当前位置: 仪器信息网 > 行业主题 > >

淫羊藿素

仪器信息网淫羊藿素专题为您提供2024年最新淫羊藿素价格报价、厂家品牌的相关信息, 包括淫羊藿素参数、型号等,不管是国产,还是进口品牌的淫羊藿素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合淫羊藿素相关的耗材配件、试剂标物,还有淫羊藿素相关的最新资讯、资料,以及淫羊藿素相关的解决方案。

淫羊藿素相关的资讯

  • 2020《中国药典》中药淫羊藿的测定
    科普小知识本品为小檗科植物淫羊藿、三枝九叶草、柔毛淫羊藿或朝鲜淫羊藿的干燥叶,具有补肾阳、强筋骨、祛风湿功效,是临床常用中药。此次使用日立Chromaster高效液相色谱仪和技尔Inertsil ODS-HL色谱柱,参照2020药典对总黄酮醇苷的含量进行测定。此次使用日立Chromaster高效液相色谱仪和技尔Inertsil ODS-HL色谱柱,参照2020药典对总黄酮醇苷的含量进行测定。实验分析01实验仪器及耗材液相色谱仪:日立Chromaster色谱柱:技尔Inertsil ODS-HL 5µm 250 × 4.6mmGL Filter针式过滤器(GLS0604 25mm x 0.22μm Nylon)GL Vial样品瓶(GLS0008 2mL透明瓶 带刻度+GLS0143 红膜白胶垫片)02新旧药典对比(1) 修订检测方法2015版药典:以乙腈:水=30:70 等度洗脱,理论板数按淫羊藿苷峰计算应不低于1500;2020版药典:梯度洗脱,详见如下色谱条件,理论板数按淫羊藿苷峰计算应不低于 8000。 (2) 新增供试品检测要求2020版药典相对保留时间及校正因子要求:以淫羊藿苷对照品为参照,以其相 应的峰为S峰,计算朝藿定A、朝藿定B、朝藿定C峰的相对保留时间,其相对保留时间应在规定值的±5范围之内。相对保留时间及校正因子见下表:03溶液配置对照品溶液的制备取淫羊藿苷对照品适量,精密称定,加甲醇制成每 1mL 含40μg 的溶液,即得。供试品溶液的制备:取本品叶片,粉碎过三号筛,取 0.2g ,精密称定,置具塞锥形瓶中,精密加稀乙醇 20mL,称定重量,超声处理(功率:400W,频率 50kHz)60 分钟,放冷, 再称定重量,用稀乙醇补足减失重量,摇匀,滤过,取续滤液,即得。测定法:分别精密吸取对照品溶液与供试品溶液各 10µL,注入液相色谱仪,测定,即得。04系统适用性要求理论板数按淫羊藿苷峰计算应不低于 8000。05色谱条件色谱柱:Inertsil ODS-HL 5µm 250 × 4.6mm流动相:以乙腈为流动相 A,水为流动相 B,按下表中的规定进行梯度洗脱※按照药典方法进行洗脱,条件无修改。流速:1.0 mL/min柱温:30℃检测波长:UV 270 nm进样量:10μL仪器型号:日立 Chromaster实验结果对照品图谱供试品图谱重现性说明:此试验按照药典方法进行检测,没有改动。实验结论按照2020药典的含量检测方法检测,淫羊藿苷理论塔板数可达2万以上,且5次重复实验数据良好;朝藿定A、朝藿定B、朝藿定C峰的相对保留时间, 在规定值的±5%范围之内。实验结果优异,完全满足药典的要求值。——公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 标准发布|高效液相色谱法测定饲料添加剂淫羊藿提取物中的黄酮醇苷
    目前,我国是植物提取物的第一原料供应大国,也是植物提取物应用大国,据中国海关数据显示,2019年,我国植物提取物行业出口额达23.72亿美元(美国是最大的进口市场),进口额达8.49亿美元(美国、印尼和印度是前三进口市场)。在全球“禁抗、限抗”大背景下,国内外对可饲用植物提取物的需求日益增长,对于其产品和相应检测标准的需求也日益强烈。因为没有统一的相关标准,这就严重影响了其生产效率以及资源浪费,对从事可饲用植物提取物的生产、加工以及进出口贸易的相关企业造成了极大的困扰。因此必须尽快制定颁布并实施可饲用植物提取物的相关标准并实现标准的国际化,确保在国际贸易中有据可依,提高我国可饲用天然植物提取物在国际上的竞争力。2024年3月15日,国家标准《饲料添加剂淫羊藿提取物中黄酮醇苷的测定 高效液相色谱法》 正式发布。该标准由TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位为中国农业科学院北京畜牧兽医研究所 、中国医学科学院药用植物研究所 、天津博菲德科技有限公司 、湖南农业大学 、北京爱绿生物科技有限公司 、中国农业科学院饲料研究所。
  • 市场监管总局发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法
    根据《中华人民共和国食品安全法》及其实施条例有关规定,市场监管总局批准发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法。名称和编号如下:动物源性食品中瓜尔胶的测定(BJS 202301)冰乙酸假冒食醋的鉴别方法 气相色谱-稳定同位素比值质谱法(BJS 202302)食品中淫羊藿苷、金丝桃苷和补骨脂素的测定(BJS 202303)果汁中植物源性成分的测定(BJS 202304)麦卢卡蜂蜜中2-甲氧基苯甲酸、2'-甲氧基苯乙酮、4-羟基苯基乳酸和3-苯基乳酸的测定(BJS 202305)粮食加工品中噻二唑、苯并噻二唑、噻菌灵及福美双的测定(BJS 202306)蜂蜜中二羟基丙酮、甘露糖和蜜二糖的测定(BJS 202307)食品中溴酸盐的测定(BJS 202308)鸭血中鸭鸡鹅源性成分的测定(BJS 202309)豆芽、豆制品、火锅及麻辣烫底料中喹诺酮类、磺胺类、硝基咪唑类、四环素类化合物的测定(BJS 202310)动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法(KJ 202301)动物肌肉组织中链霉素和庆大霉素的快速检测 胶体金免疫层析法(KJ 202302)动物源性食品中四环素类药物的快速检测 胶体金免疫层析法(KJ 202303)动物源性食品中红霉素、螺旋霉素、泰乐菌素、替米考星的快速检测 胶体金免疫层析法(KJ 202304)豆芽中喹诺酮类药物的快速检测 胶体金免疫层析法(KJ 202305)生鲜乳和畜肉中氨基糖苷类药物的快速检测 胶体金免疫层析法(KJ 202306)蔬菜水果中丙环唑的快速检测 胶体金免疫层析法(KJ 202307)乳及乳制品中玉米赤霉醇类物质的快速检测 胶体金免疫层析法(KJ 202308)蔬菜水果中甲基异柳磷的快速检测 胶体金免疫层析法(KJ 202309)以上方法文本可在市场监管总局食品补充检验方法数据库(https://www.samr.gov.cn/spcjs/bcjyff/)和食品快速检测方法数据库(http://www.samr.gov.cn/spcjs/ksjcff/)中查询和下载。特此公告。市场监管总局2023年6月13日
  • 中国营养保健食品协会团体标准发布公告
    4月4日,中国营养保健食品协会批准发布《保健食品用原料团体标准编制通则(一)》(T/CNHFA 111.1-2023)等20项团体标准,现予公告,自2023年4月10日起实施。 在这20项团标中,T/CNHFA 111.1-2023 为保健食品用原料团体标准编制通则(一),其他19项为保健食品用原料。标准中对原料的范围、规范性引用文件和技术要求进行了严格的要求,其中各标准附录对标志性成分检验方法进行规定。原料的标志性成分检测方法为薄层层析、紫外-可见分光光度法和高效液相色谱法。推荐发布团体标准信息序号标准编号标准名称标志性成分检验方法1T/CNHFA 111.1-2023保健食品用原料团体标准编制通则(一)//2T/CNHFA 111.2-2023保健食品用原料 枸杞子分枸杞多糖紫外-可见分光光度法3T/CNHFA 111.3-2023保健食品用原料 西洋参人参皂苷高效液相色谱法4T/CNHFA 111.4-2023保健食品用原料 黄芪黄芪甲苷高效液相色谱法5T/CNHFA 111.5-2023保健食品用原料 人参人参皂苷高效液相色谱法6T/CNHFA 111.6-2023保健食品用原料 茯苓茯苓薄层色谱7T/CNHFA 111.7-2023保健食品用原料 葛根葛根素反相高效液相色谱8T/CNHFA 111.8-2023保健食品用原料 银杏叶总黄酮醇苷高效液相色谱法9T/CNHFA 111.9-2023保健食品用原料 决明子大黄酚和橙黄决明素反相高效液相色谱10T/CNHFA 111.10-2023保健食品用原料 金银花皂苷类薄层色谱11T/CNHFA 111.11-2023保健食品用原料 红景天红景天苷反相高效液相色谱12T/CNHFA 111.12-2023保健食品用原料 丹参丹参酮类和丹酚酸 B反相高效液相色谱13T/CNHFA 111.13-2023保健食品用原料 三七人参皂苷和三七皂苷高效液相色谱法14T/CNHFA 111.14-2023保健食品用原料 淫羊藿淫羊藿苷和朝藿定高效液相色谱法15T/CNHFA 111.15-2023保健食品用原料 骨碎补柚皮苷高效液相色谱法16T/CNHFA 111.16-2023保健食品用原料 益智仁益智仁薄层色谱法17T/CNHFA 111.17-2023保健食品用原料 吴茱萸吴茱萸碱、吴茱萸次碱和柠檬苦素反相高效液相色谱18T/CNHFA 111.18-2023保健食品用原料 石斛石斛碱气相色谱法19T/CNHFA 111.19-2023保健食品用原料 铁皮石斛铁皮石斛多糖紫外-可见分光光度法20T/CNHFA 111.20-2023保健食品用原料 越橘花青素紫外-可见分光光度法[230404]111.1-2023 保健食品用原料团体标准编制通则(一).pdf.[230404]111.2-2023 保健食品用原料 枸杞子团体标准.pdf.pdf[230404]111.3-2023 保健食品用原料西洋参团体标准.pdf.pdf[230404]111.5-2023 保健食品用原料人参团体标准.pdf.pdf[230404]111.6-2023 保健食品用原料茯苓团体标准.pdf.pdf[230404]111.4-2023 保健食品用原料黄芪团体标准.pdf.pdf[230404]111.7-2023 保健食品用原料葛根团体标准.pdf.pdf[230404]111.8-2023 保健食品用原料银杏叶团体标准.pdf.pdf[230404]111.9-2023 保健食品用原料金银花团体标准.pdf.pdf[230404]111.10-2023 保健食品用原料决明子团体标准.pdf.pdf[230404]111.11-2023 保健食品用原料红景天团体标准.pdf.pdf[230404]111.12-2023 保健食品用原料丹参团体标准.pdf.pdf[230404]111.13-2023 保健食品用原料三七团体标准.pdf.pdf[230404]111.14-2023 保健食品用原料淫羊藿团体标准.pdf.pdf[230404]111.15-2023 保健食品用原料骨碎补团体标准.pdf.pdf[230404]111.16-2023 保健食品用原料益智仁团体标准.pdf.pdf[230404]111.17-2023 保健食品用原料吴茱萸团体标准.pdf.pdf[230404]111.18-2023 保健食品用原料石斛团体标准.pdf.pdf[230404]111.19-2023 保健食品用原料铁皮石斛团体标准.pdf.pdf[230404]111.20-2023 保健食品用原料越橘团体标准.pdf.pdf
  • "中草药有效成分及有毒有害物质分析“专题网络研讨会
    "中草药有效成分及有毒有害物质分析&ldquo 专题网络研讨会时间:2014年08月13日9:30简介:中华民族在几千年的生活史中依靠中草药等传统中医方法得以健康繁育,然而,中药成分复杂,其有效成分、基本成分以及有毒有害成分都需要科学的定性、定量检测。而近年来药品事故频发,2012年由央视制作的《胶囊里的秘密》爆出了药品&ldquo 毒胶囊&rdquo 丑闻;2013年,中草药陆续爆出硫磺熏蒸、重金属超标等问题;近期,媒体披露了境外机构一份检测报告,矛头直指来自中国的中草药样品农药残留问题严重,产销链检测缺失。为了解决中药药品质量与安全问题,提高标准质量控制水平,各国也出台了一系列的标准,比如欧盟的《欧盟药典》等。为配合当前形势,仪器信息网于8月13日举办&ldquo 中草药有效成分及有毒有害物质分析&rdquo 专题网络研讨会,邀请知名中药检测专家,为大家解读中药成分检测等问题。专家报告一:中药中真菌毒素分析方法研究进展报告人:杨美华 研究员,中国医学科学院药用植物研究所。报告内容:真菌毒素(Mycotoxin)是真菌产生的有毒次级代谢产物。近年来,随着研究的不断深入,已发现的真菌毒素有400多种,其中毒性较强的真菌毒素主要包括黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮和伏马菌素等。中药材在种植、采收、加工、储藏和运输的过程中很容易被真菌污染,进而产生有毒的真菌毒素。这些真菌毒素不仅具有致癌、致畸和致突变等作用,还具有肝细胞毒性、中毒性肾损害、生殖紊乱以及免疫抑制等作用,对人类健康造成极大威胁。因此,建立灵敏、准确的分析方法检测中药中真菌毒素的污染水平尤为重要。专家报告二: 2015版药典有关中药安全检测方法相关增修订的解读报告人:卢燕,赛默飞产品市场经理。生物化学专业硕士,8年相关行业经验,熟悉色谱行业,对制药相关领域有一定的研究。报告内容:1. 重要安全性检测的背景2. 2015版药典相关增修订方法解读专家报告三: 中草药寡糖分析技术研究报告人::铁偲博士 中国医学科学院药物研究所生物化学专业硕士,8年相关行业经验,熟悉色谱行业,对制药相关领域有一定的研究。报告内容:中药寡糖的生物活性越来越引起关注,但是寡糖分析一直是瓶颈问题,该报告介绍采用衍生化前处理方法,以及液相色谱质谱技术,建立了快速进行中药寡糖分析和结构鉴定的技术平台,建立了淫羊藿的糖指纹谱,并进行结构鉴定,找到了区分不同种类和产地淫羊藿的特征寡糖成分。专家报告四: 中草药代谢组学研究报告人:吴彩胜副研究员 中国医学科学院药物研究所报告内容:针对中药作用机制和物质基础难以阐明的研究难点,采用色谱质谱技术,研究了大鼠给予常用植物药银杏叶提取物后,内源性直至代谢物的变化,从组学角度阐明银杏叶提取物新的作用机制和作用物质基础。参与方式:仪器信息网注册用户即可报名,现在报名并参会还可赢得100元手机充值卡,会议当天仅需登陆账户就可进入会场(需要音频交流的用户需要准备麦克)。关于网络讲堂研讨会及其他会议问题咨询,请加入QQ群231246773。
  • 第二届“药物代谢及动力学沙龙”在京举行
    为促进药物代谢及动力学(DMPK)领域的技术交流及经验分享,2010年3月27日,由安捷伦科技有限公司发起并组织的第二届“药物代谢及动力学沙龙”在中国人民解放军三0七医院成功举办。近40位来自卫生系统、科研院所、企业单位的一线研究人员、分析测试工作者等参加了此次沙龙,仪器信息网应邀参加。本期沙龙由安捷伦科技有限公司中国北区经理付世江先生主持,活动内容包括专题报告、问题讨论、参观实验室等。“沙龙”会议现场安捷伦公司中国北区经理付世江先生主持沙龙解放军三0七医院临床药理室郝光涛老师报告题目:Agilent 6410 测定人体血浆中恩替卡韦的血药浓度  郝光涛老师建立了血浆中恩替卡韦的HPLC-MS/MS的测定法。通过对血浆中杂质不干扰样品的测定,结果显示标准曲线线性良好;高、中、低三个浓度的质控样品提取回收率结果精度好并具有可重现性;恩替卡韦血浆样品稳定性良好,符合生物样品分析要求。另外,郝老师还提出了几条应用方面的建议:(1)应最大限度地挖掘仪器的灵敏度;(2)利用好梯度洗脱;(3)样品的前处理过程应尽量简化;(4)尽量追求样品测定的准确性。中国医学科学院药物研究所吴彩胜博士报告题目:RRLC-MS/MS法测定淫羊藿中7种黄酮成分在狗血浆中的浓度及其生物等效性研究  吴彩胜博士简要介绍了淫羊藿的化学成分、药理作用及临床运用情况,本次研究采集到35种不同来源和产地的淫羊藿药材,通过代谢指纹图谱的比较,得出药材指纹图谱和代谢指纹图谱存在相关性;建立了7个成分的RRLC-MS/MS定量分析方法,能够满足体内分析要求,同时,研究还证明复方中其它成分对这5个淫羊藿成分吸收有影响。安捷伦科技有限公司冉小蓉博士报告题目:安捷伦液质联用仪在DMPK研究中的最新进展  冉小蓉博士谈到,DMPK分析样品数量大,基质复杂,对分析仪器提出了很大的挑战,而串连四级杆液质则具备高灵敏度、高选择性及快速、实现高通量分析的优势,因此,安捷伦提出“1290 Infinity LC + 6460 QQQ Jet Stream” 的最新解决方案。另外,冉博士还着重介绍了喷射流离子聚焦技术、离子光路及碰撞室活化技术在安捷伦分析仪器中的应用。  沙龙期间,安捷伦科技有限公司工作人员与参会代表就仪器的原理技术、应用研究等方面进行了深入交流;另外,与会代表还参观了中国人民解放军三0七医院临床药理研究室。与会代表参观中国人民解放军三0七医院临床药理研究室  “100家实验室”专题:访解放军第三0七医院临床药理研究室  关于安捷伦科技  安捷伦科技是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的17,000名员工在110多个国家为客户服务。在2009财政年度,安捷伦的业务净收入为45亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 2012全国有机质谱学术交流会大会报告
    仪器信息网讯“2012全国有机质谱学术交流会”于10月11日-16日在云南西双版纳召开。本次大会报告邀请了中科院生态环境研究中心主任江桂斌院士、国家环境分析测试中心主任黄业茹研究员、清华大学分析中心主任林金明教授、中国医学科学院药物研究所张金兰研究员、浙江省疾病控制防疫中心任一平研究员、军事医学科学院毒物药物研究所李桦研究员、弗罗里达大学许强教授、东华理工大学陈焕文教授和中国科学院化学研究所聂宗秀研究员等活跃在质谱领域的资深专家应邀作了大会报告 报告内容集中在环境监测、食品安全以及药物相关研究。江桂斌:色谱-质谱联用技术在新型化学污染物分析中的应用  中国科学院生态环境研究中心江桂斌院士在报告中提到,质谱技术越来越重要,环境、食品和生命科学是质谱技术的主要应用领域,对于质谱各项指标,比如选择性、特异性、准确度、精确度和灵敏度等,要求也越来越高。对于环境分析来说,这些指标当中,可靠性是最重要的。在当前各种分析手段中,质谱的可靠性是最好的。环境的污染物除了光、声、电和磁等物理污染之外,主要有化学污染、微生物污染物、细菌污染物和病毒污染物。其中,化学污染物主要包括(1)难挥发污染物:常规污染物、重金属、表面活性剂和高聚物等 (2)易挥发污染物:室内空气污染物、大气污染物等 (3)半挥发:持久性有机污染物。近几年出现了一些新型的污染物(Emerging chemicals),这些化合物属于非常规监测污染物,可能存在潜在的危险。这些新型的污染物总体上有10类:PPCPs、BDEs、FPCs、SCCP、Pesticide degradation products、DBPs、Algal toxins、perchlorate、New Atmospheric components、Some Nano-materials 另外TBC(三-(2,3-二溴丙基)异氰酸脂)是在首次在中国发现的一种新型POPs污染物。江桂斌分别对这些新型污染物进行了介绍并分析了当前面临的挑战。  黄业茹:环境介质中二噁英类污染物监测技术进展  国家环境分析测试中心黄业茹研究员主要报告了二噁英类污染物监测技术进展,方法标准等。目前二噁英类污染物的标准检测方法是HRGC-HRMS,但是该方法存在的问题是样品前处理复杂、HRGC-HRMS价格昂贵、人员素质和技能要求高,并且检测成本高、分析测定周期长 为此许多国家针对土壤、沉积物和废气等环境介质中二噁英的简易测试方法进行了研究并实现标准化。二噁英类的快速分析方法有仪器分析方法和生物检测方法。仪器分析方法主要有:GC-QMS、GC-MS/MS(TQMS和ITMS)和GC-TOFMS 多维气相色谱与质谱联用在环境介质中二噁英的定量分析也取得了很大进展。生物检测方法有:酶联免疫法、ELISA法、报告基因法和DR-CALUX等。  林金明:微流控芯片质谱联用技术应用于细胞药物代谢的研究  清华大学分析中心林金明教授报告的主要内容是微流控芯片质谱联用技术应用于细胞药物代谢的研究。细胞是生命有机体的基本结构和功能单位,对于细胞的研究是生命科学研究的基础。但是,分析研究细胞涉及到几个重要的问题:如何进行细胞的分离?如何对细胞进行定位?如何保证细胞的生理活性?如何实现对于细胞的生化刺激?如何实现快速准确的信号检测?林金明课题组长期从事微流控芯片研究,开发了一种微流控芯片与质谱联用的新技术用于药物代谢的研究。集成化的微流控芯片可以同时进行高通量的细胞毒性筛选和ESI-Q-TOF质谱对应代谢物检测。利用搭建起的微流控芯片-质谱联用平台对细胞的分泌物和细胞间的信号传导进行了研究。  张金兰:快速液相色谱三重四极杆质谱联用仪测定淫羊藿全血浆中7种黄酮类成分及相对生物利用度研究  中国医学科学院药物研究所研究员张金兰研究员在报告中介绍了利用快速液相色谱三重四极杆质谱联用仪测定淫羊藿犬血浆中7种黄酮类成分及相对生物利用度研究。建立了基于质谱数据和Mass Frontier/Metworks软件快速发现和鉴定代谢产物技术 鉴定5种淫羊藿黄酮类成分的代谢产物77个,淫羊藿提取代谢产物115个 中药体内微量成分的分析检测不仅需要高分离能力色谱,高灵敏度、多功能的质谱,更需要对数据的深度分析和挖掘。  任一平:质谱在食品安全中的应用  浙江省疾病预防控制中心任一平教授在报告中提到,乳清蛋白含有人体需要的18种氨基酸,易于消化,利用率高。母乳中乳清蛋白与酪蛋白的比率是60:40,而牛奶中两者之比是18:32(或者20:80),因此以乳清蛋白为主的婴儿配方(产品标准规定:乳清蛋白/酪蛋白比率应60/40)更接近母乳氨基酸组合,是理想的婴儿营养剂。国家标准规定,乳基婴儿配方食品中乳清蛋白的含量应大于等于60%。至今为止尚未建立各种婴幼儿乳制品中α-乳白蛋白和β-乳球蛋白的准确定量和检测方法,导致我国无法对含乳的产品进行质量监测与控制,现有的标准方法只有薄层凝胶法。任一平报告中研究了采用液相色谱-电喷雾-质谱法测定牛a-乳白蛋白的方法,灵敏度、准确度高,重现性好,处理简便,可用于婴幼儿食品和乳制品的牛a-乳白蛋白的定量测定。  李桦:液质联用技术在药物代谢研究中的应用  军事医学科学院毒物药物研究所李桦研究员报告主要内容是液质联用技术在药物代谢研究中的应用。代谢产物是药物在机体酶的作用下,经生物转化而形成的化学物质。评价候选新药的代谢转归、理解动物和人体内的代谢途径和程度、以及评价代谢产物的生物学性质是新药研究的重要内容。液质联用具有高灵敏度和强选择性,可在干扰存在的情况下分离、检测和鉴定代谢产物,是代谢研究的首先技术。超高效液相色谱与高分辨最联用(如QTOFMS)、结合代谢产物鉴定辅助软件,已成为代谢产物结构鉴定的一线分析仪器。报告重点介绍了LC-QTOF-MSMS技术在新药先导物代谢产物及代谢软点快速筛查以及药物人体代谢产物定性定量分析中的应用。  许强:质谱技术与石油石化工业的过去、现在与未来  弗罗里达大学许强教授在报告中提到,在分子水平鉴定石油和其他化石资源,尤其是重馏分,由于组分及其复杂,对于科学工作者提出了巨大的挑战。由于化石燃料的逐渐减少和环境等问题,对于燃料以及从可再生资源中提取的化学物质的研究变成了近期的热点。另外,对于含极性分子和复杂结构的生物原油的分析也是另一个挑战。为了很好地利用质谱进行结构鉴定、组成鉴定以及定量分析,采取合适的分离和分流手段也是非常重要的。由弗罗里达大学、中国石油大学与其他的研究机构和仪器公司面对这些挑战,共同合作,开发更高级的方法处理这些石油和生物质油的表征和鉴定 目前工作集中于分离、色谱和质谱方面的研究。  陈焕文:粘性样品的电喷雾萃取电离质谱分析  东华理工大学陈焕文教授报告了粘性样品的电喷雾萃取电离质谱分析。粘性样品(食品、石油、血液等)不仅与人们的日常生活紧密相关,在工业及生命科学等科研领域占有十分重要的位置。目前的粘性样品分析先处理耗时、复杂,不利于高通量分析。电喷雾萃取电离(EESI)以电喷雾(ESI)制备能荷载体,在三维空间传递能荷,可直接分析粘稠样品、活体生物表面及蛋白质,其特点是转移能量较低,选择性好,样品适应性强。通过实际样品测试以及详细的数据表明,EESI-MS分析粘性样品有很多优势:可分析不同粘度的样品,无需样品预处理,抗复杂基质干扰,无化学污染,可电离挥发/非挥发性化合物等。  聂宗秀:MALDI-TOF活体小分子质谱分析  中科院化学研究所聂宗秀研究员在报告中提到,活体检测对于质谱来说是一个挑战性工作,因为活体取样时要保持动物在活的情况下进行,要求检测方法微扰无损,具有高耐盐性,高选择性,高灵敏度和动态实时检测。目前MALDI法在检测小分子方面存在缺陷,因为传统的有机质在低质量范围内会出现大量的背景干扰。聂宗秀课题组通过大量实验,发现了盐酸萘乙二胺作为MALDI基质具有很高的耐盐性,与葡萄糖等小分子形成氯离子加合物,从而可以在MALDI下检测。另外,发展了具有很高的灵敏度的硝酸萘乙二胺基质。发现了8羟基噻吩对于胺类物质、碳量子点对酸性物质具有很好的选择性。
  • 全国特殊食品标准化技术委员会关于筹建《保健食品中辅酶Q10的测定》等十四项国家标准起草工作组的通知
    下载相关附件14 项保健食品分析方法标准修订项目清单序号计划号项目名称120230857-T-424保健食品中褪黑素的测定220230858-T-424保健食品中吡啶甲酸铬含量的测定320230859-T-424保健食品中盐酸硫胺素、盐酸吡哆醇、烟酸、烟酰胺和咖啡因的测定420230860-T-424保健食品中辅酶 Q10 的测定520230861-T-424保健食品中甘草酸的测定620230862-T-424保健食品中番茄红素的测定720230863-T-424保健食品中绿原酸的测定820230864-T-424保健食品中泛酸钙的测定920230865-T-424保健食品中淫羊藿苷的测定1020230866-T-424保健食品中肌醇的测定1120230867-T-424保健食品中免疫球蛋白 IgG 的测定1220230868-T-424保健食品中脱氢表雄甾酮(DHEA)的测定1320230869-T-424保健食品中大豆异黄酮的测定方法 高效液相色谱法1420230870-T-424保健食品中葛根素的测定
  • 新书速递 | 《2020年版〈中国药典〉中药标准物质分析图谱》
    《中国药典》《中国药典》标准物质分析图谱集一直以来,已经成为广大分析工作者喜爱的重要参考书。继 2005 版、2010 版、和 2015 版《中国药典》一部二部检测图谱集出版后,中国食品药品检定研究院组织上海诗丹德标准技术服务有限公司和安捷伦科技(中国)有限公司,共同编写了《2020 年版〈中国药典〉中药标准物质分析图谱》,并由中国医药科技出版社于 2024 年 2 月正式出版。《中华人民共和国药典》(以下简称《中国药典》)作为国家药品质量控制、确保人民用药安全有效而依法制定的药品法典,自 1953 年版(第一版)编印发行以来,至 2020 年版已经出版到第十一版。收载的中药相关品种(包括药材与饮片、植物油脂和提取物、成方制剂和单味制剂)从 1953 年版的 78 种,至 2020 年版收载 2711 种,其中相较 2015 年版新增 117 种、修订 452 种;不仅大幅增加了中药饮片的数量和标准,还同时新增了大量的中药化学对照物质。较大地解决了困扰中药产业发展的国家标准较少、地方规范不统一等问题。对有效进行中药质量控制、促进中药现代化的发展起到了重要的推动作用。2020 年 12 月 30 日,2020 年版《中国药典》正式实施,编者团队立刻着手编写针对 2020 年版《中国药典》一部的检测分析图谱集,基本覆盖了所有 2020 年版《中国药典》一部中有含量测定项的品种。本书里,在新增和修订的中药相关液相图谱中,不仅收载了使用经典的 5μm 液相色谱填料进行分析的图谱,如 Zorbax SB-C18、PLus-C18,XBD-C18 等,而且还收录了使用表面多孔层填料色谱柱(Agilent Poroshell 120)分析的结果。Poroshell 4μm 粒径色谱柱的使用,在保持尺寸、相同 HPLC 条件下,获得更好的柱效和分离度,如鹅不食草、淫羊藿、京大戟等。随着新的色谱柱技术的应用,Poroshell 系列将为分析工作者在常规液相色谱体系中,更好地提高中药成分的分离能力,从而更准确地控制药品质量。本书将会为广大色谱分析工作者,提供中药分析色谱柱选择的参考和指导。在编写历版图谱集时,编者团队牢记职责:确保所建立的图谱集与《中国药典》中的标准一致,以保障检测结果及图谱的准确性和可靠性;持续并不断地收集各种中药化学对照品和对照药材或提取物,以丰富图谱集的内容;不断更新和完善图谱集,以适应中药产业的发展和变化。为了回馈广大安捷伦用户,扫码注册,前 50 位用户可领取《2020 年版〈中国药典〉中药标准物质分析图谱》实体书一本。图谱集案例淫羊藿:色谱柱:InfinityLab Poroshell SB-C18 4.6*250mm 4μm测试结果小 结:Poroshell SB-C18 4μm 粒径色谱柱是相同尺寸全多孔 5μm 填料柱效的两倍。在保持药典方法不变的条件下,Poroshell 4μm 色谱柱测试结果,淫羊藿苷理论塔板数远大于系统适应性要求的 8000,与前峰分离度良好。且朝藿定 A、朝藿定 B、朝藿定 C 三个组分相对保留时间符合规定。
  • 江苏射阳获海洋与渔业生态环境监测资质
    近日,江苏省质量技术监督局组织有关专家对射阳县海洋与渔业生态环境监测中心进行了资质认定现场评审。评审组依据《实验室资质认定评审准则》,在听取汇报、审阅文件、察看实验室、查验仪器设备和现场考核的基础上,对其申报的海洋水文、海洋气象、水质(地面水、海水)、生物体、沉积物、海洋生物与生态、病原微生物7大类,44项检测参数进行了确认,一致同意通过资质认定现场评审,这是我省首家县级海洋环境监测机构通过资质认证评审。  截至2015年,我市响水县、滨海县、射阳县、大丰市、东台市5个沿海县(市)全部获得所在地编办批复挂牌成立了海洋环境监测机构,盐城市县级海洋环境监测机构实现了全覆盖。  此次射阳县海洋与渔业生态环境监测中心顺利通过资质认定,标志着我市县级海洋环境监测机构能力建设工作取得了阶段性的成果,对于加快全市县级海洋环境监测机构能力建设和资质认定步伐,具有积极的推动作用。
  • 10项补充检验方法和9项快速检测方法批准发布
    根据《中华人民共和国食品安全法》及其实施条例有关规定,市场监管总局批准发布《动物源性食品中瓜尔胶的测定》等10项食品补充检验方法和《动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法》等9项食品快速检测方法。名称和编号如下:动物源性食品中瓜尔胶的测定(BJS 202301)冰乙酸假冒食醋的鉴别方法 气相色谱-稳定同位素比值质谱法(BJS 202302)食品中淫羊藿苷、金丝桃苷和补骨脂素的测定(BJS 202303)果汁中植物源性成分的测定(BJS 202304)麦卢卡蜂蜜中2-甲氧基苯甲酸、2'-甲氧基苯乙酮、4-羟基苯基乳酸和3-苯基乳酸的测定(BJS 202305)粮食加工品中噻二唑、苯并噻二唑、噻菌灵及福美双的测定(BJS 202306)蜂蜜中二羟基丙酮、甘露糖和蜜二糖的测定(BJS 202307)食品中溴酸盐的测定(BJS 202308)鸭血中鸭鸡鹅源性成分的测定(BJS 202309)豆芽、豆制品、火锅及麻辣烫底料中喹诺酮类、磺胺类、硝基咪唑类、四环素类化合物的测定(BJS 202310)动物源性食品中甲氧苄啶的快速检测 胶体金免疫层析法(KJ 202301)动物肌肉组织中链霉素和庆大霉素的快速检测 胶体金免疫层析法(KJ 202302)动物源性食品中四环素类药物的快速检测 胶体金免疫层析法(KJ 202303)动物源性食品中红霉素、螺旋霉素、泰乐菌素、替米考星的快速检测 胶体金免疫层析法(KJ 202304)豆芽中喹诺酮类药物的快速检测 胶体金免疫层析法(KJ 202305)生鲜乳和畜肉中氨基糖苷类药物的快速检测 胶体金免疫层析法(KJ 202306)蔬菜水果中丙环唑的快速检测 胶体金免疫层析法(KJ 202307)乳及乳制品中玉米赤霉醇类物质的快速检测 胶体金免疫层析法(KJ 202308)蔬菜水果中甲基异柳磷的快速检测 胶体金免疫层析法(KJ 202309)以上方法文本可在市场监管总局食品补充检验方法数据库(https://www.samr.gov.cn/spcjs/bcjyff/)和食品快速检测方法数据库(http://www.samr.gov.cn/spcjs/ksjcff/)中查询和下载。特此公告。市场监管总局 2023年6月13日
  • 艾吉析科技SUS标样现货销售
    根据市场需求,我公司SUS标样部分常用品种现货销售,品种如下表SUS-RAL20+ SUS-RALCE+ SUS-RC11+ SUS-RC20+ SUS-RC40+ SUS-RG13+ SUS-RG14+ SUS-RG15+ SUS-RG16+ SUS-RH13+ SUS-RN13+ SUS-RN14+ SUS-RN15+ SUS-RN16+ SUS-RN18+ 更多详细信息请联系我们
  • 沈阳警方查获激素催生豆芽 长期食用或致癌
    当您看到白白胖胖卖相特别诱人的豆芽,可要小心了。它可能是加入了无根剂、漂白粉、增粗剂等添加剂催发的豆芽。  长期食用这些用化学药品浸泡过的豆芽,会对人体产生一定的影响,甚至会致癌。  17日,沈阳公安联合工商、农委、质监等部门,将6个制售“化学豆芽”的黑窝点端掉。  其中一个黑窝点位于沈阳市和平区浑河堡乡下河湾村的一个小院内,一间约150平方米的平房内,灯光昏暗。  里边放置了50多个用白塑料布搭成的方型桶,每个约有一米高,里边是正在催发的豆芽,催发好的豆芽白白胖胖,每根都约15厘米长,色相诱人,但空气里却散发着一股酸臭味。  该窝点的老板蹇某称,他每日能出货约2000斤,送入各个卖菜点,主要为长白、砂山地区,已经干了半年多。  他承认用无根剂发豆芽,“这是正常生豆芽的方法。”当记者问为啥豆芽这么长时,他答:“我的豆芽不长,哪的豆芽都这么长。”  警方介绍,收到群众举报后,昨日凌晨在该加工点周围蹲守。凌晨4时20分,该加工点人员用三轮车运豆芽至市场准备销售时,被警方截获。  质监部门的检验报告显示,这批豆芽中含有亚硝酸钠、尿素、恩诺沙星等,其中尿素最高含量每千克达到540毫克。其加工所用药物增粗剂中检出尿素,保险粉(工业漂白用)中检出连二亚硫酸钠。  警方组织30名警力奔赴张士开发区胜发市场,拦截5辆拉豆芽的车,了解其进货情况,又追踪到其他制售该豆芽窝点,最大的一个面积达500平方米。昨日在全市共查扣6个制售“化学豆芽”的黑窝点。案件正在进一步审理中。  沈阳市公安局副局长安锦荣介绍,“公安局及有关部门决心非常大,一定要把这类违法犯罪行为狠狠打到底。”针对食品安全方面的打击要依靠全社会力量,市民如果发现,要及时向警方举报。
  • CFDA:仙灵骨葆口服制剂或致肝损伤
    p  国家食品药品监督管理总局(CFDA)日前发布了第七十二期《药品不良反应信息通报》,提示关注仙灵骨葆口服制剂引起的肝损伤不良反应。/pp  仙灵骨葆口服制剂是一类补肾壮骨药,具有滋补肝肾、接骨续筋、强身健骨的功效,临床上用于骨质疏松和骨质疏松症、骨折、骨关节炎、骨无菌性坏死等。/pp  国家药品不良反应监测数据分析结果显示,仙灵骨葆口服制剂可能导致肝损伤风险,临床表现包括乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等,并伴有谷丙转氨酶、谷草转氨酶、胆红素等升高,严重者可出现肝衰竭,长期连续用药、老年患者用药等可能会增加这种风险。/pp  strong国家食品药品监督管理总局建议内容如下:/strong/pp  (一)医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品,对有肝病史或肝生化指标异常的患者,应避免使用仙灵骨葆口服制剂。/pp  (二)患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。/pp  (三)药品生产企业应当加强药品不良反应监测,及时修订仙灵骨葆口服制剂的药品说明书,更新相关的用药风险信息如不良反应、禁忌、注意事项等,以有效的方式将仙灵骨葆口服制剂的用药风险告知医务人员和患者,加大合理用药宣传,最大程度保障患者的用药安全。/pp  strong配发问答/strong/pp  1、仙灵骨葆口服制剂的主要成份是什么?主要用于治疗什么疾病?/pp  仙灵骨葆口服制剂的成份包括淫羊藿、续断、丹参、知母、补骨脂、地黄。/pp  该品种具有滋补肝肾,接骨续筋,强身健骨的功效,临床上用于治疗骨质疏松和骨质疏松症,骨折,骨关节炎,骨无菌性坏死等。/pp  2、仙灵骨葆口服制剂导致的肝损伤有哪些风险因素?/pp  长期连续用药或老年患者出现肝损伤的风险有所升高。肝功能不全或合并使用其他可能导致肝损伤的药物等也可能增加仙灵骨葆口服制剂的肝损伤风险。/pp  3、如何降低仙灵骨葆口服制剂的肝损伤风险?/pp  医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品。有肝病史或肝生化指标异常的患者应避免使用仙灵骨葆口服制剂。/pp  患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。/ppbr//p
  • 【新品上市】获得INTERPHEX展商效率大奖的内毒素检测仪什么样?
    Sievers分析仪全新推出的Eclipse月食细菌内毒素检测仪于2020年初一经推出,即斩获2020年度INTERPHEX展商效率大奖!现在,Sievers Eclipse月食细菌内毒素检测仪已来到中国,小编和你一起来揭开他的神秘面纱。首先让我们来了解一下什么是内毒素?内毒素是革兰氏阴性细菌细胞壁中的一种成分,内毒素只有当细菌死亡溶解或用人工方法破坏菌细胞后才释放出来,所以叫做内毒素。由于内毒素是细菌死亡裂解或自溶引起的,因此环境中大量存在内毒素。当内毒素通过机体消化道等方式进入人体时并无危害,但内毒素大量进入血液就会引起“热原反应”,发热、微循环障碍、内毒素休克及播散性血管内凝血等。因此,对于易于引入内毒素的药品、医疗器械等必须通过内毒素检测。中国药典收录的细菌内毒素检查法包括2种方法:凝胶法和光度法,使用鲎试剂来定性或定量检测内毒素。Sievers Eclipse月食细菌内毒素检测仪采用的方法即为光度法定量检测内毒素。那么问题来了,什么是鲎[hòu]试剂?鲎试剂是由海洋节肢动物鲎的血液变形细胞溶解物制成的无菌冷冻干燥品,含有能被微量细菌内毒素和真菌葡聚糖激活的凝固酶原,凝固蛋白原,是从栖生于海洋的节肢动物"鲎"的蓝色血液中提取变形细胞溶解物,经低温冷冻干燥而成的生物试剂,能够准确、快速地定性或定量检测样品中是否含有细菌内毒素和(1,3)-β-葡聚糖。目前,鲎试剂广泛用于制药、临床以及科研等领域,用于细菌内毒素和真菌葡聚糖检测。目前使用的鲎试剂分为美洲鲎试剂和东方鲎试剂两大类。现在,让我们看看Sievers Eclipse月食细菌内毒素检测仪的五大关键词:颜值、黑科技、效率、省钱、保护生物多样性关键词一:颜值Sievers Eclipse月食细菌内毒素检测仪的颜值不一般,其微孔板设计为圆形,充分融合了工业设计的美学思想,在灯光的照射下,微孔板如月亮般晶莹剔透,上面的微孔远看犹如天空中的星座图,也因此被取名为Eclipse月食。作为颜控的小编对这样的颜值表示难以抗拒,你呢?关键词二:黑科技Sievers Eclipse月食细菌内毒素检测仪科技含量最高的部分莫过于其微孔板,微孔板采用精密设计,含104个光学池,每板可提供21个样品的检测量,配备嵌入式内毒素标准品与阳性产品对照PPC(Positive Product Control),使用精确的微流控技术将精确量的鲎试剂水、样品以及鲎试剂均匀滴加至104个光学池中检测,实现自动化操作。为确保在37±1℃条件下发生鲎试剂与内毒素的反应,分析仪使用了红外温度监控仪(NIST可追溯型)来测量微孔板在整个检测期间的精确温度——这在业界属于首创。分析仪同时满足《美国药典》USP85、《欧洲药典》EP 2.6.14、《中国药典》ChP 四部1143和《日本药典》JP 4.01的所有相关要求,且符合21 CFR PART 11和数据可靠性准则。这样的黑科技,你是不是忍不住想要详细了解一下?关键词三:效率既然仪器获得了2020年度INTERPHEX展商效率大奖,那么效率自然是Eclipse月食细菌内毒素检测仪的重中之重。由于使用了嵌入式的内毒素标准品和阳性产品对照,因此,Sievers Eclipse月食细菌内毒素检测仪最高可减少85%的化验准备时间,可在最短9分钟内完成化验准备最高减少89%的移液步骤,并降低操作员重复性压力损伤的风险(使用传统的96孔板内毒素检测仪最多需要242个移液步骤,而使用Eclipse月食细菌内毒素检测仪,仅需27个移液步骤)移液步骤少了,检测时间短了,实验室打工人表示:胳膊再也不酸了,睡眠时间也变长了,精神越发抖擞了!关键词四:省钱由于使用了精确的微流控技术,在做内毒素检测时,最高可以减少90%的鲎试剂使用量。要知道鲎试剂可是贵如黄金,这么掐指一算,省的钱还真不少。关键词五:保护生物多样性提供鲎试剂原料的鲎长什么样?鲎也叫马蹄蟹,是肢口纲剑尾目的海生节肢动物,身体为青褐色或暗褐色,有着像铠甲一样的硬壳。鲎是海洋中的活化石,和大名鼎鼎的三叶虫辈分相同,早在4亿年前的古生代泥盆纪,鲎就生活在海洋里了。漫长的历史进化过程中,鲎的同伴们不是灭绝就是进化,只有鲎经历了亿万年的沧桑,依旧保持着最初的模样,活到了今天。我们见到的生物血液都是红色的,但鲎却不同,鲎的血液里负责运载氧气的是血蓝蛋白,它的核心金属元素是铜,所以鲎的血液是蓝色的。由于数量越来越少,鲎已被列入《中国物种红色名录》,是国家二级保护动物。鲎试剂是当前世界最灵敏高效的细菌内毒素验证手段,目前没有比它更优的替代品;并且鲎的生物遗传研究价值和科学研究价值巨大,保护鲎可持续发展刻不容缓。Sievers Eclipse月食细菌内毒素检测仪凭借突破性的技术,最高可减少90%的鲎试剂使用量,希望以此减少对鲎物种的破坏,加强对鲎的保护。在此也呼吁大家,不要非法捕捞、买卖鲎,更不可因猎奇心理而将鲎摆上餐桌!说完这五大关键词,对Sievers Eclipse月食细菌内毒素检测仪的大致介绍就告一段落了,如果您想更详细地了解我们的新产品,欢迎点击以下链接,了解更多!https://www.instrument.com.cn/netshow/SH102481/C438210.htm关于INTERPHEX美国纽约国际制药展览会INTERPHEX一年一届在纽约举办,是北美最大的、世界上最值得信赖的跨化学制药与生物制药两个领域的生命科学展会之一。INTERPHEX每次开展都会吸引来自全世界医药界的专业人士参展,为从业者把握行业发展趋势,搜寻制药行业的前沿技术、教学方法以及产品和服务。
  • 传承民族智慧,月旭携手中医药检测谱写抗疫新篇章
    新型冠状病毒肺炎疫情爆发以来,社会各界广泛关注。“中药抗疫”,“古方新用”在抗击肺炎疫情中屡立奇功,疗效显著,坚持中西医结合的防疫举措,也一路被大家看好。国家中医药管理局就在前不久发布了《关于在新型冠状病毒肺炎传染病防治工作中建立健全中西医协作机制的通知》,国家纪检委、人民日报也都是多番力挺,中医加油!中国加油!武汉加油!月旭科技作为国内知名色谱耗材生产商,在体现社会责任担当方面也是一点也不含糊。本文小编就为大家介绍,月旭科技助力中药抗疫的那些事儿。连花清瘟胶囊新发布的《新型冠状病毒诊疗方案(试行第六版)》中医治疗中,推荐了“连花清瘟胶囊(颗粒)”,用于缓解乏力发热症状。使用月旭科技的Ultimate XB-C18 (4.6*250mm, 5μm)色谱柱,对连花清瘟胶囊中连翘苷的含量测定分析,峰形和塔板数都符合要求,理论塔板数19754,对称因子1.04。方法来源:《中国药典》2015年版一部。色谱柱:Ultimate XB-C18 (4.6*250mm, 5μm)。流动相:乙腈/0.1%磷酸=22/78;检测波长:205nm;柱温:30℃;流速:1.0mL/min;进样量:10μL。连花清瘟胶囊中连翘苷的含量测定疏风解毒胶囊在《新型冠状病毒诊疗方案(试行第六版)》中,另外推荐的中成药“疏风解毒胶囊(颗粒)”,也具有疏风散热的疗效。使用月旭科技Ultimate XS-C18 (4.6*250mm, 5μm)色谱柱,可准确对其中连翘苷、虎杖苷进行含量分析。连翘苷、虎杖苷的理论塔板数分别为18715、18738,拖尾因子分别为1.071、0.992。方法来源:《中国药典》2015年版第一增补本。色谱柱:Ultimate XS-C18 (4.6*250mm, 5μm)。流动相:乙腈/0.1%三乙胺溶液=19/81;检测波长:277nm;柱温:30℃;流速:0.8mL/min;进样量:10μL。疏风解毒胶囊中连翘苷的含量测定方法来源:《中国药典》2015年版第一增补本。色谱柱:Ultimate XS-C18 (4.6*250mm, 5μm)。流动相:乙腈/水=15/85;检测波长:306nm;柱温:25℃;流速:0.8mL/min;进样量:10μL。疏风解毒胶囊中虎杖苷的含量测定银黄清肺胶囊2月7日,中药局官方发布了《关于推荐在中西医结合救治新型冠状病毒感染的肺炎中使用“清肺排毒汤”的通知》,随后,该处方就作为推荐处方,被加入到了《新型冠状病毒诊疗方案(试行第六版)》中。该处方中包含中药21味,其中的麻黄,枳实,生石膏是另一种清肺药银黄清肺胶囊的处方组成。银黄清肺胶囊中的苦杏仁一味则宣肺平喘,甘草补脾益气。正因银黄清肺胶囊具有较好的清肺解毒效果,银黄清肺胶囊一度入选《湖南省新型冠状病毒感染的肺炎中医药诊疗方案(试行第三版)》。月旭科技使用Ultimate LP-C18 (4.6*300mm, 5μm)色谱柱,可很好地测定该药中盐酸麻黄碱的含量。理论塔板数为25720,不对称度为1.00。方法来源:《新药转正标准》86册。色谱柱:Ultimate LP-C18 (4.6*300mm, 5μm)。流动相:乙腈/0.02mol/L磷酸二氢钾溶液(含0.2%三乙胺,用磷酸调节pH至2.7)=3/97;检测波长:210nm;柱温:35℃;流速:1.0mL/min;进样量:10μL。银黄清肺胶囊中盐酸麻黄碱的含量测定益气养血口服液气阴两虚的表现有乏力汗多,气短心悸,脉细或虚无力。益气养血口服液的处方中,人参,党参,黄芪三味,具有补气固表的功效,而其中的五味子和麦冬,更是体现在了中药局前不久公布的《关于印发新型冠状病毒肺炎恢复期中医康复指导建议(试行)的通知》的“气阴两虚证”处方里。月旭科技使用Ultimate Polar-RP (4.6*250mm, 5μm)色谱柱,可对其中淫羊藿苷的含量进行测定。理论塔板数为13361,拖尾因子为0.973。方法来源:《中国药典》2015年版一部。色谱柱:Ultimate Polar-RP (4.6*250mm, 5μm)。流动相:乙腈/0.05%磷酸溶液=26/74;检测波长:270nm;柱温:室温;流速:1.0mL/min;进样量:20μL。益气养血口服液中淫羊藿苷的含量测定相关耗信
  • whYOKO发布薄层成像系统新品
    仪器参数1,扫描方式:线性扫描,双波长扫描,多通道扫描2.光源:254/365nm紫外光源、可见光源。 3.分辨率可达10um 4.重现性:≥99% 5. 检测方式:反射法、荧光法。6、算法:归一法,内标法,外标法(一点直线法,两点曲线法),符合药典要求。7.软件环境:WIN XP/2000/NT, 仪器特点1. 有与单波长扫描,双波长扫描,多通道扫描功能,2.对TLC斑点进行准确定量,精确测量Rf值, 3.对图像可任意角度旋转,可对色彩亮度、饱和度、对比度进行校正。4. 可打印出峰位、Rf值、峰面积、含量、图像的报告,符合药典要求5. 人性化中文软件操作界面,无限量图谱数据库管理,6.机内配有图文并茂的教学软件,简明方便,随时调看。 可完成下列药品的分析: 中药材: 三七 黄连 金果榄 淫羊藿 穿心莲 五味子 大黄 蛇床子 丁公藤 防风备 灵芝 刺五加 西红花 当归 川穹 麦冬 升麻 紫菀 龙胆等 中成药:知柏地黄丸 香连丸 穹菊上清丸 黄连上清丸 导赤丸 人参再造丸 桂附地黄丸 消银片 霍胆丸 三妙丸 二妙丸 香连片 穿心莲片 万氏牛黄清心丸 天麻首乌片 葛根芩连微丸 等 创新点:薄层成像系统YOKO-2002是本公司为了满足当前薄层色谱分析以及中药分析需要设计的新产品,它处理速度快和分辨率高,而且具有噪音小、线性好的特性。仪器由光源、光学采样系统、薄层色谱色谱工作站三大部分组成,薄层色谱工作站是目前国内开发的最好软件,对仪器可全自动的控制同时还可对薄层色谱斑点进行定量处理,定量精度与进口产品相近、满足药厂、高校日常分析的需要,省时省力是您实验室的好助手。薄层色谱成像系统的使用成本低。专门为中药企业GMP认证打造 .为满足2015版一部附录VIB薄层色谱法的规定,开发了薄层色谱成像系统YOKO-2002产品。薄层成像系统
  • 中药制造领域近红外光谱技术的专利技术进展和趋势
    中药制药工业是我国医药行业中拥有自主知识产权的民族产业。我国中药制药水平整体不高,难以满足现代化生产对质量控制提出的要求,一定程度上影响了中药产业现代化进程和国际化脚步[1]。《中药现代化发展纲要》《中医药发展战略规划纲要(2016—2030年)》《中国制造2025》等指出要推进中药工业数字化、网络化、智能化建设,提高质量在线监测、在线控制。实现中药制造的数字化、智能化是走向“制药强国”的必经之路。中药制剂过程控制是国家战略需求的重要组成部分。然而,现阶段我国中药生产制造领域工艺较粗糙,2018年智造中药高峰论坛上,张伯礼院士指出:“我国中药现代化战略实施20多年来,中药工业总产值从不到300亿元增长到9000余亿元… … 我国中医药现代化还处于初级阶段,中药产业普遍存在生产工艺粗放、科技基础薄弱、质控水平低、质量有待升级等问题”[2]。近红外光谱技术因其快速、无损等优势,近年来被国内诸多研究团队引入中药制造的原料检测、过程控制和成品质量快速无损检测等中药制造过程的多个环节,其应用特点主要在于不破坏样品的情况下快速测定其中的有效成分,便于实现在线分析,是制造过程质量控制的关键技术之一[3]。浙江大学程翼宇教授和瞿海斌教授团队以近红外光谱为技术工具,分别对提取(水提、醇提和渗漉)、浓缩、醇沉、精制纯化(硅胶柱色谱和大孔树脂纯化)、混合和包衣等关键工艺过程和制剂成品进行了快速分析,主要完成了复方苦参注射液、痰热清注射液和丹参注射液等生产过程的快速质量评价[4-5]。罗国安教授团队应用近红外光谱技术,开展了提取、混合、柱色谱等生产过程在线质量分析,完成了安神口服液、丹参多酚酸盐、清开灵注射液等生产过程快速质量控制体系[6-7]。北京中医药大学乔延江教授和吴志生教授智能制造创新团队在国内较早提出基于光谱技术及信息技术的中药生产过程分析技术研究思路,完成了安宫牛黄丸、清开灵注射液和乳块消片近红外光谱快速质量评价和过程控制体系[8-9]。近20年,国内学者采用近红外光谱技术,建立了系列中药制造质量控制方法,为中药制造数字化、智能化发展提供了关键技术支撑。本文对中药制造领域近红外技术相关的专利进展进行分析,并进一步对近红外光谱技术在中药制造领域的发展趋势进行展望,为中药近红外光谱技术发展提供重要数据支撑。1 研究方法本文采用Incopat科技创新情报平台和patentics系统,对涉及近红外光谱技术在中药制造应用中的发明专利申请(截至2020年12月)进行检索,经人工浏览,手动筛选,对数据进行归纳整理。2 专利技术申请概况2.1 近红外光谱技术在中药制造领域的发明专利趋势2002年至今,近红外光谱技术在中药制造领域发明专利的变化趋势如图1所示,最早的一件申请是2002年浙江大学提出的,涉及将近红外光谱技术用于中药生产工艺中产品质量指标的在线检测。之后的近10年这一领域的专利申请数量相对较少,每年平均申请量基本在5件左右。至2011年,申请数量相比之前增长2倍以上,随后的10年,每年平均申请数量较前10年增长2倍以上。就申请国家而言,公开专利申请绝大部分来自中国,其他国家的申请较少,这也符合中药制造领域的研究现状,大都集中在中国。虽然日本和韩国在中药制造行业也有一些较为成熟的技术,但涉及近红外光谱技术的应用领域并未以专利形式进入中国。2.2 近红外光谱技术在中药制造领域的发明专利申请人2.2.1 申请人及其类型 如图2所示,相关专利的申请人以企业和大专院校为主,企业占57%,大专院校占34%,科研单位占5%,个人占4%。其中大专院校中申请数量排名前3的分别是浙江大学、中山大学和北京中医药大学。可以看出,企业和高校是该领域最主要的创新主体,其根据需要收购了个人或企业的有关专利权。其中,浙江大学的程翼宇教授、刘雪松教授深耕中药制造过程控制多年,也成功将近红外光谱技术引入中药生产过程质量控制当中。中山大学的葛发欢教授团队与广州中大南沙科技创新产业园有限公司合作,共同申请5项专利,将近红外光谱技术应用于凉茶和娑罗子中七叶皂苷的在线监测。北京中医药大学乔延江教授、吴志生教授团队也针对中药生产过程质量控制进行了多年的研究。企业申请人排名前3的分别是江西汇仁药业有限公司、广州中大南沙科技创新产业园有限公司和天津天士力现代中药资源有限公司。就数量而言,排名前3的制药公司和大专院校,申请数量相当,这表明近红外光谱技术作为一个应用型技术,其研究正不断实现从实验室走向生产过程的应用,广泛分布在企业当中,这也充分体现了其因快速、无损的特点适用于中药制造过程质量检测的优势。2.2.2 申请人申请趋势 图3显示的是2002年至今排名前几位的申请人的申请数量。包括申请数量排名前3的江西汇仁药业有限公司、天津天士力现代中药资源有限公司等企业的申请时间主要集中在某个时间段,说明近红外光谱技术在企业中的应用范围较为单一,没有技术上的突破和创新,仅是一种成熟技术应用于不同中药的制造过程。而大专院校相对企业而言,申请分布的时间更长,如北京中医药大学在2014、2016、2018、2019年都有申请,相对更有连续性。这说明近红外光谱技术尚存在很大发展空间,其作为一门过程分析技术,在中药制造中的应用整体呈上升趋势。2.3 发明专利申请的当前法律状态及转让情况如图4所示,相关专利授权42件,授权率为47.7%,驳回27件,驳回率为30.7%,撤回19件,撤回率为21.6%。失效专利数量为51件,有效专利数量为42件,即超过50%的专利申请已失效。申请人江西汇仁药业有限公司、浙江大学、上海市中药研究所、上海雷允上科技发展有限公司的专利权转让基本都发生在相同申请人内部,江西汇仁药业有限公司将7件专利都变更为与其旗下公司上海中创医药科技有限公司共有。除此之外,还存在其他转让情况,见表1。3 近红外光谱技术发明专利申请的技术内容3.1 中药原料制造过程质量评价的近红外光谱技术现状分析中药原料是中药制造的首关环节,直接影响中药的产品质量和药效。如何快速、准确地评价药材质量是中药制造需解决的首要问题。传统的鉴定方法耗时较长、样品处理繁琐,存在不同程度的局限性。将近红外光谱技术与计算机软硬件、化学计量方法等结合,可作为快速准确鉴别中药材的新方法[10]。涉及中药原料近红外光谱技术的发明情况如图5所示。中药制造原料质量评价包括真伪优劣、道地性、产地、加工炮制、种属等。将近红外光谱与聚类分析等方法相结合,建立假冒伪劣中药材鉴别系统,能有效提升假药的鉴别能力和速度。3.1.1 中药原料的真伪鉴别 在真伪鉴别方面有7件申请,分别涉及药材三七、丹参、山参、麻黄、皂角刺和甘草,如申请人天津天士力现代中药资源有限公司的2件申请CN101961360A、CN101961379A均通过主成分分析法在降低维数的同时充分提取光谱图中的有效信息,再采用马氏距离法判别样本的类别归属,以鉴别三七和丹参的真伪。其他4件也与此类似,创新之处主要在于近红外光谱数据的不同建模方法在中药制造原料质量评价中的应用。3.1.2 中药原料的道地性鉴别 在中药制造原料道地性鉴别方面,药材因在疗效、产量、贮藏、生长环境、采摘时节等方面所体现出来的综合特性优于同种内其他非道地药材,不同产地的气候环境直接影响中草药的化学成分、药用价值和治疗效果,因此中药材产地鉴定是中药疗效和用药安全的重要保障。针对道地性、产地鉴别的申请涉及的药材有陈皮(CN103033486A)、淫羊藿(CN104089921A)、三叶青(CN107607485A)和忧遁草(CN111595802A)。对不同基原以及不同产地的中药材进行鉴别,无需对样品进行复杂处理,操作简单、快速,结果稳定可靠。3.1.3 中药原料的炮制鉴别 炮制是中药制造原料的重要工艺之一。中药材加工炮制鉴定主要是针对加工后的药材进行检验,了解其是否具备原有的药材成分与药效。中药材在经过了炮制加工后,均会产生一定的化学性质变化,而这种变化便可以利用近红外光谱技术加以验证。硫磺熏蒸是一种传统的药材加工方法,可使药材快速干燥,解决药材颜色发黄和生虫等问题,保存时间长、卖相好,但硫磺熏蒸会导致药材中二氧化硫残留,影响人体的健康,已被国家明令禁止。如何区别中药是否被硫磺熏蒸过已成为人们关注的一项内容[11]。2件专利申请涉及白芷硫磺熏蒸与否的鉴定研究,1件专利(CN107449754A)采用近红外光谱分析方法对栀子炮制品的品质进行定性鉴别,为市场栀子炮制品的质量监管提供科学依据。3.1.4 中药原料的综合评价 另外,还有11件申请涉及中药材种属、真伪、优劣、产地、道地性等综合质量评价。CN144711A涉及中药药材红外光谱非分离提取多级宏观指纹鉴定方法,CN103076300A涉及专属性模式识别模型判别分析中药材资源指纹信息的方法,都是使用指纹鉴定的方法。CN104345045A和CN107782695A是相似药材、合格与否的鉴别,其他几件申请涉及大黄、人参、党参、甘草、三七、丹参和麻花艽的鉴别。水分是中药制造原料的关键质量属性之一。涉及含水量检测的申请,如鲜人参含水量的检测(CN108709869A)、中药水分测量方法及系统(CN110702631A)。3.2 中药制剂制造过程在线控制的近红外光谱专利技术现状分析在线检测的应用为中药制剂生产过程的动态监控和工艺优化提供了依据,改变了传统检验滞后的模式,真正实现了药品质量的在线控制。检测前,对预先采集的数据进行处理,建立模型,无需进行样品处理,可同时测定样品中的多个分子结构,液体、固体等均可直接检测,减少了样品处理时间,缩短了检测时间,提高了检测效率,为中药制剂生产过程控制提供数据支持。中药制剂制造工艺较为复杂,最终产品的品质稳定性与生产过程多项工艺参数息息相关。因此,中药制剂生产的过程监控非常重要。近红外光谱在线检测技术可以全面监控中药生产过程中的微生物、含水量、水不溶物、混合过程中药物分布的均匀性等,同时对多项参数进行有效控制,可在很大程度上提高制药工艺的自动化水平及药物自身的稳定性与均一性。3.2.1 近红外光谱技术应用的中药制剂剂型 发明专利申请中有78件涉及中药制剂在线检测和过程质量控制,近红外光谱技术在中药制剂领域的应用最为广泛。涉及中药制剂的剂型有药酒、胶囊、口服液、浓缩丸、合剂、颗粒和注射剂,如枣仁安神胶囊、肾宝合剂、贞芪扶正颗粒、金玄痔科熏洗散、一清颗粒、复方杜仲胶囊、增健口服液。3.2.2 近红外光谱技术应用的中药制剂主要成分和辅料 在发明专利申请中,涉及的单一成分或单类物质有丹酚酸B、丹参素钠、鞣质、芍药苷、总蛋白、柚皮苷、新橙皮苷、总黄酮、马兜铃酸I、枯矾、绿原酸、栀子苷、七叶皂苷A~D、苯丙素类、生物碱类或萜类化合物;涉及的多种成分或多类物质为总黄酮和总皂苷、药材浸出物(天花粉和葛根)、娑罗子提取物、淫羊藿提取物、苦黄注射剂等。有2件申请涉及中药注射剂(CN1432803A)和中药颗粒(CN1447109A),申请人均是清华大学,主要方法都是脱去溶剂的试样(注射剂)用溴化钾压片制样,测定粉末样品压片试样的普通红外光谱(注射剂)或中红外光谱(颗粒)、漫反射近红外、漫反射中红外光谱、反射光谱及衰减全反射光谱,求出并绘出相应光谱图的二阶导数光谱图,测定试样的二维相关红外光谱,分级对比相应图谱,测定主料和辅料的相对含量。3.2.3 近红外光谱技术应用的中药制剂生产环节 近红外光谱检测手段被应用于中药制剂生产的提取、浓缩、混合[12]、纯化、干燥[13]等多个环节。对于提取环节,申请中所涉及的药材或制剂有丹参、白芍、杏香兔耳风、娑罗子、大黄、栀子、淫羊藿、葛根、天花粉、龙血竭、川红活血胶囊、女金胶囊、肾宝合剂渗漉液、动物提取液。如CN102252992A涉及一种对中药提取过程进行近红外光谱在线检测的方法,实现了对中药各指标成分和含固量的实时监测以及提取过程终点的快速判断。CN102106888A公开了一种杏香兔耳风提取过程的质量控制方法,应用近红外光谱技术对杏香兔耳风提取液指标成分进行连续取样和现场分析,建立了在线应用的提取液指标成分的近红外模型,用于杏香兔耳风提取过程质量控制。对于浓缩环节,申请中涉及的有六味地黄丸、女金胶囊、淫羊藿提取物、丹参提取液,如CN102106939A提供了一种六味地黄丸浓缩丸提取浓缩液质量控制方法,能测定六味地黄丸浓缩丸提取浓缩液比重及马钱苷、丹皮酚含量,可对六味地黄丸浓缩丸提取浓缩液指标成分进行连续取样和现场分析。混合是中药制造的关键环节之一。对于混合均匀度的测定,如控制中药药粉二维混合的均匀度(CN101832921A)、正天丸混合过程终点的测定方法(CN105092520A)。对于纯化步骤,CN103808665A公开了一种测定娑罗子提取物纯化过程中多指标成分含量的方法,CN108362663A涉及丹参提取液纯化过程中的质量控制方法。针对干燥过程质量控制,CN108592527A涉及石斛冻干加工系统及其控制方法,采用近红外光谱仪对冻干加工过程中的石斛的水分含量进行检测,并根据检测结果自动调节冻干控制数据,不仅节约能源,还能确保冻干石斛的品质。CN110632016A涉及中药饮片在干燥环节中水分浓度的精准控制。贵州景峰注射剂有限公司在中药制剂制造过程控制领域进行了较为全面的保护,其申请内容涵盖了提取过程(CN108760676A)、浓缩过程(CN108398401A)、纯化过程(CN108362663A)和大孔树脂吸附分离过程(CN108693138A)的终点判断方法。3.3 中药制造近红外光谱技术一体化装备专利技术现状分析在所有发明专利申请中,涉及近红外检测装置的共有8件,3件涉及中药在线监测的提取装置,2件(CN111175247A、CN102507491A)涉及中药品质的检测装置,2件涉及中药成分的检测,1件(CN105092517A)为颗粒沸腾干燥过程的在线质量控制装置。4 存在问题及建议4.1 存在问题中医药发展“十三五”规划要求发挥中医药特色优势,利用现代科学技术,推进中医药现代化与国际发展,引领中医药自主创新国际主导权。而近红外光谱技术在中药制造业中的应用,可解决中药真伪鉴别、分类和分级靠人工经验的落后面貌,同时可实现中药制造过程在线质量监控,该技术的推广应用对我国中药提升产品质量产生了巨大影响。通过对近红外光谱技术在中药制造领域的专利技术分析,发现如下问题。4.1.1 申请数量少,后劲不足 近红外光谱技术在中药制造应用领域的专利总量还较少,从2002年至今发展较为缓慢,申请量最多的一年也仅有17件,申请量最大的申请人也仅有7件申请,申请时间主要集中在某个时间段,没有针对某项技术的持续性改进,技术方向重点有所转移。4.1.2 专利申请涉及的适用范围有限 重点申请人的申请基本都是涉及提取过程的质量控制,申请方向较为单一。在产业实践中,近红外光谱技术被广泛应用于药品检测,基本涵盖了从原材料供应到生产全过程乃至上市后的监督检验,但是在专利申请中还未见有药品非法添加的相关检测,对假劣药品的鉴别也非常少。相关专利中近红外光谱技术局限于药材的鉴定,且进行综合评价的药材基本都是根、茎和根茎类药材,其中参类药材较多,药材品种少而分散。4.1.3 专利质量有待调高,布局有待改善 该领域专利许可数量为0,技术转让寥寥无几,从侧面反映了其专利的质量不够高、应用性不够强。所有申请中也没有针对某个核心专利的后续改进及专利布局。国内申请中,仅有深圳市药品检验研究院2018年申请的一件涉及皂角刺真伪化学模式识别的方法(WO2019192433A1)提出了国际申请,其是以国内专利CN108509997A为优先权,其仍然处于国际阶段,说明该领域研究在国外的布局起步很晚,且数量非常少,保护主题单一,大部分国内申请人尚未建立国际化的专利布局意识。这也反映出对于专利应用价值和成果转化预期的不确定。4.2 建议基于以上问题,笔者提出以下建议。4.2.1 开展广泛的产学研一体化合作 在中药制造业创新发展的过程中,高校、科研机构、中药制造企业应当充分利用近红外光谱技术和中药的优势,发挥各自的特点和特长,走产学研一体化的创新之路,对该领域的专利信息数据进行跟踪,有针对性地进行改进创新,推动近红外光谱技术在中药制造领域的产业化发展,进一步提高专利技术的实际应用价值。4.2.2 拓展适用范围 近红外光谱技术可以应用于中药原料和中药制剂的质量控制,涉及中药的种属、真伪、优劣、产地、道地性、非法添加等,生产过程中微生物、含水量、水不溶物等多种指标,炮制、提取、浓缩、混合、纯化、干燥等多个环节,中药品种成千上万,药用部位包括花、果实、种子、根及根茎等,除了植物药,还包括动物药、矿物药,申请人可以针对某种或某类药材或制剂从多个角度拓展应用,或联合其他检测技术以增强或改善检测结果或效果。4.2.3 提升专利质量,扩展海外布局,加强专利运营 “十四五”规划纲要的指标中专门为知识产权设置了一项关键性指标,即每万人高价值发明专利拥有量达到12件。国家知识产权局出台了一系列知识产权政策,显示了政府努力提高专利质量的决心,专利质量的提升是未来参与全球竞争的关键所在。申请人在研究和申请前应充分了解相关领域的现有技术和在线申请情况,围绕核心专利进行全面、持续性改进研究并进行海外专利布局。重视高价值专利的运营,加强校企合作,强化市场意识和应用导向,提高专利的转化率,实现专利价值的最大化。利益冲突 所有作者均声明不存在利益冲突参考文献(略) 来 源:刘南岑,耿立冬,马丽娟,吴志生.中药制造领域近红外光谱技术的专利技术进展和趋势 [J]. 中草药, 2021, 52(21): 6768-6774 .
  • 扬州首个由企业承担的江苏省“双碳”重大项目获批立项
    记者13日从扬州市科技局获悉,该市江苏奥克化学有限公司承担“万吨级CO2制备锂电池电解液溶剂技术研发及重大科技示范”项目,近日获批江苏省双碳科技创新专项重大科技示范项目,获批省拨经费1000万元。据悉,该项目为扬州市企业首次获批该类专项资金支持,标志着该市在“双碳”战略目标的“绿色画卷”上又添亮丽一笔。企业技术中心市科技局相关负责人介绍,江苏省“碳达峰、碳中和”科技创新专项实施以来,作为扬州市首个入围的由企业承担的重大科技示范项目,该项目总经费预算3100万元,围绕碳达峰、碳中和“3060”战略目标与远景规划,以突破行业领域“碳中和”关键技术为发力点,努力提升经济社会绿色低碳发展的科技支撑能力。项目聚焦当前我国环氧乙烷生产技术的进步和锂电池新能源产业链供应链发展中二氧化碳排放问题,致力于研发出一种新型催化剂,能够转化生产过程中产生的96%以上的二氧化碳,将为我国二氧化碳资源化利用和碳达峰碳中和目标的实现,贡献出扬州科技力量。项目所在企业扬州市科技局表示,该项目的成功获批,是扬州推动“双碳”目标的又一“绿色举措”和“绿色荣誉”。下一步,扬州市将围绕双碳目标重大科技需求,加强“双碳”领域关键技术攻关,推动科技成果高效转化,高质量支撑全市产业绿色低碳转型发展。
  • “100家实验室”专题:访北京锦绣大地技术检测分析中心有限公司
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。2009年6月3日,仪器信息网工作人员参观访问了本次活动的第十八站:北京锦绣大地技术检测分析中心有限公司。  北京锦绣大地技术检测分析中心有限公司成立于1998年,是一家独立法人单位,已于2002年通过北京市质量技术监督局的计量认证(CMA认证),于2005年通过中国合格评定国家认可委员会(CNAS)认可并被其指定为有机产品认证检测机构,可出具权威、科学的第三方检测报告。 左:北京市质量技术监督局计量认证(CMA认证)证书右:中国合格评定国家认可委员会(CNAS)认可证书    据中心主任赵孟彬教授级高工介绍:中心可对食品、饲料、水质、土壤、肥料、食品包装材料、一次性卫生材料、保健品等按标准方法进行分析检测,样品主要来源于所属集团公司生产的产品、农副产品批发市场销售的商品、认证基地与产品基地的样品、外送抽检样品及自送样品等,“为了蔬菜、食品能够及时上市,我们每日还安排了晚班”。  中心目前有专业工作人员20余人,占地1200多平米,设有综合办公室、无机室、有机室、微生物室、质量控制室等,安全报警、空气流通、温度控制等设施齐全,环境条件良好。中心现配有安捷伦气质联用仪、沃特世超高效液相色谱质谱联用仪、安捷伦气相色谱仪、安捷伦液相色谱仪、珀金埃尔默原子吸收分光光度计、科创海光原子荧光分光光度计、戴安离子色谱仪、岛津紫外分光光度计、赛默飞世尔酶标仪、Organomation氮吹仪、Sigma低温离心机、新科微波消解仪、天大天发智能崩解仪等检测仪器及配套设备170余台。赵孟彬主任强调,中心会定期检定这些仪器,并有专人负责对其维护和保养,“有的仪器已经用了七、八年,现在仍然能完好地进行检测工作”。工作掠影  中心设有企业博士后科研工作站,已经培养博士后10名,其中包含分析检测博士后3名,研究领域涉及农业无土和有机栽培、动物繁殖与克隆、干细胞与转基因技术、湿地生态环境、食品安全与营养等。  在工作管理上,中心采取电子化的管理模式,工作人员通过软件系统办公;在提高人员工作素质上,中心采取提高学历、请专家授课、交流讨论的方式,开展了法律法规与安全培训、基础理论与数据统计培训、操作技能与专业外语培训,并通过考核评审建立人员档案。  问及中心的发展方式,赵孟彬主任说:“通过参加能力验证、实验室间的比对,以及参与制定检测方法和定值项目,提高了中心的检测水平,加强了对分析过程各环节的质量控制,自然也能逐渐扩大中心在市场中的影响和知名度”。迄今为止,中心已多次参加这些项目及活动,基本取得满意的成绩。目前,中心已制定了15个企业标准,参与制定国家标准和行业标准14个,申请并承担多个国家资助项目。  北京锦绣大地检测中心外景  谈及业务发展,赵孟彬主任介绍到:中心将依据开始实施的《食品安全法》、《食品营养标签管理规范》以及相关的生态环境法律法规,积极开展食品安全、营养标签标示以及与环境领域相关的检测工作,积极参加项目研发、标准方法制定工作,高度关注相关的国内外科技发展动态与报道,保持中心工作的可持续性发展。   附1:北京锦绣大地技术检测分析中心有限公司检测项目介绍检测项目分类检测项目食品安全方面(包括饲料)农药残留:有机磷类、有机氯类、拟除虫菊酯类、氨基甲酸酯类;兽药残留:氯霉素、四环素、土霉素、金霉素、磺胺类、克伦特罗(瘦肉精)、己烯雌酚、伊维菌素、孔雀石绿、喹乙醇、硝基呋喃类、喹诺酮类等;违法添加的非食用物质:三聚氰胺、苏丹红、甲醛、硼酸与硼砂、溴酸钾、富马酸二甲酯等;添加剂:防腐剂、甜味剂、增白剂、色素等;食品中污染物:重金属、硝酸盐、亚硝酸盐、多氯联苯等;食品中真菌毒素;致病菌微生物;对人体有毒有害物质食品营养与标签标示能量、蛋白质、脂肪、碳水化合物、钠、饱和脂肪酸、胆固醇、糖(单/双糖)、膳食纤维、维生素(维生素A、D、E、K、B1、B2、B6、B12、C、叶酸、烟酸、泛酸)、微量元素(钙、磷、钾、钠、镁、铁、锌、碘、硒、铜、氟、铬、锰、钼)等保健品保健品功效成分中的大豆异黄酮、银杏黄酮、原花青素、淫羊藿、多糖、水苏糖、茶多酚、绿原酸、白藜芦醇和普利醇、红景天、核苷酸、番茄红素、总皂甙、人参皂甙、齐墩果酸、熊果酸等微生物大肠菌群、细菌总数、乳酸菌、酵母菌、霉菌、商业无菌、致病菌(沙门氏菌、志贺菌、金黄葡萄球菌)等环境参数(水质、土壤)多环芳香烃、挥发性有机物VOCs、半挥发性有机物SVOCs、重金属、COD、BOD、溴酸盐、农药残留及总磷、总氮、氨氮、酸根阴离子及常规检测等肥料全磷、全氮、全钾、铜、锌、铁、锰、有机物总量等   附2:北京锦绣大地技术检测分析中心有限公司联系方式  电话:(010)88206688-8267   (010)88207530  传真:(010)88207529  Email:dadijiance@vip.sina.com  网址:www.glac.com.cn
  • 2010年北京光谱年会日程公布
    为了更好的交流及促进光谱分析技术(原子光谱、分子光谱)应用及其学科的发展,北京理化分析测试技术学会光谱学会定于2011年1月11日在北京天文馆举办“2010年北京光谱年会”。拟就原子光谱和分子光谱分析技术动态、光谱分析仪器方面的新进展等问题进行学术交流,并邀请光谱分析方面的专家作专题报告。上午大会报告,下午中药食品(红外)光谱分析专题研讨会。  为了更好总结光谱新技术,欢迎光谱技术人员踊跃投稿。本次年会将做光谱新技术论文集,欢迎光谱技术人员踊跃投稿。投稿请将文章全文于2010年12月20日前发到会务组,想在国家核心期刊分析仪器上发表的文章,请注明期刊投稿。  一、 大会日程 (1)大会报告时间报告人报告题目单 位08:40-09:00陈吉文金属材料分析领域光谱分析仪器研究进展中国钢研集团钢研总院09:00-09:20邓勃光谱定量分析中试验方法和数据处理中几个问题的探讨清华大学09:20-09:40符廷发新一代ICP-MS同时分析测试技术德国斯派克09:40-10:00李娜荧光偏振免疫分析在药物测定中的应用北京大学10:00-10:20余正东国产光谱仪器的发展思路江苏天瑞10:20-10:30会间休息10:30-10:50李大为岛津公司光谱最新应用技术进展岛津公司10:50-11:10宋占军应用紫外光谱法测定生物止血剂复杂体系中的蛋白含量军事医学科学院11:10-11:30李德仁麦当劳砷油事件的省思安捷伦公司11:30-11:50龚䶮 光谱检测技术在生态纺织品检测中的应用探讨北京服装学院11:50-12:10邱海林低碳环保材料的检测技术日立高新12:10-12:30孙素琴红外光谱在复杂混合物体系分离与分析过程中的应用清华大学 (2)中药食品(红外)光谱分析专题研讨会日程安排 2011年1月11(13:30~16:30)时间报告人题目单位13:30-13:45周 群混合物红外光谱三级鉴别法清华大学13:45-14:00刘 军分子振动光谱仪器计量新进展中国计量科学研究院化学计量与分析科学研究所14:00-14:15吕 扬复杂体系的中药材质量评价中国药学科学院药物研究所14:15-14:30郭宝林淫羊藿药材的FTIR鉴别和快速质量评价中国医学科学院北京协和医学院药用植物研究所14:30-14:45付 静中药配方颗粒红外光谱质量评价北京康仁堂药业有限公司14:45-14:55张志杰我国药用雄黄的晶体结构鉴定中国中医科学院中药研究所14:55-15:05图 雅蒙药草乌叶及其提取物化学成分的红外光谱分析中国中医科学院中医药发展中心15:05-15:15徐蓓蕾不同种葛根药材的光谱分析与鉴定北京中医药大学15:15-15:25王 洋中药甘草有效部位提取分离过程的红外光谱分析与鉴定天津中医药大学15:25-15:35武彦文蜂胶质量的光谱分析与评价北京理化分析测试中心15:35-15:45姚 霞彭 勇红外光谱法对枸杞子的分析与鉴定中国中医科学院中药研究所15:45-15:55徐 荣陈 君肉苁蓉红外光谱分析与鉴定中国医学科学院北京协和医学院药用植物研究所15:55-16:05周应群甘草环境影响的红外评价中国药材公司16:05-16:15王俊全基于计算识别的红外光谱丹参聚类分析天津天士力集团现代中药资源有限公司16:15-16:25魏继平白酒质量的光谱分析与评价天津天士力集团研究院食品所16:25-16:35吴黎明蜂王浆质量的光谱分析与评价中国农科院蜜蜂研究所16:35-16:45雷 雨应用红外光谱技术整体解析奶粉的组成北京大学实验动物中心16:45-17:00陈建波混合物红外光谱专家识别法清华大学 注:具体“报告题目及报告顺序”以会议当天通知为准,下午中药食品(红外)光谱分析专题研讨会日程见附表。  二、时 间: 2011年1月11日 8:10-16:00 (8:10签到,会议免费提供午餐)  三、地 点: 北京天文馆B馆 二楼4D科普剧场(北京西直门外大街138号,北京动物园斜对面)  四、乘车路线:公交7、15、808、19、65、102、103、332、334、360快、812、714、716、732、808、814、运通104、运通105、特4、特27路动物园站下 地铁动物园站下。  注:会议费用由光谱学会承担,参会代表免费参加。会场坐位有限,参会请于12月31日前回执。  五、会 务 组:北京理化分析测试技术学会  通讯地址:北京海淀区西三环北路27号 北科大厦 (100089)  电 话:010-68722460 传 真:010-68471169  联 系 人:于靖琦 赵艳清 电子信箱:gpnh88@126.com  光谱年会回执  电 话:010-68731259 68436471-821 电子信箱:gpnh88@126.com单位名称 E-mail:详细地址 邮 编 姓 名性别职 务部门名称电 话手 机 备 注1、有 无 论文: □有论文 □无论文2、论文上期刊: □上期刊 □不上期刊  注:请参会人员与2010年12月31日前,将参会回执反馈到会议秘书处,本表复印有效。  北京理化分析测试技术学会  北京光谱学会  2010年12月16日
  • 创新中药材多维指纹图谱新技术通过鉴定
    由中科院长春应化所、吉林大学、中国农科院特产所共同承担的吉林省科技发展计划项目“龙胆草等长白山道地中药材多维指纹图谱研究”近日通过吉林省科技厅组织的专家组鉴定。专家认为,该项目为中药的质量控制提供了新的技术和方法,其实验手段和技术达国际先进水平。  中药指纹图谱是一种能够全面反映中药材及其制剂中所含化学成分种类与数量,进而对中药材及药品质量进行整体描述和评价的技术手段。  中药及其制剂均为多组分复杂体系。目前,我国在中药材及其饮片指纹图谱研究中主要采用的是色谱指纹图谱技术。该技术虽然具有通用性较强、灵敏度较高等优点,但同时存在着建立方法繁琐、分析时间较长、特征性及抗干扰能力较差等缺点。  中科院长春应化所、吉林大学和中国农科院特产所的科研人员,从开拓中药指纹图谱新技术、新方法,为中药质量控制提供有力技术支撑的目标出发,在吉林省科技厅的大力支持下,以我国“天然药库”长白山道地中药材为载体,于2006年年开始了龙胆草、五味子、淫羊藿、黄芪和甘草5种中药材的多维指纹图谱的研究,取得了系列具有我国自主知识产权,国内领先、国际先进的创新成果。  针对中药质量控制中对整体性、特征性、系统性的需求,建立了龙胆等中药材多指标成分分析的液相色谱质量控制方法及主要成分结构确认的质谱分析方法 建立了龙胆等5种中药材及其饮片的质谱特征指纹图谱分析方法和质谱特征指纹相似度的分析系统,以及用于药材产地区分、品种鉴定、采收期识别、生长年限区分等质谱指纹图谱化学模式识别方法 建立了龙胆等5种中药材的近红外指纹图谱和应用光谱计量学方法构造快速分析道地药的方法,以及用于中药材产地、生长年限等区分的近红外指纹图谱化学模式识别方法。  科学实验和实际应用证明,该所所开拓的质谱、近红外光谱中药材指纹图谱新技术,与传统的色谱指纹图谱技术相比,具有建立方法简捷、特征性强、灵敏度高、分析时间短等优点。  专家组认为,该新技术、新方法的建立,不仅能快速对中药材的品种进行整理、进行真伪识别,还可以通过结果的聚类、系统分析,获得带有规律性的启迪,从而进一步寻求植物科属、化学成分和疗效间的相关点,结合相关的活性、毒性指标,实现利用质谱及红外指纹图谱技术,对中药种植、加工及新药研发过程的质量评价及控制,对于提高中药质量,推进中药现代化具有重要的意义。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 甘肃省实施标准化发展战略领导小组办公室印发《2024年全省标准化工作要点》
    省实施标准化发展战略领导小组各成员单位,各市州、兰州新区标准化工作领导小组,各有关单位:现将《2024年全省标准化工作要点》印发给你们,请结合实际认真贯彻落实。甘肃省实施标准化发展战略领导小组办公室2024年3月6日2024年全省标准化工作要点2024年是深入推进《国家标准化发展纲要》实施,实现2025年阶段性发展目标的关键一年,全省标准化工作要以习近平新时代中国特色社会主义思想为指导,全面贯彻党的二十大和二十届二中全会精神,认真落实省委省政府决策部署和全国标准化工作会议要求,完整、准确、全面贯彻新发展理念,深入实施《国家标准化发展纲要》和我省实施意见,扎实推进标准化战略,持续深化地方标准管理制度改革,加强重点领域标准供给,统筹推进全域标准化建设,全力推动标准化开放合作,努力在主动服务高质量发展大局中展现标准化工作的担当作为。一、推动标准升级,发挥标准在扩大内需中的作用1.巩固深化主题教育成果,认真落实习近平总书记对标准化工作的重要指示批示精神,结合全省开展的“三抓三促”行动,以高度的政治责任感推动《国家标准化发展纲要》和我省实施意见提出的各项重点任务深入实施,强化标准提升和标准引领,以先进标准更好服务高质量发展。〔省级各有关部门和市(州)人民政府按职责分工负责。以下均需地方人民政府负责,不再列出〕2.围绕打造现代寒旱特色农业高地目标,紧盯“牛羊菜果薯药”六大战略性主导产业,以现代设施农业、技术集成创新、循环农业发展、产业链条延伸、农机装备研发等为重点,加强标准研制,提升农业全产业链标准水平。〔省农业农村厅牵头负责〕3.围绕农业农村绿色可持续发展,推动畜禽粪污及废弃物资源化利用、高标准农田建设、盐碱地综合改造利用、农村人居环境整治以及乡村治理等领域标准研制与推广应用,深化和美宜居标准化建设。〔省农业农村厅、省生态环境厅等按职责分工负责〕4.突出标准对产业基础高级化、产业链现代化和绿色低碳发展的支撑引领作用,加大智能制造、绿色制造和高端制造标准研制力度,推动传统产业三化改造和转型升级。〔省工信厅牵头负责〕5.探索制定能源管理、节能检测控制、节能优化运行、综合能源等节能标准。研制公共建筑节能改造、超低能耗居住建筑施工、绿色建筑设计等标准,积极推动建筑节能与绿色建筑提质增效。〔省发展改革委、省住建厅、省能源局等按职责分工负责〕6.不断完善石化化工、冶金有色、钢铁水泥、淀粉等重点行业污染物排放标准,加强环保服务、碳排放管理等标准制定,发挥标准对低碳前沿技术的引领和规范作用。〔省生态环境厅牵头负责〕7.进一步加强新能源和可再生能源标准化体系建设的实施应用,研制传统能源清洁高效利用、光伏发电、风电开发、氢能等领域相关标准。〔省工信厅牵头负责〕8.推广区块链技术、工业数据安全、新能源汽车与电网互动等新型基础设施标准。推动新材料新能源技术、生物技术、卫生健康技术、现代服务业技术等重点领域共性技术标准,加快前瞻性、先导性关键技术标准布局。〔省工信厅、省卫生健康委、省商务厅等按职责分工负责〕9.推广绿色包装、绿色产品、节粮减损、垃圾分类、低碳出行、文明餐饮、食品节约等领域标准,满足绿色化消费需求。〔省工信厅、省生态环境厅、省住建厅、省交通运输厅、省商务厅、省粮食和物资储备局、省邮政局等按职责分工负责〕10.在餐饮、家政、养老、旅游、文化娱乐、体育健身、冰雪经济等领域开展标准研发,强化标准应用,为消费者提供消费选择、增强消费信心。〔省民政厅、省商务厅、省文旅厅、省体育局等按职责分工负责〕二、强化标准供给,发挥标准在产业稳链中的作用11.实施标准化助力重点产业稳链工程,在全省14条重点产业链中选取1-2条开展标准链研究,梳理相关环节已有和正在执行的标准,查找存在的标准短板、分析新的标准需求,编制与产业图谱相对应的标准图谱。探索链主企业带动上下游配套中小企业共同开展标准研制,推动形成统一协调的标准体系。培育一批标准稳链标志性项目。〔省工信厅、省农业农村厅、省生态环境厅、省文旅厅、省卫生健康委等按职责分工负责〕12.发挥标准化技术机构作用,开展标准体系研究,完善智能装备制造、核与辐射技术、新能源及新能源装备等标准公共服务平台,为产业链提供重点领域标准项目指引,“一链一策”助力产业链骨干企业实施技术标准战略,以点带链推动产业链企业技术标准创新。〔省工信厅、省农业农村厅、省生态环境厅、省文旅厅、省卫生健康委等按职责分工负责〕13.高水平推进定西高原夏菜、定西当归、兰州肉羊绿色养殖、礼县淫羊藿种质资源保护、兰州新区玫瑰鲜切花和再生资源回收利用国家级标准化示范项目建设,切实发挥标准化示范引领作用。〔省工信厅、省农业农村厅、省市场监管局等按职责分工负责〕14.持续做好农业农村、智能制造、循环经济、高端装备、现代服务、社会管理等国家级和省级标准化试点项目建设,加强标准化试点项目的全过程管理,项目建设期间靠前服务,树立问题导向,为各项目承担单位提供监督、指导和服务。开展好中期评估、验收前预评估,推进在建项目取得高质量试点实效。〔省工信厅、省农业农村厅、省生态环境厅、省文旅厅、省卫生健康委、省市场监管局、省医保局等按职责分工负责〕15.探索开展省级技术标准创新基地项目建设,培育一批省级重点产业链技术标准创新基地项目,推动我省优势产业申报国家技术标准创新基地。〔省工信厅、省市场监管局等按职责分工负责〕16.实施制造业技术标准突破行动,以制造业为主战场,实施团体标准培优计划,力争实现重点产业、技术、项目技术标准专项突破。探索开展部分产业链核心技术产品标准摸排,建立关键核心技术标准清单。〔省工信厅、省市场监管局等按职责分工负责〕17.结合县域经济发展需求,聚焦金昌奶绵羊、定西中药材、陇南油橄榄、平凉苹果等特色农产品,围绕产地环境、品种种质、投入品管控、产品加工、储运保鲜、包装标识、分等分级等关键环节建立健全现代农业全产业链标准体系。〔省工信厅、省农业农村厅、省商务厅、省卫生健康委、省林草局、省药监局等按职责分工负责〕18.完善气候应对、自然资源、生态产品价值实现评估、山水林田湖草沙生态系统治理、国土空间规划标准;健全优化水污染防治、大气污染防治、固体废弃物处置、土壤及地下水修复等生态环保标准。〔省生态环境厅、省自然资源厅、省水利厅、省林草局、省气象局等按职责分工负责〕19.完善公共卫生预防控制、公共教育、劳动就业创业、社会保险、普惠托育、医疗卫生、医疗保障、养老家政服务、交通运输、公共文化体育、优抚安置、残疾人服务等基本公共服务标准,优化政务服务和社会治理标准,健全安全生产、公共安全、减灾救灾标准。〔省教育厅、省民政厅、省公安厅、省人社厅、省交通运输厅、省卫生健康委、省文旅厅、省退役军人事务厅、省应急厅、省体育局、省疾控局等按职责分工负责〕三、加大标准开放,发挥标准在国际竞争中的作用20.围绕消费品、制造业、新型基础设施、碳达峰碳中和等重点领域,加强对国际标准的跟踪,开展国内外标准比对研究,及时转化先进适用的国际标准。〔省级有关部门按职责分工负责〕21.主动融入共建“一带一路”、深入对接区域全面经济伙伴关系协定(RCEP),深入开展对国际高标准经贸规则和技术性贸易措施的通报评议和重大贸易关注信息的收集、跟踪及反馈工作,帮助企业提升应对技术性贸易壁垒的能力。〔省级有关部门按职责分工负责〕22.深化国际标准化交流与合作,引导和支持更多企事业单位实质性参与国际标准化活动,在核与辐射技术、新能源、新材料、文化遗产保护、中医药等各个领域,争取提出更多的国际标准提案。〔省级有关部门按职责分工负责〕23.强化与中央部委沟通对接,积极争取对我省国际标准化工作的更多支持。推动科研机构、高等学校和企业积极参与国家标准外文版编译,加大中国标准海外应用和互认,鼓励在国际标准组织及相关技术机构任职,争取在核废料处理、加速器等方面建设或参与国际标准化组织及相关技术机构。〔省级有关部门按职责分工负责〕24.积极参与黄河流域生态保护和高质量发展,持续深化新丝路标准化战略联盟建设合作,聚焦食品、交通、现代服务、生态环保等领域,发布一批“同事同标”的区域协同地方标准。〔省级有关部门等按职责分工负责〕25.鼓励和支持省内企事业单位按照《2024年国家标准立项指南》,积极参与国家标准制定修订工作,推动更多先进技术和创新成果成为国际标准。〔省级有关部门按职责分工负责〕四、深化标准改革,助力全国统一大市场建设26.修订出台《甘肃省地方标准管理办法》,规范地方标准制定和应用,清理存量、严控增量,梳理、排查和整改地方政策措施引用地方标准不当,影响公平竞争的情况和问题,清理超范围制定、技术内容不合规的地方标准。〔省市场监管局牵头,各有关部门按职责分工负责〕27.完善地方标准实施信息反馈和评估机制,推动标准实施数据调查,推动各地区、各部门常态化开展强制性标准实施情况统计分析。加强标准复审工作,提高标准全生命周期管理效率。〔省级有关部门按职责分工负责〕28.深入推进企业产品和服务标准自我声明公开和监督制度,按照“应公开、尽公开”原则,引导更多企业在国家市场监管总局标准信息公共服务平台声明公开更高质量的标准。〔省级有关部门按职责分工负责〕29.重点选取新兴产业、绿色低碳、高端装备制造、生物医药、家政服务等领域开展“领跑者”工作。建立“领跑者”榜单企业联合研制团体标准机制,以标准赋能产业发展和企业品牌建设。〔省级有关部门按职责分工负责〕30.落实标准创新型企业制度,支持企业联合科研机构、产业上下游建立标准合作机制,培育一批标准创新型企业。〔省级有关部门按职责分工负责〕31.深入推进民营经济标准创新工作,着力引导民营企业增强技术、专利、标准联动创新体系的意识和能力,助力民营经济高质量发展。〔省工商联牵头,各有关部门按职责分工负责〕32.在主要消费品、装备制造、新兴产业和服务领域深入开展对标达标提升行动。〔省级有关部门按职责分工负责〕33.加强对团体标准化工作的引导和规范,大力实施团体标准培优计划,培育一批优秀团体标准组织,推进团体标准应用示范,引导社会团体制定原创性、高质量标准。〔省级有关部门按职责分工负责〕34.采用“双随机、一公开”方式,持续推进团体标准、企业标准事中事后监管,引导市场主体提升标准质量水平。〔省市场监管局牵头,各有关部门按职责分工负责〕35.定期调度“两码”工作进展情况,指导有关单位保证统一社会信用代码数据传输的畅通稳定,保持商品条码系统成员保有量稳步增长。〔省市场监管局牵头,各有关部门按职责分工负责〕五、夯实标准基础,实现标准化事业自身高质量发展36.加强省级标准化技术委员会分类组建,积极推动新技术新产业新领域开展标准化技术组织建设,满足各领域标准体系建设发展需要,筹建新能源及新能源装备循环利用、核与辐射技术及应用、知识产权保护标准化技术委员会。〔省市场监管局牵头,各有关部门按职责分工负责〕37.强化省级标准化技术委员会监督管理,通过领域整合、范围调整等多种方式对现有标准化技术组织体系进行结构性调整,提升标准化技术组织工作质量。〔省市场监管局牵头,各有关部门按职责分工负责〕38.加强管理与服务信息化能力建设,优化甘肃省地方标准管理信息系统,组建标准化专家信息库。〔省市场监管局牵头,各有关部门按职责分工负责〕39.建立重大科技项目与标准化工作联动机制,推动知识产权与标准融合发展,出台深化推动标准化与科技创新互动发展实施意见。〔省科技厅、省市场监管局牵头,各有关部门按职责分工负责〕40.积极培育和申报国家级标准验证点,构建标准验证技术体系和工作体系。〔省市场监管局牵头,各有关部门按职责分工负责〕41.推荐实施效益显著、具有重大贡献的标准化项目申报中国标准创新贡献奖。〔省市场监管局牵头,各有关部门按职责分工负责〕42.深入实施《标准化人才培养专项行动计划(2023-2025年)》,推进“1+X”标准编审职业证书制度和标准化人才教育实训基地建设。〔省市场监管局牵头,各有关部门按职责分工负责〕43.鼓励支持省内高等院校开设标准化课程。对标国际先进规则,开展国际标准化相关培训,加强国际标准化人才培养。推行企业标准化总监制度。〔省教育厅、省市场监管局按职责分工负责〕44.支持基层标准化专业人才队伍建设,通过开展各类专项培训,提升标准化专业队伍能力。鼓励社会团体和企业加大对标准化技能型人才培养使用。〔省级有关部门按职责分工负责〕45.充分利用世界标准日、质量月、“315”等主题活动,突出抓好标准化法规政策、重点工作和重要标准的宣贯解读,扩大标准化影响。积极开展标准化进机关、进企业、进学校、进社区等活动,普及标准化理念、知识和方法,增强全社会对标准的认知和运用。〔省级有关部门按职责分工负责〕
  • LI-2100 | 叶片水氢氧同位素的控制因素
    太白山,是秦岭山脉最高峰,也是青藏高原以东第一高峰,如鹤立鸡群之势冠列秦岭群峰之首,以高、寒、险、奇、富饶、神秘的特点闻名于世、称雄华中。李白的“西上太白峰,夕阳穷登攀”,“西当太白有鸟道,可以横绝峨眉巅”,形象地将太白山的雄峻高耸烘托而出。如今,更是有不少中外游客慕名前来,一览拔仙绝顶和云海奇观,领略太白峰的险峻神秘。2020年,来自中国科学院地球环境研究所的研究团队分别于5月、7月和9月登上太白山,在奇观景象之中收集土壤和植物,开启了叶片水氢氧同位素的相关研究。叶片水氢氧同位素的控制因素氢氧稳定同位素(δ2H和δ18O)常被用作示踪剂来跟踪水从降水输入运移到土壤,最终通过土壤蒸发和叶片蒸腾释放的过程。叶片水蒸腾对于调节各种尺度的水平衡至关重要。陆地植物叶片水通过气孔蒸发分馏导致重同位素富集,这在很大程度上取决于等大气条件(温度和相对湿度等)以及生物生理过程。叶片水同位素信号整合到植物有机物中,例如纤维素和叶蜡,成为研究古气候重建的新方法。然而,尽管叶片水同位素在生态水文学和有机生物合成中很重要,但人们对叶片水同位素的控制因素以及源水和水文气候在确定叶片水同位素中的作用仍然缺乏了解且叶片内同位素分馏所涉及过程的复杂性使得准确预测和测量变得困难。基于此,在本研究中,来自中国科学院地球环境研究所的研究团队于2020年5、7和9月在太白山(33.96°N,107.77° E)收集了土壤和植物(枝条和叶片)样品,同时获取了温度、相对湿度和降水量等相关气象参数。利用LI-2100全自动真空冷凝抽提系统(北京理加联合科技有限公司)提取土壤和植物中的水分。利用Picarro L2130-i水同位素分析仪确定土壤水稳定同位素组成。并测定其他水体的稳定同位素组成。通过对土壤水、枝条水和叶片水的δ18O和δ2H测量值与叶片水的δ18O和δ2H C-G模型预测值进行综合分析,确定δ18OLeaf和δ2HLeaf值的控制因素,以增进我们对与叶片水相关的植物有机生物标志物中提取的δ18O和δ2H中所保存的环境信号的理解。【结果】叶片水δ18O和δ2H值与潜在源水δ18O和δ2H值(枝条水、土壤水和降水δ18O和δ2H)以及气象参数(例如、MAP、MMP、MAT、MMT、MARH、MMRH)相关性(r)热图。叶片水同位素测量值与C-G模型预测值比较。叶片水δ18O和δ2H值的结构方程模型(SEM)。【结论】沿黄土高原高程样带,对降水、土壤水、枝条水和叶片水进行重复采样,探索δ18OLeaf和δ2HLeaf值与气象参数和源水的控制关系。气象参数和源水对δ18OLeaf和δ2HLeaf值的影响不同,δ18OLeaf和δ2HLeaf双图生成同位素线。作者发现δ2HLeaf值与源水同位素的相关性比δ18OLeaf更密切,而高程样带沿线δ18OLeaf和δ2HLeaf值与气象参数具有相似的相关性。观测结果表明,源自δ18OLeaf和δ2HLeaf值的植物有机同位素(例如叶蜡和纤维素)可以提供中国黄土高原相对的气候信息。此外,双同位素分析表明δ18OLeaf和δ2HLeaf值由于相似的海拔和季节响应而密切相关。源水(即降水)主导δ18OLeaf和δ2HLeaf值,气象参数对δ18OLeaf和δ2HLeaf值的影响相当,且随黄土高原样带海拔和季节的变化而变化。未来,作者将研究交叉角与水文气候和生化因素的关系。
  • 德国元素10月耗材之星-液体封样器
    德国元素推出10月耗材之星:液体封样器产品介绍品名:液体封样器货号:41.10-0000主要功能用于元素分析中的液体或粘稠的样品制备,封口时使用载气吹扫出锡囊内的空气,去除空气对元素N和O测定的干扰。优点便利性高:无论是液体样品或是粘稠样品,装填入锡囊并封口都非常方便。通用性广:锡囊装样的仪器均可使用。提高测试效率:通过封口器的协助,大大提高制样的效率,节省测试所需的时间。具体介绍使用步骤:将液体用移液管或注射器注入已去皮重的锡囊,在用2个钳口(A)封口之前,先用氦气吹出锡囊内的空气。封口后的锡囊重新称重 ,然后放入进样盘。选择原厂工具的三大理由:更贴合仪器的使用,增强使用便利性。德国制造,性价比高。提高液体样品制备的效率,节省测试所需的时间。
  • 我国首次在西太平洋检出福岛核事故核素
    19日从国家海洋局获悉,由国家海洋局生态环境保护司组织实施的西太平洋海洋环境监测预警体系建设2014年第一航次日前顺利完成,历时27天,总航程5500余海里,完成2013年第一航次投放的核监测潜标系统回收。我国监测人员还利用自主研发的多核素富集设备完成了61个表层海水样品的监测,首次在部分站位现场检出日本福岛核事故特征核素&mdash &mdash 铯134。  据了解,本航次由国家海洋局第三海洋研究所牵头实施。本航次首席科学家何建华介绍,本航次在吕宋海峡口监测采样深度由2013航次的最深1000米增加至2000米,监测深度超过1000米的站位数由2013年航次的1个增加至5个,这将为深入了解日本放射性污染物向我国管辖海域的迁移扩散情况提供更准确的监测数据。
  • 德国元素耗材之星 | 固体样品压样器
    品名:固体样品压样器材质:不锈钢货号:41.01-0004——适合: 进样盘孔径11mm(80位进样盘)41.01-0003/4——适合: 进样盘孔径 8 mm(120位进样盘)41.01-0002/4——适合: 进样盘孔径13mm(60位进样盘)主要功能:用于元素分析中的固体样品的制备优点:1、 制样精准度高:能够快速的装填和压制固体样品。2、 便携性强:体积小,便于携带。3、 提高测试效率:制样器可以精准的压制固体样品,提高制样的效率,节省测试所需的时间。具体介绍:套筒罩于底座上,先把样品放在锡纸内,用镊子折起包好,再把包好的固体样品放在套筒内,最后插入压杆把包有样品的锡纸推至筒套底部,通过按压后,固体样品的封样就完成了。选择原厂耗材的三大理由:1. 提高实验的数据精度。2. 德国工艺,制作精良。3. 延长还原管的填料使用寿命,节省实验成本。
  • 德国元素Elementar | 锂离子电池中碳、氢、氮、硫与氧元素分析的解决方案
    锂离子电池具有能量密度高、循环寿命长、自放电小、无记忆效应与环境友好等众多优点,已经在智能手机、智能手环、笔记本电脑等消费电子领域获得广泛应用。在纯电动汽车、混合动汽车与增程式电动汽车领域正在逐步推广。锂离子电池由正极、负极、电解液与隔膜等部分组成。正极与负极材料的性能直接影响电池的使用性能与寿命。正负极材料中的碳、氢、氮、硫与氧的含量测试显得非常重要,尤其是碳作为负极材料真正起电化学活性的组分,其含量至关重要。德国元素Elementar 元素分析仪的卓越性能,可实现CHNS+O的全方面精准分析,为锂离子电池的发展保驾护航。德国元素Elementar有机元素分析仪-石墨烯材料中碳、氮、氢、硫、氧元素的测定UNICUBE 有机元素分析仪根据 Q/JSGL 005-2014《石墨烯材料 碳、氢、氮、硫、氧元素含量测定方法》标准方法,采用元素分析仪高温催化燃烧法测定石墨烯材料中的碳、氢、氮、硫元素含量;高温裂解测定石墨烯材料中的氧。石墨烯是一种新型材料,不易燃烧。高达10mg的石墨烯取样量更是对仪器性能的严苛考验。德国元素Elementar有机元素分析仪,可配备高性能燃烧炉与红外检测器,实现对石墨烯样品中的高碳、低硫元素进行高精准的测量。实验仪器:UNICUBE 配氧模模式模式:CHNS+O样品:4-6mg石墨烯实验数据:德国元素Elementar-inductar CS cube 红外碳硫仪-磷酸铁锂中碳硫元素的测定依据YS/T1028.4-2015 《磷酸铁理化学分析方法 第4部分:碳量的测定 高频燃烧红外吸收法》,采用高频红外碳硫仪对正极材料—磷酸铁锂中的碳进行测定。磷酸铁锂是锂电池的一种正极材料,其碳与硫的准确分析是至关重要。InductarCS cube 红外碳硫分析仪不仅可以实现操作流程的简单化,亦可实现结果的高精准。满足锂电客户的测试需求。德国元素Elementar开发的碳硫分析仪在获得高度准确数据的同时,还具备简单易用、清洁和自动化流程等特点,给用户带来全新的金属和无机材料中的碳硫分析体验。inductarCS cube 红外碳硫仪充满先进和创新的理念,让碳硫分析更加简便,而且结果更为可靠。实验仪器:inductar CS cube 红外碳硫仪样品:100mg磷酸铁锂粉末实验数据:德国元素Elementar-enviro TOC 总有机碳分析仪-硫酸盐溶液中TOC总有机碳的测定对于电池级硫酸盐,按照北京资源强制回收环保产业技术创新战略联盟团体标准“电池级硫酸锰溶液”、“电池级硫酸镍溶液”、“电池级硫酸钴溶液”,硫酸盐中的油分可通过TOC分析仪进行测定。德国元素Elementar-enviro TOC 总有机碳分析仪,采用高温燃烧法对样品中的有机化合物进行完全燃烧分解,确保化合物中的所有碳得到全部释放,采用宽范围红外检测器进行高精度测定。整个过程实现高通量、快速、简单、精准的测定。实验仪器:enviro TOC 总有机碳分析仪样品:硫酸锰、硫酸镍、硫酸钴溶液实验数据:德国元素Elementar-inductar CS cube 红外碳硫仪-碳化硅中碳硫元素的测定碳化硅是一种无机碳化物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐电阻炉高温冶炼而成。在锂电行业中,用纳米硅粉做成纳米硅线用在充电锂电池负极材料里,或者在纳米硅粉表面包覆石墨用做充电锂电池负极材料,提高了充电锂电池 3倍以上的电容量和充放电循环次数。inductarCS cube 红外碳硫仪在碳化硅中碳硫的分析上展现出了出色的精度和准确度。inductar CS cube 操作简单,使用方便,对于该类质量控制是非常理想的一款仪器。实验仪器:inductar CS cube 红外碳硫仪样品:50mg碳化硅粉末实验数据:德国元素Elementar 在120余年前(1897年),就一直致力于元素分析领域的发展,并于1904年,成功研发并推出第一台元素分析仪。1923年,Fritz Pregl凭借Heraeus(德国元素的前身)分析技术,在微量元素分析基础研究中取得突破性进展,荣获诺贝尔化学奖。作为引领元素分析的技术主导者,德国元素Elementar 历经120余年的传承和创新,德国元素研发并推出了满足各个领域分析需求的元素分析仪。
  • 贝类毒素中毒?爱吃海鲜的小伙伴速看!
    导读海鲜一向以唇齿留香的滋味被人们视为珍馐。不管是生活在海边的居民,还是内陆的小伙伴们,对于海鲜总是有一番特别深厚的情感。然而,近年来随着海洋环境污染逐渐严重,海洋生物毒素对公共健康和海产品养殖业的影响也越来越严重,尤其在沿海地区城市,如珠海、宁波、厦门、秦皇岛、唐山等,贝类毒素中毒事件屡见报端。贝类毒素按其化合物性质可分为脂溶性和水溶性两大类,其中,脂溶性毒素最为常见。如今,包括脂溶性贝类毒素在内的海洋生物毒素对海产品污染已成为食品安全相关部门急需解决的重要问题之一。那么,脂溶性贝类毒素如何检测呢?一起来看看吧。贝类毒素小知识贝类毒素按照中毒症状主要分为四类,即麻痹性贝毒、腹泻性贝毒、神经性贝毒和记忆缺失性贝毒,按其化合物性质则可分为脂溶性和水溶性两大类,其中,脂溶性贝类毒素指在贝类脂肪组织富集而不易排出体外、具有热稳定性、易溶解于有机溶剂的一大类毒素,属于多环聚醚类的脂溶性化合物,主要包括大田软海绵酸毒素(OA)、鳍藻毒素(DTX)、蛤毒素(PTX)、虾夷扇贝类毒素(YTX)和原多甲藻毒素(AZAs)等。这些毒素通过食物链进入人体后,富集在脂肪组织内不易代谢排出,导致慢性病的发生甚至会诱发肿瘤。下图为AZA的基本结构。美国对OA组和AZA组毒素的安全限量为160 μg/kg,欧盟在此基础上还设置了PTX组和YTX组的安全限量,分别为160 μg/kg(PTX)和3750 μg/kg (YTX)。原多甲藻酸毒素(AZA)结构图岛津解决方案● 分析利器:三重四极杆液质联用仪岛津三重四极杆液质联用仪本方案使用碱性流动相分析扇贝萃取液中的脂溶性贝毒。萃取和分析步骤依据欧盟LC-MS/MS Ver.5测定软体动物中亲脂性海洋生物毒素的统一操作流程。● 方案特色:自动进样器的预处理功能分析时可采用自动进样器的预处理功能,吸出5 μL扇贝基质溶液,之后再吸出等量的各浓度混合标准溶液后进样。对于实际样品分析,吸取甲醇溶液来替代混合标准溶液。使用该功能,在配制基质匹配标准曲线时可大大节省制备空白基质的时间,并且软件的自动化功能使得结果具有更佳的重现性和线性。自动进样器的预处理功能示意图● 方法学结果下图为标准曲线最低点处各化合物的色谱图。水解可将自然界贝类中存在的OA和DTXs的酰化酯基团转化成游离形式,但水解处理后,PTX、AZA的毒素基团将被分解而无法检出,因此,AZA1、PTX2采用未水解的萃取液作为基质溶液,其它物质不论是否水解均可获得95~104%的良好回收率。表1. 定量结果和回收率注:N.D.表示未检出结 语贝类营养价值高,味道鲜美,是大海馈赠给人类的礼物,只是人们在大快朵颐的同时也要小心毒素的残留。通过在方法中设置自动进样器的预处理功能,可自动配制高精度的基质匹配标准曲线,扇贝中5种脂溶性贝类毒素的检测方法灵敏度高、线性良好,加标回收率高。捍卫食品安全,岛津与您共筑食品安全防线!撰稿人:骆丹如需深入了解更多细节,欢迎联系津博士 sshqll@shimadzu.com.cn本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制