当前位置: 仪器信息网 > 行业主题 > >

卵黄乳液

仪器信息网卵黄乳液专题为您提供2024年最新卵黄乳液价格报价、厂家品牌的相关信息, 包括卵黄乳液参数、型号等,不管是国产,还是进口品牌的卵黄乳液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合卵黄乳液相关的耗材配件、试剂标物,还有卵黄乳液相关的最新资讯、资料,以及卵黄乳液相关的解决方案。

卵黄乳液相关的方案

  • 甘露醇卵黄多粘菌素琼脂检测方法
    甘露醇卵黄多粘菌素琼脂(简称MYP琼脂),也称蜡状芽孢杆菌选择性琼脂(简称BCS琼脂),是一种高度选择性培养基,用于检测和增菌食品样本中的蜡状芽孢杆菌。成分  蛋白胨            10g  牛肉膏            1g  甘露醇            10g  氯化钠            10g  琼脂             15g  蒸馏水            1000mL  0.2%酚红溶液         13mL  50%卵黄液          50mL  多粘菌素B          100 国际单位/mL  pH7.4制法  将前面五种成分加入于蒸馏水中,加热溶解,校正pH,加入酚红溶液。分装烧瓶,每瓶100mL,121℃高压灭菌15min。临用时加热溶化琼脂,冷至50℃,每瓶加入50%卵黄液5mL及多粘菌素B10000国际单位,混匀后倾注平板。
  • 氮吹仪在卵磷脂的提取和定性鉴定中的应用
    机体的各组织和细胞均含卵磷脂,其中在脑、神经组织、肝、心脏、肾上腺和精液中含量较为丰富,卵黄中含量最多(约含10%)。卵磷脂易溶于乙醇、乙醚等亲脂溶剂,可利用此类溶剂提取。它不溶于丙酮,利用此性质可与中性脂肪分离。纯卵磷脂中的胆碱基在碱性溶液中分解成三甲胺,三甲胺有特异鱼腥臭味,可鉴别。
  • 卵磷脂的提取和定性鉴定
    机体的各组织和细胞均含卵磷脂,其中在脑、神经组织、肝、心脏、肾上腺和精液中含量较为丰富,卵黄中含量最多(约含10%)。卵磷脂易溶于乙醇、乙醚等亲脂溶剂,可利用此类溶剂提取。它不溶于丙酮,利用此性质可与中性脂肪分离。纯卵磷脂中的胆碱基在碱性溶液中分解成三甲胺,三甲胺有特异鱼腥臭味,可鉴别。
  • 卵黄抗体中IgY检测方案(填料)
    用YMC-BioPro Q75阴离子交换填料和YMC-Pack Diol-200体积排阻色谱柱从蛋黄提取物中分离纯化抗体IgY,IgY纯度超过99%。
  • 凯氏定氮仪测定蛋黄卵磷脂的氮含量
    蛋黄卵磷脂是一种磷脂混合物,主要成分是磷脂酰胆碱(PC),因此其生理作用也以PC的功能为主。蛋黄卵磷脂含氮(N)量应为1.75%~1.95%。蛋黄卵磷脂对热非常敏感,在酸性、碱性和酯酶作用下易水解。对蛋白质、蛋黄过敏者禁用。用于乳化剂、脂质体膜材、食品领域等[1]。据大多数报告,PC能抑制血清甘油三酯和总胆固醇,而提高高密度脂蛋白。本实验参照《中国药典》2020版规定蛋黄卵磷脂用0704氮测定方法进行测定[2]。
  • 姜黄素纳米乳液稳定性受不同乳化剂,均质条件的影响系列二
    姜黄素(curcumin,二阿魏酰基甲烷)是一种从姜黄根茎中获得的天然黄色色素,姜黄素独特的风味和颜色,被广泛作为香料或着色剂等在国内外使用。研究发现其具有抗氧化、抗炎,护肝、抗癌和抗肿瘤等多种生物和药理活性,已成为国内外研究热点。然而其在碱性和光照条件下易分解,稳定性及水溶解性差,纯水中的溶解度约为11ng/mL。此外,直接口服姜黄素后几乎都以粪便和尿液形式被排泄出去,仅有少量被人体吸收,严重影响其在功能性食品和医药品中的应用。如何提高姜黄素的生物利用率、稳定性与水溶性是目前的研究重点及难点。最近研究表明,将一些脂溶性的,具有生物活性的化合物植入运载体系中,如制备姜黄素纳米乳液,姜黄素磷脂复合物,姜黄素多糖复合物等,姜黄素经处理,其液滴尺寸较小,对姜黄素起到保护作用,大大提高了其稳定性及水溶解性等。本研究目的是通过高压微射流均质建立4种(蛋白质类、多糖类、小分子合成乳化剂、磷脂类)稳定的姜黄素乳液运载体系,采LUMiSizer快速稳定性分析仪研究不同均质压力、均质次数、乳化剂浓度对姜黄素乳液稳定性的影响。
  • 石蜡乳液的质量控制
    石蜡乳液是包括石油蜡在内的各种蜡,经物理改性制成的一种含蜡含水的均匀流体,是由石蜡与几种不同种类、性能的乳化剂及适当的调节剂经乳化反应制成的固-油-水多相分散体系的乳状液。石蜡乳液具有抗酸、抗碱、耐硬水、水溶性强、乳液稳定,稀释不分层、不破乳、不结块、保质期长、固含量高、分散性好等特点,目前广泛应用于皮革业,建筑业,农业,造纸,木材防水,水性涂料等行业。本文介绍了某石蜡乳液的制造商,用离心式分散体分析仪LUMiSizer对其生产的不同批次及不同储存期限的产品进行稳定性监测的案例。
  • 海能仪器:蛋黄卵磷脂中蛋白质含量测定(凯氏定氮法)
    根据《中国药典2015版》进行测定。蛋黄卵磷脂中的有机态氮在浓硫酸和催化剂的共同作用下,转化为氨态氮。加碱蒸馏后,用硼酸吸收后,再以硫酸标准滴定液进行滴定。
  • 乳液的稳定性及货架期推算的精确快速评价法
    乳液作为化妆品中最基本的产品,种类繁多。一般由两种及以上流体成分混合而成,其中一种必以液滴的形式分散于另外一相中,形成O/W分散相。乳液属于热力学不稳定体系,产品容易变得不稳定,因此货架期稳定性评估成为化妆品乳液产品生产发展的主要问题。传统方式进行乳液稳定性及货架期推算大多采用静置或条件静置方式,周期过长且不够准确。而采用多重光散射及离心加速的方式可以更为有效科学的对乳液稳定性及货架期进行评估、推算。
  • 姜黄素纳米乳液稳定性受高压微射流均质条件的影响 Part-1
    姜黄素(curcumin,二阿魏酰基甲烷)是一种从姜黄根茎中获得的天然黄色色素,姜黄素独特的风味和颜色,被广泛作为香料或着色剂等在国内外使用。研究发现其具有抗氧化、抗炎,护肝、抗癌和抗肿瘤等多种生物和药理活性,已成为国内外研究热点。然而其在碱性和光照条件下易分解,稳定性及水溶解性差,纯水中的溶解度约为11ng/mL。此外,直接口服姜黄素后几乎都以粪便和尿液形式被排泄出去,仅有少量被人体吸收,严重影响其在功能性食品和医药品中的应用。如何提高姜黄素的生物利用率、稳定性与水溶性是目前的研究重点及难点。最近研究表明,将一些脂溶性的,具有生物活性的化合物植入运载体系中,如制备姜黄素纳米乳液,姜黄素磷脂复合物,姜黄素多糖复合物等,姜黄素经处理,其液滴尺寸较小,对姜黄素起到保护作用,大大提高了其稳定性及水溶解性等。本研究目的是通过高压微射流均质建立4种(蛋白质类、多糖类、小分子合成乳化剂、磷脂类)稳定的姜黄素乳液运载体系,采LUMiSizer快速稳定性分析仪研究不同均质压力、均质次数、乳化剂浓度对姜黄素乳液稳定性的影响。
  • 评估破乳剂对原油乳液稳定性的影响– 实时和加速分析
    由于生产条件的原因,原油大多以油包水乳液的形式获得,这些乳液通过沥青质、蜡和细颗粒来稳定。实际上,提炼原油的第一步是分离水。目的是最经济有效地破坏乳液,使水相完全分离。通常使用表面活性物质与热处理相结合,促使水滴聚结、水分离。原油是一种非常复杂的混合物,其化学成分和物理性质因产地不同而有很大差异。水、盐和矿物质的含量变化很大。混合料的不同不仅会影响其粘度、密度等宏观特性,还会影响破乳剂的种类和最佳用量。因此,市场上不断开发新的破乳剂。为了开发和选择合适的破乳剂,必须使用多种不同的破乳剂测试各种原油乳液。出于技术和经济原因,必须确定其最佳浓度。一种短时间内量化分离过程的有效的测试方法,将作为期瓶试法的替代方案。
  • 稀释剂对重质油油乳液稳定性的影响
    蒸汽辅助重力泄油技术(SAGD)是开发超稠油的一项前沿技术,其机理是在注汽井中注入蒸汽,蒸汽向上超覆在地层中形成蒸汽腔,蒸汽腔向上及侧面扩展,与油层中的原油发生热交换,加热后的原油和蒸汽冷凝水靠重力作用泄到下面的水平生产井中产出。在这一过程中会产生复杂的W/O/W乳液,为了获得无水稠油需要将乳液进行相分离。由于重质油的密度与水接近,经常采取稀释的方法降低沥青的粘度来加速相分离过程。在本文中,利用静态多重光散射仪Turbiscan测量了重质油乳液的不稳定现象,评价了不同种类稀释剂对重质油油乳液稳定性的影响。
  • 使用Turbiscan研究化妆品乳液的凝胶化现象
    凝胶的获得主要通过两种机理:通过聚合物的网状物创造一个网络结构(例如明胶),或者通过颗粒的聚集或絮凝形成网络结构(例如酸奶)。在化妆品工业中,经常用凝胶来获得不同的质感,同一个乳液凝胶前后的微观结构也会明显不同对于通过絮凝成型凝胶的乳液体系,液滴之间的相互作用依赖于温度、液滴尺寸、盐浓度和乳液浓度等因素。配方研发者需要知道乳液在何种条件下出现凝胶,乳液是否有凝胶化的趋势,凝胶的特征,凝胶存在的条件和稳定性,等等。本文中,我们呈现了几个变量对乳液凝胶化的影响。
  • 低场核磁法研究abs乳液聚合及橡胶含量
    乳液聚合是单体借助乳化剂和机械搅拌,使单体分散在水中形成乳液,再加入引发剂引发单体聚合。在用乳液聚合方法生产合成橡胶时,除加入单体、水、乳化剂和引发剂四种主要成分外,还经常加入缓冲剂(用于保持体系PH不变)、活化剂(形成氧化还原循环系统)、调节剂(调节分子量、抑制凝胶形成)和防老剂(防止生胶及硫化胶老化)等助剂。工业化品种有乳聚丁苯橡胶,聚丙烯酸酯乳液等。
  • 温度对精华乳液稳定性的影响
    精华乳是一种富含精华成分的护肤品,作用效果和精华液差不多。精华乳质地浓稠保湿效果更好,对于肌肤的防护、修复、缓解衰老等有着较为显著的效果,其主要作用包括补水保湿、美白祛斑、抗衰老、抗氧化等。精华乳和精华液的功效基本相同,精华液和精华乳的区别是,精华乳的质地比精华液的质地更加黏稠,但不及面霜或其他膏霜类的厚重感,一般也相比膏霜类产品更受温度等其他因素的影响导致乳液分层。在长途运输过程中,产品所处的环境比较恶劣,温度高且伴随有振动等影响,稳定性受到挑战。在一般情况下,考察产品物理稳定性主要用到烘箱和培养箱进行高温3个月的加速试验,进而来观测产品是否存在明显得到分层,破乳,颗粒团聚等情况,若出现不稳定情况再来调整配方和工艺,特别是品牌方或者OEM方开发全新的配方,产品开发周期的时间更久,往往要重复多次。LUMiSizer?稳定性分析仪能在短时间的测试中对乳液产品进行不同温度稳定性考察,得到产品稳定性结果,帮助研发人员及时发现问题优化配方。
  • 利用LUMiFuge®稳定性分析仪测定W/O/W型双重乳液的产率
    双重乳液可用作O/W乳液的低能替代品,因为部分油相被封闭的水相所取代。此外,它们还可用于封装和保护内部水滴内的敏感成分。双重乳液主要使用两步工艺制备。在第一步中制备W1/O初级乳液,随后在第二乳化步骤中用作油相。双重乳液配方技术中一个非常重要的参数是产率。产率表示在第二乳化步骤(其中制备W/O/W乳液)之后仍存在于油相中的初级W1/O乳液的生产过程中使用的水量。
  • 肌浆蛋白与黄原胶的热力学不相容诱导界面蛋白浓缩对油水乳剂的稳定作用——Turbiscan
    本研究研究了肌浆蛋白(SPs)与黄原胶(XG)在水溶液中的热力学不相容现象,以及诱导界面浓缩对乳状液稳定性的增强作用。使用法国Formulaction公司的Turbiscan多重光散射仪获得了稳定指数和delta BS曲线,数据表明肌浆蛋白与黄原胶悬浮液中,1%是肌浆蛋白的临界浓度,超过这个浓度热力学和动力学不相容显著增强,这意味着肌浆蛋白浓度一旦超过1%就会导致相分离。在乳液体系中,当SP浓度达到2% (w/v)时,液滴粒径分布和絮凝作用减小,0.5% XG的乳液具有较好的物理稳定性。通过分析界面性质结果,发现XG的加入对乳液界面上的蛋白具有浓缩作用,导致界面压力增大、ζ 电位下降,表明电荷稳定效应并不是SP/XG乳液的主要稳定因素。本研究可能对SPs的循环利用和肉蛋白乳液的界面浓缩效应的调控具有潜在的意义。
  • LUMiSizer®对不同乳化体系的液晶乳液进行快速稳定性分析
    液晶结构乳状液是近几年来备受化妆品领域关注的乳化体系,可通过选择特定结构的乳化剂,使其分子在油水界面处通过定向排列形成有序的多层结构制备得到。层状液晶结构与角质层细胞间脂质多层结构相似,具有良好的稳定性、清新自然的肤感,同时能够延长水合作用和闭合作用,控制活性成分缓释。含有液晶结构的护肤品具有广阔的应用前景,但同时液晶乳液的制备仍然存在液晶形成概率小、形状不规整、单位面积内数量少、液晶织构结构稳定性难以保证等问题。不同种类的乳化剂形成液晶的能力有所差别,是影响层状液晶结构形成的最主要因素。本文使用LUMiSizer®对鲸蜡硬脂醇、山嵛醇对葡糖苷类、硬脂酰类和聚甘油类乳化剂制备得到的层状液晶乳液稳定性进行了探究,以期为液晶乳液中乳化剂的选择提供更多的实践基础以及理论依据,为开发兼具优异性能及稳定性的高端化妆品提供基础信息。
  • LUMiSizer®对不同乳化体系的液晶乳液进行快速稳定性分析
    液晶结构乳状液是近几年来备受化妆品领域关注的乳化体系,可通过选择特定结构的乳化剂,使其分子在油水界面处通过定向排列形成有序的多层结构制备得到。层状液晶结构与角质层细胞间脂质多层结构相似,具有良好的稳定性、清新自然的肤感,同时能够延长水合作用和闭合作用,控制活性成分缓释。含有液晶结构的护肤品具有广阔的应用前景,但同时液晶乳液的制备仍然存在液晶形成概率小、形状不规整、单位面积内数量少、液晶织构结构稳定性难以保证等问题。不同种类的乳化剂形成液晶的能力有所差别,是影响层状液晶结构形成的最主要因素。本文使用LUMiSizer®对鲸蜡硬脂醇、山嵛醇对葡糖苷类、硬脂酰类和聚甘油类乳化剂制备得到的层状液晶乳液稳定性进行了探究,以期为液晶乳液中乳化剂的选择提供更多的实践基础以及理论依据,为开发兼具优异性能及稳定性的高端化妆品提供基础信息。
  • 乳液化妆品的质控测试
    化妆品产品的配方非常复杂,并且各类活性成分会起到重要作用。而消费者则期望某一大类的膏霜产品具备相同的质感,无论其中的特殊成分是芦荟,柠檬草,牛奶还是蜂蜜。因此,开发能被消费者接受或者期待的质感的产品是化妆品配方工艺中最重要的挑战之一。测试一种乳液化妆品的流变性能则是这个产品质控过程中的重要一环。乳液化妆品流变测试的典型参数基本是粘度,触变性和屈服应力。产品的粘度与其各类性能相关,取决于应用的剪切速率范围。例如,在皮肤上涂抹的感觉对应于高剪切速率下的粘度大小,而储存稳定性则依赖于低剪切速率下的粘度。
  • 乳液化妆品的质控测试
    化妆品产品的配方非常复杂,并且各类活性成分会起到重要作用。而消费者则期望某一大类的膏霜产品具备相同的质感,无论其中的特殊成分是芦荟,柠檬草,牛奶还是蜂蜜。因此,开发能被消费者接受或者期待的质感的产品是化妆品配方工艺中最重要的挑战之一。测试一种乳液化妆品的流变性能则是这个产品质控过程中的重要一环。乳液化妆品流变测试的典型参数基本是粘度,触变性和屈服应力。产品的粘度与其各类性能相关,取决于应用的剪切速率范围。例如,在皮肤上涂抹的感觉对应于高剪切速率下的粘度大小,而储存稳定性则依赖于低剪切速率下的粘度。
  • 乳液化妆品的质控测试
    化妆品产品的配方非常复杂,并且各类活性成分会起到重要作用。而消费者则期望某一大类的膏霜产品具备相同的质感,无论其中的特殊成分是芦荟,柠檬草,牛奶还是蜂蜜。因此,开发能被消费者接受或者期待的质感的产品是化妆品配方工艺中最重要的挑战之一。测试一种乳液化妆品的流变性能则是这个产品质控过程中的重要一环。乳液化妆品流变测试的典型参数基本是粘度,触变性和屈服应力。产品的粘度与其各类性能相关,取决于应用的剪切速率范围。例如,在皮肤上涂抹的感觉对应于高剪切速率下的粘度大小,而储存稳定性则依赖于低剪切速率下的粘度。
  • 特殊医学用途配方食品全营养乳液的稳定性
    特殊医学用途配方食品(Food for Special Medical Purpose, FSMP),是为了满足进食受限、消化吸收障碍、代谢紊乱或特定疾病状态人群对营养素或膳食的特殊需要,专门加工配制而成的配方食品。全营养乳液是一个成分复杂的缓冲体系,由蛋白质、脂肪、碳水化合物、维生素和矿物质类组成。它在热力学上属于不稳定体系,既有蛋白质等微粒形成的悬浮液、脂肪乳浊液,又有以糖、盐类形成的真溶液。其主要质量问题为加工及贮藏中出现沉淀、分层以及脂肪上浮的问题。从微观上表现为乳状液分散相颗粒的迁移(表现为沉淀和析水),或是分散相颗粒平均粒径大小的变化(表现为团聚和絮凝)。凡是影响全营养乳液中蛋白质稳定性的因素,破坏蛋白结构稳定性的因素都会影响产品的稳定性,例如稳定剂、乳液体系的pH、矿物质盐以及蛋白诱导胶凝等因素都会影响到产品的稳定性。全营养乳液这一复杂的体系不仅需要合适的工艺,还需要适量的稳定剂、乳化剂以及一定的体系条件(pH、金属离子浓度)以保持液体的稳定性。本文主要研究胶体对全营养乳液稳定性的影响。
  • 扩散波谱仪在乳液中的应用
    利用扩散波谱技术对乳液进行测试。由扩散波光谱法微流变仪所得到的数值,具有很高的再现性,因而在与时间有关的特性研究上,例如乳胶的老化及稳定特性等,是非常有价值的工具。
  • 美藤果油纳米乳液稳定性分析研究
    美藤果油是一种含有丰富 α-亚麻酸的功能性植物油,其 α-亚麻酸含量分别是橄榄油的 67. 09 倍、茶籽油的 175. 46 倍、花生油的 506. 89 倍,不饱和脂肪酸质量分数可达 93% ,研究表明,美藤果油在调节人体血脂、预防心血管疾病、增强免疫力、抗菌消炎、保养肌肤等方面具有显著疗效。然而,由于美藤果油中不饱和脂肪酸含量极高,其在贮藏加工中极易发生氧化,且又因为油类物质具有水溶性差、口服利用率低等不足,大大限制了其作为功能油脂在食品中的开发应用。纳米乳液( nanoemulsions) ,多指平均粒径为50 ~500 nm 的乳液体系,是由水、油、表面活性剂或助表面活性剂等按一定比例混合,经过一定的外部能量输入( 如搅拌、均质、分散、超声等) 所形成的热力学稳定的胶体分散体系。纳米乳液可以改善功能性油脂在水相食品中的溶解性和分散性,使功能性油脂可以应用到多相多组分的油水分散体系。纳米乳液与其他乳液体系相比,在乳液稳定性和食品安全性等方面具有较好的优势。将美藤果油制作成美藤果油纳米乳液,可以解决其水溶性差、口服利用率低、贮藏和加工过程中易发生氧化变质等加工应用方面的难题,同时保留美藤果油作为功能性油脂的营养价值,有利于其作为功能性辅料在食品领域进行广泛应用。
  • 利用LumiSizer研究分析DHA乳液的稳定性
    介绍二十二碳六烯酸(DHA)是一种ω -3长链多不饱和脂肪酸(ω -3 LCPUFA)。DHA具有很好的保健作用,如预防心血管疾病的发生、抗炎、促进视觉和神经发育、改善大脑功能、降低癌症风险以及预防其他代谢和慢性疾病。然而,DHA的结构由双烯丙基亚甲基组成,所有-CH=CH-键均以顺式构型存在,故DHA在有氧、光照、热等环境下很不稳定。据报道,ω -3 LCPUFA氧化会形成对人体有害的化合物和难闻的异味,极易氧化和低水溶性会降低DHA的生物利用度,这都大大限制DHA了在加工食品和饮料中的利用。近年来很多研究致力于研究包埋DHA的乳液载体系统,这类系统可用于包埋DHA,以提高其水溶性、物理化学稳定性及其生物利用度。已开发出越来越多的基于乳液的系统,这些系统具有不同的特性,以满足特定加工应用中胶囊成分的结构和功能要求,包括多重乳液、胶体体、微团簇、聚合物复合物、填充水凝胶微球和脂质体。上述每种系统都有各自的优缺点。因此,应根据应用条件选择合适的载体系统。一般来说,蛋白乳液受环境条件的影响,如pH值、温度和离子强度。乳状液本质上是热力学不稳定的系统。当pH值接近吸附蛋白质的等电点(pI)时,或在存在高离子强度时,由于液滴之间的静电斥力减少,可能发生聚结、絮凝、乳状化和相分离。 Ningning Ma等人利用利用LumiSizer研究分析DHA乳液和微粒在不同的pH条件下的稳定性。这也为DHA乳液设计和制造微粒提供理论和数据的支持,使得DHA今后可更好地添加在食品、饮料和医药产品中,发挥其有益的功能特性。
  • HPLC-ELSD法测定蛋黄卵磷脂中的磷脂酰胆碱和磷脂酰乙醇胺
    本文使用岛津高效液相色谱仪Nexera LC-40与蒸发光散射检测器ELSD-LT Ⅲ连用,建立了蛋黄卵磷脂中的磷脂酰胆碱和磷脂酰乙醇胺的定量分析方法。该方法中,磷脂酰胆碱和磷脂酰乙醇胺分别在5 ~ 1000 mg/L,2.5 ~ 500 mg/L线性范围内线性良好,相关系数均大于0.999,准确度为89.3~108.7%;精密度实验中,重复分析6次,各目标化合物保留时间RSD为0.14 ~ 0.22%,峰面积RSD为2.85 ~ 2.95%,精密度良好。实际样品加标实验中,各目标化合物低、中、高浓度加标回收率为82.0 ~ 99.5%,准确度较好。实验结果表明,该方法能准确地测定蛋黄卵磷脂中的磷脂酰胆碱和磷脂酰乙醇胺含量。
  • 利用LUMiSizer研究分析DHA乳液的稳定性
    1.介绍二十二碳六烯酸(DHA)是一种ω -3长链多不饱和脂肪酸(ω -3 LCPUFA)。DHA具有很好的保健作用,如预防心血管疾病的发生、抗炎、促进视觉和神经发育、改善大脑功能、降低癌症风险以及预防其他代谢和慢性疾病。然而,DHA的结构由双烯丙基亚甲基组成,所有-CH=CH-键均以顺式构型存在,故DHA在有氧、光照、热等环境下很不稳定。据报道,ω -3 LCPUFA氧化会形成对人体有害的化合物和难闻的异味,极易氧化和低水溶性会降低DHA的生物利用度,这都大大限制DHA了在加工食品和饮料中的利用。近年来很多研究致力于研究包埋DHA的乳液载体系统,这类系统可用于包埋DHA,以提高其水溶性、物理化学稳定性及其生物利用度。已开发出越来越多的基于乳液的系统,这些系统具有不同的特性,以满足特定加工应用中胶囊成分的结构和功能要求,包括多重乳液、胶体体、微团簇、聚合物复合物、填充水凝胶微球和脂质体。上述每种系统都有各自的优缺点。因此,应根据应用条件选择合适的载体系统。一般来说,蛋白乳液受环境条件的影响,如pH值、温度和离子强度。乳状液本质上是热力学不稳定的系统。当pH值接近吸附蛋白质的等电点(pI)时,或在存在高离子强度时,由于液滴之间的静电斥力减少,可能发生聚结、絮凝、乳状化和相分离。 Ningning Ma等人利用利用LumiSizer研究分析DHA乳液和微粒在不同的pH条件下的稳定性。这也为DHA乳液设计和制造微粒提供理论和数据的支持,使得DHA今后可更好地添加在食品、饮料和医药产品中,发挥其有益的功能特性。
  • 海能仪器:蛋黄卵磷脂中氮含量测定的产品配置单(凯氏定氮仪)
    通过数据可知,实验选取的样本为合格的蛋黄卵磷脂,其氮含量符合标准规定的1.75%~1.95%的范围。利用全自动凯氏定氮法测定蛋黄卵磷脂中的氮含量平行性良好,且具有操作简单,安全性高,节省人力等优点。
  • 脱鸡蛋中胆固醇的方法及制备低刞固醇蛋黄粉的工艺研究
    概括起来,主要有四个方面的作用:一、健脑益智:蛋粉中的卵磷脂、甘油三脂、卵黄素对神经系统和身体发育有很大的作用。卵磷脂被人体消化后,可释放出胆碱,胆碱会通过血液到达脑内,从而可避免老年人的智力衰退,并可尾部各个年龄组的记忆力。二、保护肝脏;蛋粉中高含量的卵磷脂可促进肝细胞的再生,还可提高人体血浆蛋白量,增强肌体的代谢功能和免疫功能;三、是防治动脉硬化;四、预防癌症:蛋粉中含有较多的维生素B2,它可以分解和氧化人体的致癌物质,另外,蛋粉中的微量元素,如硒锌等也都具有防癌作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制