90f-a32e73841334.jpg"//pp style="text-align: center "图23:无乳糖高端乳品品牌Fairlife/pp style="text-align: center "图片来源:a href="http://www.packagingstrategies.com"www.packagingstrategies.com/a/pp  中国乳糖不耐受的比例占90%以上,很大程度上解释了中国是全球最大的植物蛋白饮料市场的原因,随着消费者意识的觉醒,无乳糖或低乳糖概念的牛奶将大有前景。/pp  东亚人种的乳糖不耐受比例全球最高,欧美的比例普遍低于20%,但无乳糖概念更早在欧美兴起。欧睿咨询的数据估计,全球无乳糖乳制品2015-2020年的年复合增长平均为7%左右,至2020年,市场规模将占整体零乳糖食品(销售额约88亿美元)的80%。主打无乳糖概念的产品销售大热。/pp  芬兰人的乳糖不耐受比例在欧洲相对较高,达到17%,似乎也因此,无乳糖产品也更早的流行。2000年,维利奥发明了去除乳糖同时保留牛奶的新鲜天然风味的无乳糖生产技术,实现了将牛奶中乳糖降低至0.01%[35]。2001年,维利奥无乳糖液态奶产品在芬兰上市后就大卖。2012年,无乳糖牛奶产品净销售额达1亿5000万欧元。有意思的是,那些没有乳糖不耐受的消费者,也纷纷选择无乳糖产品,因为“更健康、更安全”。/pp  可口可乐品牌Fairlife同样是一款无乳糖高端乳品,2015 年上市销售额就达到了 9000 万美元,2016年增长了79%。/pp  目前,国内也有众多企业推出无乳糖品牌,包括伊利舒化奶,但目前绝大多数品牌都显得非常低调(未占领消费者心智),更未有领导性品牌出现。或许和消费者意识淡泊有关,但对于企业而言,却是一个机会。/pp  对于乳品企业来说,无乳糖或低乳糖产品或许不是唯一选择:羊奶粉、植物蛋白饮料同样可以起到替代的作用。当然,乳业巨头早就行动 ,在植物蛋白领域,2014年蒙牛与WhiteWave白波食品合作推出了植朴磨坊、伊利推出核桃乳。当然,目前在高端领域,仍未为全国性领导品牌,这又是一个机会。/pp  3. 全球化/pp  全球化是中国企业当前必然的选择,已有华为、联想、小米等企业获得了相对成功,这给中国企业带来鼓舞,而在乳品行业里目前包括伊利、蒙牛、光明、澳优在的企业也在积极扩张。/pp  全球化不仅仅是获得业绩增长的途径,更意味着可以利用全球的资源进行创新,而获得更持久竞争力,全球化已经不是一个讨论要不要进行的话题,而是中国企业必须采取的行动。/pp  在FBIF中国食品饮料百强榜中,我们曾分析过,全球主流的食品饮料企业绝大多数都是全球化企业。雀巢就是高度全球化的企业,在全球191个国家销售产品,雀巢瑞士本土的业绩竟只有1.65%,大中华区的业绩达到人民币450亿,但也仅占7.3%。百威英博2016年业绩为455.17亿美元,北美仅占34.49%。百事在全球服务的国家和地区超过200多个,2016海外业绩占42%。/pp  全球化的本质是“渠道的扩张”,蒙牛与伊利在中国取得成功,同时能够持续维持双寡头局面,重要甚至根本的因素在于渠道的掌控,两家是乳品企业里渠道最广、最深的企业。/pp  但全球化仍然脱离不开“品类战略”。当一个品类在一个市场成熟后,获得增长可以采取的策略是在原有的市场上进行品类的创新升级,或者是将现有的即将衰退的品类扩张到低端的市场,可以反复如此进行或者同步进行。这就是为什么可口可乐(仅指可乐品类)在美国低增长甚至下滑时仍能在全球获得相当长久的增长:全球化的力量。/pp  全球化的“品类战略”的规律是是什么?高端攻占低端。/pp  a) 中国乳品企业的国际化还在起步的阶段/pp  整体而言,中国乳品企业的国际化还在起步的阶段,并且以扩张奶源为主,海外收入占比非常小,但部分企业已稍有起色。/pp  光明乳业:/pp  2017年上半年财报,实现营业收入109.23亿元,较上年同期增长6.36%,其中海外收入(指“新西兰新莱特”,代工生产营养品和特殊乳品原料)实现营业收入20.03亿元,同比增长39%,为光明乳业贡献了近1/4的利润,海外业绩占比达到18.34%。相比于2016年,海外占整体收入的14.35%,比重在大幅度提升。/pp  2017年5月30日,新莱特乳业宣布完成对新西兰乳业公司100%股份的收购,进一步扩大其产品。可以预见,未来光明乳业的海外收入会进一步上升。/pp  从光明集团的频繁海外布局,包括收购以色列最大的综合食品企业(也是以色列乳制品市场占有率最高的企业),均可以看出光明欲通过国际化来弥补乳品版块与伊利与蒙牛差距。此举,已收到了一定效果。/pp  伊利集团:/pp  伊利的国际化这几年占据了较高的曝光度,但目前更多是在扩大奶源上或创建研发中心上,但海外业绩仍未有体现。/pp  但通过伊利此前欲并购美国的全球最大的有机酸奶生产商Stonyfield与近日竞购全球第二大乳制品供应商迈高公司也可以看到伊利的战略意图。/pp  倘若收购Stonyfield成功,高端的有机酸奶是伊利进入欧美高端市场的极佳切入品类,但最后因达能将其卖给Lactalis,憾未能成。/pp  迈高公司为世界乳制品市场第二大供应商,目前其产品出口全球100多个国家,出口量占全球乳品贸易的8%。若收购成功,不仅为伊利提供更丰富的全球奶源,更将大幅度提升伊利整体的业绩。/pp  澳优:/pp  澳优乳业海外收入仅次于光明乳业,但其海外业绩占比较高。根据澳优乳业2016年报,澳优乳业集团年收入为27.40亿元,海外销售额为9.2亿元,占比33.6%,通过“澳优的业务版图及销售网络”,我们可以发现,业务涉及的国家超过30个。/pp  澳优乳业凭借羊奶粉不仅可以进入中国市场,羊奶粉的高端品类同样具有扩展全球的优势。/pp  此外,蒙牛乳业、新希望乳业、飞鹤等也在国际化的道路上。/pp  b) 中国企业走出去应该采取什么策略?/pp  不管是外资企业进入中国,还是当前中国企业扩张全球奶源,或是并购高端品类全球扩张,都离不开一个品类战略:高端攻占低端!/pp  全球奶源:其实解决的就是消费者心智中洋奶比中国奶好的问题 /pp  达能收购白波获得业绩增长,就是通过并购的手段推进达能的品类升级 /pp  伊利欲竞购Stonyfield就是欲图通过高端品类进入高端市场(欧美) /pp  澳优羊奶粉可以在全球获得高增长,同样是高端攻占低端。/pp  总之,中国乳品企业走出去,针对两种市场不同的可行策略:/pp  - 新兴市场:寻找新兴市场的缺口,进行渠道延伸(相当于中国本土更加深入低线市场) /pp  - 发达市场:并购高端的品类,进入发达市场,并进行全球扩张。/pp  新兴市场:/pp style="text-align: center "img title="015.png" src="http://img1.17img.cn/17img/images/201803/insimg/f182429a-f3f0-429e-bb96-e3ac8a976804.jpg"//pp style="text-align: center "图24:麦肯锡于预测的全球各地的乳品市场缺口/pp style="text-align: center "图片来源:Gotgrowth? Opportunities and challenges for U.S. Dairy industry/pp  麦肯锡于2016年1月发布的美国乳品行业的一份策略的报告《Got growth? Opportunities and challenges for U.S. Dairy industry》,针对美国乳品市场的低迷,其敦促美国企业尽快向新兴市场扩张。/pp  “全球各地的乳品市场缺口”的附图就显示了各国的乳品缺口,实际上在亚洲,印度是除了中国以外缺口最大的市场。但相比于非洲、俄罗斯、拉美、中东,中国的市场显然已经不是最具增长潜力的市场。当然,不是所有的企业都会听麦肯锡的建议,紧接着数据出来了,2016年美国乳制品出口市场低迷,库存过剩[37]。/pp  对于中国企业而言,当前也是面临的与美国当年相似的境遇,乳品增长整体放缓,那么,完全可以放眼全球。碰巧的是,乳品最大的缺口市场,大多都落在了“一带一路”延线上。全球市场的缺口对于澳大利亚、新西兰、欧美企业是机会,对于中国企业同样也是。因此,中国企业“全球奶源,中国市场”的战略,完全可以改为“全球奶源,全球市场”。/pp  中国企业的正确做法是,选择一个市场,寻找中国相对优势的品类,攻占市场。目前看来,中国的“常温酸奶”在新兴市场就有着强大品类的优势,因为,印度、非常、拉美、中东市场的冷链体系估计还不如中国完善。/pp  发达市场:/pp  欧美乳品发展相对成熟,过去一直是欧美兴起的潮流,逐渐转移到中国。欧美市场对于中国企业的机会也在于高端的品类,如羊奶粉、有机奶、无乳糖等等。那么中国企业近期最佳的策略在于并购有优势品类的标的,再试图进入。否则,中国本土的品类在欧美市场不占优势。/pp  光明在收购以色列食品公司Tnuva时,战略也很明确,推动Tnuva的高端乳制品(奶酪)拓展到欧美市场。伊利此前欲收购Stoneyfield也有着相似的战略。/pp  总结/pp  品类战略,决定的不是今年或者明年企业的业绩,而是决定着未来3年、5年甚至10年的业绩。品类战略的成功实施,需要企业高瞻远瞩,还有要破釜沉舟的实施决心。/pp  历史上,波音公司面临二战结束后军用飞机订单将锐减,破釜沉舟,将“5年平均年度税后纯利的3倍”投入研发民航客机,波音707就这样诞生了,从此世界进入了喷气式时代。波音的案例属于历史上经典品类升级与自我进攻的案例 GE新任CEO杰夫?伊梅尔特着力精简GE业务,聚焦在核心工业业务,而剥离增长缓慢、技术含量低的非工业业务。都体现了企业的高瞻远瞩与破釜沉舟,他说“我的决定将在未来数十年内显现出成效,但在创造长期价值上,我们从不会畏首畏尾。”/pp  企业欲获得最高并且持久回报,始终应当选择高增长品类,在资源上重度投入(研发、渠道、营销等各方面)。在当前中国市场,任何一个新兴品类,只要没有代表的品牌,或者品牌没有成为品类的代表,都有机会重塑格局。/pp  20年前,10年前的乳品行业竞争的赛道只有几个,如今,更多的企业成长为全国性企业,更多的外资企业进入中国,同时更多的中国企业将走向全球,竞争的战场可能演变为几十个,上百个。未来竞争更加激烈的领域不是品牌与品牌的竞争,而是品类与品类之间的战争。/pp  商战,变化无穷,对于大企业而言,拥有的只是优势 而对小企业而言,永远不缺机会。 /p
  • 这些品种的一致性评价被放弃
    p  CFDA官网发布了《企业开展289目录内仿制药质量和疗效一致性评价基本情况表》(以下简称“情况表”),这是CFDA组织各省局对企业开展289目录内仿制药质量和疗效一致性评价的进展情况进行摸底调研后,根据企业的报告,CFDA对调研结果进行了统计汇总(统计截止日期:2017年5月23日)。/pp  值得注意的是,289目录中,醋酸甲羟孕酮胶囊、双氯芬酸钠缓释胶囊(Ⅲ)、盐酸克林霉素片3个品种被企业暂时选择放弃一致性评价,这3个品种在289目录中均只有1家企业持有文号 甲硝唑胶囊、硫酸亚铁缓释片、盐酸布桂嗪片、苯唑西林钠片、硫酸吗啡缓释片、对乙酰氨基酚颗粒、环孢素胶囊、乳糖酸克拉霉素片、双氯芬酸钠缓释片(Ⅴ)、盐酸氯雷他定胶囊、盐酸氯雷他定片、左氧氟沙星片12个品种企业暂时选择不放弃,但还未开展评价。/pp  span style="color: rgb(255, 0, 0) "strong企业暂时全部选择放弃与暂时选择不放弃但未开展评价的品种情况表/strong/span/ppspan style="color: rgb(255, 0, 0) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201708/insimg/a21de777-97dc-4045-9dc9-befcc491ca8d.jpg" title="tu_副本.jpg"//pp  在12个不放弃但尚未开展评价的品种中,除甲硝唑胶囊与硫酸亚铁缓释片外,其余品种在289目录中持有文号的生产企业数量均未超过3家。根据情况表,甲硝唑胶囊有14家企业持有文号,其中7家不放弃评价,3家待定,4家暂时选择放弃 硫酸亚铁缓释片有4家企业持有文号,除1家不放弃评价外,其余3家均暂时选择放弃。/pp  此外,复方磺胺甲噁唑片、诺氟沙星胶囊、甲硝唑片的一致性评价竞速将最为激烈,开展评价的企业数量均超过100家。/ppbr//p
  • 谈“糖”色变的时代,测糖珀金埃尔默有“谱”
    01NEWS新闻背景 元气森林的“0糖”风波当现在的媒体都把含糖食品和饮料,与肥胖、龋齿、心脏病(高血压、高血脂)、糖尿病等一系列健康问题联系在一起时,谈“糖”色变也就成为必然的结局。近日,不少年轻人喜欢的饮料品牌元气森林,因旗下乳茶产品涉嫌虚假宣传一事发布致歉声明。元气森林声称没有说清楚“0蔗糖”和“0糖”的区别,引发了误解。据澎湃新闻网等媒体报道,日前该元气森林已经对产品进行了修正升级:包装从原来的“0蔗糖、低脂肪”改为“低糖、低脂肪”。02NEWS关于“糖”的几个信息食品中“0蔗糖”和“0糖”的区别在哪?市面上标的无糖饮料和食品等于“0糖”吗?无糖饮料为什么喝起来还是甜的,珀金埃尔默在此收集了一些信息。#01“0蔗糖”≠“0糖”糖类是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为“碳水化合物”。蔗糖属于二糖,只是庞大糖类家族中的一份子,除了蔗糖,还有白砂糖、玉米糖浆、麦芽糖、葡萄糖、乳糖、果糖等。元气森林乳茶中有奶,而奶中含有丰富乳糖,所以所谓的“0糖”并不是无糖,只是不含蔗糖而已。#02无糖食品≠“0糖”根据我国《预包装食品营养标签通则》的规定,食品中的糖含量少于0.5g/100g(固体)或100mL(液体),即可标注为“无糖食品”。无糖食品≠“0糖”,而是包括了不含糖或糖的总量不超过5‰的食品。#03“无糖”产品≠不甜无糖食品为了更好的口感,往往采用代糖来代替蔗糖,其甜度是白糖的几十倍甚至数百倍。代糖主要以下几类:代糖糖醇天然甜味剂人工甜味剂山梨醇甘草安赛蜜甘露醇甜菊苷纽甜乳糖醇罗汉果苷糖精麦芽糖醇索马甜三氯蔗糖木糖醇叶甜素爱德万甜赤藓糖醇非洲奇异蛋白阿斯巴甜… … … … … … 内容参考:《营养功能成分应用指南》普遍使用的代糖人工甜味剂,不参与人体代谢,提取成本很低,甜度高,如:安赛蜜与阿斯巴甜、三氯蔗糖等,每种人工合成甜味剂也都有最大耐受量和使用范围,违规使用会对人体健康造成危害。近年来天然提取的“代糖”出现,以”甜菊糖苷”、“赤藓糖醇“等为代表,相对人工甜味剂,这类产品保留了不参与代谢、低热量、口感好等优点,同时有具备更高的安全性和稳定性。03NEWS摄入“糖”要有度,减糖大趋势糖类的益处不胜枚举,首先可供给人体热量消耗,维持日常各项生理活动,其次糖还是构成人体诸多组织的重要成分,目前面临的问题是近年来中国人对糖的消耗量居高不下,使其成了影响健康的重要因素。目前我国人均每日添加糖(主要为蔗糖即“白糖”、“红糖”等)摄入量约30g(世界卫生组织推荐人均每日添加糖摄入不超过25g),其中儿童、青少年摄入量问题值得高度关注,因此国家提倡减糖。《健康中国行动(2019~2030年)》明确提倡城市高糖摄入人群减少食用含蔗糖饮料和甜食,选择天然甜味物质和甜味剂替代蔗糖生产的饮料和食品。2021年最新发布的的婴幼儿配方食品标准中也要求婴儿和较大婴儿配方食品不应使用果糖、蔗糖。 04NEWS添加“糖”要有数食品”糖”相关的检测标准一览为了减少添加糖的摄入,需要对食品中的蔗糖果糖等进行测定,保证添加的含量符合标准要求。食品选择天然甜味物质和甜味剂来替代糖,这时候需要对代糖物质进行检测,保证食品的安全。目前国家检测标准中与食品”糖”相关的检测标准主要如下:GB 5009.7-2016食品安全国家标准 食品中还原糖的测定GB 5009.8-2016食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定GB 5009.255-2016食品安全国家标准 食品中果聚糖的测定GB 5009.279-2016食品安全国家标准 食品中木糖醇、山梨醇、麦芽糖醇、赤藓糖醇的测定GB 5413.5-2010食品安全国家标准 婴幼儿食品和乳品中乳糖、蔗糖的测定GB 22255-2014食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定SN/T 3854-2014出口食品中天然甜味剂甜菊糖苷、甜菊双糖苷、甘草酸、甘草次酸的测定 高效液相色谱法05NEWS测 “糖” 珀金埃尔默有“谱”紫外可见光谱仪珀金埃尔默能够提供从食品中传统糖类到甜味剂和天然提取代糖的一系列检测方案。珀金埃尔默的紫外可见光谱,可以对饮料中的糖含量进行检测,方法依据糖和3,5二硝基水杨酸(DNSA)反应生成有色物质来进行。近红外光谱珀金埃尔默的近红外光谱采用结合积分球附件以漫反射方式,可以对液体咖啡中的糖进行快速检测。液相色谱珀金埃尔默的液相色谱配上蒸发光散射检测器(ELSD)可以对食品中的阿拉伯糖、木糖、果糖、甘露糖、葡萄糖、蔗糖、麦芽糖和赤藓糖醇等进行检测。珀金埃尔默的液相色谱配备包括紫外检测器或者PDA可以对食品中的人工甜味剂如糖精、阿巴斯甜进行检测。液相色谱-串联质谱珀金埃尔默的液相色谱-串联质谱可以对食品中人工合成甜味剂进行检测,确保其使用安全。其中典型如白酒甜蜜素。详细应用请扫码获取
  • 卫生部乳品安全标准(征求意见稿)出炉
    卫生部办公厅关于公开征求乳品安全  标准(征求意见稿)意见的函各有关单位:  根据《乳品质量安全监督管理条例》和国务院办公厅《奶业整顿和振兴规划纲要》规定,我部会同农业部、国家标准委、工业和信息化部、工商总局、质检总局、食品药品监管局、中国疾病预防控制中心、轻工业联合会、中国乳制品工业协会、中国奶业协会等单位成立了乳品安全标准工作协调小组和乳品安全标准工作专家组开展标准制修订工作。现公开征求乳品安全标准(征求意见稿,可从卫生部网站http://www.moh.gov.cn下载)意见,请于2009年11月22日前按以下方式反馈意见:传真010-67711813或电子信箱food204@163.com。  附件:乳品安全标准(征求意见稿).rar注:本次修改专家组提出了新的乳品质量安全标准框架和目录。清理后的标准共三大类75项,分为产品标准17项、生产规范2项、检验方法标准56项。根据本次公开征求意见并履行世界贸易组织成员通报后,专家组将进一步修改完善标准文本,经协调小组同意后进入审议报批阶段。  标准文本目录序号标准名称标准类别1生鲜乳产品标准2巴氏杀菌乳3灭菌乳4调制乳5发酵乳6炼乳7乳粉8乳清粉9奶油、稀奶油、无水奶油10干酪11再制干酪12乳糖13婴儿配方食品14较大婴儿和幼儿配方食品15特殊医学用途婴儿配方食品16婴幼儿谷基辅助食品17婴幼儿罐装辅助食品18乳制品企业良好生产规范生产规范19婴幼儿配方粉企业良好生产规范20生鲜乳中相对密度的测定检测方法21乳和乳制品中杂质度的测定22乳和乳制品中酸度的测定23婴幼儿食品和乳品中脂肪的测定24婴幼儿食品和乳品中溶解性的测定25婴幼儿食品和乳品中乳清蛋白的测定26婴幼儿食品和乳品中脂肪酸的测定27婴幼儿食品和乳品中乳糖、蔗糖的测定28婴幼儿食品和乳品中不溶性膳食纤维的测定29婴幼儿食品和乳品中维生素A、D、E的测定30婴幼儿食品和乳品中维生素K1的测定31婴幼儿食品和乳品中维生素B1的测定32婴幼儿食品和乳品中维生素B2的测定33婴幼儿食品和乳品中维生素B6的测定34婴幼儿食品和乳品中维生素B12的测定35婴幼儿食品和乳品中烟酸和烟酰胺的测定36婴幼儿食品和乳品中叶酸(叶酸盐活性)的测定37婴幼儿食品和乳品中泛酸的测定38婴幼儿食品和乳品中维生素C的测定39婴幼儿食品和乳品中游离生物素的测定40婴幼儿食品和乳品中胆碱的测定41婴幼儿食品和乳品中钙、铁、锌、钠、钾、镁、铜和锰的测定42婴幼儿食品和乳品中磷的测定43婴幼儿食品和乳品中碘的测定44婴幼儿食品和乳品中氯的测定45婴幼儿食品和乳品中肌醇的测定46婴幼儿食品和乳品中牛磺酸的测定47婴幼儿食品和乳品中左旋肉碱的测定48婴幼儿食品和乳品中β-胡萝卜素的测定49婴幼儿食品和乳品中核苷酸的测定50婴幼儿食品和乳品中反式脂肪酸的测定51婴幼儿食品和乳品中脲酶的测定52乳和乳制品中黄曲霉毒素M1的测定53食品中蛋白质的测定54食品中水分的测定55食品中灰分的测定56食品中铅的测定57食品中氟的测定58食品中总砷及无机砷的测定59食品中亚硝酸盐和硝酸盐的测定60食品中黄曲霉毒素M1与B1的测定61食品中硒的测定62乳与乳制品中苯甲酸和山梨酸的测定63干酪及加工干酪制品中添加的柠檬酸盐含量的测定 64生鲜乳冰点的测定65食品微生物学检验 菌落总数测定 66食品微生物学检验 大肠菌群计数 67食品微生物学检验 沙门氏菌检验 68食品微生物学检验 金黄色葡萄球菌检验 69食品微生物学检验 霉菌和酵母计数 70食品微生物学检验 乳与乳制品检验 71食品微生物学检验 生鲜乳中抗生素残留量检验 72食品微生物学检验 单核细胞增生李斯特氏菌检验 73食品微生物学检验 乳酸菌检验 74食品微生物学检验 金黄色葡萄球菌计数 75食品微生物学检验 阪崎肠杆菌检验
  • 卫生部公布58个食品添加剂产品标准
    中 华 人民 共 和 国 卫 生 部 公 告  2011年 第8号  根据《中华人民共和国食品安全法》、卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)和卫生部2011年第6号公告等规定,卫生部组织中国疾病预防控制中心参照国际标准,指定D-甘露糖醇等58个食品添加剂产品标准。  特此公告。  附件:1.D-甘露糖醇等58个食品添加剂产品标准目录  2.D-甘露糖醇等58个食品添加剂产品标准.rar  二○一一年三月十八日  附件1  D-甘露糖醇等58个食品添加剂产品标准目录编号标准名称1. D-甘露糖醇2. 羟丙基甲基纤维素(HPMC)3. 氢化松香甘油酯4. 乳酸脂肪酸甘油酯5. 松香季戊四醇酯6. 乙二胺四乙酸二钠7. 乙酰化单、双甘油脂肪酸酯8. 乙氧基喹9. 硬脂酸钙10. 硬脂酸镁11. 硬脂酰乳酸钙12. 硬脂酰乳酸钠13. 月桂酸14. 羟基硬脂精(氧化硬脂精)15. 偶氮甲酰胺16. 抗坏血酸棕榈酸酯17. 硫代二丙酸二月桂酯18. 微晶纤维素19. 丙二醇脂肪酸酯20. 聚甘油脂肪酸酯(聚甘油单硬脂酸酯,聚甘油单油酸酯)21. 刺云实胶22. 柠檬酸一钠23. 巴西棕榈蜡24. 蜂蜡25. 乳糖醇26. 5'胞苷酸二钠27. d-核糖28. 3-环己基丙酸烯丙酯29. 辛酸乙酯30. 棕榈酸乙酯31. 甲酸香茅酯32. 甲酸香叶酯33. 乙酸香叶酯34. 乙酸橙花酯35. 己醛36. 正癸醛(癸醛)37. 乙酸丙酯38. 乙酸2-甲基丁酯39. 异丁酸乙酯40. 异戊酸3-己烯酯41. 2-甲基丁酸3-己烯酯42. 2-甲基丁酸2-甲基丁酯43. γ-己内酯44. γ-庚内酯45. γ-癸内酯46. δ-癸内酯47. γ-十二内酯48. δ-十二内酯49. 2,6-二甲基-5-庚烯醛50. 2-甲基-4-戊烯酸(又名浆果酸)51. 芳樟醇52. 乙酸松油酯53. 二氢香芹醇54. d-香芹酮55. l-香芹酮56. α-紫罗兰酮57. 罗望子多糖胶58. 左旋肉碱
  • “2024年食品检测标准全面解读——GB 5009系列”主题约稿函
    过去的一年里,我国在食品安全领域取得了显著的进步。不仅首部现代设施农业建设规划出台,婴配粉“史上最严”新国标正式实施、同时还发布了85项新的食品安全国家标准。就在今年3月,又公布了47项新的食品安全国家标准,这些举措都旨在强化国家食品安全保障。其中,“食品5009”标准作为中国的一套食品卫生检验方法标准,是保障食品安全的重要手段之一。该标准涵盖了多种食品卫生检验方法,包括食品中各种成分的测定方法,以及食品接触材料的环保测试等。5009系列标准与其他食品安全国家标准相互配套使用,形成了一个完整的食品安全检测体系。值得一提的是,仅今年实施的5009系列标准就已超过30项。在这样的背景下,仪器信息网特别策划了“2024年食品检测标准全面解读——GB 5009系列”主题约稿,诚邀各位专家和仪器厂商踊跃投稿,共同探讨和分享食品及农产品行业分析检测技术的最新研究与应用。投稿文章将在专题展示并在仪器信息网相关渠道推广,投稿邮箱:caixf@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13001246355(同微信)。1、 约稿主题:2024年食品检测标准全面解读——GB 5009系列2、 稿件字符数不少于1000字,如有图片,图片像素应不低于300DPI;3、 稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投;4、 投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。5、 供稿人建议是贵公司相关产品负责人,请提供姓名、职务、照片等信息。6、 稿件内容会择时在仪器信息网资讯栏目发布显示(单独成文/整合综述文章),同时在专题中推送宣传。7、 回稿时间2024年7月15日前投稿邮箱:caixf @instrument.com.cn 仪器信息网编辑部附问题:您可以根据下述列表中某一标准解读进行稿件撰写,也可以由此展开相关话题。1、对于下述列表中新标准的深度解读;2、标准新增和修订了哪些方法,您认为这种方法相比之前的方法有什么优势和特点?3、标准新增了的该方法,贵司是否有满足该标准要求的仪器设备,以及解决方案?4、新标准的实施对于食品检测领域会产生哪些影响?您认为这种变化会带来哪些机遇和挑战?标准名称GB 5009.8-2023 食品安全国家标准 食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定 GB 5009.9-2023 食品安全国家标准 食品中淀粉的测定GB 5009.12-2023 食品安全国家标准 食品中铅的测定 GB 5009.15-2023 食品安全国家标准 食品中镉的测定 GB 5009.16-2023 食品安全国家标准 食品中锡的测定 GB 5009.123-2023 食品安全国家标准 食品中铬的测定 GB 5009.36-2023 食品安全国家标准 食品中氰化物的测定 GB 5009.43-2023 食品安全国家标准 味精中谷氨酸钠的测定 GB 5009.88-2023 食品安全国家标准 食品中膳食纤维的测定 GB 5009.89-2023 食品安全国家标准 食品中烟酸和烟酰胺的测定 GB 5009.97-2023 食品安全国家标准 食品中环己基氨基磺酸盐的测定 GB 5009.26-2023 食品安全国家标准 食品中 N-亚硝胺类化合物的测定 GB 5009.129-2023 食品安全国家标准 食品中乙氧基喹的测定 GB 5009.140-2023 食品安全国家标准 食品中乙酰磺胺酸钾的测定 GB 5009.154-2023 食品安全国家标准 食品中维生素B6的测定 GB 5009.189-2023 食品安全国家标准 食品中米酵菌酸的测定 GB 5009.210-2023 食品安全国家标准 食品中泛酸的测定 GB 5009.225-2023 食品安全国家标准 酒和食用酒精中乙醇浓度的测定 GB 5009.227-2023 食品安全国家标准 食品中过氧化值的测定 GB 5009.240-2023 食品安全国家标准 食品中伏马菌素的测定 GB 5009.259-2023 食品安全国家标准 食品中生物素的测定 GB 5009.270-2023 食品安全国家标准 食品中肌醇的测定 GB 5009.35-2023 食品安全国家标准 食品中合成着色剂的测定 GB 5009. 296-2023 食品安全国家标准 食品中维生素D的测定 GB 5009. 298-2023 食品安全国家标准 食品中三氯蔗糖(蔗糖素)的测定 GB 5009. 295-2023 食品安全国家标准 化学分析方法验证通则 GB 5009. 297-2023 食品安全国家标准 食品中钼的测定 GB&ensp 5009.294-2023&ensp 食品安全国家标准&ensp 食品中色氨酸的测定GB 5009. 293-2023 食品安全国家标准 食品中单辛酸甘油酯的测定 GB 5009. 292-2023 食品安全国家标准 食品中β-阿朴-8‘-胡萝卜素醛的测定 GB 5009. 289-2023 食品安全国家标准 食品中低聚半乳糖 的测定 GB 5009. 291-2023 食品安全国家标准 食品中氯酸盐和高氯酸盐的测定 GB 5009. 290-2023 食品安全国家标准 食品中维生素K2 的测定 GB 5009. 288-2023 食品安全国家标准 食品中胭脂虫红的测定 GB 5009.2-2024 食品安全国家标准 食品相对密度的测定GB 5009.138-2024 食品安全国家标准 食品中镍的测定GB 5009.11-2024 食品安全国家标准 食品中总砷及无机砷的测定GB 5009.191-2024 食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定GB 5009.299-2024 食品安全国家标准 食品中乳铁蛋白的测定GB 5009.205-2024 食品安全国家标准 食品中二噁英及其类似物毒性当量的测定
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制