当前位置: 仪器信息网 > 行业主题 > >

麦角甾醇

仪器信息网麦角甾醇专题为您提供2024年最新麦角甾醇价格报价、厂家品牌的相关信息, 包括麦角甾醇参数、型号等,不管是国产,还是进口品牌的麦角甾醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合麦角甾醇相关的耗材配件、试剂标物,还有麦角甾醇相关的最新资讯、资料,以及麦角甾醇相关的解决方案。

麦角甾醇相关的资讯

  • 中国生物发酵产业协会发布《发酵液中麦角硫因的测定 高效液相色谱法》行业标准公开征求意见稿
    1. 《发酵液中麦角硫因的测定 高效液相色谱法》行业标准(征求意见稿).pdf2.《发酵液中麦角硫因的测定 高效液相色谱法》行业标准编制说明(征求意见稿).pdf3.《发酵液中麦角硫因的测定 高效液相色谱法》行业标准(征求意见稿)意见反馈表.docx
  • 中国食品药品企业质量安全促进会关于《口服胶原蛋白生物利用度的评价方法》、《化妆品用原料 麦角硫因》两项团体标准征求意见的函
    各有关单位及专家:由广西神冠胶原生物集团有限公司提出,中国保健协会食物营养与安全专业委员会、中国海洋大学等单位参与起草的《口服胶原蛋白生物利用度的评价方法》团体标准;由世卫国华(北京)医疗科技研究院有限公司提出,上海麦角硫因生物科技集团有限公司、默沃智造(上海)生物技术有限公司等单位参与起草的《化妆品用原料 麦角硫因》团体标准,在汇总了标准起草工作组成员单位及有关企业和专家意见的前提下,现已完成征求意见稿,为保证该团标的科学性、实用性及可操作性,现公开征求意见。请各有关单位及专家认真审阅标准文本,对标准的征求意见稿(详见附件1、附件3)提出宝贵意见和建议,并将征求意见反馈表(详见附件5)于2023年04月11日前以信函或邮件的形式反馈至联系人,逾期未反馈意见的单位及个人视为无意见。 联系人:冯斯雯联系方式:010-62484982邮箱:FDSA@fdsa.org.cn 附件1:《口服胶原蛋白生物利用度的评价方法》征求意见稿附件2:《口服胶原蛋白生物利用度的评价方法》征求意见稿 编制说明附件3:《化妆品用原料 麦角硫因》征求意见稿附件4:《化妆品用原料 麦角硫因》征求意见稿 编制说明附件5:团体标准征求意见反馈表 中国食品药品企业质量安全促进会2023年3月7日关于《口服胶原蛋白生物利用度的评价方法》、《化妆品用原料 麦角硫因》两项团体标准征求意见的函.pdf附件1:《口服胶原蛋白生物利用度的评价方法》征求意见稿.docx附件2:《口服胶原蛋白生物利用度的评价方法》征求意见稿 编制说明.docx附件3:《化妆品用原料 麦角硫因》征求意见稿.doc附件4:《化妆品用原料 麦角硫因》编制说明.docx附件5:团体标准征求意见反馈表.docx
  • 浙江省健康产品化妆品行业协会立项《化妆品中麦角硫因含量的测定 高效液相色谱法》团体标准
    各有关单位: 根据《团体标准管理规定》规定,按照《浙江省健康产品化妆品行业协会团体标准管理办法》的相关要求,由珀莱雅化妆品股份有限公司牵头申报的《化妆品中麦角硫因含量的测定 高效液相色谱法》团体标准,经浙江省健康产品化妆品行业协会组织专家进行立项评审,所申报的团体标准符合立项条件,现批准立项并予以公告。 请参与标准起草的单位严格按照浙江省健康产品化妆品行业协会团体标准制定工作要求及专家意见,尽快组织标准编写,强化编制过程中的质量管理,加强组织协调,确保高质按期完成标准编制任务。同时,欢迎与本标准有关的高等院校、科研机构、相关企业、使用单位等加入标准的编制工作,有意参与标准编制的单位请与协会秘书处联系。 联系方式: 潘璐璐 0571-85871052 15957181365 陈莹艳 0571-85871051 18158434007 邮箱:zjcos2015@163.com 地址:浙江省杭州市拱墅区费家塘路新天地商务中心 12 幢 10 楼 浙江省健康产品化妆品行业协会2023年10月26日【2023】55号--《化妆品中麦角硫因含量的测定 高效液相色谱法》立项公告.pdf
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • FDA食品添加剂法规允许直接添加维生素D2酵母
    美国食品药物管理局(FDA)近日修订了美国食品添加剂法规,允许安全使用维生素D2面包酵母(vitamin D2 bakers yeast),并将其作为维生素D2的来源和膨松剂,但必须满足以下条件:(1)维生素D2面包酵母是由面包酵母(酿酒酵母Saccharomyces cerevisiae)暴露于紫外线下产生的物质,是面包酵母中内源性麦角脂醇(ergosterol)经过光化学反应转化成维生素D2(也被称为麦角钙化甾醇(ergocalciferol)或(9,10-seco(5Z,7E,22E)-5,7,10(19),22-ergostatetraen-3-ol)) (2)维生素D2面包酵母可单独作为一种活性干酵母浓缩物,或与传统的面包酵母进行组合 (3)这种添加剂可用于酵母发酵的烘焙食品和烘焙混合以及酵母发酵的烘焙小吃食品,但在每100克成品食品中维生素D2的含量不得超过400国际单位(International Units) (4)为了确保添加剂的安全使用,除了《联邦食品药品和化妆品法规》所要求的其他信息外,食品添加剂容器标签必须要有适当的使用说明,以确保所生产的最终产品符合上述第(3)点描述的限制要求 (5)含有该添加剂的加工食品标签必须按照成品食品中含量递减的合适顺序,在成分声明中标注添加剂名称:“维生素D2面包酵母”。  为了合理确立在预期使用条件下某种食品添加剂的无危害性,FDA考虑了该添加剂的人类饮食预期的摄入量、添加剂的毒理学数据和其他提供给该局的相关信息。FDA还将个人来自所有食品源的添加剂的预计每日摄入量(estimated daily intake,EDI)与根据毒性数据建立的可接受摄入量水平进行了对比。EDI由基于拟议用于特定食品中的添加剂数量预测和来自所有食品源的添加剂数量决定。该机构通常将百分之九十消费者使用的食品添加剂的EDI来衡量高慢性饮食的摄入量。
  • 福建省食用菌行业协会关于《灵芝及其相关产品中β-葡聚糖的测定》等三项团体标准的发布公告
    各相关单位:根据《福建省食用菌行业协会团体标准管理办法(试行)》规定,经福建省食用菌行业协会秘书处组织专家审查通过,报经福建省食用菌行业协会秘书处办公会审核通过,现批准发布T/FJHX 0003-2023《灵芝及其相关产品中β-葡聚糖的测定》、T/FJHX 0004-2023《灵芝提取物中性三萜及麦角甾醇的测定 高效液相色谱法》、T/FJHX 0005-2023《灵芝菌种繁育技术规程》三项团体标准。标准自2023年3月1日发布,2023年4月1日起实施,现予以公告。 福建省食用菌行业协会2023年3月1日福建省食用菌行业协会关于《灵芝及其相关产品中β-葡聚糖的测定》等三项团体标准的发布公告.pdf
  • 辽宁省分析测试协会批准发布 《绿色检测实验室评价 化学检测实验室》等3项团体标准
    各有关单位: 根据《辽宁省分析测试协会团体标准管理办法》的规定, 辽宁省分析测试协会批准发布《绿色检测实验室评价 化学 检测实验室》(T/LAIA 0001-2024)、《蛹虫草中麦角甾醇 的测定 液相色谱法》(T/LAIA 0002-2024)、《土壤阳离 子交换量的测定(EDTA-乙酸铵交换-凯氏定氮法)》(T/LAIA 0003-2024)等 3 项团体标准,上述标准自 2024 年 3 月 12 日起正式实施。 特此公告。辽宁省分析测试协会关于发布《绿色检测实验室评价 化学检测实验室》等3项团体标准的公告.pdf
  • 辽宁省分析测试协会发布《绿色 检测实验室评价 化学检测实验室(征求意见稿)》等4项团体标准征求意见稿
    各有关单位、相关专家:由辽宁省分析测试协会发起起草的《绿色检测实验室 评价 化学检测实验室》等 4 项团体标准已完成征求意见稿 的编制,现公开征求意见。 请各有关单位和专家认真阅读标准文本,按照团体标 准《征求意见反馈表》的要求反馈意见,并于 2023 年 12 月 22 日前以邮件的形式反馈至辽宁省分析测试协会。 如对上述标准指标有修改或完善的意见和建议,请书 面说明或提出技术论证;如认为标准涉及专利,在提交反 馈意见时,请将您知悉的相关专利连同支持性文件一并附 上;逾期未反馈意见视为无意见。联 系 人:何宇 联系方式:024-24821648 / laia2003@126.com地 址:沈阳市沈河区万柳塘路 103 号 辽宁省分析测试协会附件: 绿色检测实验室评价指南+化学检测实验室征求意见稿.docx土壤阳离子交换量的测定EDTA-乙酸铵交换-凯氏定氮仪法征求意见稿.docx蛹虫草及其相关产品中麦角甾醇的测定高效液相法征求意见稿.doc土壤+铵态氮、亚硝态氮、硝态氮的测定+氯化钾溶液提取-全自动间断化学分析仪法征求意见稿.docx辽宁省分析测试协会团体标准征求意见反.docx
  • 川宁生物:合成生物学管线稳定推进
    川宁生物(301301) 2023 上半年实现营收24.2 亿元(+21.8%,括号内为同比数据,下同);归母净利润3.91 亿元(+64.8%);扣非归母净利润3.93 亿元(+65.5%),经营性现金流净额10.4 亿元(+1636%),业绩略超预期。Q2 业绩环比再加速,盈利能力加强:单季度看,公司Q2 实现营收11.5亿元(+16.3%),归母净利润2.15 亿元(+57.8%),归母净利润环比+22.8%。业绩快速增长主要因为疫情放开后需求端的快速恢复。盈利能力方面,由于规模效应的体现叠加原材料成本下降,公司Q2 毛利率环比提升4.7pct 至30.9%。期间费用率随着收入增长而下滑,其中管理费用率同比下滑4.3pct 至3.0%,财务费用率同比下滑2.0pct 至1.2%。综合来看,2023 上半年销售净利率同比提升4.2pct 至16.2%,盈利能力不断加强。抗生素中间体疫后恢复良好:分品种看,公司2023 上半年硫红收入7.3亿元(-2.4%);头孢中间体收入5.3 亿元(+16.3%),青霉素类中间体9.8亿元(+54.7%);疫情放开后,头孢和青霉素类中间体需求恢复良好;其中,6-APA 平均价格同比涨价6.7%,销售量同比增加50.8%,青霉素G 钾盐平均价格同比涨价3.4%,销售量同比增加16.4%。合成生物学研发管线丰富,产能丰富,项目落地在即:公司在上海建立合成生物学研究院,依托强大的研发团队、4 大底盘菌研发平台等,已有十数个项目管线,且部分管线有望短期落地。川宁生物首个合成生物学产品红没药醇预计在下半年形成收入。随着下半年公司全资子公司疆宁生物绿色循环经济产业园一期投产,公司将完成合成生物学从选品—研发—大生产的全产业链布局。红没药醇、5-羟色氨酸、依克多因、红景天苷等合成生物学系列产品的商业化生产将标志着公司从资源要素驱动向技术创新驱动的成功转变,从而实现公司效益的稳步提升。合成生物学巩留新基地一期有望在2023 年年底前建成,新基地设计产能包括红没药醇 300吨、5-羟基色氨酸 300 吨、麦角硫因 0.5 吨、依克多因 10 吨、红景天苷 5 吨、诺卡酮 10 吨、褪黑素 50 吨、植物鞘氨醇 500 吨及其他原料的柔性生产车间;其中红没药醇已进入动销;5-羟基色氨酸通过合成生物学技术来生产,其工艺达到业内最高的发酵水平和提取收率,该产品通过微生物发酵法生产,故产品天然度为100%,且生产成本低于植物提取,目前该产品仍在中试验证;麦角硫因公司利用合成生物学技术来进行生产,该技术和用蘑菇菌丝体发酵相比具有工艺简单、发酵周期短、产物浓度和糖转化率高等特点,具有显著的竞争优势,目前该产品也在中试验证。两项产品均在中试阶段,即将为公司提供业绩。
  • 美国麦克仪器公司助CO2制甲醇工业化
    二氧化碳是来源丰富、价格低廉的化学原料。甲醇,基本有机原料之一,多种有机产品的重要砌块,也是汽油的替代燃料。工业上合成甲醇几乎全部采用来自石油的合成气生产甲醇。如果能将CO2作为原料生产甲醇,将具有划时代的意义,化学家们也一直在尝试。但是,这些成果想要实现工业化,还需要面对成本、稳定性、反应条件等等挑战。化学家早些时候已经可以在实验室中实现氧化铟(indium oxide)催化CO2直接氢化(hydrogenation)得到甲醇,瑞士苏黎世联邦理工学院(ETH)教授Javier Pérez-Ramírez及其同事更进一步,使用氧化锆(ZrO2)负载的氧化铟(In2O3)催化剂在类似于工业生产的条件下催化CO2直接氢化制甲醇。该研究发表于《Angewandte Chemie International Edition》。(Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201600943)在近乎工业生产的条件下,这种氧化铟催化剂催化CO2直接氢化制甲醇具有高活性、100%的甲醇选择性以及极高的稳定性(可连续使用1,000 h),性能远胜于工业上现有的无选择性且容易失活的Cu/ZnO/Al2O3非均相催化体系(在高温高压条件下氢化CO2制甲醇)。Javier Pérez-Ramírez教授。图片来源:ETH机理研究证明,催化剂表面的氧空位(oxygen vacancies)是反应发生的关键所在(如下图),也证实了南伊利诺伊大学葛庆峰(Qingfeng Ge)教授团队2013年通过理论计算所预测的氧化铟催化CO2氢化制甲醇的反应机制(ACS Catal., 2013, DOI: 10.1021/cs400132a)。催化剂的表面空位对CO2氢化制甲醇十分重要。图片来源:ACS C&ENETH的研究人员还通过向初始原料中添加CO以及改变反应温度来优化该反应,这两个策略都能调整氧空位的数量。Pérez-Ramírez等人与道达尔公司(Total)已经为该技术申请了专利,并对该过程进行了试点研究,也许CO2制甲醇的工业化就在眼前。Javier Pérez-Ramírez教授是美国麦克仪器公司的忠实用户,与美国麦克仪器公司有过多次合作,文中氧化铟催化剂表征采用的是美国麦克仪器公司的三站全功能型多用气体吸附仪3Flex。这说明,美国麦克仪器公司的3Flex仪器可为客户提供稳定可靠的催化剂表征数据,为CO2制甲醇的工业化研究提供强有力数据的保障。1. http://onlinelibrary.wiley.com/doi/10.1002/anie.201600943/abstract2. http://cen.acs.org/articles/94/i13/Carbon-dioxide-hydrogenated-methanol-large.html——部分内容来自X-MOL资讯
  • 砷超标!冬虫夏草高大上,长期食用不可取
    p  2016年2月4日,CFDA官网发布消费提示:/pp  近期,食品药品监管总局组织开展了对冬虫夏草、冬虫夏草粉及纯粉片产品的监测检验。检验的冬虫夏草、冬虫夏草粉及纯粉片产品中,strong砷含量为4.4~9.9 mg/kg/strong。/pp  冬虫夏草属中药材,不属于药食两用物质。有关专家分析研判,保健食品国家安全标准中strong砷限量值为1.0 mg/kg/strong,长期食用冬虫夏草、冬虫夏草粉及纯粉片等产品会造成砷过量摄入,并可能在人体内蓄积,存在较高风险。/pp  冬虫夏草,为麦角菌科真菌冬虫夏草菌emCordyceps sinensis(BerK. )Sacc./em 寄生在蝙蝠蛾科昆虫幼虫上的子座和幼虫尸体的干燥复合体。夏初子座出土、孢子未发散时挖取,晒至六七成干,除去似纤维状的附着物及杂质,晒干或低温干燥而成。是一种产于青藏高原的可提高人体免疫力、量少而价高的名贵中草药材,在其生长和加工等过程中可能受到砷的污染。/pp  冬虫夏草作为中药材收载于2015年版《中国药典》第一部,a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/industry-S22.html" target="_self"span style="color: rgb(255, 0, 0) "strong质量标准/strong/span/a中规定了性状、含量测定、性味与归经、功能与主治、用法用量及贮藏条件,但并未见砷含量的测定或检测方法。参照2015年《中国药典》第四部“铅、镉、砷、汞、铜测定法(通则2321)”,可采用原子吸收分光光度法或电感耦合等离子体质谱法(ICP-MS)对中药中的砷进行测定。/pp  冬虫夏草虽因价格、功效宣传等原因一直属于佳节送礼的热门选择,质量问题却很少引起消费者关注,国内也并未见针对其砷含量的质量标准。但无论作为保健品还是作为药品,冬虫夏草中砷含量都应有明确的限度,根据CFDA的检测结果,消费者对冬虫夏草类产品还应理性对待,以免长期食用导致砷蓄积中毒。/ppbr//p
  • 中科院化学领域“四大家族”及奠定基业的“掌门人”!
    儒学里面有“颜曾孔孟”,国共时期有“蒋宋孔陈”,红梦里有“贾王史薛”,若这“四大家族”的概念放在化学方面,你可知道科学院里的”四大家族“?  如今的科学院,已经发展成为下辖114个研究单位(京区49个,京外65个)、12个分院的中国自然科学最高学术机构、科学技术最高咨询机构、自然科学与高技术综合研究发展中心,而在建国初期非常恶劣的国际环境之下,由优秀科学家担任所长的号称“四大家族”的科学院四个最知名的化学研究所,毅然为扬我国威,打造原子弹等化学科研任务做出了卓越贡献。下面我们就一起来回忆一下这"四大家族"以及当时它们的“掌门人”。上海有机化学研究所  上海有机化学研究所创建于1950年6月,是中国科学院首批成立的15个研究所之一,前身是建立于1928年7月的前中央研究院化学研究所。从开展抗生素和高分子化学的研究起步,经过近60多年几代人艰苦创业、奋力拼搏,在以有机化学研究为中心的基础研究、应用研究与高新技术开发、人才培养等方面均取得令人瞩目的成就。在我国“两弹一星”研制、“人工合成牛胰岛素、人工合成酵母丙氨酸转移核糖核酸”和“物理有机化学中的两个基本问题:自由基化学中取代基离域参数和有机分子簇集概念”等一批攀登科技高峰的重要成果中做出重要贡献。有机所在以有机化学基础研究和应用基础研究为主导,围绕人口与健康、资源与环境、新材料三大领域,重点突出健康和生命、环境和生态系统、资源利用与开发、新材料、能源开发应用和国家安全等领域中相关的基本有机化学课题等六大研究方向,带动化学生物学、金属有机化学、有机合成化学、元素有机化学、物理有机化学、化学信息学、有机材料化学和有机分析化学等八大学科发展。  上海有机化学研究所所长:庄长恭  确证了麦角甾烷结构,推测了麦角甾醇的结构,设计了带有角甲基双环α-酮的合成方法 研究了甾族边链的氧化断裂,是当时国际上少数从事甾体全合成研究的知名化学家之一,其工作曾被引入著名教科书。研究了防已诺林、去甲基防已碱等生物碱结构。对有机合成特别是甾体化合物的合成与天然有机化合物的结构研究作出了卓越贡献。重视并拟定有机化学中文命名,现用的吲哚、吡咯等杂环化合物名称均为他所倡议的。  1894年12月25日出生于福建省泉州市。  1916—1918年北京农业专门学校学习。  1919—1921年美国芝加哥大学化学系学习,获学士学位。  1921—1924年美国芝加哥大学化学系学习,获博士学位。  1924—1931年任东北大学教授,化学系主任。  1926—1933年中华教育文化基金董事会科学讲座。  1931—1932年任德国哥廷根大学、明兴大学客座教授。  1933—1934年任中央大学理学院院长。  1934—1945年任中华教育文化基金董事会研究教授。  1934—1943年任中央研究院化学研究所所长,当选为中央研究院学术评议会评议员。  1948年任台湾大学校长,当选为中央研究院院士。  1950年任中国科学院有机化学研究所所长。  1955年当选为中国科学院学部委员,并任数理化学部副主任。  1962年2月25日病逝于上海。长春应用化学研究所  长春应用化学研究所始建于1948年12月,经过几代应化人的不懈努力,现已发展成为集基础研究、应用研究和高技术创新研究及产业化于一体,在国内外享有崇高声誉和影响的综合性化学研究所,成为我国化学界的重要力量和创新基地。主要学科方向:高分子化学与物理、无机化学、分析化学、有机化学和物理化学。  中国最早把光谱数据应用于分子常数和热力学函数计算的光谱学者。开辟了原子能化学,低聚物化学,定向聚合,高分子物理等学科,在国内首次分离出15个纯稀土氧化物,完成了核燃料后处理萃取新流图,制备了纯硅半导体,为中国确定了第一个自行研究与工业生产通用合成橡胶的镍系列顺丁橡胶。  从事多原子分子的紫外、远红外光谱研究,发现了一些新的光谱带系,阐明了若干典型的重要多原子分子的结构和化学反应机理。领导核燃料前、后处理中的化学问题的研究开展超纯分析、痕量分析以及环保分析等研究工作主持光谱、波谱、结构化学研究工作晚年组建了激光化学研究室并应用光谱法研究生物活性物质的氧化机理。  长春应用化学研究所所长:吴学周  1902年(清光绪二十八年)9月20日,吴学周在江西省萍乡县一个教书先生家中出生。  1916年(民国五年),吴学周考入萍乡县立中学,接受较系统的自然科学教育,他对数理化有浓厚的兴趣。  1920年(民国九年),考取南京高等师范学校(后改为东南大学,即现在的南京大学),学习化学。  1924年(民国十三年),以优异成绩毕业于东南大学化学系,经张子高教授推荐留在化学系任助教。  1927年(民国十六年),经吴有训教授介绍,曾在江西省立南昌中学高中部任教半年,然后回东南大学继续任化学系助教。又经吴有训教授推荐,参加江西省教育厅公费留学生考试,以全省总分第一名的成绩考取公费留美学习的资格。  1928年(民国十六年),吴学周来到美国加州理工学院攻读博士学位,专业为物理化学。  1931年(民国二十年)夏,被授予博士学位。同年在《美国化学会会志》(Journal of the American C hemical Society)上发表了两篇论文《HCl溶液中四价铱还原成三价铱的还原电位》(Redu ction Potential of Quadrivalent to Trivalent Iridium in Hydrochloric Acid Soluti on)和《铱的电位测定》(Potentiometric Determination of Iridium)。[6]  1932年(民国二十一年),赴德国达姆斯塔特高等工业学校从事光谱学研究。  1933年(民国二十二年)夏,应中央研究院化学研究所所长邀请,吴学周回国担任化学所的专任研究员。  1938年(民国二十七年)夏,中央研究院蔡元培院长委任他为代理所长,主持筹建科学实验馆。  1948年(民国三十七年),选聘为中央研究院院士,中国科学院长春应用化学研究所研究员、名誉所长,环境化学研究所所长。  1949年7月,他参加了中华全国第一次自然科学工作者代表大会筹备委员东北参观团。  1950年,应中国科学院郭沫若院长电邀来京,与严济慈、武衡等一起去东北组建科学院东北分院。  1958年,创办了长春化学学院和附设的化学学校与技工学校。  1959年,在他的积极倡导下长春应化所建立了中国第一个光谱实验室。  1978年,吴学周以分子光谱专家的身份冷静分析了中国在这个领域的状况,注意到进口光谱仪器很多,但分子光谱研究的论文却寥若星辰,有学术创见的论文则更少,存在着忽视理论和基础研究的倾向。  1980年,他受中国化学会的委托,举办了全国分子光谱学习班,探讨了分子光谱简正坐标计算的新方法,以及电子计算机在分子光谱上应用等新技术,推动了中国分子光谱学的发展和应用。  1981年,当选为中国科学院第四届学部委员(院士)。  1983年10月31日零时20分,吴学周逝世。中国科学院化学研究所  化学研究所成立于1956年,是以基础研究为主,有重点地开展国家急需的、有重大战略目标的高新技术创新研究,并与高新技术应用和转化工作相协调发展的多学科、综合性研究所,是具有一定国际影响、我国最重要的化学研究机构之一。主要学科方向为高分子科学、物理化学、有机化学、分析化学、无机化学。  化学研究所所长:柳大纲  领导中国科学院化学研究所30年,先后孕育出中国科学院成都有机化学研究所、中国科学院青海盐湖研究所、中国科学院感光化学研究所和中国科学院环境化学研究所等多学科的化学研究机构 在规划研究领域、开拓方向、组建研究室组,以及延聘人才等方面,付出了后半生精力,使中国科学院化学研究所在物理化学、分析化学、有机化学、无机化学、高分子化学、高分子物理化学等各个研究领域都得到蓬勃发展。  1904年2月8日 出生于今江苏省仪征市。  1920—1924年 在南京高等师范数理化部学习。  1924—1925年 毕业于国立东南大学化学系,获学士学位。  1925—1927年 任国立东南大学物理系助教。  1927年 任上海吴淞中国公学大学部教员。  1928—1929年 任中国科学社《科学》编辑部编译员。  1929—1949年 任中央研究院化学研究所助理研究员、副研究员、研究员。  1946—1948年 赴美国罗彻斯特大学研究生院进修,获博士学位。  1949—1954年 任中国科学院物理化学研究所研究员、副所长。  1954—1956年 参加中国科学院学术秘书处工作。  1955—1991年 任中国科学院化学研究所研究员、副所长、代所长、所长、名誉所长。  1955年 当选为中国科学院数学物理学化学学部委员(院士)。  1957—1963年 兼任中国科学院综合考察委员会中国盐湖科学调查队队长。  1963—1991年 兼任中国科学院青海盐湖研究所所长、名誉所长。  1973—1986年 任《化学通报》主编。  1978—1990年 当选为中国化学会第二十届理事会副理事长,第二十一届、二十二届理事会理事。  1980年 当选为中国科协第二届委员会委员。第三届、第五届、第六届全国人民代表大会代表。  1991年9月14日 病逝于北京。  大连化学物理研究所  大连化学物理研究所创建于1949年3月,是一个基础研究与应用研究并重、应用研究和技术转化相结合,以任务带学科为主要特色的综合性研究所。六十多年来,大连化物所通过不断积累和调整,逐步形成了自己的科研特色。重点学科领域为:催化化学、工程化学、化学激光和分子反应动力学以及近代分析化学和生物技术。  大连化学物理研究所所长:张大煜  组建了我国第一个石油煤炭研究基地,组织了一批青年科研人员开展了人造煤油、石油炼制、石油加工、高能燃料、色谱、激光和化工过程的研究,开拓了我国物理化学很多新的研究领域,不仅支援了国民经济建设,对以“两弹一星”为代表的国防科学研究也做出了不可磨灭的贡献 在催化剂与催化基础理论研究中富有创见地提出了表面成键的理论,而且带领助手们在极困难的条件下开展了一系列深入研究,在指导化工实践中取得了许多堪称辉煌的成果 在合成氨技术革命中,他指挥完成了合成氨新流程的三种催化剂,其质量超过国外同类产品,达到了世界领先水平。  1906年2月15日出生于江苏省江阴县。  1929年毕业于清华大学化工系。  1929—1933年留学德国德累斯顿工业大学,获工学博士学位。  1933—1937年任清华大学讲师、教授。  1937—1945年任西南联合大学教授、中央研究院研究员。  1946—1949年任清华大学化工系教授、系主任,兼交通大学教授。  1949—1952年任大连大学化工系教授、系主任,东北科学研究所研究员、副所长。  1953—1961年任中国科学院工业化学研究所所长,中国科学院石油研究所所长,兼任中国科学院兰州石油研究所和中国科学院煤炭研究所所长。  1955年当选为中国科学院学部委员。  1962—1977年任中国科学院大连化学物理研究所所长,国防科委16院副院长。  1963—1982年当选为中国化学会第二十届理事会副理事长。  1977—1989年任中国科学院感光化学研究所和中国科学院大连化学物理研究所顾问。  1989年2月20日病逝于北京。
  • 化繁为简|在线柱切换—反相液相色谱法测定食品中维生素D的含量
    国家卫生健康委员会、国家市场监管总局联合发布了85项食品安全国家标准和3项修改单的公告,其中包括了GB 5009. 296-2023《食品安全国家标准 食品中维生素D的测定》(以下称新标准)。新标准代替GB 5009.82-2016《食品安全国家标准食品中维生素A、D、E的测定》中第三法“食品中维生素D的测定液相色谱串联质谱法”和第四法“食品中维生素D的测定高效液相色谱法”。新标准最大的变化便是增加了在线柱切换反相液相色谱法。在此背景下,为了进一步促进维生素D检测工作的交流与合作,仪器信息网特别发起“维生素D新标准解读与应对”话题。本文邀请到科诺美(北京)科技有限公司液相色谱产品经理公敬欣分享相关的技术及解决方案。 01 引言维生素D是机体维持正常代谢和调节机能所必须的脂溶性维生素,主要包括维生素D2(麦角钙化醇)和维生素D3(胆钙化醇),具有促进肠道对钙、磷的吸收和在骨骼中沉积,维持骨骼的正常生长与发育的作用,因此维生素D的准确测定对于产品质量控制具有重要的意义。在维生素D的测定中,由于添加量相对较低,且样品基质复杂,存在脂肪、蛋白等干扰物。现行标准GB 5009.82-2016中第四法中,在对样品进行皂化、提取、洗涤、浓缩后,通过正相液相色谱净化,浓缩复溶后再通过反相色谱法分离检测。该方法分析单个样品的时间较长,降低了分析效率,并且过于繁琐的前处理操作,也会对回收率的结果产生较大影响。因此,在即将生效的《GB 5009.296-2023食品国家安全标准 食品中维生素D的测定》中,将在线柱切换-反相液相色谱法作为该标准的第二法,优化了样品前处理流程,提升检测灵敏度,更快速地获取分析结果,提高了样品的检测效率。面对新标准的即将实施,科诺美的技术应用团队制定了符合标准要求的解决方案。本方案采用Chromai Lotus C8作为一维色谱柱,Lotus PAH作为二维色谱柱,基于Chromai Leaps双三元二维液相色谱平台,建立了在线柱切换-反相液相色谱测定食品中维生素D的方法,并通过实际样品的测试,确认该方法稳定可靠。 02 实验方法2.1 仪器Chromai Leaps高效液相色谱系统(1)一维、二维泵:Leaps双三元梯度泵(P60)(2)自动进样器:Leaps标准型自动进样器(带制冷)(A10C)(3)柱温箱:Leaps 标准加热型柱温箱(1个两位六通+1个两位10通)(C10V6)(4)检测器:Leaps紫外-可见检测器(D10)Leaps紫外二极管阵列检测器(D20)2.2 色谱柱一维色谱柱:Chromai Lotus C8(4.6*100 mm, 5 μm)二维色谱柱:Chromai Lotus PAH(4.6*150mm, 5 μm)富集柱:Chromai Louts TC C1(4.0*10mm,5 μm)2.3 软件Eyoulab CDS企业版2.4 色谱条件流动相一维流动相:A:水,B:乙腈/甲醇(75/25,V/V),梯度洗脱,流速:1 mL/min二维流动相:A:乙腈/水(95/5,V/V),B:甲醇,等度洗脱,流速:0.6 mL/min梯度洗脱及阀切换程序一维梯度洗脱程序二维等度洗脱阀切换程序检测波长264 nm进样量100 μL 03 实验结果3.1 标准曲线的测定将不同浓度的标准系列工作溶液分别进样100 μL,得到维生素D2和维生素D3标准曲线结果见表3。在2.5 -100 μg/L浓度范围内,维生素D2和维生素D3线性良好,线性相关系数均大于0.999。表3 维生素D2和维生素D3标准曲线测定结果图1 维生素D2和维生素D3标准曲线图图2 维生素D2和维生素D3标准溶液(2.5 ng/mL)二维液相色谱图3.2 实际样品测定参考GB 5009.296-2023第二法对样品进行皂化、液液萃取等前处理操作,得到样品溶液后上机分析,计算得到样品含量结果见表4。图3 某婴配粉样品1和2测定二维液相色谱图表4 某婴配粉样品测定结果 04 结论本解决方案采用科诺美自主研发的Leaps双三元液相色谱系统,参考GB 5009.296-2023第二法在线柱切换-反相液相色谱法,实现了维生素D测定中高效的样品前处理,检测效率显著提高。Leaps双三元液相色谱系统模块式组装,仅使用一个双三元泵就可以实现二维液相操作,避免了两组泵模块组装占地面积大或者仪器系统高度过高、操作不便的弊端,该系统可作为维生素D测定的首选配置。对于需要一次进样实现样品中维生素A、维生素D及四种维生素E异构体的同时测定分析,科诺美也可以提供在线前处理—二维液相色谱的完整解决方案。该方案灵敏度高、专属性强,可以有效去除样品中的杂质对维生素A、D、E的分析干扰。供稿人:科诺美(北京)科技有限公司液相色谱产品经理 公敬欣科诺美(英文:Chromai),是中国领先的从事分析检测仪器与医疗诊断研发、生产、销售和服务的高科技技术企业。是中国仪器仪表学会、中国分析测试协会、中国医疗器械行业协会会员。公司旗下设立北京研发中心、苏州供应链中心等多家子公司。科诺美公司一直致力于脂溶性维生素测定方法的研究与应用,除了食品中维生素的测定外,Chromai二维液相色谱系统已经取得二类医疗器械注册证(苏械注准20222222069),该系统已经成功应用于血清中脂溶维生素的测定。
  • 定档!4月12-13日南京,2024第二届合成生物学产业嘉年华暨展览会重磅来袭!
    “十二五”之后,国家提出对生物制造技术的支持,到“十三五”又将合成生物技术列为引领产业变革的颠覆性技术之一,“十四五”更是强调了对合成生物技术的应用。在国家宏观战略指引下,合成生物学研究和产业发展一路高歌猛进,迎来了重要的发展机遇,已成为未来生物产业发力的一个关键方向。然而,风口之下,谁是走在最前面的“妙手”?谁又会是扛旗者?谁已经用合成生物学技术取得了突破性成果?如何重塑传统行业边界?新产品将以何种方式胜出,又面临哪些关键瓶颈?又有哪些新模式、新技术和新未来?在此背景下,由佰傲谷BioValley发起的2024第二届合成生物学产业嘉年华暨展览会(简称:SBC2024),将于4月12-13日在南京再度起航,本次大会以“建物致知建物致用”为主题,汇聚业界专家聚焦合成生物学颠覆性技术,共话合成生物未来蓝图,助力合成生物产业的蓬勃发展。SBC2024建物致知建物致用第二届合成生物学产业嘉年华暨展览会大会名称:2024第二届合成生物学产业嘉年华暨展览会大会主题:建物致知建物致用大会时间:2024年4月12-13日(周五、周六)大会地点:中国南京大会规模:3000-5000人指导单位:南京江北新区生命健康产业发展管理办公室、中国微生物学会 主办单位:中国微生物学会生化过程模型化与控制专业委员会、“科创中国”生物医药产业科技服务团、山东大学、华东理工大学、山东大学微生物技术国家重点实验室、生物经纬、佰傲谷BioValley-生物医药知识聚合社区支持单位:华东理工大学国家生化工程技术研究中心(上海)、北京软物质科学与工程高精尖中心、上海市微生物学会、美国华人生物医药科技协会(CBA) 、南京生物工程学会、华东师范大学医学合成生物学研究中心、中国医药生物技术协会皮肤软组织修复与重建技术分会战略支持媒体:转化子Transformants、万物合成、芳博士回复SBC2024,即可预登记报名01会议信息4月南京SBC2024大会主席团大会日程↓↓点击可查看大图↓↓大会议题↓↓精选热门议题抢先一览↓↓论坛一:医药中间体与微生物治疗专场酶催化在医药中间体中的应用研究合成生物学助力原料药的生物制造 合成生物学助力GLP-1生产基于合成生物学策略的智能活细胞开发合成生物学在肠道微生态疗法研发中的应用抗菌肽的生物合成及医学应用论坛二:食品专场新食品新趋势一一替微生物蛋白作为优质替代蛋白资源的产业现状培养肉的创制与进展天然甜味剂微生物合成制造关键技术人乳低聚糖HMOs应用创新的困局与突破维生素的合成生物学制造论坛三:农业与畜牧业专场合成生物固氮发展机遇与挑战基于合成生物学的功能微生物在农业生产中的应用合成生物学在开发安全有效的生物农药和生物肥料中的应用合成生物学在作物遗传改良和抗病虫害方面的应用 生物制造新型饲料蛋白合成生物学打造″超级细胞工厂″,精准开发改土增产利器论坛四:医美与化妆品专场微生物发酵法大规模生产透明质酸的难点精准抗衰老活性物开发思路麦角硫因生物合成研究的新进展生物发酵技术在微生态护肤领域的应用超高分子量透明质酸高效生物合成菌株构建及产业化生物发酵技术在微生态护肤领域的应用论坛五:材料与化工替代专场微生物工艺制造生物基尼龙生物基聚酰胺在工程塑料行业应用PHA生物制造及加工过程进展聚乳酸领域的工艺开发及高值化应用人造蜘蛛丝的研究进展可降解塑料和生物材料的绿色生物制造论坛六:非粮原料专场非粮原料的合成生物学技术路径 万吨级秸秆糖化和生物合成技术路线合成生物学如何让二氧化碳变废为宝改造工程菌将CO2生产丙酮和异丙醇合成生物技术如何将含工业尾气转化为生物乙醇微生物利用二氧化碳合成燃料及化学品——第三代生物炼制论坛七:平台型应用专场合成生物学与菌种设计高通量酶活筛选和应用自动化设置在合成生物学研发中的应用高通量菌株筛选技术的最新进展及其应用案例代谢工程与合成生物技术构建工业微生物菌种应用论坛八:底层技术专场DNA的酶法合成的技术优势酶的定向进化技术基因编辑工具开发与应用纳米孔测序技术新一代蛋白(AI)设计与制造高效新型的工业底盘细胞构建基于人工智能和计算生物学的合成生物学元件设计构建新型双碱基编辑器研究进展论坛九:法规专场全球生物合成食品法规监管现状及趋势转基因微生物生产新食品添加剂及原料的申报经验及案例分享NMN的全球合规化探索和未来发展机遇碳关税后续风险预警及合规策略合成生物学市场监管与产品准入论坛十:发酵技术专场微生物发酵菌种选育与培养基优化技术天然活性成分的分离纯化技术合成生物学时代的智能发酵过程优化技术与装备发酵过程控制与工艺优化关键技术精密发酵:合成生物学生产放大的必经之路发酵装备及其智能化研究进展嘉宾阵容↓↓已确认嘉宾(部分)↓↓02特色活动4月南京SBC2024物学产业嘉年华暨展览会 活动多多,精彩多多,不容错过!!!2024现场增设多个特色活动等你来解锁!!!1.SHOW YOUR WORK合成生物项目路演:面向社会各界人士,鼓励从解决实际需求出发构建创新项目,探索合成生物学在不同领域应用潜力。2.VIP私密Workshop:以提出问题、解决问题为旋律,为与会嘉宾观众提供闭门交流平台,希望为不同层次、不同维度的人提供解决科研和工作实际遇到的问题,让与会代表不虚此行。3.技术需求面对面:“科创中国”生物医药产业科技服务团的专家面对面解答厂家技术难题。4.人才招聘墙:为进一步丰富求职渠道,求职者可以到此专区了解企业招聘信息,岗位信息及待遇等情况。5.企业卫星会:新品发布、新技术推广、专题研讨等,为卫星会企业与行业专家、业界同仁提供一个零距离、全方位的沟通交流平台,助力卫星会参与企业做大做强做实。6.新品发布会:通过以视听、触觉等方式向参会者展示产品,让参会者深入了解品牌、产品、服务,并从各个角度的介绍中获得对新品的认识。7.三大产品主题馆:合成生物学现在到底能生成什么产品?2024升级再出发,三大产品主题馆欢迎前来入驻。更多详情欢迎咨询:Seven 18121311478 生物制造新力量!免费入驻!点击小程序立即报名吧:合成产品主题馆登记表 03展览展示4月南京SBC20242024第二届合成生物学产业嘉年华暨展览会现场特设10大主题专场、100+主题报告、120+展览展示、10000+参观人次,涵盖合成生物学产业链上中下游,展品范围如下:原料与产品展区原料与产品:蛋白、多糖、氨基酸,二元胺、二元酸、二元醇、戊二胺、PDO、5-ALA、PHA、PHB、聚酰胺、活体材料、高值天然产物、异植物醇、维生素、氨基酸、类胡萝卜素,蛋白质及油脂、HMOS、功能糖醇、天然产物,小分子肽、胶原蛋白、麦角硫因、依克多因等。前沿研究软硬件展区前沿研究软硬件:生物体设计与自动化平台,DNA元件设计软件,高通量、自动化实验室设备,云端生物代工厂(Bio-Foundry),微流控,大数据与机器学习等。工艺与装备展区工艺与装备:反应器,发酵罐,陶瓷膜、超滤膜、离心机、离子交换树脂、色谱层析、DAC等。综合展区综合展区:其它。04预约登记4月南京SBC2024参会人群观展参会本次为观展预登记报名,如需参加会议论坛,请根据报名表单上传相应资料进行登记,组委会根据登记信息进行审核会议论坛门票。观展免费,参加论坛需要审核。回复“SBC2024”即可预登记报名▽联系我们2024第二届合成生物学产业嘉年华暨展览会招商工作已经启动。展位销售火热进行中,赞助咨询/媒体合作/学术报告/参会报名请咨询SBC2024组委会:Abby 18217659261 (微信同号)【备注:0412南京,进入大会群聊】05往届回顾4月南京SBC2024
  • 文献速递| SFC-MS/MS法同时测定血清中多种维生素D代谢物(上)
    文献速递引言中国疾病预防控制中心营养与健康研究所、宁波大学食品与药学院中国食品科学与技术系、岛津企业管理(中国)有限公司联合研究,成功建立并验证了适用于血清中多种维生素D代谢物的高通量、高灵敏度SFC-MS/MS分析方法。 由于研究内容较多,故分为上、下两期来进行详细介绍。本期主要介绍内容为:研发背景、样品前处理、如何建立及优化SFC-MS方法等。 文章出处Journal of Chromatography B 1120 (2019) 16-23 岛津Nexera UC全相系统之SFC-MS系统 本研究采用岛津超临界流体色谱仪Nexera UC、岛津三重四极杆液质联用仪LCMS-8060 ● 超临界流体与改性剂配合使用,可在更大范围内满足不同极性化合物的检测需要;● 低死体积和背压控制单元有效降低脉动,提高灵敏度;● 溶剂使用量少且分析时间短,是一种绿色环保、高效的分析手段。 研究背景维生素D(VD)作为一种脂溶性类固醇,在钙稳态和骨骼健康中起着重要作用,其主要以麦角钙化醇(VD2)和胆钙化醇(VD3)两种形式存在,多通过皮肤光照和食物或膳食补充剂来获取。VD进入体内参与生物调控,须在肝脏及肾脏内进行羟基化等复杂的代谢途径反应,因此其代谢产物结果是VD临床评价的主要挑战之一。 对于正常人血清或血浆中含有痕量1,25-(OH)2 VD2和1,25-(OH)2 VD3,分析时应考虑进一步改进定量限(如衍生化)。与LC-MS/MS法相比,采用超临界流体色谱仪(SFC)作为质谱前端,不仅降低了有机溶剂成本,还有具有更快分析速度及更高灵敏度。 样品前处理采用3.5 mL真空血管采集空腹血样,凝固后1500 ×g离心30 min。上层血清移入无菌管,-80℃保存后用于分析。 建立及优化SFC-MS分析方法 1. SFC色谱柱的选择考察了10种VD代谢物分别在Diol、CN、NH2、PFP和C18 5根色谱柱上的洗脱性能,并评价了不同固定相的选择性。如图1,除C18柱外,其他4根色谱柱上VD代谢产物色谱峰均为正常的洗脱顺序,保留时间随羟基数量的增加而增加。其中PFP柱能够分离所有VD代谢产物,分离效果最佳,特别是25-OH VD2/VD3及其对映体的分离,并被选择用于进一步开发。 图1:A) Diol, B) CN, C) NH2, D) PFP, E) C18色谱柱上VD代谢产物的固定相化学结构和洗脱顺序。 1: 25-OH VD3和3-epi-25-OH VD3 2: 25-OH VD2和3-epi-25-OH VD2 3: VD3 4: VD2 5: 1,25-(OH)2 VD3 6: 1,25-(OH)2 VD2 7: 24,25-(OH)2 VD3 8: 24,25-(OH)2 VD2。 2. 梯度洗脱条件优化纯CO2是VD代谢物的弱洗脱溶剂,与固定相相互作用强。因此,为提高流动相的洗脱强度,加入甲醇作为改性剂。图2显示了四种不同梯度下VD代谢物的分离情况。 在Gradient 4条件下,二羟基代谢物的峰形明显改善,这可能是由于甲醇比例的急剧增加(1.5 min内从8%增加到40%)改善分离效果,由此减少二羟基代谢物的扩散。因此,选择Gradient 4进行进一步优化。 图2:四种梯度洗脱程序(流动相A: CO2 流动相B:甲醇,色谱柱:PFP)虚线(-):流动相B的百分比;USP:分离度。(1-8序号对应VD代谢物名称同图1) 3. 流速的选择虽然超临界流体黏度较低,但扩散系数较高。因此,在柱前压力和洗脱液密度较高,设定较高流速时,梯度有望提高峰之间分离度。图3(A)为不同流速下VD代谢物的洗脱。当流速从1.0 mL/min增加到1.5 mL/min时,25-OH VD2/ VD3及其表异构体的分离明显改善,但当流速增加到2.0 mL/min时,分离度降低。因此后续研究设定流速为1.5 mL/min。 4. 柱温的选择色谱柱温度影响流动相粘度和界面分布。如图3(B)所示,温度从30℃升高到40℃,25-OH VD2/VD3及其同位异构体的分离得到改善,但温度再升高到50℃,分离效果较差。因此后续研究采用柱温40℃。 图3 A)流速和B)温度对PFP柱上VD代谢物分离的影响。 5. MS系统优化为提高VD代谢物的电离效率,对离子源类型和补偿剂缓冲液浓度进行了优化。对于离子源的选择,测试了电喷雾电离(ESI)和大气压化学电离(APCI),两者都是在正离子模式下。如表1,浓度为1 ng/mL的所有VD代谢物,ESI+模式下的信噪比(S/N)比APCI+模式下的高4~6倍。因此, 在ESI+模式下评估不同浓度缓冲液,当甲酸铵浓度从1 mM增加到5 mM, S/N较好;将甲酸浓度从0.5‰(v/v)提高到1% (v/v)可进一步优化灵敏度,但甲酸浓度为2‰ (v/v)则没有进一步提高灵敏度。因此,采用ESI+进行电离,选择5 mM甲酸铵和1‰ (v/v)甲酸作为补偿剂。 表1 离子源类型和缓冲液对维生素D代谢物信噪比(S/N)的影响(1 ng/mL)FA: 甲酸 AmFc: 甲酸铵 本期小结本研究建立了适用于血清中多种维生素D代谢物的SFC-MS方法,并通过优化分析条件,确定最佳分析条件为:PFP色谱柱、梯度程序4、流速1.5mL/min、柱温40℃,离子源类型为ESI+,补偿剂为 5 mM甲酸铵和1‰ (v/v)甲酸。基于此分析条件下,可实现PFP柱可在10 min内10种VD代谢物的基线分离 在正电喷雾电离模式下进行检测,允许对血清基质中的多种VD代谢物进行定量分析。 下一期将介绍方法验证 、 SFC-MS/MS法与LC-MS/MS法的方法比较,敬请期待! 本文内容非商业广告,仅供专业人士参考。
  • 【行业应用】赛默飞发布在线衍生-气质联用法分析检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖
    赛默飞世尔科技(以下简称:赛默飞)近日发布了检测PM2.5中的正构烷酸、甾醇、左旋葡聚糖的解决方案。 中国环境监测总站为规范全国环境空气颗粒物来源解析的监测技术,发布了《环境空气颗粒物源解析监测技术方法指南(试行)》,其中就包含正构烷酸、甾醇类、左旋葡聚糖类化合物分析方法。通过检测这类化合物的含量,来确认污染物的来源,以期更好地控制污染。其中正构烷酸被认为是植物燃烧的示踪物。甾醇类化合物主要来源于厨房油烟,可作为餐饮源的示踪物。左旋葡聚糖为纤维素热降解产物,可作为生物质燃烧的示踪物。 但正构烷酸、甾醇类以及左旋葡聚糖类化合物极性大,挥发性较差,需要通过衍生的方法来改善极性及挥发性。本方法参考《环境空气颗粒物源解析监测技术方法指南(试行)》,采用加速溶剂萃取提取后,采用在线衍生-气质联用法测定PM2.5中的正构烷酸、甾醇类、左旋葡聚糖。该方法省去了离线手动衍生的烦扰,前处理更简单快速、自动化程度更高。本实验采用赛默飞Triplus RSH 三合一自动样品前处理平台结合Thermo ScientificTM ISQTM系列四极杆 GC-MS 系统分析PM2.5中的正构烷酸、甾醇、左旋葡聚糖,样品通过Triplus RSH在线自动衍生通过气质进行定量分析,前处理简单快速、自动化程度高,结果重复性好。 更多产品信息,请查看:Thermo ScientificTM ISQTM 系列四极杆 GC-MS 系统www.thermoscientific.cn/product/isq-series-single-quadrupole-gc-ms-systems.html 应用方法下载:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/GCMS/documents/Determination-of-normal-fatty-acid-sterol-levoglucosan-in-PM2.5-by-online-derivation-GC-MS.pdf---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com请扫码关注:赛默飞世尔科技中国官方微信
  • 喜讯,金域质谱维生素D项目再次通过英国维生素D室间质量评价
    近日,英国维生素 D 室间质量评价计划(vitamin D external quality assessment scheme,DEQAS)结果公布。金域质谱维生素D项目再次100%通过。自2011年开始,金域质谱维生素D项目至今已连续11年满分通过DEQAS室间质评计划,彰显出金域质谱在维生素D检测项目上具有良好的结果溯源性和严格的质量管理,检验结果受国际认可。为解决25-羟基维生素D检测结果互通性的问题,2010年,美国健康研究署膳食摄入部成立了维生素D标准化项目(Vitamin D Standardization Program,VDSP),通过美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)和参考测量体系,促进全球所有相关实验室检测方法的标准化。其中英国维生素 D 室间质量评价计划(vitamin D external quality assessment scheme,DEQAS)会将参加此室间质量评价(EQA)计划的实验室检测结果,与NIST结果进行比较,从而帮助实验室发现并纠正方法中存在的问题,在推进维生素D标准化检测过程中发挥重要作用。维生素D是类固醇衍生物,主要包括维生素 D2(麦角钙化醇)和维生素 D3(胆钙化醇),在人体钙磷代谢和骨质钙化中起着重要作用,维生素D缺乏可能导致佝偻病、软骨病和骨质疏松等疾病。有多项研究表明,维生素D的营养水平若不能维持在最佳范围内,有增加患糖尿病、高血压、乳腺癌等疾病的风险。25-羟基维生素D[25(OH)D]作为维生素D在体内的主要代谢形式之一,其半衰期长,存在形式稳定,成为人体维生素D营养评估的最佳检测指标。金域质谱自2011年起使用LC-MS/MS平台,开展血清25-羟基维生素D检测,连续多年零缺陷通过CAP和ISO15189质量体系评审,可为临床提供25-羟基维生素D的精准检测服务。其使用LC-MS/MS平台,开展血清25-羟基维生素D检测,具有灵敏度高,特异性好等优点,能同时准确测定25(OH)D2和25(OH)D3的浓度,并实现25(OH)D3和 3-epi-25(OH)D3的分离,结果更精准。多年来,金域质谱25-羟基维生素D项目参加DEQAS的检测结果一直与NIST靶值高度吻合,呈高度相关性,检测结果准确可靠,具有良好的室间可比性。金域质谱25(OH)D项目参加DEQAS的检测结果与NIST靶值相关性(以2022年结果为例)此外,金域质谱25-羟基维生素D项目还参与了国家卫生健康委临床检验中心(NCCL)、美国病理家学院(CAP)等国内外多个权威机构的室间质量评价计划,其结果均以优异的成绩通过。
  • 4月共有68项食品及相关标准正式实施,新增标准62项!
    2023年4月共有68项食品及相关标准正式实施,其中,代替标准6项,新增标准62项,新增标准占标准总数的91.18%。  4月起实施的标准中,国家标准2项(《GB 5749-2022 生活饮用水卫生标准》和《GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法》),地方标准9项,行业标准34项,团体标准23项。这些标准涉及原料标准、农产品加工标准、规范规程标准、检测方法标准等。 该类标准中,涉及到的仪器类别有液相色谱仪、气相色谱仪、液相色谱质谱联用仪、气相色谱质谱联用仪、电感耦合等离子体质谱仪、高效液相色谱-原子荧光光谱仪、核磁共振波谱仪等。值得注意的是,《GB 5749-2022 生活饮用水卫生标准》已于4月1日起正式实施;《GB/T 5750-2023生活饮用水标准检验方法系列标准》也将于将于10月1日正式实施。 2023年4月起实施的食品及相关标准信息序号标准编号及名称实施日期代替标准1GB 5749-2022 生活饮用水卫生标准2023-04-01GB 5749-20062GB/T 42089-2022 防止儿童开启包装 非药品用不可再封口包装的要求与试验方法2023-04-013HG/T 6074-2022 水处理剂 一元二氧化氯发生剂2023-04-014HG/T 6071-2022 水处理剂用单过硫酸氢钾复合盐2023-04-015HG/T 6073-2022 水处理剂 聚硫氯化铝2023-04-016HG/T 4672-2022 水处理剂 聚氯化铁2023-04-01HG/T 4672-20147HG/T 4538-2022 水处理剂 氯化亚铁2023-04-01HG/T 4538-20138JB/T 14690-2022 豆油皮加工生产线2023-04-019JB/T 14618-2022 冷藏肉腐败变质实时监测装置2023-04-0110JB/T 14619-2022 生鲜肉营养成分无损检测装置2023-04-0111JB/T 14620-2022 水果品质便携式检测装置2023-04-0112JB/T 14567-2022 直冷式块冰制冰机2023-04-0113QB/T 5633.3-2022 氨基酸、氨基酸盐及其类似物 第 3 部分:L-苏氨酸2023-04-0114QB/T 5633.4-2022 氨基酸、氨基酸盐及其类似物 第 4 部分:L-色氨酸2023-04-0115QB/T 5633.5-2022 氨基酸、氨基酸盐及其类似物 第 5 部分:L-精氨酸及 L-盐酸精氨酸2023-04-0116QB/T 5633.6-2022 氨基酸、氨基酸盐及其类似物 第 6 部分:三甲基甘氨酸及其盐酸盐2023-04-0117QB/T 5633.7-2022 氨基酸、氨基酸盐及其类似物 第 7 部分:γ-氨基丁酸2023-04-01QB/T 4587-201318QB/T 5756-2022 酸面团2023-04-0119QB/T 5758-2022 罐头食品金属容器用易撕盖2023-04-0120QB/T 5759-2022 番茄酱罐头中番茄红素含量测定 高效液相色谱法2023-04-0121QB/T 5761-2022 食品中水苏糖的测定 核磁共振波谱法2023-04-0122QB/T 5776-2022 食用盐中抗结剂柠檬酸铁铵的测定2023-04-0123QB/T 5679-2022 饮用水处理装置能效限定值及能效等级2023-04-0124QB/T 5705-2022 乳制品行业绿色工厂评价要求2023-04-0125QB/T 5791-2022 食用植物油行业绿色工厂评价要求2023-04-0126QB/T 5743-2022 酵母行业绿色工厂评价要求2023-04-0127QB/T 5744-2022 氨基酸行业绿色工厂评价要求2023-04-0128QB/T 5745-2022 淀粉糖行业绿色工厂评价要求2023-04-0129QB/T 5746-2022 山梨糖醇行业绿色工厂评价要求2023-04-0130QB/T 5747-2022 绿色设计产品评价技术规范 淀粉糖2023-04-0131QB/T 5748-2022 绿色设计产品评价技术规范 有机酸2023-04-0132QB/T 5749-2022 绿色设计产品评价技术规范 氨基酸2023-04-0133QB/T 5750-2022 绿色设计产品评价技术规范 酵母制品2023-04-0134QB/T 5751-2022 绿色设计产品评价技术规范 山梨糖醇2023-04-0135QB/T 5752-2022 绿色设计产品评价技术规范 果蔬罐头2023-04-0136QB/T 5753-2022 绿色设计产品评价技术规范 水产罐头2023-04-0137DB61/T 1653-2023 柿饼加工技术规程2023-04-1538DB44/T 2416-2023 火龙果冷链技术要求与操作规范2023-04-2839DB44/T 2415-2023 冷藏运输节能操作规范2023-04-2840DB51/T 3020-2023 蔬菜采后处理与产地贮藏技术规程2023-04-0841DB14/T 2713-2023 小米仓储运输技术规范2023-04-1842DB14/T 2712-2023 小杂粮加工技术规范 小米2023-04-1843DB11/T 1764.21-2022 用水定额 第21部分:屠宰及肉制品加工2023-04-0144DB11/T 1764.12-2022 用水定额 第12部分:饮料2023-04-01DB11/T 1696-201945DB11/T 1047-2022 果品等级 鲜食枣2023-04-01DB11/T 1047-201346T/YNBX 084-2023 铁皮石斛真伪鉴别 高效液相色谱指纹图谱法2023-04-0147T/AHFIA 089-2023 预制菜 速食米线2023-04-0148T/AHFIA 082-2023 预制菜 徽州毛豆腐2023-04-0149T/AHFIA 088-2023 预制菜 炒叶芥菜2023-04-0150T/AHFIA 087-2023 预制菜 药膳芍花鸡2023-04-0151T/AHFIA 086-2023 预制菜 药膳麻椒鸡2023-04-0152T/AHFIA 085-2023 预制菜 药膳参杞牛肉2023-04-0153T/AHFIA 084-2023 预制菜 徽州干锅炖2023-04-0154T/AHFIA 083-2023 预制菜 徽州葛粉圆子2023-04-0155T/AHFIA 081-2023 预制菜 徽州刀板香2023-04-0156T/AHFIA 080-2023 预制菜 徽州臭鳜鱼2023-04-0157T/NXFSA 059-2023 锁鲜枸杞2023-04-0158T/FQIA 008-2022 产品质量鉴定程序规范2023-04-0159T/DZJN 129-2022 净水器用即热水龙头2023-04-0160T/FJHX 0004-2023 灵芝提取物中性三萜及麦角甾醇的测定 高效液相色谱法2023-04-0161T/FJHX 0003-2023 灵芝及其相关产品中β-葡聚糖的测定2023-04-0162T/HATSI 0022-2023 绿色设计产品评价技术规范 次氯酸氧化高电位消毒液2023-04-0163T/ZHCA 106-2023 人参提取物 稀有人参皂苷Rh22023-04-2164T/CNSS 016-2022 限能量膳食营养干预规范2023-04-0165T/CBFIA 07004-2022 清洁生产标准 氨基葡萄糖工业(发酵法)2023-04-0166T/CBFIA 07003-2022 氨基葡萄糖盐(发酵法)2023-04-0167T/CBFIA 07002-2022 N-乙酰氨基葡萄糖(发酵法)2023-04-0168T/CBFIA 13001-2022 温室气体排放核算与报告要求 生物发酵生产企业2023-04-01相关标准请到仪器信息网资料库查询:https://www.instrument.com.cn/download/L_5DBC98DCC983A70728BD082D1A47546E.htm
  • 常见的饲料霉菌毒素对猪的影响
    在猪场上中,仔猪的多系统衰竭综合征、各种呼吸道疾病和种猪的繁殖与呼吸综合征的发病率极高。虽然免疫程序一步不缺、常规消毒按规定进行,用药也很到位,但是猪的各种疾病依然是层出不穷。其原因主要是猪场上存在着隐形杀手——霉菌毒素。不管过去对霉菌污染下过多大功夫及防患措施,霉菌毒素的产生至今仍是全世界养猪业无时不存在的自然威协,给饲养者*大的危害与损失。本文主要针对各种霉菌毒素对猪只的影响及预防措施作一一的阐述。 霉菌毒素是某些霉菌在基质上生长繁殖过程中产生的有毒二次代谢产物。毒素在谷物的生产过程、饲料制造、贮存及运输过程中都会产生。畜禽食入这些毒素污染的饲料后可导致急性或慢性中毒,称为霉菌毒素中毒。霉菌毒素产生的临床症状会因饲料中毒素的含量、饲喂的时间、其他霉菌毒素的存在与否、动物本身的物种、年龄及健康状况而有所不同。 一、黄***素黄***素主要是黄曲霉和寄生曲霉产生的。其他曲菌、青霉菌、镰孢霉菌和链霉菌属的放线菌也能产生黄***素。所有的动物对黄***素敏感,然而不同动物的敏感性差异较大。在家禽中以雏鸭尤其敏感,在家畜中以仔猪*为敏感。依污染的严重程度,造成的损失包括饲料效率下降、生长延迟、屠体品质不佳、死亡。在20~200ppb的低浓度时,黄***素减少饲料摄入量、降低饲料利用率和免疫抑制。泌乳母猪的饲粮中若出现500ppb以上含量时,则会因乳汁中的黄***素而造成仔猪迟缓和死亡。即使离乳后不再饲喂含黄***素饲粮,但是仔猪生长受阻,饲养效果下降的情况一直至上市。而且低浓度的黄***素还会造成微血管脆弱而容易引起皮下出血及挫伤等。长期饲喂含有黄***素的动物,其肝脏、免疫系统及造血功能都会受损。黄***素通过干扰肝脏中脂肪向其它组织的输送,使脂肪大量堆积在肝脏而产生斑点,同时还会干扰肝脏的合成维生素和解毒的其他功能。 而黄***素对免疫系统所造成的伤害比肝脏要严重,即使是在较低剂量下的黄***素也会伤及免疫系统。黄***素通过与DNA和RNA结合并抑制其合成,引起胸腺发育不良和萎缩,淋巴细胞减少,影响肝脏和巨噬细胞的功能,抑制补体(C4)的产生和T淋巴细胞产生白细胞介素及其他淋巴因子。黄***素还能通过胎盘影响胎儿组织的发育。而且黄***素还能危害通过接种疫苗的获得性免疫,如黄***素B1会干扰猪丹毒免疫所获得的免疫力。 二、呕吐毒素直到最近,呕吐毒素已被作为梭霉菌属的霉菌毒素污染的“标记”,故即使在饲料中发现含量很低的呕吐毒素,但仍会有梭霉菌属霉菌毒素中毒症的出现。对生长肥育猪而言,含有14ppm呕吐毒素的饲料饲喂后10~20分钟内即会出现呕吐、不正常的焦虑和磨牙现象。呕吐现象仅发生*一天(Williams et al.,1988)。持续低剂量饲喂会导致皮肤温度下降、胃食管部增生和血浆中α-球蛋白含量降低(Rotter et al.,1994)。呕吐毒素会强力抑制猪的采食量和生长速度,在呕吐毒素的含量在0~14ppm的试验中,Williams et al(1998)发现饲粮中每增加1ppm呕吐毒素,生长肥育猪的采食量即减少6%,在含毒量10ppm以上即完全拒食。而且呕吐毒素是潜在的蛋白质合成抑制剂,主要对快速生长的组织(如皮肤和粘膜)和免疫器官产生影响,导致对传染病的易感性。 三、玉米赤霉烯酮玉米赤霉烯酮也称为F2毒素,是由禾谷镰孢霉菌产生,具有雌激素作用的霉菌毒素,其临床症状随接触剂量和猪年龄不同而异。在所有的圈养动物中,猪对玉米赤霉烯酮*为敏感,而受影响最大的部位主要是其生殖系统。较低浓度会诱发女性化现象,较高浓度会干扰排卵、受孕、植入及胚胎的发育。后备母猪*为敏感,0.5~1.0ppm低含量下即可造成假发情和阴道脱垂或脱肛(Blaney和 Williams,1991)。玉米赤霉烯酮会增加怀孕母猪发生流产及死产的几率、初生仔猪的存活率较差、出现八字腿及外阴*肿胀(Vanyi,1994)。Golhl(1990)指出饲粮中10ppm的F-2毒素会延长母猪自离乳至配种的间隔时间,降低窝仔数和增加畸形猪的数量。F-2毒素使年轻公猪*欲下降、睾丸变小、睾丸生精细胞上皮细胞变性最后形成精子发育不良和不孕、生精细管周围组织的炎症反应等。 四、T-2毒素T-2毒素是由念珠球菌属产生的新月毒素中的一种,新月毒素已超过100种,饲粮中的含量超过0.4ppm的毒素就会对动物产生中毒症状。T-2毒素属于组织刺激因子和致炎物质,直接损伤皮肤和粘膜。表现为厌食,呕吐,瘦弱,生长停滞,皮肤、粘膜坏死,胃肠机能紊乱,繁殖和神经机能障碍,血凝不良,肝功能下降,白细胞减少和免疫机能降低。T-2毒素通过影响DNA和RNA的合成及其通过阻断翻译的启动而影响蛋白质合成,而且T-2毒素还会引起胸腺萎缩,肠道淋巴腺坏死;破坏皮肤粘膜的完整性。抑制白细胞和补体C3的生成,从而影响机体免疫机能。 五、麦角毒素麦角毒素是麦角霉产生的一种毒素,它对所有的猪都会产生危害。其中毒的症状在数天内或数周内出现,包括精神沉郁,采食量减少,脉搏和呼吸加快,全身状况不佳,后腿常发生跛行,严重者尾巴、耳朵和蹄坏死及腐肉脱落,寒冷气候可使病情加重。麦角毒素还会通过引发无乳症而间接影响猪的繁殖。在妊娠期给怀孕青年母猪饲喂含0.3%麦角毒素的饲料,可导致新生仔猪出生体重下降,存活率降低和增重缓慢。日粮中含有0.1%的麦角毒素会使肥育猪生长缓慢。 六、赭曲霉毒素赭曲霉毒素是由赭曲霉(Asp.ochraceus)及鲜绿青霉(P.viridicatum)等所产生的一种霉菌肾毒素,它分为A、B两种类型。赭曲霉毒素A的毒性较大,且在自然污染的饲料中常见。猪摄入1ppm的赭曲霉毒素A可在5~6天致死。饲喂养含1ppm浓度的赭曲霉毒素的日粮,3个月后可引起烦渴、尿频、生长迟缓和饲料利用率降低;对于受霉菌毒素污染的饲料预防很重要,需要借助专业的仪器对以上多种霉菌毒素进行检测筛查,如果发现饲料中含量超标,及时处理预防后续引发的相应疾病的产生,给养猪户少一分危险多一份保障。 深芬仪器生产的霉菌毒素快速检测仪能够快速定量检测粮食、饲料、谷物、食用油、调味品等食品中黄***素、T2毒素、呕吐毒素、赭曲霉毒素、伏马毒素、玉米赤霉烯酮含量。霉菌毒素快速检测仪适用于粮油监测中心、粮油饲料生产加工、食品加工贸易、畜禽养殖户自查、工商质监部门用于市场快速筛查等。
  • 买西门子实验室纯水系统,人和科仪送好礼
    感谢大家对我们活动的持续关注。西门子(中国)高纯水部与上海人和科仪举办的“买SIEMENS实验室纯水系统,上海人和科仪送豪礼”中国首发式活动已于2009年7月6日正式结束。我们衷心感谢参与和关心我们活动的每一位顾客。我们将继续升级西门子实验室纯水系统的市场活动,上海人和科仪&西门子(中国)高纯水部再推新一轮市场推广活动。 活动详情如下: 活动对象:在上海人和科学仪器公司或我司分销商处购买西门子实验室纯水系统的终端用户,分销商除外。 参与条件: 1、购买西门子实验室纯水系统的用户; 2、在此次活动期间,购买西门子实验室纯水系统耗材累计超过人民币伍万元(含税),可参加第二季抽奖活动。 活动时间:2009年7月7日至2009年12月29日 活动内容: 第一级:凡购买西门子实验室纯水系统的客户,均可获赠一个西门子无绳电话(见下图),价值1千元;第二级:凡符合活动参与条件的用户,可参加人和公司的抽奖活动,有机会获得豪华大奖。 一等奖1名,价值1万元的SIEMENS家电1套 二等奖1名,价值5千元的SIEMENS家电1套 三等奖2名,价值3千元的SIEMENS家电1套 欢乐奖10名,价值500元的礼品包 抽奖活动细则: 上海人和科仪与西门子(中国)高纯水部定于2009年12月30日举办西门子实验室纯水产品研讨会及客户答谢会(地点:待定),会议期间将进行抽奖活动,凡符合活动参与条件的客户,需安排一人代表参与现场抽奖活动。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。 上海人和科仪诚招全国经销商! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现“为客户创造更多价值”的承诺。主要代理品牌:德国IKA、MEMMERT、ILMVAC、Miele、SIEMENS、EXAKT、美国COLE-PARMER、HACH、BROOKFIELD、AMETEK、日本ATAGO、ESPEC、MINOLTA等。】
  • 中石化汽油再曝质量门 或因甲醇代乙醇
    中石化再一次陷入汽油“质量门”,不过,这次“受害者”由香港车主变为河南车主。  昨日,中石化办公厅有关负责人接受《每日经济新闻》采访时表示,中石化总部正在等待河南安阳当地工商局和技术监督局对油品进行抽样检验的报告。而中石化安阳公司有关人士也称,目前已停止出售这批疑因导致部分车辆故障的93#汽油。  各方等待抽样检验报告  据报道,2010年3月中下旬开始,河南省安阳市内许多4S店突然接到大批送修车辆。这些故障车辆都有着同样的“病症”:轻则会出现加油不顺、冒黑烟、尾气刺鼻的情况,重则排气管不断喷出红或黑色液体、无法启动,最严重的会出现一些零件损坏的情况。  对此,《每日经济新闻》向中石化方面进行了求证。  中石化办公厅有关负责人士说:”此事件还没有上升到中石化北京总部这个层面解决,具体情况要问中石化河南安阳分公司,由他们具体负责处理,中石化总部也在等待检测报告的出来。估计就这几天会出来,到时会对外公布。”  “对不起,我只是一个负责加油的员工,关于车辆故障的问题我不太清楚。”中石化河南安阳分公司旗下加油站的一位员工在电话中说道。  安阳分公司负责油品零售业务有关人士也对《每日经济新闻》表示,4月1日起,当地加油站已经全部更换了一批新的93#汽油,上批油已经停止销售了。4月初,中石化河南安阳分公司在安阳市电视台也发表了公开声明,表示将对车主损失的油费和清洗费进行理赔。  中石化河南石油分公司目前也声明表示,已组成调查组,在前期组织有关专家赴现场进行调查的基础上,责成安阳石油分公司主动邀请当地工商局和技术监督局对油品进行抽样检验,同时将邀请车友代表和关注此事的网友、媒体记者对抽检过程进行监督,最终调查结果待专家及权威机构拿出意见后及时公布。如果调查证实下属企业确实存在内部管理问题,其将对有关责任人问责。  甲醇代替乙醇所导致?  一位不愿署名的汽车业内专家称在最终抽样检验没有出来之前,无法确定事故的最终原因。不过,他担心或许是汽油中加入甲醇代替乙醇导致。  国家发改委和财政部之前曾联合下发紧急通知,要求各地暂停核准玉米加工乙醇项目。乙醇汽油最大的问题就是会占用耕地和粮食,而且发酵乙醇价格高。上述专家说,国内乙醇限产,没那么多已乙醇添加,一些加油站为了追求利润,甲醇代替乙醇。而全国每年有几十万吨甲醇不知去向,特别是在山西、河南地区。  与乙醇汽油相比,甲醇汽油的生产成本具有绝对优势。甲醇生产成本在每吨1000元左右,而每吨乙醇的生产成本在4500元左右。  据专业人士介绍,甲醇汽油M15标准,是汽油里面加入15%左右的甲醇,以及一定量的添加剂,以此类推M30和M50则是分别加入30%和50%的甲醇。目前,只有山西省在全面推广甲醇汽油。
  • 年产60万吨,全球最大乙醇项目推动煤化工迈向“低碳化”
    2月28日上午10时40分,随着全流程一次开车成功,安徽碳鑫科技有限公司甲醇综合利用项目60万吨/年乙醇联合装置成功产出第一桶优质乙醇。据介绍,该项目位于安徽(淮北)新型煤化工合成材料基地,是目前建成的全球规模最大的乙醇装置。该项目乙醇生产装置依托一期主产品甲醇为原料,采用中国科学院大连化学物理研究所具有自主知识产权的DMTE工艺技术,经二甲醚、羰基化、加氢及产品分离等工序产出合格乙醇产品,对于当地完善基础产业配套、高水平打造先进高分子结构材料和精细化工产业集群具有重要意义。项目达产后可实现年产60万吨无水乙醇的生产能力。甲醇综合利用项目作为淮北矿业集团煤炭产业强链、化工产业延链、战略性新兴产业补链的重要一环,对推动煤化工产业走向高端化、多元化、低碳化有着重要意义。第一桶优质乙醇成功产出,开发了煤炭清洁高效低碳利用的新路线,开辟了非粮燃料乙醇技术的新赛道;每年实现减排约5万吨二氧化碳当量,也为推动国家“双碳”目标实现贡献了“淮矿智慧”。据介绍,该项目装置包括煤气化装置、净化装置、气体分离装置、乙醇装置及配套公辅工程等。自2021年底开工建设以来,项目团队克服装置大型化带来的挑战,克服疫情影响、加班赶制关键设备,精心组织实施方案,与各参建方团结协作,确保项目按期中交。项目于2023年10月20日正式中交,2023年12月28日启动试生产。随后,项目团队与业主共同战斗在试生产一线,确保项目一次性开车成功,先后实现了20个月建成项目、2个月全流程开车。碳鑫科技党委书记、董事长张平表示:“下一步,碳鑫科技将再接再厉、再创佳绩,切实把乙醇项目建设好、经营好、发展好,为淮北矿业集团打造国内一流双千亿企业作出新的更大贡献。”
  • 麦乐鸡含化妆品成分 六成网友短期内不会再吃
    “麦当劳居然含有化妆品成分,我们还能吃呀?”昨天,麦当劳爆出其畅销品种麦乐鸡中含有泥胶和化妆品成分,顿时引来一片哗然。  六成网友不敢再吃了  在某社区QQ群中,名为“蜗牛”的网友就称,麦乐鸡爆出含有的两种“聚二甲基硅氧烷”(用于果蔬保鲜)和“特丁基对苯二酚”(用于植物油与动物脂肪的防腐剂)成分,自己连听都没听过,不过宁可信其有,自己从此都不敢沾麦当劳了。  另一位名叫“甜蜜柚子茶”的网友则称,以前常吃麦当劳,麦乐鸡也是经常点的品种,没想到居然会出这种事,自己在网上一看到这则消息,立刻就倒了胃口。“说不定其它洋快餐也有类似问题,专家应该查清楚。”  记者在网上随机向多个QQ群的网友提问,结果发现,有超过6成的网友都认为这则消息是“宁可信其有”,短期内不会再吃麦乐鸡了 有2成网友表示要观望一下 仅有1成多网友表示不受其影响,还会照吃不误。  麦当劳称符合国家规定  昨天,麦当劳重庆分公司有关负责人发表声明称,其实这两种成分均是中国国家标准食品添加剂使用卫生标准GB-2760中明确标明的合法添加剂,麦当劳在国内售卖的麦乐鸡中含有这两种成分,是符合国家规定的,并不会危害健康。  据悉,麦乐鸡同汉堡、薯条、鸡翅等,一直是麦当劳旗下的主打品种。
  • 首届“闵恩泽能源化工奖”获奖人员名单公布
    闵恩泽院士是我国德高望重的著名科学家,中国石油石化科技界的泰斗,是我国炼油催化技术的奠基者、石油化工技术自主创新的先行者、绿色化学的开拓者,曾获2007年度国家最高科学技术奖。  2013年4月3日,中国石油化工集团公司和中国工程院联合设立&ldquo 闵恩泽能源化工奖&rdquo 奖励基金,用于奖励在能源化工领域从事研发和产业化过程中作出突出贡献的优秀科技人员,激励高端领军人物奋发创新,吸引优秀青年人才积极投入,大胆创新,培养国际一流的能源化工科技人才。该奖励基金由闵恩泽院士创议并发起。奖励基金包括闵恩泽院士个人捐资和中国石油化工集团公司捐资,本金运作和保值增值部分用于奖励。&ldquo 闵恩泽能源化工奖&rdquo 设&ldquo 杰出贡献奖&rdquo 和&ldquo 青年进步奖&rdquo 两类奖项,每两年评选一次。  奖励基金设立理事会和评审委员会。基金理事会设在中国石油化工集团公司,理事长由中国石油化工集团公司董事长傅成玉担任,常务副理事长由中国石油化工股份有限公司高级副总裁戴厚良担任,副理事长由中国工程院副院长谢克昌院士担任。评审委员会设在中国工程院,主要由教育部、中国科学院、中国工程院、国家自然科学基金委员会、中国石油化工集团公司、相关高等院校等单位在相关领域具有较高造诣的院士及专家学者组成。评审委员会分设提名委员会和专家委员会,第一届提名委员会和专家委员会主任分别由闵恩泽院士和王基铭院士担任。  依据《闵恩泽能源化工奖基金章程》和《闵恩泽能源化工奖评选办法》等相关规定,经&ldquo 闵恩泽能源化工奖&rdquo 提名委员会提名、专家委员会评选和基金理事会审批,决定授予清华大学陈国强、中国石油化工股份有限公司石油化工科学研究院杜泽学、北京大学刘海超、北京化工大学谭天伟等4人&ldquo 杰出贡献奖&rdquo 授予南京工业大学郭凯、中国科学院大连化学物理研究所李昌志、中国科学院青岛生物能源与过程研究所牟新东、中国科学院过程工程研究所王岚、中国石油化工股份有限公司北京化工研究院许宁、中国石油化工股份有限公司石油化工科学研究院曾建立、北京化工大学范立海等7人&ldquo 青年进步奖&rdquo 。  上述获奖者在生物质燃料和生物基有机化工科技前沿领域取得了优异成果,主要包括:微流场技术在生物基材料应用研究、离子液体介导的纤维素水解等国际领先的制备技术 催化选择一步氢解和近临界水条件下水解耦合加氢转化纤维素的绿色新途径、纤维素联合生物加工等合成工艺 生物基聚氨酯、生物基尼龙、生物基无毒增塑剂以及采用秸秆、藻渣合成生物基异戊二烯等生物基有机化工产品开发。  获奖人主要贡献如下:  一、杰出贡献奖  陈国强 男,50岁,奥地利格拉茨(Graz)工业大学博士毕业,微生物和生物材料专业,清华大学教授。陈国强博士推动了我国生物塑料聚羟基脂肪酸酯产业的发展,使我国在该领域产业化和学术研究的水平处于世界前沿。其有关学术成果达200多篇,论文被他人引用超过4900次(H指数为39) 获得有关聚羟基脂肪酸酯授权专利20余件。先后获国家技术发明奖二等奖(第一完成人)、纽伦堡国际发明奖等奖励,是国家杰出青年科学基金获得者、教育部长江学者特聘教授和973&ldquo 合成生物学&rdquo 项目的首席科学家。  杜泽学 男,49岁,中国石化石油化工科学研究院工学博士毕业,有机化工(生物柴油)专业,中国石化石油化工科学研究院教授级高工。杜泽学博士提出了利用近/超临界甲醇醇解技术,开发地沟油等废弃油脂生产生物柴油的新工艺 组织开展探索研究,找到了降低反应温度和压力的办法,解决了原料深度转化、产品分离与质量达标等问题 组织开展新工艺的中试,攻克了工艺放大面临的诸多工程化难题,开发成功了适应多种原料、生产过程清洁的SRCA生物柴油绿色工艺 在生物柴油及相关领域申请国内外发明专利57件,其中获得国外专利授权4件、中国专利授权33件 发表论文22篇。  刘海超 男,45岁,中国石化石油化工科学研究院博士毕业,催化化学专业,北京大学化学与分子工程学院教授。刘海超博士主要从事分子催化与能源化学研究,在生物质选择催化转化等基础研究方面取得了原创性成果,揭示了催化剂构&mdash 效关系和反应机理,发明了选择氢解、近临界水条件下水解耦合加氢等纤维素绿色解聚转化为多元醇的新方法,发展了从纤维素直接合成丙二醇、甘油催化氧化合成乳酸等生物质化学品合成的新途径。获得授权发明专利20余件,发表学术论文80余篇,荣获&ldquo 中国催化青年奖&rdquo 等奖励。  谭天伟 男,49岁,清华大学博士毕业,生物化工专业,中国工程院院士,北京化工大学教授。谭天伟博士通过多年选育筛选出具有新基因的亚罗解脂酵母脂肪酶,并研究成功酶膜固定化新方法,实现了生物柴油、维生素A棕榈酸酯等产品的工业生产 创建了基于中间代谢物控制发酵过程优化的方法 利用发酵废弃物中的废菌丝体,提取麦角固醇和壳聚糖,显著地降低了麦角固醇生产成本 开发了喷射法制备壳聚糖吸附剂工艺,并采用分子印迹技术提高吸附容量1倍。已申请国内外发明专利37件 发表论文300余篇,其中SCI收录200余篇、 EI收录210余篇。以第一完成人先后获得国家技术发明奖二等奖2项,省部级一等奖4项、二等奖4项 是国家杰出青年基金获得者、中国青年科技奖获得者、何梁何利创新奖获得者。  二、青年进步奖  郭凯 男,31岁,英国谢菲尔德大学博士毕业,生物化工专业,南京工业大学教授。郭凯博士针对生物化工过程效率偏低和生物产业链偏短的问题,开展了微流场技术在生物基材料及精细化工品领域的应用研究,逐步形成了以微流场技术为核心的技术平台、以生物基材料为核心的产品体系。其从尺度效应对反应本征的影响研究入手,通过流体场结构设计,有效拓展流场边界,推进了微流场技术的工程化应用,并成功将微流场技术应用于生物基无毒增塑剂、生物基尼龙单体、生物基聚氨酯单体的制造过程中 创新了3D打印技术和粉末冶金技术等微流场反应装备的快速制造模式,开发了针对生物化工和化学化工工艺特异性微流场反应装备。累计发表论文30余篇 申请及授权专利近20件 参与编写书籍1部 获省部级科技进步一等奖1项。  李昌志 男,34岁,中国科学院大连化学物理研究所博士毕业,有机化学专业,中科院大连化学物理研究所副研究员。李昌志博士针对纤维素利用中的两个科学难题,在国际上率先提出离子液体介导的纤维素水解技术,并将其成功应用于天然生物质原料水解 实现由纤维素高选择性转化制备生物质关键平台化合物5-羟甲基糠醛,尤其是进一步开发了高浓度反应过程,对工业放大生产5-羟甲基糠醛具有重要科学意义和应用价值 发展了天然生物质原料全组分催化氢解制二元醇和单酚类化合物的催化过程,该过程亦表现出潜在的工业应用价值。共发表SCI论文19篇,申请发明专利11件,获得专利授权3件。  牟新东 男,34岁,北京大学博士毕业,生物质绿色转化专业,中国科学院青岛生物能源与过程研究所研究员。牟新东博士及其带领的绿色化学催化团队针对木质纤维素生物质利用中的瓶颈问题,设计开发了节能省水的动态挤压预处理工艺,并建成千吨级/年预处理量的中试系统 完成了由单糖制备呋喃二甲醇、呋喃二甲酸的公斤级小试生产与下游呋喃二甲醚产品的开发 开发了由单糖制备混合二元醇,和经糠醛和羟甲基糠醛制备高附加值&alpha ,&omega -二元醇和1,2-二元醇的催化体系,具备一定的工业化潜力。他先后主持国家863计划、国家自然科学基金、山东省及青岛市重大科学研究计划等项目。作为第一或通讯作者,已在SCI期刊上发表论文20余篇,其中第一作者论文单篇最高引用次数达160余次,申请专利30余件,其中国际专利2件,获得专利授权4件。  王岚 女,32岁,中国科学院研究生院博士毕业,生化工程专业,中国科学院过程工程研究所助理研究员。王岚博士建立了汽爆和水流筛分组合处理新方法,使汽爆秸秆酶解效率提高1倍,提出了提高纤维素酶解效率的秸秆组分分级思路。发现了秸秆降解物中的可溶性木质素是抑制丁醇发酵的主要抑制物,建立了活性炭去除汽爆秸秆酶解液中的抑制物用于发酵丁醇的新方法。首次提出了采用秸秆中易于降解的半纤维素为发酵原料,建立了汽爆秸秆半纤维素水解液发酵丁醇的方法。采用与其技术配套的自主加工的工业化装置系统,完成了年产600吨秸秆丁醇中试试验,并建成了年产5万吨丁醇以及联产乙醇、丙酮、聚醚多元醇和纸浆的生产线。在国内外学术期刊上发表论文10余篇 申请中国发明专利7件、国际PCT专利1件,获得中国专利授权4件 出版中英文专著2部。  许宁 女,33岁,北京大学博士毕业,高分子化学专业,中国石化北京化工研究院高级工程师。许宁博士进行了生物可降解聚酯的改性工作,设计并合成了多种结构新颖、性能独特的聚酯 开展了含糖聚酯研究,合成了一系列结构精细可控的侧链含糖聚己内酯,构筑了国际上首个可降解的胰岛素控制释放体系模型 在聚乳酸合成与改性领域进行了研究,制备了增韧聚乳酸材料。作为第一作者发表论文5篇 申请专利21件,获得专利授权9件。  曾建立 男,32岁,中国科学院过程工程研究所博士毕业,生物化工专业,中国石化石油化工科学研究院高级工程师。曾建立博士针对废弃油脂生产的生物柴油酸值容易超标的问题开展研究,确定了影响产物酸值的关键因素,并完成了亚临界两段醇解反应制备生物柴油的小试实验 在此基础上,提出了第二代生物柴油新工艺(SRCA-Ⅱ),并完成了2000吨/年中试试验,为第二代生物柴油工艺开发作出了突出贡献。发表文章12篇,申请专利6件。  范立海 男,31岁,浙江大学博士毕业,生物化工专业,北京化工大学副教授。范立海博士成功实现了单株酵母以纤维素为唯一碳源直接转化燃料乙醇技术路线 首次解决了结晶型纤维素无法被酵母直接降解利用的国际性难题。已发表SCI论文10余篇,其中作为第一作者在《美国科学院院刊》(PNAS)1篇,申请国内发明专利3件。  特此公告。  &ldquo 闵恩泽能源化工奖&rdquo 基金理事会  2013年12月20日
  • 【赛纳斯】一张“邮票”,误送一生--拉曼光谱仪识别新型毒 品
    最近浙江绍兴越城公安分局破获一起利用国际快递运送新型毒 品的毒 品走私案,案犯通过暗网利用比特币购买新型毒 品“邮票”,并通过国际快递投送,据统计,这种新型毒 品“邮票”多为境外流入,进而通过物流快递交易。什么是“邮票”毒 品“邮票”,是一种新型毒 品,主要成分为麦角二乙胺(LSD),为一种强烈的半人工致幻剂。麦角二乙胺吸附于印有特殊图案的吸水纸上,故俗称“邮票”,由境外流入,仅手指甲盖三分之一大小,含在嘴里就能“吸食”,致幻性是大麻等传统毒 品的数倍,透过皮肤就能渗入人体。具有毒性极强、隐蔽难发现等特点。“邮票”的危害几微克就足以让人产生幻觉,使用后通常会心跳加速,血压升高,并出现急性精神分裂和强烈的幻觉,造成极大的心理落差。药效消失又会使人抑郁,严重的还会导致吸毒者产生自杀行为。它还会让吸食者产生顽固心理依赖,不断加大服用量。拉曼光谱解决方案:赛纳斯手持式拉曼光谱仪(SHINS-P700T)基于拉曼光谱及表面增强拉曼光谱(SERS)技术的新精活快速检测方案,内置大量管控精神类药品和麻醉药品、毒 品数据库,结合增强试剂可实现低浓度(0.01%)毒 品的快速定性筛查,且超高检测灵敏度和精密智能分析算法可满足混合物毒 品分析,解决强荧光干扰等问题。可现场快速检测多种新精神活性物质,如邮票、迷奸水、失忆水、听话水、神仙水、咔哇潮饮、芬太尼、电子烟油内的合成大麻素等不同形态、不同伪装的新型毒 品。如上图,利用表面增强拉曼光谱(SERS)技术,能够实现邮票毒 品的检测。SHINS-P700T主要特点:自建数据库:可自定义数据库混合物检测分析:先进的混合物检测分析;无损检测:不消耗破坏样品 ;操作简单:触控操作、使用方便;针对新型毒 品层出不穷,赛纳斯基于专属数据库及先进独特算法,可快速自建谱库、直接生成并导出检测报告、支持蓝牙、WI-FI、USB等数据传输和数据管理,协助各级缉毒禁毒部门有效打击犯罪。
  • 三项食品安全国家标准征求意见
    近日,卫生部办公厅公布《坚果炒货食品》、《粮食》、《巧克力及其制品》三项食品安全国家标准(征求意见稿),向社会公开征求意见。  坚果炒货  删除无霉变无虫蛀指标  征求意见稿对生干类坚果与籽类细化了感官指标要求,将原标准中的“无异物”改为“无正常视力可见外来异物” 在霉变指标要求上,将“无霉变”改为“霉变粒小于等于2%(带壳),去壳产品不得检出”。  据卫生部有关人士介绍,征求意见稿对坚果炒货的感官要求、理化指标和微生物限量做了修改,并增加了农药残留限量。征求意见稿删除了熟制坚果与籽类感官无霉变、无虫蛀指标要求,原因有两个,一是虫蛀不属于食品安全指标范围 二是生干坚果与籽类,以及产品原料标准中均有霉变要求,故在熟制坚果与籽类标准中将此要求删除。征求意见稿还调高了代表部分炒货被氧化程度的过氧化值指标。  粮食  有害菌类植物种子限量范围扩大  征求意见稿扩大了对有毒有害菌类、植物种子限量的适用范围,增加了玉米、高粱米、小麦、燕麦等农作物中的曼陀罗属及其他有毒植物的种子限量,增加燕麦、莜麦、米大麦中的麦角限量。  据卫生部有关人士介绍,曼陀罗属植物种子均含有一定的毒性,本次修订将原标准中的“曼陀罗籽及其他有毒植物的种子”修改为“曼陀罗属及其他有毒植物的种子”,范围从原来的单一豆类(1粒/千克)扩大到玉米、高粱米、豆类、小麦、燕麦、莜麦、大麦、米大麦(1粒/千克)。此外,另一种有毒有害种子麦角的限量范围,也从大麦和小麦(0.01%)扩大到小麦、燕麦、莜麦、大麦、米大麦(0.01%)。征求意见稿还对霉变粒、有毒有害化学成分限量(氢氰酸、单宁)等指标进行了调整。  巧克力  对铜不再作限量要求  征求意见稿删除了现行标准中关于铜的限量要求。据介绍,2003年版的巧克力卫生标准和老版国际标准中对铜作限量的一个重要原因,是因为当时的熬糖工艺中用铜锅熬糖,而如今的工艺中已不再用铜锅熬糖,铜污染的一个重要途径不存在了。国际食品法规委员会制定的最新版标准中的重金属污染物也没有包括铜。2011年1月10日,卫生部和国家标准化管理委员会公告废止了《食品中铜限量卫生标准》(GB 15199-1994)。在《食品中污染物限量》食品安全国家标准(GB 2762征求意见稿)中也未包括铜在食品中的限量要求。  征求意见稿还对“不允许出现的异物”进行了细化,对原有的“无肉眼可见的杂质”细化为“无玻璃屑、金属屑及硬塑料屑等硬质异物”。
  • 【赛纳斯】1064nm拉曼光谱仪在手,违禁品无所遁形!
    随着时代的进步,不法分子的犯罪手法也不断进步,比如毒贩们不断地推陈出新,让很多青少年易受诱惑,误入歧途,深受其害。从小到大,身边的父母亲人都会告诫我们,不要随意的吃陌生人给你的食物或饮料,因为你不知道他们是人是鬼,古语说的好:“害人之心不可有,防人之心不可无”对待陌生人递上来的东西我们要学会拒绝,不要害怕丢面子,因为这个比起你的人身安全来说不值得一提。现在让小编把市面上危害性及伪装性较大的dupin梳理下。【紫水】“紫水”的主要成分为含可待因(Codeine),实质上与国内普遍使用的止咳糖浆或止咳水是一类滥用物质。配方包括含可待因复方口服液体制剂、含有二氧化碳的软饮料或纯果汁,加冰块制成,在一些地方也进行了改进,加入紫色药水,或配搭其他酒水饮料,混合出好看的颜色和水果味的口感,使得这种饮料深得一些年轻人的喜爱,在低龄人群中流行。【邮票dupin】“邮票dupin”中添加的是LSD(也称麦角二乙酰胺,一种强烈的半人工致幻剂),毒性是一般摇头丸的3倍,它是世界最强致幻剂,几微克就足以让人产生幻觉,使用后通常会心跳加速、血压升高,并出现急性精神分裂和强烈的幻觉,造成极大的心理落差,变得萎靡不振,容易生病。【香料】主要指合成大麻产品,是一种以不同香料和药草,混合不同化学物质制成不同口味品种的低成本化学合成duoin,带有香气,制造方便,成本低廉。以商品名“K2”或“Spice”著称,另有Genie( 精灵) 、Zohai( 佐海) 、迷幻鼠尾草等多种名称。吸食方式与烟熏香料相似,吸食后会造成精神混乱,让人快速晕厥、瘫痪。【0号胶囊】“0号胶囊”,是苯丙胺类(bingdu)衍生物,国家一级精神药物,呈白色或米黄色,可以通过吸烟或鼻腔、直肠粘膜吸收。会让人产生幻觉,属于dupin。食用后易出现亢奋及幻听、幻视等症状。以上这些第三代dupin只是冰山一角,更多的dupin在毒贩的手中经过花样百出的包装,伪装为我们身边日常用品,食品,面对这种新形势下的禁毒,必须加强执法部门的鉴别dupin的工具应用,在保证执法人员自身安全的前提下快速鉴别dupin,为打击贩毒吸毒提供强有力的保障。针对新形势下禁毒应用,厦门赛纳斯自主研发了1064 nm的手持式拉曼光谱仪,内置大量管控精神类药品和麻醉药品、dupin数据库,结合表面增强拉曼试剂可实现低浓度(0.01%)dupin的快速定性筛查,且超高检测灵敏度和精密智能分析算法可满足混合物dupin分析,解决强荧光干扰等问题。采用赛纳斯dupin检测方法,整个检测过程操作简便,仅需处理一次样品,几分钟内即可完成dupin的非靶向筛查鉴别,检测速度非常快。当检测到阳性物质时,仪器智能给出所属类别和危害性信息,帮助执法人员轻松判断是否存在涉毒行为,并提供拍照、身份证、指纹多种存证方式,及时记录涉案人员信息。赛纳斯手持式拉曼光谱仪是一种便携、准确性高的现场快检利器。
  • 开发用于分离和纯化的聚焦梯度
    Jo-Ann M. Jablonski、Thomas E. Wheat and Diane M. Diehl;Waters Corporation, Milford, MA, U.S.引言用于进行分离和纯化的色谱分离方法与分析型分离方法受到相同物理和化学原理的制约。然而,在制备型试验中,科学家通常在大型柱上和高质量负载下分离化合物,并需要更高的分离度以提高所收集组分的纯度和回收率。虽然设计更缓的梯度是提高分离度的一种较好的首选方法,但改变整个分离过程的梯度斜率可导致峰宽加大和总运行时间增加。可替代普通更缓梯度的聚焦梯度仅对需要增加分离度的色谱图部分减小梯度斜率,从而可在不增加总运行时间的情况下提高对洗脱时间接近的色谱峰的分离度。聚焦梯度可根据搜索运行或者直接从第一次制备运行进行定义。试验方法梯度开发步骤■ 确定制备规模的系统体积■ 运行搜索梯度■ 设计聚焦梯度■ 在制备柱上运行聚焦梯度试验条件仪器液相色谱系统: 沃特世 2525型二元梯度模块、2767型样品管理系统、系统流路组织器、2996型光电二极管阵列检测器、AutoPurification&trade 流通池色谱柱: XBridge&trade 制备型OBD&trade C18柱19 x 50 mm、5&mu m(货号186002977)流速: 25mL/分钟流动相A: 0.1%的甲酸水溶液流动相B: 0.1%甲酸-乙腈溶液波长: 260 nm样品混合物磺胺: 10 mg/mL磺胺噻唑: 10 mg/mL磺胺二甲嘧啶: 20 mg/mL*磺胺甲二唑: 10 mg/mL磺胺甲唑: 10 mg/mL磺胺二甲异唑: 4 mg/mL总浓度: 64 mg/mL(溶于二甲基亚砜)*选定用于聚焦梯度的色谱峰结果和讨论确定制备规模的系统体积■ 取下色谱柱并更换成两通。■ 流动相A使用乙腈,流动相B使用包含0.05 mg/mL尿嘧啶的乙腈(解决了非加成性混合和粘滞问题)。■ 在254 nm下进行监测。■ 采集100% A的基线数据5分钟。■ 在5.01分钟时,将梯度设置为100% B并再采集5分钟数据。■ 测定100% A和100% B之间的吸光度差异。■ 计算存在50%吸光度差异时的时间。■ 计算步骤开始时(5.01分钟)和50%时间点之间的时间差异。■ 将时间差异乘以流速。 系统体积被定义为从梯度形成点到色谱柱前端的体积。系统体积用于聚焦梯度的设计。如图1所示,本试验所用仪器配置下的系统体积是3.0 mL。设计聚焦梯度第1步在2.47分钟洗脱3号色谱峰的溶剂浓度在较早的时间点上形成。如图3所示,检测器和梯度形成点之间的偏移量等于系统体积加上柱体积。用于这台特定系统的偏移量等于早期确定的3 mL系统体积再加上19 x 50 mm制备柱的体积(11.9 mL),即14.9 mL。在25 mL/分钟的流速下,溶剂浓度到达检测器需要0.59分钟。2.47分钟的洗脱时间减去0.59分钟的偏移时间等于1.88分钟。由于初始大规模梯度有0.39分钟的保留时间,因此形成洗脱色谱峰的乙腈百分比的时间是1.88分钟减去0.39分钟,即1.49分钟。 第2步计算在2.47分钟洗脱色谱峰的乙腈百分比。原始大规模梯度在5分钟内洗脱 5-50% B,最初梯度的驻留时间为0.39分钟。根据在2.47分钟洗脱出色谱峰的梯度计算得到的乙腈百分比是13.4%,但由于梯度开始于5%乙腈,因此洗脱该峰的乙腈实际浓度是13.4% + 5%,或者说18.4%乙腈。第3步旨在分离梯度中部洗脱时间接近的色谱峰的聚焦梯度应开始于原始小规模试验条件,通常为0-5% B。进样开始后立即将梯度快速增加至比能洗脱目标峰的预期乙腈百分比浓度低5%的乙腈百分比。在搜索梯度中所用的1/5斜率下继续进行缓的聚焦梯度部分。预计一个五倍的更缓梯度可为洗脱时间接近的色谱峰提供更高的分离度。终止高出可洗脱目标峰的预期乙腈百分比浓度5%的聚焦梯度部分。原始梯度在5分钟内洗脱5-50% B,或者说在5分钟内梯度变化45%。这样,乙腈浓度每分钟变化9%(从9%-10%左右简化得到)。然后,新的梯度斜率应为10%的1/5,或者说每分钟变化2%。10%的乙腈浓度改变通过每分钟变化2%而达到,说明用于分离3号和4号峰的聚焦梯度时间片段应持续5分钟。一旦梯度的聚焦部分完成,乙腈百分比快速增加至95% B,以清洗色谱柱。平衡色谱柱后,终止初始条件下的梯度。5-45% B = 每分钟9%(舍入至每分钟10%)梯度斜率每分钟变化2%。 聚焦梯度可明显提高图4所示色谱图中3号峰和4号峰的分离度。5号峰和6号峰因受到梯度聚焦部分的影响而出现移位,梯度部分继续在较缓的斜率下洗脱化合物,直至设定用于进行柱清洗的较高百分比的乙腈进入色谱柱。较缓的聚焦梯度能在不增加运行时间的情况下对天然混合组分提供更高的分离度,因而使色谱分析师能够获得更纯的产物和更好的回收率。结论当科学家为后续试验进行产物纯化时,需要在高质量负载下分离化合物。聚焦梯度可在不增加运行时间的情况下提高对洗脱时间接近色谱峰的分离度,从而改善分离效果。系统体积信息可以对制备型梯度进行直接优化。使用聚焦梯度可提高产物产率和纯度,同时不会增加溶剂消耗量和废液生成量。聚焦梯度方法可实现分离,因而有助于控制纯化成本。关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2010年沃特世拥有16.4亿美元的收入和5,400名员工,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 高载流子迁移率胶体量子点红外探测器
    短波红外和中波红外波段是两个重要的大气窗口。在该波段范围内,碲化汞胶体量子点表现出良好的光响应。此外,胶体量子点具有易于液相加工制备以及与硅基工艺兼容等优势,因此有望显著降低红外光电探测器的成本。然而,目前胶体量子点红外光电探测器在比探测率、响应度等核心性能方面与传统块体半导体红外探测器相比仍存在一定差距。有效地调控掺杂和迁移率等输运性质是提升量子点红外光电探测器性能的关键。据麦姆斯咨询报道,近期,北京理工大学光电学院和北京理工大学长三角研究院的科研团队在《光学学报》期刊上发表了以“高载流子迁移率胶体量子点红外探测器”为主题的文章。该文章第一作者为薛晓梦,通讯作者为陈梦璐和郝群。在本项工作中,采用混相配体交换的方法将载流子迁移率提升,并且实现了N型、本征型、P型等多种掺杂类型的调控。在此基础之上,进一步研究了输运性质对探测器性能的影响。与光导型探测器相比,光伏型探测器不需要额外施加偏置电压,没有散粒噪声,拥有更高的理论灵敏度,因此是本项工作的研究重点。同时,使用高载流子迁移率的本征型碲化汞量子点薄膜制备了短波及中波红外光伏型光电探测器。实验过程材料的合成:Te前驱体的制备在氮气环境下,称量1.276 g(1 mmol)碲颗粒置于玻璃瓶中,并加入10 ml的三正辛基膦(TOP)中,均匀搅拌至溶解,得到透明浅黄色的溶液,即为TOP Te溶液。碲化汞胶体量子点的合成在氮气环境下,称量0.1088 g(0.4 mmol,氮气环境下储存)氯化汞粉末置于玻璃瓶中,并加入16 ml油胺(OAM),均匀搅拌并加热至氯化汞粉末全部溶解。本工作中合成短波红外和中波红外碲化汞胶体量子点的反应温度分别为65℃和95℃。使用移液枪取0.4 mL的TOP Te溶液,快速注入到溶于油胺的氯化汞溶液中,反应时间分别为4 min和6 min。反应结束后加入20 ml无水四氯乙烯(TCE)作为淬火溶液。碲化银纳米晶体颗粒的合成在氮气环境下,称量0.068 g(0.4 mmol)硝酸,并加入1 mL油酸(OA)和10 mL油胺(OAM)中,均匀搅拌30 min。溶解后,注入1 mL TOP,快速加热至160℃并持续30-45 min。然后向反应溶液中注入0.2 mL TOP Te(0.2 mmol),反应时间为10 min。碲化汞胶体量子点的混相配体交换混相配体交换过程包括液相配体交换和固相配体交换。选择溴化双十二烷基二甲基铵(DDAB)作为催化剂,将碲化汞胶体量子点溶在正己烷中,取4 ml混合溶液与160 μL β-巯基乙醇(β-ME)和8 mg DDAB在N,N-二甲基甲酰胺(DMF)中混合。之后向溶液中加入异丙醇(IPA)进行离心,倒掉上清液,将沉淀物重新溶解在60μL DMF中。固相配体交换是在制备量子点薄膜后,用1,2-乙二硫醇(EDT)、盐酸(HCL)和IPA(体积比为1:1:20)溶液对已成膜的碲化汞胶体量子点表面进行处理。碲化汞胶体量子点的掺杂调控在调控碲化汞胶体量子点的掺杂方面,Hg²⁺可以通过表面偶极子稳定量子点中的电子,所以选择汞盐(HgCl₂)来调控量子点的掺杂状态。在液相配体交换结束后,向溶于DMF的碲化汞胶体量子点溶液中加入10 mg HgCl₂得到本征型碲化汞胶体量子点,加入20 mg HgCl₂得到N型碲化汞胶体量子点。材料表征采用混相配体交换的方法不仅可以提高载流子迁移率还可以通过表面偶极子调控碲化汞胶体量子点的掺杂密度。液相配体交换前后中波红外碲化汞胶体量子点的TEM图像如图1(a)所示,可以看到,进行液相配体交换后的碲化汞胶体量子点之间的间距明显减小,排列更加紧密。致密的排列可以提高碲化汞胶体量子点对光的吸收率。混相配体交换后的短波红外和中波红外碲化汞胶体量子点的吸收光谱如图1(b)所示,从图1(b)可以看出,短波红外和中波红外碲化汞胶体量子点的吸收峰分别为5250 cm⁻¹和2700 cm⁻¹。利用场效应晶体管(FET)对碲化汞胶体量子点的迁移率和薄膜的掺杂状态进行测量,把碲化汞胶体量子点沉积在表面有一层薄的SiO₂作为绝缘层的Si基底上,基底两侧的金电极分别作为漏极和源极,Si作为栅极,器件结构如图1(c)所示。通过控制栅极的极性和电压大小,可以使场效应晶体管分别处于截止或导通状态。图1(d)是N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线。利用FET传输曲线的斜率计算了载流子的迁移率μFET。图1 (a)混相配体交换前后碲化汞胶体量子点的透射电镜图;(b)短波红外和中波红外碲化汞胶体量子点的吸收光谱;(c)碲化汞胶体量子点薄膜场效应晶体管测量原理图;(d)在300K时N型、本征型和P型中波红外碲化汞胶体量子点的场效应晶体管转移曲线测试结果。分析与讨论碲化汞胶体量子点光电探测器的制备光伏型探测器不需要施加额外的偏置电压,没有散粒噪声,理论上会具有更好的性能,借鉴之前文献中的报告,器件结构设计为Al₂O₃/ITO/HgTe/Ag₂Te/Au,制备方法如下:第一步,在蓝宝石基底上磁控溅射沉积50 nm ITO,ITO的功函数在4.5~4.7 eV之间。第二步,制备约470 nm的本征型碲化汞胶体量子点薄膜。第三步,取50 μL碲化银纳米晶体溶液以3000 r/min转速旋转30 s,然后用HgCl₂/MEOH(10 mmol/L)溶液静置10 s后以3000 r/min转速旋转30 s,重复上述步骤两次。在这里,Ag⁺作为P型掺杂层,与本征型碲化汞胶体量子点层形成P-I异质结。最后,将器件移至蒸发镀膜机中,在真空环境(5×10⁻⁴ Pa)下蒸镀50 nm Au作为顶层的电极。高迁移率光伏型探测器的结构图和横截面扫描电镜图如图2(a)所示。能级图如图2(b)所示。制备好的探测器的面积为0.2 mm × 0.2 mm。图2 (a)高迁移率碲化汞胶体量子点P-I异质结结构示意图及扫描电镜截面图 (b)碲化汞胶体量子点P-I异质结能带图。器件性能表征为了探究高载流子迁移率短波红外和中波红外光伏型探测器的光电特性,我们测试了器件的I-V曲线以及响应光谱。图3(a)和(b)分别是高迁移率短波红外和中波红外器件的I-V特性曲线,可以看到短波红外和中波红外探测器的开路电压分别为140 mV和80 mV,这表明PI结中形成了较强的内建电场。此外,在零偏置下,高迁移率短波红外和中波红外器件的光电流分别为0.27 μA和5.5 μA。图3(d)和(e)分别为1.9 μm(300 K) ~ 2.03 μm(80 K)的短波红外器件的响应光谱和3.5 μm(300 K) ~ 4.2 μm(80 K)的中波红外器件的响应光谱。比探测率D*和响应度R是表征光电探测器性能的重要参数。R是探测器的响应度,用来描述器件光电转换能力的物理量,即输出信号光电流与输入光信号功率之比。图3 (a)300 K时短波红外I-V曲线;(b)80 K时中波红外I-V曲线;(c)短波红外及中波红外器件的比探测率随温度的变化;(d)短波红外器件在80 K和300 K时的光谱响应;(e)中波红外器件在80 K和300 K时的光谱响应;(f)短波红外和中波红外器件的响应度随温度的变化。图3(e)和(f)给出了探测器的比探测率D*和响应度R随温度的变化。可以看到,短波红外器件在所有被测温度下,D*都可以达到1×10¹¹ Jones以上,中波红外器件在110 K下的D*达到了1.2×10¹¹ Jones。应用此外,本工作验证高载流子迁移率的短波红外和中波红外量子点光电探测器在实际应用,如光谱仪和红外相机。光谱仪实验装置示意图如图4(a)所示,其内部主要是一个迈克尔逊干涉仪。图4(b)和(c)为使用短波红外和中波红外量子点器件探测时有样品和没有样品的光谱响应结果。图4(e)和图4(f)为样品在短波红外和中波红外波段的透过率曲线。对于短波红外波段,选择了CBZ、DDT、BA和TCE这四种样品,它们在可见光下都是透明的,肉眼无法进行区分,但在短波红外的光谱响应和透过率不同。对于中波红外波段,选择了PP和PVC这两个样品。在可见光下它们都是白色的塑料,但在中波红外光谱响应和透过率不同。图4(d)为自制短波红外和中波红外单点相机的扫描成像。,短波相机成像可以给出材质信息。中波红外相机成像则是反应热信息。以烙铁的中波红外成像为例,我们可以清楚地了解烙铁内部的温度分布。在可见光下,硅片呈现不透明的状态使用自制的短波红外相机成像后硅片呈现半透明的状态。图4 (a)利用高载流子迁移率探测器进行响应光谱测量的原理示意图;(b)和(c)分别是在有样品和没有样品两种模式下用自制探测器所探测到的光谱响应;(d)自制短波红外和中波红外光电探测器的单像素扫描成像结果图;(e)TCE、BA、DDT和CBZ在短波红外模式下的透光率,插图为四种样品的可见光图像;(f)PVC和PP在中波红外模式下的透光率,插图为两种样品的可见光图像。结论综上所述,采用混相配体交换的方法,将量子点薄膜中的载流子迁移率提升到了1 cm²/Vs,相较于之前的研究提升了2个量级。并且通过加入汞盐实现了对量子点薄膜的掺杂调控,分别实现了P型、本征型以及N型多种类型的量子点薄膜。同时,基于本征型高迁移率量子点制备了短波红外和中波红外波段的光伏型光电探测器。测试结果表明,提升量子点的输运性质,有效的提升了探测器的响应率、比探测率等核心性能,并且实现了光谱仪和红外相机等应用。本项工作促进了低成本、高性能量子点红外光电探测器的发展。这项研究获得国家自然科学基金(NSFC No.U22A2081、No.62105022)、中国科学技术协会青年托举工程(No.YESS20210142)和北京市科技新星计划(No.Z211100002121069)的资助和支持。论文链接:https://link.cnki.net/urlid/31. 1 252.o4.20230925.0923.016
  • 美国麦乐鸡被指含泥胶成分 麦当劳将发函说明
    美国有线电视新闻网(CNN)进行的研究发现,美国麦当劳出售的麦乐鸡含有玩具泥胶的成分化学消泡剂二甲基聚矽氧烷,以及从石油中提炼的抗氧化剂特丁基对苯二酚。  据美媒日前报道,美国麦当劳全球传媒关系经理麦孔解释,在麦乐鸡中加入二甲基聚矽氧烷,是基于安全理由,用以防止炸鸡块的食油起泡。而据世界卫生组织的动物测验显示,微量该物质对人体无害。  二甲基聚矽氧烷这种化学消泡剂也用于玩具泥胶和化妆品,并为治疗腹胀的药物的成分之一。有美食专家指出,鸡块中必须含有这种化学物质,才能维持形状和口感。  不仅如此,化验还显示,美国的麦乐鸡含有化学成分特丁基对苯二酚,每块含量达0.02%。这种物质从石油中提炼,用于植物油与动物脂肪的防腐剂。人体摄取1克会出现反胃、耳鸣、作呕的反应,严重者会窒息和虚脱。  美国烹饪节目主持人金博尔认为,麦当劳加入这些化学物质,是想保持麦乐鸡的质感和方块形状。纽约大学教授奈斯特莱表示,麦乐鸡含有的二甲基聚矽氧烷和特丁基对苯二酚应该不会对人体健康构成太大风险。  另外化验结果显示,4块美国的麦乐鸡含190卡路里热量、12克脂肪和2克饱和脂肪,全高于英国的麦乐鸡,更不健康。  麦当劳发言人表示,这是由于两地制作麦乐鸡的方法不同,英国麦当劳会先煮鸡块再涂炸浆,而美国麦当劳制作次序刚好倒转,故美国的麦乐鸡吸收较多油分,脂肪也较多。英国的麦乐鸡也不含上述两种化学成分。  麦当劳回应  今天将发函说明情况  7月5日上午,麦当劳中国公司公关部相关负责人表示,已经知道美国的这个报道,今天一上班就由麦当劳中国公司的品质控制部门联系其麦乐鸡的供应商了解情况。  目前,情况还没有反馈回总部。不过该负责人表示,今天晚些时候,麦当劳将发媒体函,说明中国的麦乐鸡是否存在相同问题。  专家解读  食品用“二甲”必须先申报  今天上午,解放军306医院药剂科副主任药师刘刚表示,将化工产品当做食品添加剂,应经过申报检验才能被批准。  刘刚表示,按照相关规定,将带有“二甲”的化学产品作为添加剂或是膨松剂等使用,是应该需要申报的,但具体在美国食品检验中,规定哪些物质是一定要经过检验合格才能添加的也不是太清楚,因此不好判断。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制