当前位置: 仪器信息网 > 行业主题 > >

斜卧青霉

仪器信息网斜卧青霉专题为您提供2024年最新斜卧青霉价格报价、厂家品牌的相关信息, 包括斜卧青霉参数、型号等,不管是国产,还是进口品牌的斜卧青霉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合斜卧青霉相关的耗材配件、试剂标物,还有斜卧青霉相关的最新资讯、资料,以及斜卧青霉相关的解决方案。

斜卧青霉相关的资讯

  • 周青梅:我与近红外的故事
    仔细拜读了各位老师讲述的近红外故事,在佩服学习之余也有些动笔的冲动。相对于各位专家,我对近红外技术研究不值一提,但对近红外的实际应用特别是在啤酒行业的应用时时刻刻想去关注。  对近红外的了解,从1997年进入检测行业就有听说,实验室的前辈们反映的情况是近红外检测只是快速但不够准确,不适合实验室的仲裁检测。但其快速环保的检测手段还是让我时刻关注其应用情况,希望自己的实验室也能有这样的仪器。随着企业的发展壮大,对检测频次的要求越来越高,对检测速度的要求也越来越高。啤酒的原辅料属于农产品,产品质量经常是参差不起,需要加大检测的频次才能更好的评价产品质量。特别是2007年,啤酒生产的原料大麦,由于进口大麦产量的减少,价格不断飘升,啤酒企业纷纷把眼光转向国产大麦,由于我国是各家各户的种植方式,每家的品质都会有所区别,必须进行大批量的快速检测来对大麦进行筛选分类才能满足工艺要求,寻找一种快速准确的分析方法成了当务之急,此时实验室人员又把目光聚焦在了近红外上,不同的仪器厂家都表示能解决我们的检测难题,但由于以前购买近红外仪的使用效果不是很理想、关于近红外在啤酒行业的应用及相关文献少造成各部门对近红外仪实际应用的担心,又加上仪器的价格高等原因,所以采购仪器在进行审批时困难重重。在这种情况下,FOSS公司为我们提供了一台试用仪器,通过与FOSS公司技术人员的共同努力,我们对近红外分析法和国家标准方法进行了显著性检验,通过大量数据得出了近红外光谱法和国家标准方法的检测准确性无显著性差异且精确度高于国标方法。消除了各部门对检测准确性的怀疑,很快就购买了第一台近红外分析仪,对啤酒原料大麦进行快速检测。高效准确的检测结果让我们对近红外分析仪的应用有了信心,在工作之余也进行相关的探索,建立了一些适合啤酒原料(如大米、麦芽等)的分析模型,解决了因检测速度慢而影响采购进度和生产工艺调整的难题,得到了行业专家的认可。  2013年,中国仪器仪表学会、近红外光谱分会的燕泽程、刘慧颖老师带领的专家团队到燕京进行调研活动,也让我们更进一步了解近红外的应用情况。2015年褚小立老师建立了近红外光谱微信群,有幸成为大家庭中的一员,群中丰富多彩的内容让我受益匪浅,更坚信近红外在啤酒行业的应用前景,于2015年公司再次购买了两台近红外分析仪,在应用的同时也进行相关的研究。  有了近红外在石油、制药、饲料和烟草等行业的应用先例,有了行业协会建立的良好平台,有了各行业专家的先进经验,许多先进的理论研究一定能很快进行推广应用,充分发挥其在啤酒检测行业的作用。    燕京啤酒技术中心 周青梅
  • 从“红曲风波”认识软毛青霉酸、桔青霉素和红曲色素
    软毛青霉素及相关青霉菌毒素近期,日本著名药企小林制药被推上了风口浪尖,部分消费者在服用该公司含有红曲成分的保健品后,出现肾脏等方面的健康问题,导致小林制药已撤回8种红曲保健品作为功能性标识食品的备案,其中3种商品已经召回。图片图片来源:财经网一般情况下,红曲类保健食品会检测是否含有已知的真菌毒素—桔青霉素。小林制药表示,他们选择的红曲菌不携带能产生桔青霉素的基因,在原材料测试报告中也的确没有检测到桔青霉素。3月29日,小林制药公司向日本厚生劳动省报告,其红曲产品中导致问题的成分可能为“软毛青霉酸(Puberulic acid)”。软毛青霉酸是在发酵过程中由青霉菌产生的天然毒素。据文献报道,从青霉菌发酵液中已分离出软毛青霉酸(Puberulic acid)、密挤青霉酸(Stipitatic acid)及其三种类似物Viticolins A–C等环庚三烯酚酮类(Tropolone)毒素。青霉菌毒素具有耐高温和侵害实质器官的特性,加热烹调也很难使其毒性减弱。目前,有关软毛青霉酸等青霉菌毒素导致的肾脏毒性报道较少,仍需进行相关研究。由于红曲菌在发酵过程中并不能产生软毛青霉素,有专家推测小林制药的红曲产品可能因为原料受到了青霉菌的污染而产生了软毛青霉酸,但具体原因还需后续的调查确认。相信该事件的发生将进一步促进红曲类食品检测的加强,相关检测标准将在不远的将来应运而生。红曲及其用途图片来源:财经网红曲也叫红曲红、红曲霉、红曲米,其作为一种天然发酵产物,成分复杂,包括多种具有生物活性的物质。红曲可应用于制药、酿酒、食品着色等方面,具有悠久的历史和公认的保健价值,特别是在降血脂、降胆固醇方面具有积极效果。目前,国内生产的红曲主要有三类,分别是酿酒红曲、色素红曲和功能红曲。▶ 酿酒红曲的糖化力高、酯化力强、有独特的曲香,广泛用于各种黄酒、白酒、醋、酱的酿造;▶ 色素红曲的色价很高,是纯天然的食品着色剂,通常用于肉制品、腐乳等食品的着色。▶ 功能红曲是指以大米为原料,用纯培养的红曲菌发酵生成的莫纳可林K(又称洛伐他汀,结构式见下图)等生物活性物质的红曲,常被用作防治心血管疾病的保健品和药品的原材料。各大厂商包括小林制药已将红曲米类食品开发为具有降血脂、降胆固醇功能的保健食品。我国对红曲类产品的使用要求红曲色素,属于复合色素,常用红曲添加剂为大米的红曲酶发酵产物或其提取物,为多种天然色素的混合物。目前, 已确定出化学结构的红曲色素主要有6种,包括黄色素、橙色素和红色素,结构如下:随着科学认识的不断深入和对食品安全要求的提高,我国对红曲及其制品的应用和管理日趋严格。国家食品药品监督管理局在《关于以红曲等为原料保健食品产品申报与审评有关事项的通知》中规定,红曲推荐量每日暂定不超过2g,产品中洛伐他汀应当来源于红曲,总洛伐他汀推荐量每日暂定不超过10mg,且不适宜在少年儿童、孕妇、哺乳人群使用等;《GB 2760-2024食品安全国家标准 食品添加剂使用标准》红曲米及红曲红作为着色剂可用于腐乳、碳酸饮料、果冻、糕点、配制酒等多种食品中,其中风味发酵乳中的最大使用量不得超过0.8g/kg,糕点中的使用量不得超过0.9g/kg,焙烤食品馅料及表面用挂浆不得超过1.0g/kg;另外,《GB 5009.150-2016食品安全国家标准 食品中红曲色素的测定》规定了对风味发酵乳、果酱、腐乳、干杏仁、糖果、方便面制品等食品中红曲红素、红曲素、红曲红胺3种红曲色素的测定方法。值得注意的是,红曲色素(又称红曲红)是发酵产生的多种天然色素的混合物,由于发酵工艺的不同,市售红曲色素所含的色素成分及其含量不尽相同,也并非上述所有常见成分均可检出。另外,GB 5009.150-2016和SN/T 3843-2014标准中将红曲红胺的CAS号3627-51-8写为126631-93-4,而后者对应的名称为N-芴甲氧羰基-8-氨基辛酸(N-Fmoc-8-Aminooctanoic acid),对应的结构式见下图。尽管该化合物的分子式和分子量与红曲红胺完全相同,导致二者在一级质谱的分子离子峰完全相同(均为[M+H]+ = 382, [M-H]- = 380),然而二者的化学结构却差别巨大,因此其核磁谱图和二级质谱上的碎片离子峰有显著差别,在HPLC上的出峰时间和UV吸收也有明显的区别。检测人员在标准物质选择、采购和使用中应多加注意,避免产生错误的检测结果。红曲在发酵过程中可能因菌株变异或污染产生桔青霉素,其有很强的肾脏毒性,摄入过量会导致肾损害,因此桔青霉素是红曲类产品必检项。《GB 1886.181-2016食品安全国家标准 食品添加剂 红曲红》中规定红曲红中桔青霉素的限量为0.04 mg/kg。《GB 1886.66-2015食品安全国家标准 食品添加剂 红曲黄色素》中规定红曲黄色素中桔青霉素的限量为1.0 mg/kg。阿尔塔科技作为被CNAS认可的食品安全检测有机标准物质生产制造商,根据科研单位检测热点,快速响应,积极研发软毛青霉酸、桔青霉素、红曲色素及其相关产品,助力食品安全检测,为守护广大消费者的身体健康保驾护航。 红曲发酵过程可能产生的相关毒素标准品:了解更多产品或需要定制服务,请联系我们
  • 诺奖得主手中的那株青霉菌被首次测序
    1928年,亚历山大?弗莱明(Alexander Fleming)在伦敦圣玛丽医院的医学院工作时发现了第一种抗生素——青霉素(penicillin)。这种抗生素是由青霉属中的霉菌产生的,能够抑制葡萄球菌的生长。凭借此项发现,弗莱明在1945年被授予诺贝尔生理学或医学奖。之后,弗莱明所发现的青霉菌菌种被交给牛津大学的研究小组保存。如今,来自伦敦帝国理工学院、牛津大学和国际应用生物科学中心(CABI)的研究人员利用五十多年前冷冻保存的样本,对这个原始青霉菌菌株开展了基因组测序。这项成果于9月24日发表在《Scientific Reports》杂志上。研究小组还将弗莱明的青霉菌菌株和美国现在大规模生产抗生素所用的菌株进行比较。他们发现,英国菌株和美国菌株生产青霉素的方式略有不同,这可能对抗生素的工业生产有意义。帝国理工学院生命科学系和牛津大学动物学系的Timothy Barraclough教授说:“我们原本打算将亚历山大?弗莱明的青霉菌用于一些其他实验,但让我们惊讶的是,没有人对这个原始的青霉菌基因组进行测序,尽管它在生物界具有历史意义。”尽管弗莱明霉菌因青霉素的发现而闻名,但后来美国研究人员却选择发霉哈密瓜上的霉菌来生产抗生素。他们从发霉的哈密瓜上分离出原始的野生霉菌分离株,经过多轮X射线、化学和紫外线诱变以及人工选择,最终获得青霉素产量高的分离株。在这项研究中,研究团队获得了保存在CABI菌种保藏库中的冷冻样本,并重新培养了弗莱明的原始青霉菌(Penicillium rubens)。他们提取出DNA,利用Illumina MiSeq测序平台开展基因组测序,并将此基因组与先前发表的两种青霉属工业菌株的基因组进行比较。研究人员特别关注两类基因:一类是编码各种酶的基因(pcbAB、pcbC和penDE),青霉菌利用这些酶来产生青霉素;另一类是调控基因,这些基因能够控制酶的产量。他们发现,对于英国和美国的菌株,调控基因有着相同的遗传密码,但美国菌株拥有更多的拷贝,使得菌株产生更多的青霉素。不过,青霉素生产酶的编码基因却不相同。这表明,英国和美国的野生青霉菌经过自然进化,产生了略有不同的版本。像青霉菌这样的霉菌会产生抗生素来对付微生物,而微生物也会不断进化以躲避这些攻击,如此这般,“军备竞赛”不断升级。英国菌株和美国菌株的进化方式可能不同,以适当其当地的微生物。就目前而言,微生物进化已成为一个大问题,因为许多细菌已对我们的抗生素产生了耐药性。研究人员表示,尽管他们尚不清楚英国和美国菌株中不同酶的序列对抗生素有何影响,但这有望带来青霉素生产的新方法。文章的第1作者、帝国理工学院生命科学系的Ayush Pathak表示:“我们的研究有望激发对抗耐药性的新解决方案。青霉素的工业生产主要关注产量,而人为提高产量的步骤导致基因数量的改变。”
  • 岛津推出牛奶中青霉素分解剂—β-内酰胺酶检测方法
    随着国家对食品安全问题的关注和部分乳制品企业无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为&beta ‐内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用解抗剂去降解牛乳中残留的抗生素,生产人造&ldquo 无抗奶&rdquo 。目前市售解抗剂的主要成分是&beta ‐内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的&beta ‐内酰胺类抗生素。&beta ‐内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。&beta ‐内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。为此,长期关注中国&ldquo 食品安全&rdquo 的岛津公司发挥技术优势,推出了基于岛津超快速液相UFLCXR的&beta ‐内酰胺酶的检测方法。 本方法通过检测牛奶中的青霉噻唑酸钾,间接检测牛奶中是否添加了&beta ‐内酰胺酶,供相关检测人员参考。在本方法中,使用岛津超快速液相UFLCXR,配合岛津shim pack XR‐ODS II 75 mm L.× 3.0 mm I.D.,2.2 &mu m 快速分析色谱柱,测定了市售牛奶中青霉噻唑酸钾的含量,标准曲线线性良好,重现性良好,1#样品中青霉噻唑酸钾为31.2&mu g/mL , 2# 样品中青霉噻唑酸钾为5.4&mu g/mL,说明牛奶中添加过&beta ‐内酰胺酶。 有关本方法的详细内容请参见http://www.instrument.com.cn/netshow/SH100277/down_171132.htm。关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 广东东莞在国际货物首次检出青霉属病原菌
    中新网东莞5月4日电 记者今天从广东东莞检验检疫局获悉,日前东莞检验检疫局太平口岸在近半个月时间内连续两次从国际航行船舶食品舱检出青霉属,这也是东莞检验检疫部门首次从国际航行船舶食品舱检出青霉属病原菌。  据东莞检验检疫局官员介绍,东莞检验检疫局太平办事处船检人员在3月18日和3月30日,分别对来自印度尼西亚的“嘉畅”轮、澳大利亚的“粤电81”两艘货轮进行检疫查验时,在蔬菜库的存放架上均发现有表面已开始霉烂的马铃薯和茄子,遂采样送东莞检验检疫局植检实验室检测,并督促船方对余下霉烂的马铃薯和茄子进行销毁处理。  经实验室检测,该两种食物中均检出青霉属病原菌,此病原菌可使许多农副产品腐烂,也有少数种类可使人或动物致死。这是太平口岸首次从入境船舶食品中截获该有害病原菌。  “五一”节日期间,为了保障出入境安全,东莞检验检疫局各旅检口岸人员严阵以待,在做好出入境货物检验检疫同时,积极落实人感染H7N9禽流感疫情防控各项工作,保证人员充足、仪器设备运转良好。一方面,及时与客运公司沟通,在柜台张贴疫情提醒告示,加强对出入境旅客的宣传 另一方面,充分发挥联防联控工作机制,加强对出入境人员的体温监测及医学巡查,及时发现可疑病例。  据了解,4月29日至5月1日,太平办事处旅检口岸共查验出境旅客2017人次,同比增长31.7% 入境旅客566人次,同比增长7.4% 截获旅客禁止携带物肉丸及鸡肉1批次 未发现发热旅客。常平办事处旅检口岸共查验出境旅客1920人次,同比增长16.7% 入境旅客1636人次,同比下降2.9% 截获旅客禁止携带入境动植物2批次 发现发热旅客1人。
  • 兽药分析大讲堂丨青霉素类新标实施,一起解锁分析难点!
    导读兽药残留是影响动物性食品安全的主要化学因素之一,尤其是兽用抗生素残留会进一步加速细菌耐药性进程。青霉素类作为最早应用的抗生素,历经九十余年,已发展三代,曾为增进人类健康做出过巨大贡献。青霉素价格低廉、抗菌性强,在水产养殖上被广泛用于鱼、虾细菌感染的防疗。然而,此类抗生素的不合理使用,会给食品安全带来隐患,其产生的耐药性问题或将导致人类进入无药可用的后抗生素时代或可怕的“耐药时代”。近期,农业农村部发布实施《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,青霉素类含有β-内酰胺环,是一类化学性质非常活泼的物质,容易在高温、水或酸碱条件下发生降解,一度给分析检测带来挑战。针对该难点项目,我们推出了岛津最新的应用解决方案,来一起看看!水产品中青霉素类分析相关法规GB 31650-2019 《食品安全国家标准 食品中兽药最大残留限量》中规定,在鱼虾中青霉素G、阿莫西林、氨苄西林残留限量(MRLs)为50 μg/kg,氯唑西林、苯唑西林MRLs为300 μg/kg。近期,农业农村部发布的《GB 31656.12-2021 食品安全国家标准 水产品中青霉素类药物多残留的测定 液相色谱-串联质谱法》,对《GB/T 22952-2008 河豚鱼和鳗鱼中阿莫西林、氨苄西林、哌拉西林、青霉素G、青霉素V、苯唑西林、氯唑西林、萘夫西林、双氯西林残留量的测定 液相色谱-串联质谱法》标准进行了更新,增加了阿洛西林和甲氧西林,并增加了固相萃取和超滤管离心的净化步骤,修改了方法的检出限和定量限。青霉素类分析难点β-内酰胺类抗生素的基本结构如下图,β-内酰胺环易光解,或与水、醇发生反应。β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1]因此,实验过程中需注意:• 宜采用粉末标品,现配现用,前处理避光,配制后尽快分析;• 考虑到溶解性和溶剂效应,标准品母液推荐30%乙腈水配制,-18℃避光存储,保质期5d,工作液则现配现用,尽快上机分析;• 有机相为甲醇时,青霉素G与甲醇生成了青霉酸甲酯,如下图所示,青霉素甲酯MRM通道有色谱响应,且响应强度比青霉素G更高。为了保证定量准确,流动相、前处理试剂应该避免接触醇类试剂。岛津解决方案• 分析仪器岛津三重四极杆液质联用仪• 目标物青霉素类抗生素药物的化合物信息11种青霉素类抗生素在2~300 ng/mL范围内,线性良好,相关系数R均大于0.999。部分代表性青霉素类抗生素的校准曲线• 样品加标分析结果对市售南美白虾进行分析,未检出青霉素成分,并且在出峰区域无杂峰干扰。以下是在南美白虾样品中添加5 μg/kg青霉素得到的加标样品MRM色谱图。青霉素加标样品MRM色谱图(5 μg/kg)结语看了本期的难点项目经验分享,相信大家都有所了解,β-内酰胺类化合物稳定性差,分析测试过程尤其注意光照、pH等的影响。除此之外,岛津应用云后续还将发布兽药分析大讲堂系列,聚焦难点项目,陆续发布检测关键点小贴士及解决方案,帮助大家共克食品安全难关。“兽药分析大讲堂系列”后续预告四环素分析篇多肽类抗生素分析篇硝基呋喃分析篇… … 参考文献[1] .刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.本文内容非商业广告,仅供专业人士参考。
  • 赛默飞方案:TSQ Quantis 测定9 种 青霉素类药物残留
    本文参考GB/T 20755-2006、GB/T 21315-2007 等国标,在赛默飞全新三重四极杆TSQ Quantis 上建立了青霉素类抗生素的液质检测方法。9 种化合物在其相应的浓度范围内线性关系良好(r20.998),完全满足国标对青霉素类抗生素残留的检测要求。引言青霉素(Penicillins)是属于β- 内酰胺类药物的一类广谱抗生素,一直广泛应用于人类、畜禽业及水产养殖中的各种细菌感染的防治。随着产量和用量的不断增加,加之药品的盲目使用,食品、水体等抗生素残留问题日益突出。抗生素的残留可增强细菌耐药性,破坏人体和动物胃肠道及环境微生态平衡,可能对人体健康产生严重影响。本文建立了基于Thermo Fisher TSQ Quantis 三重四极杆串联质谱仪检测9 种青霉素类抗生素的方法。本方法灵敏度高,稳定性好,满足GB/T 20755-2006 畜禽肉中九种青霉素类药物残留量的测定以及GB/T 21315-2007 动物源性食品中青霉素抗生素残留量检测方法,适用于食品安全监控中有关青霉素类抗生素的残留检测。结论本文建立了三重四极杆液质联用仪(TSQ Quantis)分析9 种青霉素类抗生素的检测方法。由实验结果可以看出,基于Thermo Fisher TSQ Quantis 建立的检测方法具有优异的灵敏度和线性范围,可用于青霉素类抗生素的日常分析检测。点击 TSQ Quantis 测定9 种 青霉素类药物残留 查看详细实验方案。
  • 新型污染物的治理令人头大?Detelogy为你出谋划策!
    新型污染物从改善生态环境质量和环境风险管理的角度看,新污染物是指的那些具有生物毒性、环境持久性、生物累积性等特征的有毒有害化学物质。这些有毒有害化学物质进入环境后,对生态环境或者人体健康存在较大风险。现状部分新污染物具有较强的环境/生物持久性、明显的生物富集性、可以进行长距离全球迁移等特性,能够对人体健康和生态环境构成危害。目前生态环境部已将新污染物治理纳入生态环境保护相关考核,而近日全国各省、市陆续开始落实新型污染物的治理方案。目前的新型污染物主要有持久性有机污染物、内分泌干扰物、抗生素、微塑料等。抗生素类污染物抗生素不但被广泛用于人和动物的防病治病,还被添加于动物饲料中作为饲料添加剂以提高饲料利用率和促进动物生长。近年来,随着禽畜养殖业规模的不断扩大,抗生素使用量大增,抗生素滥用的问题越来越突出。进入动物体内的抗生素不能被完全吸收,部分会随着动物的排泄物排出体外,进入环境中,对生态环境和人体健康构成严重威胁。危害抗生素用于人和动物治疗后,通过排泄进入到环境中,再通过污泥农用化、有机肥施用以及灌溉水的形式进入农田土壤系统,造成土壤中抗生素污染,导致蔬菜吸收积累抗生素,进而通过食物链形成恶性循环链,造成环境污染,影响人类建康。青霉素钠青霉素作为广泛使用的抗生素,能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用,而青霉素钠(钾)作为青霉素的一种,对革兰阳性菌及某些革兰阴性菌有较强的抗菌作用。主要用于敏感菌引起的各种急性感染,如肺炎、支气管炎、脑膜炎等,抗生素的滥用导致的生物耐药性会使人们免疫力下降,重新面临感染性疾病的威胁。针对刻不容缓的新型污染物的治理。Detelogy马不停蹄,提供可行方案!实验室仪器分析仪器:高效液相色谱仪带PDA检测器前处理仪器:iQSE-06智能快速溶剂萃取仪、电子天平、iSPE-864全自动智能固相萃取仪、FV32Plus全自动高通量智能平行浓缩仪、超纯水系统、MultiVortex多样品涡旋混合器实验流程提取:称取样品放入10ml萃取池中,置于iQSE-06智能快速溶剂萃取仪中按以下条件进行快速溶剂萃取 :萃取完成后,收集提取液 ,将HLB 型净化小柱固定于iSPE-864全自动智能固相萃取仪,按以下条件进行净化:收集洗脱液于FV32Plus全自动高通量智能平行浓缩仪 40℃浓缩,用超纯水定容至2.0 mL,MultiVortex多样品涡旋混合器涡旋 10 min,过滤膜后进行 HPLC 检测。Detelogy推荐产品参考方法:马珊珊,刘燕,余冉,等.加速溶剂萃取( ASE) -固相萃取( SPE) -高效液相色谱法( HPLC) 测定土壤中青霉素钠[J].环境化学,2014,33 ( 11) : 1978-1985
  • 人物专访 | 谢明 —— 我与HBK
    谢明,1983年毕业于北京理工大学应用数学系,1989年获得中科院系统所运筹学(应用数学分支)硕士学位。2019年1月1日至2021年4月30日期间担任HBK中国第一任业务总经理,4月30日起正式退休,担任HBK资深业务顾问。谢明用自己的热爱与坚持,在测试测量行业工作逾30年,期间担任多家国际知名仪器公司中国区高管。今天,让我们一起看看这位大咖的职场分享,听他谈谈他与HBK的故事。职场经历 谢明于1989年加入美国尼高力(Nicolet)仪器公司开始了他在测试测量行业的职业生涯,该公司主要从事FTIR光谱仪(现在是Thermo Fisher公司的业务);1999年,谢明加入美国尼高力仪器技术公司,担任北京代表处首席代表,负责数据采集业务;2004年,尼高力被LDS测试测量公司(当时是SPX公司)收购,谢明被任命为LDS中国区总经理;2009年,LDS被思百吉集团收购,谢明自2010年起担任思百吉集团旗下HBM公司大中华区销售和市场总监;2019年,思百吉集团旗下的HBM公司与B&K公司合并为HBK公司,他被任命为HBK中国业务总经理;2021年4月30日正式退休,担任HBK资深业务顾问。Q:2019年,HBM公司与B&K公司合并为HBK公司,您被任命为HBK中国第一任业务总经理。当您接受这一任命、肩负起一家新成立公司的中国区业务团队管理和业务发展重任,您的心情是怎样的?总的来说是平和大于激动,信心多于忐忑。一方面,我深知这一职位所肩负的责任和挑战;另一方面,虽然HBK是一家新成立的公司,但从某种意义上来说,我已经了解它很多年了——在这个崭新的公司名背后,有众多我熟悉和信任的品牌、产品和人,这份熟悉和信任带给我很大的信心。Q:很有意思,HBK是一家新成立的公司,能解释一下为什么说您了解HBK很多年了吗?的确,HBK是一家新成立的公司,但是它的成立实际上是基于众多测试测量领域的国际知名公司。除了大家熟知的HBM和B&K之外,还包括世界电磁振动台的早期创始公司“英国Ling”(LDS的前身),世界上第一台数字存储示波器的发明者Nicolet(尼高力),世界纸带记录仪的发明者Gould(歌德), 世界著名坚固型移动数据采集记录仪专业公司SoMat。这些品牌的优秀技术基因在HBK现有产品线中得到了传承,如LDS振动台,Genesis高速数据采集仪,eDrive功率分析仪等。我与HBK的结缘始于2004年。那年我迎来了职业生涯中的第一次被收购经历——我所在的尼高力(Nicolet)公司被LDS公司收购,同时也是一次机遇——LDS高层为拓展其在中国的直销能力,任命我为LDS中国区总经理,接手对我来说全新的振动测试业务,并负责从无到有地创建中国团队。我花了半年时间,成功组建了20人左右的LDS中国销售和支持团队,重组了LDS在中国的销售渠道,并以此为基础在4年时间内使LDS中国的业务增长到原先的4倍。2003年@美国尼高力仪器技术公司北京代表处2005年@LDS测试测量有限公司北京代表处2009年是我职业生涯的又一个转折点——LDS被思百吉集团收购,LDS振动测试业务被并入思百吉旗下的B&K公司,而我随LDS(Nicolet)数据采集业务并入思百吉旗下HBM公司,随后任大中华区销售和市场总监,带领40多人的团队负责HBM大中华区的业务。从2009年到2018年,在HBM总部对中国市场的投入、中国团队自身的努力、客户对HBM产品及服务的认可、市场大环境等多重有利因素的影响下,HBM中国的业务翻了两番,而我也到了临近退休的年龄。2017年@HBM中国新年晚会正当我憧憬着在HBM圆满结束职业生涯的时候,2019年,思百吉集团宣布旗下的HBM公司与B&K公司合并为HBK公司,我有幸成为了HBK中国的第一任业务总经理。就像之前提到的,HBK对我来说并不是一家全新的公司,实际上我已了解它很多年了——从公司品牌角度来说,HBM和B&K都是各自领域的全球知名品牌,多年以来受到广大用户的高度认可;从产品角度来说,HBK的产品中有我熟悉的LDS振动测试系统,也有我熟悉的HBM力、扭矩、应变和称重产品;从人员角度来说,我与HBM中国的员工经过10年的共事已经非常熟悉,而2004年我组建LDS中国团队时招募的许多员工,在2009年LDS被思百吉收购时部分人加入了B&K,部分人和我一样加入了HBM,而现在大家又再次重聚在了HBK,让人不由得感叹这就是缘分。2020年@汽车测试及质量监控博览会HBK展台Q:合并以来的这两年,您面临的最大的挑战是什么?您是如何应对的?在两家公司合并初期,保持团队和业务的稳定,并在此基础上寻求进一步的发展,是最大的挑战和最重要的任务。HBK成立伊始,中国业务团队有将近100人,HBM和B&K的员工各占一半。我集中精力对B&K的业务、产品、技术以及员工进行了熟悉和了解,并据此进行了团队整合,尽我所能将合适的人员安排在合适的岗位上,并加强了对于HBM和B&K产品、技术方面的内部培训——经过各方面的努力,HBK中国业务团队目前人员构成稳定,团队协作顺畅——我要感谢中国业务团队每位成员在此过程中的贡献和付出。Q:HBK成立后的两年中,您接触了许多原HBM和B&K的老客户,他们对HBK这家公司有什么样的主要期望?HBK将如何满足客户的期望?在过去两年中,我在全国各地出差时有机会和许多HBM和B&K的老客户进行沟通,他们对HBM和B&K这两家公司的品牌和产品质量都非常认可,同时也对合并后的HBK公司寄予期望,希望强强联手的组合能带来更好的产品和服务。HBK将力求不断加强产品质量、技术支持,和售后服务,获得客户的认可、满足客户的期望是我们前进的最大动力。另一方面,HBM和B&K都是各自领域的全球市场领导者,在整个测量链上拥有互补的专长,双方服务的市场也有很多交叉的部分。我们在拜访客户的过程中,发现许多客户既是HBM的客户,也是B&K的客户。合并后,通过发挥HBM和B&K的各自优势,凭借我们的专业知识——从声音与振动,到可靠性、耐久性、推进效率和称重,为客户提供覆盖整个产品物理领域的全面解决方案,更好地满足客户的需求,这也是合并的最重要目标。Q:HBK在中国的未来发展战略是什么?中国是HBK的最大市场之一,具有很大的增长潜力。HBK总部对中国市场非常重视,未来会继续加大对中国市场的投入,包括本地技术力量的进一步增强,针对中国市场的产品、解决方案的开发,以更好地服务中国市场和用户。Q:今年4月底,您从中国区业务总经理的职位正式退休,成为HBK资深业务顾问。您目前的主要职责是什么?今年4月30日我正式退休,接受公司邀请留在HBK担任资深业务顾问。我的主要职责从之前的带领团队完成中国区业务指标,转变为做好经验分享和传承。这对我而言是一个全新的角色,我会尽我所能站好这班岗。Q:作为在测试测量行业工作了30多年的过来人,能否请您给年轻同行们一些职业发展方面的建议?我在测试测量行业度过了我的整个职业生涯,现在看到这个行业后浪翻滚人才辈出也深感欣慰。借此机会,我想给年轻的同行们分享一些我的感悟,希望能给大家带来一些启发吧。首先从行业发展的角度来说,测试测量行业是个相对较窄的行业,国家投入和资本关注相对较少,相比国外依然有一定的差距,但这是一个非常重要的行业,是新产品开发的基石和工具,随着国内工业、技术、产品的升级,测试测量行业会越来越重要,未来大有可为;其次,从个人职业发展的角度来说,我个人认为最重要的是保持终身学习能力、对新事物的好奇心、对工作的高度热情,这样才能在不断变化的外部环境中,始终拥有属于自己的一席之地;第三,说说生活与工作的平衡吧,这点其实我做得不好,年轻时忙于工作到处出差,家庭方面投入的时间和精力就相对少了,退休后加以弥补吧。希望各位年轻同行能事业家庭兼顾,同时享受工作带来的成就感和家庭生活带来的幸福感。HBK 大 咖 访 谈每一个故事的背后,每一段职场经历的分享,都是谢明的坚守与执着。对测试测量行业来说,现在的谢明更像是一位“幕后英雄”,但他与HBK的故事还在继续,成绩不会被遗忘,它将鼓舞更多年轻人的梦想。未来谢明将与HBK一起,创造出更多业界硕果。
  • 人物专访 | 谢明 —— 我与HBK
    谢明,1983年毕业于北京理工大学应用数学系,1989年获得中科院系统所运筹学(应用数学分支)硕士学位。2019年1月1日至2021年4月30日期间担任HBK中国第一任业务总经理,4月30日起正式退休,担任HBK资深业务顾问。谢明用自己的热爱与坚持,在测试测量行业工作逾30年,期间担任多家国际知名仪器公司中国区高管。今天,让我们一起看看这位大咖的职场分享,听他谈谈他与HBK的故事。职场经历谢明于1989年加入美国尼高力(Nicolet)仪器公司开始了他在测试测量行业的职业生涯,该公司主要从事FTIR光谱仪(现在是Thermo Fisher公司的业务);1999年,谢明加入美国尼高力仪器技术公司,担任北京代表处首席代表,负责数据采集业务;2004年,尼高力被LDS测试测量公司(当时是SPX公司)收购,谢明被任命为LDS中国区总经理;2009年,LDS被思百吉集团收购,谢明自2010年起担任思百吉集团旗下HBM公司大中华区销售和市场总监;2019年,思百吉集团旗下的HBM公司与B&K公司合并为HBK公司,他被任命为HBK中国业务总经理;2021年4月30日正式退休,担任HBK资深业务顾问。Q:2019年,HBM公司与B&K公司合并为HBK公司,您被任命为HBK中国第一任业务总经理。当您接受这一任命、肩负起一家新成立公司的中国区业务团队管理和业务发展重任,您的心情是怎样的?总的来说是平和大于激动,信心多于忐忑。一方面,我深知这一职位所肩负的责任和挑战;另一方面,虽然HBK是一家新成立的公司,但从某种意义上来说,我已经了解它很多年了——在这个崭新的公司名背后,有众多我熟悉和信任的品牌、产品和人,这份熟悉和信任带给我很大的信心。Q:很有意思,HBK是一家新成立的公司,能解释一下为什么说您了解HBK很多年了吗?的确,HBK是一家新成立的公司,但是它的成立实际上是基于众多测试测量领域的国际知名公司。除了大家熟知的HBM和B&K之外,还包括世界电磁振动台的早期创始公司“英国Ling”(LDS的前身),世界上第一台数字存储示波器的发明者Nicolet(尼高力),世界纸带记录仪的发明者Gould(歌德), 世界著名坚固型移动数据采集记录仪专业公司SoMat。这些品牌的优秀技术基因在HBK现有产品线中得到了传承,如LDS振动台,Genesis高速数据采集仪,eDrive功率分析仪等。我与HBK的结缘始于2004年。那年我迎来了职业生涯中的第一次被收购经历——我所在的尼高力(Nicolet)公司被LDS公司收购,同时也是一次机遇——LDS高层为拓展其在中国的直销能力,任命我为LDS中国区总经理,接手对我来说全新的振动测试业务,并负责从无到有地创建中国团队。我花了半年时间,成功组建了20人左右的LDS中国销售和支持团队,重组了LDS在中国的销售渠道,并以此为基础在4年时间内使LDS中国的业务增长到原先的4倍。2003年@美国尼高力仪器技术公司北京代表处2005年@LDS测试测量有限公司北京代表处2009年是我职业生涯的又一个转折点——LDS被思百吉集团收购,LDS振动测试业务被并入思百吉旗下的B&K公司,而我随LDS(Nicolet)数据采集业务并入思百吉旗下HBM公司,随后任大中华区销售和市场总监,带领40多人的团队负责HBM大中华区的业务。从2009年到2018年,在HBM总部对中国市场的投入、中国团队自身的努力、客户对HBM产品及服务的认可、市场大环境等多重有利因素的影响下,HBM中国的业务翻了两番,而我也到了临近退休的年龄。2017年@HBM中国新年晚会正当我憧憬着在HBM圆满结束职业生涯的时候,2019年,思百吉集团宣布旗下的HBM公司与B&K公司合并为HBK公司,我有幸成为了HBK中国的第一任业务总经理。就像之前提到的,HBK对我来说并不是一家全新的公司,实际上我已了解它很多年了——从公司品牌角度来说,HBM和B&K都是各自领域的全球知名品牌,多年以来受到广大用户的高度认可;从产品角度来说,HBK的产品中有我熟悉的LDS振动测试系统,也有我熟悉的HBM力、扭矩、应变和称重产品;从人员角度来说,我与HBM中国的员工经过10年的共事已经非常熟悉,而2004年我组建LDS中国团队时招募的许多员工,在2009年LDS被思百吉收购时部分人加入了B&K,部分人和我一样加入了HBM,而现在大家又再次重聚在了HBK,让人不由得感叹这就是缘分。2020年@汽车测试及质量监控博览会HBK展台Q:合并以来的这两年,您面临的最大的挑战是什么?您是如何应对的?在两家公司合并初期,保持团队和业务的稳定,并在此基础上寻求进一步的发展,是最大的挑战和最重要的任务。HBK成立伊始,中国业务团队有将近100人,HBM和B&K的员工各占一半。我集中精力对B&K的业务、产品、技术以及员工进行了熟悉和了解,并据此进行了团队整合,尽我所能将合适的人员安排在合适的岗位上,并加强了对于HBM和B&K产品、技术方面的内部培训——经过各方面的努力,HBK中国业务团队目前人员构成稳定,团队协作顺畅——我要感谢中国业务团队每位成员在此过程中的贡献和付出。Q:HBK成立后的两年中,您接触了许多原HBM和B&K的老客户,他们对HBK这家公司有什么样的主要期望?HBK将如何满足客户的期望?在过去两年中,我在全国各地出差时有机会和许多HBM和B&K的老客户进行沟通,他们对HBM和B&K这两家公司的品牌和产品质量都非常认可,同时也对合并后的HBK公司寄予期望,希望强强联手的组合能带来更好的产品和服务。HBK将力求不断加强产品质量、技术支持,和售后服务,获得客户的认可、满足客户的期望是我们前进的最大动力。另一方面,HBM和B&K都是各自领域的全球市场领导者,在整个测量链上拥有互补的专长,双方服务的市场也有很多交叉的部分。我们在拜访客户的过程中,发现许多客户既是HBM的客户,也是B&K的客户。合并后,通过发挥HBM和B&K的各自优势,凭借我们的专业知识——从声音与振动,到可靠性、耐久性、推进效率和称重,为客户提供覆盖整个产品物理领域的全面解决方案,更好地满足客户的需求,这也是合并的最重要目标。Q:HBK在中国的未来发展战略是什么?中国是HBK的最大市场之一,具有很大的增长潜力。HBK总部对中国市场非常重视,未来会继续加大对中国市场的投入,包括本地技术力量的进一步增强,针对中国市场的产品、解决方案的开发,以更好地服务中国市场和用户。Q:今年4月底,您从中国区业务总经理的职位正式退休,成为HBK资深业务顾问。您目前的主要职责是什么?今年4月30日我正式退休,接受公司邀请留在HBK担任资深业务顾问。我的主要职责从之前的带领团队完成中国区业务指标,转变为做好经验分享和传承。这对我而言是一个全新的角色,我会尽我所能站好这班岗。Q:作为在测试测量行业工作了30多年的过来人,能否请您给年轻同行们一些职业发展方面的建议?我在测试测量行业度过了我的整个职业生涯,现在看到这个行业后浪翻滚人才辈出也深感欣慰。借此机会,我想给年轻的同行们分享一些我的感悟,希望能给大家带来一些启发吧。首先从行业发展的角度来说,测试测量行业是个相对较窄的行业,国家投入和资本关注相对较少,相比国外依然有一定的差距,但这是一个非常重要的行业,是新产品开发的基石和工具,随着国内工业、技术、产品的升级,测试测量行业会越来越重要,未来大有可为;其次,从个人职业发展的角度来说,我个人认为最重要的是保持终身学习能力、对新事物的好奇心、对工作的高度热情,这样才能在不断变化的外部环境中,始终拥有属于自己的一席之地;第三,说说生活与工作的平衡吧,这点其实我做得不好,年轻时忙于工作到处出差,家庭方面投入的时间和精力就相对少了,退休后加以弥补吧。希望各位年轻同行能事业家庭兼顾,同时享受工作带来的成就感和家庭生活带来的幸福感。HBK 大 咖 访 谈每一个故事的背后,每一段职场经历的分享,都是谢明的坚守与执着。对测试测量行业来说,现在的谢明更像是一位“幕后英雄”,但他与HBK的故事还在继续,成绩不会被遗忘,它将鼓舞更多年轻人的梦想。未来谢明将与HBK一起,创造出更多业界硕果。
  • 专家:PM2.5内生物气溶胶是活的 对人体威胁更大
    当我们在讨论PM2.5、PM10时,可能没有想到它们在空气中有一部分是活的,还会自我繁殖,这就是指生物气溶胶。专家表示,大气污染防治,除关注各种化学成分,混杂其中的生物活性物质也应成为重要研究对象。专家表示,生物气溶胶通常是指空气动力学直径在100微米以内的含有微生物或来源于生物性物质的气溶胶,包括悬浮于空气中的细菌、病毒、真菌及化学毒素等,是PM2.5、PM10等大气颗粒物的重要组成部分。与硫酸盐、硝酸盐和铵盐等化学成分的PM2.5、PM10相比,某些时候生物气溶胶对人体健康的威胁更大,对其监测预警和防护也提出了更高要求。粒径不同,健康危害不同生物气溶胶主要来源于土壤、植被、水体等排放,以及包括人类在内的动物、医院、养殖场、垃圾填埋场、污水处理厂等排放。不同来源、不同粒径的生物气溶胶颗粒由于毒性和在空气中悬浮时间不同, 对人们的健康危害也存在显著差别。如风媒植物花粉颗粒、真菌和细菌的典型粒径分别在15—58微米、1—30微米和0.25—8微米,而病毒的粒径则小于0.3微米。生物气溶胶呼吸暴露能导致下呼吸道感染、哮喘、过敏等各种呼吸系统疾病。如1918年爆发的H1N1流感使得全球5000万人死亡,如今流感病毒导致的下呼吸道感染仍然是人类第四大杀手,每年近300万人因此丧生。“PM2.5更小,可直接进入肺泡、血液等,因而被认为危害更大。”专家指出,与化学物质最大的区别是,如果生物气溶胶被吸入人体,不但能进入得更深,在一定条件下还可以自我繁殖,因其这一特性,特定生物气溶胶的危害是没有阈值的。研究表明,空气中常见的青霉菌属、曲霉菌属、孢子菌属等真菌都可以分泌过敏原, 引发过敏性呼吸系统疾病;生物气溶胶暴露还能促进健康人的血压显著升高,导致不可逆的慢性肺功能减退。研究还发现,在雾霾天时,空气中生物气溶胶浓度水平显著高于非霾天的浓度水平;污染严重的城市明显高于乡村。“也就是说,雾霾时空气中的这些生物成分进一步加重了健康风险。”生物气溶胶的实时监测预警尤为重要由于生物气溶胶的这些特性,使得对生物气溶胶监测预警尤为重要。过去几年中,蛙鸣技术研发团队一直在进行生物气溶胶监测预警的科技攻关,并自主研发了“蛙鸣生物气溶胶实时监测系统”,基于领先的光学技术,依托“大智云物移”技术,实现环境中粒子总数、荧光粒子数和生物粒子数实时在线监测,助力精细化管理,防范生物气溶胶引发危害。经过对荧光假单胞菌高低浓度测试以及大肠杆菌灭活前后监测对比,系统具有较高的准确性和设备一致性,得到了专家及客户的一致认可。蛙鸣生物气溶胶实时监测系统现已应用到疾控中心生物实验室和移动实验室中,进行实验室生物安全管理。同时在船舶领域也有着广泛的应用,填补了我国船舶领域在疫情防控方面的技术空白,为水上客货运输的顺利开展提供了技术支撑。经过“船舶防疫技术标准研究与应用”科技成果认定,达到国际领先水平!2021年,面对全球新冠疫情的现状,为了能够对生物气溶胶进行智能管控和环境科学消杀,蛙鸣又全新推出 “生物气溶胶无人巡检机器人”,解决了危险环境下人员暴露的问题,系统兼具监测、采样、消杀三大功能,通过首次巡检,自动生成场景地图,随时掌握热点区域,保证环境安全。大气污染防治本质上是为了最有效和最大限度地减小大气污染物对人体健康的影响。蛙鸣一方面投身大气污染防治攻坚战,确保空气质量的提高;一方面研究如何降低空气污染中活性生物气溶胶对人们健康的影响,在保证空气质量的同时,获得额外的健康效益。
  • 鲍曼不动杆菌的治疗和研究进展!
    鲍曼不动杆菌的治疗和研究进展!鲍曼不动杆菌感染的治疗一直是临床上很大的难题,因为鲍曼不动杆菌极易对各种消毒剂和抗菌药物产生耐药性,对重症患者、ICU病房的患者等威胁很大。MDR-AB(多重耐药鲍曼不动杆菌)、PDR-AB(泛耐药鲍曼不动杆菌)、CRAB(耐碳青霉烯类鲍曼不动杆菌)等的广泛传播更是成了医生和患者的噩梦。 在院内感染中,不动杆菌属的感染占有较高的比例,而在院内提取到的不动杆菌属的菌株,绝大多数为鲍曼不动杆菌。鲍曼不动杆菌为革兰氏阴性菌,故对万古霉素等存在固有耐药,对青霉素G、氨苄西林、阿莫西林、氯霉素、四环素、diyi及第二代头孢菌素也保持着较高的耐药率。通常情况下,对鲍曼不动杆菌有较强作用的药物主要有抗绿脓杆菌的青霉素类、第三和第四代头孢菌素(主要是头孢他啶、头孢吡肟等)、碳青霉烯类、β-内酰胺类抗生素复合制剂(头孢哌酮/舒巴坦、哌拉西林/他唑巴坦等)、氟喹诺酮类、氨基糖苷类、替加环素、多粘菌素、舒巴坦等。但是因为近年来抗菌药物的滥用,鲍曼不动杆菌对以上药物的耐药率也在不断上升,氟喹诺酮类、氨基糖苷类等耐药率甚高,碳青霉烯类的耐药率也有上升。 考虑到鲍曼不动杆菌极易对抗菌药物耐药,故用药时应联合用药。常用的方案有β-内酰胺类+氟喹诺酮类、β-内酰胺类+氨基糖苷类等。我个人shouxuan的方案为头孢哌酮/舒巴坦+磷霉素(时间差攻击疗法),也可选择氨苄西林/舒巴坦+环丙沙星等)。 研究进展 随着医学技术的飞速发展,对疾病特别是危重病的救治水平不断提高,广谱抗生素的广泛使用是其重要手段之一。但是,临床治疗中滥用抗生素现象非常普遍,在抗生素的强大压力下,不可避免地产生大量耐药菌株,这些耐药菌株已成为当代医院感染的棘手问题,从本组资料结果显示,鲍曼不动杆菌对亚安培南、美罗培南的耐药率相对较低,原因是碳青霉烯类药物对青霉素结合蛋白(PBPS)亲和力强。  但仍有少部分鲍曼不动杆菌对其耐药,原因可能是其能产生一种能水解碳青霉烯类药物的β-内酰胺酶ARI-I,这无疑是一个可怕的信号。此外,与头孢哌酮/舒巴坦的化学结构不同或鲍曼不动杆菌的多重耐药性表达形式不同有关。而对喹诺酮类抗生素耐药率达60%以上,这可能是近年来喹诺酮类药物的广泛应用引起抗菌药物介导的耐药性基因突变,编码DNA旋转酶的gyra 或gyrb基因发生突变被认为是细菌产生耐药的主要原因。此外,氨基糖苷类抗生素的耐药率皆较高,这可能是本院普遍应用该类抗生素出现的耐药,给临床治疗带来了巨大的困难,因此,应注意各类抗生素的合理应用。 试验结果表明,临床上不动杆菌感染中,鲍曼不动杆菌占绝大多数(75.0%),其次为醋酸钙不动杆菌、洛菲不动杆菌、琼氏不动杆菌,与有关报道不一致,可能是由于不动杆菌属的命名较混乱,分类原则及鉴定系统不同所致。在4种不动杆菌的鉴定中,41℃培养时生长,苹果酸盐同化试验阳性,可初步鉴定为鲍曼不动杆菌与琼氏不动杆菌,两者的区别在于前者苯乙酸盐同化试验阳性,且氧化木糖,而后者不氧化木糖,且苯乙酸盐同化试验阴性。41℃培养时不生长,癸酸盐同化试验阳性,可初步鉴定为醋酸钙不动杆菌与洛菲不动杆菌,两者区别在于前者枸橼酸盐、苯乙酸盐同化试验均阳性,而后者均阴性。  从72株鲍曼不动杆菌的来源看,其感染部位分布广泛,如呼吸系统、泌尿系统、伤口、腹腔及神经系统等。其中以呼吸系统感染占多数(54.2%)。不动杆菌是近几年医院内感染出现率较高的菌属,其中鲍曼不动杆菌所引起的感染应引起重视。 2001~2005年对12种抗菌药物的药物敏感监测显示,12种药物对鲍曼不动杆菌的耐药率呈总体上升趋势,耐药率zuijin的IMP,其耐药率从2001年的6.5%上升至2005年的31.7%,头孢菌素类(CAZ、CFP、FEP)的耐药率从2001年的20.0%、38.6%、31.5%上升至2005年的66.7%、72.4%、67.7%;PIP、SXT、ATM、CIP、TZP、LEV耐药率也从2001年的19.6%~60.2%增加到2005年的52.2%~72.1%;耐药率下降的有TOB和GEN 2种药物,其耐药率分别从2001年的62.8%和63.6%下降到2005年的48.2%和45.2%,这可能与这类药物临床上现在不常使用有关。从表3可见,ICU 12种药物的耐药率明显高于非ICU,差异存在非常显著性(P0.01),在ICU耐药率较低的是IMP和TZP,耐药率分别为41.7%和53.3%,除此外其余抗生素的耐药率均在70.0%以上,由此可见,ICU鲍曼不动杆菌耐药现象已十分严重,且表现为多重耐药。这与鲍曼不动杆菌产生多种酶有关:对头孢菌素类的耐药,主要是产超广谱β-内酰胺酶;对亚胺培南耐药,主要与产金属β-内酰胺酶有关;喹诺酮类的耐药主要与gyrA和parC基因突变有关。 综上所述,鉴于近年鲍曼不动杆菌的耐药率有进一步上升的趋势,这应当引起临床医师及微生物界的高度重视。为减少该菌医院感染的发生及多重耐药菌株的出现,我们应对医疗器械进行严格彻底的消毒及对鲍曼不动杆菌进行规范的连续监测,弄清其耐药机制并及时监测其耐药情况。同时,临床医师应重视获得性鲍曼不动杆菌感染,与临床微生物实验室密切协作,加强耐药性的监测,有效预防和控制感染。欢迎访问中国微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 做一个在科研领域“寻路”的人 ——访中国科学院文献情报中心主任刘会洲研究员
    p  span style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"从中国科学院过程工程研究所党委书记、所长,到中国科学院青岛生物能源与过程研究所所长、中国科学院条件保障与财务局局长,再到中国科学院文献情报中心主任,刘会洲一直都在与“化工分离”打交道,从冶金,扩展到生化、石化、环境,甚至能源领域。/span/ppspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"  多岗位的工作,多行业的涉猎,让刘会洲积累了丰富的经验,现如今中科院文献情报中心的工作又让其“近水楼台”,有了更详细的数据支撑,他说要做一个在科研领域“寻路”的人。日前,仪器信息网编辑借全国分子光谱会之际,特别采访到了刘会洲研究员,请他介绍一下自己的科研经历,及对行业的感悟和建议。/span/ppspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"/span/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="微信图片_20181127124924.jpg" border="0" alt="微信图片_20181127124924.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/21958f13-a8e8-464c-b3eb-d525ff5d7718.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"strong中国科学院文献情报中心主任 刘会洲研究员/strong/pp  span style="COLOR: rgb(255,0,0)"strong致力于化工分离 青霉素破乳剂攻关是最自豪的事情/strong/span/pp  虽然经历了多个工作岗位,但是刘会洲一直在从事和“化工分离”相关的工作。他说,“绿色化工分离是一个永恒的主题,而我一辈子都会朝着这个目标前进。”/pp  回顾刚进入化工分离领域的时候,刘会洲说,那时我国化工分离领域的研究还处于“只知其一不知其二”的阶段,当时化工放大过程只能做一些模拟计算,或者是模型的建立,对化工反应的过程和机理并不清楚,可以说是一个“黑箱操作”,只能逐级放大。而随着科技的进步,就要求对化工反应过程中的机理进行深入的研究,进而提高化工分离和过程放大的效率。/pp  1988年,刘会洲进入中科院化冶所博士后流动站,开展萃取机理及新方法研究工作。他一开始进入的是湿法冶金领域,主要的工作是用化工原理和手段来强化冶金的过程。之后,相继扩展到了生物、医药、环境、能源等各个领域,他说这其中最有成就感的事情就是青霉素生产的八五攻关项目。/pp  据介绍,改革开放初期,我们国家的青霉素生产非常落后,为了实现青霉素生产的国际化先进水平,致力于此的国家八五攻关项目由华北制药厂牵头,多个高校、研究所通力合作,其中萃取分离阶段由化工冶金研究所承担,这也是刘会洲第一次介入青霉素研究领域。据悉,为了改进工艺,当时引进了最先进的装备,但使用国外工艺过程及辅助材料的时候运转一切正常,用国产原材料代替进口材料的时候就出现了堵塞等一系列的问题,最后发现关键问题出在萃取分离的阶段,其中破乳剂至关重要。对此,刘会洲等利用拉曼、红外技术随时监测破乳的过程,发现了破乳的规律,进而设计、并生产出了不同于国外破乳剂组成的、新的、国产高效的破乳剂,性能甚至超过国外。此项工作不仅获得了国家科技进步奖,最重要的是,成本要远远低于国外。据悉,当时国产破乳剂成功上市之后,国外相关产品就开始降价了。/pp  正是因为在此项工作中的突出贡献,刘会洲也获得了“八五”科技攻关做出突出贡献优秀个人的荣誉。刘会洲说,“值得欣慰的并不是获奖,而是因为我们破乳剂的成功研发,真正把我国青霉素的提取工艺提高了一大步。后来,几乎百分之七八十的青霉素生产都转移到中国了。同时,我们自己的破乳剂产品也几乎就涵盖了全国80%以上的市场,这是我感到非常自豪的事情。”/pp  除了青霉素破乳剂的攻关,刘会洲还将化工分离拓展到了石化领域,与美国相比,我们国家的原油来源复杂,汽柴油等原用油的含硫量很高,为了寻找更温和的脱硫办法,刘会洲领导的团队提出生物脱硫新方法和工艺,并且通过努力,筛选出来了用于生物脱硫的专一性的菌,从而提高脱硫的选择性,实现温和条件下的清洁生产。现如今,刘会洲又提出了一些新的研究方向,如利用超顺磁性来强化分离等。/pp  span style="COLOR: rgb(255,0,0)"strong拉曼、红外是分析手段,更是科研的“眼睛”/strong/span/pp  对刘会洲而言,可以说是改革开放之后第一批涉足光谱研究领域的科研工作者。不管是湿法冶金的研究,还是青霉素破乳剂的八五公关项目、生物脱硫,以及目前正在进行的超顺磁性强化分离,拉曼、红外一直是重要的分析和表征手段。比如,破乳剂破乳机理的研究以及过程的监测、生物脱硫工作中碳硫键及碳碳键的表征等,拉曼、红外等光谱技术都起到了重要的作用。/pp  “因为我是化学化工出身,我在科研中一定会考虑工业化问题,最终要实现产业化,最关心的是性价比、要解决实际问题,而不仅仅是发论文。” 刘会洲说,“由于红外和拉曼光谱本身是对分子层面的解析,可以研究分子之间的相互作用,对反应机理进行更深入地认识,进而基于实际需求提出更好的设计原理。/pp  对机理的研究越深入,就越能更多的去理解一些宏观分离所表现出的性质,可以提出别人认识不到的问题,相应的,工作就比别人更进一步。借助红外、拉曼等光谱技术,深入的研究化工分离的过程,这也是刘会洲取得科研突破的一个重要原因。/pp  刘会洲说,“从我的工作经历来说,虽然涉猎比较多,但都是以油水的分离为主线。在这个过程中,拉曼、红外一直伴随、并指导着我科研的整个过程,他们是科研的‘眼睛’,像显微镜一样,引导我去深入地观察化工分离的过程。”/pp  span style="COLOR: rgb(255,0,0)"strong科研热点:拉曼+单细胞/strong/span/pp  基于多年的工作经历,以及现在中科院文献情报中心“近水楼台”的优势条件,刘会洲认为细胞最能代表生物学发展的最基础的工作,拉曼光谱与单细胞的研究是一个值得关注的方向。在本届分子光谱会以中,刘会洲特别做了题为《拉曼光谱在单细胞研究中的应用》的报告。报告统计分析了单细胞、光谱学与单细胞、拉曼光谱与单细胞的研发态势,包括SCI论文发文量、被引频次等,引起了与会代表的重视。/pp  从研究内容上来说,拉曼光谱学与单细胞研究领域主要包含生物物理学、微生物学、细胞生物学 以单细胞类型划分,拉曼光谱与单细胞研究论文以红细胞、癌细胞、干细胞、酿酒酵母细胞、肿瘤细胞、白血细胞为主 从细胞结构的角度,拉曼光谱学与单细胞研究中以细胞器、细胞膜、细胞核、细胞质、细胞壁研究为主。/pp  从全球的发展态势上来说,拉曼光谱与单细胞研究的第一篇SCI论文出现在1994年,2005年以前,拉曼光谱学与单细胞每年发表的论文数量很少,每年都低于10篇 2005年以后,拉曼光谱与单细胞领域的SCI论文快速增长,全球约94%的拉曼光谱与单细胞SCI论文主要集中在2005-2017年。/pp  对于我国的研究态势,刘会洲从SCI论文的发文量和被引频次两个方面进行了详细的介绍。据统计,拉曼光谱学与单细胞SCI论文,美国每年SCI论文都保持世界领先地位,位居世界第1位,2014年开始,中国每年发表的SCI论文数量超过英国和日本,与德国数量相同,2016年开始超过德国,位居世界第二位 而从被引频次上来说,中国拉曼光谱学与单细胞领域SCI论文的被引频次的世界份额为14.8%,中国的篇均被引频次为30.3次/篇,接近于世界平均水平(30.8次/篇),落后于美国、德国,排名世界第3位。/pp  报告中,刘会洲还特别以青岛生物能源与过程所徐健团队作为典型的案例。“选择好一个方向,找准结合点,就可能实现一个引领。青岛生物能源与过程所徐健回国之后就选择了拉曼光谱-单细胞分选技术这个方向,虽然难度很大,但是经过努力,已经实现了世界的引领。”据介绍,近5年,拉曼技术应用于单细胞分选SCI论文篇均被引频次10.73,青岛生物能源与过程所单细胞中心SCI发文篇均被引频次16.8,排名世界第一。/pp  span style="COLOR: rgb(255,0,0)"strong分子光谱仪器:在线、定制化是重要的发展方向/strong/span/pp  1982年本科毕业,刘会洲就开始与红外、拉曼打交道。20多年前,就曾为课题组采购过拉曼光谱仪。之后,这些光谱技术也始终伴随在后续科研中。正是因为这样的经历,刘会洲对拉曼、红外等分子光谱仪的发展有切身的体会。他说,“80年代,如果能做出一张红外光谱图,那就是一篇硕士论文。而现在,基本上是秒级,还可以在线,已经发生了巨大的变化 而且,原来红外、拉曼光谱仪体积大,需要占据很大的空间,现在已经发展到手持式,这也是一个很大的进步。”/pp  感慨之余,刘会洲也谈到了分子光谱类仪器的发展趋势。他认为,当前红外、拉曼分子光谱正在向在线方向发展,要求更精准、更快速、更高效,这跟数据处理技术的进步、仪器设备的改进都密切相关 从技术上来说,表面增强、针尖增强等一些新的技术可能会有一个更好的应用前景 此外,定制化也将是未来一个重要的方向,因为只有定制才会更有针对性,测定的工作才会更有创新性。/pp  谈到国产仪器的差距,刘会洲说,过去国产仪器的研制多是跟踪国外产品的技术,即便是现在,大部分领域的差距还是非常明显的,究其原因还是基础研究不够。“以芯片为例,仔细分析芯片落后的多个方面,包括设计、分装、精加工等,其实最终只有一个方面是最落后的,就是最基础的材料还依赖进口,这方面必须引起重视。”/pp  不过对于未来,刘会洲还是充满信心,他说,“其实,通过近几年参与分析仪器设备相关专项的评审,我明显感觉到这方面的发展已经在加速了。虽然目前国产仪器与进口产品相比还有一定的差距,但发展空间会很大,速度也会很快。而且,科技部、基金委在仪器设备的研制方面也给予了大力支持。我相信通过若干年的努力,分析仪器设备的发展有一天也会像我国的卫星研发一样摆脱‘跟踪’,实现引领。”/ppspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"  strong后记:/strong/span/ppspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"  尽管近年来我国的科研水平与创新能力取得了长足的发展,但原始创新能力不足依旧是不争的事实。不论是学术界还是产业界,如何实现从跟跑、并跑、到领跑的跨越发展是一直是业界讨论的话题。在这样的局势下,瞄准一个创新的、领先的方向,并通过长时间的积累,进而实现全球引领对我国现阶段的科研工作来说至关重要。/span/ppspan style="FONT-FAMILY: 楷体, 楷体_GB2312, SimKai"  科研如何实现引领?选择和坚持同等重要!一方面,需要更多像刘会洲这样的,有专业、经历、有经验,并有数据支撑的科研“寻路人” 另一方面,坚持长时间的努力和积累也是非常重要的,这就需要科研工作者耐得住寂寞,静下心来去做事情。/span/p
  • 专家称抗生素耐药性已成“全球威胁”
    今年夏季以来,一种“超级细菌”在多个国家传播,媒体曾将此归咎于医疗旅游。而加拿大医学专家约翰康利11月8日接受世界卫生组织采访时强调,是滥用和错用抗生素导致的抗生素耐药性催生了“超级细菌”,这才是更为重要的问题。  康利是加拿大卡尔加里大学抗生素耐药性中心教授。他介绍说,这次在多个国家传播的是一种可以产生NDM-1酶的细菌。NDM-1酶对碳青霉烯类抗生素有耐药性,而这是目前最强效的抗生素类别之一,因此这种细菌才被归为“超级细菌”。  “超级细菌”并非首次出现,但这次却有诸多值得注意的地方。康利说,首先与以往相比,这种新的耐药模式出现在许多不同类型的细菌中,而且这些能够产生NDM-1酶的菌株中至少有十分之一似乎具有广泛耐药性,即所有已知的抗生素都对其无效。其次,主导NDM-1耐药模式的基因很容易从一种细菌传到另一种细菌,而更令人担忧的是,目前全球在抗生素新药研发方面没有显著进展。  康利说,可以产生NDM-1酶的“超级细菌”应该引起足够的重视,否则人类将可能退回到没有抗生素可用的时代。  2011年世界卫生日的主题是“滥用和错用抗生素导致耐药性”。康利认为,这种对抗生素耐药性的关注对世卫组织是一次独一无二的机会,可以向公众普及抗生素使用常识,可以协调相关领域的工作人员,让全球重视这一问题。  康利提醒说,在那些抗生素处方监管不力或是可以非处方购买抗生素的国家,抗生素耐药性问题更应该引起重视。他介绍说,有不少国家在控制抗生素耐药性方面有一些有益的尝试。比如法国实施一项名为“抗生素不是自动的”国家规划,5年中使得抗生素用于流感类疾病的情况减少了26.5% 美国实施“擦亮慧眼”计划,宣传理智使用抗生素 加拿大的“需要为细菌用药吗”计划使社区一级用于呼吸道感染的抗生素减少了近20%。
  • 广西标准化协会批准发布《水质 7种青霉素的测定 高效液相色谱-串联质谱法》等4项团体标准
    广西标准化协会批准团体标准《水运工程爆破有害效应监测技术规范》等4项团体标准,现予以公告。附件:广西标准化协会团体标准批准发布表广西标准化协会2023年8月7日
  • 在涡度协方差系统中,如何确保测量准确?
    在涡度协方差系统中,如何确保测量准确?三维超声风速仪是涡度协方差测量系统中的核心测量组件。有研究表明,在对风速进行测量时,哪怕超声风速仪传感器的体积很小,也会对风速测量结果产生偏差。另外,如果采用合体式设计思路,即把三维超声风速仪和气体分析仪合二为一。由于气体分析仪位于三维超声风速仪采样空间内部或与其非常接近,会产生较大的风速测量误差(图1)。图1 理论上,涡度协方差系统最好测量同一涡旋的风速和其对应的气体密度。但在实际测量时,却不能这样。合体式设计思路,由于其测量组件本身就会对涡旋造成扰动,这种扰动所导致的测量误差很难被量化,且不可进行后续订正。 【解决方案】研究表明,一个简单的解决方案就是采用分体式思路:三维超声风速仪和气体分析仪以一定间距(10-20cm)分开测量。这种分体式测量,只需对原始数据做一个简单的数据订正就可以得到准确结果。【产品应用实例】海尔欣昕甬智测HT8700大气氨激光开路分析仪的涡度协方差测量系统以严谨的科研数据为依据,采用分体式设计思路(图2),适用于长时间高分辨率连续在线监测,涡度通量数据更科学、更精准、更可靠。图2 【HT8700大气氨激光开路分析仪分析仪】HT8700大气氨激光开路分析仪分析仪由宁波海尔欣光电有限公司自主研发、生产、销售,为“昕甬智测”品牌国产创新产品,是一款高精度、高灵敏度的仪器,专门用于实时监测大气中氨的浓度。通过先进的激光技术和信号处理算法,它能够快速、准确地测量氨气浓度,为环境监测和空气质量管理提供可靠数据支持。仪器采用量子级联激光技术,应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。【应用案例】【点击查看】中国农业大学:华北农区开展秋冬季地气氨交换通量高频观测【点击查看】中科院大气所:亚热带稻田施肥期间氨排放通量【点击查看】湖北农科院:国家农业环境潜江观测实验站建设
  • 这款仪器国外被指不靠谱 进口国内竟然成了“香饽饽”
    p  感冒发烧了,去医院打点滴,要打青霉素?先做皮试!这可能是很多人都有过的经历。大家都知道,这是为了看看你是不是过敏。关于过敏,国内医学教材中已经有成熟的理论体系――简单来说,就是人体的免疫系统过度敏感,对一些其他人可能无害的物质,比如花粉、牛奶、花生,产生强烈的免疫应答,视为有害物质,引发强烈的反应,红斑、肿大、发热、疼痛,严重的,甚至会引起休克。常规的过敏源检测方法,是皮肤测试和抽血化验两种。/pp  但是从2003年开始,一种叫做“生物共振波”检测、治疗过敏的技术从德国引进国内,随后,全国多家医院甚至三甲医院都购买了此类设备。与传统理论不同,“生物共振波”检测方法认为,一种物质与人体多次接触后,会产生信息的“生物记忆码”,这种“记忆码”就是过敏的“引信”,通过检测共振波,就能发现人体对何种物质过敏。/pp  这项技术引进后,已有不少相关领域的专家称其“闻所未闻”,与过敏理论完全不沾边。而在它的发源地德国,已经有多家学术期刊刊登过该技术不能检测过敏的文章。那么,这个与现代医学过敏理论“格格不入”的生物共振技术,究竟靠谱吗?国外喊打的技术,为什么在国内却登上了大雅之堂?/pp  北京的周女士近日频繁打喷嚏,脸部发红发痒,她在医院皮肤科挂号后,医生建议其用一种生物共振治疗仪检测过敏源。/pp  周女士:只听过抽血化验可以检测过敏源,对这种新型检测方式表示怀疑。/pp  记者跟随周女士来到北京某三级医院,交纳350元检测费,经生物共振技术检测后发现,周女士对猫毛和狗毛过敏。周女士向该医院皮肤科王主任提出质疑,她已经养猫养狗多年,怎么会突然检测出对其过敏?王主任解释说,既然仪器在医院里,就要相信,因为很多大医院都在使用。/pp  王主任:这两天你不过敏,但将来可能会引起你过敏。特别是当你已经有过敏症状时候,再接触猫毛狗毛时候,你这个症状可能就会加重,以后还是要注意点。它既然在医院里能应用,在好多大医院都在用,准确率是国家给你把关的,这个你不用想了。这个准确率很高,就是有点太灵敏了。/pp  王主任特意强调,人体的过敏源在不断变化,随着身体状态变化,过敏的程度也会不同,以后要常来检查。/pp  王主任:过敏源一般是3到6个月,最长一年做一次。它是在变化的,不是不变的。过敏源跟人的状态有关系,这两天你睡觉比较好,身体比较轻松,不觉得累,那可能过敏东西一是没有反应,一是反应比较弱。如果你这两天精神状态不好,这些“+”都有可能加重,或诱发过敏症状出现。/pp  四天后,记者又跟随周女士来到北京一家民营医院,缴纳480元进行了生物共振波过敏源检测。检测结果显示,周女士不再对猫毛狗毛过敏,而是对贝、虾、螃蟹等贝壳类海鲜以及花生、黑木耳过敏。可这些过敏项,周女士几天前检测时,都不过敏。/pp  负责检测的张医生:你以前可以吃,现在不行了。就是说你以前没问题,现在有问题。为啥?你没变吧,什么变了?免疫方改变。过敏产生包括两种反映,一种是当时反映,另一种是慢性累积爆发。你看到的结果其实是累积的过程。花生,以花生为原料的花生油,多注意点。/pp  随后,周女士拿出四天前检测时对猫毛、狗毛过敏的报告,这位张医生强调,生物共振技术检测过敏,不打针不抽血,靠磁场检测过敏源。就算是同样原理的仪器,设定不一样,结果也不同。过敏,是阶段性的改变,并强调,检测肯定会将人体所有过敏源都测出来,应该及时治疗。/pp  张医生:一周做一次,一次大概四十分钟到一个小时,十次一个疗程,一次120。/pp  市面上的“生物共振治疗仪”以摩拉、百康两种仪器为代表,宣称不仅可以检测过敏源,还可以治疗过敏性疾病。北京某三甲医院的皮肤科医生向记者解释,目前生物共振波技术,是最全面的过敏源检测技术。/pp  皮肤科医生:是用仪器检测的那种,可以查一千多项,是目前对过敏源检查最全的一个检测方法。不打针,就是握着机器,用机器来检测。基本上是检查你现阶段对于什么东西过敏,是能查出来的。/pp  北京协和医院变态反应科副主任医师王良录向记者解释,人体对某一特定物质是否过敏,是由基因决定的,除一些婴幼儿时期的过敏症状,在长大后随着胃肠道屏蔽功能的改善,不再对某些物质过敏外,大多数过敏的问题都是持续终生的。/pp  王良录:首先过敏源不是机体内部有的,理论上第一次接触是不会过敏的,因为是你基因决定的,经过反复接触之后,产生针对青霉素或是牛奶的一种免疫球蛋白E,我们叫做特异性IgE的抗体。产生这种抗体之后,你再接触青霉素或是牛奶,跟这个抗体结合,抗体在咱们身体内的一种肥大细胞上,它活化颗粒,释放一些介质,引发后面一系列症状。/pp  生物共振波检测过敏是否准确?王良录副主任说,检测缺乏科学依据。/pp  王良录:至少从现在科学的角度来讲,是没有依据的。这个肯定是没有进入医学的本科生、研究生的教材中,肯定是没有。我觉得他的检测是缺乏科学性。/pp  国家千人计划专家李纪阳长期从事过敏源检测方面的工作,他曾多次到德国考察,他说,从来没见过正规的德国医院使用此类仪器,学术上,也没有强有力的理论支撑。/pp  李纪阳:现在说人体受到某种共振波的干扰,这种理论完全是匪夷所思。没有一本教学书、有学术价值的期刊、有学术价值的文章说过敏是由物质的共振波引起的。因为工作原因,我也跑过很多医院和医学机构,我可以负责任的说,没有一家正规的德国医院会用这个东西。/pp  此外,记者还翻阅了此前《健康时报》关于该技术的报道,其中提到,德国过敏和哮喘疾病联合会新闻发言人蓝莫表示,德国一些厂家推出的“生物共振过敏检测和治疗仪”,德国医学界从来就没有认可这种仪器,这种仪器在二三十年以前就已经出现,但德国没有任何一家正规医院使用,这种仪器目前只是在个别私人开设的非医疗单位使用。/pp  王良录副主任强调,过敏源检测是一个非常复杂的过程,绝不是一次检测就能做出定论的,而贸然相信错误的过敏源检测报告,对患者也非常危险。/pp  王良录:我们要结合患者的病史,体内实验以皮试为例,体外试验特性IgE,以及变态反应源的相关性,综合分析才能知道患者是否真的过敏。本来我这个东西不过敏,你给我带着过敏性的帽子,那你会给我生活造成极大的困扰。更可怕的是我本来过敏,你告诉我不过敏,那会造成生命危险。/pp  一面有国内权威专家对这种过敏检测的进口仪器提出质疑,一面全国不少三甲医院又在大量使用?究竟谁对谁错?中国之声将持续关注。/p
  • 医生指抗生素滥用造就超级细菌及耐药宝宝
    2010年9月,余立娅一个月大的女儿被诊断出肺炎。医生给开了三代头孢。身为一名工作在重庆的药剂师,余力娅了解三代头孢及其副作用(恶心和腹泻)。虽然不情愿,但是由于害怕病情恶化,她还是让孩子服用了这个抗生素。  “医生说他们不确定孩子的肺炎是不是由于细菌感染引起的,”她回忆说。而一个星期以后,孩子的细菌报告出来了。这个27岁的妈妈不知道该高兴还是该生气。因为在她女儿的痰里没有检测到任何细菌感染。“我女儿根本就不必使用抗生素的,”她抱怨道。  抗生素在中国医院的使用率平均在70%左右,这个数字是世界卫生组织建议抗生素使用率的两倍多。抗生素在中国已经滥用成瘾。健康专家指出,抗生素的过度使用不但增加了产生了诸如上个月在国内检测到的NDM-1超级细菌的风险,而且导致更多的新生婴儿对药物产生耐药性。  在余立娅工作的重庆西南医院,儿科医生们已经接收过多名“耐药宝宝”。  “我上医科大学的时候,教科书上说引起肺炎的肺炎链球菌对青霉素敏感,”儿科医生汪洋说。“但是这种细菌早就已经对青霉素耐药了。现在我们不得不给孩子开更高级的抗生素。”  重庆大坪医院的儿科主任医师史源指出,如果母亲在怀孕期间滥用抗生素,一旦发生宫内感染,孩子生下来就会具有耐药性。他就遇到过好几例这样的新生儿。年幼的孩子就已经对抗生素产生耐药性的情况已经在全国蔓延。本来很容易医治的小病,如今都变得麻烦起来。  “我知道美国的儿科医生一般都会避免给儿童使用抗生素。那是因为人家的环境本来就干净,”中日友好医院儿科的主任医治周忠蜀说。“我们给孩子用抗生素,甚至是高级的抗生素,也是不得已啊。因为我们的环境里已经存在耐药细菌了。”  专家称目前中国的抗生素耐药状况已经相当严重,很多致病细菌都能够成功对付抗菌类药物。  甘晓协是重庆肿瘤医院检验科的一名研究员,已经从事临床检验工作25年。她所在的科室专门负责对病人的痰和血液等样本作药物敏感试验。她说,导致皮肤感染的耐甲氧西林金黄色葡萄球菌对青霉素敏感已经是15年前的事了,“如今我们要联合使用利福平和万古酶素这样最高级的抗生素才能管用”。  药理学专家,广州暨南大学第一附属医院的汤泰秦教授说:“曾经有效降低了肺炎死亡率的大环内酯类抗生素,30年前是很多医院的一线用药,但是现在这个药的效果已经比较差了。”  中国医院对抗生素的使用是如何“上瘾”的呢?这个问题,病人要负一部分责任。多家医院的医生告诉中国日报,来自患者的“快速治愈”的要求给他们的工作造成很大压力。  “如今到医院就医的病人越来越没有耐心了,”广东肇庆市端州区红十字会医院的门诊医生吴帅说。“好多人一进来就直接跟你要抗生素,还要输液。他们希望在最短时间内看到疗效。”他说在这样的压力下,很多医生就容易去迎合病人的心理,开出不必要的抗生素。  肇庆市离香港只有两小时车程。吴帅说由于习惯了生病用抗生素,还要输液,好多在香港上班的大陆人都跑回大陆这边的医院看病。因为抗生素在香港的医疗系统是受严格控制的,很难买到,一般的诊所也不能提供输液治疗。  一味贪图方便快捷的治疗态度终究是会带来恶果。刘建民就是个例子。这个来自黑龙江萝北县的58岁农民说他被诊断出肺癌之前,从来没有进过医院。“每次我生病了就是去药店随便买点儿药,反正售货员建议我买什么抗生素我就买,”刘建民说。如今在北京就诊的他,正在等待手术。但是由于药敏试验显示他对多种抗生素耐药,医生把他的手术推迟了。但是完全责怪不懂医的患者未免不公平,对于抗生素滥用问题,医生应该担负更多的责任。  “多一个治疗手段,科室就多一份收入,自然医生也就多点奖金了,”重庆市第一人民医院的医生万锐杰指出某些医生滥开抗生素的原因。但是钱还不是唯一的问题,大量的医生还普遍欠缺抗生素使用的相关知识。“在中国,只要你是个医生就能开抗生素,”暨南大学第一附属医院的汤泰秦教授说。“但是很多医生都不知道改如何准确地使用抗生素,而且也不注重学习。”如今国内唯一官方的抗生素使用指南是2004年卫生部颁布的《抗菌药物临床应用指导原则》。但是汤教授指出这个指导原则过于粗略。“国家需要制定一个更加细致的指导,开抗生素的权利也要严格分级,”他说。  从农民刘建民的例子可以看到,抗生素在国内的药店和私人诊所可以随意买到。虽然国家规定如果没有医生的处方,禁止销售抗生素。然而大多数的药店对这个规定都置若罔闻。  在抗生素的使用上,国内的医院与一些国际医院有着巨大的差别。以北京和睦家医院为例,这家主要服务与在京外国人的中美合资医院多年来一直把抗生素的使用率控制在12%到15%之间。  “一般的感冒我们是不会给病人开抗生素的,”华裔美国医生Andy Wang说。他在来中国从医之前,在美国西雅图已经做了五年的医生。“只有我们发现病人有白细胞升高的情况时,才会使用抗生素。”  细菌耐药性的上升很早以前就已经引起了卫生部的重视。卫生部在2005年与国家中医药管理局,总后卫生部联合建立了“细菌耐药监测网”,目前全国已经有170多家三级甲等医院都加入了这个监测网。上个月出现的3例NDM-1超级细菌就是通过这个监测网发现的。  一些医院也采取措施,主动控制医疗人员的抗生素使用。“每个月我们医院都要开展500例抽样检查,”中日友好医院感染疾病科主任医师徐潜说。“一旦发现有不合理用药的情况,那么这个医生的奖金就会受到影响。”这项措施的开展使医院的抗生素使用率从70%左右降到了50%和60%之间。她补充道:“我们医院正在组建一个可以检测药物使用,特别是抗生素使用的电脑网络。”  为了减少广东省小医院和乡村诊所抗生素滥用的情况,广东省药品不良反应监测中心下属的药理协会正在组织用药的培训,提供平台让大医院有经验的医生指导地方以及社区医院的医生。  但是光靠医院自我监督以及社会组织的力量还远不足以解决问题。“首先,政府必须制定相关的法律,”浙江大学第一附属医院的肖永红医生指出目前我国在抗生素使用方面存在立法漏洞。“其次,医院必须阻止制药商对医生用药的影响。”  作为传染病诊治国家重点实验室的教授,肖永红表示在药品使用方面,目前国内的医生有着过多的选择,尤其是名目众多的抗生素。而在这样的情况下,医药代表的宣传就有可能在药品选择上对医生造成影响。“我不明白为什么国家食品药品监督管理局要给同一种药批上百个生产许可,”肖教授说。  中国在大约60年前开始自主生产抗生素。抗生素的品种在90年代之前都很少。那时国内医院的用药大量依靠进口。如今,据去年“中国抗生素60年高峰论坛”的数据显示,中国目前是世界头号抗生素生产国,能产出181个抗生素原料药品种。在中国每年生产的14.7万吨抗生素里,83%都在国内市场消耗。  令人感叹的是,曾经帮助我们战胜细菌的抗生素如今却让细菌变得更加强大。“很难想象如果细菌对抗生素的耐药性无限增强会怎样,”中日友好医院的徐潜医生说。“那将如同回到了发明抗生素之前年代。”
  • 科技创新“双循环”:掌握关键核心技术,融入全球科技创新
    结合党中央近期系列文件精神,可以认为科技创新在以国内大循环为主体、国内国际双循环相互促进的新发展格局(以下简称“双循环”)中居于核心地位。自 2018 年中美经贸摩擦以来,美国无理打压中国高科技企业。一方面,我国科技创新的基础还不牢,自主创新特别是原创力还不强,关键领域核心技术受制于人的格局没有从根本上改变。另一方面,美国在经贸摩擦中频频利用其科技优势对我国进行科技封锁,导致“卡脖子”问题凸显。  可见,要实现科技创新对经济“双循环”新发展格局的推动作用,就首先要实现科技创新“双循环”。即,在开放、共享的国际大环境中,既将关键核心技术掌握在自己手中,同时又融入全球科技创新的整体格局,进而将科技创新“双循环”作为经济“双循环”的内生动力,通过科技创新“双循环”的实现推进经济“双循环”新发展格局形成的进程。  科技创新“双循环”的内涵  科技创新“双循环”的时代背景  科技创新“双循环”的提出与当前国际国内形势密切相关。  1. 近年来美国商务部频频发布出口管制“实体清单”,制裁中国的企业与科研机构。除华为公司首当其冲之外,美国商务部的触角已经扩大到我国的高等学校。例如,哈尔滨工业大学、哈尔滨工程大学、西北工业大学、北京理工大学、南京航空航天大学、北京航空航天大学等高校已被列入制裁名单范围 哈尔滨工业大学、哈尔滨工程大学等高校已被禁止使用 MATLAB 软件。  2. 多年来中美经贸摩擦的核心其实是高科技竞争。美国多次禁止高技术产品出口到中国,意图造成实际上的“高科技脱钩”。  3. 改革开放以来,中国科技事业发展实现了历史性、整体性、格局性重大变化 从科技投入和产出两方面来看,中国已跻身世界科技大国之列,初步具备打破美国科技封锁的潜力与条件。  科技创新“双循环”的基本内容  按照经济“双循环”的基本逻辑,可将科技创新“双循环”基本内容归纳为以下 3 个方面。  1. 国内大循环建设为主体  在做好基础研究的基础上,实现“从 0 到 1”的重大突破,形成具有自主知识产权的关键核心技术。通过多元主体融通创新,打通科技创新的全过程链条,掌握产业发展主导权,进而为科学发展提供更完善的研究支持和更具有挑战性的研究话题,实现本土化的知识生产、流动、扩散、应用、再生产。  2. 国内国际双循环相互促进  学习和利用全世界范围内一切优秀的基础科学研究成果、重大原创性科技发明、颠覆性科技产品,通过研发合作、技术许可、企业并购等形式将外部知识资源引入国内大循环。通过本土化知识和外部知识的融会贯通、汇聚交叉,提升科技创新的水平,更好地适应全球化市场的需求。  3. 积极融入国际大循环  “自主创新”“科技自立自强”从来不等同于自我封闭,而是要实施更加开放包容、互惠共享的国际科技合作战略。在学习发达国家先进科学技术成果的同时,自然而然会成为被学习和研究的对象,融入国际大循环。作为负责任的发展中大国,我国也应通过科技成果的产出和推广应用,缩小发展中国家与发达国家间的科技鸿沟,提升全球科技整体发展水平。  科技创新“双循环”的关键难点  按照科技创新“双循环”的基本内容,从我国目前的现实国情来看,存在着 3 个需要重点突破的关键难点。  1. 国内大循环中,基础科学研究的源头作用尚未得到有效发挥  基础科学研究作为创新的源头,在科技创新中起着源头活水的作用。但源头活水自由流动到工程技术段,浇灌出累累的科技创新硕果的前提是,中间的各个“涵洞”“闸门”需要畅通。习近平总书记在 2020 年 10 月16日中共中央政治局第二十四次集体学习时强调的“要提高量子科技理论研究成果向实用化、工程化转化的速度和效率”,所蕴含的就是对基础科学成果尽快转化为原始创新的殷切希望。  2. 国内国际双循环中,“卡脖子”问题直接影响我国科技创新全局  在基础科学领域,我们大量学习、引用国外经典文献,产出了数量上世界第一的科学论文,质量也在逐年升高。可是对于“从 0 到 1”原始创新和“卡脖子”问题的解决,成效不够明显。在工程技术领域,多年来我国局限于对国外先进产品进行引进、改造,但始终无法产生原理性突破和质的飞跃,只能跟在国际前沿后边走,处于“跟跑”位置,处处被动、无法掌握竞争先机。  3. 在国际大循环中,对全球科技创新的整体贡献仍显不足  我国虽然已经产出了高铁、5G 网络、电子支付等具备国际竞争力的产品和服务,但对全球科技创新的整体贡献仍显不足,缺乏更多类似吴仲华的“叶轮机械三元流动通用理论”、屠呦呦的“从中医药古典文献中获取灵感,先驱性地发现青蒿素,开创疟疾治疗新方法”等重大科技成果。要提升我国科技创新的整体影响力,还需要从重大科学发现、重大科技发明、原创型重要专利等节点发力,为全球科技创新提供更多高质量成果。  基于技术科学的科技创新“双循环”实现路径  从本文 1.3 节的分析可以看出,目前科技创新存在的 3 个难点,可以根据笔者之前的研究,基于钱学森技术科学思想来提供解决方案。基础科学不能直接作用于技术创新,停留在工程技术本身又很难获得原始创新,唯有技术科学才具有丰富的创新功能,对科技创新“双循环”的形成具有关键核心作用。技术科学的创新功能,具体来说可以概括为原始创新功能、二次创新功能和潜在创新功能 3 个方面。此功能定位,可为科技创新“双循环”的构建提供坚实的理论基础和操作指南。  科技创新的国内大循环  依据技术科学的 3 个创新功能提出以技术科学为核心建构的科技创新国内大循环思路(图 1)。如图 1 所示,国内大循环由 3 条路径构成。  图1 科技创新国内大循环建构思路  国内大循环路径 1——“基础科学—技术科学—工程技术”和“工程技术—技术科学”,表达的是技术科学的原始创新过程。  分为 2 个部分:  1. 经由“基础科学—技术科学—工程技术”的路径实现科学技术知识的本土化流动,将关键核心技术掌握在自己手里   2. “工程技术—技术科学”,即从工程技术中凝练问题引发技术科学研究,进而实现工程技术创新。  国内大循环路径 1 充分展示了技术科学的原始创新功能,即理论导向的应用研究和应用导向的基础研究相结合的原创发明与原始创新。为更清晰地阐述国内大循环路径 1,将其内部知识活动和主体活动进行深入刻画绘制成图 2。图 2 展示了 2 个部分知识活动和主体活动的各个主要环节与整体链条:  1. 从纯基础科学出发,将科学原理和科学发现转化为新的技术原理,制作出样机、模型或者提出原创性发明方案,最后转化为企业所需要的产品创新或者工艺创新。  2. 从企业和市场的需求出发,开展以应用为导向的技术基础研究,改变原有的从基础研究段发起的创新路径,面向企业和市场的需求开展知识创新。  这一段路径的主要特点是增加了应用导向的基础研究的知识供给链条,补充了原有线性模型的不足。国内大循环路径 1 与习近平总书记在科学家座谈会上的讲话中提出的“基础研究一方面要遵循科学发现自身规律,以探索世界奥秘的好奇心来驱动,鼓励自由探索和充分的交流辩论 另一方面要通过重大科技问题带动,在重大应用研究中抽象出理论问题,进而探索科学规律,使基础研究和应用研究相互促进。” 在本质上是完全一致的,是对习近平总书记讲话精神的准确、深入阐释。  国内大循环路径 2——“技术科学—基础科学”,表达的是技术科学反哺基础科学的过程  钱学森早就前瞻性地指出:技术科学研究的成果再加以分析,再加以提高就有可能成为自然科学的一部分。这里的一个明显例子就是工程控制论。工程控制论的内容就是从自动控制实践总结出来的,在自然界里,则演变为生物控制论。控制论作为一门技术科学,能够深刻地推动生物学这门基础科学学科的发展,也充分体现了技术科学对基础科学的反哺功能。  国内大循环路径 3——“工程技术—基础科学”,表达的是工程技术对基础科学发展的推动作用  历史上,在天文学领域望远镜、引力探测装置的出现催生了更多的新天文现象的发现,加速了天文学的进展。在原子物理领域,电子对撞机等大科学装置使得人类对微观世界认识更加深刻。医学领域,医疗设备的不断升级加深了人类对生命的认识,基础医学的进步由此不断产生。  图 1 描述的 3 条路径,阐释了科技创新国内大循环的总体建构思路:从基础科学端和工程技术端两端发力,在技术科学这一关键环节形成新的技术原理、模型、样机、原创发明等成果形式,最终实现工程技术创新这一终极目标。同时,技术科学与工程技术的发展都能够反过来推动基础科学的发展,由此形成新一轮循环的动力源。上述路径如果由我国自主完成,通过专利申请、技术秘密、产业对接等产学研协作活动,就能够将关键核心技术掌握在自己手中。此外,利用各种天然存在的反馈关系(图 2),持续推动基础科学的发展,并通过市场需求导向的加强,使得科技创新的国内大循环能够源源不断运行下去。  图2 以技术科学为核心的国内大循环主体活动图  科技创新的国内国际双循环  图 1 和 2 是从国内大循环的角度阐述“基础科学—技术科学—工程技术”这一创新链条。将视野拓展至国际视角,可根据技术科学的二次创新功能,绘制出科技创新国内国际双循环建构思路,这里同样包含 3 条路径(图 3)。  图3 科技创新国内国际双循环建构思路  国内国际双循环路径 1——“国外工程技术—国内技术科学—国内工程技术”,提供了基于技术科学的二次创新功能对国外先进工程技术学习消化吸收再创新的新思路。  以往对国外先进技术的学习经常陷入“引进—落后—再引进—再落后”的循环,这多数是因为对国外先进技术的技术原理没有搞清楚,所以无法在其基础上进行深入改进和再创新。未来应在技术科学的层次上,要弄清国外先进技术的技术原理,争取在技术原理上进行升级,从而在新的技术轨道上提升我国工程技术创新水平。  国内国际双循环路径 2——“国外技术科学—国内工程技术”,提供了基于国外技术科学成果推动我国工程技术创新水平的新思路。  以马可尼的无线通信技术为例,最初是在意大利和英国做出的,但最终在美国成为现实。再如青霉素,其基础科学和技术科学的成果源自英国,最终也是由美国的制药企业实现产业化生产。虽然技术科学的成果会被专利等知识产权形式保护,但由于其处于萌芽期,专利丛林尚未形成,为我们提供了可观的、可加以利用的空间和时间。作为反面例证,我国吴仲华和屠呦呦的技术科学成果由于当时缺乏专利保护,已经被国外无偿使用多年。  国内国际双循环路径3——“国外基础科学—国内技术科学—国内工程技术”,提供了全方位利用国外基础科学成果以从源头提升我国工程技术创新水平的新思路  由于基础科学具备公开和共享的天然特征,学习和利用的障碍不大。例如,爱因斯坦在 1916 年提出的受激辐射理论,于 1958 年被汤斯和肖洛转化为技术科学成果,又在 1960 年指导梅曼成功地制造出红宝石激光器,成为基础科学成果转化为工程技术的典范。在国外同行工作的启示下,我国科技工作者在 1961 年就做出了自己的第一台激光器,充分展现出基础科学成果的广泛而又无差别的源头作用。  融入科技创新国际大循环  将图 3 中国内与国外的位置做一调换形成图 4,就能够将知识的流动方向做一逆转,展现我国积极融入科技创新国际大循环的可行性与可能性。这意味着在充分利用国内、国外 2 种资源的同时,我国先进的科技成果也被视为资源进而成为国外主体创新活动的知识基础。这既能体现我国对全球科技创新的贡献,也是我国深度参与国际大循环的必然结果。  图4 科技创新融入国际大循环建构思路  对策建议  为推动科技创新“双循环”的建构思路框架能够落地实施,结合我国的现实国情,提出 3 点对策建议 。  重视技术科学在科技创新“双循环”中的作用  1.加强对技术科学思想的宣传,明确技术科学对原始创新、消化吸收再创新的重要作用,提高科学界、政府、企业界等相关人员对技术科学思想内涵的认识   2.加大技术科学思想对科技创新的理论研究和实践总结,深化有关发展技术科学的政策、技术科学的组织与管理的特殊性认识   3.廓清基础科学与技术科学的区别与联系,明确技术科学思想缺位对科技创新带来的危害   4.将重视程度落实到文件层次,基于技术科学思想进一步贯彻实施《国务院关于全面加强基础科学研究的若干意见》《加强“从 0 到 1”基础研究工作方案》等系列文件精神。  加强技术科学专门政策与组织建设的力度  要从宏观管理层面为科技创新“双循环”建设的指引和管理服务,确保以技术科学为核心的科技创新知识供应链的畅通,以及创新主体行为的积极性、规范性、协同性。  1.在“十四五”国家科技创新规划等指导文件中重新确立技术科学之于建设科技强国的重要地位,以及在国家科学技术发展、提升自主创新能力中的战略地位   2.在国家自然科学基金、国家重点研发计划等科技项目中明确列出支持技术科学研究的指导原则和课题指南,从经费投入上加大对技术科学研究的支持力度   3.集合科学技术部基础研究司、高新技术司和教育部科学技术与信息化司、高等教育司等相关部门的优势资源,加强对技术科学发展的指导与管理。  以技术科学家为桥梁推动多元主体的融通创新  配合知识创新供应链的运行,应构建以技术科学家(与科学家、工程师对应)培养和使用为中心的科技创新行为主体协同机制。  1.以技术科学家的培养和使用为抓手,带动科学家和发明家乃至企业家协同合作   2.要推动科学家、发明家、企业家等行为主体的协同创新,发现和鼓励“科学家-发明家-企业家”风格集于一身的帅才型科技创新领军人物的出现   3.积极促进企业建立自己的创新研究院,招揽高层次人才,给予优厚待遇甚至股权   4.依托科学技术部正在积极建设的“国家技术创新中心”,担负起支持技术科学发展的责任,深入地开展综合类和区域类技术科学研究。  结论与展望  回顾历史,钱学森技术科学思想在《1956—1967年科学技术发展远景规划》中曾经得到了充分体现,并在“两弹一星”工程中取得了巨大成功,被张劲夫同志称为“技术科学的强国之道”。在以基础科学为源头的创新链条中,技术科学作为桥梁和中介,使得基础研究成果(基础科学)能够最终转化为原始创新成果(工程技术),科技创新的全链条由此得以贯通。以此为主要逻辑,辅之以技术科学为核心的对国外先进科技成果的学习吸收,构成了我国科技创新“双循环”的总体框架。可以看到,时至今日技术科学思想仍然具备极强的理论价值和现实意义,能够为我国科技创新“双循环”格局的建设提供本土化的思想支撑。  当然,本文所提供科技创新“双循环”的建构思路还是一种宏观的理论思路,虽配合思路框架提供了相应的对策建议,仍需在实践中不断具体化,摸索提炼出可操作、可执行的政策手段,以保障我国科技创新“双循环”的顺畅运行,最终为经济“双循环”格局的建立奠定坚实的基础。本文作者:  杨中楷 大连理工大学人文与社会科学学部教授、博士生导师。2007 年毕业于大连理工大学科学学与科技管理专业,获管理学博士学位。主要研究方向为科技政策与知识产权。累计主持国家级基金项目等 8 项课题,曾参与中国科学院学部咨询项目“关于重视技术科学对建设创新型国家的作用的建议”的研究工作。在《科学学研究》《科研管理》《图书情报工作》《中国科学院院刊》等期刊累计发表论文 90 余篇。  梁永霞 《中国科技期刊研究》编辑部主任、副研究馆员、编审。2009 年毕业于大连理工大学科学学与科技管理专业,获管理学博士学位 清华大学科学与社会研究所博士后。主要研究方向:科学计量学、引文分析、科学知识图谱、期刊评价与管理等。出版专著 2 部,参编书籍 4 部 主持与参与 6 项国家级科研项目。在《科学学研究》《图书情报工作》《中国科技期刊研究》等期刊发表论文 30 余篇。
  • 【食品安全小课堂】兽药残留检测技术难点——如何做好β -内酰胺类抗生素的检测
    【导语】检测的日常总是充满了各种挑战,为了更好地服务食品检测行业相关用户,岛津科技资讯通现推出“食品安全小课堂”专栏。内容涵盖——食品检测技术难点、方法验证、实验室管理、法规解读等相关内容,我们会不定期更新,敬请期待! 你是否发现有一些兽药无论你怎么用心做,结果都不尽理想?不是峰型差,就是回收率太低。其实很多情况下,这可能不是你的问题,而是兽药本身的化学结构决定的。 今天我们先分析【β-内酰胺类】抗生素图片说到β-内酰胺类抗生素,大家可能没那么快反应过来,但如果我说青霉素类,是不是就秒懂啦。这可是兽残检测界响当当的“黑名单”!β-内酰胺类检测经常出现回收率低、甚至无法出峰的情况,到底是什么原因呢?其实最主要的原因是β-内酰胺类物质的不稳定性导致的。 图1 β-内酰胺类抗生素的基本结构(左:青霉素类、右:头孢菌类)[1] 图1是β-内酰胺类抗生素的基本结构。含有自然界中罕见的β-内酰胺基母核,母核结构中两个稠合环不在一个平面上,β-内酰胺环中羰基和N原子上的未共用电子对不能共轭,既容易受到亲电试剂的攻击,又容易被亲核试剂攻击[1]。因此,该类物质不稳定。有研究表明,β-内酰胺类抗生素对温度、pH、水分都较敏感[2],高温、水分、酸/碱条件都会加速该类物质的降解。 面对如此不安分的β-内酰胺类抗生素,我们该怎么办呢?下面小编给大家支支招。 1、标准品配置和存放▶ 不建议采用纯水、甲醇溶液配置标准品,建议采用50%左右的乙腈/水(V/V)溶液。▶ 配置好的标准储备液(如1000mg/L),放置在棕色瓶中于-18℃保存。建议用小瓶分装,不可反复冻融。▶ 注意一级浓标(1000mg/L)的有效期,推荐有效期为1个月。但具体可以存放多久,需要实验室应进行标准品期间核查后确定。▶ 稀释后的二级标准品储备液及线性用过后不要保存,只使用一次就好。 2、前处理注意事项▶ 麻利——尽可能缩短前处理的时间。▶ 尽量做到避光。▶ 可将耗材提前放置于低温处,必要时也可冰浴,尽量降低前处理过程的温度。 3、上机注意事项▶ 优先该项目上机。▶ 注意设置液相样品盘的温度,可设置为10℃。 以上建议基于小编的检验经验,欢迎大家在评论处讨论和补充哦~ 【食品安全小课堂】下期预告农残检测技术难点——谈谈农残基质效应那些事儿 参考文献[1].刘创基.动物性食品中β-内酰胺类药物及其代谢物检测方法的研究[D].北京化工大学,2010.[2].姜力群,嵇元欣,刘晶锦等.青霉素类抗生素稳定性的影响因素及有关物质测定方法[J].药学进展,2008,32(2).
  • 西安交通大学第二附属医院314.00万元采购样品前处理
    html,body{-webkit-user-select:text }*{padding:0 margin:0 }.web-box{width:100% text-align:center }.wenshang{margin:0auto width:80% text-align:center padding:20px10px010px }.wenshangh2{display:block color:#900 text-align:center padding-bottom:10px border-bottom:1pxdashed#ccc font-size:16px }.sitea{text-decoration:none }.content-box{text-align:left margin:0auto width:80% margin-top:25px text-indent:2em font-size:14px line-height:25px }.biaoge{margin:0auto /*width:643px */width:100% margin-top:25px }.table_content{border-top:1pxsolid#e0e0e0 border-left:1pxsolid#e0e0e0 font-family:Arial /*width:643px */width:100% margin-top:10px margin-left:15px }.table_contenttrtd{line-height:29px }.table_content.bg{background-color:#f6f6f6 }.table_contenttrtd{border-right:1pxsolid#e0e0e0 border-bottom:1pxsolid#e0e0e0 }.table-left{text-align:left padding-left:20px }详细信息西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告陕西省-西安市-新城区状态:公告更新时间:2022-05-14招标公告公示西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告发布时间:2022-05-1415:44:32西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告项目概况西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次的潜在投标人应在线上获取招标文件,并于2022年6月7日09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片AST-GN13VITEK2革兰氏阴性细菌药敏卡片AST-GN16VITEK2革兰氏阴性细菌药敏卡片AST-XN04VITEK2革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK2革兰氏阴性细菌药敏卡片AST-N334VITEK2革兰氏阴性细菌药敏卡片AST-N335VITEK2革兰氏阳性细菌药敏卡片AST-P639β-内酰胺酶快速检测试剂Genbag厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEKMS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶BacT/ALERTFA全自动血培养仪1厌氧微生物培养瓶FN需氧微生物培养瓶SA厌氧和兼性厌氧微生物培养瓶SN需氧和兼性厌氧微生物培养瓶PF厌氧和兼性厌氧微生物培养瓶BacT/ALERTFNPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTFAPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTPFPlus半自动鉴定及药敏检测试剂(进口)ID32GN革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID32C酵母菌鉴定试剂盒(比色法)RAPIDID32A厌氧菌鉴定试剂盒(比色法)ID32E肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID32STAPH葡萄球菌鉴定试剂盒(比色法)RAPIDID32STREP链球菌快速鉴定试剂盒(比色法)FUNGUSⅢ酵母样真菌药敏试剂盒(微量稀释法)ATBENTEROC5肠球菌药敏试剂盒(比色法)ATBG-5肠细菌药敏试剂盒(比色法)ATBSTAPH5葡萄球菌药敏试剂盒(比色法)ATBPSE5假单胞菌和非发酵菌药敏试剂盒(比色法)ATBHAEMO嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATBSTREP5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl0.85#%悬浮液悬浮液(3ml)(100支/盒)ATBMedium肉汤培养基FB(坚固兰)(FASTBLUEBB)JAMES吲哚试剂麦氏比浊管McFarlandStandardAPIMINERALOIL矿物油NIN马尿酸NIT1+NIT2硝酸盐试剂丙酮酸反应检测液(VP1+VP2)STERILEATB无菌加样吸头BCP二甲苯试剂EHR色氨酸试剂XYL溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法)P10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX30ugCT0030B米诺环素药敏实验纸片(扩散法)MH30ugCT0013B氯霉素药敏实验纸片(扩散法)C30ugCT0064B克林霉素药敏实验纸片(扩散法)DA2ugCT0020B红霉素药敏实验纸片(扩散法)E15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法)FOT20ugCT0058B万古霉素药敏实验纸片(扩散法)VA30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP10ugCT0054B四环素药敏实验纸片(扩散法)TE30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO30ugK6101奥普托欣纸片5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度)妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌)KB法国产微生物药敏试纸(扩散法法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血﹒嗜血杆菌﹒肠道菌(麦康凯)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(伊红美兰)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(中国蓝)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(SS)分隔琼脂平板血﹒嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBSpH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签)注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies采样运送拭子(Amies采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片备注:各供应商可选择参投一个或多个标段,但必须对所投标段内全部项目内容进行投标报价,不得缺项、漏项。预算金额:314万元/年。资金性质:自筹资金。项目用途:医用。合同履行期限:2年二、供应商资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2020年度的财务报表(至少包括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前一月的财务报表(至少包括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。3.6、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7、本项目不接受联合体投标。三、获取招标文件时间:2022年5月16日至2022年5月20日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信、经办人身份证、联系电话及电子邮箱等资料加盖单位公章的彩色扫描件发送至邮箱591330045@qq.com,并及时联系采购代理机构确认(联系人:李工18220810739),获取缴费方式。2)招标文件售价人民币300元/标段,售后不退。采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。3)受疫情影响,本项目投标文件递交截止时间及开标时间和地点可能会变更,具体另行通知。售价:¥300.0元,本公告包含的招标文件售价总和。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月7日09点30分(北京时间)开标时间:2022年6月7日09点30分(北京时间)地点:西安市新城区长乐中路38号金花新都汇A座7层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜需要落实的政府采购政策:1、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);2、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);3、《关于政府采购优先购买福利性企业产品和服务的意见》(陕民发(2015)1号);4、关于印发《政府采购促进中小企业发展管理办法》的通知财库〔2020〕46号;5、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号);6、《环境标志产品政府采购实施的意见》(财库[2006]90号);7、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市新城区西五路联系方式:冯女士029-876798612.采购代理机构信息名称:正大鹏安建设项目管理有限公司地址:西安市新城区长乐中路38号金花新都汇A座12层1201室联系方式:李工18220810739,杨工159029482903.项目联系方式项目联系人:李工电话:18220810739×扫码打开掌上仪信通App查看联系方式$('.clickModel').click(function(){$('.modelDiv').show()})$('.closeModel').click(function(){$('.modelDiv').hide()})基本信息关键内容:样品前处理开标时间:2022-06-0709:30预算金额:314.00万元采购单位:西安交通大学第二附属医院采购联系人:点击查看采购联系方式:点击查看招标代理机构:正大鹏安建设项目管理有限公司代理联系人:点击查看代理联系方式:点击查看详细信息西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告陕西省-西安市-新城区状态:公告更新时间:2022-05-14招标公告公示西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告发布时间:2022-05-1415:44:32西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次公开招标公告项目概况西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次的潜在投标人应在线上获取招标文件,并于2022年6月7日09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片AST-GN13VITEK2革兰氏阴性细菌药敏卡片AST-GN16VITEK2革兰氏阴性细菌药敏卡片AST-XN04VITEK2革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK2革兰氏阴性细菌药敏卡片AST-N334VITEK2革兰氏阴性细菌药敏卡片AST-N335VITEK2革兰氏阳性细菌药敏卡片AST-P639β-内酰胺酶快速检测试剂Genbag厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEKMS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶BacT/ALERTFA全自动血培养仪1厌氧微生物培养瓶FN需氧微生物培养瓶SA厌氧和兼性厌氧微生物培养瓶SN需氧和兼性厌氧微生物培养瓶PF厌氧和兼性厌氧微生物培养瓶BacT/ALERTFNPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTFAPlus需氧和兼性厌氧微生物培养瓶BacT/ALERTPFPlus半自动鉴定及药敏检测试剂(进口)ID32GN革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID32C酵母菌鉴定试剂盒(比色法)RAPIDID32A厌氧菌鉴定试剂盒(比色法)ID32E肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID32STAPH葡萄球菌鉴定试剂盒(比色法)RAPIDID32STREP链球菌快速鉴定试剂盒(比色法)FUNGUSⅢ酵母样真菌药敏试剂盒(微量稀释法)ATBENTEROC5肠球菌药敏试剂盒(比色法)ATBG-5肠细菌药敏试剂盒(比色法)ATBSTAPH5葡萄球菌药敏试剂盒(比色法)ATBPSE5假单胞菌和非发酵菌药敏试剂盒(比色法)ATBHAEMO嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATBSTREP5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl0.85#%悬浮液悬浮液(3ml)(100支/盒)ATBMedium肉汤培养基FB(坚固兰)(FASTBLUEBB)JAMES吲哚试剂麦氏比浊管McFarlandStandardAPIMINERALOIL矿物油NIN马尿酸NIT1+NIT2硝酸盐试剂丙酮酸反应检测液(VP1+VP2)STERILEATB无菌加样吸头BCP二甲苯试剂EHR色氨酸试剂XYL溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法)P10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX30ugCT0030B米诺环素药敏实验纸片(扩散法)MH30ugCT0013B氯霉素药敏实验纸片(扩散法)C30ugCT0064B克林霉素药敏实验纸片(扩散法)DA2ugCT0020B红霉素药敏实验纸片(扩散法)E15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法)FOT20ugCT0058B万古霉素药敏实验纸片(扩散法)VA30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP10ugCT0054B四环素药敏实验纸片(扩散法)TE30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO30ugK6101奥普托欣纸片5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度)妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌)KB法国产微生物药敏试纸(扩散法法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液)(4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血﹒嗜血杆菌﹒肠道菌(麦康凯)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(伊红美兰)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(中国蓝)分隔琼脂平板血﹒嗜血杆菌﹒肠道菌(SS)分隔琼脂平板血﹒嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBSpH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签)注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies采样运送拭子(Amies采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片备注:各供应商可选择参投一个或多个标段,但必须对所投标段内全部项目内容进行投标报价,不得缺项、漏项。预算金额:314万元/年。资金性质:自筹资金。项目用途:医用。合同履行期限:2年二、供应商资格要求:1、基本资格条件:符合《政府采购法》第二十二条规定的供应商条件;1.1、提供在中华人民共和国境内注册的营业执照(或事业单位法人证书,或社会团体法人登记证书,或执业许可证)、组织机构代码证和税务登记证复印件【如已办理了多证合一,则仅需提供合证后的营业执照】,如供应商为自然人的需提供自然人身份证明。1.2、提供2020年度的财务报表(至少包括资产负债表、现金流量表和利润表)或具有财务审计资质的单位出具的2020年度财务会计报告或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证);2021年以后新成立企业提供成立之日至开标前一月的财务报表(至少包括资产负债表、现金流量表和利润表)或开标日前三个月内基本存款账户银行出具的资信证明(附开户许可证)。1.3、提供2021年以来至少一个月的纳税证明或完税证明(提供增值税、企业所得税至少一种),纳税证明或完税证明上应有代收机构或税务机关的公章或业务专用章。依法免税的供应商应提供相关文件证明。1.4、提供2021年以来至少一个月的社会保障资金缴存单据或社保机构开具的社会保险参保缴费情况证明。依法不需要缴纳社会保障资金的供应商应提供相关文件证明。1.5、提供履行合同所必需的设备和专业技术能力的书面声明。1.6、提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。2、落实政府采购政策需满足的资格要求:本项目非专门面向中小企业采购。3、特定资格条件:3.1、供应商应授权合法的人员参加投标全过程,其中法定代表人直接参加投标的,须出具法人身份证,并与营业执照上信息一致;法定代表人授权代表参加投标的,须出具法定代表人授权书及授权代表身份证。3.2、投标产品纳入医疗器械(或药品)管理的,须提供供应商有效的医疗器械(或药品)经营许可证或经营备案凭证。3.3、投标产品纳入医疗器械(或药品)管理的,须提供产品有效的医疗器械(或药品)注册证或备案凭证。3.4、若投标产品为进口,供应商须提供有效的完整授权链的产品授权书(授权期限不足2年的须附能够提供持续供货的声明材料,英文授权须提供中文翻译版;制造商直接参与投标的不提供此项)。若投标产品为国产且纳入医疗器械(或药品)管理的,供应商须提供投标产品制造商有效的营业执照和生产许可证。3.5、供应商未被列入“信用中国”网站(www.creditchina.gov.cn)以下情形之一:①记录失信被执行人;②重大税收违法案件当事人名单。同时,在中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中查询没有处于禁止参加政府采购活动的记录名单。3.6、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。3.7、本项目不接受联合体投标。三、获取招标文件时间:2022年5月16日至2022年5月20日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:线上方式:1)根据陕西省人民政府《关于加强新型冠状病毒感染的肺炎防控工作的通告》要求,本次招标文件采用线上发售,供应商在文件发售期以内将单位介绍信、经办人身份证、联系电话及电子邮箱等资料加盖单位公章的彩色扫描件发送至邮箱591330045@qq.com,并及时联系采购代理机构确认(联系人:李工18220810739),获取缴费方式。2)招标文件售价人民币300元/标段,售后不退。采购代理机构在收到邮件并确认文件收费到账后,通过邮箱向供应商发售招标文件,请及时查收。3)受疫情影响,本项目投标文件递交截止时间及开标时间和地点可能会变更,具体另行通知。售价:¥300.0元,本公告包含的招标文件售价总和。四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年6月7日09点30分(北京时间)开标时间:2022年6月7日09点30分(北京时间)地点:西安市新城区长乐中路38号金花新都汇A座7层会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜需要落实的政府采购政策:1、《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号);2、《财政部司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号);3、《关于政府采购优先购买福利性企业产品和服务的意见》(陕民发(2015)1号);4、关于印发《政府采购促进中小企业发展管理办法》的通知财库〔2020〕46号;5、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号);6、《环境标志产品政府采购实施的意见》(财库[2006]90号);7、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》(财库〔2019〕27号)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:西安交通大学第二附属医院地址:西安市新城区西五路联系方式:冯女士029-876798612.采购代理机构信息名称:正大鹏安建设项目管理有限公司地址:西安市新城区长乐中路38号金花新都汇A座12层1201室联系方式:李工18220810739,杨工159029482903.项目联系方式项目联系人:李工电话:18220810739
  • 【Detelogy应用方案】中药及饮片真菌毒素测定
    中药材霉变现象中药材生产、储存、运输、流通过程中,若管理不当,在外界条件(温度、湿度、车间环境、虫害等)和药材自身因素(含水量>15%、含糖量高等)的综合作用下,易出现霉变现象。真菌滋生对中药材进行分解和消耗,药材中所含的糖类和脂类物质渗出,从而导致粘连、泛油、异味、变色等现象,其有效药用成分含量降低。轻度霉变的药材经二次加工处理后入药,也会造成气味变淡、色泽转暗、品质降低、影响疗效的后果。常见真菌毒素及其危害真菌毒素(mycotoxin)是真菌产生的次级代谢产物,易产生于中药种植、储存环节中。绝大多数的产毒真菌为曲霉属、镰刀菌属和青霉属。曲霉属:黄曲霉毒素、赭曲霉毒素A 等镰刀菌属:玉米赤霉烯酮、T- 2毒素 、呕吐毒素(脱氧雪腐镰刀菌烯醇)和伏马毒素等青霉属:青霉素、桔青霉素等真菌毒素检测方法分类药典2351通则对比相较于2015版药典黄曲霉毒素测定法,2020版药典2351通则中新增赭曲霉毒素A、玉米赤霉烯酮测、呕吐毒素、展青霉素对应的样品前处理和分析方法,并增添了多种真菌毒素测定法。1、由于各类真菌毒素毒理不同,容易受污染药材品种也不同。2、处方中含有易污染的药材以及生粉投料的中成药品种应注意相关真菌毒素的检测。3、黄曲霉毒素:粮谷类、种子类、油性成分多的药材品种4、赭曲霉毒素、呕吐毒素、玉米赤霉烯酮:与粮谷类基质类似的药材,如淡豆豉、薏苡仁、白扁豆等5、展青霉素:酸性果实类药材,如枸杞子、乌梅、酸枣仁等新增第六法[多种真菌毒素测定]样品前处理流程1. 量取供试品粉末约 5g (过二号筛)2. 加入70 %甲醇溶液 50ml, 超声30min3. 离心后取上清液10ml,用水稀释至20ml,MultiVortex混匀4. 3ml甲醇和水依次预处理HLB小柱(规格:3ml,60mg)5. 准确量取3ml样品液过柱,直至有适量空气通过,收集洗脱液6. 再次用3ml甲醇洗脱,收集洗脱液。合并两次洗脱液7. 通过FV64或FV64UP缓氮吹至近干(水温40℃)8. 50%乙腈溶液定容至1ml, 用经0.22μm滤膜过滤,即得分析设备(LC-MS/MS)液相色谱:十八烷基硅烷键合硅胶为填充剂,0.01%甲酸为流动相 A 相 ,乙腈-甲醇(1 : 1)为流动相B相,0.3ml/min流速下进行梯度洗脱。三重四极杆质谱仪:电喷雾离子源ESI)黄曲霉毒素(B1、B2、G1、G2)、伏马毒素(B1、B2)、T-2毒素选正离子采集方式,赭曲霉毒素A 、呕吐毒素、玉米赤霉烯酮则为负离子采集模式。Detelogy优选智能实验室设备轻松应对药典2351真菌毒素测定法MHS-60多样品均质系统多刀头并联,同时快速均质6位样品兼容5-180ml样品管,转速1800-25000rpm2351通则内,1-5法前处理流程均适用MultiVortex多样品涡旋混合器标配26位&12位试管架,兼容100ml以内的样品转速范围200-3000rpm,触屏可存12个涡旋方法每个方法可设多达6段变速,样品混匀更充分QSE系列固相萃取装置12/24位,每通道配优质独立阀门控制特制加厚真空腔体,可耐80Kpa负压MFV智能氮吹仪通用型圆盘氮吹仪,可选12/24/36位可分组控制启停,每通道配数字刻度微调阀兼容1-150ml样品管,具备观察窗和排水口FV64全自动智能氮吹仪氮吹针自动下降,最多容纳64个样品每氮吹通道多路供气设计,平行性良好延时增压功能,同时自动近干氮吹所有样品FV64UP全自动智能双模式氮吹仪兼容双模式:针追随式或涡旋式氮吹三面透视水浴设计,样品观察更方便DTLabs微信小程序异地远程监控Tip 残留有黄曲霉毒素的废液或废渣的玻璃器皿,应置于专用贮存容器内浸泡 24小时以上(10%次氯酸钠溶液),再用清水冲洗干净。下期Detelogy应用方案再见
  • 探访山西“超级细菌”检测实验室
    工作人员正在检查实验结果  10月26日上午,中国疾病预防控制中心通报,国内已发现3例超级细菌(NDM-1耐药基因细菌)病例。29日,记者从山西省疾病预防控制中心了解到,我省还未发现超级细菌病例,但省疾控中心的实验室以及我省一些条件较好的市疾控中心实验室,都具备了监测“超级细菌”的条件。11月1日,本报记者走进山西省疾病预防控制中心实验室,独家探访“超级细菌”检测实地。  出了省疾控中心主楼6层的电梯向左一拐,便可以通过透明玻璃看到一个长廊,玻璃上写着“生物安全实验室,授权后方可进入”几个字,检测“超级细菌”的实验室就在里面。判定超级细菌并非难事  “嘟!”随着疾病检验科科长张凡非将门禁卡一刷,中心实验室的门应声而开。穿上隔离衣,戴上鞋套,记者跟随张凡非进入。走廊两侧有各种实验室,还有工作人员专用的更衣室、准备室、洗涤室等。几个实验室门口还贴着“生物危害”的标志。“我是全单位唯一持实验室门禁卡及密码的人,因为实验室安全性要求极高。我是第一责任人。”张凡非说。  穿过长廊,来到最里面的一间实验室。“这里就可以检测超级细菌了。”张凡非说。实验室里,两名工作人员正在一台“生物安全柜”前工作,戴着口罩、手套,全副武装。他们正在做肠道病菌试验。如果是做超级细菌的实验,专业上称“药敏试验”,第一步,也需要在生物安全柜里将病菌分纯。  “大家可以放心的是,判定超级细菌并非难事。”张凡非介绍。耐药性强的细菌并不是首次发现,而是一直存在,并且数量很多,比如耐青霉素的肺炎链球菌,过去对青霉素、红霉素、磺胺等药品都很敏感。而这次超级细菌引起的问题,主要是发现肠杆菌对抗生素不敏感了,产生了很强的泛耐药性,而之前这种细菌并没发现耐药性。所以说,省疾控中心实验室及我省一些条件较好的市疾控中心实验室,一直就具备检测及监测这种超级细菌的条件。2—3天就可确认试验结果  药敏试验通俗的解释,就是做某一种细菌对指定的药物敏感试验。如果不敏感了,也就说明耐药了。张凡非介绍。  检测是否是超级细菌需要经过4道程序。首先要从临床上取患者感染部位的标本,比如取呼吸道感染患者的痰标本,然后放在培养基上进行细菌培养,培养时间一般需要48小时。  培养出细菌后,就要进行耐药反应。耐药反应所选抗生素,是严格按照国家的监测要求进行的。目前,省疾控中心实验室所用抗生素有十几种,都是临床常用抗生素,针对不同的病菌,将不同的抗生素涂抹在药敏试纸上。之后,观察其结果。  结果有3种:敏感、中度敏感及耐药。涂抹过抗生素的药敏试纸上,都会出现直径、大小不同的药敏环儿。如果药敏环儿周围,细菌被抑制不滋生了,说明细菌对抗生素是敏感的 如果药敏环儿周围的细菌抑制情况不太明显,说明结果属于中度敏感 若药敏环儿周围的细菌依旧滋生,没有一点抑制效果,说明细菌产生了耐药性。  发现疑似耐药性反应,实验室就会将其送到中国CDC“临床基因扩增检验实验室”做基因分析,如果确认其含有耐药基因,那就可以确认这个细菌是超级细菌了。最快两三天就可以确认是否是超级细菌。一旦发现疑似耐药性反应,那么细菌的“主人”,就应第一时间被“隔离”。  整个监测过程并不复杂,但条件要求很严格。“比如菌株的存放就要求放置于-80℃的超低温环境内,”张凡非指着房间内的一个大冰柜,“那就是存放菌株的地方。”超级细菌不是传染病  “超级细菌是感染病,而非传染病。这是两种截然不同的概念。感染病是一种条件致病,并不是接触性传染病。”张凡非说。“感染性疾病需要具备一定的条件。打个比方,有人吃了西瓜会拉肚子,但有人就不会。细菌感染也一样,同样的细菌,由于不同的个体免疫力不同会有不同的反应,由于细菌感染而致病的还是少数。因此,大众没必要恐慌。”  张凡非还表示,真正的问题根源是超级细菌背后反映的抗生素滥用问题。“这个问题解决不了,超级细菌才会真正无敌。”
  • 314万!西安交通大学第二附属医院发布微生物试剂采购项目
    近日,西安交通大学第二附属医院发布微生物组试剂采购项目,计划采购全自动细菌鉴定与药敏检测试剂、细菌质谱鉴定检测试剂、全自动染色仪检测试剂等一年使用量的耗材,总预算为314万元。以下为标讯详细信息:项目编号:ZDZC2022030404项目名称:西安交通大学第二附属医院微生物组试剂采购项目(1标段、3标段、4标段、5标段、6标段)二次预算金额:314.0000000 万元(人民币)采购需求:本次采购标的标段划分如下:标段号产品组合名称产品名称检测方法使用科室采购预算(万元/年)拟中标家数备注1标段全自动细菌鉴定与药敏检测试剂(进口)革兰氏阴性细菌鉴定卡全自动细菌鉴定与药敏1医学检验科2501家革兰氏阳性细菌鉴定卡酵母菌鉴定卡奈瑟菌、嗜血杆菌鉴定卡革兰氏阴性细菌药敏卡片 AST-GN09革兰氏阳性细菌药敏卡片肺炎链球菌药敏卡片革兰氏阴性细菌药敏卡片 AST-GN13VITEK 2革兰氏阴性细菌药敏卡片AST-GN16VITEK 2 革兰氏阴性细菌药敏卡片AST-XN04VITEK 2 革兰氏阴性细菌药敏卡片AST-GN67一次性悬浮液管VITEK 2 革兰氏阴性细菌药敏卡片 AST-N334VITEK 2 革兰氏阴性细菌药敏卡片 AST-N335VITEK 2 革兰氏阳性细菌药敏卡片 AST-P639β-内酰胺酶快速检测试剂Genbag 厌氧产气袋厌氧菌及棒状杆菌鉴定卡片ANC样本稀释液VITEK-COMPACT比浊管细菌质谱鉴定检测试剂(进口)VITEK MS-DS样品板飞行时间质谱细菌鉴定仪质谱样品处理基质溶液质谱样品预处理溶液全自动染色仪检测试剂(进口)革兰染色液(丙酮番红)全自动革兰染色仪革兰染色液(番红)革兰染色液(丙酮品红)革兰染色液(品红)革兰染色液(碘液)革兰染色液(结晶紫)喷嘴清洗液全自动血培养仪检测试剂(进口)需氧和兼性厌氧微生物培养瓶 BacT/ALERT FA全自动血培养仪1厌氧微生物培养瓶 FN需氧微生物培养瓶 SA厌氧和兼性厌氧微生物培养瓶 SN需氧和兼性厌氧微生物培养瓶 PF厌氧和兼性厌氧微生物培养瓶BacT/ALERT FN Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT FA Plus需氧和兼性厌氧微生物培养瓶BacT/ALERT PF Plus半自动鉴定及药敏检测试剂(进口)ID 32 GN 革兰氏阴性杆菌鉴定试剂盒(比色法)半自动手工鉴定及药敏ID 32 C 酵母菌鉴定试剂盒(比色法)RAPID ID 32 A 厌氧菌鉴定试剂盒(比色法)ID 32 E 肠杆菌科和其它非苛养革兰氏阴性杆菌鉴定试剂盒(比色法ID 32 STAPH 葡萄球菌鉴定试剂盒(比色法)RAPID ID 32 STREP 链球菌快速鉴定试剂盒(比色法)FUNGUS Ⅲ酵母样真菌药敏试剂盒(微量稀释法)ATB ENTEROC 5 肠球菌药敏试剂盒(比色法)ATB G-5 肠细菌药敏试剂盒(比色法)ATB STAPH 5 葡萄球菌药敏试剂盒(比色法)ATB PSE 5 假单胞菌和非发酵菌药敏试剂盒(比色法)ATB HAEMO 嗜血杆菌和布兰汉球菌药敏试剂盒(比色法)肠杆菌药敏试剂盒(比色法)非发酵菌药敏试剂盒(比色法)ATB STREP 5链球菌和肺炎球菌药敏试剂盒(比色法)NaCl 0.85#% 悬浮液悬浮液(3ml)(100支/盒)ATB Medium 肉汤培养基FB(坚固兰)(FAST BLUE BB)JAMES 吲哚试剂麦氏比浊管 McFarland StandardAPI MINERAL OIL 矿物油NIN 马尿酸NIT1 + NIT2 硝酸盐试剂丙酮酸反应检测液(VP1 + VP2)STERILE ATB 无菌加样吸头BCP 二甲苯试剂EHR 色氨酸试剂XYL 溴甲酚紫试剂3标段G实验+GM实验配套试剂及碳青霉烯酶检测试剂、耗材革兰阴性脂多糖检测试剂盒(光度法)显色法551家真菌(1-3)--D葡聚糖检测试剂盒曲霉菌半乳甘露聚糖检测试剂盒化学发光法免疫显色试剂(NDM型碳青霉烯酶检测卡)胶体金法免疫显色试剂(KPC型碳青霉烯酶检测卡)免疫显色试剂(IMP-4型碳青霉烯酶检测卡)免疫显色试剂(VIM型碳青霉烯酶检测卡)免疫显色试剂(OXA-23碳青霉烯酶检测卡)免疫显色试剂(OXA-48碳青霉烯酶检测卡)免疫显色试剂(NDM、KPC、IMP-4型碳青霉烯酶检测卡)烟曲霉菌硫氧还蛋白还原酶IgG抗体检测试剂盒酶联免疫法念珠菌烯醇化酶IgG抗体检测试剂盒一次性使用小吸头一次性使用大吸头一次性使用真空采血管一次性无热源专用离心管(EP管)一次性使用吸头(IGL-800专用)一次性专用平底试管(IGL-800专用)一次性使用无热源混合瓶(IGL-800专用)一次性接种环4标段进口药敏纸片药敏纸片K-B法(进口)通用药敏实验纸片纸片扩散法31家CT0425B环丙沙星药敏实验纸片CIP 5ug头孢吡肟药敏实验纸片(扩散法)CT0043B青霉素药敏实验纸片(扩散法) P 10ugCT0647B替考拉宁药敏实验纸片(扩散法)CT0725B哌拉西林/他唑巴坦药敏实验纸片(扩散法)CT0119B头孢西丁药敏实验纸片(扩散法)FOX 30ugCT1841B替加环素药敏实验纸片(扩散法)CT0166B头孢噻肟药敏实验纸片(扩散法)CTX 30ugCT0030B米诺环素药敏实验纸片(扩散法)MH 30ugCT0013B氯霉素药敏实验纸片(扩散法)C 30ugCT0064B克林霉素药敏实验纸片(扩散法)DA 2ugCT0020B红霉素药敏实验纸片(扩散法)E 15ugCT0107B阿米卡星药敏实验纸片(扩散法)AK 30ugCT0774B美罗培能药敏实验纸片(扩散法)CT0520B氨苄西林/舒巴坦药敏实验纸片(扩散法)SAM 20ugCT1650B利奈唑胺药敏实验纸片(扩散法)LZD 30ug头孢他啶药敏实验纸片(扩散法)磷霉素/氨丁三醇药敏实验纸片(扩散法) FOT 20ugCT0058B万古霉素药敏实验纸片(扩散法)VA 30ugCT0264B氨曲南药敏实验纸片(扩散法)ATM 30ugCT0003B氨苄西林药敏实验纸片(扩散法)AMP 10ugCT0054B四环素药敏实验纸片(扩散法)TE 30ugCT0127B头孢呋辛钠药敏实验纸片(扩散法)CXM 30ugCT0159B苯唑西林药敏实验纸片(扩散法)CT0417B头孢曲松药敏实验纸片(扩散法)CRO 30ugK6101 奥普托欣纸片 5ugCT1727B头孢哌酮/舒巴坦药敏实验纸片(扩散法)SCF 105ugCT0052B磺胺甲恶唑/甲氧苄啶药敏实验纸片(扩散法)SXTCT1587B左氧氟沙星药敏实验纸片(扩散法)LEV 5ugCT0024B庆大霉素药敏实验纸片(扩散法)CN 10ugCT0011B头孢唑啉药敏实验纸片(扩散法)CT0455B亚胺培南药敏实验纸片(扩散法)IPM 10ug5标段国产药敏纸品+基础培养基微生物肉汤稀释法MIC+其他配套试剂通用药敏试剂(8浓度)细菌药敏试剂(微量肉汤稀释法)31家通用药敏试剂(12浓度)头孢噻肟药敏试剂微量肉汤稀释法(8浓度)头孢曲松药敏试剂微量肉汤稀释法(8浓度)头孢哌酮药敏试剂微量肉汤稀释法(8浓度)头孢他啶药敏试剂微量肉汤稀释法(8浓度)头孢呋辛药敏试剂微量肉汤稀释法(8浓度)头孢唑啉药敏试剂微量肉汤稀释法(8浓度)头孢西丁药敏试剂微量肉汤稀释法(8浓度)头孢吡肟药敏试剂微量肉汤稀释法(8浓度)哌拉西林药敏试剂微量肉汤稀释法(8浓度)苯唑西林药敏试剂微量肉汤稀释法(8浓度)氨苄西林药敏试剂微量肉汤稀释法(8浓度)羧苄西林药敏试剂微量肉汤稀释法(8浓度)替卡西林药敏试剂微量肉汤稀释法(8浓度)左氧沙星药敏试剂微量肉汤稀释法(8浓度)环丙沙星药敏试剂微量肉汤稀释法(8浓度)氧氟沙星药敏试剂微量肉汤稀释法(8浓度)洛美沙星药敏试剂微量肉汤稀释法(8浓度)加替沙星药敏试剂微量肉汤稀释法(8浓度)氟罗沙星药敏试剂微量肉汤稀释法(8浓度)诺氟沙星药敏试剂微量肉汤稀释法(8浓度)庆大霉素药敏试剂微量肉汤稀释法(8浓度)司帕沙星药敏试剂微量肉汤稀释法(8浓度)多西环素药敏试剂微量肉汤稀释法(8浓度)米诺环素药敏试剂微量肉汤稀释法(8浓度)克拉霉素药敏试剂微量肉汤稀释法(8浓度)万古霉素药敏试剂微量肉汤稀释法(8浓度)阿奇霉素药敏试剂微量肉汤稀释法(8浓度)卡那霉素药敏试剂微量肉汤稀释法(8浓度)克林霉素药敏试剂微量肉汤稀释法(8浓度)红霉素药敏试剂微量肉汤稀释法(8浓度)青霉素药敏试剂微量肉汤稀释法(8浓度)氯霉素药敏试剂微量肉汤稀释法(8浓度)利奈唑胺药敏试剂微量肉汤稀释法(8浓度)链霉素药敏试剂微量肉汤稀释法(8浓度)四环素药敏试剂微量肉汤稀释法(8浓度)利福平药敏试剂微量肉汤稀释法(8浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(8浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(8浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(8浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(8浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(8浓度)复方新诺明药敏试剂微量肉汤稀释法(8浓度)丁胺卡那药敏试剂微量肉汤稀释法(8浓度)呋喃妥因药敏试剂微量肉汤稀释法(8浓度)氨曲南药敏试剂微量肉汤稀释法(8浓度)美罗培南药敏试剂微量肉汤稀释法(8浓度) 妥布霉素药敏试剂微量肉汤稀释法(8浓度)替考拉宁药敏试剂微量肉汤稀释法(8浓度)头孢克罗药敏试剂微量肉汤稀释法(8浓度)头孢噻肟药敏试剂微量肉汤稀释法(12浓度)头孢曲松药敏试剂微量肉汤稀释法(12浓度)头孢哌酮药敏试剂微量肉汤稀释法(12浓度)头孢他啶药敏试剂微量肉汤稀释法(12浓度)头孢呋辛药敏试剂微量肉汤稀释法(12浓度)头孢唑啉药敏试剂微量肉汤稀释法(12浓度)头孢西丁药敏试剂微量肉汤稀释法(12浓度)头孢吡肟药敏试剂微量肉汤稀释法(12浓度)哌拉西林药敏试剂微量肉汤稀释法(12浓度)苯唑西林药敏试剂微量肉汤稀释法(12浓度)氨苄西林药敏试剂微量肉汤稀释法(12浓度)羧苄西林药敏试剂微量肉汤稀释法(12浓度)替卡西林药敏试剂微量肉汤稀释法(12浓度)左氧沙星药敏试剂微量肉汤稀释法(12浓度)环丙沙星药敏试剂微量肉汤稀释法(12浓度)氧氟沙星药敏试剂微量肉汤稀释法(12浓度)洛美沙星药敏试剂微量肉汤稀释法(12浓度)加替沙星药敏试剂微量肉汤稀释法(12浓度)氟罗沙星药敏试剂微量肉汤稀释法(12浓度)诺氟沙星药敏试剂微量肉汤稀释法(12浓度)庆大霉素药敏试剂微量肉汤稀释法(12浓度)司帕沙星药敏试剂微量肉汤稀释法(12浓度)多西环素药敏试剂微量肉汤稀释法(12浓度)米诺环素药敏试剂微量肉汤稀释法(12浓度)克拉霉素药敏试剂微量肉汤稀释法(12浓度)阿奇霉素药敏试剂微量肉汤稀释法(12浓度)卡那霉素药敏试剂微量肉汤稀释法(12浓度)克林霉素药敏试剂微量肉汤稀释法(12浓度)红霉素药敏试剂微量肉汤稀释法(12浓度)青霉素药敏试剂微量肉汤稀释法(12浓度)氯霉素药敏试剂微量肉汤稀释法(12浓度)利奈唑胺药敏试剂微量肉汤稀释法(12浓度)链霉素药敏试剂微量肉汤稀释法(12浓度)四环素药敏试剂微量肉汤稀释法(12浓度)利福平药敏试剂微量肉汤稀释法(12浓度)阿莫西林/棒酸药敏试剂微量肉汤稀释法(12浓度)替卡西林/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢他啶/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢噻肟/棒酸药敏试剂微量肉汤稀释法(12浓度)头孢哌酮/舒巴坦药敏试剂微量肉汤稀释法(12浓度)氨苄西林/舒巴坦药敏试剂微量肉汤稀释法(12浓度)哌拉西林/他唑巴坦药敏试剂微量肉汤稀释法(12浓度)复方新诺明药敏试剂微量肉汤稀释法(12浓度)丁胺卡那药敏试剂微量肉汤稀释法(12浓度)呋喃妥因药敏试剂微量肉汤稀释法(12浓度)氨曲南药敏试剂微量肉汤稀释法(12浓度)亚胺培南药敏试剂微量肉汤稀释法(12浓度)美罗培南药敏试剂微量肉汤稀释法(12浓度)妥布霉素药敏试剂微量肉汤稀释法(12浓度)替考拉宁药敏试剂微量肉汤稀释法(12浓度)头孢克罗药敏试剂微量肉汤稀释法(12浓度)肠杆菌科细菌药敏试剂盒链球菌药敏试剂盒替加环素药敏试剂MIC多粘菌素B药敏试剂MIC嗜血杆菌药敏试剂盒MIC少见菌药敏试剂盒MIC葡萄球菌药敏试剂盒MIC肠球菌药敏试剂盒MIC万古霉素药敏MIC亚胺培南药敏MIC头孢他啶/阿维巴坦试条药敏接种培养液(CAMHB)真菌药敏试纸KBKB法真菌药敏试纸条ETESTETEST法真菌药敏试剂MIC微量肉汤稀释法非发酵菌药敏试剂盒MIC标准菌株/质控菌株干粉培养基(SS、XLD、麦康凯、MH、厌氧血、嗜血)嗜热芽孢杆菌菌片结核分枝杆菌特异性细胞因子(IFN-γ和IL-2)联合检测ELISA法药敏纸片+手工鉴定配套试剂(国产)细菌药敏纸片(各类抗菌素或抗真菌) KB法 国产微生物药敏试纸(扩散法)卡他莫拉菌检测细菌生化鉴别试剂(氧化酶纸片)呋喃唑酮纸片杆菌肽纸片奥扑拓新纸片多粘菌素BV因子鉴定X因子鉴定X+V因子鉴定氨苄西林(氨苄青霉素)纸片苯唑青霉素纸片哌拉西林纸片头孢呋辛(西力欣.头孢呋肟)纸片头孢唑啉纸片头孢哌酮(先锋必)纸片头孢曲松纸片头孢噻肟纸片头孢他啶纸片利福平纸片链霉素纸片庆大霉素纸片四环素纸片氯霉素纸片红霉素纸片复方新诺明 SMZ/TMP纸片万古霉素纸片环丙沙星纸片洛美沙星纸片克拉霉素纸片左氧氟沙星纸片磷霉素纸片氧氟沙星纸片克林霉素纸片阿莫西林/棒酸纸片丁胺卡那纸片头孢哌酮/舒巴坦纸片(舒普深)诺氟沙星纸片氟罗沙星纸片氨曲南纸片亚胺培南纸片多西环素纸片司帕沙星纸片氨苄西林/舒巴坦纸片阿奇霉素纸片米诺环素纸片美罗培南纸片头孢吡肟纸片头孢西丁纸片哌拉西林/他唑巴坦纸片替卡西林/棒酸纸片呋喃妥因纸片妥布霉素纸片替卡西林纸片替考拉宁纸片头孢唑肟纸片头孢噻吩纸片奈替米星纸片Optochin纸片杆菌肽纸片新生霉素纸片呋喃唑酮纸片多粘菌素B纸片林可霉素纸片阿莫西林纸片罗红霉素纸片头孢美唑纸片交沙霉素纸片头孢克罗纸片头孢克肟纸片美洛西林纸片利奈唑胺纸片莫西沙星纸片头孢硫脒纸片头孢拉定纸片头孢氨苄纸片头孢匹安纸片拉氧头孢纸片头孢匹罗纸片阿洛西林纸片壮观霉素纸片夫西地酸纸片萘啶酸纸片头孢布烯纸片替加环素纸片厄他培南纸片头孢孟多纸片头孢丙烯纸片麦迪霉素纸片X因子鉴定纸片头孢他啶/棒酸纸片头孢噻肟/棒酸纸片庆大霉素纸片羧苄青霉素(羧苄西林)纸片加替沙星纸片卡那霉素纸片甲氧苄啶纸片头孢替坦纸片新霉素纸片土霉素纸片恩诺沙星纸片氟苯尼考纸片氨苄西林/棒酸纸片呋喃唑酮(痢特灵)纸片通用药敏纸片ETEST药敏(国产)康泰通用药敏试剂条细菌药敏试条(E试验法)青霉素药敏试剂条头孢呋辛药敏试条庆大霉素药敏试条头孢吡肟药敏试条红霉素药敏试条头孢唑啉药敏试条左氟沙星药敏试条诺氟沙星药敏试条苯唑西林药敏试条利奈唑胺药敏试条克林霉素药敏试条阿莫西林/棒酸药敏试条头孢他啶药敏试条环丙沙星药敏试条头孢曲松药敏试条头孢噻肟药敏试条克拉霉素药敏试条头孢哌酮/舒巴坦药敏试条头孢哌酮药敏试条洛美沙星药敏试条氧氟沙星药敏试条万古霉素药敏试条亚胺培南药敏试条美罗培南药敏试条氯霉素药敏试条氨苄西林药敏试条丁胺卡那药敏试条氨曲南药敏试条哌拉西林药敏试条司帕沙星药敏试条头孢他啶/棒酸药敏试条利福平药敏试条羧苄西林药敏试条氟罗沙星药敏试条加替沙星药敏试条米诺环素药敏试条卡那霉素药敏试条多西环素药敏试条替卡西林药敏试条四环素药敏试条妥布霉素药敏试条替考拉宁药敏试条呋喃妥因药敏试条阿奇霉素药敏试条头孢西丁药敏试条复方新诺明药敏试条哌拉西林/他唑巴坦药敏试条头孢噻肟/棒酸药敏试条替卡西林/棒酸药敏试条氨苄西林/舒巴坦药敏试条两性霉素B伊曲康唑5-氟胞嘧啶酮康唑氟康唑伏立康唑米卡芬净泊沙康唑阿尼芬净急诊粪便常规检测样本采集管(包含稀释液、清洗液等)胶体金法粪便隐血(FOB)多水平非定值质控品便隐血(FOB)检测试剂6标段ETEST+染液+基础培养基ETEST药敏(国产)安图国产ETEST纸条(各类抗菌素)细菌药敏试条(E试验法)31家两性霉素B(E试验品)氟康唑(E试验品)伏立康唑(E试验品)阿米卡星药敏条阿莫西林药敏条氨苄西林药敏条氨曲南药药敏条苯唑西林药敏条红霉素药敏条(E试验法)环丙沙星药敏条(E试验法)卡泊芬净药敏条(E试验法)克林霉素药敏条(E试验法)利奈唑胺药敏条(E试验法)氯霉素药敏条(E试验法)美罗培南药敏条(E试验法)诺氟沙星药敏条(E试验法)青霉素药敏条(E试验法)庆大霉毒药敏条(E试验法)四环素药敏条(E试验法)头孢呋辛药敏条(E试验法)头孢哌酮舒巴坦药敏条(E试验法)头孢曲松药敏条(E试验法)头孢他啶药敏条(E试验法)头孢唑林药敏条(E试验法)万古霉素药敏条(E试验法)亚胺培南药敏条(E试验法)左氧氟沙星药敏条(E试验法)头孢吡肟药敏条(E试验法)头孢噻肟药敏条(E试验法)甲氧苄啶-磺胺甲恶唑药敏条(E试验法)米诺环素药敏条(E试验法)阿奇霉素药敏条(E试验法)微生物染液等革兰染色液(4×250ml)手工试剂革兰染色液(4×100ml)抗酸染色液(4×250ml)抗酸染色液(3×100ml)鞭毛染色液荚膜染色液芽孢染色液异染颗粒染色液瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (2×250ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (2×100ml)瑞氏-吉姆萨染色液(瑞姬氏复合染色液) (4×20ml)瑞氏-吉姆萨染色液网织红细胞染色液(2×100ml)网织红细胞染色液(4×20ml)过氧化酶(POX)染色液铁染色液精子染色液精子稀释液妇科白带涂片染色液苏木素-伊红染色液I苏木素-伊红染色液II(H-E单一)巴氏染色液Ⅰ巴氏染色液Ⅱ巴氏染色液(巴氏试剂盒)快速革兰氏染色液革兰氏染液-快速法-碘溶液革兰氏染液-快速法-脱色液革兰氏染液-快速法-沙黄溶液革兰氏染液-快速法-龙胆紫液新型隐球菌染色液六胺银染色液乳酸酚棉兰染液真菌免疫荧光显色试剂(II型)微生物基础培养基等手工试剂梅毒螺旋体抗体检测试剂盒(凝集法)微生物基础培养基等手工试剂麦康凯琼脂平板乳酸棉酚蓝染液六胺银染液真菌荧光染液(一步法)抗酸荧光染色液(金胺O法)弱抗酸染色液无菌病毒运输液(用于甲流)志贺氏菌属诊断血清(50种)志贺氏菌属诊断血清(22种)沙门氏菌属诊断血清(60种)沙门氏菌属诊断血清(30种)出血性大肠埃希菌O157诊断血清(供科研用)触酶试剂氧化酶试验试剂MH干粉沙保罗培养基干粉XLD 培养基干粉营养肉汤干粉R2A培养基干粉变色硅胶含醛类消毒剂中和培养基(9ml)含酚、醇类消毒剂中和培养基(9ml)含氯、碘类消毒剂中和培养基(9ml)含表面活性剂类消毒剂中和培养基(9ml)含醛类消毒剂中和培养基(50ml)含酚、醇类消毒剂中和培养基(50ml)含氯、碘类消毒剂中和培养基(50ml)含表面活性剂类消毒剂中和培养基(50ml)苛养菌药敏琼脂平板血、肠道菌分隔琼脂平板沙保罗琼脂平板营养肉汤培养基(液体)营养琼脂培养基尿道菌显色平板伊红美兰琼脂平板中国蓝琼脂平板物表测试平板血嗜血杆菌肠道菌(麦康凯)分隔琼脂平板血嗜血杆菌肠道菌(伊红美兰)分隔琼脂平板血嗜血杆菌肠道菌(中国蓝)分隔琼脂平板血嗜血杆菌肠道菌(SS)分隔琼脂平板血嗜血杆菌分隔琼脂平板GBS运送培养基卵黄琼脂培养基环丝氨酸-头孢西丁-果糖琼脂培养基厌氧血琼脂平板/厌氧苯乙酸琼脂培养基厌氧琼脂培养基庖肉培养基巯基乙酸肉汤培养基耐碳青霉烯类肠杆菌科细菌检测70cm艰难梭菌显色平板70cm不动杆菌显色培养基支原体培养鉴定计数药敏试剂盒(30孔,12种药敏)葡萄糖肉汤培养基磷酸盐缓冲液(PBS pH7.2)SBG增菌液冷冻管冻存管盒液体菌种保存管复方中和增菌培养基(带棉签) 注:有名“物表采样管”含复方中和剂的0.04mol/L磷酸盐缓冲液R2A琼脂培养基(干粉)大豆酪蛋白琼脂培养基(干粉)TGE琼脂平板胰蛋白胨大豆培养基(卵磷脂吐温胰蛋白胨大豆培养基)碱性蛋白胨水培养基Amies 采样运送拭子(Amies 采样运送培养基含拭子)TSA接触平板样本稀释液中和洗脱液复合中和洗脱液(9ml)复合中和洗脱液(5ml)厌氧指示剂SS琼脂平板MH琼脂培养基哥伦比亚血琼脂平板巧克力琼脂培养基B族链球菌平板专用油镜油含珠菌种保存管(国产)(5颗)含珠菌种保存管(国产)(25颗)病毒采样管(无菌病毒运输液)植绒采样拭子磁珠菌种保存液营养肉汤培养基R2A琼脂培养基(平板)大豆酪蛋白琼脂培养基(平板)半固体琼脂Amies 采样运送拭子Cary-blair运送培养基stuart运送培养基弯曲杆菌显色培养基尿培养筛选显色平板沙门氏菌筛选显色平板大肠杆菌显色平板金黄色葡萄球菌显色平板李斯特菌显色平板弧菌显色平板霉菌显色平板O157培养基分枝杆菌菌种保存管含珠菌种保存管(进口)(25颗)脱脂奶粉血琼脂平板念珠菌显色平板耐药菌三联检显色平板真菌快速培养鉴定药敏试剂盒缓冲液(碳青霉烯酶)一次性封闭真菌形态学观察培养基多粘菌素B纸片霍乱弧菌诊断血清01群、0139脑心浸液琼脂GC琼脂平板乙腈甲酸头孢硝噻吩纸片
  • “超级细菌”传播性不强,但应高度重视滥用抗生素问题
    一种名叫NDM-1的&ldquo 超级细菌&rdquo 最近在世界范围内引起了人们的高度关注,它具有极强的耐药性,哪怕最高级的抗生素都很难对付它。对此,瑞金医院临床微生物科主任倪语星教授昨天表示:&ldquo 超级细菌的出现提醒我们必须高度重视滥用抗生素问题,但细菌与SARS这类的病毒有截然不同的传播方法,它的传播性暂时还不会太强。&rdquo 最先报道这种超级细菌的是新一期的英国《柳叶刀传染病》杂志,英国卡迪夫大学医学院蒂莫西&bull 沃什发表了一篇论文,论文称&ldquo 超级细菌&rdquo NDM-1具有超强的抗生素耐药性。 NDM-1并不是细菌的名称,而是一种耐药基因,能够在细菌之间传递,一旦细菌获得这一基因,就可能变身为超级耐药细菌。目前,科学家多在大肠埃希菌和肺炎克雷伯菌等中发现了此类变异的细菌。携带了这一耐药基因的细菌能够产生一种酶,名叫新德里一号金属酶,英文缩写为NDM-1,而它恰恰能水解和破坏大多数抗生素,使之失效。 大肠埃希菌和肺炎克雷伯菌是两种比较常见的细菌,前者会引起泌尿道感染,而后者是细菌性肺炎的致病因素。 作为临床微生物专家,倪语星对NDM-1的出现非常重视和警惕,但他也表示,公众需要了解的是超级细菌的传播途径,学会预防,而非恐慌。与此前引起人们广为关注的SARS、甲流或者禽流感不同,这些细菌虽然常见,但并不是通过呼吸道或飞沫传播的,而是通过接触传播的,因此养成&ldquo 勤洗手、勤洗澡&rdquo 等个人卫生习惯,医疗机构加强消毒隔离等医院感染控制措施,就能够防护。 不过,倪语星说:&ldquo 我们需要反思超级耐药细菌产生的原因,人类正在自尝滥用抗生素的苦果。&rdquo NDM-1的出现已经是国际上大众媒体关注的第二种超级细菌了,此前一种名叫CA-MRSA,也就是社区获得性耐甲氧西林金黄色葡萄球菌。 近80年来,人类一直在用抗菌药物与细菌打一场&ldquo 道高一尺,魔高一丈&rdquo 的消耗战,在此过程中,抗菌药物不断升级,从青霉素到头孢菌素再到碳青霉烯类,而细菌也从普通耐药进化为超级耐药。 根据调查,这两种携带NDM-1的细菌最初都源于医院。在最初感染的患者中,有不少病例曾去过南亚&ldquo 医疗旅行&rdquo ,在当地接受过整容或者移植手术。超级细菌一般最初仅在医院内流行,感染住院且机体抵抗力较差的病人,这表明此类细菌虽然耐药性极强,可致病能力相对较弱。 令人担忧的是,细菌会继续变异,耐甲氧西林金黄色葡萄球菌就经过变异,增强了致病能力,&ldquo 走出了医院,走进了社区&rdquo 。 倪语星说:&ldquo 人们不能再继续制造超级细菌了,抗生素在更大的范围内甚至整个社会都必须慎重使用。&rdquo 对于普通病人而言,不要随便服用抗生素。患上例如感冒等上呼吸道疾病都是病毒感染而不是细菌感染,不需要服用抗菌药物,只需要喝水、卧床休息,大部分情况下,就能够自行痊愈。 对于畜牧业者,也不能给鱼、猪、牛、羊等动物滥用抗生素,因为由此产生的耐药菌会通过排泄物进入泥土、水等环境中,最终也会回到人类身上。
  • 人类如何与微生物和谐共生?
    人类如何与微生物和谐共生?百欧博伟生物:近年来,新冠肺炎疫情的蔓延引发了人们对微生物相关领域的关注。由微生物引发的生物安全风险逐步升级,给人类造成难以估量的生命、财产损失,并开始超越传统安全成为人类生存和发展面临的重大安全风险之一。纵观历史,人类文明进步中的许多重大事件都与微生物密不可分。后疫情时代下,人类如何与微生物和谐共生?一起来看哈尔滨工业大学马克思主义学院教授高德胜刊发在《人民论坛》的最新文章。防控微生物威胁是维护生物安全的必要保证在国家最新颁布的《中华人民共和国生物安全法》中,将生物安全界定为:国家有效防范和应对危险生物因子及相关因素威胁,生物技术能够稳定健康发展,人民生命健康和生态系统相对处于没有危险和不受威胁的状态。在现实中,引发生物安全危机的因素往往是多元的。在引发生物安全危机的内在因素中,极具代表性的是各种病原微生物的滋生、繁殖与扩散。病原微生物,是指能够攻击人体、动物引发病患的微生物,包含细菌、病毒、真菌、寄生虫等。相对于其他引发生物安全危机的因素,微生物具有隐蔽性强、扩散速度快、破坏效果大等特点,极易对人类身体健康与生态系统环境造成持续的破坏。事实上,不论是历史还是当下,由病原微生物原因导致的生物安全危机从未曾远离过我们,国家主体与非国家行为体之间通过微生物病毒来赢得战争和掠夺资源的例子屡见不鲜。从15世纪末,欧洲人将带有天花病毒的毯子送给印第安人,致使瘟疫在印第安人中肆虐;到21世纪初美国五角大楼遭遇恐怖袭击后的一年时间,美国民众长时间处于面临炭疽病毒袭击的威胁和恐慌中。微生物由于其自身具备的隐蔽性特征,极易被应用于生物武器的制造。微生物制造的生物武器由于其研制技术难度相对较低、取材简易且攻击范围广泛,经常为国际恐怖组织所利用,对国家的生物安全和公共安全会造成巨大威胁。在国际恐怖主义扩散加剧、传染性疾病肆虐、生物技术滥用误用等现实背景下,由病原微生物引发的生物威胁亟需进行重新认识与深入评估。与此同时,微生物耐药性问题是与病原性微生物传播相对应的微生物安全威胁。微生物耐药,是指微生物对抗微生物药物产生抗体,致使抗微生物药物不能实现对疾病的有效控制。在微生物引发的病害中,耐药性病原微生物是威胁人类生命健康的最主要威胁之一,曾对人类的生命财产造成重大损失。目前,临床治疗中常用的抗生素药物由于其攻击靶点的殊异可分为3类:(1)干扰细菌DNA的复制和损伤修复;(2)影响细菌关键蛋白的合成;(3)破坏细菌细胞膜的生物合成。当下抗生素药物被大量应用于流行性疾病的治疗,致使微生物针对抗生素的攻击靶点形成了相对应的多种耐药性机制。病原微生物耐药性的提高一方面增加了治愈疾病的难度,另一方面由于耐药性的增强而不得不增加药量,使药品积累的副作用对人体的伤害更大。病原微生物的耐药性一旦在日积月累中提高到一定程度,将对人体的病毒免疫力造成极大破坏,最终导致普通的抗生素药物无法对人体的一般性疾病形成治愈。新时代形势下,微生物安全问题与公共卫生、生态安全等领域相互交织,已成为我们亟需关注的生物安全新兴领域。近年来,随着国际形势的不断变化,微生物安全以及相关的微生物科技、微生物经济利益作为新科技革命的一部分,已成为大国之间竞争博弈的重要筹码与战略新边疆。基于微生物的特定属性而言,微生物安全威胁具有突发性、隐蔽性、辐射性、多样性等特征。微生物安全事件的影响范围极易由危害民众健康演变为危及国家安全和战略利益。在当前的历史时期,一般性的微生物安全威胁尚处于可控范围。但随着人类对于资源环境的污染破坏,新型传染性疾病的不断爆发,由微生物引发的安全风险亦会升级叠加。故而,全面管控微生物威胁对于维护国家生物安全意义深远、至关重要。人类如何与自然和谐共生?人是自然界的一部分,人与自然和谐共生是人类社会文明发展的客观要求。人类任性贪婪地掠夺大自然必然遭到报复,这是恩格斯在《自然辩证法》中得出的重要结论。深刻践行人与自然和谐共生理念的首要,便是把握人与自然的内在关系。人与自然和谐共生的理念包含着人与生态系统、自然环境以及其他非人类生命和谐相处的意蕴。人与自然拥有平衡稳定的关系是维持人与自然和谐共生的基础性条件,一旦人与自然的关系遭到威胁与破坏,必将造成原本稳态的失衡,进而引发难以想象的灾难。随着人类社会的发展,人们对人与自然关系的把握与探究,亦不应囿于人类活动对基础自然环境的影响。作为非人类生命群体之一,微生物对人与自然的稳态关系的维持具有举足轻重的作用。人与自然和谐共生的重要前提是人类要做到尊重自然,敬畏自然。在自然界中,微生物与其他生物以及生态环境间存在多重复杂的相互关系。在生物圈中,微生物遍布一切生物群落,并在生物群落中作为分解者承担疏导物质循环的关键性作用。一旦生物群落中缺乏微生物对物质的分解处理,将致使有机质相互叠加堆积,进而直接抑制生物群落自身的生存发展。微生物具有强大的分解能力,一旦为之提供相对合适的环境条件和营养条件,即可降解一切有机物,表现出极强的去污能力。因此,人类持续探索通过培植相应的微生物,用以净化海洋、淡水以及土壤生态系统。可见,微生物在保护环境与净化被污染的生态系统方面起到了不可替代的作用。微生物技术在应用于生态治理时,具有成本低、效率高且无再生性污染的特点。合理发展微生物技术,使微生物资源得以妥善利用,将对实现人与自然和谐共生的发展目标提供助力。微生物对于人类社会生产与自然环境改善产生裨益的同时,亦会带来一定程度的副效用。对于生态系统来说,许多微生物的繁殖与活动会对生态环境带来不同程度的污染,并对区域生态平衡造成危害。例如,在我国淡水生态体系中最具代表性的问题是水体富养化。水体富营养化的原因是氮、磷等物质在水体中导致藻类等生物大量繁殖。在藻类生物死亡后,水中的需氧微生物会将其逐渐分解,大量消耗水中的氧气。当水中氧气消耗殆尽后,厌氧微生物会继续对水生物进行分解,最终产生硫化氢等有毒气体,导致水体恶化,对水体生态平衡造成破坏。可见,微生物对于自然环境与生态系统具有双刃剑的作用。欲使微生物资源朝向有益于社会的方向发挥作用,需要合理引导微生物技术的发展。如此,既可以避免微生物技术的滥用与误用,又可以使微生物资源充分发挥绿色效能,进而为建设环境友好型社会提供保障。新发展阶段下,我国经济社会发展全面趋向于绿色转型,如何统筹生态与经济的全面发展,实现人与自然和谐共生是我们面临的重大历史任务。在此情况下,唯有合理引导微生物技术的发展,将微生物技术发展与我国的生态治理有机结合,实现二者相辅相成、相互促进。如此既能让微生物资源的有益功能得以充分发挥,又能全面抑制其带来的负面效应,使微生物成为真正意义上的人与自然和谐共生的促进性因素。微生物种群对实现生物保护十分重要长久以来,生物多样性与人类社会的发展密切相关。现今,生物多样性已发展成为一个具有深刻内涵和广泛外延的概念。生物多样性包括所有动物、植物、微生物在内的物种和它们所携带的遗传基因、所存在的生态系统的多样性。生物多样性为人类社会的发展提供基本的物质基础。随着时代的发展,人类通过各种社会经济活动对生态环境产生了巨大影响。大量生物的生存空间遭到挤压和破坏,有很多物种因此而濒临灭绝。微生物作为地球上出现最早、种类最多、分布范围最广的生物种群,与生态环境关系密切,为自然界一切生物的生存提供基本保障,是实现生物保护的重要物质基础。微生物的多样性可以维持自然生态系统的平衡,为人类、动植物的生存发展提供良好的微观生态环境。微生物多样性是生物多样性不可或缺的组成部分,微生物对食物链与生态系统起到积极的维护作用。生态系统中的微生物种类越多,其创造性越强,对生物的影响范围亦愈加广泛。微生物在自然界中既能发挥生产营养物质,储存能量的效用,又能承担食物链中的分解者的任务。正因为微生物具有如此特性,微生物种群才能为自然界中生物的生存提供保障。在自然界的物质循环中,部分自养型微生物是食物链中的生产者,为消费者提供能源与营养。绝大多数的微生物作为分解者,虽然不直接参与有机物的食物循环,但却能将食物循环中的有机物转化成无机物,对食物链的稳态起到维护作用,使各类生物得以生存发展。在自然界中,微生物为维护生物多样性提供物质循环基础,一旦没有微生物起到的生产者与分解者的作用,自然生态环境势必陷入混乱,各类生物的生存亦将受到严重影响。维护生物多样性的核心目的是为了保护生物及生态系统。微生物种群在自然界中分布广泛的原因主要在于其环境适应能力强,功能性特征多样。微生物由于其自身的功能,可以适应高寒高压、极端酸碱度环境的考验。同时,以发酵微生物为代表的许多微生物种群具有降解与清洁的作用,可以对自然界中绝大多数生物的生存环境起到调节作用。微生物物种资源是亟待深度开发的资源宝库,既是研究生物与生态之间作用关系的理想媒介,亦是修复生态、改造自然的有力武器。微生物通过对生态系统的积极改造,为维护生物多样性奠定了重要的生态环境基础。为了实现对生物多样性的有效维护,必须加强对微生物种群的保护与合理利用,使微生物在未来的生物保护与生态治理等相关方面发挥出更大的效用。保护微生物种群是维护生物多样性的基础。在把握自然规律的条件下,处理好微生物种群、生物保护以及生态治理间的关系始终是维护生物多样性应该遵循的原则。如何妥善利用微生物资源?综观历史,可持续发展是人类对于长期以来走工业化发展道路的理性选择,是针对以往粗放式发展所造成的系列弊病的警惕与反思。可持续发展包括三重内涵,一为经济可持续发展,二为生态可持续发展,三为社会可持续发展。在可持续发展的要求下,人类的生产生活方式、能源的开采与使用皆需迎来新的转型。在此背景下,微生物资源在人类生产生活与文明的发展延续中开始发挥越来越重要的作用。长期以来,微生物资源与人类文明发展始终拥有密不可分的关系。在农业生产中,微生物资源发挥着不可或缺的作用。由于微生物资源中包含病原体,其内在作用机理可以用于杀灭部分有害生物,故而微生物资源成为制造农业药剂的重要原料。相对于传统农业药剂,微生物药剂具有多种特殊效用。微生物药剂是未经化学合成、可消灭病原微生物的药剂,被广泛地应用于果蔬以及粮食作物的除病害。微生物药剂由于是非化学合成,即使大面积施用也不会对环境造成过度污染。微生物药剂的作用机理是运用病原微生物的靶向攻击原理,故而其针对性较强,不会对靶向目标以外的人畜造成危害,安全性极强。同时,微生物在进行生命活动时会产生一些代谢产物。这些代谢产物可以对土壤以及农作物产生营养元素,既能提高土壤品质,又能调控农作物的生长。在此情况下,微生物资源成为制造农业肥料的优质资源。传统农业肥料的施用会对生态环境造成破坏和污染,同时会对土壤产生负担,造成土壤板结、理化性差的状况。微生物肥料自身无毒无害,且生产成本低、消耗能源少,对于现代生产能源的节约与生态文明的可持续发展皆具有积极意义。20世纪以来,微生物资源为生物制药产业的发展贡献了巨大的医疗价值与社会效益。众所周知,疫苗是人类应对传染性疾病的最终武器,人们依靠接种疫苗来形成对传染性疾病的有效防御。经科学验证,在疫苗的生产中,需要多种微生物作为生产原料,通过高度工程化的微生物技术来完成微生物反应过程,达到抵御病毒攻击的目的。当前为杜绝新冠肺炎疫情的传播,我国已研制出新冠疫苗,其第一批已投入使用。同时,青霉素、链霉素等抗生素药物亦需依靠微生物资源进行生产。微生物资源对于人类医疗事业的发展贡献至大,对人类生命健康的维护居功至伟。据统计,在20世纪的诺贝尔生理学和医学奖获得者中,有超过三分之一的科学家是从事微生物领域研究的,可见微生物资源的有效利用为人类文明延续与进步做出了卓越的贡献。随着人类社会的不断发展,能源枯竭问题已成为21世纪面临的重大挑战。在新发展形势下,开发生态绿色的清洁性能源已成为推动人类文明可持续发展进程中的关键性任务。在以往的发展中,人类过度依赖石油、煤炭等化石能源。这些能源不仅难以再生,而且会对环境造成污染。在此背景下,微生物在生产清洁能源的过程中开始逐渐发挥作用。在净化传统能源过程中,以嗜热菌、嗜酸菌为代表的微生物资源可以对煤炭等化石燃料燃烧后产生的有毒物质进行脱硫处理,极大地减轻有害物质对生态环境的破坏。在清洁能源的生产方面,部分微生物混合菌群可以利用秸秆、木渣等有机废料通过发酵生产乙醇等清洁能源。微生物脂肪酶作为催化剂,利用动植物油以及工业废油通过酯化反应生产出生物柴油来实现能源供给。与此同时,微生物资源在生产氢能、燃料电池等可再生清洁能源的过程中皆发挥重要作用。在现代生产中,微生物与生态环境之间形成了健康有序的物质交换与能量转化的关系。实质上,微生物对于人类文明的发展与演进起到了不可替代的作用。随着人类对能源需求的不断增长以及对环境保护的客观需要,对微生物资源进行深度的开发与利用是推动人类文明可持续发展的理性选择与可靠路径。后疫情时代下,国民对于生物安全与生态文明的需求愈加迫切。微生物与生物安全、生物保护、生态安全等领域相互交织、相互影响。微生物资源的开发与利用将不断完善,既对人类文明的可持续发展形成积极影响,亦会为促进人与自然和谐相处提供助力。立足于新发展阶段,将微生物技术的发展置于突出的战略位置,是推进国家生物安全治理体系和生态安全治理能力现代化的基本要求与必然选择。欢迎访问微生物菌种查询网,本站隶属于北京百欧博伟生物技术有限公司,单位现提供微生物菌种及其细胞等相关产品查询、咨询、订购、售后服务!与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • Voice of Customer|利刃出鞘!齐碳纳米孔基因测序平台助力山东公卫应对感染防控重大挑战
    目前,肺炎克雷伯菌在全球范围内造成了临床和公共卫生威胁。耐碳青霉烯类肺炎克雷伯菌(CRKP)有“超级细菌之王”之称,属于“革兰阴性菌”。碳青霉烯类抗生素具有强大的抵抗力,被称为“人类抵抗细菌的最后一道防线”。由于大多数抗生素都是广谱药物,可以对抗多种细菌,因此对很多类型的细菌施加了很大的选择压力,导致细菌迅速进化,并能获得耐药基因。而质粒编码的众多抗菌素耐药性(AMR)和毒力因子会增加肺炎克雷伯菌感染的严重程度,并且耐药基因水平传播会导致革兰阴性菌耐药性的快速出现和散播。而近年来,新型抗生素的储备似乎已经跟不上细菌进化的速度。因此,规范的感染性疾病精准检测,尤其是对病原体的精准分型以及耐药性评估显得至关重要!近日,山东省公共卫生临床中心引入国内首个自主研发的纳米孔基因测序仪——齐碳科技QNome平台,并基于该平台对6例菌株样本进行基因组测序分析,不仅快速完成了样本中微生物的检测鉴定,获得了高质量测序数据,还成功检出所携带的耐药基因。明显区别于目前主流的病原菌药敏试验(AST)和受读长限制的传统基因测序技术,纳米孔基因测序技术长读长的特点,在耐药基因的发现和识别、进化和传播特征分析等研究工作中具有突出优势。依托于纳米孔测序技术长读长的优势,在进一步的测序数据分析中,研究人员构建了6个样本的基因组完成图组装(组装N50均达到了5.2Mb以上),不仅得到了闭合环形完整的肺炎克雷伯菌基因组的圈图,还在组装序列集中发现了多种携带的质粒,并组装得到完整质粒圈图。高质量的组装结果帮助提示样本来源可能存在耐碳青霉烯肺炎克雷伯菌的感染,为临床治疗以及抗生素耐药性研究提供了更多科学的参考信息,充分展示了齐碳纳米孔测序平台在病原微生物快速鉴定中的灵敏性和抗生素耐药性研究上的应用潜力。研究小组人员感叹道:“作为全球最新的基因测序技术,没想到第一次上手就如此顺畅,切实体验到了实时测序的便捷性。并且,不同于传统培养法耗时长、结果稳定性不易控,纳米孔测序不仅耗时短、准确性更高,还帮助我们更深入获得样本的基因信息”山东省公共卫生临床中心整合与转化医学中心于兆衍主任对此次齐碳科技纳米孔测序平台在测序稳定性、速度和检测灵敏度方面的表现非常满意,并评价道“齐碳自主研发的纳米孔测序平台充分展示了新一代基因测序技术的可用性与易用性,特别是能检测出重点的耐药基因这点超出我的预期,我十分看好这项技术未来在临床科研应用方面的巨大潜力。” 随着分子诊断技术的不断成熟、应用以及微生物基因检测产业的快速发展,基因测序技术被应用于测定微生物基因组序列,进一步拓展了耐药检测的能力。基于齐碳纳米孔基因测序平台进行的微生物检测,不仅能提高检测灵敏性、特异性,缩短报告时长,大大降低纯培养细菌和宏基因组学样品序列组装的复杂性,还可轻松跨越复杂结构区域,研究针对性强且所需数据量少,不仅能够有效鉴定结构变异,帮助更轻松、系统地解析质粒、整合性接合元件(ICEs)等可移动基因元件的序列信息,深入了解耐药基因的基因水平转移,获取更加完整的信息,开拓更广泛的应用空间。 作为基因测序仪上游企业,齐碳科技希望能为科研、临床环境等提供新的工具和思路,为生命科学及相关领域的研究与应用提供更便捷、高效的解决方案。基于齐碳QNome测序平台,纳米孔单分子测序技术应用于病原微生物快检与耐药性等微生物研究领域的合作文章已陆续发表。【点击查看齐碳科研动态】*齐碳科技纳米孔测序平台为科研级产品,仅供研究使用,不得用于诊断治疗。2021年12月,齐碳科技通过5年的自主研发,成功推出国内首台商业化的纳米孔基因测序仪QNome-3841,并宣布首个生产基地竣工,正式开启纳米孔基因测序国产化时代。2022年6月,齐碳科技发布纳米孔基因测序仪QNome-3841hex,标志着国产纳米孔基因测序仪开始了矩阵化发展,这也为灵活测序场景提供全新的解决方案,将更好地满足市场应用的多元需求。2023年8月,齐碳隆重推出自主研发的中通量纳米孔基因测序平台QPursue,该平台涵盖纳米孔基因测序仪QPursue-6k和QPursue-6khex及其配套芯片QCell-6k,代表着国内纳米孔基因测序技术的最前沿水平,标志着国产纳米孔基因测序仪向中高通量进阶。齐碳秉承从上游推动行业发展的理念和对前沿技术的探索精神,保持开放、合作的态度,期待和产业同仁携手共进,探索国产纳米孔基因测序技术在多场景中的优势和广阔的市场前景,构建纳米孔基因测序的生态平台,共同为中国医疗健康事业的稳健发展贡献智慧和力量。
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 我公司与四川省科学器材公司签署合作协议
    2013年9月10日,我公司正式与四川省科学器材公司正式签署合作协议,授予四川省科学器材公司作为我公司的合作代理商,代理销售我公司产品,同时在四川省科学器材公司成立联合实验室及维修点,负责西南地区的产品维修业务。四川省科学器材公司联系方式:地址:四川省成都市锦江区墨香路87号7栋邮编:610015电话:028-86788563
  • 广西标准化协会《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准通过专家审定
    2023年4月28日,广西标准化协会在南宁组织专家对由广西环境科学学会提出,广西壮族自治区生态环境监测中心、广电计量检测(南宁)有限公司、广西新桂环保科技集团有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》,广西壮族自治区生态环境监测中心、广西新桂环保科技集团有限公司、广电计量检测(南宁)有限公司、广西润测检测技术有限公司、广西壮族自治区分析测试研究中心等单位共同起草的团体标准《水质 8种喹诺酮类抗生素的测定 高效液相色谱-串联质谱法》《水质 7种青霉素的测定 高效液相色谱-串联质谱法》进行了审定。(审定会现场)来自广西产品质量检验研究院、广西标准技术研究院、广西大学化学化工学院、广西分析测试协会、广西博测检测技术服务有限公司等单位专家在听取标准起草单位对标准起草情况的汇报后,对标准进行了逐条逐款认真审定,一致认为《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准是在深入调研,广泛收集整理水质抗生素的测定相关资料,结合试验方法验证的基础上制定,所采用的技术路线正确,内容完整,具有科学性、先进性和可操作性。《水质 2种林可酰胺类和4种大环内酯类抗生素的测定 高效液相色谱-串联质谱法》等3项团体标准的发布实施,为测定水环境中各类抗生素残留量提供快速、灵敏、准确的分析方法,有效提高水质中抗生素的测定效率,对完善水质污染检测标准体系建设,促进环境保护具有重要的意义,专家一致同意通过审定。(审定会现场)广西标准化协会谢宏昭会长/高级工程师、广西环境科学学会谢佳凝副秘书长、广西自治区生态环境监测中心黄宁高级工程师、王锦工程师、广电计量检测(南宁)有限公司韦革主任、梁丽霞副主任、农汉榜有机主管、广西新桂环保科技集团有限公司陈德翼高级工程师等起草小组成员参加了此次团体标准审定。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制