当前位置: 仪器信息网 > 行业主题 > >

琼脂颗粒

仪器信息网琼脂颗粒专题为您提供2024年最新琼脂颗粒价格报价、厂家品牌的相关信息, 包括琼脂颗粒参数、型号等,不管是国产,还是进口品牌的琼脂颗粒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合琼脂颗粒相关的耗材配件、试剂标物,还有琼脂颗粒相关的最新资讯、资料,以及琼脂颗粒相关的解决方案。

琼脂颗粒相关的资讯

  • 远慕MRS琼脂培养基促销中
    上海远慕生物科技有限公司为了回馈广大科研工作者特此做出培养基促销优惠活动啦,培养基均现货促销!价格绝对出乎你的意外,望有需要的老师赶快联系我们吧! 培养基是远慕公司自主研发的项目之一,产品质量有保证!说明书都会随货发给您!我们我是符合国家标准的,我们也可以按照客户提供的要求给您配制,我们承诺产品有任何质量问题都是免费退换的! 远慕生物严格遵守“质量优先、客户优先、技术优先、服务优先”“四项优先”原则;产品已被广泛应用于化学、化工、生命科学的基础研究和开发应用、制药、疾病诊断与控制、人口与健康、生物技术等诸多领域,并销往全国各地,公司客户遍布国内各大学、研究所、卫生防疫、制药公司、生物公司等单位,得到广大客户的一致好评。我们的宗旨是“为客户提供最优质的产品和服务”。 远慕欢迎您!培养基促销其他产品:结晶紫中性红胆盐葡萄糖琼脂(VRBGA) 250g/瓶 胰蛋白胨大豆琼脂(TSA) 250g/瓶 胰蛋白胨大豆琼脂 90mm×10个/包 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阪崎肠杆菌显色培养基(DFI琼脂) 1000ml/瓶 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 氰化钾(KCN)培养基 1ml×10支/盒 氰化钾(KCN)对照培养基 1ml×10支/盒 D-蔗糖发酵管 1ml×10支/盒 D-山梨醇发酵管 1ml×10支/盒 阿拉伯糖发酵管 1ml×10支/盒 卫矛醇半固体琼脂 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 产品名称 规格 采样袋/均质袋 100个/袋 SCDLP液体培养基基础 250g/瓶 SCDLP增菌肉汤 10ml×20支/箱 磷酸盐缓冲液(pH7.2) 250g/瓶 磷酸盐缓冲液(pH7.2) 225ml×20瓶/箱 磷酸盐缓冲液(pH7.2) 9ml×20支/箱 生理盐水 225ml×20瓶/箱 生理盐水 9ml×20支/箱 假单胞菌CFC选择性培养基基础 250g/瓶 假单胞菌CFC选择性培养基基础添加剂 1ml×10支/盒 假单胞菌琼脂基础培养基基础/CN琼脂基础 250g/瓶 萘啶酮酸 1.5mg×10支/盒 甘油 1ml×10支/盒 营养琼脂斜面(限供汽运) 10ml×20支/箱 营养琼脂(NA) 250g/瓶 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 革兰氏染色液 10ml×4支/盒 乙酰胺培养基 1ml×10支/盒 葡萄糖酸钾培养基 1ml×10支/盒 精氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 液体石蜡 2ml×10支/盒 硝酸盐蛋白胨水培养基 250g/瓶 明胶培养基(营养明胶培养基) 250g/瓶 山梨醇麦康凯(SMAC)琼脂 250g/瓶 亚碲酸钾溶液 0.25mg×10支/盒 头孢克肟溶液 0.005mg×10支/盒 改良山梨醇麦康凯(CT-SMAC)琼脂 90mm×10个/包 月桂基硫酸盐胰蛋白胨肉汤-MUG(LST-MUG) 1000ml/瓶 含新生霉素的缓冲胰蛋白胨大豆肉汤(BTSB+N)基础 250g/瓶 三糖铁(TSI)琼脂 250g/瓶 三糖铁(TSI)琼脂斜面 4ml×10支/盒 革兰氏染色液 10ml×4支/盒 氧化酶试纸 10片/瓶 半固体琼脂 250g/瓶 半固体琼脂管 1ml×10支/盒 营养琼脂(NA) 250g/瓶 营养琼脂(NA) 90mm×10个/包 蛋白胨水 1ml×10支/盒 Kovacs氏靛基质试剂 10ml×4支/盒 鸟氨酸脱羧酶试验 1ml×10支/盒 赖氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 山梨醇发酵管 1ml×10支/盒 棉子糖发酵管 1ml×10支/盒 纤维二糖发酵管 1ml×10支/盒 缓冲葡萄糖蛋白胨水(MR-VP培养基) 1ml×10支/盒 甲基红试剂 10ml×4支/盒 V-P试剂 10ml×4支/盒 西蒙氏柠檬酸盐琼脂斜面 4ml×10支/盒 大肠杆菌O157:H7套装生化鉴定管(10种)(SN0973) 12支/套×10套 无菌脱纤维绵羊血 100ml/瓶 肝浸液培养基 250g/瓶 胰蛋白胨琼脂培养基 250g/瓶 精氨酸脱羧酶试验 1ml×10支/盒 氨基酸脱羧酶试验对照 1ml×10支/盒 无菌液体石蜡 2ml×10支/盒 3%过氧化氢溶液 2ml×10支/盒 氧化酶试纸 10片/瓶 氧化酶试剂 1g/瓶 阿拉伯糖发酵管 1ml×10支/盒 葡萄糖发酵管 1ml×10支/盒 半乳糖发酵管 1ml×10支/盒 硝酸盐肉汤 250g/瓶 硝酸盐肉汤 5ml×10支盒 硝酸盐还原试剂 10ml×4支/盒
  • 新标准:颗粒 微生物气溶胶采样和分析(GB/T38517-2020)
    由我司(青岛众瑞智能仪器有限公司)参与起草的《颗粒 微生物气溶胶采样和分析通则(GB/T38517-2020)》已于2020年3月6日正式发布,并将于6月1日正式实施。 本标准为环境空气中细菌、病毒、真菌和毒素等不同特性的生物气溶胶(也称之为空气微生物)的采样提供了采样方法和生物气溶胶的分析,其中,采样方法包括采样原理、采样器的选择和采样过程中应关注的问题;分析方法包括分析方法的类型、方法的适用性、分析结果的表达方式。 一 生物气溶胶采样方法及采样器 众瑞仪器相关产品 ZR-2000型智能空气微生物采样器是经精心研制的新型智能空气微生物采样器,主机配备不同的采样终端可以实现安德森采样、冲击式采样、过滤式采样等功能,做到一机多用,具有极高的性价比。该仪器可广泛应用于环保、医疗卫生、食品工业、发酵工业、制药工业、农牧业、工矿企业、劳动卫生以及其它相关研究部门。 1 撞击式采样原理:利用惯性作用,通过喷嘴、喷口或裂隙的加速作用把生物气溶胶粒子采集到固体介质表面的气溶胶采集方式。 众瑞仪器相关配件 ZR-A01型二级安德森采样头是微生物采样专用器皿,采用惯性撞击原理,既能测定空气中微生物的总数,又能区分可吸入微粒和不可吸入微粒的数量。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式。?标准二级分层生物气溶胶采样。 ZR-A02型六级安德森采样头是符合国际标准的多级采样装置,用于监测细菌和真菌的浓度和粒径分布,它可以真实模拟人类肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度,都具有较高的准确度和可靠性。采样头每级中放置一个装有琼脂培养基的培养皿,用于收集空气中的微生物粒子,采样过程中,微生物粒子会随气流的撞击留在培养基上,随后培养皿取出培养后,可进行菌落总数统计或单独菌落分析。技术特点:?标准撞击法筛孔式工作方式;?标准六级分层生物气溶胶采样; ZR-A05型八级安德森采样头是一个多孔、层叠碰撞(空气)取样器,通常用于环境中的需氧细菌和真菌浓度和颗粒大小分布的测量。该采样器可以根据人体肺部的沉积情况进行采集所有微粒,无论物理尺寸、形状或密度。采样器的每级中可放置一个装有琼脂培养基的培养皿,用于收集采样空气中的微生物粒子,微生物粒子会随气流的撞 击留在培养基上。随后培养皿可以取出,进行培养后,用菌落计算公式计算。技术特点:?标准撞击法筛孔式工作方式;?标准八级分层生物气溶胶采样; 2 冲击式采样能够使具有足够大惯性的生物气溶胶粒子撞击液体并进入液体介质中的气溶胶采集方式。 众瑞仪器相关配件 ZR-A03型冲击式采样头是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B01型空气微生物吸收瓶(AGI-30)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子就冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 ZR-B02型空气微生物吸收瓶(AGI)是微生物采样专用器皿,其工作原理是利用喷射气流的方式将空气中的微生物粒子采集于小量的采样液体中。在吸收瓶中加入采样液后,启动抽气动力,空气就从吸收瓶入口处进入,由于入气口末端喷咀孔径狭小,因而微生物气溶胶在此处流动加速,当速度达到一定程度后,空气中的微生物粒子被冲击到吸收瓶的采样液中,由于液体的粘附性,将微生物粒子捕获。 二 生物气溶胶采样方法的选择 新标准中,生物气溶胶细分为细菌、真菌、病毒及毒素四钟,采样方法主要分为定量、定性两种,以细菌为例(其他种类可点击“阅读原文”下载原文件查看):
  • 粒度的作用,海岸鸿蒙颗粒标准物质可以助力哪些领域
    在现代工业和科学研究中,颗粒的粒度是影响材料性能的关键因素之一。颗粒标准物质作为确保粒度测量准确性的关键工具,在多个行业中发挥着至关重要的作用。一、制药行业:粒度决定药效在制药行业中,颗粒的粒度对药物的溶解速率、释放特性和生物利用度起着决定性作用。例如,海岸鸿蒙提供的粒度标准物质可以帮助制药企业校准粒度分析仪器,确保药物颗粒大小的一致性,从而提高药物的疗效和安全性。此外,粒度的精确控制还有助于减少副作用,提高药物的稳定性和保质期。二、化工行业:粒度优化性能化工产品的性能很大程度上取决于其颗粒的粒度。例如,催化剂的粒度会影响化学反应的速率和选择性;涂料和塑料的粒度则影响其流动性、干燥时间和最终产品的机械性能。海岸鸿蒙的粒度标准物质用于校准粒度分析仪器,帮助科学家和工程师优化化学反应条件,提高产品性能和生产效率。三、材料科学:粒度塑造特性在材料科学领域,颗粒的粒度决定了材料的机械强度、热导率、电导率等关键性质。海岸鸿蒙的粒度标准物质使研究人员能够精确测量和控制颗粒大小,从而设计和开发具有特定性能的新材料。例如,在金属加工中,通过控制粉末的粒度,可以制造出具有优异机械性能的金属零件。四、环境科学:粒度影响空气质量环境科学中,大气颗粒物的粒度分布对空气质量和人类健康有着重要影响。细颗粒物(PM2.5)等微小颗粒可以深入肺部,对健康造成严重影响。海岸鸿蒙的粒度标准物质用于校准大气颗粒物监测设备,确保空气质量数据的准确性,为制定环境保护政策提供科学依据。五、食品工业:粒度提升食品品质在食品工业,颗粒的粒度影响食品的口感、颜色、保质期和营养成分的释放。例如,面粉的粒度影响面包的质地和口感;巧克力的粒度则关系到口感的细腻程度。海岸鸿蒙的粒度标准物质确保食品加工过程中粒度的一致性,提升食品的品质和消费者的食用体验。六、电子行业:粒度保障显示质量在电子行业,颗粒标准物质用于制造液晶显示器(LCD)的衬垫和光电子器件。精确控制微球的粒度对于保证显示图像的均匀性和精确性至关重要。此外,电子封装材料的粒度也会影响电子器件的散热性能和可靠性。七、纳米技术:粒度激发创新潜力纳米材料的粒度对其光学、磁学和催化性能有着决定性的影响。海岸鸿蒙的粒度标准物质在纳米材料的合成、表征和应用开发中发挥着关键作用。例如,在催化剂设计中,通过精确控制催化剂颗粒的粒度,可以提高其催化活性和选择性。在光学材料中,通过控制颗粒的粒度,可以制造出具有特定光学性质的材料,如光学涂层和光子晶体。海岸鸿蒙颗粒标准物质的研发已经达到国内领先、国际前沿水平,目前共有200余种颗粒标准物质,其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。其颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、二氧化硅、金属、胶体金和多元琼脂糖、等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。
  • BCEIA 2023,海岸鸿蒙颗粒标准物质强势吸睛
    九月金秋,桂子飘香,两年之约,如期而至。2023年9月6-8日,第二十届北京分析测试学术报告会暨展览会(BCEIA 2023)于北京中国国际展览中心(顺义馆)圆满落幕。此次会议秉承“分析科学创造未来”的愿景,围绕“生命 生活 健康——面向绿色未来”的主题组织了学术报告会、专题论坛及仪器展览会,共吸引了700余家厂商参展,万余名专业观众现场观摩。自正式入场开始,活动现场人潮汹涌,海岸鸿蒙明亮大气的展台人声鼎沸,各式不同的产品整齐有序地陈列在展台上,观众近距离了解各种标准物质的特点及应用。值得一提的是,海岸鸿蒙凭借在颗粒标准物质领域内的独家技术,引来现场众多关注,工作人员为参观者耐心讲解了颗粒标准物质从研发、生产、质量控制等生产程序,以及在环境监测、医疗制药、计量校准等领域发挥的功能作用。来自国内外的参展观众对颗粒标准物质的应用、特点及在各个领域中的重要性有了极大了解,无不认可海岸鸿蒙的研发实力。海岸鸿蒙自1996年成立,便着手颗粒标准物质的研发,27载深耕令海岸鸿蒙颗粒标准物质的研发已达到国内领先、国际前沿水平。其中PM2.5、可见异物等百余种标准物质的研制成功填补了国内的空白,被国家市场监督管理总局批准为国家一级、二级标准物质。颗粒产品包括颗粒标准物质和功能微粒两大类,共有3000多种产品,涵盖颗粒尺寸从30纳米到2000微米,涉及聚苯乙烯、不锈钢、二氧化硅、胶体金和多元琼脂糖等不同材质以及彩色微粒、荧光微粒、磁性微粒等不同功能的微粒产品。可以应用在激光粒度仪、流式细胞仪、微粒分析仪、尘埃粒子计数器、液体颗粒计数器、全自动灯检机等仪器的检定校准、分析测试中,也可用于质量控制及科研工作或输液器的滤除滤检测、药典可见异物检测等。颗粒产品可见异物标准物质中国药典用标准物质据工作人员统计,近半数来到海岸鸿蒙的观众表示颗粒标准物质与他们的研究或工作中有着关联性,并希望能够在未来的工作中使用上国产颗粒标准物质,他们深知使用国产颗粒标准物质对保证工作质量、提高设备准确性和优化性价比的重要之处,面对热情的参观者,海岸鸿蒙展台俨然成为了一个交流和学习的平台。展会期间,神州细胞、天津一方等企业,以及计量行业的专家代表前来交流,交谈中,专家代表们为海岸鸿蒙颗粒标准物质的产品竖起大拇指!相关企业先后在现场预约颗粒标物的培训课程,希望通过培训交流可以更好地了解颗粒标准物质的应用和重要性,提高他们的检测水平和质量保障能力。在我国制定的《计量发展规划(2021-2035年)》中,标准物质研发、推广及应用已经上升为“国家战略”。为满足国内相关企业对颗粒标准物质的应用需求,普及颗粒标准物质的专业知识,实现测量结果的有效溯源和量值统一,助力我国颗粒标准物质行业发展,海岸鸿蒙特开展“颗粒标准物质全国巡回培训班”,帮助更多的企事业及科研单位充分掌握颗粒标准物质的专业知识及具体应用。2023年9月1日-2024年8月31日间,有意者可联系海岸鸿蒙进行课程预约,海岸鸿蒙将进行1对1的精讲培训。此外,仪器信息网、仪器学习网等业界媒体先后来到海岸鸿蒙,围绕着行业未来发展趋势、市场模式变化、产品研发技术、商务合作等话题展开了热烈交谈。经过三天的盛会,BCEIA 2023圆满落幕。本次展会为行业提供了一个国际化的交流与合作平台,推动了领域内的互动与合作,为标准物质行业的未来发展注入了新的活力。此次海岸鸿蒙不仅向业界展示了在标准物质领域技术研发上的雄厚实力,更提高了大众对标准物质行业的认知度。展望未来,海岸鸿蒙将继续深耕标物研发与创新,为各领域提供高质量的标准物质,为行业发展做出更大贡献,助力中国标物崛起。
  • 大连化物所提出颗粒细化诱导提高钠/锂离子电池循环容量的新机制
    近日,大连化物所储能技术研究部(DNL17)李先锋研究员、郑琼副研究员团队和燕山大学唐永福教授团队合作,在钠/锂离子电池电极储能机理研究方面取得新进展。  近年来,钠离子电池作为研究热点得到了国内外广泛关注,取得了快速发展。研究发现,具有较高Na+储存性能和循环稳定性的电极材料,对于提高钠离子电池的能量密度和倍率性能十分重要。 本工作中,研究团队设计了一种珊瑚状的FeP复合材料,该材料可锚定FeP纳米颗粒,并将其均匀分散在氮(N)掺杂的三维(3D)碳骨架(FeP@NC)上。珊瑚状FeP@NC复合材料具有较短的电荷转移路径和较高的导电氮掺杂碳网络,可显著改善复合材料的电荷转移动力学。同时,由于FeP纳米颗粒周围具有高度连续的N掺杂碳骨架和弹性缓冲的石墨化碳层,基于FeP@NC复合材料的钠离子电池(SIB)表现出优异的倍率性能和循环性能,在10A/g下经10000次循环后其容量保持率为82.0%。  更为重要的是,针对循环过程中电池容量逐渐上升的现象,研究团队结合电化学研究和原位电镜表征分析,证实了一种独特的颗粒细化在循环过程中提高容量的作用机制,这种容量提升效果在小电流下表现得更为显著。研究表明,均匀分布在氮掺杂碳基体上的FeP纳米颗粒,在第一个循环中经历了细化-复合过程,经过数次循环后呈现出全区域细化的趋势,这种细化对周围的非晶碳产生强烈的吸附作用,引起复合材料石墨化度和界面磁化强度逐渐增加,为Na+的存储提供了更多的额外活性中心,进而提高了循环容量。这种容量提升机制也可以扩展到锂离子电池(LIBs)。研究发现,在10A/g下,经5000次循环后,基于FeP@NC复合材料的LIBs的容量保持率为90.3%,超过了已报道的FeP基复合材料的容量保持率。  该研究提出了一种在循环过程中经颗粒细化诱导提高电池容量的新策略,为设计高性能的SIBs/LIBS负极材料提供了新思路。  相关成果以“A Coral-Like FeP@NC Anode with Increasing Cycle Capacity for Sodium-Ion and Lithium-Ion Batteries Induced by Particle-Refinement”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上。该工作的第一作者是大连化物所DNL17博士研究生王灿沛。上述研究工作得到国家自然科学基金、中科院青年创新促进会等项目的资助。  文章链接:https://doi.org/10.1002/anie.202110177
  • 中国颗粒学会2018年度5大奖项揭晓
    2018年8月9日-12日,中国颗粒学会第十届学术年会暨海峡两岸颗粒技术研讨会在辽宁省沈阳市召开,近800名颗粒测试及表征领域的专家出席。在8月12日的颁奖及闭幕典礼上,中国颗粒学会2018年度自然科学奖、科技进步奖、技术发明奖、优秀博士生论文奖、青年颗粒学奖等5项大奖揭晓,同时,会议还公布了本届年会面向在读学社的优秀论文奖和优秀墙报奖获奖名单。本次颁奖典礼由中国颗粒学会理事长朱庆山主持,共颁发了自然科学奖一等奖4项、二等奖7项;科技进步奖一等奖2项,二等奖6项;技术发明奖一等奖2项,二等奖1项;优秀博士生论文奖及提名奖获得者12人;青年颗粒学奖获得者9人。另外共有29名在校学生荣获年会优秀论文奖,14名学生荣获优秀墙报奖,占参加年会交流学生的20%。年会颁发的所有奖项每两年评选一次,用来奖励我国颗粒学研究及应用领域做出突出贡献的团体或个人,调动颗粒学相关科研工作者的积极性与创造性,推动我国颗粒事业的蓬勃发展。其中自然科学奖、技术发明奖与科技进步奖分别设立于2018年和2016年,青年颗粒学奖设立于1997年,而优秀博士生论文奖也为今年首次设立。颁奖现场及获奖详情如下:中国颗粒学会2018年度自然科学奖一等奖中国颗粒学会2018年度自然科学奖二等奖“中国颗粒学会2018年度自然科学奖”获奖名录:等级项目完成人项目申报单位项目名称一等奖韩永生、邢辉、孙东科、林强中科院过程工程研究所、西北工业大学等反应-传质调控颗粒形貌李峰、孙振华、周光敏、方若翩、胡广剑、尹利长中科院金属研究所锂硫电池用纳米碳基复合电极材料研究王丹、于然波、唐智勇、王江艳、赖小勇、毛丹中科院过程工程研究所、北京科技大学等介尺度无机功能颗粒的可控制备及功能应用薛冬峰、孙丛婷、陈昆峰中科院长春应用化学研究所无机功能材料的多尺度结晶过程及应用基础研究二等奖安希忠、付海涛、杨晓红东北大学高性能颗粒材料的结构设计与优化郭庆杰、田红景、王翠苹、吴曼青岛科技大学超细颗粒在外场强化流化床内的流化和混沌特性郭新彪、邓芙蓉、吴少伟、黄婧北京大学大气颗粒物短期暴露对心肺系统的健康影响特征吕宝亮、刘忠、周海、王聪慧、王会香、吴东中科院山西煤炭化学研究所双配体离子分级作用及其在过渡金属氧化物单晶纳米颗粒形貌调控中的应用研究孟宪伟、任俊、任湘菱、谭龙飞、付长慧、吴琼、唐芳琼中科院理化技术研究所肿瘤微波治疗增敏颗粒材料的理论设计与制备沈振兴、徐红梅、孙健、张倩、刘萍萍、巩雪松西安交通大学西安PM2.5的污染特征及控制有效性评估张炳森中科院金属研究所“金属-碳载体相互作用”微结构研究中国颗粒学会2018年度科技进步奖一等奖中国颗粒学会2018年度科技进步奖二等奖“中国颗粒学会2018年度科技进步奖”获奖名录:等级项目完成人项目申报单位项目名称一等奖陈运法、张冬海、赵悦菊、张忠、夏兵、徐志磊、张翀、王建辉、武晓峰、韩世建、张晖、薛杨、张婧坤、苗文华、王好盛、李欣欣、陈殿龙中科院过程工程研究所、北京国电富通科技发展有限责任公司等电力新型防污闪纳米硅橡胶复合材料研究与规模化应用马宗义、肖伯律、王东、王全兆、张星星、刘振宇、倪丁瑞、薛鹏、吴利辉中国科学院金属研究所颗粒增强铝基复合材料的制备加工与应用二等奖成庆堂、徐斌海、吴卫星、陈美、陈爱娣、夏冬前江苏河海纳米科技股份有限公司具有核心竞争力的纳米二氧化钛及工程应用研发和产业化董青云、范继来、李闯、李鹏、周晓东、李晓光、刘峰源、李晓旭、陈权威、宋振瑛、刘伟丹东百特仪器有限公司、浙江大学高精度智能激光粒度仪房倚天、李俊国、程中虎、郝振华、聂伟、黄戒介、赵建涛、刘哲语、李春玉、董立波、陈友川、王志青中科院山西煤炭化学研究所加压流态化工程基础研究及其在煤气化技术上的应用李力北京海岸鸿蒙标准物质技术有限责任公司颗粒测试相关标准物质的研制和市场化刘伟、王雅静、宋井玲、王伟、陈文钢、马立修、申晋、秦福元、山东理工大学、中国农业大学等基于光纤的动态光散射纳米颗粒测量关键技术研究及应用吴晓春、纪英露、高原、刘俊杰、朱晓阳、胡志健、齐笑迎、高洁、张文阁国家纳米科学中心、北京市理化分析测试中心、北京粉体技术协会纳米金技术标准体系应用于生物医学基础研究中国颗粒学会2018年度技术发明奖一、二等奖“中国颗粒学会2018年度技术发明奖”获奖名录:等级项目完成人项目申报单位项目名称一等奖李建强、董伟、李晓禹、许富民、杨亚锋、郭立江、马炳倩、王会、胡应燕、吴鹏、张国才中科院过程工程研究所、大连理工大学微熔滴凝固制备金属和无机球形颗粒及其功能化技术朱庆山、李洪钟、谢朝晖、李军、邵国强中科院过程工程研究所流态化矿物焙烧关键技术及应用二等奖潘志东、柯善军、王燕民华南理工大学随光异色功能陶瓷色料的制备与应用研究中国颗粒学会2018年度优秀博士生论文奖及提名奖得主“中国颗粒学会2018年度优秀博士生论文奖及提名奖”获奖名录:序号姓名毕业院校博士论文题目优秀博士生论文奖陈楠北京理工大学锂离子电池用固态化电解质研究陈璞珑南京大学南京市大气颗粒物的源谱特征和来源解析研究陈宜法北京理工大学金属有机骨架材料加工成型新方法的探索何学敏南京大学3d过渡金属及其氧化物纳米颗粒的磁性柯善军华南理工大学焦硅酸钕变色陶瓷色料及其墨水的制备与性能研究刘鹏程南京航空航天大学层状钒氧化物电极材料的微-纳结构可控制备及电化学性能孙永升东北大学高磷鲕状赤铁矿石深度还原基础研究姚秀颖中国石油大学气固环流取热器内流动、传热特性的实验研究和数值模拟张晨曦清华大学并联系统气固两相流均匀分布稳定性研究赵碧丹中科院过程工程研究所非均匀气固两相流的非平衡态统计力学分析优秀博士生论文提名奖王帅哈尔滨工业大学流化床反应器内流动与反应特性的多尺度数值模拟张波山东大学基于脂质纳米载体共递送奥沙利铂及伊立替康用于增强结直肠癌治疗的研究中国颗粒学会青年颗粒学奖得主“中国颗粒学会青年颗粒学奖”获奖名录:姓名工作单位陈成猛中科院山西煤炭化学研究所范继来丹东百特仪器有限公司韩永生中科院过程工程研究所黄宇中科院地球环境研究所黄佳琦北京理工大学姜虎林中国药科大学李军中科院过程工程研究所吴颉院过程工程研究所席广成中国检验检疫科学研究院中国颗粒学会第十届学术年会“优秀论文奖”得主中国颗粒学会第十届学术年会“优秀墙报奖”得主
  • 微生物检测培养基质量控制问答
    微生物检测培养基质量控制问答1、培养基灭菌后成份会有所蒸发减少,如何处理这个问题?答:正常情况下蒸发量较少,可忽略不计。2、培养基融化后出现浑浊是有哪些方面的原因引起的?应如何避免?答:可能的情况有:1. 培养基配置用水不符合规定;2. 灭菌过程温度升温慢或降温慢;3. 培养基储存不当;4. 融化时沸腾时间较长等。3、准备好的培养基有效期如何验证?答:定期取出培养基验证其无菌性,促生长能力等方面。4、培养基配制好灭菌后,在高压容器中保温降至50℃左右,可不可行?答:建议最-好不要,避免过度受热。5、脱水培养基对湿度是否有要求?多少适宜?答:按要求室温干燥环境储存即可。6、培养基pH值测定温度在25℃,这个温度应怎么控制?答:可水浴控制培养基温度。7、配制培养基过程中,按说明书称定量,加规定的纯化水,煮沸溶解,为了避免煮沸过程总减少水分,是否要在配制过程适当增加水?答:可适量增加,自己掌握。8、商品培养基一定要当天配当天用吗?可否在一周内用完?答:不是即配即用的培养基的话,储存的当,可以使用。9、称量培养基时,注意不要吸入粉末,这粉末是指何物?答:就是你所称量的干粉培养基 ,因为培养基的粉末对呼吸道有刺激作用,而且培养基中的某些成分,如亚硒-酸盐、叠氮-化钠、乙酰胺等,长期吸入并在体内累积到一定量会对人体健康有危害。所以培养基配制称量需做好个人防护,且最-好选择少粉尘环保型颗粒培养基。10、煮培养基,用不锈钢锅在电磁炉上煮可行?硫乙醇培养基是否要煮沸?如何煮沸?用不锈钢锅在电磁炉上煮沸可行吗?可不可以水浴煮沸呢?答:硫乙醇应煮沸,量大时,我实验室用不锈钢锅在电磁炉上煮沸。不建议水浴煮沸,因为水浴煮沸琼脂粉很难溶,导致琼脂分装不均匀,前段分装的琼脂含量少,后段分装的琼脂含量高,导致有的管或瓶中的FT凝固。11、如培养基在高压灭菌器中温度需自然下降20度才开盖吗?答:高温灭菌器有安全阀,温度下降到安全阀可打开时将培养基取出室温冷却,各型号灭菌器安全开盖温度不尽相同。12、平板涂布和平板划线培养基表面水分过多,菌落蔓延如何解决?答:对于采用表面接种形式培养的固体培养基,应先对琼脂表面进行干燥:揭开平皿盖,将平板倒扣于烘箱或培养箱中(温度设为25℃~50℃);或放在有对流的无菌净化台中,直到培养基表面的水滴消失为止。注意不要过度干燥。商品化的平板琼脂培养基应按照厂商提供的说明使用。
  • 得利特便携式颗粒计数器成功上新
    近年来油品问题一直层出不穷,随之而来的是大气污染问题。为此,我国石油企业加强环境污染的预防和控制,提高环境管理水平。目前,相当多的国内石油企业已通过环境管理体系认证,为中国石油企业走向国际市场奠定了基础。为了满足国家污染物排放标准的要求,一些石油努力进行技术改造,加大污染物治理力度,挖掘综合利用潜力,使污染物排放达标率显著上升。为了检测石油污染度情况,北京得利特公司研发了一款便携式颗粒计数器,可以随带随测,方便了客户使用.新款仪器介绍:A1035便携式颗粒计数器,内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准.采用国际液压标准的光阻(遮光)法计数原理,专门用于现场油液污染度等级快速检测装置。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油等油液,可广泛应用于航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。技术参数光 源:半导体激光器流速范围:20-60mL/min离线检测样品粘度:≤100cSt,粘度高时可选配压力舱在线检测压力:0.1-0.6Mpa(选配减压装置zui高压力可达40Mpa)粒径范围:1-500μm(选用不同型号传感器)接口:USB接口、电源接口数据存储:提供1000组数据存储空间,并支持优盘存储灵 敏 度:1μm或4μm(c)极限重合误差:10000粒/ml计数体积:1-999ml计数准确性:±0.5个污染度等级防护等级:IP67测试时间间隔:1秒-24小时检测样品温度:0-80℃水活性:0-1aw(±0.05aw)水含量:0-120ppm(±10%)工作温度:-20-60℃供 电: AC 220V±10%、50/60Hz或DC12-40V重 量:2.5kg体 积:275×220×107mm仪器特点1、采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定2、适用于实验室或现场检测,也可选配减压装置用于在线高压测量,实时监测用油系统中的颗粒污染度3、可外接压力舱形成正/负压,实现高粘度样品的检测和样品脱气4、内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级5、管路采用316L及PTFE材料,满足各类有机溶剂及油品的检测6、具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护7、内置校准功能,可按GB/T21540、ISO4402、GB/T18854等标准进行校准8、可在高温高压等及其恶劣的条件下工作。9、内置数据分析系统,可根据标准自动判定样品等级,具有数据自动处理、打印功能10、可设定任意报警级别,实现污染度或洁净度检测11、内置微水传感器和温度传感器12、中英文输入,一键切换,具有预设、输入、修改、存储功能,操作方便快捷13、超大存储,可选择存储在仪器内部或外部存储设备中14、嵌入式设计,高强度外壳,便于携带,适合各类工程机械15.具有体积小、质量轻、检测速度快、精度高、重复性好
  • 生物颗粒专家莅临百特考察,聚焦制药颗粒测试技术提升
    8月13日,刚刚结束沈阳中国颗粒学会第十届学术年会,生物颗粒专委会崔福德主任委员,孙永达、吕万良副主任委员等27位制药生物颗粒专家组成的颗粒测试考察团开启了丹东百特颗粒测试技术与仪器考察之旅。在沈阳中国颗粒学会第十届学术年会上,百特展出了新型激光粒度粒形分析系统、动态图像颗粒分析系统、纳米粒度分析系统等仪器,并在颗粒测试、颗粒制备和生物颗粒三个会场做了学术报告,引起了颗粒专家的广泛关注。二十多位全国知名的生物颗粒专家齐聚百特专题考察颗粒测试技术,在百特历史上还是第一次。公司总经理董青云、副总经理刘忠兰、销售总监丛丽华、技术总监李雪冰等早早就驻足公司大门口,热烈欢迎各位生物颗粒专家的到来。颗粒专家参观百特应用实验室时,详细了解百特各种粒度粒形分析仪器的性能与核心技术,观摩了粒度粒形分析的全过程。他们对百特仪器良好的重复性和准确性、一键操作等方面的优良性能给予很高评价,对Bettersize2600专门为制药领域研制的微量干法进样系统(最少样品量0.05克)产生浓厚兴趣。同时专家们也在软件界面、操作流程和样品制备方面提出来宝贵的意见和建议。 在百特展示厅,各位专家了解了百特历程、独特技术、企业文化和国内外市场等情况。他们看到百特取得48项专利技术和100多项专有技术;看到百特在国内外有9500多家用户、12000多台仪器在运行;看到百特“快乐工作、快乐生活”和“百年特色”的企业文化,纷纷为百特点赞。在百特仪器制造车间,专家们详细考察了百特“静态流水线法”的仪器装配、检验、测试和老化过程,认为这是保证仪器可靠性、一致性的好方法,对百特脚踏实地通过精益质量管理来提升产品质量的措施给予称赞,同时也感受到国产仪器的提升步伐。 参观结束后,百特技术总监李雪冰博士以《百特粒度仪器的生物制药故事》为题向各位专家汇报了百特在仪器技术性能提升和应用研究方面取得的成果,并就一些制药领域的特殊和前沿问题进行了咨询和交流。参观考察结束了,各位专家对百特有了全面深入的了解,对中国颗粒测试技术有了新的认识和信心。崔福德教授、孙永达教授等专家希望百特在制药领域加大研发投入,为我国制药事业的发展做出更大的贡献!
  • 新型空气生物采样器Coriolis μ登陆中国市场
    Coriolis μ采用全新的气旋式采样技术,收集空气中的生物样品,样品溶于液体中,适用于各种类型的实验分析。 这种技术彻底抛开传统的在Anderson原理上开发出来的,用琼脂平板收集样品的冲击式空气采样技术,收集效果远远优于传统方法。 Coriolis μ的全新气旋式采样技术诞生,源于欧盟委员会的生命环境计划(Life Environment Program)项目之一。该项目由Bertin公司牵头,来自欧盟7个成员国共8个单位参与了这个项目。项目研发历时3年,用资226万欧元。该项目主要目标是获得空气生物液体样本,配合基于抗原抗体反应的ELISA方法,研究空气中微小生物颗粒及花粉等对敏感人群的潜在影响。这一技术的问世,必将为医院、食品行业、生物防御及环境科学等诸多领域空气质量的评定提供有力的推动。 Coriolis μ符合国际ISO14698-1洁净室生物污染控制的通用标准,是食品、制药、化妆品、医院和健康护理等领域里对空气污染控制的理想的设备。 Coriolis μ设计精美,外观紧凑,携带方便,能高效、可靠的收集空气中的生物颗粒,真可谓之空气生物采样器领域中的“白天鹅”。 screen.width-300)this.width=screen.width-300"
  • 直击颗粒3D图像
    如果你有兴趣学习如何利用3D颗粒图像数据来改善你的产品或处理过程,那你绝不想错过这次讲座。Microtrac邀请你加入我们11月6日上午10点借由仪器信息网平台举办的免费网络研讨会,这次会议将介绍实现动态图像分析技术来测量粒子大小和形状的好处。 会议主题如下: ?图像分析关键术语?3D技术的历史?专利3 D颗粒大小和形状分析?使用颗粒图像数据来改善你的产品或处理过程  美国麦奇克颗粒图像分析仪PartAn 3D   美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。Microtrac Inc.公司非常注重技术创新,近半个世纪以来,一直领先着激光粒度分析的前沿技术,可靠的产品和强大的应用支持及完善的售后服务,使得其不断超越自我,推陈出新,独领风骚。 DKSH是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 大昌华嘉商业(中国)有限公司 市场部 您可以通过点击下面链接获取详细信息并报名参加本次网络会议,谢谢! 会议链接:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/1222 服务咨询电话:4008 210 778 E-mail:ins.cn@dksh.com 欢迎浏览大昌华嘉网站 : http://www.dksh-instrument.cn
  • 药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪价格相差较大,该如何选
    在药品包装材料的质量控制过程中,耐水性测试是评估材料稳定性和可靠性的重要指标之一。药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪是两种不同的制样方法,它们在操作便利性、测试精度、成本效益等方面存在差异。药玻颗粒耐水性人工制样优点:成本较低:人工制样通常需要的初始投资较少,适合预算有限的实验室或小规模生产环境。灵活性:人工操作提供了更大的灵活性,可以根据具体需求调整制样过程。缺点:效率较低:与自动化设备相比,人工制样速度慢,劳动强度大,可能影响整体的测试效率。一致性:人工操作可能导致制样的一致性较差,影响测试结果的准确性和重复性。数据记录:需要手动记录数据,增加了出错的可能性。玻璃颗粒耐水性自动制样仪优点:高效率:自动化设备可以快速完成制样,大幅提升工作效率。一致性:自动制样仪能够提供更加一致的样品,从而提高测试结果的准确性和重复性。数据管理:自动设备通常配备有数据自动记录和分析功能,减少了人为错误。缺点:成本较高:自动制样仪的购置和维护成本较高,可能不适合预算紧张的实验室。技术要求:操作和维护自动设备需要一定的技术知识和培训。如何选择在选择药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪时,应考虑以下因素:预算:评估实验室或生产环境的财务状况,确定可承担的成本。测试频率:如果测试需求量大,自动化设备可能更具成本效益。测试精度要求:对于需要高重复性和准确性的应用,自动制样仪更为合适。操作人员技能:考虑操作人员的技术水平和培训需求。未来发展:考虑实验室或生产环境的长期发展计划,选择能够适应未来发展的设备。结论药玻颗粒耐水性人工制样与玻璃颗粒耐水性自动制样仪各有优势,选择时应基于实际需求和长期规划。如果预算有限且测试量不大,人工制样可能更加合适。反之,如果追求高效率和高精度,且预算允许,自动制样仪将是更好的选择。在做出决策时,还应考虑设备的品牌、售后服务和升级能力等因素。
  • 《中药配方颗粒质量控制与标准制定技术》促进配方颗粒标准科学规范
    2月10日,国家药监局、国家中医药局、国家卫生健康委、国家医保局等四部门共同发布了《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),以规范中药配方颗粒的生产,引导产业健康发展,更好地满足中医临床需求。这是促进中医药传承创新发展的重要举措,对提升人民群众对中药的获得感具有重要意义。  作为国家药典委评审专家,我一直关注中药配方颗粒产业发展,参与了中药配方颗粒国家标准的制定。中药配方颗粒国家标准制定过程充分吸纳了试点经验,充分借鉴了行业、企业的意见和建议。评审专家与企业面对面,在充分总结试点积累的科研和生产数据基础上,进行讨论、规范、提升,一方面真正发挥了企业的主体责任,另一方面也促进了企业对标准研究及理解水平的提高。  这次与《公告》同步发布的还有《中药配方颗粒质量控制与标准制定技术要求》(以下简称:《技术要求》)。《技术要求》是在总结前期标准制定经验的基础上起草的,从基本要求、原辅料、标准汤剂、生产工艺、标准制定、稳定性和标准复核等几个方面规范了标准研究制定的过程。归纳起来有三大特点。  一是考虑到中药配方颗粒经水煎煮失去饮片原形的特点,通过要求采用特征/指纹图谱分析技术,强化了在统一标准中对中药配方颗粒质量真伪优劣的专属性要求。这就要求企业要有配套的中药材种植基地,并且都要制定中药材、中药饮片的企业内控标准,从源头上确保投料中药材的质量可靠性。  二是通过制定标准汤剂的标准,架起中药配方颗粒与汤剂的桥梁,形成中药配方颗粒的物质基准,从而保证了中药配方颗粒临床使用的安全有效,而不是一味地追求某一化学标示物。这次在使用辅料最小化的原则下,规范和统一了生产过程的浸膏得率,进而统一了不同生产企业的制成总量及规格,为临床使用的量化配伍提供了方便。  三是《技术要求》覆盖原料药材、中药饮片、标准汤剂及制备过程、中药配方颗粒成品,体现中药全过程质量控制的特点及方向。尤其是重视了农药残留、重金属、真菌毒素等安全性方面的评价指标,既抓住了中药质量真伪鉴别和足量投料的关键点,亦体现了中药复杂体系质量控制的特点。(作者:国家中药制药工程技术研究中心 沈平孃
  • 远慕总结:质粒DNA的提取方法
    (一)碱裂解法提取质粒[实验原理]碱裂解法提取质粒是根据共价闭合环状质粒DNA与线性染色体DNA在拓扑学上的差异来分离它们。在pH值介于12.0~12.5这个狭窄的范围内,线性的DNA双螺旋结构解开而被变性,尽管在这样的条件下,共价闭环质粒DNA的氢键会被断裂,但两条互补链彼此相互盘绕,仍会紧密地结合在一起。当加入pH4.8的乙酸钾高盐缓冲液恢复Ph至中性时,共价闭合环状质粒DNA的两条互补链仍保持在一起,因此复性迅速而准确,在而线性的染色体DNA的两条互补链彼此已完全分开,复性就不会那么迅速而准确,它们缠绕形成网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。[实验仪器与设备]1.恒温培养箱 2.恒温摇床3.台式离心机(最大转速4000rpm) 4.冷冻高速离心机5.高压灭菌锅 6.超净工作台7.微量移液器 8.eppendorf tupe、tip[实验材料]1.葡萄糖 2.三羟甲基氨基甲/烷(Tris)3.乙2胺四乙酸(EDTA) 4.氢氧/化钠5.十二烷基硫酸钠(SDS) 6.乙酸钾7.冰乙酸 8.氯/仿9.乙醇 10.胰RNA酶11.氨苄青霉素 12.蔗糖13.溴酚蓝 14.酚15.β巯基乙醇 16.盐酸17.含pUC18质粒的大肠杆菌附:试剂的配制1.溶液Ⅰ50mmol/L 葡萄糖5mmol/L 三羟甲基氨基甲/烷(Tris) TrisHCl (pH8.0)10mmol/L 乙2胺四乙酸(EDTA)(pH8.0)2.溶液Ⅱ0.4 mol/L NaOH, 2%SDS, 用前等体积混合3.溶液Ⅲ5mmol/L 乙酸钾 60 ml冰乙酸 11.5 ml水 28.5 ml4.TE缓冲液10mmol/L TrisHCl1 mmol/L EDTA(pH8.0)5.70%乙醇(放-20℃冰箱中,用后即放回)6.胰RNA酶将RNA酶溶于10mmol/L TrisHCl(pH7.5)、15mmol/L NaCl中,配成10mg/ml的浓度,于100℃加热15min,缓慢冷却至室温,保存于-20℃。7.终止液:40%蔗糖、0.25%溴蓝酚8.酚[实验步骤](一) 提取质粒1.将2ml含相应抗生素的LB液体培养基加入到试管中,接入含质粒的大肠杆菌,37℃振荡培养过夜。2.取1.5ml培养物倒入微量离心管中,4000rpm,离心2min。3.吸去培养液,使细胞沉淀尽可能干燥。4.将细菌沉淀悬浮于100μl溶液Ⅰ中,充分混匀,室温放置10 min。5.加200μl溶液Ⅱ(新鲜配制),混匀内容物,将离心管放冰上5 min。6.加入150μl溶液Ⅲ(冰上预冷),盖紧管口,颠倒数次使混匀。7.1200rpm,离心15 min,将上清转至另一离心管中。8.向上清中加入等体积酚:氯/仿(去蛋白),反复混匀,12000rpm,离心5min,将上清转移到另一离心管中.9.向上清加入2倍体积乙醇,混匀后,室温放置5-10min。12000rpm离心5min。倒去上清液,把离心管倒扣在吸水纸上,吸干液体。10.用1ml70%乙醇洗涤质粒DNA沉淀,振荡并离心,倒去上清液,真空抽干或空气中干燥。11.加50μl TE缓冲液,其中含有20μg/ml的胰RNA酶,使DNA完全溶解,-20℃保存。(二)琼脂糖凝胶电泳检测DNA[实验原理]琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethidum bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。琼脂糖凝胶有如下特点:(1) DNA的分子大小 在凝胶基质中其迁移速率与碱基对数目的常用对数值成反比,分子越大迁移得越慢。(2) 琼脂糖浓度 一个特定大小的线形DNA分子,其迁移速度在不同浓度的琼脂糖凝胶中各不相同。DNA电泳迁移率(u)的对数与凝胶浓度(t)成线性关系。(3) 电压 低电压时,线状DNA片段迁移速率与所加电压成正比。但是随着电场强度的增加,不同分子量DNA片段的迁移率将以不同的幅度增长,随着电压的增加,琼脂糖凝胶的有效分离范围将缩小。要使大于2kb的DNA片段的分辨率达到最大,所加电压不得超过5v/cm。(4) 电泳温度 DNA在琼脂糖凝胶电泳中的电泳行为受电泳时的温度影响不明显,不同大小的DNA片段其相对迁移速率在4℃与30℃之间不发生明显改变,但浓度低于0.5%的凝胶或低熔点凝胶较为脆弱,最好在4℃条件下电泳。(5) 嵌入染料 荧光染料溴化乙锭用于检测琼脂糖凝胶中的DNA,染料嵌入到堆积的碱基对间并拉长线状和带缺口的环状DNA,使其刚性更强,还会使线状迁移率降低15%。(6) 离子强度 电泳缓冲液的组成及其离子强度影响DNA电泳迁移率。在没有离子存在时(如误用蒸馏水配制凝胶,电导率最小,DNA几乎不移动,在高离子强度的缓冲液中(如误加10×电泳缓冲液),则电导很高并明显产热,严重时会引起凝胶熔化。对于天然的双链,常用的几种电泳缓冲液有TAE、TBE等,一般配制成浓缩母液,室温保存,用时稀释。[实验仪器与设备]1. 恒温培养箱2. 琼脂糖凝胶电泳系统3. 高压灭菌锅 4. 紫外线透射仪[实验材料]1.三羟甲基氨基甲/烷(Tris) 2.硼/酸3.乙2胺四乙酸(EDTA) 4.溴酚蓝5.蔗糖 6.琼脂糖7.溴化乙锭 8.DNA marker9.DNA样品[实验步骤]1.缓冲液的配制① 5×TBE(5倍体积的TBE贮存液)配1000ml 5×TBE:Tris 54g硼/酸 27.5g0.5mol/l EDTA 20mlPh8.0② 凝胶加样缓冲液(6×)溴酚蓝 0.25%蔗糖 40%③溴化乙锭溶液(EB) 0.5μg/ml2.制备琼脂糖凝胶按照被分离DNA的大小,决定凝胶中琼脂糖的百分含量。可参照下表:琼脂糖凝胶浓度 线性DNA的有效分离范围0.3% 5-60 kb0.6% 1-20 kb0.7% 0.8-10 kb0.9% 0.5-7 kb1.2% 0.4-6 kb1.5% 0.2-4 kb2.0% 0.1-3 kb3.胶板的制备(1) 用高压灭菌指示纸带将洗静、干燥的玻璃板的边缘(或电泳装置所皿备的塑料盘的开口)封住,形成一个胶膜(将胶膜放在工作台的水平位置上,用水平仪校正)。(2) 配制足够用于灌满电泳槽和制备凝胶所需的电泳缓冲液(1×TBE)。准确称量的琼脂糖粉。缓冲液不宜超过锥瓶或玻璃瓶的50%容量。 在电泳槽和凝胶中务必使用同一批次的电泳缓冲液,离子强度或pH值的微小差异会在凝胶中形成前沿,从而大大影响DNA片段的迁移率 。(3) 在锥瓶的瓶颈上松松地包上一层厚纸。如用玻璃瓶,瓶盖须拧松。在沸水浴或微波炉中将悬浮加热至琼脂糖溶解。注意:琼脂糖溶液若在微波炉里加热过长时间,溶液将过热并暴沸。应核对溶液的体积在煮沸过程中是否由于蒸发而减少,必要时用缓冲液补充。(4) 使溶液冷却至60℃。加入溴化乙锭(用水配制成10mg/ml的贮存液)到终浓度为0.5ug/ml,充分混匀。(5) 用移液器吸取少量琼脂糖溶液封固胶模边缘,凝固后,在距离底板0.5-10mm的位置上放置梳子,以便加入琼脂糖后可以形成完好的加样孔。如果梳子距玻璃板太近,则拔出梳子时孔底将有破裂的危险,破裂后会使样品从玻璃板之间渗透。(6)将剩余的温热琼脂糖溶液倒入胶模中。凝胶的厚度在3-5mm之间。检查一下梳子的齿下或齿间是否有气泡。(7)在凝胶完全凝固后(于室温放置30-45分钟) ,小心移去梳子和高压灭菌纸带,将凝胶放入电泳槽中。低熔点琼脂糖凝胶及浓度低于0.5%的琼脂糖凝胶应冷却至4℃,并在冷库中电泳。(8)加入恰好没过胶面约1mm深的足量电泳缓冲液。4.加样DNA样品与所需加样缓冲液混合后,用微量移液器,慢慢将混合物加至样品槽中。此时凝胶已浸没在缓冲液中。 一个加样孔的最大加样量依据DNA的数量及大小而定,一般为20-30μl样品。已知大小的DNA标准,应同时加在凝胶的左凝胶的左侧和右侧孔内。确定未知DNA的大小。测量未知DNA的大小时,要所有样品都用相同的样品缓冲液。5.电泳在低电压条件下,线形DNA片段的迁移速度与电压成比例关系,但是,在电场增加时,不同相对分子质量的DNA片段泳动度的增加是有差别的。因此,随着电压的增加,琼脂糖凝胶的有效分离范围随之减小。为了获得电泳分离DNA片段的最大分辨率,电场强度不应高于5V/cm。当溴酚蓝指示剂移到到距离胶板下沿约1-2cm处,停止电泳。
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)1%,具有高度的重复性。 激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,最终影响电池性能。 激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 2020年颗粒测试与表征仪器新品盘点(23款)
    2020年伊始,新冠疫情爆发,全球经济被按下了“暂停键”。疫情期间,科学仪器企业伸出援手共同抗疫的同时,也在苦练内功、研发新品,迎接“春天”的到来。纵观2020年中国颗粒测试市场,新产品层出不穷,创历年新高,仪器信息网特此盘点了20余款颗粒测试与表征仪器新品,以飨读者。(特别声明:受限于时间与资源,新品盘点范围仅限本网收录的不完全统计,如有遗漏,欢迎补充完善)2020年,颗粒测试与表征仪器新品种类繁多,涉及纳米粒度仪及Zeta电位分析仪、图像粒度粒形分析仪、颗粒计数器、筛分仪、比表面及孔径分析仪、多组分竞争吸附仪、化学吸附仪等。纳米粒度仪及Zeta电位分析仪(1)马尔文帕纳科2020年8月,马尔文帕纳科发布Zetasizer Advance 系列新品,包括Zetasizer Ultra、Zetasizer Pro、Zetasizer Lab三种型号,且每种型号又分为Blue Label和Red Label 两个版本,均可进行颗粒粒度、Zeta电位和分子量分析。2021年1月15日,马尔文帕纳科超级品牌日将线上直播发布 Zetasizer Advance,具有多种创新设计的新品即将揭开神秘面纱,点击下方图片查看详情。(2)HORIBAViewSizer 3000ViewSizer™ 3000 实现了纳米颗粒追踪分析技术的突破性提升,包括特有的照射和检测方法,使得各种尺寸纳米颗粒的可视化、粒径和数量浓度测量成为可能。仪器创新点:1)仪器配备三种波长激光光源,激光功率可调,实现宽分布样品粒径的精确测量;2)特有的样品池设计可实现样品体系的快速混合,且清洗方便;3)荧光模块可实现样品中各组分粒径分布及颗粒数量与比例的测量;4)运用重力沉降原理扩展仪器的粒径测量上限。(3)德国飞驰 A22 NeXTAnalysette 22 NeXT于2020年6月正式上市,用户可根据需求自行选择测量范围:Analysette 22 NeXT 微米型测量范围为0.5–1500μm,能满足大多数常规样品的测量需求;Analysette 22 NeXT纳米型测量范围拓展至0.01-3800μm,测量精度极高,附加的检测器能够灵敏地分辨极小的颗粒。该新品操作和清洗非常简单,分析时间短,具备可靠的测量结果和重复性,还可以记录额外的测量数据如湿法分散过程中体系的温度及PH值。(4)东曹 LENS3东曹生命科学新推出的LenS3多角度光散射检测器为测量合成聚合物、多糖、蛋白质和生物大分子分子量(MW)和回转半径(Rg)提供了革新的解决方案。仪器创新点: 1)采用了创新的光路设计,可以在10°、90°和170°三个固定角度进行光散射测量;2)可以测量小至2nm样品的散射光的角不对称性,远低于目前的检测极限。(5)美国PSS PSS Nicomp 380 N3000 PlusNicomp 380 N3000系列纳米激光粒度仪是在原有的经典型号380DLS基础上升级配套而来,相对于上一代产品,配件选用材料进行升级,配套软件版泵升级,检测速度升级,检测精度升级。其配套粒度分析软件复合采用了高斯(Gaussian)单峰算法和拥有专利技术的 Nicomp多峰算法,对于多组分、粒径分布不均匀分散体系的分析具有独特优势。(6)美国MAS CHDF4000型CHDF4000高分辨率纳米粒度仪采用毛细管流体分离技术(CHDF),用于测量粒径在5nm-2μm 范围内胶体的真实粒度分布(PSD),还可以用来分析多组分的复杂粒度体系,并不需要作出任何假设。另外,该粒度仪样品用量很少,小于1ml即可。 Zeta-APSZeta-ASP为一款高浓度胶体和乳液的特性参数检测仪,可以测试粒径、Zeta电位、滴定、电导等。此仪器对于高达60%(体积)浓度的样品,无需进行稀释或样品前处理,即可直接测量,甚至对于浆糊凝胶、水泥以及其它仪器很难测量的材料都可直接进行测量。 ZetaFinder ZF400型ZetaFinder ZF400 高浓度Zeta电位分析仪采用专门的电动声波振荡技术,可完成非凡的电动测量结果,从而避免了传统的微电泳技术的许多限制和局限。该仪器可同时测量Zeta电位、PH、电导、温度等指标,样品在测量时甚至可以进行滴定操作,并且可以在任何pH值下分析固体、不透明或半透明样品。(7)丹东百特 BT-90+BT-90+纳米粒度仪是丹东百特在BT-90纳米粒度仪基础上,全新开发的测量纳米颗粒粒度及其分布的纳米粒度测试系统,可实现亚纳米至微米范围的准确检测。BT-90+具有极佳的功能扩展能力,除了可以检测颗粒的粒径之外,还具备检测体系的粘度、颗粒之间的相互作用力、温敏材料的温度变化趋势等能力。(8)广州贝拓DLS 90DLS90纳米粒度仪具有极速测量和标准测量两种模式,极速测量模式下,最快可以10s给出测量结果。该仪器采用光子计数级的高精度光电倍增管和集成的光子相关器,配备精确的温控系统,采样时间最短可达100ns,可测量粒径范围低至1nm图像粒度粒形分析仪(1)FlowCam FlowCam 5000CFlowCam 5000C是Fluid Imaging Technologies公司于2020年3月发布的新品,该仪器可通过40+种形态参数表达所测颗粒的尺寸和形状,获得高质量颗粒图像和基于图像直测获得的定量数据,每分钟可分析成千上万个颗粒,是一款高效率、高性价比的颗粒检测仪器。(2)梅特勒-托利多 EasyViewer 400梅特勒-托利多全新发布的EasyViewer 400是一款探头式工具,功能更加强大、分辨率更高、探头尺寸更长,为测量高浓度体系、更小颗粒、透明液滴和颗粒、中试放大提供高效解决方案。该工具无需取样、稀释或备样,测量快速,简单易用,可一键生成报告,具有高分辨率(980nm)、更窄景深、背光光源三大亮点。无论是实验室研发还是中试放大,均可实时在线捕捉高分辨率晶体、颗粒和液滴尺寸、形貌的演变过程,对于科研人员理解机理、优化过程、快速决策扮演着重要的角色,广泛应用于制药、化工等多种领域。颗粒计数器(1)美国PSS FMS AccuSizer 780 OL-NDFMS AccuSizer 780 OL-ND 在线颗粒计数器使用基于光阻法的单颗粒光学传感技术(SPOS)原理,对检测样本不仅仅可以给出粒度分布(PSD),更可以获得颗粒数量(COUNT)。该仪器全自动化工作,无需人工进样,完美解决了自动取样和自动检测两大难题。(2)德国TOPAS LAP 323LAP-323气溶胶粒径谱仪利用双波长光散射技术测试颗粒物粒径和数量分布,采用两个不同波长的激光二极管对颗粒进行测试,分辨率更高,结果数据更准确。此外,该设备还具有集成度高、智能化流量控制、设计紧凑、使用便捷等特点。筛分仪格瑞德曼 AJ200空气筛分仪AJ200适用于颗粒样品的粒度分离、团聚样品的分散,该产品具有特殊喷嘴设计,转速可调,适用于更加广泛的应用条件。创新点:1)气流喷嘴可以转动,保证样品充分流动;2)真空度可手动或自动调节气流压力,确保不同颗粒粉末准确结果 ;3)德国吸尘器,超低静音,功率大效率高。比表面及孔径检测类仪器(1)麦克仪器 ASAP 2425ASAP 2425多站式全自动比表面与孔隙分析具有六个独立分析站,不同于市面上大多数仪器,可同时分析样品,也可独立分析,可在一小时内完成六个BET比表面分析;拥有12个独立的样品脱气站,即一个样品的制备不会影响另一个样品的脱气和分析。用户可选配低比表面积型号(氪气分析)和微孔型号,其中,低比表面积型号可精确测量低表面积材料( 1 m2/g);微孔型号则包括1mmHg 传感器,增强了微孔表征性能。(2)精微高博 TB系列TB系列比表面积及孔径同步分析仪在使用过程中,多个样品共用同一杜瓦瓶、同一气源进行测试分析,可保证分析测试的准确性和重复性,真正实现多站间无差异化分析。独有的Vtech技术融合了Vspace冷自由空间控制技术、Vlevel液氮面控制技术、Vstable稳定测试技术、Vctrl防抽飞控制技术,使得TB系列产品的测试效率更高,测试结果更重复、更稳定,更能满足大孔材料的测试需求。(3)贝士德 BSD-MAB该吸附穿透曲线分析仪自带的热导检测器可测定不同实验条件的双组份的吸附穿透曲线,如不同吸附剂,不同温度,不同压力,不同床层厚度,不同气体浓度,不同穿透流量等;连接色谱或质谱可完成三组分及三组分以上的多组分竞争性吸附、选择性吸附以及置换吸附等测试;可实现吸附剂对ppm级别浓度的TVOC、SO2及NH3等污染气体的吸附测试,尤其适用于吸附剂对室内、车内等环境中微量污染气体吸附性能的评价及吸附相关参数的测定。(4)理化联科 iPore400iPore 400型能同时测定6个样品,并对另外六个样品进行独立地脱气处理,可代替氪吸附完成超低比表面样品的测定,为医药行业尤其是进入药典的药品、电池材料以及3D打印常用金属粉末等超低比表面样品的测试,提供全新解决方案,同时还可以对膜的孔径进行测定。 iPore600iPore 600型能在测定3个微孔样品的同时,独立地对另外六个样品进行脱气,具有两套独立的真空系统,适合高校及研究单位对超微孔材料和微介孔材料的比表面及孔径进行精确分析,可广泛应用于电池材料、金属粉末、固体药物制剂(原料药API及其辅料)等超低比表面样品的质量控制和研发。 iChem 700iChem 700全自动程序升温化学吸附仪可用于对催化剂材料进行TPD、TPR、TPO、TPRx、脉冲化学吸附、催化剂处理、脉冲校准和动态BET比表面分析等,以对催化剂材料的酸碱度、酸碱分布、活性金属分散度、金属与载体的相互作用等进行分析,此外,可配置在线色谱仪,连续对TPRx产物进行定性和定量监测以及对脱附气体的浓度进行检测。
  • 中药配方颗粒省级标准制定关注要点
    2月10日,国家药品监督管理局、国家中医药管理局等四部门联合发布《关于结束中药配方颗粒试点工作的公告》(以下简称《公告》),结束中药配方颗粒试点工作。《公告》的发布标志着中药配方颗粒的生产和监管进入新的阶段。  根据《公告》要求,符合条件的生产企业可报所在地省级药品监督管理部门备案后进行中药配方颗粒的生产。作为中药配方颗粒生产和质量监管的重要依据,中药配方颗粒质量标准成为备案资料中最关键的技术文件。《公告》要求,中药配方颗粒应执行国家标准,国家标准没有规定的,允许省级药品监督管理部门自行制定标准。目前国家药品监督管理局已经公示了160个品种的中药配方颗粒质量标准,即将转为中药配方颗粒国家标准,将为各生产企业配方颗粒的备案提供依据。但是160个品种之外的中药配方颗粒品种目前尚无国家标准,中药配方颗粒省级标准制定工作迫在眉睫。  《公告》要求中药配方颗粒省级标准的制定应严格按照《中药配方颗粒质量控制与标准制定技术要求》执行。中药配方颗粒省级标准制定应重点关注以下几点:  一是研究用样品的代表性。应在充分产地调研基础上收集含道地产地、主产地等不同产地的15批以上符合药品标准规定的同一基原药材样品,并依据药品标准或中药饮片炮制规范炮制成供研究用中药饮片样品。  二是标准汤剂研究的标准性。标准汤剂是衡量中药配方颗粒与中药饮片汤剂“一致性”的物质基准。标准汤剂的标准性涵盖了投料饮片(药材)的道地性、煎煮工艺的一致性、质量控制的严谨性。因此,标准汤剂的制备应参照《医疗机构中药煎药室管理规范》采用传统汤剂的获得模式。标准汤剂是中药饮片经水煎煮提取、过滤固液分离、低温浓缩、冷冻干燥制得。通过15批标准汤剂的出膏率、有效成份(或指标成份)含量及含量转移率、特征图谱等数据,分析得出标准汤剂的三个基本质量指标,为中药配方颗粒的工艺研究和质量标准制定提供依据。  三是工艺研究的合理性。中药配方颗粒制备工艺合理性的主要评价标准是上述标准汤剂的三个质量指标。因此,工艺研究中提取时间、提取次数、浓缩、干燥、制粒等工艺参数的确定均应以标准汤剂的质量指标为依据。处方量、制成总量及规格等也应与标准汤剂的质量指标相对应。中药材、中药饮片、标准汤剂、中间体、成品之间关键质量属性的量质传递应具有相关性。  四是质量标准研究的科学性、严谨性。中药配方颗粒质量标准的制定应针对中药配方颗粒的特点,由于中药饮片经水煎煮制成颗粒后已失去了中药饮片的鉴别特征,因此应采用特征图谱或指纹图谱等专属性、整体性控制方法进行鉴别;含量测定应选择水溶性有效成份或专属指标成份作为测定指标并根据标准汤剂的含量及含量转移率范围制定合理含量上下限度。此外,为有效控制中药配方颗粒的安全性,应参照中药材、中药饮片质量标准中规定的重金属、农药残留、真菌毒素限量制定相应的检查项目,对于中药材、中药饮片标准中未规定上述安全性检查项目的品种应进行相应考察,根据考察结果确定是否有必要进行控制。  五是质量标准复核的重要性。质量标准复核工作是考察标准重现性和可行性的重要环节,质量标准草案上升为正式标准之前均应进行质量标准复核,应组织省级药检部门或其他有资质的检验机构对制定的质量标准草案进行复核,以确保标准的可行性。  中药配方颗粒省级标准制定工作是一项关系中药配方颗粒行业健康发展的重要工作,期待各省能群策群力,充分发挥中药配方颗粒原试点企业的经验和科研院校的科研优势,尽快制定出能有效控制中药配方颗粒质量的省级标准。(作者:河北省药品医疗器械检验研究院 冯丽
  • 德国RETSCH参加全国颗粒制备研讨会
    10月22日德国RETSCH(莱驰)参加了两年一度的中国颗粒学前沿研讨会―――暨第九届全国颗粒制备与处理研讨会,为期3天的学术研讨会在美丽的海滨城市山东威海举办。本次研讨会共吸引了74位代表,其中企业界18位,科研院所56位,共发表了83篇论文。讲座由中国颗粒学会颗粒制备与处理专业委员会主办,由组委会委员沈志刚、邢玉山、蔡楚江等主持,各大院校的专家学者先后做了关于颗粒研究分析的报告。德国RETSCH(莱驰)有幸参加了此次会议,了解了颗粒学相关的前沿信息,并向与会人员推荐了有关产品。 RETSCH(莱驰)的CAMSIZER多功能粒径及形态分析仪作为粒度分析的前沿技术,引起了部分用户的兴趣,它可以对干燥的、可倾注的粉末进行粒径及形态分析,由于采用了动态数字成像技术,在10um至30mm的宽广范围内一次进样即可得出粒径大小、粒度分布、颗粒个数、颗粒形态、球形度、透明度、表面积等多个相关参数和样品的综合信息,并可比对筛分结果,起到了一台仪器等于几台仪器的测量功能。 此外,RETSCH以其在筛分和筛分仪设计领域内独一无二的技术为客户提供了优异的筛分解决方案,带给客户精确并可重复的分析结果,相应的分析处理软件分样仪多样化的附件,极大的完善了分析筛分领域的解决方案,2009年“筛风暴”活动的推出,也是很广大使用者提供了最大的优惠。行星式球磨仪PM系列也在超细粉体、合金制备等领域得到了用户的关注。 优质的产品,完善的售后服务系统是RETSCH品质始终如一的宗旨,2010年RETSCH 将会带着更新更高效的产品促进颗粒制备与处理的研究! 关注RETSCH,关注2010!
  • 经验分享:透射电子显微镜应用领域及样品制备方法
    透射电子显微镜是使用较为广泛的一类电镜,具有分辨率高、可与其他技术联用的优点。已广泛应用于医学、生物学等各个研究领域,成为组织学、病理学、解剖学以及临床病理诊断的重要工具之一。常规电镜样品制备包括常温化学双固定、常温脱水包埋、常规超薄切片、普通电镜观察几个步骤。样品制备过程历时约一周,超薄切片经醋酸双氧铀和柠檬酸铅染色后,电镜观察。所有操作均按照以下流程进行。一、试剂0.2 mol/ L磷酸盐缓冲液Na 2 HPO 4 2H 2 O 35.61 g 或Na 2 HPO 4 7H 2 O 53.65 g / Na 2 HPO 4 12H 2 O 71.64 gNaH 2 PO 2 H 2 O 27.60 g 或NaH 2 PO 4 2H 2 O 31.21 g加双蒸水(ddH2O)到1000 mL0.1 mol/ L磷酸盐缓冲液(PBS)0.2 mol/ L磷酸盐缓冲液 250 mL加双蒸水到500 mL2 % 低温琼脂低温琼脂 1.0 g加双蒸水到 50 mL加热到沸腾,溶液均匀后备用1 % 戊二醛固定液25 %(m/v)戊二醛水溶液 2 mL0.2 mol/ L磷酸盐缓冲液 25 mL加双蒸水到50 mL1 % 锇酸固定液2 %(m/v)锇酸水溶液 10 mL0.2 mol/ L磷酸盐缓冲液 10 mL包埋剂A液Epon 812 树脂 50 mL十二烷基琥珀酸酐(modecenyl succinic anhydride, DDSA) 80 mL包埋剂B液Epon 812 树脂 50 mL六甲酸酐(methyl nadic anhydride, MNA) 44.5 mL2 , 4 , 6 - 三甲氨基甲基苯酚( 2, 4, 6 - tridimethylamino methyl phenol, DMP-30 )甲苯胺蓝染液甲苯胺蓝 1 g1 mol/ L NaOH 10 mL加双蒸水到50 mL混匀过滤后使用1 % 醋酸双氧铀染液醋酸双氧铀 0.2 g加双蒸水到10 mL封口膜封口,4℃避光保存1 % 柠檬酸铅染液硝酸铅 0.265 g柠檬酸钠(含2分子结晶水) 0.352 g加双蒸水到10 mL①① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。封口膜封口,4℃保存仪器修块机 Leica EM TRIM切片机 Leica EM UC6光学显微镜 Nikon 80i 及配套拍照系统DS-L1透射电子显微镜 JEOL-1230Gatan Bioscan Camera 792低电压透射电子显微镜 JEM-1230二、实验流程一、 取材与固定A. 植物样品1. 自来水冲洗表面泥尘后,使用灭菌水清洗2-3次,置于铺有预湿滤纸的培养皿中。2. 使用干净锋利的刀片切取目标材料,所取材料体积不大于3 mm3。切取样品时应注意动作迅速、减小损伤,避免来回切拉;使用的灭菌水及器具应4℃预冷,并在操作中尽量保持低温以降低组织细胞活性。3. 将切下材料放入装有预冷的戊二醛固定液的青霉素小瓶中后抽气,抽几次后轻摇小瓶,并打开瓶盖。重复2-3次,直到样品沉入瓶底。4. 室温静置1h,或摇床轻摇1h。5. PBS清洗3次,10min/次。6. 1%锇酸固定液固定1h。7. PBS清洗3次,10min/次。B. 动物样品1. 4℃预冷生理盐水冲洗组织块,迅速切取组织块,体积不大于3 mm32. 将切取的组织块投入装有预冷戊二醛固定液的青霉素小瓶中,并抽气直至样品沉底。3. 室温静置1h,或摇床轻摇1h。4. PBS清洗3次,10 min/次。5. 1%锇酸固定液固定1 h。6. PBS清洗3次,10 min/次。C. 单层培养细胞或悬浮培养细胞样品②1. 3000 rpm离心5 min,收集细胞样品,尽量多的吸弃培养液上清。2. 加入4℃预冷PBS液,充分吹吸混匀,静置4 min,3000 rpm离心5 min,吸弃上清。① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。3. 重复步骤2一次。4. 加入预冷的血清或蛋清,充分吹吸混匀,3000 rpm离心10 min,吸弃大部分上清,留少部分,吹吸悬浮沉淀细胞。(或离心后吸弃上清,留少部分上清,不悬浮沉淀细胞,视样品浓度而定)5. 缓慢加入戊二醛固定液,小心放入4℃冰箱,固定过夜。6. 吸弃上清,刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的血清包埋块。7. 使用干净的单面刀片或手术刀,将血清包埋块切成2 mm3左右的小块,取3-5个富集细胞样品效果较好的包埋小块继续下面实验。8. PBS清洗3次,10 min/次。9. 1%锇酸固定液固定1 h。10. PBS清洗3次,10 min/次。D. 藻类及其他游离培养样品1. 吸取2%低温琼脂液200μL到0.2mL离心管,并将离线管置于冰上,取10μL枪头迅速插入琼脂中并保持离心管竖直,且枪头竖直靠中的包裹在琼脂中。2. 静置1 min,待琼脂凝固后,小心拔出枪头,形成琼脂空腔,待用。3. 3000 rpm离心5 min,收集样品,尽量多的吸弃培养液上清。4. 加入4℃预冷PBS液,充分吹吸混匀,静置4min,3000 rpm离心5min,吸弃上清。5. 重复步骤2清洗,吸弃大部分上清,留极少部分上清液,吹吸悬浮样品。6. 使用10μL 移液器小心将样品加入已经制备好的琼脂空腔中,使样品充满空腔大部分,添加过程中尽量避免气泡出现。7. 吸取50μL溶化的琼脂,快速滴加到空腔琼脂上封口,冰浴5 min,待琼脂完全凝固。8. 使用单面刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的琼脂包埋块,稍作修葺。9. PBS清洗3次,10 min/次。10. 1%锇酸固定液固定1 h。11. PBS清洗3次,10 min/次。二、 脱水1. 按丙酮与灭菌水体积比3:7配制30%脱水剂。吸弃样品管/瓶中的PBS,快速加入现配的脱水剂(脱水换液过程禁止出现样品暴露空气中现象,可不全部吸完,略有剩余,使样品浸润;动作应迅速准确),室温放置或摇床轻摇45 min。加入按30%、50%、70%、90%、100%(v/v)的浓度梯度进行脱水。2. 配制50%脱水剂,快速换液,室温轻摇45 min。3. 配制70%脱水剂,快速换液,室温轻摇45 min。4. 配制90%脱水剂,快速换液,室温轻摇45 min。5. 使用纯丙酮快速换液,室温轻摇30 min③。6. 重复步骤5一次。三、 渗透包埋在此步脱水操作完成后即可开始配制渗透用包埋剂,以免安排不周。样品浸泡在纯丙酮中时间不宜过久,以免造成样品较脆,不利于超薄切片。1. 配制渗透用树脂包埋剂1) 取干净的10 mL注射器,拔去活塞,用封闭针头堵住注射口,放于通风橱中。2) 小心倾倒B液9 mL到注射器中;然后再小心倾倒A液1 mL。3) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色均匀,无丝状液体。4) 小心拔去活塞,通风橱中操作,缓慢滴加14滴DMP-30。5) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色完全均匀,无丝絮状分色,竖直放置待用。2. 按照包埋剂与丙酮体积比3:7配制30%渗透剂,快速吸弃样品管中纯丙酮并加入渗透剂,轻摇渗透3 h。3. 按照包埋剂与丙酮体积比7:3配制70%渗透剂,快速换液,轻摇渗透过夜。4. 重新配制包埋剂,并小心推按注射器,将包埋剂挤到包埋模具中至液面略凸。5. 解剖针挑取样品到纯包埋剂中,渗透3 h。6. 小心挑取样品,滤纸上稍微沾下吸弃部分粘附的包埋剂,轻轻放置到未渗透过样品的包埋孔中,小心将样品按到底,摆放好位置。记录各样品对应包埋块编号。7. 梯度温度聚合包埋1) 37℃烘箱中12 h,期间定时观察样品有无漂移现象,如有,则再次小心摆放样品位置。2) 45℃烘箱中12 h。3) 60℃烘箱中24 h。四、 修块与切片1. 拿到包埋块后检查样品位置是否得当,选取位置好的包埋块优先进行修块、切片。2. 粗修包埋块1) 使用六角扳手将包埋块固定在样品头上,露出长度合适。2) 将样品头固定在修块机上,体视镜观察修块,分四个方向将包埋块头部多余的包埋剂修去,暴露出组织块。3) 使用锋利的单面刀片修去组织块周围毛刺的包埋剂,使其四边光滑清晰。4) 卸下样品头装至切片机上,使用玻璃刀修片,直至样品表面光滑清晰。3. 半薄切片1) 将粘有水槽的玻璃刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见900nm厚度切片反光为亮绿色。6) 待有切片下来形成4-6片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,放到干净载玻片上,酒精灯略微加热,使水蒸干,并对着光亮用记号笔标示切片所在位置。4. 半薄切片染色1) 吸取20μL甲苯胺蓝染液,滴加到载玻片放有切片的位置,室温静置30 s 。2) 去离子水冲洗玻片,直至不再有蓝色。吸水纸上沥干,酒精灯略微加热,加速切片上的水分蒸发。3) 显微镜观察切片质量和样品位置。5. 精修包埋块1) 移去装有水槽的玻璃刀,取下装有包埋块的样品头,装至修块机上。2) 根据半薄切片结果,使用新的锋利刀口,小心修理包埋块四边,使其尽可能的光滑、平整。6. 超薄切片1) 将钻石刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的干涉光谱颜色一致;继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见70nm厚度切片反光为亮灰色及浅灰色。6) 待有切片下来形成10-20片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,轻轻放到干净载膜铜网上,用尖角滤纸靠近铜网边缘缓慢吸干水分。8) 轻轻移去捞片环,将载有切片的铜网放到铺有滤纸的平皿中,晾干待染色观察。五、 染色1. 醋酸双氧铀染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。2) 将放有切片的载网小心放到染色盘上,有切片面靠上,并稍微用镊子按载网边缘,使其与染色盘接触粘附牢固。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色30 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。6) 重复清洗2次。2. 柠檬酸铅染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。④2) 在放置染色盘的平皿中放入2片固体NaOH,用以吸收平皿中CO2气体。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色8 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。连续染色时,载网不需要从染色盘上拿下,清洗后直接进行铅染即可,但是铅染液要现用现取。6) 重复清洗2次。7) 小心夹取载网,放置到铺有滤纸的干净平皿中,晾干待电镜观察。六、 电镜观察1. 取出样品杆,打开样品夹,小心放入载网,合上样品夹,并转动样品杆,轻敲确保样品夹已准确固定载网。2. 将样品杆插入透射电镜样品室,开始抽气。3. 打开灯丝开关,等待检测电流出现后,打开观察窗开始观察。4. 先在低倍下找到切片,再高倍观察切片,寻找待看目标,仔细对焦。5. 将切片目标区域遇到观察窗中间后,调整灯丝电流密度为3.8 pA/cm2。6. 插入拍照CCD,Start View,微调焦距,Start Acquire 拍照。7. 拍照完毕,按格式需求保存照片到指定文件夹。8. 使用专用写保护闪存盘拷贝数据到公共电脑观察、使用。三、应用领域1、材料领域材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结 构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。2、物理学领域在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使透射电子显微镜在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,透射电子显微镜结合电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。3、化学领域在化学领域,原位透射电子显微镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电子显微镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料Z常用的表征手段之一。4、生物学领域在生物学领域,X射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2nm,但是其各有局限。X射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。
  • 我国开始研制中药配方颗粒国际组织标准
    世界中医药学会联合会副秘书长黄建银在北京举行的迎春茶话会暨中药配方颗粒高层论坛上透露:“我们已开始研制300味中药配方颗粒国际组织标准。”。  据介绍,研制300味中药配方颗粒国际组织标准,包括生产工艺标准和质量标准两个方面。生产工艺标准方面,主要是研究和规范各种高新技术,便于推广和提高中药配方颗粒制剂水平和生产效率。质量标准方面,主要研究和规范药品名称、来源、炮制、制法、性状、鉴别、检查、浸出物含量测定、重金属限度检查、农药残留限度检查、功能主治、用法用量、注意、规格、贮藏等项目。
  • 新品上市 | 珠联璧合,中压玻璃柱与填料的浪漫配对
    当中压玻璃柱遇见填料会发生什么浪漫的化学反应?是带给您高效的纯化工具,是带给您低成本的纯化方法,是带给您全新的使用体验。让中压层析给纯化提速,把时间留给自己,让“过柱子”不再难熬!中压玻璃柱的优势● 柱效高:柱长越长,柱效越高,使用中压层析柱,可以获得高纯样品。310mm、460mm、920mm三种柱长规格,分别对应容易纯化、中等难纯化和难纯化的样品。满足多种样品类型的需求。● 速度快:流速越高,纯化速度越快。采用进口SCHOTT玻璃烧制,独有的去应力工艺,使得玻璃柱的耐压最高可达50bar。在同等样品条件和柱规格下,可以采用更高的流速,获得更快的纯化速度。● 成本低:柱管可以重复使用哦!降低了成本。● 易于使用:所有的制备液相系统系统,都可以直接连接月旭玻璃层析柱。中压玻璃柱的特点● 喇叭口柱头:独特的柱头设计代替传统筛板设计,流体分配更均匀,提高色谱柱柱效和分离效率。● 可以固体上样:对于特殊样品,可以采用固体上样、干法拌样,有效防止高流动相线速对柱床的破坏。● 大上样量:可以用泵抽取上样,可消除高浓度样品阻塞阀接口的现象。● 用途广泛:装填20-60μm的各种填料,例如硅胶基质C18、PSDVB树脂、琼脂糖凝胶等。● 速度快:比开口玻璃柱纯化时间缩短2-10倍,一小时内纯化药物杂质或者API。● 人性化:简单的柱管设计,方便拆洗,降低分离硬件成本。● 可视化:可直观了解天然提取物、色素等有颜色样品的分离状况。表1 各种制备色谱系统的特点搭配月旭中低压色谱填料,让您纯化工作效率一步起飞月旭中低压色谱填料,采用经过优选的硅胶,搭配月旭独有的键合技术,保证了填料批次之间具有良好的重现性。优良的硅胶基质保证色谱填料的高机械强度,可以反复装填并保证柱效稳定。粒径分布窄,标示颗粒含量在90%以上,从而保证了高柱效和保留时间的稳定,同时提高了样品的分离纯化效率。齐全的填料规格供您选择玻璃柱产品信息
  • 第八届中英国际颗粒技术论坛 (PTF8) 第二轮通知
    第八届中英国际颗粒技术论坛(PTF8)将于2021年7月9 - 13日在中国云南大理举行。会议将就颗粒技术的前瞻性思想、创新性方法、革命性技术、全新解决方案和基础理论进行探讨和交流,以期为能源、环境、医疗健康和可持续发展等存在的诸多挑战提供解决方案,创造美好未来。会议还将通过邀请报告、重点报告、口头报告和墙报展示等形式,增进国际共识,促进有效沟通,并在学生、学者、工程师和技术从业者之间巩固已有合作,建立全新合作。此外,会议还将举办青年科学家论坛,并评选优秀青年报告奖和优秀墙报奖。我们非常期待在大理与您相聚。01主题颗粒技术造福人类,低碳制造塑造未来。02主办中国颗粒学会、英国化学工程师协会颗粒技术专委会中国颗粒学会能源颗粒材料专委会清华大学、格林威治大学03承办中国科学院过程工程研究所(中国)、伯明翰大学(英国)04 会议主席魏飞教授,清华大学(中国);Michael Bradley教授, 格林威治大学 (英国)05会议信息会议时间:2021年7月9-13日会议地点:大理实力希尔顿酒店会议网址:http://ptf8.csp.org.cn/06学术议题(1)碳基能源化学与工程C1转化;化学链燃烧;烃类转化;二氧化碳的化学转化… 召集人:骞伟中(中国),Yanhui Yang(新加坡)(2)能量转换材料与工程太阳能电池;光电转换;绿色制氢;能量转换中的电催化… 召集人:张强(中国),Stephens, Ifan E L (英国)(3)电化学和物理储能超级电容器;燃料电池;液流电池;锂(钠)离子电池;锂(钠)硫电池;金属空气电池;全固态电池;电池回收化学;电能化学能转换… 召集人:李泓(中国)、Qiong Cai (英国)(4)气溶胶与环境气溶胶颗粒的理化特性;燃烧源的颗粒物排放;极端污染事件; 纳米气溶胶颗粒及其毒性;大气颗粒物的健康效应;大气塑料微粒;新冠疫情防控期间空气污染变化特征… 召集人:邵龙义(中国),Zongbo Shi (英国)(5)颗粒在医疗保健中的应用颗粒技术在制药行业中的应用;颗粒技术在生物医学工程中的应用;颗粒技术在食品工业中的应用;颗粒技术在家庭和个人护理产品中的应用;颗粒技术在医疗保健应用中的其他应用… 召集人:马光辉(中国),Zhibing Zhang (英国)(6)纳米材料与技术纳米材料与技术在资源中的应用;纳米材料与技术在储能中的应用;纳米材料与技术在水处理中的应用;纳米材料与技术在气体分离中的应用;纳米材料与技术在催化中的应用… 召集人:邱介山(中国),Xianfeng Fan (英国)(7)多尺度和多相流多尺度传递现象;多相系统的数值方法;多相流测量;计算颗粒技术;介科学与多尺度建模;虚拟过程工程;软件开发… 召集人:葛蔚(中国),Charley Wu (英国)(8)颗粒设计,表征与测量颗粒的微结构设计与调控机制;颗粒微纳尺度的多物理现象;颗粒合成过程原位表征和结构演化;颗粒结构演变和原位表征;应用于能源、生物和环境中的颗粒结构设计;光和超声散射理论及颗粒表征;基于图像分析的颗粒表征;在线颗粒测量;纳米颗粒粒度测量;微/纳米气泡测量;雾滴的测量;排放和环境颗粒测量;医学和生命科学中的颗粒测量;颗粒多参数测量(包括形态,折射率,ζ电势,团聚等)… 召集人:蔡小舒(中国),Tong Deng (英国)… 07科学和技术内容大会报告和主旨报告;邀请报告和口头报告;颗粒前沿讲习班;墙报展示;青年科学家论坛… 08优秀青年报告奖和优秀墙报奖会期将评选优秀青年报告奖和优秀墙报奖,由中国颗粒学会和英国化学工程师协会颗粒技术专委会共同颁发,表彰推动技术、经济、环境或社会问题解决的青年科学家和学生。(1)如果您是学生,并选择参会类型为“墙报展示”,您将被提名为“优秀墙报奖”的候选人,会议期间进行同行评审后,将向获奖者颁发证书和奖金(500元)。(2)如果您是年龄不超过45岁(即必须在他/她46岁生日之前)的青年科学家,并选择参会类型为“口头报告”,那么您将是“ 优秀青年报告奖”的候选人,会议期间进行同行评审后,将向获奖者颁发证书和奖金(500元)。09投稿说明投稿请单击会议网站“摘要提交”进入投稿页面(A4大小,一张纸)。您需要参考附件中的“摘要模板”,并按照说明进行投稿;本次会议仅征集英文摘要,请注意语法和拼写的准确性;投稿截止日期为2021年6月10日。会议期间,被评选为“优秀青年报告奖”和“优秀墙报奖”的摘要将被推荐至:颗粒学报(Particuology)绿色能源与环境(Green Energy & Environment)绿色化学工程(Green Chemical Engineering)储能科学与技术(Energy Storage Science and Technology)化工学报(CIESC Journal)化工进展(Chemical Industry and Engineering Progress)中国粉体技术(China Powder Science and Technology)过程工程学报(The Chinese Journal of Process Engineering)… 摘要提交网址:http://ptf8.csp.org.cn/index.php/Userlogin/login?mid=479&sid=184210会议日程11重要日期12注册请访问http://ptf8.csp.org.cn,在线注册、缴费以及提交摘要。早鸟票截止时间:2021年5月31日* 表示国内代表进行现场参会。(在中国的参会代表不支持观看线上会议)** 表示英国和国际代表线上参会中国大陆参会代表可通过银行转账、在线支付(微信,支付宝)或现场刷卡来支付参会费用,英国和国际参会代表可以忽略以下帐户信息。开户行:中国工商银行北京海淀西区支行(国内汇款用中文)帐号:0200004509014413416开户名:中国颗粒学会发票内容:会议注册费地址:北京市海淀区中关村北二街1号电话:8610-62647647费用包括:(1)欢迎宴会;(2)参加各类学术交流;(3)周六和周日茶歇和午餐;(4)周六和周日晚餐;(5)会议资料袋。如果陪同人员想参加欢迎宴会、晚餐或者茶歇,则需要支付相应费用。取消费用:(1)6月9日之前免费取消;(2)6月10日及之后,费用无法取消,但可以替换参会代表。13住宿会议酒店:大理实力希尔顿酒店酒店地址:中国云南省大理市七里桥感通路以南大理实力希尔顿酒店是大理市第一家国际酒店,坐落在苍山半山,洱海一览无余。预定联系人:李经理 15770288325 Abby.li@Hilton.com杨经理 15398755459 Bruce.yang@Hilton.com7月7-14日期间酒店将对参会代表保持参会协议房间价格。14交通会议酒店:大理实力希尔顿酒店酒店地址:中国云南省大理市七里桥感通路以南从大理站出发:公交前往:请搭乘崇圣寺三塔专线(火车站-大井盘-步行),需时1小时37分钟;打车前往:需时35分钟,距离13公里;从大理机场出发:公交前往:请搭乘7路换乘崇圣寺三塔专线(棚曲村口-西窖菜场-大井盘-步行),需时3小时4分钟;打车前往:需50分钟,距离26公里。15赞助及展览为了便于企业宣传、展示最新的产品,促进科研成果的转化,推动产、学、研的结合,将在会议同期举办颗粒/粉体技术、设备和仪器展,展览内容包括:颗粒/粉体测试分析仪器、制备技术及设备、材料及产品、应用技术等。展期与会期同步,欢迎相关企业及单位积极参与。有关展览和广告的更多详细信息,请查看会议网站,如有需求,请与李京红老师联系,电话:8610-62647647,邮箱klxh_exhibit@ipe.ac.cn。16联系信息中国颗粒学会地址: 中国北京市海淀区中关村北二街1号电话:8610-62647647 / 62647657传真:8610-82544962邮箱:klxh@ipe.ac.cn网址:http://www.csp.org.cn
  • 河南计量攻克颗粒标物研制技术,打破进口依赖
    p 在日常生活中,无论是空气质量检测还是医疗领域液体中颗粒物的检测,都需要对比物,称为颗粒标物。长期以来,我国颗粒标物都依赖于国际进口。9月16日,由河南省计量科学研究院承担的国家科研项目“颗粒检测仪器量值溯源关键技术研究及应用”,在历经6年的钻研后,正式通过科技成果鉴定,一举攻克了颗粒标物研制技术,填补了国内该领域技术和标准空白。/pp  “颗粒标物的应用其实非常广泛,跟老百姓的生活也是密切相关。”省计量院流量计量研究所所长朱永宏介绍,比如生病输液时,液体中颗粒物的大小、形状和数量直接关系到个人的生命安全,计量工作者在对其检定时,就需要用到颗粒标物,以此作为标准来判断颗粒是否符合安全标准。/pp  据了解,我国使用的颗粒标物长期从美国进口,且价格昂贵。河南省计量院自6年前开始承担这一国家级技术攻关项目后,从全国各地的颗粒物质中进行筛选,发现新疆沙漠沙适合作为颗粒标物原料,在经过一系列艰难研发后,终于成功制作出完全符合国际标准的新型颗粒标物,打破了国外垄断。/pp  “在实际使用过程中,这一新型颗粒标物不仅均匀性、稳定性好,且售价很低,受到了各个领域的欢迎。”朱永宏介绍,目前该项目已取得发明专利5项、实用新型专利5项,待真正量产后,将广泛应用于环保、医疗和工业生产等各领域,发挥出巨大的技术支撑作用。/p
  • Day2之颗粒测试技术多领域应用探讨——第十一届全国颗粒测试学术会议
    p  strong仪器信息网讯/strong 2017年11月16日,为期两天的a href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "span style="color: rgb(0, 176, 240) "strong“第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会”/strong/span/a在广州如期召开。大会由中国颗粒学会颗粒测试专业委员会主办,华南师范大学物理与电信工程学院、珠海真理光学仪器有限公司承办,会议吸引来自全国各地高校院所、检测机构、仪器设备厂商等颗粒测试‘圈’内120余名专家学者参会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6820d2cb-3b42-4aaf-807d-a28bbce0c8a4.jpg" title="01.jpg"//ppbr//pp style="text-align: center "strong会议现场/strong/pp  会议第二天(17日),精彩报告继续上演,共13个学术报告依次进行,依次就颗粒测试技术多领域应用进行探讨,以下为摘录部分精彩内容:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b9bb6030-76dd-4bc4-a0df-cf0a94fe31b7.jpg" title="IMG_9497.jpg"//pp style="text-align: center "strong报告人:张红霞(天津大学)/strong/pp style="text-align: center "strong  报告题目: 基于干涉成像技术的透明椭球粒子测量/strong/pp  干涉粒子成像(IPI)技术被广泛应用于粒子测量领域,来自于透明球形粒子反射和折射的散射光,在聚焦像面上产生两点像,在离焦像面上产生干涉条纹图,通过测量两点像距离或者干涉条纹频率可以获得粒子的尺寸信息,但对透明椭球形粒子的测量还有待深入研究。张红霞等采用热拉伸法,以标准球形粒子为原料制作椭球粒子,搭建IPI实验系统,采用双CCD同时获取粒子在相互垂直的两种偏振态下的干涉图像,实现球形粒子与椭球形粒子的形态判别及转向判别。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/847db6ee-f89e-4b75-9d6a-70e62b46d9be.jpg" title="IMG_9506.jpg"//pp style="text-align: center "  strong报告人:刘忍肖(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:XRF检测石墨烯粉体材料中的主要杂质元素/strong/pp  石墨烯粉体是我国已具备规模化生产能力的主要石墨烯材料类型,建立准确可靠的物理结构和化学成分分析方法对实现其在多个工业领域的应用至关重要。刘忍肖等发展了一种可对石墨烯粉体材料中所含杂质元素进行快速、无损分析的检测方法。技术内容是基于X射线荧光光谱(XRF)技术对未处理或压片成型的石墨烯材料进行无损、快速检测,信誉ICP-OES、ICP-MS、SEM/EDS等通用测试方法的测试结果进行比对验证,有望成为对石墨烯粉体杂质元素快速、简单、经济、无损、通用的定性半定量分析测试方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/59a3cd28-4401-40c5-a79e-74ebbc99c5f3.jpg" title="IMG_9508.jpg"//pp style="text-align: center "  strong报告人:邱健(华南师范大大学)/strong/pp style="text-align: center "strong  报告题目:关于动态光散射技术三个问题的研究/strong/pp  为提高颗粒测量性能及拓展应用领域,邱健就三个方面的技术问题与大家展开探讨:即探测区杂散光对相干因子的影响、表面效应对颗粒布朗运动的影响、颗粒的定向运动方向对测量的影响等。经过实验得出系列结论:相干因子随着相干或者非相干杂散光的比例增大而减小;相干因子要高,就一定要控制杂散光;在一维宽度受限区域内,颗粒粒径的测量值大于实际值;扩散系数变化与受限宽度有近似线性关系等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2776d10d-de3e-42c3-a5bc-b672c730193e.jpg" title="IMG_9525.jpg"//pp style="text-align: center "  strong报告人:朱晓阳(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:原子力显微镜在纳米材料高度测量中的应用/strong/pp  纳米尺度检测与表征是纳米科技得以发展的必要条件,AFM作为表面分析设备,因其在高度测量中的准确性和高分辨率被广泛应用在纳米材料的研究中。朱晓阳在报告中详细介绍了用AFM测量纳米片层结构和纳米颗粒高度时的测量过程、数据分析及处理过程和高度测量值的不确定度评定办法。该方法可用于以石墨烯为代表的二维纳米片层材料厚度及层数的测量,及纳米颗粒粒径分析。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/edd56e09-949e-4d72-8baf-ba78a6b085b4.jpg" title="IMG_9545.jpg"//pp style="text-align: center " strong报告人:申晋(山东理工大学)/strong/pp style="text-align: center "strong  报告题目:多角度动态光散射测量的粒度分布加权反演/strong/pp  申晋首先介绍了动态光散射与多角度测量的定义,接着通过自相关函数的加权反演、模拟及实测研究,得出以下结论:DLS测量受噪声和ACF数据的低信息量制约,优化DLS测量系统可降低噪声,MDLS可增加测量数据中的粒度信息;从含噪数据中有效提取粒度信息对MDLS PSD的准确测量具有重要作用;采用基于信息特征加权昂发进行MDLS数据反演能有效提高信息利用,降低噪声影响。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7192a00a-2d45-4c34-ba8f-706df26ddccf.jpg" title="IMG_9574.jpg"//pp style="text-align: center "  strong报告人:黄晓群(厦门理工学院)/strong/pp style="text-align: center "strong  报告题目:基于散射光偏振分析的流动中球形粒子粒径与速度的同步测量/strong/pp  根据米氏散射理论,单一球形粒子散射光偏振度取决于入射光波长,观测角,粒子直径以及相对折射率。当其他条件确定时,可建立起粒子直径和散射光偏振度的关系,从而通过反演计算得到粒径。黄晓群等采用此散射光偏振分析法对自由扩散于空气中的DEHS粒子进行粒径测量。同时,将实验光路与PIV相结合,基于粒子图像对散射光两线性偏振分量比例进行分析计算,达到同步测量颗粒粒度和速度的目的。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/6ca6e9d1-4416-4dfc-9564-5cc682c7631c.jpg" title="IMG_9604.jpg"//pp style="text-align: center "  strong报告人:王瑞敏(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:多尺寸金纳米颗粒混合体系中蛋白质竞争吸附的同时监测/strong/pp  报告中,王瑞敏介绍到,深入理解纳米颗粒与蛋白质的相互作用是研究纳米材料在生物医药领域应用及其生物安全性的重要基础。纳米颗粒的表面化学、粒径及形状等因素都会影响其与蛋白质的相互作用。发展可以同时分析多尺寸纳米颗粒对蛋白竞争吸附的方法非常重要。其课题组基于DCS技术,对此进行了研究,利用DCS颗粒分析的高分辨率,实现了溶液中六种粒径的金纳米颗粒与牛血清蛋白之间的竞争吸附行为的同时监测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/dc721eb1-7a5d-4cd6-b51d-ed2ea706a438.jpg" title="IMG_9624.jpg"//pp style="text-align: center "  strong报告人:徐捷(天津大学)/strong/pp style="text-align: center "strong  报告题目:颗粒光散射中偏振的研究及应用综述/strong/pp  偏振是光波一个固有参量,在小颗粒光散射中有着重要应用。报告中,徐捷简介了偏振的定义及描述方法后,对各个领域的偏振散射的研究和应用进行综述。发现偏振多用于纳米级小颗粒粒径的测量,散射光的偏振与颗粒形状、均匀性、朝向和各向异性等具有很大关系。基于光散射的颗粒测量中,虽然各种方法有所侧重,但一般都是综合利用散射光的偏振、强度、相位等参量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/911374f0-51bc-484a-913c-5dcc4f80b315.jpg" title="IMG_9632.jpg"//pp style="text-align: center "  strong报告人:孙辉(上海理工大学)/strong/pp style="text-align: center "strong  报告题目:基于一阶彩虹区域高斯光散射的液滴测量研究/strong/pp  雾化广泛应用于燃烧、医药、农业、消防、日常生活等领域,实现雾化过程液滴粒度大小及分布、速度、温度、蒸发速率等参数的测量,对雾化过程中气液流动、传热机理的研究极为重要。据孙辉介绍,光学测量法具有无需取样、非接触、快速等优点,而其中的彩虹技术既可以实现液滴颗粒的测量,也可以测量液滴的折射率和温度。采用高斯光束作为光源,既可以较好的定义测量区的大小,又可以得到较高的光能聚集区,因此可以有效避免多个液滴同时出现在测量区的情况、减小颗粒之间复散射的影响,又可以提高信号强度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/222c7877-4557-482f-b897-1803b9995c46.jpg" title="IMG_9637.jpg"//pp style="text-align: center "  strong报告人:潘林超(天津大学)/strong/pp style="text-align: center "strong  报告题目:基于环形样品池的激光粒度测量方法/strong/pp  潘林超等为了扩展散射角的接受范围,提高激光粒度仪对亚微米颗粒的测量精度和分辨率,提出了一种结构简单的环形样品池方法。该方法理论上可以连续无缝地接收0-180度散射光,且具有测量下限低的优势。同时,基于环形样品池测量方法,搭建了新型激光粒度仪测量装置,并对50/100/200/400nm的标准粒子样品及有它们组合而成的混合样品进行了测量,并与传统样品池的测量结果进行了比对。结果表明,对于亚微米颗粒,环形样品池方法具有测量下限低、测量精度高、分辨率高和可靠性高的特点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/802155a1-0ed6-4107-b884-fa48270c9372.jpg" title="IMG_9676.jpg"//pp style="text-align: center "  strong报告人:李庆浩(东南大学)/strong/pp style="text-align: center "strong  报告题目:基于光场成像的气液两相流中气泡三维测量方法/strong/pp  李庆浩在报告中提出一种基于光场成像的气液两相流中气泡三维测量方法,解决了传统成像仅能进行二位测量的问题。利用Paytrix光场相机记录气液两相流场的光场信息,结合光场计算成像技术获取两相流场内气泡的全聚焦图像和重聚焦图像序列。对全聚焦图像和重聚焦图像进行处理,可以获得气泡的三维空间分布、尺寸分布及体积含气率等信息。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9fdac427-ffa1-493d-9621-7ec7159521ce.jpg" title="IMG_9683.jpg"//pp style="text-align: center "  strong报告人:胡华(天津大学,真理光学)/strong/pp style="text-align: center "strong  报告题目:激光粒度仪测量上限研究/strong/pp  基于米氏散射原理的激光粒度仪是颗粒测量领域应用最广泛的仪器,测量上限是仪器的重要指标之一。报告中,胡华等将奇异值分解方法引入到激光粒度仪光能系数矩阵的特性分析中,定义可以反映粒度变化相对相对的光能分布变化的灵敏度参数,给出了一组特定参数下的测量上限,进而推广得到仪器测量上限与仪器物理参数之间的解析表达式,实验结果证明了该表达式的正确性。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/7515e57e-ebf1-4571-b8b4-3fbda8867c81.jpg" title="IMG_9688.jpg"//pp style="text-align: center "  strong报告人:潘志成(东南大学)/strong/pp style="text-align: center "strong  报告题目:气液两相流中气泡尺寸分布数字图像测量方法研究/strong/pp  鼓泡塔是一种常见的气液反应器,鼓泡塔中气泡的大小和浓度对于研究鼓泡塔中传质过程有着重要意义。潘志成等利用高速摄像法和数字图像处理技术实现鼓泡塔中气泡尺寸分布的测量,分析了气泡尺寸分布规律。实验与分析结果表明,该方法能有效获取水中气泡的尺寸分布情况,并且能够分离粘连气泡,在气液两相流中气泡参数在线测量方面具有较好的应用前景。/pp style="text-align: center "------------------------------------------------/pp strong附/strong:/ppspan style="color: rgb(0, 176, 240) text-decoration: none "strong /strong/spanspan style="text-decoration: underline color: rgb(0, 176, 240) "stronga href="http://www.instrument.com.cn/news/20171117/233615.shtml" target="_self" title="" style="text-decoration: underline color: rgb(0, 176, 240) "Day1之颗粒‘圈’群贤毕至,第十一届全国颗粒测试学术会议广州召开/a/strong/span/ppspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="color: rgb(0, 176, 240) text-decoration: none " /spanspan style="text-decoration: underline "strongspan style="text-decoration: underline color: rgb(0, 176, 240) "a href="http://www.instrument.com.cn/news/20171118/233737.shtml" target="_self" title="" style="color: rgb(0, 176, 240) "图说,颗粒会精彩8环节速览——第十一届全国颗粒测试学术会议回看/a/span/strong/span/p
  • 静脉注射脂肪乳粒尾部大颗粒研究专题
    摘要 脂肪乳作为肠道外给药营养药物应用于临床已超过50年,临床使用脂肪乳的主要目的在于为机体提供必要的脂肪酸和能量,促进脂溶性维生素的吸收,有效地改善氮平衡,维持细胞结构和人体脂肪组织的稳定。早期的脂肪乳存在多种临床问题,作为脂肪乳研究的先驱人物Geyer教授早在1960年就提出:“患者对一种品牌的脂肪乳产生不良反应,但对成分相同的另一种品牌脂肪乳反应良好,这种现象不应被忽视”。之后发现这种“不应被忽视”的现象与脂肪乳粒径大小有密切联系。1971年Fujita等通过动物实验,发现脂肪乳粒径与毒性之间的联系,自此,脂肪乳粒径分布及尾部大颗粒的测定逐渐为人们所重视。 关键词 大乳粒、大乳粒测定原理、大乳粒检测仪、大乳粒分析仪、大乳粒检测、大乳粒灭菌后超标是什么原因、PFAT5、PFAT5检测、PFAT5什么意思、大乳粒药典、静脉注射脂肪乳粒要求、脂肪乳大乳粒检测原理、大乳粒检测方法及各国药典的规定、乳剂中大乳粒PFAT5检测专题、大乳粒检测方法专题、大乳粒测定。 脂肪乳是水包油的分散体系,外观呈半透明或不透明的乳状液体,为热力学不稳定体系。脂肪乳制备工艺一般采用高压均质法或微射流法,无论采用哪种制备方法,脂肪乳的粒径都无法得到完全均一的值,存在一定粒径分布范围,显示静注用脂肪乳粒径的一般分布状态。从图1中可知, 乳剂的粒径范围一般在0.05~10μm,其中平均粒径为0.3μm的脂滴占大多数,极端值(极小值与极大值)脂滴含量很少。优化处方或工艺可能只会让图中的“峰”向左移动或峰宽变窄,不会改变脂滴粒径分布在一定范围内的事实。尾部大颗粒就是粒径分布图1中所显示的粒径大于5μm的部分。 尾部大颗粒的概念 通常,在脂肪乳中,当油脂的密度低于周围水媒介密度约10%时,乳析现象就会产生。乳析的乳剂只要轻轻搅拌,乳滴仍能重新分布。但当脂滴合并成直径超过1μm的大脂滴时,脂滴的合并便是不可逆的过程,脂滴会逐渐聚集,1μm脂滴可“生长”成5μm甚至更大的脂滴颗粒,直至自由脂滴从乳剂中析出,成为不稳定脂肪乳。可以认为,尾部大颗粒是包含在大脂滴概念中的。 形成尾部大颗粒的因素 如上所述,尾部大颗粒的形成是一种自发过程。因此,保证微小粒径脂滴在水相中的稳定分布,防止脂滴合并发生及大脂滴的生成,是尾部大颗粒控制的关键。研究表明,多种因素影响尾部大颗粒的形成:①油相:油相含量增大,乳剂粒径增大。②乳化剂:有文献报道,采用蛋黄卵磷脂E-80为单一乳化剂的脂肪乳,粒径分布容易出现双峰现象。在卵磷脂中加入泊洛沙姆,乳滴粒径分布更集中,粒径大小更均匀。③微射流均质机:均质机的选择对乳剂粒径有影响。在制备海豹油脂肪乳时,对比了3种均质机,认为意大利PSI微射流均质机均质后乳滴呈单峰分布,且分布范围较窄,粒径状态理想。④均质温度、压力与均质次数:在丙泊酚脂肪乳制备中,60℃均质温度下,不同压力均质所得的乳剂,产生油漂 而在25℃均质温度下,乳剂的粒径随着压力和循环次数的增加而降低,尾部大颗粒的数量会减少。⑤包装材料: 需慎重选择。2004年美国某品牌静注脂肪乳对包装材料进行重大改变,使用塑料容器替换传统玻璃容器。结果发现,包装材料替换后,脂肪乳的尾部大颗粒不符合美国药典的限度规定,而使用玻璃器皿的脂肪乳尾部大粒径都合格。对15种成人用脂肪乳的检测进一步发现,塑料包装的脂肪乳样品均无法满足尾部大颗粒限度要求,并且乳剂贮存的稳定性不如玻璃包装材料。然而在2010年,Ellborg等对50种采用多腔塑料包装袋包装的市售乳剂进行尾部大颗粒含量测定,发现所测产品未出现PFAT5大于0.05%。2013年Wei等将不同载药量的丙泊酚中/长链脂肪乳包装于不同材质的包装袋中进行研究,对尾部大颗粒的监测结果显示,软包装的高浓度丙泊酚载药乳放置24h后PFAT5超过0.05%,而玻璃材质包装的乳剂尾部大颗粒正常。因此建议丙泊酚乳剂应分装于玻璃瓶中,且不同载药量的乳剂应现用现配,乳剂经生理盐水稀释后应在6h内使用完毕以上研究显示,软包装材料可能会对脂肪乳的尾部大颗粒产生影响,导致产品质量不可控,它对乳剂粒径的影响还需要更多的研究与探讨。此外,还有很多因素包括pH值的变化、电解质的存在、乳化剂的用量和贮存条件的改变等因素,都会影响微小脂滴能否稳定分布在水相中。因此,能否制备稳定的脂肪乳,减少微小脂滴合并成大脂滴从而转变成尾部大颗粒的发生概率,将尾部大颗粒控制在规定限度内,也是评价脂肪乳处方组成及制备是否合理的重要指标之一。 控制尾部大颗粒的重要性 脂肪乳的不稳定体系表现为水油两相的分离,成为不稳定脂肪乳。因此,尾部大颗粒超出一定限度,影响脂肪乳的稳定性,临床上产生有效性隐患和安全性风险。 尾部大颗粒的测定技术 根据测量原理不同, 尾部大颗粒的测定技术包括:光遮/单粒子光学传感(light obscuration/singleparticle optical sensing,LO/SPOS)技术、光散射技术、电敏感带技术(electrical-sensed zone, ESZ)及显微油浸技术等。目前成熟的测定技术为LO/SPOS技术。美国药典于2004年增加新章节USP,名为“静注用脂肪乳粒径分布”,首次对静注用脂肪乳的尾部大颗粒加以控制,明确了它的测定方法和限度。新章节中规定:必须测定脂肪乳的尾部大颗粒(PFAT5),推荐使用LO/SPOS技术, PFAT5限度为不得大于0.05%。 结语 脂肪乳作为一种较为稳定的乳剂类型,可供静脉注射,能完全被机体代谢和利用,是目前临床治疗中备受瞩目的胃肠外给药体系。尽管目前用于临床的载药脂肪乳不多,但作为新型乳剂,其具有的药物靶向性,减缓和控制药物释放速率以及提高药物在体内的生物利用度等特点,应用前景广泛。控制脂肪乳尾部大颗粒的含量不仅与脂肪乳的稳定性、安全性密切相关,也反映了脂肪乳制剂的研发与制备水平。我国应加强对脂肪乳尾部大颗粒测定的重视,完善尾部大颗粒测定技术,加强脂肪乳尾部大颗粒监测,将尾部大颗粒控制在合适的限度内。这项工作不仅是保证静注脂肪乳剂真正达到安全、有效、质量可控的重要手段之一,也将会对我国脂肪乳制造业起到鞭策与激励作用,推动我国脂肪乳制备稳步发展。
  • 颗粒‘圈’群贤毕至 第十一届全国颗粒测试学术会议广州召开
    p  strong仪器信息网讯/strong 2017年11月16日,为期两天的“第十一届全国颗粒测试学术会议暨2017全国粉体测试技术应用研讨会”在广州如期召开。大会由中国颗粒学会颗粒测试专业委员会主办,华南师范大学物理与电信工程学院、珠海真理光学仪器有限公司承办,会议吸引来自全国各地高校院所、检测机构、仪器设备厂商等颗粒测试‘圈’内120余名专家学者参会。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2f563079-3ef3-428b-acd5-c4aa8b14d32b.jpg" title="01.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/8184db94-0458-4938-b470-a8aad90954c5.jpg" title="01_副本_副本.jpg"//pp style="text-align: center "strong会议现场/strong/pp  会议由大会报告、墙报交流、CNAS Z0127能力验证计划报告等组成。会议现场邀请到中国颗粒学会颗粒测试专委会创始人胡荣泽教授,专委会主任葛宝臻教授,华南师范大学党委副书记黄兆团、杨冠玲教授,专委会副主任蔡小舒、张福根、董青云、周定益、韩鹏等,并奉上31场精彩报告:群贤毕至,共议中国颗粒测试新技术新发展!/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/88627514-cba3-433f-9f28-7a258bd9f811.jpg" title="02.jpg"//pp style="text-align: center "strong华南师范大学党委副书记黄兆团致辞/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/ca628199-a3eb-4140-9057-5d06fb552d6d.jpg" title="03.jpg"//pp style="text-align: center "strong专委会主任葛宝臻教授致辞/strongbr//pp  开幕式致辞中,黄兆团、葛宝臻依次对与会专家学者表示欢迎,并期望通过本次会议的交流平台,大家能够就颗粒测试最新技术与应用进展进行深入探讨,共同促进我国的颗粒测试事业的发展。/pp  第一天会议日程,大会进行了17个报告,仪器信息网摘录精彩内容如下:/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/560dc63f-20dc-4386-bf4b-72b7e7dbcb96.jpg" title="1.jpg"//pp style="text-align: center "strong style="text-align: center "报告人:高思田(中国计量科学研究院)/strong/pp style="text-align: center "strong  特邀报告题目:纳米颗粒的准确测量问题/strong/pp  纳米粉体材料是材料研发及产业化最基本的构成部分,颗粒尺寸、比表面积等则是其最重要的表征参数。纳米颗粒测量方法包括基于图像测量的TEM、SEM、SPM、OM等,以及基于模型的DLS(动态光散射)、NTA(纳米颗粒跟踪分析)SAXS(x射线小角散射)等。高思田表示,纳米粉体材料及产品市场急需技术标准、检测标准来进行规范,相比国际水平,国内存在很大差距。而电子束、光束、X-射线与纳米颗粒的相互作用不同造成的测量结果差异显著不能对测量仪器进行准确校准是产生差异的主要原因。接着介绍了在此背景下,该团队在SEM、TEM测量、DLS测量等方法及校正的研究情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/c6f3e953-d265-48c5-aa05-1276b4c30dc2.jpg" title="IMG_9241_副本.jpg"//pp style="text-align: center "strong报告人:吴晓春(国家纳米科学中心)/strong/pp style="text-align: center "strong特邀报告题目:贵金属等离激元纳米结构设计与生物医学应用/strong/pp  纳米技术是指应用科学知识操纵和控制纳米尺度物质,实现其与单个原子、分子或块体材料显著不同的,与尺寸和结构相关的性质和现象的学科。吴晓春在报告中介绍到,贵金属纳米材料的局域等离激元共振特征赋予了其多种功能特性,而这种共振与颗粒尺寸、形状、组成、表面化学及结构密切相关。其团队经过一系列研究表明贵金属纳米材料可望在超灵敏生化检测中发挥重要作用,并且局域等离激元的时空调控性为纳米器件的刺激响应性提供了基础。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2ea2d20d-c698-4a1d-9784-8c2dd7cb3ea0.jpg" title="IMG_9252_副本.jpg"//pp style="text-align: center "  strong报告人:葛宝臻(天津大学)/strong/pp style="text-align: center "strong  报告题目:基于散射光谱方法测量颗粒折射率的实验研究/strong/pp  葛宝臻在报告中介绍了一种基于散射光谱测量颗粒折射率的方法,通过对聚苯乙烯、玻璃微珠、水滴颗粒三种样品的测试结果显示,当相对折射率1.2<n<1.5时,在散射角20度到80度范围内,颗粒闪射光近似等于0、1阶光的叠加,对散射广场做傅里叶变换,即得到颗粒散射光谱。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/c0619b42-c35f-406c-9325-3107bdd2d022.jpg" title="IMG_9269_副本.jpg"//pp style="text-align: center "strong报告人:韩鹏(华南师范大大学)/strong/pp style="text-align: center "strong报告题目:电泳光散射纳米颗粒zeta电位测试技术及仪器研究/strong/pp  Zeta电位是乳业、酿造、造纸、陶瓷、制药、矿物处理和水处理等行业中极其重要的参数。纳米颗粒zeta电位的测量中,电泳法是主流的仪用方法。韩鹏在报告中介绍了电泳光散射的原理及方法,并详细介绍了对应的自适应光子相关技术、参考光调试技术、电泳电压调制技术,及多点测量技术。接着介绍了丹东百特公司与华南师范大大学共同研发纳米颗粒zeta电位仪的历程:2014年签订联合研发协议,2017年6月丹东百特公司研制成功首台国产纳米材料zeta电位/粒度/分子量三合一分析系统。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/60a819c9-c62a-4c45-b5d8-53063fe564ef.jpg" title="IMG_9296.jpg"//pp style="text-align: center "  strong报告人:李兆军(中国科学院过程工程研究所)/strong/pp style="text-align: center "strong  报告题目:基于颗粒测量技术的微细气泡测量方法/strong/pp  微细气泡属于气体颗粒,但又有很多与固体颗粒的不同之处。微细气泡有很多优异性能,如比表面积大、停留时间长、界面电位高、产生自由基等,目前在国内外得到广泛应用。但有关微细气泡的测量问题一直是企业面临的巨大问题,李兆军在报告中介绍了其团队基于颗粒测量技术对微细气泡测量方法的一系列研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/2afb5f71-2e78-4dd9-b7c9-4bf4071c61c1.jpg" title="IMG_9315.jpg"//pp style="text-align: center "  strong报告人:沈建琪(上海理工大学)/strong/pp style="text-align: center "strong  报告题目:高斯光束照射下的球形颗粒散射及应用/strong/pp  球形颗粒在有形光束照射下的散射呈现出于平行光不同的特性,取决于光束的形状、偏振特性、光束与颗粒的相对位置、颗粒尺寸和折射率等多种因素。沈建琪通过颗粒近场计算表明,在窄高斯光束照射下,颗粒内场呈现出明显不同的分布特征。通过控制高斯光束的宽度和入射位置,可得到期望的内场分布,从而在相关领域得到应用。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/b4463827-1e2d-455b-9cbb-0f784e370635.jpg" title="IMG_9319.jpg"//pp style="text-align: center "  strong报告人:刘伟(山东理工大学)/strong/pp style="text-align: center "strong  报告题目:Henry函数表达式对计算Zeta电位的影响/strong/pp  利用电泳光散射法可以确定带电颗粒的电泳迁移率,由电泳迁移率计算颗粒的zeta电位需要准确确定Henry函数的数值。刘伟团队利用最小二乘法对精确Henry函数值进行拟合,获得优化Henry函数表达式。基于Gouy-Chapman-Stern双层模型理论,求解不同浓度、类型电解液溶液中双电层厚度,从而获得准确的颗粒半径及双层电厚度的比值,最后用优化的函数获得准确的Henry函数值。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/8d031701-58ce-4880-a9c2-8ad3393bdfac.jpg" title="IMG_9338.jpg"//pp style="text-align: center "  strong报告人:杨麟(国家石墨烯产品质量监督检验中心(广州))/strong/pp style="text-align: center "strong  报告题目:石墨烯材料的检测/strong/pp  杨麟主要向大家介绍了国家石墨烯产品质量监督检验中心(广州)概况,2016年年底,国家质量监督检验检疫总局正式批准同意筹建“国家石墨烯产品质量监督检验中心(广东)”。中心是华南地区第一家提供第三方检验检测服务的石墨烯产品国家级检验检测技术服务平台,中心将围绕广东石墨烯产业发展的需求,有针对性地研发石墨烯产品检验检测新技术,以技术创新来推动国家及行业标准的建立,推进成果转化和实际应用,为广东省以及全国石墨烯产业的发展与转型升级方面发挥技术支撑和引领作用。同时,2017年3月,中心牵头申请的广东省石墨烯标准化技术委员会已顺利通过广东省质监局批筹。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/099a0b19-9da6-4b39-98ae-85632bb05694.jpg" title="IMG_9350.jpg"//pp style="text-align: center "  strong报告人:孙吉勇(江苏苏净集团有限公司)/strong/pp style="text-align: center "strong  报告题目:亚微米液体颗粒计数器在水处理滤芯中的应用/strong/pp  孙吉勇介绍了光学液体颗粒计数器的工作原理,研究了一种基于光学散射原理的亚微米液体颗粒计数器,设计分析了传感器的光学结构。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/189495b8-d696-4475-bec7-2ac8576c5495.jpg" title="IMG_9356.jpg"//pp style="text-align: center "  strong报告人:傅晓伟(珠海欧美克仪器有限公司)/strong/pp style="text-align: center "strong  报告题目:激光粒度仪极限测试能力的研究/strong/pp  傅晓伟在TopSizer激光粒度仪平台技术上,评估了双光源、长焦距的光学设计以及循环进样器的设计对极限测试能力的影响。结果表明,设计和优化在保证亚微米到毫米范围内极高准确性同时,实现了较高分辨率。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/51111de5-27ab-4050-a15b-a83cb2e4b3f7.jpg" title="IMG_9378.jpg"//pp style="text-align: center "  strong报告人:徐文英(奥地利安东帕(中国)有限公司)/strong/pp style="text-align: center "strong  报告题目:安东帕LitesizerTM系列和90系列激光粒度仪介绍/strong/pp  徐文英主要介绍了安东帕LitesizerTM系列和90系列两个系列激光粒度仪产品,其中LitesizerTM系列包含LitesizerTM500和LitesizerTM100,该系列采用了专利的cmPALS技术,可实现更短测量时间,更低施加电场降低样品和电极的影响、污染。90系列即990/1090/1190系列,于2017年上市,源于法国Cilas公司,具有湿法条件下粒度大小和形态可同时测定等特点。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/9ae05721-d38f-4c8e-8d06-93f9904a1db0.jpg" title="IMG_9413.jpg"//pp style="text-align: center " strong 报告人:张福根(珠海真理光学仪器有限公司)/strong/pp style="text-align: center "strong  报告题目:激光粒度仪有待完善的若干问题探讨/strong/pp  张福根介绍了激光粒度仪这种发展成熟的产品目前有待完善的若干问题:球形颗粒在平行光照射下产生的爱里斑的大小随颗粒尺寸的变化是不规则的;全反射盲区的影响;不同波长光照下散射光信号拼接问题等。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/dfc66200-f7b7-4085-a67b-ad35e087ef3f.jpg" title="IMG_9430.jpg"//pp style="text-align: center "  strong报告人:纪英露(国家纳米科学中心)/strong/pp style="text-align: center "strong  报告题目:金纳米颗粒粒度标准物质的研制/strong/pp  纪英露相关研究研制的纳米级金颗粒系列粒度标准物质采用种子调制的生长方法,通过逐级放大得到不同颗粒尺寸。标称粒径为20nm和40nm的标准物质化学稳定性高,尺寸单分散性好,是理想的电镜高放大倍率校准用标准物质和不同颗粒粒度测试方法比对用标准物质。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/797d48f4-5e3a-4daf-b3b7-87ccd1dfc4f6.jpg" title="IMG_9440.jpg"//pp style="text-align: center "  strong报告人:何羽薇(北京朗迪深科技有限公司)/strong/pp style="text-align: center "strong  报告题目:浆料分散机理及工艺精细化控制对稳定性的影响/strong/pp  浆料研发与工艺精细化思路的最终目的是要达到电池浆料性能最佳化,何羽薇表示,电池浆料的开发还有更多工作去做:电池浆料研究需要精细化,电池浆料加工工艺需要精细化,配方、检测、工艺、生产、应用技术等要精细化。电池浆料如何做到精细化研发,许多国外案例值得大家学习和借鉴。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/73d4bb77-31aa-49c0-91a3-4f56840cafd7.jpg" title="IMG_9445.jpg"//pp style="text-align: center "  strong报告人:陈诚(天津商业大学)/strong/pp style="text-align: center "strong  报告题目:大豆蛋白喷涂液组分对喷涂液表观粘度和粒度的影响/strong/pp  为了提高雾化效果,陈诚在蔬菜复合纸覆膜研究中选择最优喷涂液组分,利用安东帕粘度计对30组大豆蛋白喷涂液的表观粘度进行测量。并利用分析软件对各试验结果进行二次多元回归拟合,得到优化回归方程,进而作出三维响应面图和等高线图,可直观看出大豆蛋白浓度对表观粘度影响的显著程度。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/3cd468d5-6ecf-4865-bcc0-e8bdd23d65ee.jpg" title="IMG_9473.jpg"//pp style="text-align: center "  strong报告人:吕且妮(天津大学)/strong/pp style="text-align: center "strong  报告题目:基于聚焦两点像的喷雾场粒子尺寸及粒度分布测量/strong/pp  报告中,吕且妮基于聚焦像的干涉粒子成像(IPI)技术对喷雾场粒子尺寸及其粒径分布进行了测量。对标称直径25.0μm的标准粒子场进行测量,峰值粒径绝对误差为0.25μm,验证了该方法在粒子场测量中的有效性,并应用于正庚烷喷雾场粒子测量。这种测量方法可同时获得粒子尺寸大小和位置信息,结合粒子追踪测速及粒子图像测速技术,能够实现高密度粒子场粒子尺寸和速度的同时测量。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/16379985-632e-44c4-9ea8-67aea50d1ac2.jpg" title="IMG_9486.jpg"//pp style="text-align: center " strong 报告人:席广成(中国检验检疫科学研究院)/strong/pp style="text-align: center "strong  报告题目:掺伪珍珠粉的近红外光谱定量鉴别方法/strong/pp  珍珠母贝壳和珍珠同根同源,珍珠母贝壳粉即贝壳粉的微观形貌、化学组成与珍珠粉相似,时常被用以冒充珍珠粉或掺入珍珠粉中流入市场。热分析方法、x射线衍射法、中红外光谱法等方法需要进行样本热处理和后续数据分析,快捷性及简便性差。席广成等将纯珍珠粉与纯贝壳粉按比例混合以模拟掺伪珍珠粉,并利用偏最凶二乘法建立并优化了近红外光谱定量分析模型,实现了珍珠粉及掺杂珍珠粉的快速定量鉴别。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/74ac8d9a-054e-4944-a22e-f2a1df572e97.jpg" title="mmexport1510814874833_副本.jpg"//pp style="text-align: center "strong合影留念/strong/pp style="text-align: center "  ----------------------------------------------------/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal " strong style="margin: 0px padding: 0px "附/strong:/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "strong style="margin: 0px padding: 0px " a href="http://www.instrument.com.cn/news/20171117/233736.shtml" target="_self" title="" style="margin: 0px padding: 0px color: rgb(0, 176, 240) font-family: 宋体, " Arial Narrow" white-space: normal "strong style="margin: 0px padding: 0px "Day2:颗粒测试技术多领域应用探讨/strong/a/strong/spanspan style="margin: 0px padding: 0px text-decoration: underline color: rgb(0, 176, 240) "strong style="margin: 0px padding: 0px "/strong/span/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " Arial Narrow" white-space: normal "span style="margin: 0px padding: 0px color: rgb(0, 176, 240) " /spanspan style="margin: 0px padding: 0px color: rgb(0, 176, 240) " /spanspan style="margin: 0px padding: 0px text-decoration: underline "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "a href="http://www.instrument.com.cn/news/20171118/233737.shtml" target="_self" title="" style="margin: 0px padding: 0px color: rgb(0, 176, 240) text-decoration: none "图说,颗粒会精彩8环节速览——第十一届全国颗粒测试学术会议回看/a/span/strong/span/p
  • 97.8万!南宁市疾病预防控制中心实验室试剂耗材、标准物质采购
    项目概况南宁市疾病预防控制中心实验室试剂耗材、标准物质采购(第二批) 采购项目的潜在供应商应在政采云平台(https://www.zcygov.cn/)获取(下载)获取采购文件,并于2021年12月22日 09点30分(北京时间)前提交响应文件。一、项目基本情况项目编号:NNZC2021-J1-991969-YZLZ(采购计划文号:NNZC[2021]7871号-003......具体内容详见附件招标公告项目名称:南宁市疾病预防控制中心实验室试剂耗材、标准物质采购(第二批)采购方式:竞争性谈判预算金额:97.7921000 万元(人民币)采购需求:预算金额:合计97.7921万元。A 分标 53.3652万元; B 分标 28.9772万元;C 分标15.4497万元;采购需求:A分标:项号采购标的单位数量简要技术需求或者货物要求1单通道病毒核酸检测类试剂盒(国产)(肠道病毒等)盒9具体详见采购文件《第二章 采购需求》2双通道病毒核酸检测类试剂盒(国产)(包括流感病毒、肠道病毒等)盒343新型冠状病毒2019-nCOV核酸定值质控品支354病毒DNA/RNA提取试剂盒(预封装)盒1085无RNase10µl带滤芯长吸头盒106无RNase250µl长吸头(带滤芯)箱870.1ml八连排定量管(带盖)箱28封口袋(透明)包1009封口袋(透明)包10010G1型消毒剂浓度试纸盒101196孔透明PCR板(适用于ABI)箱41296孔PCR板封口膜箱313N95防护口罩只120014VITEK细菌鉴定卡(ANC)盒115VITEK细菌鉴定卡(BCL)盒316API生化鉴定条(链球菌)盒117弯曲菌培养检测试剂(双孔滤膜法)盒418Karmali选择性平板盒419甘露醇卵黄多粘菌素琼脂平板瓶1020Baird-Parker琼脂平板瓶1021PALCAM琼脂基础瓶622PALCAM琼脂冻干配套试剂盒2023CIN-1培养基基础瓶224CIN-1培养基配套试剂盒825改良Y琼脂瓶226含铁牛奶琼脂瓶227甘露醇卵黄多粘菌素琼脂基础MYP瓶428查氏琼脂培养基瓶129改良月桂基硫酸盐胰蛋白胨肉汤基础(MLST)瓶430万古霉素(改良月桂基硫酸盐胰蛋白胨肉汤配套试剂)盒431改良月桂基硫酸盐胰蛋白胨肉汤-万古霉素(mLST-Vm肉汤)盒232脑心浸萃琼脂培养基瓶133脑-心浸萃液态培养基(BHI)瓶234改良克氏双糖铁琼脂瓶235KF链球菌琼脂培养基瓶236胆汁液态培养基瓶237改良马铃薯葡萄糖琼脂培养基(mPDA)瓶238PCFA培养基基础瓶239PCFA培养基配套试剂盒440改良马铃薯葡萄糖琼脂培养基配套试剂盒441葡萄糖肉浸液肉汤瓶142尿素盒343氰化钾对照管(KCN)盒244改良CCD琼脂基础(mCCD)瓶245改良CCD琼脂添加剂盒1046改良Skirrow氏琼脂基础瓶247改良Skirrow琼脂添加剂盒1048L-shaped Cell Spreader(一次性L棒)盒1049无菌均质袋(带滤膜,半张膜)包1050肠道致病性大肠埃希氏菌核酸检测试剂盒盒351猪链球菌2型核酸检测试剂盒盒152唐菖蒲伯克霍尔德氏菌核酸快速检测试剂盒盒153铜绿假单胞菌核酸实时荧光PCR检测试剂盒盒154血液等组织微量布鲁氏菌核酸DNA检测试剂盒盒155大肠埃希菌Escherichia coli NCTC 12923盒156金黄色葡萄球菌Staphylococcus aureus NCTC 10788盒157铜绿假单胞菌Pseudomonas aeruginosa NCTC 12924盒158巴西曲霉Aspergillus brasiliensis NCPF 2275盒159白色假丝酵母Candida albicans NCPF 3179盒160产气荚膜梭菌NCTC 8798盒161大肠埃希菌NCTC 12923盒162金黄色葡萄球菌NCTC 10788盒163蜡样芽孢杆菌NCTC 7464盒164单增李斯特菌NCTC 11994盒165巴西曲霉NCPF 2275盒166白假丝酵母菌NCPF 3179盒16750%卵黄乳液盒2068API加样滴管箱469Inhalation Solution瓶470一次性悬浮液管箱271一次性定量接种环 (10ul)箱672一次性定量接种环 ( 1ul)箱673蓝盖试剂瓶个1074蓝盖试剂瓶个1075蓝盖试剂瓶个1076蓝盖试剂瓶个10 B分标:项号采购标的单位数量简要技术需求或者货物要求1反应杯箱10具体详见采购文件《第二章 采购需求》2一次性无菌培养皿 φ9cm箱1003200ul国产吸头包504甲型肝炎病毒IgM抗体系列血清(液体)标准物质支205戊型肝炎病毒IgM抗体系列血清(液体)标准物质支106Probe Wash 3盒207SS琼脂瓶2508氯化镁孔雀绿肉汤(MM)瓶609带盖离心管包2010定值生化质控血清(水平2)盒111定值生化质控血清(水平3)盒112临床生化校准血清(定标用)盒113CENTAUR 酸/碱试剂 1&2盒114TIP头箱115样本杯箱116CL-50清洁液瓶517Sysmex血液分析仪用稀释液(PK-30L)桶218GPS套装针(URANUS AE180)箱1019全自动生化仪碱性洗液瓶520加厚不锈钢酒精灯盏1021医用垃圾袋扎50 C分标:项号采购标的单位数量简要技术需求或者货物要求1氨氮标准溶液瓶4具体详见采购文件《第二章 采购需求》2氰化物标准物质瓶13六价铬标准瓶14挥发性酚标准瓶15阴离子表面活性剂标准瓶16磷酸瓶67硫化物标准瓶184-氨基安替比林瓶19丙酮瓶610三氯甲烷瓶12115mL样品瓶架个512耐高温塑料试管架个1513移液器吸头包1014移液器吸头(盒装)盒515硅胶管米5016气相色谱柱根117二硫化碳中邻二氯苯支218甲醇中1,4-二氯苯支219二氯甲烷中1,3-丁二烯支220二硫化碳中2-丁酮支221水中甲醇支222水中甜蜜素支523水中氰成分分析标准物质支22420mL顶空瓶套件(带盖)套1025顶空瓶铝钳口盖包1026熔融石英管根527 气相色谱柱根128标样/水质 硒支529标准样品/水中硒支330标样/水质 砷支331标样/水质 砷支232硫代硫酸钠容量分析用标准溶液支233尿中碘的砷铈催化分光光度法配套试剂盒盒334原子荧光光谱仪的硒元素空心阴极灯个135塑料试管架(可拆卸)个1036聚苯乙烯锥形离心管保5037 32种混合金属标准溶液瓶138Bi,Ge,In,Rh,Sc,Tb,Y 标准溶液瓶139水质锰只240水质 铁标准溶液瓶141水质 铜标准溶液瓶142水质 锰标准溶液瓶143水质 锌标准溶液支644水质 铅标准溶液瓶145水质 镉标准溶液瓶146硝酸钯瓶147标准物质/乙腈中孔雀石绿草酸盐支148标准物质/乙腈中隐色孔雀石绿支149标准品/隐色孔雀石绿-D6同位素支150标准品/隐性孔雀石绿-D5同位素支151标准品/氯霉素-D5同位素支152标准物质/甲醇中氟苯尼考/氟苯尼考胺混标支153丙三醇(甘油)瓶154标准物质/尿素瓶155标样/水质pH瓶556标准物质/氯化钾电导率瓶157水中硝酸盐氮/以氮计瓶258标准物质/4种阴离子混标/氟氯硝酸根硫酸根瓶159氢氧化钠标准溶液瓶160盐酸标准溶液瓶161硼酸标准溶液瓶162硫代硫酸钠标准溶液瓶163甲醇中三氯甲烷溶液标准物质支364甲醇中三氯甲烷、四氯化碳支2065顶空瓶铝钳口盖包2066甲醇中四氯化碳溶液标准物质支367甲醇中一氯二溴甲烷支168甲醇中二氯一溴甲烷支169甲醇中1,2-二氯乙烷支170甲醇中二氯甲烷支171甲醇中1,1,1-三氯乙烷支172甲醇中三溴甲烷支173正己烷中七氯支174丙酮中马拉硫磷支175正己烷中α-666支176正己烷中β-666支177正己烷中γ-666支178正己烷中δ-666支179丙酮中六氯苯支180丙酮中乐果支181丙酮中对硫磷支182丙酮中甲基对硫磷支183丙酮中百菌清支184丙酮中毒死蜱支185丙酮中敌敌畏支186正己烷中溴氰菊酯支187正己烷中o,p' -DDT支188正己烷中p,p' -DDT支189正己烷中p,p' -DDE支190正己烷中p,p' -DDD支191甲醇中1,1-二氯乙烯支192甲醇中顺1,2-二氯乙烯支193甲醇中1,2-二氯苯支194甲醇中1,4-二氯苯支195甲醇中三氯乙烯支196甲醇中1,2,3-三氯苯支197甲醇中1,2,4-三氯苯支198甲醇中1,3,5-三氯苯支199甲醇中四氯乙烯支1100甲醇中六氯丁二烯支1101甲醇中邻苯二甲酸二(2-乙基己基)酯支1102甲醇中环氧氯丙烷支1103甲醇中氯乙烯支1104甲醇中氯苯支1105丙酮中甲胺磷支1106甲醇中灭草松支1107甲醇中2,4-滴支1108甲醇中丙烯酰胺支1109容量瓶个100110容量瓶个100111quechers 萃取盐包包2112陶瓷均质子包5113质控样品/食品中亚硫酸盐/以二氧化硫计瓶2114苹果干中二氧化硫瓶2115蜜饯中二氧化硫标准物质袋2116铝制冰盒个2117小号硅胶套盒个2118ABS封口膜切割器+封口膜套装套2119不锈钢尖直头剪刀把18120有机玻璃容量瓶架个2121有机玻璃容量瓶架个2122有机玻璃容量瓶架个5123有机玻璃容量瓶架个5124圆底玻璃小导管(小试管)包3125二硫化碳中环己酮支3126色标/环己酮-GCS支2127质控样品/硅胶管中乙二醇套2128甲醇中乙二醇支2129色标/丙烯醇-GCS支2130甲醇中丙烯醇和异丙醇混标支2131乙醇中叔戊醇支2132质控样品/滤膜中硒3片/套3133富硒大米粉瓶1134鸭肝粉(681#)瓶1135三文鱼冻干粉成分分析标准物质瓶1136香菇粉成分分析标准物质瓶1137猪肝-生物成分分析标准物质瓶1138扇贝-生物成分分析标准物质瓶1139黄芪-生物成分分析标准物质瓶1140绿茶-生物成分分析标准物质瓶1141菠菜-生物成分分析标准物质瓶1142鸡肉-生物成分分析标准物质瓶1143一次性塑料勺包5144一次性塑料勺包5145石墨管盒1146样品杯包5147单层氧化石墨烯 粉末瓶2148壳聚糖瓶1149纳米二氧化硅瓶2150四氧化三钴纳米颗粒瓶115195%乙醇箱10 合同履行期限:接到采购人供货通知后,国内产品5个自然日内按照采购人要求的物品及数量完成供货;境外生产(进口)、且在国内没有现货的产品,在接到通知后,30个自然日内送达。签订合同后3个月内合同全部货物供应完成。如遇特殊情况,必须按采购人要求时间供货。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:□专门面向中小企业采购的项目(供应商应为中小微企业、监狱企业、残疾人福利性单位)√非专门面向中小企业采购的项目3.本项目的特定资格要求:A分标、B分标:必须具备行政主管部门颁发的有效的证件(生产企业须提供《医疗器械生产许可证》;经营企业经营第二类医疗器械的须提供《第二类医疗器械经营备案凭证》,经营第三类医疗器械的须提供《医疗器械经营许可证》) C分标:必须具备易制毒化学品相关经营许可证和危险化学品等相关经营许可。 4. 本项目的特定条件:无5. 单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。6. 对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法案件当事人名单、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。三、获取采购文件时间:2021年12月16日 至 2021年12月22日,每天上午00:00至12:00,下午12:00至23:59。(北京时间,法定节假日除外)地点:政采云平台(https://www.zcygov.cn/)获取(下载)方式:网上下载。本项目不发放纸质采购文件,供应商可自行在“政采云”平台(http://www.zcygov.cn)下载采购文件(操作路径:登录“政采云”平台-项目采购-获取采购文件-找到本项目-点击“申请获取采购文件”),电子响应文件制作需要基于“政采云”平台(http://www.zcygov.cn)获取的采购文件编制。售价:¥0.0 元(人民币)四、响应文件提交截止时间:2021年12月22日 09点30分(北京时间)地点:(1)响应文件提交方式:本项目为南宁市全流程电子化项目,通过“政采云”平台(http://www.zcygov.cn)实行在线电子响应,供应商应先安装“政采云电子交易客户端”(请自行前往“政采云”平台进行下载),并按照本项目采购文件和“政采云”平台的要求编制、加密后在投标截止时间前通过网络上传至南宁市“政采云”平台,供应商在“政采云”平台提交电子版响应文件时,请填写参加远程采购活动经办人联系方式,电子响应文件具体操作流程详见本公告附件2。 (2)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应要尽早完成电子交易平台上的CA数字证书办理(申领流程见本公告附件1),并在首次响应文件提交截止时间前提交响应文件。 (3)为确保网上操作合法、有效和安全,请供应商确保在电子响应过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动......具体内容详见附件招标公告五、开启时间:2021年12月22日 09点30分(北京时间)地点:政府采购云平台开标大厅六、公告期限自本公告发布之日起3个工作日。七、其他补充事宜1.谈判保证金:本项目不收取谈判保证金2.采购意向公开链接:http://www.ccgp-guangxi.gov.cn/reformColumn/ZcyAnnouncement10016/LcFC4hx+yh1QIPnKcpuW0A==.html3.网上查询地址www.ccgp.gov.cn(中国政府采购网),http://zfcg.gxzf.gov.cn (广西政府采购网)、http://ggzy.nanning.gov.cn(广西南宁市公共资源交易中心网)4. 本项目需要落实的政府采购政策(1)政府采购促进中小企业发展。(2)政府采购支持采用本国产品的政策。(3)强制采购节能产品;优先采购节能产品、环境标志产品。(4)政府采购促进残疾人就业政策。(5)政府采购支持监狱企业发展。5.供应商认为采购文件使自己的权益受到损害的,可以自获取采购文件之日或者采购文件公告期限届满之日(公告期限届满后获取采购文件的,以公告期限届满之日为准)起7个工作日内以书面形式一次性向采购人和采购代理机构提出同一环节的质疑。否则,逾期的质疑采购人及招标代理机构可不予接受。质疑供应商对采购人、采购代理机构的答复不满意或者采购人、采购代理机构未在规定的时间内作出答复的,可以在答复期满后十五个工作日内向同级政府采购监督管理部门投诉。6. 若对项目采购电子交易系统操作有疑问,可登录“政采云”平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线400-881-7190获取热线服务帮助。附件:1.CA证书申请方式及操作指南下载地址(现场申请方式见网址:http://www.ccgp-guangxi.gov.cn/OfficeService/DownloadArea/8354055.html?utm=a0003.39a112b4.cmp001.d0002.f0464b20ff2a11eb873141bf9e381949(广西政府采购网)/网上申请方式见网址: http://nncz.nanning.gov.cn/(南宁市财政局官网)-下载专区-“广西政采云西部CA办理方式”或“南宁市政采云CA证书办理操作指南”)2.电子投标文件制作与投送教程(在此网址下载:http://nncz.nanning.gov.cn/(南宁市财政局官网)-下载专区)八、凡对本次采购提出询问,请按以下方式联系。1.采购人信息名 称:南宁市卫生健康委员会、南宁市疾病预防控制中心     地址:南宁市青秀区长湖路26号        联系方式:郭俊坤0771-5358161      2.采购代理机构信息名 称:云之龙咨询集团有限公司            地 址:南宁市良庆区云英路15号南宁城建集团总部地块项目3号写字楼6楼             联系方式:0771-2618199、2618118 、2611898             3.项目联系方式项目联系人:唐冰、岑昌桦电 话:  0771-2618199、2618118 、2611898
  • 默克培养基促销,库存有限,售完即止!
    货号 品名 清仓价格 应用 1.02239.0500 Peptone from casein 236 酪蛋白胨,基础原料 1.07212.0500 Peptone from soya bean 236 大豆蛋白胨,基础原料 1.10493.0500 Brain heart broth 273 脑心浸液,苛养菌培养 1.07228.5000 Peptone water 1050 通用增菌液 1.00466.0500 DRBC 琼脂 945 玫瑰红钠培养基添加绿霉素,酵母霉菌计数 1.05978.0500 OGYZ AGAR 336 奶制品中的酵母霉菌 1.05448.0500 WORT AGAR 546 真菌,酵母菌 1.10866.0500 WL nutrient agar 525 啤酒当中的酵母、细菌 1.01347.0500 EMB agar 578 伊红美兰琼脂,肠道菌、大肠杆菌 1.01406.5000 VRB-AGAR 3675 肠道菌,大肠杆菌 1.04030.0500 VRB Agar 525 肠道菌,大肠杆菌 1.04044.0500 ENDO agar 483 肠道菌,大肠杆菌 1.07237.0500 Brilliant green agar 315 肠道菌 1.05470.0500 SIM medium 945 肠道菌 1.07500.0002 RAMBACH-AGAR 578 肠道菌,大肠杆菌显色培养 1.10765.0500 EC broth for microbiology 420 肠道菌,大肠杆菌 1.14582.0500 m-EC-broth with Novobioci 1050 新生霉素添加剂,肠道菌 1.10426.0500 COLIFORM Agar 1575 水质肠道菌 1.05222.0500 Kanamycin esculin 525 肠球菌 1.10859.0500 Tryptone water 420 生化鉴定试验,吲哚反应 1.05405.0500 VOGEL JOHNSON agar 840 金黄色葡萄球菌 1.07004.0500 Oxford listeria 945 奶制品单增李斯特菌 1.10398.0500 FRASER Listeria Selective 315 李斯特菌 1.10399.0001 FRASER Listeria Selective 420 李斯特菌 1.10549.0500 LISTERIA ENRICHMENT BROTH 383 李斯特增菌液 1.10661.0500 MRS-broth lactobacillus 378 乳酸菌检查 1.10988.0500 Pseudomonas agar 1155 水质假单胞菌 1.10989.0500 Pseudomonas agar 1155 水质假单胞菌 1.00888.0001 Fluorocukt TSC Agar 483 梭菌显色培养基 1.11972.0500 TSC agar 473 梭菌,厌氧菌 1.10259.0500 DCA AGAR 630 梭菌,厌氧菌 1.13825.0500 Brain heart agar 735 苛养菌生长 1.00445.0500 Universal Beer Agar 630 啤酒腐败菌 1.07667.0500 SS agar 840 沙门氏,志贺氏菌
  • 杰克琼斯被曝甲醛超标 大连还在卖
    近日,长春市工商部门监测发现杰克琼斯等服装品牌甲醛超标,对此,昨日记者走访大连市场发现,在多个商场的杰克琼斯专卖店内,绫致时装(天津)有限公司生产的杰克琼斯牛仔裤仍在销售。销售员三缄其口消费者茫然不知  昨日,记者登录长春市工商行政管理局官方网站,在网站首页看到有关“一季度流通领域商品质量检测信息”的公示,公示内容为:“为保护消费者合法权益,长春市工商行政管理局依法组织开展了第一季度商品质量监测,在市区20家大型商场、专门店等重点经营场所,监测了服装(牛仔裤)、运动装(卫衣)、内衣、床上用品4种商品质量,共抽取195个品牌、204个批次商品,依据国家标准,检测了甲醛释放量、PH值、色牢度等项目,监测结果有15个批次不合格,不合格率为7.35%。不合格商品有标称绫致时装(天津)有限公司生产的杰克琼斯牌牛仔裤,不合格项目为甲醛超标 上海衍晟服装有限公司生产的HG牌牛仔裤,不合格项目为甲醛超标……”  昨天,记者以消费者身份在西安路附近一家杰克琼斯专卖店询问销售人员有关甲醛超标的问题,销售人员称并不知情,暂时也没有接到下架的通知。而在选购的受访消费者则多数称并不知道该品牌甲醛超标的相关消息。关于此前有消息称,绫致时装(天津)有限公司法务部工作人员否认了产品甲醛超标的说法表示将提出申诉,对产品进行复检等问题,记者昨日致电绫致时装(天津)有限公司,电话却一直无人接听。甲醛能让衣物平整也容易超标  据了解,《国家纺织品基本安全技术规范》将服装产品分作A、B、C三类,分别对应婴幼儿用品、直接接触人体皮肤产品和非直接接触人体皮肤产品,各自规定的甲醛含量上限为20mg/kg、75mg/kg和 300mg/kg。同时,在服装的吊牌上应该对各自类别进行标示,方便消费者鉴别选购。从2010年1月1日起,西服、大衣等10种服装国家标准正式实施,规定甲醛含量必须在服装吊牌上明确标注。  对此,早年曾开过服装厂现在大连经营一家眼镜店的陈先生透露,为了使衣物更平整、抗皱性更高、颜色更牢固,制衣过程中需要添加甲醛,但处理过程中如果不注意控制用量,就可能造成甲醛含量超标。  据介绍,甲醛主要对皮肤黏膜有刺激 皮肤直接接触甲醛可引起过敏性皮炎、色斑等 吸入高浓度甲醛时可诱发支气管哮喘。记者陆瑶链接四类衣物易含甲醛  业内人士说,通常情况下,有四类纺织品容易含甲醛:  [1] 免烫服装   [2] 时髦的牛仔衣裤   [3] 儿童服装   [4] 在人造板家具中存放的服装。提醒新衣服应漂洗后再穿  如果购买的家具和装修中甲醛含量比较高,也会直接污染放在衣柜里的衣物。因此在穿新衣服之前最好用清水充分漂洗,因为甲醛较容易溶解于水,其次充分晾晒。
  • 青岛众瑞:自主研制颗粒物采样器
    p  2015年6月9日-12日,第十四届中国国际环保展览会(英文缩写CIEPEC 2015)于北京中国国际展览中心举行。此次展会有600多家企业参展,各仪器公司展示了大气监测、烟气监测、水质分析、实验室分析等领域的多种产品。仪器信息网记者现场采访了多家仪器公司的高层,介绍了此次展会上展出的特色或新推出的产品,交流了对于环保行业相关法规以及市场前景等问题。/pp  青岛众瑞智能仪器有限公司是一家专业研发生产及环境监测仪器的高新技术企业,公司副总经理张世忠先生接受了本网记者采访。/pp  青岛众瑞智能仪器有限公司的空气颗粒物采样器是完全自主研发和生产的产品,多项技术是目前国内独有的 并且,全国主要的省级、市级监测站已经配备了青岛众瑞的空气颗粒物采样器产品。/pp  欲知详情,请看现场视频采访。/pscript src="https://p.bokecc.com/player?vid=424471EE37A6235C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1" type="text/javascript"/script
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制