当前位置: 仪器信息网 > 行业主题 > >

己酸甲酯

仪器信息网己酸甲酯专题为您提供2024年最新己酸甲酯价格报价、厂家品牌的相关信息, 包括己酸甲酯参数、型号等,不管是国产,还是进口品牌的己酸甲酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合己酸甲酯相关的耗材配件、试剂标物,还有己酸甲酯相关的最新资讯、资料,以及己酸甲酯相关的解决方案。

己酸甲酯相关的资讯

  • 振动试验机的选择及试验可否判断——加振力的计算(垂直、水平)
    对于试验条件,如何选择合适的电动振动台进行对应,加振力(推力)的计算是一个必须面对的问题。推力选择过小会使振动台过负载工作,导致功放或动圈等损坏。推力选择过大,造成“高射炮打蚊子”,没有经济性可言。对于行业初入者,这是必须掌握的技能,其原理便是牛顿第二定律,现说明如下:※垂直加振F(加振力)= Σm(总质量) × A(加速度)F:必要的加振力[N] A:试验最大加速度(m/s2)m1:振动台动圈质量(kg)m2:垂直扩展台质量(kg)(也有不使用的时候)m3:试验体和夹具的质量(kg)Σm = m1 + m2 + m3(kg)例:正弦定频试验条件 频率10Hz、加速度:10G(1G=9.8m/s2)、试验体和夹具质量m3:40kg、现在试验室只有振动台J250/SA6M [最大正弦加振力40kN]动圈质量45kg、垂直扩张台TBV-550-J250-A-H(质量30kg、共振点600Hz)使用 、此时需要的加振力F =(40+45+30)×10×9.8 = 11270 [N] = 11.27[kN]安全系数取1.2后,11.27×1.2 = 13.524[kN] 40 [kN]40kN振动台J250垂直方向可以对应。※水平加振F(加振力) = Σm(总质量) × A(加速度)m1:振动台动圈质量+水平滑台质量+连接头(牛头)质量(kg)【注意:一般厂家产品式样中,动圈和水平滑台质量分开显示。有的厂家式样书中水平滑台质量中含连接头(牛头)质量。】m2:试验体和夹具的质量(kg)例:正弦定频试验条件频率10Hz、加速度10G(1G=9.8m/s2)、m2质量40kg(即垂直方向的m3)现在试验室只有J250/SA6M静压轴承水平台TBH-6使用,质量100kg,共振点1600Hz,最大正弦加振力40kN此时需要的加振力F=(100+40)×10×9.8=13720[N]=13.72[kN]安全系数1.2使用,13.72×1.2 =16.464[kN]40kN40kN振动台J250水平滑台TBH-6水平方向可以对应。总结:当加振力不够时,需要重新选择加振力大的振动台,并对应实际现有振动台参数重新计算。当加振力偏大时,重新选择加振力小的振动台,同样对应实际现有振动台参数重新计算。尽量做到成本最优化。加振力计算后,再结合前节所述计算位移、速度、加速度、使用频率范围,便可基本上确定最合适的振动台。加振力计算是维护设备安全运行的最基本方式,切记!备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 硬科技出海!国仪量子量子计算装置交付美澳发达国家
    以“第二次量子革命”为代表的新一轮科技革命和产业变革方兴未艾,越来越多的国家将量子信息技术定义为国家战略级科研项目。2021年3月起,多家欧美高校着手引入国仪量子的高端科学仪器,成为发达国家在量子信息领域持续加大投入的一个缩影,也显示出中国在量子科技产业化发展方面取得长足进步。 基于金刚石NV色心的量子计算教学机2021年9月,美国纽约州立大学石溪分校收到一台金刚石量子计算教学机。这台用于开展近代物理实验教学和NV色心科学研究的科学仪器,由中国的国仪量子公司自主研发、生产并提供实验教学解决方案。“我们是今年3月发起需求的。量子计算是量子信息中心最重要的一门课程,为了使学生更好地了解和体验量子计算,我们计划利用金刚石量子计算教学机为学生提供量子计算实验课程。”纽约州立大学石溪分校量子信息中心主任Eden Figueroa介绍,根据学校计划,2021年下学期,即9月份将正式以线上线下相结合的方式开始教学。 美国纽约州立大学石溪分校产品交付在此之前,澳洲两所知名学府也基于这款仪器制定了教学计划。为结合学校量子教育计划、量子计算与量子通信卓越中心(CQC²T),2021年8月,澳大利亚昆士兰大学采购了金刚石量子计算教学机,结合现有的量子力学、量子计算理论课程,用于量子人才的培养和量子计算基础教学。 澳大利亚昆士兰大学产品交付另外,澳大利亚麦考瑞大学也向国仪量子下了采购订单。麦考瑞大学Thomas Volz表示,“我们2022年第一学期将开设量子计算的理论课程,同时,由几位研究金刚石NV色心的老师共同提交的量子计算实验课,也已经通过学校的审批。购买金刚石量子计算教学机符合学校建设量子中心的长远目标,同时满足学校正常授课的需求。” 金刚石量子计算教学机当前各国政府都在积极布局量子信息产业,然而全球量子人才普遍短缺,亟需高校重点培养相关人才。美国诺特丹大学、阿联酋沙迦大学等名校也计划与国仪量子展开合作,而在此之前,基于金刚石量子计算教学机,中国近百所知名高校和顶级中学开展了实验教学课程。 2020年12月,江苏省锡山高级中学量子计算实验课正式开课国仪量子的金刚石量子计算教学机,是一台基于金刚石中NV色心和自旋磁共振为原理,通过控制激光、微波、磁场等物理量,对NV色心的自旋进行量子操控和读出,从而实现量子计算功能的教学仪器。该仪器在室温大气条件下运行,桌面型的设计让它能适应各种不同的教学环境,无论是在课堂还是实验室,都可以进行量子力学与量子计算实验教学。 量子计算教学机光路模块国仪量子是一家源自中国科学技术大学的高新技术企业,自主研发的量子精密测量仪器应用于量子计算、材料科学、生命科学、医疗诊断、药物研发、环境科学、食品科学等众多领域,已交付到遍及全球的高校、企业、医院等数百家单位,如美国加州伯克利分校、德国美因茨大学、多特蒙德工业大学等。目前,除了金刚石量子计算教学机,国仪量子的高端科学仪器如量子钻石原子力显微镜、电子顺磁共振波谱仪等,也在国际市场发力。 量子钻石原子力显微镜中国科技创新令人瞩目,一批具有国际竞争力的优势产业和高新技术企业迈向全球。科学仪器是经济发展和产业进步的一面镜子,随着中国经济的快速发展和科技水平、创新能力的大幅提升,中国的科学仪器正在世界舞台上崭露头角。
  • 南科大科学家获固态量子计算突破,实现单原子直写的量子计算芯片
    如今,量子计算研究已成为全球科技发展的一大热点,各主要国家高度关注量子计算的发展,启动国家级量子战略行动计划,大幅增加研发投入,同时开展顶层规划以及研究应用布局。同时,国际产业界也纷纷投资量子计算,如谷歌、IBM、英特尔、微软等巨头企业更是积极推动量子计算产业的发展,其中以谷歌公司在 2019 年首次实现量子霸权,为产业界在量子计算方面发展的标志。据波士顿咨询公司(Boston Consulting Group)预测,量子计算机将很快开始解决许多今天的计算机无法解决的工业问题。那么量子计算机离我们还有多远呢?从当前硬件、算法和计算机架构上来说,量子计算机还不是很成熟。在 20 多年前,澳大利亚的量子计算机专家 Bruce Kane 在《自然》上发表了名为“A silicon-based nuclear spin quantum computer”论述了搭建硅基量子计算机的问题,并指出之中的关键是要将量子比特放置在间距 10—20nm 时所能够实现的一种两比特门。众所周知,我们的电脑是由很多具有特定功能的复杂电路组成,其中就有很多逻辑门电路。这些逻辑门电路及其有序组合就是电脑中形形色色的功能的基础,进而成就了人类数字社会的今天,而逻辑门操作的稳定性和开关特性决定了电脑的很多关键性能,例如计算速度等。这种特殊的两比特门就像是我们通向通用硅基单原子量子计算机的最后一道门一样,来自南方科技大学的贺煜副研究员也许就是开启这扇通向单原子级别硅基量子计算大门的开门人。他和团队成员一起,利用高精度微纳加工方式,将两个磷原子构成的量子点分别放置在相距 13nm(也就是130)的位置上,实现了第一个适用于量子计算机的高速两比特门。图 | 《麻省理工科技评论》中国区“35 岁以下科技创新 35 人”榜单入选者贺煜贺煜现在是南方科技大学量子科学与工程研究院的副研究员、独立 PI、硅量子器件和量子计算方向团队带头人。多年来,他在量子计算和量子网络方面取得了系列开创性成果,利用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来信息技术。突破关键量子门,推进量子计算机构建从硬件的角度来说,如果能基于硅制作量子计算机无疑是最方便的,因为从材料上来说,硅在地球上的含量是十分富足的。再者,如今的半导体工艺大都基于硅材料,那么与传统半导体工艺的兼容性也能使得量子计算机的构建变得更加方便。在 2019 年,贺煜带领团队证明了硅基磷原子体系第一个两比特门,是满足通用量子计算判据的最后一条,也正是 Bruce Kane 提出的量子计算方案中关键的一环。来自南方科技大学的俞大鹏院士以此推荐贺煜博士入选“35 岁以下科技创新 35 人”榜单,并表示:“这个工作为大规模量子计算芯片奠定了坚实基础,是一个里程碑式的工作。”该成果以封面文章发表在《自然》上,贺煜为第一作者,且该工作被列为“2019 年量子计算实验十大进展”。图 | 贺煜发表在《自然》的论文贺煜创造性地采用扫描隧道显微镜技术(STM)实现纳米尺度芯片加工,成功地以单原子级别的精度将两个磷原子构成的量子点放置在 13 纳米间距上,在硅基量子芯片上实现了第一个高速两比特门——800 皮秒的根号交换门,并实现了利用全统计计数方法对比特读出保真度的优化、参与构建比特读出保真度分析的理论工作等。这是一种高精度的微纳加工方式,可用于制备单原子、单电子量子器件以及人工量子材料,并能够实现单原子尺度的量子计算,为大规模可扩展的硅基量子计算奠定了坚实基础。师从潘建伟院士和陆朝阳教授多年来,贺煜在量子计算和量子网络方面取得了系列开创性成果,用前沿量子技术操纵单个原子、电子和光子,在微观世界构建未来量子信息技术平台。回顾他的求学之路,用“根正苗红”来形容再合适不过。自本科起,贺煜就在中科大这片量子的土壤中成长,并以优异的成绩保送本校硕博连读。期间在导师潘建伟院士和陆朝阳教授的指导下,贺煜主要研究砷化镓自组装量子点,核心成果包括一系列单光子源方面开创性工作,以及首次观察到自发辐射谱线擦除效应——实现量子光学的实验突破,以及单光子向单电子自旋的量子传态等。谈及选择量子技术作为研究方向的原因,他告诉 DeepTech:“之所以一直选择量子物理、量子计算的方向,首先是兴趣爱好,是自己对于微观世界的好奇心和对量子世界的喜爱所驱动,其次是因为量子计算是一个将改变人类未来的前沿科技,尤其是硅量子计算芯片具有很大的产业潜力,希望通过自己的耕耘为社会贡献一份力量,为科学发展做一份努力。”图 | 贺煜发表在《自然-光子学》的论文2015 年以后,贺煜继续在陆朝阳教授团队做了半年的博后研究,结合博士期间的工作,实现了当时世界最高光子数玻色抽样——证明了量子计算机对于第一台电子管计算机 ENIAC 的超越和第一台晶体管计算机 TRADIC 的超越,研究成果以论文形式发表于 2017 年的《自然-光子学》上,并入选“2017 年中国十大科技进展新闻”。论文指出,为完成高性能玻色抽样实验,研究团队克服的技术难点有两个:一是基于砷化镓量子点,研究团队设计了稳定的高亮度单光子源;二是设计并使用了性能卓越的多光子干涉仪(multiphoton interferometers),其传输效率高达 99%。研究团队完成并实现了 3 光子、4 光子以及 5 光子玻色抽样实验,采样率分别为 4.96kHz、151Hz 和 4Hz,都达到之前实验的 24000 倍以上。图 | 贺煜团队开发的高性能玻色抽样实验平台这是一项十分惊人的突破,是首次量子计算机超越传统计算机的案例。火车刚刚出现时比马车还慢,飞机刚刚问世时只能在空中短暂停留,如今都是改变生活的重要科技成果。量子计算机从理论上来说,会比传统计算机快很多,是基于量子比特运行的计算机。通过量子物理学中的两个奇异的原理——“纠缠(entanglement)”和“叠加(superposition)”,量子计算机能以指数形式扩展计算机的处理速度。着眼未来,布局固态量子网络从根本上来说,量子计算机目前仍处在产业发展的初期阶段,但军工、金融、石油化工、材料科学、生物医疗、航空航天、汽车交通等行业都已注意到其巨大的发展潜力。随着时间的推移,预计 2050 年左右将达到每年 3000 亿美元的营业收入,将成为改变世界的下一代技术革命关键领域之一。回顾计算机的发展历史,世界上的第一台计算机是 ENIAC,它生于第二次世界大战,主要任务是计算弹道,是一台军用计算机。而计算机的全面普及其实与商业计算机的出现和网络的构建息息相关。那么量子计算机会不会也沿着这一条“老路”发展呢?这也是一个值得思考的问题。贺煜认为,量子计算机要走向应用,量子网络和通信是十分关键的技术,必须做以突破。如今他任教于南方科技大学,除了量子计算之外,主要研究方向还有量子网络。2017 年,他和团队实现了单光子到单电子的量子传态,开发了一整套全新的单光子频率比特控制和测量方案,验证了单个光子和电子之间的纠缠,并且把光子的量子信息传递到 5 米远的电子自旋上去,为固态量子网络研究的重要突破。图 | 贺煜及研究团队完成的“单光子-单电子”量子传态而谈及接下来的研究方向,贺煜表示:“根据硅量子计算的发展趋势,在南方科技大学量子科学与工程研究院,我将带领硅量子计算团队,研究硅基量子计算芯片和量子计算,从根本问题入手,解决目前的一些技术瓶颈:进行硅基单原子量子器件的基本物理研究;研究新型的硅基原子比特和研究比特耦合技术;利用低温扫描隧道显微镜直写技术构建新型芯片等。并将研发的新工艺和半导体芯片产业化进行对接,为将来的广阔商业前景奠定基础。”
  • 我公司“气体配制计算设计系统 V 1.0”成功获得国家版权局软件著作权认证
    日前,由大连大特气体有限公司自主开发的“气体配制计算设计系统 V 1.0”软件系统顺利通过国家版权保护中心审核,获得国家版权局颁发的计算机软件著作权登记证书。这是大连大特气体在将计算机应用于气体配制设计、计算方面取得完全自主知识产权的首枚成果。 大连大特气体在20多年气体设计、生产配制中不断摸索、不断创新,积累大量经验,发明了一套行之有效的气体配制计算方法,并根据气体特有的压力、浓度、钢瓶体积、气体分子量等性质,结合计算机编程技术,通过电脑编程将气体配比进行设计,计算出每种气体需充装的质量,广泛应用于气体生产当中。 此次申报的气体配制计算设计系统软件由大连大特气体研发团队独立开发,并经过不断测试、实践后运用到气体生产中,相比于以前的计算方法,操作更加便捷,结果更加精准。 本次软件著作权的取得,有利于我公司进一步健全知识产权保护体系,形成持续创新机制,发挥自主知识产权优势,提高企业核心竞争力。
  • 新型光学装置为超级计算机提速
    美国每日科学网站12月22日报道题:更强大的超级计算机?新装置或可传输光信息。  研究人员们已经研制出一种新型光学装置,其体积极小,一个计算机芯片就足以安装数百万个这种装置。该装置可提高信息处理速度和能力,让超级计算机变得更快、更强大。  这种“无源光学二极管”是由两个微小的硅质环状物制成的,环状物的直径仅有10微米,大约是人的一根头发直径的1/10。与其他光学二极管不同,这种“无源光学二极管”无需外部能源就能传播信号,还很容易被集成到计算机芯片上。  珀杜大学电子和计算机工程学副教授齐明豪说,这种二极管可进行“非交互性传输”,即单向信号传输,由此可具备信息处理能力。  齐明豪解释说:“这种单向传输是逻辑电路的最基本要素。因此,我们研制的这种二极管为实现光信息处理敞开了大门。”  虽然光缆可用于跨洋和跨大洲传输海量数据,但其信息处理速度会变慢,传输数据也容易遭到网络攻击,因为光学信号须转换成电子信号才能在计算机上使用,反之亦然。  研究人员说:“进行这种转换需要十分昂贵的设备。而你希望能做到的是,将这种光纤直接插入计算机而无需进行转换,那样的话,你就可以获得大量带宽,安全方面也会大有保障了。”  研究人员樊丽(音)说:“这些二极管非常小,它们身上还有一些特性也很有吸引力。这些二极管或可成为未来光子信息处理芯片的零部件。”  用这种新型光学二极管就无需进行光学-电子信号的转换了,因此有可能提高信息处理速度和安全度。这种装置现已接近投入商业生产。使用这种新型光学二极管将多个处理器连接起来,还有可能提高超级计算机的信息处理速度和能力。  研究人员利奥瓦尔盖塞说:“当今导致超级计算机受限的一个主要因素就是,系统内各种独立的超级芯片进行信息传输的速度和带宽。我们研制的这种光学二极管或可成为光互联通信系统的一个组成部分,而该系统或许就可以解决这样的瓶颈问题了。”  激光器以通信用波长发出的红外线通过光导纤维,并由被称为“波导管”的微结构进行控制。红外线会按顺序通过两个硅质环状物,并在微型环状物内进行“非线性相互作用”。根据先进入哪个环状物,光束要么向前通过,要么向后耗散,从而完成单向传输。环状物还可通过“微加热器”加热的方式进行调整。微加热器会改变传输波长,因此可对范围广泛的波段加以处理。
  • 澳大利亚通报计算机和计算机显示器的强制性能效要求
    为了提高电器设备和各行业产品能源利用效率,提升显著的经济和环境效益,澳大利亚颁发了温室和能源最低标准法规(简称GEMS)并于2012年10月1日起生效,新的GEMS法规涵盖了以往的主要政策工作,包括强制性的最低能效标准(简称MEPS)和能源星级标签要求(简称ERLs),其主要目的是提高管制产品的能效,确保消费者能够做出选择,以提高能源、利用效率,降低能源消耗、能源成本和温室气体排放。GEMS法规规定凡是涵盖的产品,无论是在澳大利亚制造或出口至澳大利亚,在GEMS决定生效日期之后,必须满足决定的相关能效要求。  2013年6月12日,澳大利亚发布了G/TBT/N/AUS/75号通报,GMES法规中关于计算机和显示器的决定草案。  温室和能源最低标准(计算机)决定2013草案中规定了计算机产品的最低能效和产品性能要求,并给出了相关的测试方法,该决定拟于2013年10月1日起生效。其涵盖的主要设备包括台式计算机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)、小型服务器,不包括手持式计算设备(如PDA、掌上电脑或智能手机等)、游戏机、手持游戏设备、刀片式个人电脑、工作站、移动式工作站、不在小型服务器范围中的服务器设备、平板电脑(只支持触摸屏)、瘦客户机式计算机、高端的D类计算机。其中台式机、一体式台式机、笔记本电脑、平板电脑(同时支持物理键盘和触摸屏)须满足AS/NZS 5813.3: 2012中的年度典型能耗要求,小型服务器产品需要满足AS/NZS 5813.3: 2012中空闲状态和待机状态下的功耗要求。  其依据的主要标准:  AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签  AS/NZS 5813.1: 2012 信息技术设备-计算机能效要求第1部分:能效测试方法  AS/NZS 5813.3: 2012 信息技术设备-计算机能效要求第2部分:计算机最低能效要求  AS/NZS 5814.1: 2012 信息技术设备-内部电源能效要求第1部分:能效测试方法  温室和能源最低标准(计算机显示器)决定2013草案中规定了计算机显示器产品的最低能效和能效标签要求,并给出了相关的测试方法。该决定拟于2013年10月1日起生效。其涵盖的主要设备包括对角尺寸不大于60英寸的计算机显示器,不包括专门用来显示数字信号或数字图片的电子显示器、专门用于显示广告的电子显示器、高性能电子显示器、专用电子显示器以及类似组合产品、电视机用显示器等类似装置。根据其显示器尺寸和分辨率,显示器应满足按照公式计算出的相应能效要求,显示器还应按照星级指数计算公式标识出相应的星级标签。  AS/NZS 4665.1: 2005 外部电源性能要求第1部分:测试方法和能效标签  AS/NZS 5815.1: 2012 信息技术设备-计算机显示器能效要求第1部分:能效测试方法
  • “祖冲之号”量子计算云平台面向全球开放
    联网就能用上全球领先的量子计算机?这一梦想正走进现实。5月31日,科大国盾量子技术股份有限公司携手弧光量子等合作伙伴发布新一代量子计算云平台,接入“祖冲之号”同款176比特超导量子计算机。这不仅刷新了我国云平台的超导量子计算机比特数纪录,也是国际上首个在超导量子路线上具有实现量子优越性潜力、对外开放的量子计算云平台,将进一步推动量子计算软硬件发展及生态建设。  据中国科学技术大学教授、“祖冲之号”量子计算总师朱晓波介绍,比特数是衡量量子计算机可实现的计算能力的重要指标,中国科大“祖冲之号”研发团队在原“祖冲之号”66比特的芯片基础上做出提升,新增了110个耦合比特的控制接口,使得用户可操纵的量子比特数达176比特。除了比特规模,在其他涉及量子计算机性能的连通性、保真度、相干时间等关键指标上,“祖冲之号”云平台接入的新一代量子计算机的设计指标也瞄准国际最高水平,不断在实际中调试提升其性能。  据悉,量子计算云平台旨在通过云技术连接用户与量子计算设备,支持用户远程进行量子计算实验和开发等。但由于量子计算机研发门槛极高、运行环境严苛、辅助设备复杂等,目前全球接入量子计算真机的云平台很少,更缺少能实现量子优越性的高性能量子计算机。此前,中国科大研究团队构建了66比特可编程超导量子计算机“祖冲之号”,是目前全球仅有的2台完成了“量子计算优越性”里程碑实验的超导量子计算机。但“祖冲之号”量子计算机需要服务于重大科技攻关项目,难以满足外部体验和使用的需要。  为了将高性能的量子计算机真机开放给社会,多方合作、产学研协同的新一代量子计算云平台项目因此诞生。其中,量子创新研究院提供了“祖冲之号”同款量子计算芯片,国盾量子提供了测控设备等硬件设施,承担了整机和云平台系统的搭建及运维工作,与中电科十六所、中科弧光量子等合作研制开发了关键核心器件、国产量子程序编译语言和软件,共同建设了新的176比特超导量子计算机并上线云平台。  “祖冲之号”量子计算常务副总指挥、国盾量子董事长彭承志认为,量子计算未来可为密码分析、人工智能、气象预报、资源勘探、药物设计等所需的大规模计算难题提供解决方案,其中量子计算云平台是量子计算走向应用的重要一步。对于社会大众来说,可以利用量子计算云平台进行科普,亲身体验简易的量子计算编程和图像实验等;对于更广泛的产业用户来说,可远程访问具备量子优越性潜力的量子计算机,能进一步发展量子编程框架,进行应用探索;高性能量子计算机和开放共赢的云平台的发布,也将促进中国量子计算自主可控产业链发展,有助于量子技术和产业生态的健康发展。  彭承志表示,量子计算现阶段正处于从原型机到专用机的攻坚时期,我们集合所有力量,就是希望以实现通用量子计算为目标,探索出一条切实可行的道路。
  • 我国研制出新一代云计算操作系统
    就在作为舶来品的“云计算”热浪余热未消时,10月出版的最新一期《国际云计算杂志》(International Journal of Cloud Computing)以长达百余页的专辑形式介绍了我国科学家研制的新型云计算操作系统TransOS,给了IT业界一个“意外”,引起国际科技新闻界的广泛关注。  在题为《TransOS:基于透明计算的云操作系统》的论文中,中国工程院院士、中南大学校长张尧学首次向国际业界全面介绍了新一代网络化操作系统TransOS:它将包含传统操作系统、应用程序和数据的“代码”全部存储在一台服务器(云)上,允许多台只装有少量代码的“裸机”连接访问,用户只需动态调用必要代码即可运行。在该组专辑其他文章中,来自清华大学、英特尔公司以及日本和加拿大的研究人员分别从数据管理、实现案例、移动和嵌入式设备上的应用及隐私保护模式等方面对该操作系统进行了详尽讨论。  TransOS基于“透明计算”的理念研制。该理念最早由张尧学于2004年提出,其核心是将存储与运算分离、将软件与硬件(终端)分离,通过有缓存的“流”式运算,将计算还原为“不知不觉、用户可控”的个性化服务。在这种模式下,操作系统被视为一种网络资源从终端“剥离”。  这一变化导致了诸多改变的发生,使TransOS成为了名符其实的“管理操作系统的操作系统”,它不仅占用资源更少、可靠性更高,更具有谷歌Chrome等类似云操作系统所不具备的跨平台、跨设备操作的优点,不仅可在个人电脑、服务器、智能手机、平板电脑乃至智能家电上运行,而且适用于苹果、谷歌、微软等公司开发的不同平台,从而打破了不同“云”之间的垄断和分割。  张尧学告诉记者,尽管TransOS对经典的冯诺依曼计算机体系结构进行了“革命性改进”,但在网络足够快的条件下,用户几乎感觉不到后台这种变化的存在。  该组文章发表后,国际知名新闻媒体《每日科学》(ScienceDaily)、《技术视野》(TechEYE), 《每日技术新闻》(TechNewsDaily)等媒体分别以《在云中的操作系统:TransOS或将取代传统桌面操作系统》,《中国人希望把计算机大脑放在云中》,《研究人员将操作系统推送到云中》等为题进行了报道。  对TransOS的应用前景,张尧学保持了谨慎的乐观。他向记者表示,TransOS目前还不会对现有的桌面式操作系统造成威胁,但会派生出许多新的终端、产生大量新的应用机会。他同时坦承,由于TransOS对网络带宽提出了更高要求,这将使对高速互联网的需求变得更为迫切。
  • 中国科学家在量子计算机领域获得里程碑式突破,走近“量子计算霸权”时代
    近日,中国科学技术大学潘建伟教授及其同事陆朝阳教授等在量子计算机研究方面取得了里程碑式的突破,相关研究结果被国际权威学术期刊《自然光子学》接收。在光学体系,我国科学家团队次实现利用高品质量子点单光子源构建了量子计算原型机,并且演示了其超越经典电子计算机(ENIAC)与晶体管计算机(TRADIC)的计算能力,向真正的“量子计算霸权”时代迈出了重要的一步。图1 玻色子抽样量子计算实验示意图。实验主要由单光子器件,多路解编器,低损耗光子电路(9模干涉仪),探测器等部分组成 “我们发现了两个关键的方法来达到高效的玻色子抽样:超低损耗的多光子干涉计与高效率,高纯度,不可分辨的多路解编的量子点单光子源。我们实施了3个,4个和5个玻色子抽样,计算速度比所有之前实验展示的高出了至少2,4000倍,大约比于人类历史上台电子计算机(ENIAC)与晶体管计算机(TRADIC)快10-100倍。这是单光子的量子机器次超越早期经典计算机。我们的工作是光学量子计算技术领域的一个崭新的开始,不仅仅是原理证明,此次搭建的量子机器实质性地超越了两代计算机原型机。”--中国科学技术大学上海研究院教授 陆朝阳 教授 图2 高效率与不可分辨的单光子源:(a)单光子器件计速率达9MHz,(b)单光子不可分辨率达到0.939。低损耗的多光子干涉计:多路解编器输入与9模干涉仪输出后的模式振幅(c)与相位(d)结果图3 3-,4-和5-玻色子抽样计算实验结果,工作频率分别为4.96kHz, 151Hz, 4Hz。实验证实量子光学计算机工作速度超过台电子计算机ENIAC与晶体管计算机TRADIC 在此之前,陆朝阳教授在2016年6月被《自然》评选为十位在科学界做出了巨大贡献的科学家之一,称为“中国科学之星”。“九层之台起于垒土”,从2016年到2017年的现在,该科研团队连续发表了一系列的量子计算相关文章,本次的量子计算实验结果是建立在扎实的基础之上的。 此次量子计算实验中的单光子器件(高效率与不可分辨的单光子源),陆老师课题组使用的是德国attocube公司生产的attoDRY低温恒温器,低温位移台与扫描台,低温物镜等设备。我们也相信两位老师定能在量子领域再次攀登科研高峰。中科大科研团队近期相关发表文献:次实验量子计算论文:High-efficiency multiphoton boson sampling (Nature Photonics, 2017)次实现10光子纠缠论文:Experimental ten-photon entanglement, arXiv:1605.08547, Phys. Rev. Lett. (2016)单光子器件论文:Time-bin-encoded sampling with a single-photon device (PRL, 2017)高不可分辨率单光子源论文:On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar (PRL, 2016)相关产品链接:高精度纳米位移台http://www.instrument.com.cn/netshow/SH100980/C168197.htm无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/C159541.htm低温强磁场纳米精度位移台http://www.instrument.com.cn/netshow/C80795.htm
  • 联合仪器制造工作正在研制俄罗斯首款工程计算系统
    据报道,2016年7月4日,新型100%国产程序将在“厄尔布鲁士”平台上开发。  联合仪器制造公司与莫斯科SPARC技术中心、TESIS公司联合开发俄罗斯首款工程计算系统。新程序将在“厄尔布鲁士”平台上进行开发。  联合仪器制造公司已经完成“厄尔布鲁士”平台复杂空气动力学和流体力学FlowVision转化的第一阶段,创造了国内工程计算软硬件系统的新型工作样件。  FlowVision可解决水力、气体动力学及燃烧过程中的各种问题。该系统广泛用于军工企业、导弹航天领域、航空及船舶制造业和“俄罗斯原子能公司”。利用该系统可以进行复杂计算,例如,描述各种管线和泵的特性,计算航天器的降落,绘制舰船或飞机外层流线图。  联合仪器制造公司IT部门主管帕韦尔赫里蓬诺夫表示,“各合作企业共同推进全寿命周期的国产工程任务解决方案软硬件系统的研制进程”。  赫里蓬诺夫表示,该项目实施的迫切性取决于工业领域,特别是国防工业领域日益提升的各项需求。  赫里蓬诺夫强调,“该系统可与国外类似产品相媲美,价格具有竞争力,已准备全面应用于企业,以对抗西方制裁”。  目前FlowVision软件可兼容四路服务器“厄尔布鲁士-4.4”开展计算工作,以及 “厄尔布鲁士401” 可视化及数据分析工作站。
  • “生物计算”:比超级计算机更聪明、高效、紧凑
    上图 真菌可能与标准电子设备相连。图片来源:安德鲁阿达马茨基下图 实验室培养的脑细胞可用于计算。图片来源:托马斯哈滕/约翰斯霍普金斯大学细菌和超级计算机有什么区别?区别是细菌更“高级”,因为它有更多的回路和更强的处理能力。所有生命都在“计算”。从响应化学信号的单个细胞,到在特定环境中航行的复杂生物体,信息处理是生命系统的核心。经过数十年的尝试,科学家终于开始收集细胞、分子甚至整个生物体,来为人类自己的目的执行计算任务。从本质上讲,计算机也只是信息处理器,而且人们越来越认识到大自然拥有丰富的这种能力。最明显的例子是复杂生物体的神经系统,它能处理来自环境的大量数据并对各种复杂的行为“下指令”。但即使是最小的细胞,也充满了复杂的生物分子通路,这些通路响应输入信号,打开和关闭基因、产生化学物质或进行自我组织。最终,生命中所有令人难以置信的壮举,都依赖于DNA存储、复制和传递遗传指令的能力。如何构建一台生物计算机?生物系统有自身的独特优势:更紧凑、能源效率更高、可自我维持和自我修复,而且特别擅长处理来自自然界的信号。在过去的20年里,强大的细胞和分子工程工具让人们终于能在构建生物计算机领域迈出一步。美国麻省理工学院生物合成学家克里斯托弗沃伊特说,该方法的核心是“生物电路”,类似于计算机中的电子电路。这些电路涉及各种生物分子相互作用以获取输入,并对其进行处理以产生不同的输出,就像它们的硅对应物一样。通过编辑支撑这些过程的遗传指令,人们现在可以重新连接这些电路以执行自然界从未计划的功能。2019年,瑞士联邦理工学院利用CRISPR技术,构建了相当于计算机中央处理器(CPU)的生物等效物。这个CPU被插入一个细胞,在那里它调节不同基因的活动以响应专门设计的RNA序列,使细胞实现了类似于硅计算机中的逻辑门。印度萨哈核物理研究所在2021年更进一步,诱使一群大肠杆菌计算简单迷宫的解决方案。该电路分布在几个大肠杆菌菌株之间,每个菌株都被设计用来解决部分问题。通过共享信息,该电路成功地实现了如何在多个迷宫中导航。大多数生物系统并不同于经典计算机的二进制逻辑,它们也不会像计算机芯片那样一步步解决问题。它们充满了重复、奇怪的反馈循环和以不同速度并排运行的截然不同的过程。更怪异的是,生物的计算能力还能完全脱离其自然环境。瑞典隆德大学科学家正在试验一种完全不同的生物计算方法,使用由分子马达驱动的微小蛋白质丝围绕迷宫推进。迷宫的结构经过精心设计,而细丝能同时探索所有路线。这意味着解决更大的问题不需要更多的时间,只需要更多的细丝。重新设计生物系统会带来什么?但美国马萨诸塞州塔夫茨大学的迈克尔莱文认为,生命系统已经在生物学的各个层面展示了令人惊叹的计算壮举,人们应该将重点从尝试重新设计生物系统,转移到寻找与现有系统交互的方法。莱文实验室已经证明,他们可以操纵细胞之间的电通信,帮助它们决定如何以及在哪里生长。举个恐怖的例子,这可能让蝌蚪的内脏上长出眼睛,或让青蛙长出额外的腿。它并不等同于计算,但团队认为它代表了如何将自然界预先存在的电路折射为一个“新目标”。类似的方法可用来解决广泛的计算任务。此外,真菌计算的深奥领域也正在显示其应用潜力。英国布里斯托尔西英格兰大学研究显示,真菌在感知pH值、化学物质、光线、重力和机械应力等方面具有的能力令人印象深刻。它们似乎使用电活动的尖峰进行交流,这开辟了将它们与传统电子设备连接的前景。类器官智能有多智能?要探寻生物计算,离不开人们迄今已知的最强大计算设备:大脑。当前组织工程学的进步意味着,科学家们可从干细胞中培育出相当于微型大脑的复杂神经元簇,也就是“大脑类器官”。与此同时,能将信号传输到脑细胞并能解码它们的反应,意味着人们已经开始试验类器官的记忆和学习能力。今年早些时候,美国约翰斯霍普金斯大学团队概述了“类器官智能”这一新领域的愿景。目标与人工智能相反:他们不会让计算机更像大脑,而是试图让脑细胞更像计算机。初创公司Cortical已可训练在硅芯片上培养的人类脑细胞来玩电子乒乓游戏Pong。而在它们的新软件中,任何具有基本编码技能的人都能为“培养皿大脑”编程。不过,所有这些生物计算方法目前都远未成为主流。与设计和制造硅芯片的能力相比,人们操纵生物学的能力仍处于初级阶段。但生物计算的巨大潜力和投入生物技术的数十亿美元,将在未来几年为这个领域带来快速进步。
  • 计算机体系结构国家重点实验室揭牌
    12月9日,计算机体系结构国家重点实验室(筹)在中科院计算技术研究所揭牌。这是我国在计算机体系结构方面唯一的一个国家重点实验室。  目前我国共有国家重点实验室382个,包括在高校和研究院所建设的国家重点实验室261个、试点国家实验室6个。而新揭牌的计算机体系结构国家重点实验室依托中科院计算所,主要从事计算机体系结构和系统设计方法领域的应用基础研究。据该实验室主任、中科院计算所所长孙凝晖介绍,实验室主要设立了高端计算机体系结构和设计方法、微体系结构、编译和编程、VLSI与容错计算、非传统计算机体系结构5个研究方向,发展目标是建立具有国际水平的计算机体系结构研究实验平台,为全国计算机体系结构研究提供基础支持。  当天,该实验室还举行了开放日活动,向社会各界展示实验室的最新研究成果。这些成果大部分都发表在国际顶级学术期刊和会议上,提高了中科院计算所在体系结构研究领域的知名度和影响力。
  • GMP附录《计算机化系统》法规解读之“发生什么事儿了?”
    2015年5月26日,CFDA正式发布了2010版GMP法规的新附录之一《计算机化系统》,引起了国内制药行业的广泛讨论和高度关注。其实许多制药企业对它的内容并不陌生,因为这则法规于2013年作为征求意见稿已经添加到新版GMP法规附录中。而现在,它将作为正式的法规于2015年12月1日起执行。这则法规附录将给国内制药企业带来什么新的挑战?从近两年来CFDA的一系列举措(频繁的飞行检查,2014年至今已取消近100家药企的GMP证书)来看,国内GMP的监管力度是显著增强的。所以届时如果企业不能满足《计算机化系统》法规的要求,将可能面临十分严重的后果。 CFDA为何要发布这则法规?国内外GMP法规有许多差异,而对计算机化系统的要求差异尤为明显。CFDA所执行的2010版GMP法规内容与国际上其他法规机构的cGMP法规是对等的,如FDA 21 CFR Part 211。但美国的制药企业除了执行 21 CFR Part 211以外,同时还要遵守21 CFR Part 11法规;欧盟国家的制药企业除了执行欧盟GMP以外,还要遵循Annex 11法规。FDA的21 CFR Part 11与欧盟的Annex 11的内容是类似的,都是针对于制药企业使用计算机化系统的法规要求。新颁布的《计算机化系统》法规附录是国内法规与国际接轨的重要一步,将填补国内对于计算机化系统要求的法规空白,是实现与国际法规监管机构之间相互认可的前提条件之一。 法规到底讲了些什么? 《计算机化系统》法规附录究竟讲了哪些内容?其实,我们发现内容并不多,全文共24条要求、6页,共计2500字。我们尝试对这些法规条文作了初步的解读,把所理解的核心内容概括如下: 1. CFDA明确提出进行计算机化系统验证的要求 以往,法规对于仪器的确认是一直有要求的,但对计算机软件验证的要求不明确。因而,大部分的制药企业不对计算机系统进行验证,或仅进行最简单的确认。真正按照GAMP5指南基于风险评估进行完整验证的企业不多,仅某些企业有国外业务、需要通过FDA或欧盟审计时才会考虑。而这则法规发布以后,明确对所有的国内制药企业提出进行计算机化系统验证的要求,为计算机化系统验证提供了法规依据。这里尤其值得注意的是,法规附录里要求进行基于风险评估的计算机化系统验证,实际上就是指遵循GAMP5的验证方法学,即计算机化系统验证的形式应该是验证(Validation),通常所说的确认(Qualification,IQ/OQ/PQ)是不足够的。 2. 数据合规性要求 法规明确了对数据输入的准确性和数据处理过程的正确性要求,以保证数据的合规性。概括来说,对计算机系统合规性的功能要求可以总结为:访问控制、权限分配、审计追踪和电子签名。 访问控制:只有经许可的人员才能进入和使用系统。 权限分配:应当对进入和使用系统制订授权、取消和授权变更的操作规程。 审计追踪:用于记录数据的输入和修改以及系统的使用和变更。 电子签名:明确了直接对电子数据进行电子签名是合规的,但电子签名需要符合相应法规。 其中,电子签名是“可以有”,而不是“必须”,这取决于企业对于主数据的定义是电子数据还是纸质数据。这与21 CFR Part 11和Annex 11是一致的。对于审计追踪记录的要求,是“根据风险评估的结果,考虑在计算机化系统中建立数据审计跟踪系统”,这可能是考虑到很多软件自身功能设计上无法实现的情况。然而,对于色谱数据系统这样的关键原始数据系统来说,审计追踪肯定是必然的要求。 3. 电子数据安全性要求 电子数据安全性一般分为逻辑安全性和物理安全性。逻辑安全性即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。而物理安全性,即是对数据存储的介质(如硬盘、光盘、服务器等)进行保护,确保系统本身不会因为物理介质的损坏或故障造成数据丢失。 4. 数据备份要求 关于电子数据的备份要求不算是新的法规要求,GMP法规也一直要求数据备份以保证原始数据的安全性。国内制药企业通常也都制定了数据备份策略,但我们发现通常只是一个月甚至半年才做一次数据备份,真正发生故障时原始数据还是会严重丢失。这样的数据备份归档,其形式意义大过于实际意义;而即使是这样的一个备份频率,企业都已经觉得数据备份的工作任务很重。其根本原因是缺乏良好的解决方案。《计算机化系统》单独列出这条要求,将提高制药企业对数据备份的重视,进而采纳更先进的解决方案。 在下一期《计算机化系统》法规解读中,我们将继续逐项解析该则法规对制药企业带来的影响,工作站是否能应对新的法规要求?如何管理您实验室的非色谱类数据?等等。敬请关注。
  • 超导量子计算用mK级国产稀释制冷机实现商用量产
    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。中科院物理所2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。合肥知冷低温科技有限公司2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。本源量子2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。
  • 量子计算用极低温稀释制冷机打破两项纪录
    作者:吴长锋 来源:科技日报3月26日,安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发的“量子计算用国产极低温稀释制冷机”项目,顺利通过鉴定委员会鉴定。专家认为,研制的极低温稀释制冷机满足量子计算需求,连续稳定运行的最低温度为8.5mK,项目创造了已公开报道的连续运行最低温度和制冷量两项国内纪录。安徽大学供图“量子计算用国产极低温稀释制冷机”是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。由领域内知名专家组成的鉴定委员会听取了项目工作汇报,审阅了技术报告和相关技术资料,考察了实验现场,查看了系统运行状况;经质询、答疑和讨论,一致认为:针对无液氦、极低温、大冷量、大空间、高稳定性等量子计算需求,单磊教授、王绍良研究员团队成功研制出无液氦型量子计算用极低温稀释制冷机,连续循环运行最低温度达到8.5mK。相关成果增强了我国相关基础科学和技术领域的原始创新能力,进一步解决了大摩尔流量条件下极低温流体热交换效率低的技术难题,研发出具有超大比表面积的极低温高效换热部件,同时实现了相关核心部件的完全自主研发,扭转核心技术“卡脖子”的被动局面。据悉,去年12月31日,这台机器已经获得在100毫K具有435微瓦和120毫K具有671微瓦的制冷量,达到国际主流产品的水平,满足量子计算的温度和冷量需求。
  • GMP附录《计算机化系统》法规解读之“为制药企业带来哪些影响?”
    上周,我们对GMP法规的新附录《计算机化系统》的新变化进行了解读。那么,这些变化对制药企业带来什么影响?企业又该如何应对由此带来的挑战?我们将和大家做进一步的探讨。 预期影响一:单机版色谱软件被网络版软件取代的步伐将加快目前,国内有些制药企业采用单机版色谱工作站来处理色谱数据,尤其是在规模较小的实验室(少于5套色谱系统),在仪器数量较少时,单机版软件初始成本较低,能满足实验室日常操作需求。当仪器数量超过5台以上,企业就需要考虑单机版和网络版软件的平均成本了。而《计算机化系统》附录对计算机化系统明确提出了验证的要求,如果按照这一要求来做,网络版软件在合规性和成本上的优势将越发显著。 1. 成本有效降低 按照以往的认知,网络版软件价格是贵于单套单机版软件的,通常在实验室规模化了之后,企业才会考虑。而现在,《计算机化系统》附录明确要求对每套计算机化系统进行验证,这将大大增加单机版色谱系统的验证成本。比如,如果一家企业的实验室有10套色谱系统,就意味着需要做10次验证,每一台仪器都需要作为独立系统逐一进行计算机系统验证。而一套网络版软件可接入多套仪器,而只在第一次部署的时候产生验证成本。未来再接入新仪器时,都只需对仪器硬件进行确认即可,无需再对软件进行全面的重新验证。这样下来,单机版和网络版的验证成本可能相差数十倍。 这种情况下,网络版软件无疑将成为制药企业满足验证要求的同时降低成本的有效途径。沃特世Empower 3网络版软件可控制包括安捷伦、PE、岛津、Thermo等在内的多家色谱系统,最大程度上将实验室的计算机化系统数量和类型减至最低,帮助制药企业摆脱单机版高昂的验证成本,一劳永逸地解决色谱系统的计算机化系统验证问题。 2. 数据的合规性与安全性 《计算机化系统》附录明确表示电子数据是可以接受的。其实电子数据相比纸质数据,可以更完整地反应数据的状态,包括:报告、仪器方法、积分方法、样品序列、审计追踪报告等。当电子数据变得越来越重要,它的合规性和安全性需要得到足够的保障。 单机版软件都会面临一个物理安全性的问题,那就是数据都存储于本地电脑,而电脑处于实验室环境中,存在客观的物理损坏、易被获取等风险。普通的电脑硬盘也有一定的工作寿命,一旦硬盘损坏,数据将会丢失。而网络版软件采用服务器将原始数据存储于更为安全的IT机房,并采用服务器的硬件镜像技术,确保了数据的物理安全性。此外,通过服务器可以实现数据的自动备份,并且可以将备份周期从原来的一个月或半年提高到每天,显著提高了便利性和效率。 除了确保电子数据的物理安全性,数据的逻辑安全性也要得到保障。所谓的逻辑安全性,即是通过软件自身的权限控制对数据的访问、录入、修改和删除等操作,确保不被人为误操作或有意的篡改行为而影响数据安全。Empower 3网络版软件基于Oracle数据库而开发,具有严谨详细的权限控制功能,通过权限控制使用户无法对仪器方法、积分方法和原始数据等进行篡改或删除,确保了数据的逻辑安全性。 图1. 通过Empower 3软件指导,管理员可确保该系统配置符合GxP和21 CFR Part 11的规定。 预期影响二:计算机化系统验证需求显著增长 计算机化系统验证比较耗时且操作复杂,需要多领域的专家花费大量时间去完成。沃特世从欧洲ISPE制药工程协会聘请了资深的验证咨询顾问(GAMP5指南的编辑之一),为国内企业提供全套专业的合规性和验证(Computer System Validation, CSV)服务,可协助广大用户顺利完成验证工作,使系统尽快投入运行,并满足法规要求。 下期文章中,我们将继续关注《计算机化系统》附录对制药企业带来的影响以及未来趋势,如数据备份、电子审批等,敬请关注。如您对法规、验证、软件产品等有任何问题,可发送邮件至yong_jin@waters.com,将您关心的问题告诉我们,沃特世信息学专家将尽快回复您。
  • 62比特可编程超导量子计算原型机“祖冲之号”研制成功
    记者5月8日从中国科学技术大学获悉,该校中科院量子信息与量子科技创新研究院潘建伟、朱晓波、彭承志等组成的研究团队,成功研制了62比特可编程超导量子计算原型机“祖冲之号”,并在此基础上实现了可编程的二维量子行走。相关研究成果于5月7日在线发表在国际学术期刊《科学》杂志上。量子计算机在原理上具有超快的并行计算能力,相比经典计算机,其可望通过特定算法在一些具有重大社会和经济价值的问题上实现指数级别的加速。超导量子计算作为最有希望实现可拓展量子计算的候选者之一,其核心目标是如何同步地增加所集成的量子比特数目以及提升超导量子比特性能,从而能够高精度相干操控更多的量子比特,实现对特定问题处理速度上的指数加速,并最终应用于实际问题中。二维超导量子比特芯片示意图, 每个橘色十字代表一个量子比特。图片来源:中国科学技术大学潘建伟、朱晓波、彭承志等在前期工作的基础上,自主研制二维结构超导量子比特芯片,成功构建了国际上超导量子比特数目最多、包含62个比特的可编程超导量子计算原型机“祖冲之号”,并在该系统上成功进行了二维可编程量子行走的演示。研究团队在二维结构的超导量子比特芯片上,观察了单粒子及双粒子激发情形下的量子行走现象,实验研究了二维平面上量子信息传播速度,同时通过调制量子比特连接的拓扑结构的方式构建马赫—曾德尔干涉仪,实现了可编程的双粒子量子行走。该成果为在超导量子系统上实现量子优越性展示及可解决具有重大实用价值问题的量子计算研究奠定了技术基础。此外,基于“祖冲之号”量子计算原型机的二维可编程量子行走在量子搜索算法、通用量子计算等领域具有潜在应用,将是后续发展的重要方向。
  • 用于植物油快速质控的自动计算法以及品质鉴定
    Peter J. Lee、Yoji Ichikawa、Roger R. Menard和Alice J. Di Gioia沃特世公司,美国马萨诸塞州米尔福德市引言植物油是食品、化妆品和个人护理品的重要成分,主要来自于世界各地的22种油料作物。生产加工、贮存、运输和销售各环节都对植物油的质量起着至关重要的作用。偶发事件和故意事件均会导致植物油的交叉污染。现已颁布了包括315/93/EEC、2568/91/EEC、EC 333/2007和EC 640/2008在内的多部法规,要求鉴定植物油的品质,并避免污染,从而保障公共健康和公平交易1。 为了确保产品质量,满足法规要求并维护公司最有价值的资产&mdash &mdash 品牌形象,植物油公司对植物油的生产过程,从原料到成品全过程进行监控。目前,植物油分析主要依靠气相色谱法(GC)和高效液相色谱法(HPLC)。气相色谱法要求在分析前进行衍生化,这既耗时又费力2。为了实现完全分离,普通的高效液相色谱法要求使用卤代溶剂或使用会使运行时间更长的非卤代溶剂3-6,。自卤代溶剂被认识到具有致癌作用后,卤代溶剂的使用在大多数实验室受到了限制。因此,人们对用于植物油质量控制和品质鉴定更有效的分析工具的需求日渐增加。 ACQUITY UPLC系统是新一代液相色谱平台。使用UPLC/PDA/ELSD/质谱检测器,可以更快进行筛选、在不使用卤代溶剂7-10条件下对植物油的表征建立高分离度的方法。只需一次进样,超高效液相色谱(UPLC)系统就能得到多种类型的数据,产生重现好的指纹图谱数据,鉴别甘油三酸酯的组分,并评估植物油氧化和分解程度。与普通的高效液相色谱相比,超高效液相色谱缩短了分析时间,减少了溶剂用量,并能从一次进样中提供更高分离度并带有更多信息的色谱图。因此,超高效液相色谱法的性价比更高。本技术文献描述了用于植物油质控和品质鉴定的更为高效的系统解决方案,即使用UPLC和EmpowerTM 2软件的用户自定义字段的计算功能,自动定量并报告植物油样品是否符合用户设定的质控标准。此方案不再需要人工计算,从而避免了可能的人为误差并能够快速而准确地报告关键信息。掌握了准确、及时的结果,决策者就能提高交货效率和产量,即减少不合格产品,避免产品召回,并最大限度地减少责任诉讼。本文的实验部分提供了关于自定义字段计算的例子,并附有其详细步骤。实验样品准备:食用油,购买自当地的食品杂货店。用2-丙醇将食用油样品稀释为6 mg/ml的溶液,以备分析之用。超高效液相色谱条件:超高效液相色谱系统: ACQUITY UPLC,PDA检测器软件: Empower 2PDA参数:检测波长: 195-300nm采样率: 20 pts/s过滤响应速度: 快超高效液相色谱参数:色谱柱: ACQUITY BEH C18 2.1 x 150 mm弱洗脱: 2-丙醇(每次洗脱用量:500 &mu L)强洗脱: 2-丙醇(每次洗脱用量:500 &mu L)充填洗脱: 10%的CH3CN水溶液(每5分钟)流动相A: CH3CN流动相B: 2-丙醇柱温: 30° C进样量: 2 &mu L(满环定量)梯度条件:时间 (min) 流速 (mL/min) %B 曲线0 0.15 10 &mdash 22 0.15 90 6平衡色谱柱和UPLC系统条件:时间 (min) 流速 (mL/min) %B 曲线 0 0.13 100 &mdash 18 0.13 10 1121.5 0.7 10 1124.5 0.15 10 1125 0.15 10 11说明:运行样品组之前,先进一针空白试样2-丙醇;该检测值被用作PDA 3D谱图的空白扣除。用于鉴定特纯天然橄榄油A质量的质控 标准:为了便于演示,我们从纯天然橄榄油A的典型色谱图中选取六个峰。选择其中的一个峰作为标记峰,其余的峰为指示峰。&ldquo 峰面积比(指示峰面积除以标记峰面积)± 3xSTDEV&rdquo 用作指示峰的质控标准。1. 指示峰3O(峰面积OOL/标记峰面积)0.84或0.86,则合格;否则不合格。2. 指示峰OOL(峰面积OOL/标记峰面积)1.18或1.21,则合格;否则不合格。3. 指示峰LLO(峰面积LLO/标记峰面积)0.39或0.41,则合格;否则不合格。4. 指示峰LLL(峰面积LLL/标记峰面积)0.039或0.045,则合格;否则不合格。5. 指示杂质峰(杂质峰面积/标记峰面积)0.42,则合格;否则不合格。创建计算峰面积比自定义字段的步骤11 :1. 点击&ldquo 配置系统&rdquo ,进入配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所需的项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口(图1)。5. 在字段类型中选取&ldquo 峰&rdquo ,在数据类型中选取&ldquo 实数(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo 打开&ldquo 选择来源&rdquo 窗口,如图2所示。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;不要勾选&ldquo 全部或没有&rdquo 以及&ldquo 丢失峰&rdquo 选项;点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口,如图3所示。7. 将面积/IS[面积]输入至字段中;点击&ldquo 下一步&rdquo ,打开&ldquo 数值型参数&rdquo 窗口(使用默认值)。8. 点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。9. 输入新的字段名(例如,此处所用的字段名是&ldquo Ratio _IS&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。10. 点击&ldquo 完成&rdquo ,这样就创建了一个名为&ldquo Ratio_IS&rdquo 的自定义字段,用于计算峰面积比,如图4所示。创建自定义字段并根据特定指示峰面积比的标准确定&ldquo 合格&rdquo 或&ldquo 不合格&rdquo 的步骤如下:1. 点击&ldquo 配置系统&rdquo ,打开配置管理员;在树形结构中点击&ldquo 项目&rdquo 。2. 选择并右击所选择的工作项目。3. 选择&ldquo 属性&rdquo ,打开&ldquo 项目属性&rdquo 窗口。4. 点击&ldquo 自定义字段&rdquo 标签;然后点击&ldquo 新建&rdquo ,打开&ldquo 数据和类型选择&rdquo 窗口,如图1所示。5. 在字段类型中选择&ldquo 峰&rdquo ,在数据类型中选取&ldquo 布尔(0.0)&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 选择来源&rdquo 窗口。6. 在&ldquo 数据来源&rdquo 中选择&ldquo 计算&rdquo ,在&ldquo 样品类型&rdquo 和&ldquo 峰类型&rdquo 中选择&ldquo 全部&rdquo ;在&ldquo 搜索顺序&rdquo 中选择&ldquo 只限于结果组&rdquo ,然后在弹出窗口中点击&ldquo 确定&rdquo ;选择&ldquo 全部或没有&rdquo 选项,在弹出窗口中点击&ldquo 是&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入公式&rdquo 窗口。7. 将以下公式输入至字段中:GTE(3O[Ratio_IS],0.841)E(3O[Ratio_IS],0.859])*EQ(Name,&ldquo 3O&rdquo )+NEQ(Name,&rdquo 3O&rdquo )*-1*500008. 点击&ldquo 下一步&rdquo ,打开&ldquo 翻译定义&rdquo 窗口,如图5所示。9. 在&ldquo 0&rdquo 旁边,输入&ldquo 不合格&rdquo ;在&ldquo 1&rdquo 旁边,输入&ldquo 合格&rdquo ;然后点击&ldquo 下一步&rdquo ,打开&ldquo 输入名称&rdquo 窗口。10. 输入一个名称(例如,此处使用的是&ldquo Oly_OOO&rdquo );在&ldquo 创建该字段&rdquo 中选择&ldquo 项目&rdquo 。11. 点击&ldquo 完成&rdquo ,这就创建了一个名为&ldquo Oly_OOO&rdquo 的自定义字段用于检验峰面积比(OOO峰面积除以标记峰面积)是否符合指示峰OOO的质控标准,如图6所示。重复进行第1-8步,以确定其余的指示峰是否合格:对于指示峰OOL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(OOL[Ratio_IS],1.18)E(OOL[Ratio_IS],1.21])*EQ(Name,&ldquo OOL&rdquo )+NEQ(Name,&ldquo OOL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_OOL&rdquo ,创建字段&ldquo Oly_OOL&rdquo ,以检验峰面积比(OOL峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLO,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLO[Ratio_IS],0.39)E(LLO[Ratio_IS],0.41])*EQ(Name,&ldquo LLO&rdquo )+NEQ(Name,&ldquo LLO&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_LLO&rdquo ,创建字段&ldquo Oly_LLO&rdquo , 以检验峰面积比(LLO峰面积除以标记峰面积)是否符合质控标准。对于指示峰LLL,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GTE(LLL[Ratio_IS],0.039)E(LLL[Ratio_IS],0.045])*EQ(Name,&ldquo LLL&rdquo )+NEQ(Name,&ldquo LLL&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_ LLL&rdquo ,创建字段&ldquo Oly_ LLL&rdquo , 以检验峰面积比(LLL峰面积除以标记峰面积)是否符合质控标准。对于杂质指示峰,在第4步中,在&ldquo 输入公式&rdquo 窗口中输入以下公式:GT(Impurity[Ratio_IS],0.42)*EQ(Name,&rdquo Impurity&rdquo )+NEQ(Name,&ldquo Impurity&rdquo )*-1*50000. 在第7步中,在字段名中输入&ldquo Oly_Impurity&rdquo ,创建字段&ldquo Oly_ Impurity&rdquo ,以检验峰面积比(杂质峰面积除以标记峰面积)是否符合质控标准。本方法用定时组功能计算杂质峰的总和:1. 在&ldquo 编辑处理方法&rdquo 窗口中,选择&ldquo 定时组&rdquo 标签,如图7所示。2. 在&ldquo 名称&rdquo 字段中输入杂质名称,在&ldquo 开始时间&rdquo 字段中输入&ldquo 3&rdquo ,在&ldquo 结束时间&rdquo 字段中输入&ldquo 13.6&rdquo 。3. 勾选&ldquo 不包括已知峰&rdquo 字段。在处理方法中标记选定的标记峰和指示峰:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 组分&rdquo 标签。2. 将保留时间为9.81 min的峰名称改为IS,在&ldquo 峰标签&rdquo 字段中输入&ldquo 标记峰&rdquo ,如图8所示。3. 将保留时间为13.79 min的峰名称改为3L,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLL&rdquo 。4. 将保留时间为14.85 min的峰名称改为2LO,在&ldquo 峰标签&rdquo 字段中输入&ldquo LLO&rdquo 。5. 将保留时间为15.87 min的峰名称改为2OL,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOL &rdquo 。6. 将保留时间为16.85 min的峰名称改为OOO,在&ldquo 峰标签&rdquo 字段中输入&ldquo OOO&rdquo 。在处理方法中创建命名组的步骤:1. 在&ldquo 编辑处理方法&rdquo 窗口中选择&ldquo 命名组&rdquo 标签。2. 在&ldquo 名称&rdquo 栏中输入3O、LLL、LLO、OOL和Oly,如图9所示。3. 分别将OOO、3L、2LO、2OL和IS从&ldquo 单峰组分&rdquo 拖至各自相应的命名组中,如图9所示。创建合格或不合格报告模板的步骤:1. 点击&ldquo 方法&rdquo 标签,选择一份报告,右击该报告;选择&ldquo 打开&rdquo ,以显示&ldquo 编辑报告方法&rdquo 窗口。2. 在&ldquo 编辑报告方法&rdquo 窗口中选择&ldquo 新建&rdquo ,打开&ldquo 新方法/组&rdquo 窗口。3. 选择&ldquo 创建新报告方法&rdquo ,勾选&ldquo 使用报告方法/组向导&rdquo 选项;然后点击&ldquo 确定&rdquo ,打开&ldquo 报告方法模板向导&rdquo 。4. 选择&ldquo 单个报告&rdquo ,然后点击&ldquo 下一步&rdquo ,打开&ldquo 新方法向导&rdquo 窗口。5. 在报告类型中选择&ldquo 单个&rdquo ,然后点击&ldquo 完成&rdquo ,显示一个报告方法模板。6. 在色谱图上右击,选择&ldquo 属性&rdquo ,打开&ldquo 色谱图属性&rdquo 窗口(图10)。7. 选择&ldquo 峰标签&rdquo ,勾选&ldquo 仅使用峰标签&rdquo ,然后点击&ldquo 确定&rdquo 。8. 右键单击&ldquo 表&rdquo ,选择&ldquo 属性&rdquo ,打开&ldquo 表属性&rdquo 窗口。9. 选择&ldquo 峰&rdquo 标签,勾选&ldquo 峰组&rdquo 。10. 点击&ldquo 表&rdquo 标签,然后在树形结构中点击所需的峰。双击每个指示峰,以将相应的自定义字段添加到结果表格中,如图11所示。11. 点击&ldquo 确定&rdquo ,输入该报告模板的名称(例如,此处显示的名称是&ldquo 特级天然橄榄油质控报告&rdquo ),然后在工具栏中点击&ldquo 保存&rdquo 。结果和讨论不使用卤代溶剂做流动相的普通高效液相色谱法很难分离植物油的主要组分&mdash &mdash 甘油三酸酯。图12为普通高效液相色谱法(2根5&mu m粒径颗粒填充的150mm长的C18柱,蒸发光散射检测器ELSD)得到的大豆油的典型色谱图,使用乙腈和二氯甲烷作为流动相,实现该分离需要60多分钟。由于二氯甲烷在240nm以内具有紫外吸收,这会干扰甘油三酸酯的紫外吸收(最大波长吸收值约210nm),因此使用蒸发光散射检测器(ELSD)进行检测。ACQUITY UPLC系统的设计特点是使用小颗粒装填技术的高效色谱柱,以进行更快速、更灵敏和更高分离度的分离。UPLC的溶剂传送系统能承受高达15,000 psi的背压,因此能够使用2-丙醇等高黏度溶剂进行植物油分析。由于2-丙醇对植物油的溶解性好12、低毒,透射度限制低,便于对甘油三酸酯进行紫外检测,因此2-丙醇被选作强洗脱液。图13为关于同一大豆油样品的10张叠加的紫外色谱图说明UPLC法的重现性,此分离使用1.7&mu m粒径的2.1 x 150mm的 BEH C18色谱柱,乙腈/2-丙醇作为流动相,整个运行时间缩短为22分钟。图12和图13比较,具有相似的甘油三酸酯峰型,但UPLC法具有更高的分离度,更短的运行时间。数据表明不使用致癌溶剂作为流动相,使用 UPLC分离植物油中的组分具有明显优势。用于植物油分析的乙腈/2-丙醇流动相的UPLC系统可使用PDA、ELSD和MS检测器,不像其他用于普通高效液相色谱法的溶剂。一次进样便可得到多种数据类型,并可以产生可重现的指纹图谱数据7,通过质谱法鉴别甘油三酸酯组分10,并用PDA多波长扫描测定植物油的氧化程度8。目前已知植物油具有特征的甘油三酸酯比,这对植物油指纹图谱5-8的鉴别很有用。如图14-16所示,核桃油、葡萄籽油、芝麻油、特级天然橄榄油A、特级天然橄榄油B、榛子油、茶籽油、玉米油、加拿大低酸油、高油酸葵花籽油和普通葵花籽油的紫外色谱图证实,每种油样品都具有独特的色谱类型,即相对峰强度。为了高效使用峰强度比进行品牌质控和质量鉴定,Empower 2软件的自定义字段计算功能可根据用户设定的质控标准自动将原始色谱数据转换为合格或不合格报告。以特级天然橄榄油A为例说明该改进的方法。图17为特级天然橄榄油A的叠加紫外色谱图和峰面积。甘油三酸酯的峰面积从最强峰(OOL)到最弱峰(LLL)其RSD值(n=6)0.9%。共有20多个可见峰,任一峰都能被用作标记峰或指示峰,用以计算峰面积比。为了便于讨论,将之前确定的甘油三酸酯的峰OOO、OOL、LLO和LLL选作指示峰10,将仅出现在橄榄油产品中、通过紫外检测观察到的保留时间为9.8分钟的强峰选作标记峰13。由于大多数廉价的蔬菜油和降解油具有很多保留时间低于13.6分钟的其它强峰9,因此可用定时组功能(图7)创建杂质指示峰,以监测是否存在污染。该杂质指示峰是指标记峰之外的保留时间介于3-13.6分钟的所有峰的总和。通过创建自定建自定义字段&ldquo Ratio_IS&rdquo (图4),可用Empower 2软件自动计算峰面积比(指示峰面积除以标记峰面积)。表1总结了峰面积比的结果以及STDEV值。&ldquo 峰面积比± 3xST-DEV&rdquo 被用作每个指示峰的质控标准。由于地理和其它种植条件的差异,植物油的某一特定类型会存在差异。该数值在比较其它植物油样品是否符合基于特定油品的质控标准方面具有极大的价值。现在,Empower 2软件能够使用自定义字段计算、命名组、定时组和报告模板(如图6、7、9、10和11所示),根据特级天然橄榄油A的质控标准,自动计算并报告样品合格与否的结果。图18为特级天然橄榄油A的典型Empower质控报告。该报告表明所有指示峰均符合质控标准。Empower软件的这些高级功能避免了人工计算步骤,因此能避免可能出现的人为误差。昂贵的特级天然橄榄油通常会被掺入廉价橄榄油和其它植物油(例如大豆油和榛子油)。图19为一份特级天然橄榄油B的报告。所有指示峰均表明该特级天然橄榄油B未通过根据特级天然橄榄油A制定的质控标准。在该色谱图中存在保留时间13.6 min的额外峰,这些数据清楚地表明两种品牌的橄榄油样品存在差异,并证实并非所有市售的特级天然橄榄油的品质都相同。图20为一份掺入9%榛子油的特级天然橄榄油A的报告。所有指示峰均表明该掺假样品不符合质控标准。而且,根据特级天然橄榄油A制定的同一质控标准也应用于分析其它植物油(图14-16),同样掺入1%大豆油或1%玉米油的特级天然橄榄油A,均不合格。之前描述的是使用UPLC-TOF和集成软件工具检测橄榄油掺假的化学计量方法14。本技术文献为植物油质控和品质鉴定提供了可供选择的另一种解决方案。本方法可完全自动地获取并处理数据,从而生成明确的合格或不合格报告。结论具有Empower 2 软件的ACQUITY UPLC系统能不需要衍生化和卤化溶剂,且能快速分析植物油样品并进行品质鉴定。UPLC系统得出的数据具有良好的重现性、精确性和准确性,而且简单易懂。分离速度比普通高效液相色谱法快三倍,所消耗的溶剂量减少8倍,所产生的有害废物也减少8倍;从而能够节省成本,提高安全性。ACQUITY PDA检测器能产生高分离度和高重现性的数据,这有助于轻松建立用于制定每种品牌植物油的质控和品质鉴定标准的指纹图谱数据。借助Empower 2软件的自定义字段计算功能,关键的产品质控数据可从原始数据中准确得出并根据用户设定的标准快速传送,有效地出具简单易懂的合格或不合格报告。决策者能根据这些重要信息及时做出决定,从而提高生产率。使用本UPLC方法,植物油公司能够轻松自信地鉴定产品的品质和质量。与植物油产品纯度方面利益相关的其他行业,例如化妆品公司、个人护理品公司和食品公司,也将从本方法中受益。参考文献1. http://www.fediol.org/5/pdf/legislation.pdf2. VG Dourtoglou et al. JAOCS, Vol.80, No.3: 203-208, 2003.3. LCGC, The Application Notebook, Sept 1, p51, 2006.4. A J Aubin, C B Mazza, D A Trinite, P McConvile. Analysis of Vegetable Oils byHigh Performance Liquid Chromatography Using Evaporative Light ScatteringDetection and Normal Phase Eluents. Waters Corporation, No. 720002879EN,2008.5. P Sandra et al J Chromatogr. A 974: 231-241, 2002.6. International Olive Oil Council standard method COI/T.20/Doc. No. 20 2001.7. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 1):Olive Oil Quality & Adultration. Waters Corporation, No. 720002025EN, 2007.8. P J Lee, C H Phoebe, A J Di Gioia. ACQUITY UPLC Analysis of Seed Oil (Part 2)Olive Oil Quality & Adultration. Waters Corporation, No. 720002026EN, 2007.9. P J Lee, and A J Di Gioia. ACQUITY UPLC/ELS/UV: One Methodology for FFA,FAME and TAG Analysis of Biodiesel. Waters Corporation, No. 720002155EN,2007.10. P J Lee and A J Di Gioia. Characterization of Tea Seed Oil for Quality Controland Authentication. Waters Corporation, 720002980en, 2009.11. Empower\help\Custom Field Calculation.12. F O Oyedeji et al Characterization of Isopropanol Extracted Vegetable Oils. JApplied Sci. 6: 2510-2513, 2006.13. The marker (Oly) peak at 9.8 min was well detected by UV but had weak MSresponse with APCI positive ionization mode. According to the SQD MS spectra,the marker peak is not a triglyceride. High resolution mass spectrometers withexact mass capabilities are needed in order to properly elucidate its chemicalstructure. However, it is not necessary to have peak identification for this QCand authentication methodology.14. P Silcock and D Uria. Characterization and Detection of Olive Oil AdulterationsUsing Chemometrics. Waters Corporation No. 720002786en, 2008.
  • 国产量子计算超低温温度传感器研制成功
    量子芯片运行对温度环境要求极为苛刻,如何实时监测温度变化,了解制冷机运行状态?近日,记者从安徽省量子计算工程研究中心获悉,国产量子计算超低温温度传感器研制成功,并已投入国产量子计算机中使用。安徽省量子计算工程研究中心相关研发团队负责人张俊峰向记者介绍:“随着稀释制冷机技术的发展,国内外稀释制冷机技术越来越成熟,与之相配套的温度测量需求也不断加大。为了保证量子芯片在合适的温区运行,需要实时监测量子芯片运行的温度环境,这款传感器就像是‘量子芯片温度计’,可实时监测温度变化。”该超低温温度传感器由合肥本源量子完全自主研发,支持实时温度监测,具备较高测量精度等优势。该产品通用性很广,可以非常方便地安装到稀释制冷机上,目前已投入国产量子计算机中使用。张俊峰表示,量子芯片是量子计算机的核心器件,实时监测量子芯片运行的温度环境能够对整个量子计算机系统起到关键性作用。该国产超低温温度传感器的成功研制,使我国在极低温领域的温度测量精度达到国际先进水平,向着量子计算机完全自主可控迈出了重要一步。
  • 可控蛋白质功能的纳米“计算机”研制成功
    创建用于精准医疗的纳米级计算机,长期以来一直是许多科学家和医疗机构的梦想。现在,美国宾夕法尼亚州立大学研究人员首次研制出一种纳米“计算机”,可控制参与细胞运动和癌症转移的特定蛋白质的功能。这项发表在16日《自然通讯》上的研究,为构建用于癌症和其他疾病的复杂设备铺平了道路。  宾夕法尼亚州立大学医学院尼古莱多霍利安教授及其同事创造了一个类似晶体管的“逻辑门”,可执行计算操作,由多个输入控制一个输出。  多霍利安称,这个逻辑门是一个重要的里程碑,因为它展示了在蛋白质中嵌入条件去操作并控制其功能的能力。这将给更深入地了解人类生物学和疾病,以及精准疗法的开发带来可能性。  逻辑门包括两个传感器域,旨在响应两个输入——光和药物雷帕霉素。研究团队瞄准了蛋白质焦点黏附激酶(FAK),因为它涉及细胞黏附和运动,这是转移性癌症发展的初始步骤。  研究人员首先在编码FAK基因中引入一个名为uniRapr的雷帕霉素敏感域,该域之前由实验室设计和研究过。然后,研究人员引入对光敏感的域LOV2。对两个域进行优化后,研究人员将它们组合成一个最终的逻辑门设计。  研究团队将修改后的基因插入HeLa癌细胞,并使用共聚焦显微镜在体外观察细胞。他们分别研究了每个输入对细胞行为的影响,以及组合输入的综合影响。  研究发现,他们不仅可以使用光和雷帕霉素快速激活FAK,而且这种激活导致细胞内部发生变化,从而增强了它们的黏附能力,最终降低了运动性。  研究人员称,这是第一次证明可在活细胞内构建一种可控制细胞行为的功能性纳米“计算机”。
  • CPSA上海2010之讨论主题:分析化学中的计算工具
    仪器信息网讯 2010年4月7日-9日,第一届化学和药物结构分析上海研讨会(CPSA Shanghai 2010,the 1st Annual Shanghai Symposium on Chemical and Pharmaceutical Structure Analysis)在上海锦江饭店顺利举行;来自国内外的100多位学者和专家到会;仪器信息网作为特邀媒体参加了此次研讨会。  一年一度的CPSA会议起始于1998年,通过制药工业有关问题的公开讨论,对其创新技术与工业实践进行回顾,分享他们各自的高新技术实践经验以及对当前学术发展前景的看法。本届上海研讨会主题为“分析性能研究进展:创新应用和新型工作流程”。  【讨论主题:分析化学中的计算工具】Roman Szucs博士 Gang Xue博士 Neil Feeder博士  相关主题报告:  Chromatographic Method Development: Application of in-Silico Tools  主讲人:Roman Szucs博士(辉瑞Pfizer)  Automated Peak Tracking in Rapid Method Development  主讲人:Gang Xue博士(辉瑞Pfizer)  Computational Tools in Pharmaceutical Material Sciences  主讲人:Neil Feeder博士(辉瑞Pfizer)
  • GMP附录《计算机化系统》法规解读之“如何管理非色谱类数据?”
    上一期中,我们预期了GMP法规新附录《计算机化系统》将为制药企业带来的影响,提到Empower 3网络版软件可以解决色谱数据的安全性、合规性和备份问题。那么,对于非色谱类仪器,如何解决它们的数据管理问题?本期我们将进行详细的讨论。 根据《计算机化系统》附录的要求,除了色谱类(LC和GC)数据,实验室也要确保非色谱类数据的安全性和合规性,比如质谱、红外、核磁等仪器。对于这些无法通过Empower网络版软件控制的系统,沃特世提供另一种数据管理解决方案——NuGenesis SDMS科学数据管理系统,它可以自动采集、编目原始数据和报告数据,将来自任何仪器的原始数据归档至安全、可靠的Oracle数据库中,符合电子记录和电子签名的规定等,最终帮助企业满足法规要求。 数据备份、归档 CFDA的《计算机化系统》法规附录里强调了电子数据的备份和归档的重要性,不论是以电子数据作为主数据,还是纸质打印件作为主数据。而FDA也认为,完整、准确的数据副本非常重要,因为纸质打印件已不再适合代替电子数据。NuGenesis SDMS以Oracle作为底层数据库,可以自动、准确地采集原始数据和报告数据,并归档到数据库中;可对数据的变化进行追踪,并将每一次变化保存到数据库,保护其不被篡改。相比其他备份软件采用的固定备份周期,如:每天一次或每周一次,NuGenesis SDMS对数据进行实时备份,显著降低了故障发生时的数据丢失率。 审计追踪 通过“审计追踪”功能,可追踪对数据的访问的更改,是维护系统安全的关键。审计追踪不完整或缺失会影响数据的完整性,甚至影响产品质量。从过去的审查案例中可以看到,通过审计追踪可以有效发现是否有数据操纵行为发生。而当在审查过程中发现数据偏差时,审计追踪显得尤为重要。 NuGenesis科学数据管理系统(SDMS)审计追踪自动生成,能够为所有非色谱类系统提供: 1. 采集所有历史信息(人员、时间、内容),包括任何数据的插入、对元数据的修改、记录副本及删除等动作。 2. 不允许更改数据本身。 3. 追溯用户权限的修改。 4. 识别无效或已修改的记录。 5. 能够对所有原始数据和报告数据进行校验确认,保护系统内的数据免遭修改。这些功能大大降低了信息丢失或修改的风险,保持记录的完整性。当面临审计要求、要提供客观证据时,可以从在线NuGenesis SDMS数据库中快速、方便地找到证明文档,而无需人工翻查纸质打印报告,显著提高了效率。 电子审批 《计算机化系统》附录明确认可电子数据和电子签名,这意味着原始数据可以不用像以往那样打印出来再签名,直接对电子数据进行签名是合规的。在不久的将来,制药企业或将由传统的纯纸质记录逐渐转向更为灵活的电子数据和信息环境。如果企业决定采用电子审批,那么同样的,Empower网络版软件可以快速、方便地解决色谱类仪器的电子签名;而对于实验室中的非色谱类仪器,同样可以交给NuGenesis SDMS去解决它们的电子审批过程。 虽然《计算机化系统》附录并没有明确电子签名的相应法规,但从NuGenesis SDMS在满足21 CFR Part 11对电子签名的要求中可以看出,它可以提供一系列功能,满足Part 11对电子签名的要求。 1. 签名的显示——NuGenesis SDMS中的电子签名可显示:1)签名者的完整印刷体姓名;2)执行签名的日期和时间;3)签名的含义(复核、审批、授权、职责)。在签署记录时,这些都是必需要素。此外,NuGenesis SDMS可防止电子签名被重新分配和使用,不允许在应用电子记录后删除该电子记录中的签名信息,确保了电子签名的唯一性。 2. 签名/记录链接——NuGenesis SDMS能够在电子签名和原始电子记录间建立无法破坏的链接,确保签名无法被删除、复制或转移。 以上仅列出了NuGenesis SDMS的几项关键功能,帮助制药企业轻松、可靠地管理非色谱类仪器数据,满足合规性要求。 如您对法规、软件等有任何问题,欢迎继续通过微信向我们留言或发送邮件至yong_jin@waters.com,我们将在下期文章中收集读者最关心的问题,给予详细的解答,敬请关注。
  • 岛津开展制药行业GMP与计算机化系统验证交流
    随着新版GMP新增附录&ldquo 计算机化系统&rdquo 征求意见的发布,国内计算机化系统(LIMS、CDS、ELN等)验证实施细则即将出台。究竟如何科学、高效地进行计算机化系统验证实施?如何应对国内、国际制药监管方的检查?是众多应用计算机化系统的企业亟待解决的课题。 在应对制药行业GMP法规与计算机化系统验证方面具有丰富经验与强大实施力的岛津公司,多年以来积极支持用户在GMP法规合规性上的产品应用。日前,岛津公司联手仪器信息网,分别在北京、杭州与制药行业的用户就如何应对制药行业GMP法规与计算机化系统验证展开了深入交流,促进了制药用户应对新版GMP计算机化系统验证能力的大幅提升。 交流会会场内座无虚席 为使交流效果最大化,本次会议特邀业内国内外知名的GMP法规与计算机化系统验证专家亲临会场。特邀专家包括浙江省食品药品检验研究院李会林老师、秘珀软件咨询有限公司验证总监刘浩女士、日本C-CAST咨询有限公司执行董事荻原健一先生。专家们围绕着如何按新版GMP要求科学管理实验室仪器、设备,GMP计算机化系统验证研究与现状分析,以及如何在GAMP5指导下实施计算机化系统验证等用户最为关心的课题,以众多案例与模板与参会用户展开了卓有成效的交流。与会用户利用这一绝佳的交流平台频频与专家们热烈互动,尽可能地提高自身应对相关法规的能力。浙江省食品药品检验研究院李会林老师在讲课 日本C-CAST公司荻原健一先生对计算机化系统验证知识进行介绍 秘珀软件公司刘浩经理在对GMP法规计算机化系统验证进行解析 为使与会用户有更为实际的体验,岛津公司市场部的候艳红、洪艳女士,网络事业推进部的吴豪杰先生,结合TOC在清洁有效性验证方面的应用,以及提高岛津LabSolutions CS特点的介绍,令与会用户对相关法规应对有了更深一步的理解。 通过长期为用户应对GMP法规提供全面可靠的支持,岛津公司日益成为制药行业用户在应对国内外GMP法规方面的强大后盾。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 量子计算机的“心脏”长啥样? 揭秘量子计算机核心部件--离子阱
    量子计算机前段时间着实在朋友圈火了一把,这主要得益于中国科学技术大学陆朝阳教授和潘建伟教授领导的科学团队研发出10个比特的超导量子计算机的重要成果。经过各大新闻的争相播报,它现在不仅是“人尽皆知”,更让我国在量子领域步入国际行列。那么,量子计算机究竟是什么样的呢? 简单来说量子计算机是一个计算速度非常快的计算机,如果将现代的计算机比做自行车,那量子计算机就是飞机。但是对于它的长相,我们现在无法想象,就好比处在晶体管和电子管时代的人不能想象出超大规模集成电路的计算机长什么样。谁曾想过智能手机芯片已经“完爆”了占地上千平方米的初期计算机呢! 话不多说,今天就带你看看现在的量子计算机长啥样。目前初阶段的量子计算机还真说不上高颜值,跟早期计算机一样,它的“身躯”遍布在实验室的各处。但是谈到关键部分,也就是量子计算机的“心脏”,那可就是“高大上”了。与现在计算机的cpu不同,量子计算机的核心部分是参与运算的量子比特,通常来说是相干光子或离子。产生这些相干光子或离子的方法通常有超导环和离子阱两种方法。其中超导环在多量子比特拓展方面还有一些困难,从而离子阱成为目前较为优势的手段。而无论是超导环还是离子阱,这些器件的稳定运行都需要端苛刻的外界条件,那就是超高真空和低温,也就是说他们要冻在抽真空的“冰箱”里...... advanced microfabricated ion traps. left: high-optical access (hoa) trap from sandia national laboratories (image courtesy of duke university). right: ball-grid array (bga) trap from gtri/honeywell (image courtesy of honeywell). 上图中的器件就是典型的芯片式离子阱,用于产生量子比特的原子就在该芯片的中心位置被激发并被电磁场和库伦相互作用所束缚。而下图是为芯片提供超高真空和超低温环境的montana超精细光学恒温器。该恒温器具有超低温(3k)、超高真空的特点,并且提供多路自由光学通道和光线通道以及多可达100根电学引线,是量子计算机的“心脏”所在。(做为离子阱的标准装置,图片来源于christopher monroe发表在《nature》旗下《量子信息》杂志上的综述文章)。说完“心脏”的外观,那这个心脏的能力如何呢?采用传统离子阱式的量子计算机方案能做到多少比特呢?预计是50个!不要小看这个数字哦,如果能够完全利用它们的相干性,那就是250个数据量,并且信息处理速度可以达到ghz。经过改进的新型离子阱预计可以达到1000个量子比特甚至更多,计算能力和信息量也会大大增加,这会给以后的计算机带来天翻地覆的变化。 compact cryogenic uhv enclosure for trapped ions. (a) on-package vacuum enclosure, sealed in a uhv environment, that contains the ion trap, getter pumps and the atomic source. (b) upon installation and cooling in a compact cryostat, the uhv environment is established. (c) the optical components can be arranged in a compact volume around the cryostat to support the ion trap operation. 后再次祝贺quantum design的用户陆朝阳教授和潘建伟教授在量子计算机领域取得的惊人成就,希望祖国科研再上新台阶。相关参考文献:co-designing a scalable quantum computer with trapped atomic ions. npj quantum information (2016) 2, 16034相关产品链接:美国montana无液氦超低振动低温光学恒温器 http://www.instrument.com.cn/netshow/c122418.htm无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/c159541.htm低温纳米位移台-attocube http://www.instrument.com.cn/netshow/c80795.htm
  • “量子计算用国产极低温稀释制冷机项目”入驻量子信息未来产业科技园
    6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。安徽省科技厅推进发展处处长殷黎莉,安徽大学资产经营有限公司党委副书记、总经理张彤,安徽大学校地合作办副主任刘泉,合肥市科技局党组成员、副局长谢成军,合肥高新区党工委委员、管委会副主任吕长富,合肥市科创集团、高新区科技局、财政局等有关领导出席签约仪式并见证签约。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发,是一种能够提供接近绝对零度低温环境的高端科研仪器,是现代量子科学研究与量子技术发展的关键核心设备之一。项目基于量子计算对稀释制冷机的无液氦、极低温、大冷量、大空间、高稳定性的技术需求,解决了量子计算等领域极低温稀释制冷机完全依赖进口的难题,为相关科研及产业领域提供了替代进口的极低温稀释制冷技术。极低温稀释制冷机在产业化后,将广泛应用于量子计算、凝聚态物理、天文观测等领域。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。“合肥高新区量子产业链完备,创新创业生态健全,高效、贴心的服务赢得了团队的一致肯定。”王绍良表示,下一步,公司将扎根合肥高新区发展,加大科研投入,力争做到国内第一,世界领先。殷黎莉高度肯定了合肥高新区在量子信息未来产业园建设取得的成绩,她表示,省科技厅将会同合肥市大力支持量子信息未来产业园建设,支持开展量子领域关键核心技术攻关和科技成果应用转化,在提升创新平台能级、培育壮大科技企业、引育科技人才队伍、科技体制改革攻坚等方面持续发力,助力合肥高新区建设极具活力、引领未来、享誉世界的“量子中心”和创新之谷,争创国家未来产业培育发展的探路先锋。谢成军强调,市科技局将调动所有能调动的资源,凝聚所有能凝聚的力量,全力支持高新区创新发展,在创新支持、成果转化、试点工程、场景建设方面给予量子企业政策支持。近年来,合肥高新区充分认识量子科技发展的重要性和紧迫性,把量子信息未来产业科技园建设作为“科大硅谷”建设和世界领先一流高科技园区建设的“一号工程”,加强量子科技发展战略谋划和系统布局,把握大趋势,下好“先手棋”。在省市政府关心指导下,合肥高新区于2022年11月28日获批量子信息未来产业科技园建设试点培育单位,这是全国唯一一个正式批复的量子信息未来产业科技园。截至目前,量子信息未来产业科技园已集聚上下游产业链企业53家,量子企业总数约占全国量子企业总数的三分之一。量子信息“关键核心技术环”在国内已经具备领先优势。量子计算方面,高新区是全国唯一一个已销售超导量子计算机整机的地区,并诞生全国第一个量子计算机操作系统和第一条量子芯片生产线;量子通信方面,高新区诞生了全国首个上市的量子科技企业,正在建设全国第二个量子通信城域网;在量子测量方面,高新区企业开发出全球首台量子钻石原子力显微镜,并获批全国首批计量文化和科普资源创新基地。吕长富表示,下一步,合肥高新区将抓好抓实量子信息未来产业科技园专班工作,在项目服务、品牌宣传、产业生态培育等方面做专做细,在量子科技产品应用场景上再下一步“先手棋”,在培育全国龙头量子企业上再下一步“先手棋”,在合肥未来持续高质量发展上再下一步“量子先手棋”。
  • 好消息!热烈祝贺智易时代再获多项计算机软件著作权证书及专利!!
    好消息!热烈祝贺我司再获多项计算机软件著作权证书及Zhuan Li!!2021年已过小半,智易时代已喜迎多项软件著作权证书及Zhuan Li。软件著作权分别是:智慧环保大数据分析及指挥调度平台、机动车尾气遥感监测综合管理系统、道路车流量监测系统 、污染源在线监测APP系统、污染源在线监测IOS系统。实用新型Zhuan Li分别是:一种便携式β射线原位在线监测仪及监测方法、一种高精度车载微型空气质量监测仪及控制系统、一种负压型油烟探头及其检测方法、一种静电式净化器监测模块及其监测方法、一种恶臭在线监测系统、一种车辆尾气颗粒物监测装置。《计算机软件著作权登记证》是国家版权局为保护知识产权专为原创软件著作人颁发的产权证书。此次智易时代获得的三项计算机软件著作权,不仅是自主知识产权软件产品的quan威资质,也是智易时代核心技术及企业雄厚科技实力的证明,标志着智易时代技术研发及自主知识产权建设的又一新突破,同时也是公司致力于专业化技术的重要见证。实用新型Zhuan Li是三种Zhuan Li类型(发明、实用新型和外观设计)中的一种,实用新型是指对产品的形状、构造或者其结合所提出的适于实用的新的技术方案。Zhuan Li对于现在的企业发展至关重要,Zhuan Li的质量和数量直接反映了企业的核心竞争力。未来的市场竞争可以说是企业之间知识产权的竞争,拥有的技术Zhuan Li比别人多,就能在市场上占据一定地位。公司成立至今,着重加大对产品研发的投入力度,积极开展技术创新工作。截止目前,已获取计算机软件著作权登记证书60多个,Zhuan Li证书30多个,我司仍有多项软件著作权证书及Zhuan Li证书正在申报中。这些成果的获取为公司后续的发展积蓄了前进的动力,进一步提升了公司产品科技含量,增强了产品稳定性,提高企业核心竞争力,为公司的持续发展提供了强有力的科技支撑。
  • 沃特世为中国制药行业全面解读GMP法规新版附录《计算机化系统》
    p style="text-align: left "span style="font-size: 14px "strong 中国上海 - 2015年8月19日 – /strong沃特世公司(Waters)近日开展了一系列活动为中国制药行业全面解读国家食品药品监督管理局(CFDA)发布的《药品生产质量管理规范(2010年修订)》(GMP法规)计算机化系统附录(以下简称“《计算机化系统》”),帮助制药企业应对全新附录所带来的严峻挑战。/span/ppspan style="font-size: 14px "/span/ppspan style="font-size: 14px " GMP法规新附录《计算机化系统》将于2015年12月1日起执行,新附录对制药企业计算机化系统的验证、数据合规性、数据安全性、数据备份等提出了明确要求。在开放化的市场竞争和国际化法规监管的双重压力下,如何在提高质量的前提下兼顾效率是国内制药面临的共同挑战。/span/ppspan style="font-size: 14px " 目前制药企业中,有些规模较小的实验室还采用单机版色谱工作站来处理色谱数据。根据新的《计算机化系统》附录明确要求,每套计算机化系统必须进行验证,对于规模化的实验室来说,如果每一台仪器都作为独立系统逐一进行验证,则费用会大幅增加。而当实验室仪器数量达到5台以上,就需要考虑比较单机版与网络版软件的平均成本。相较之下,网络版软件只在首次部署的时候产生验证成本,无疑将成为制药企业在满足验证要求的同时降低成本的有效途径。使用网络版软件,未来再接入新仪器时,都只需对仪器硬件进行确认即可,无需再对软件进行全面的重新验证。如此,单机版与网络版软件的平均验证成本可能相差数十倍。/span/ppspan style="font-size: 14px " 沃特世的色谱数据软件Empower网络版具有强大的功能,能够有效提高实验检测效率,并允许用户通过移动设备随时随地监控色谱系统。而针对非色谱类仪器,沃特世则提供另一种数据管理解决方案NuGenesis SDMS科学数据管理系统,它可以自动采集、编目原始数据和报告数据,将仪器的原始数据归档至安全、可靠的Oracle数据库中,符合电子记录和电子签名的规定等,最终帮助企业满足法规要求。/span/pp style="text-align: center "img style="width: 500px height: 260px " title="Logo.png" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/uepic/2f67c9eb-a2b9-4714-8fc6-3d0294758722.jpg" width="500" height="260"//pp style="text-align: center "span style="font-size: 14px "em网络版色谱数据软件Empower、实验室管理系统NuGenesis/em/span /ppspan style="font-size: 14px "/span/ppspan style="font-size: 14px " 计算机化系统验证比较耗时且操作复杂,需要多领域的专家花费大量时间去完成。沃特世从欧洲ISPE制药工程协会聘请了资深的验证咨询顾问Charlie Wakeham女士(GAMP5指南的编辑之一),为国内制药企业提供全套专业的合规性和验证服务,并协助广大用户顺利完成验证工作,使系统尽快投入运行,并满足法规要求。/span/pp style="text-align: center "span style="font-size: 14px "emimg style="width: 500px height: 331px " title="099.JPG" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/uepic/3698ecd4-624d-43f7-b90a-bd898f8cf6ee.jpg" width="500" height="331"//em/span/pp style="text-align: center "span style="font-size: 14px "emCharlie Wakeham女士进行现场培训/em/span /ppspan style="font-size: 14px " 在沃特世近期举办的北京及成都培训会上,Charlie Wakeham女士与沃特世公司的法规及产品专家介绍了大家特别关注的美国21 CFR Part 11法案、欧盟的Annex 11法案以及ISO 17025标准的共同点和不同点。同时,Charlie Wakeham女士还就计算机系统验证的准备工作及如何获取所需的信息作讲解。此外,沃特世中国信息学产品市场经理金勇先生为与会者全面解读了《计算机化系统》的重要内容,并介绍了沃特世公司的相关解决方案,包括网络版色谱数据软件Empower?、实验室管理系统NuGenesis?以及专业验证CSV(Computerized System Validation, CSV)服务。近两百位来自跨国公司、研究院所和国内知名企业的质量主管、研发负责人和合规主管参加了北京及成都举办的培训。/span/pp style="text-align: center "span style="font-size: 14px "emimg style="width: 500px height: 331px " title="132.JPG" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201508/uepic/5855366b-ce61-4a1d-b1f5-a0cd92739458.jpg" width="500" height="331"//em/span/pp style="text-align: center "span style="font-size: 14px "em沃特世培训会现场/em/span /ppspan style="font-size: 14px " 沃特世中国信息学产品市场经理金勇表示:“沃特世公司此次为广大中国制药企业全面解读全新法规附录,正是希望能够利用沃特世业界领先的实验室信息学解决方案,帮助中国制药企业有效降低成本,满足更严格的数据合规性与安全性要求。”/span/ppspan style="font-size: 14px " 沃特世公司近期还将在全国其他多个城市举办该活动,注册报名可以联系沃特世当地销售和市场人员。有关系统验证的技术细节,请关注Waters官方微信,或发邮件咨询 yong_jin@waters.com ./span/ppspan style="font-size: 14px " /spanspan style="font-size: 14px " /spanspan style="font-size: 14px " /span/ppspan style="font-size: 14px "strong 关于沃特世公司(a href="http://www.waters.com"www.waters.com/a)/strong/span/ppspan style="font-size: 14px " 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。/span/ppspan style="font-size: 14px " 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。/span/ppspan style="font-size: 14px " 2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。/spanspan style="font-size: 14px " /span/ppspan style="font-size: 14px "strong 关于沃特世中国/strong/span/ppspan style="font-size: 14px " 沃特世公司创始于1958年,是全球分析实验室解决方案的行业领导者。沃特世为科学家提供一系列分析系统解决方案、软件和服务,包括液相色谱、质谱和化学品。自上世纪80年代进入中国以来,沃特世目前在内地及香港设有五个运营中心拥有四百多名员工,在上海、北京、广州、成都设立实验中心和培训中心。/span/ppspan style="font-size: 14px " 在中国,沃特世的业务范围涉及生物制药、健康科学、食品健康、环境保护和化学等多个领域,为小分子化学和中药研究、生物制药理化分析、农兽药筛查、代谢产物鉴定、组学平台、临床检测、乳制品检测等提供多种解决方案,服务工业生产的关键环节。/span/ppspan style="font-size: 14px " 自2003年成立沃特世科技(上海)有限公司以来,今天的中国已经成为沃特世全球仅次于美国的第二大市场。沃特世中国始终坚持提高本地技术能力、培育本地技术人才,推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善,力求满足人们日益增长的健康需求,创造更美好的生活。/spanbr//p
  • 空气监测如何用上云计算?
    随着工业化的不断发展,环境污染也日趋严重,空气中的细颗粒物(PM2.5)浓度越来越高,全国多个城市雾霾频发,对公众的日常生活造成极大困扰,引发强烈关注。目前国内环境监测中心站点较少,分布分散,环境监测的数据能够从宏观上反映城市整体的空气质量,但是不能从微观上反映局部区域、特定区域的空气质量的好坏,这就需要建设更多的环境监测站点,提供更多的实时环境监测数据。  而国外一套空气质量监测设备价格在10万美金,国产价格在10万元人民币,价格昂贵,建设更多的环境监测站点需要巨大的资金投入,成本太高。  建设基于云计算平台的空气质量监测预警系统成为必然选择,它不仅能够解决资金投入问题,同时可满足测量精度的要求。作为现有的环境监测站点的补充,云计算平台的空气质量监测预警系统可以准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划等提供科学依据,结合天气状况、地理地形、城市交通、人口密度、工业产值等元素,通过大数据挖掘与分析,为系统地研究改善大气环境质量起到重大的创新支撑作用。  江苏省环保厅就选取昆山市千灯镇化工园区作为1831物联网建设的试点区,在重点污染区域大规模部署环境质量监测传感器,通过后台云计算(数据立方)和空气质量监测预警平台,分析处理大规模的空气质量监测数据,可以做到及时的预警,最大程度降低对环境的危害。通过海量历史数据智能分析,能够监测到工业区的污染过程和追溯污染源头,再结合视频摄像头摄录到的污染视频录像,更方便环保部门管理,做到执法有据。  ■云监控平台海量处理  □预警监测有图有真相  空气质量云监控平台通过前端特征因子采集设备和PM2.5检测设备,采集到相关信息,通过GPRS进行无线数据传输,在有公网IP的服务器上进行数据接收和初步的处理,之后数据存入数据立方进行存储和计算,从而可以检测到每个点的污染情况,同时通过视频摄像终端设备拍摄下排放污染的整个过程,经过Web服务器和视频服务器进行数据的最后处理和公布。在Web页面和移动终端可以实时地查看了解所有监测点的监控视频和空气质量实时和历史数据,做到&ldquo 有图有真相&rdquo ,为环保部门管理和整治整个工业区的环境做好技术支持。  空气质量云监测预警平台可以将预警信息通过邮件、APP推送、短信提醒等方式发送给行政执法者,通过空气质量监测预警平台与原有的视频监控平台结合更能够及时地摄录破坏环境的违法行为,真正做到执法有据、违法必究。对海量历史和实时数据的智能分析,最终通过Web网页、移动终端展示给终端用户,为科学分析环境污染趋势、领导决策和行政执法提供有力的技术支持。  ■价格低廉易部署  □数据实时且精准  价格低廉,可以大规模部署  空气质量传感设备价格只有传统大气监测设备的几分之一,无需花费大量经费即可满足空气质量监测、数据传输功能,可以大规模部署,和现有的环境空气监测站点形成有力互补,对空气质量数据发布有参考意义。  云计算海量数据处理技术  架构云计算海量数据处理平台,采用先进的云计算处理技术,支持自动容错和动态扩展,具有实时性、高可靠性、可伸缩性、高性价比等特点。  实时性  测定速度快,自动化程度高。测试方法决定了测试的实时性,采集时间实现秒级响应,且采集时间可以任意设定,采集的数据实时入库,可实时查询。  采集数据的准确性  采集的数据经过精确的校准,且灵敏度很高,和环保部门发布的空气质量数据及趋势接近,数据真实有效。  实时推送通知  通过对系统设置阈值,超过阈值就第一时间报警,并实时地通过邮件、App推送、短信等形式通知行政执法人员。  扩容性  空气质量监测前端设备可以根据需求进行增加,扩展整个系统的覆盖面积,但是不需要继续复杂的操作,可以动态地增加空气质量测试的节点,并能自动组网,具有很强的扩容性。  数字web展示  通过web或手机终端就可以查看每个监测点周边,以及整个地区的空气质量状况。
  • 空气监测如何用上云计算?
    随着工业化的不断发展,环境污染也日趋严重,空气中的细颗粒物(PM2.5)浓度越来越高,全国多个城市雾霾频发,对公众的日常生活造成极大困扰,引发强烈关注。目前国内环境监测中心站点较少,分布分散,环境监测的数据能够从宏观上反映城市整体的空气质量,但是不能从微观上反映局部区域、特定区域的空气质量的好坏,这就需要建设更多的环境监测站点,提供更多的实时环境监测数据。  而国外一套空气质量监测设备价格在10万美金,国产价格在10万元人民币,价格昂贵,建设更多的环境监测站点需要巨大的资金投入,成本太高。  建设基于云计算平台的空气质量监测预警系统成为必然选择,它不仅能够解决资金投入问题,同时可满足测量精度的要求。作为现有的环境监测站点的补充,云计算平台的空气质量监测预警系统可以准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划等提供科学依据,结合天气状况、地理地形、城市交通、人口密度、工业产值等元素,通过大数据挖掘与分析,为系统地研究改善大气环境质量起到重大的创新支撑作用。  江苏省环保厅就选取昆山市千灯镇化工园区作为1831物联网建设的试点区,在重点污染区域大规模部署环境质量监测传感器,通过后台云计算(数据立方)和空气质量监测预警平台,分析处理大规模的空气质量监测数据,可以做到及时的预警,最大程度降低对环境的危害。通过海量历史数据智能分析,能够监测到工业区的污染过程和追溯污染源头,再结合视频摄像头摄录到的污染视频录像,更方便环保部门管理,做到执法有据。  ■云监控平台海量处理  □预警监测有图有真相  空气质量云监控平台通过前端特征因子采集设备和PM2.5检测设备,采集到相关信息,通过GPRS进行无线数据传输,在有公网IP的服务器上进行数据接收和初步的处理,之后数据存入数据立方进行存储和计算,从而可以检测到每个点的污染情况,同时通过视频摄像终端设备拍摄下排放污染的整个过程,经过Web服务器和视频服务器进行数据的最后处理和公布。在Web页面和移动终端可以实时地查看了解所有监测点的监控视频和空气质量实时和历史数据,做到&ldquo 有图有真相&rdquo ,为环保部门管理和整治整个工业区的环境做好技术支持。  空气质量云监测预警平台可以将预警信息通过邮件、APP推送、短信提醒等方式发送给行政执法者,通过空气质量监测预警平台与原有的视频监控平台结合更能够及时地摄录破坏环境的违法行为,真正做到执法有据、违法必究。对海量历史和实时数据的智能分析,最终通过Web网页、移动终端展示给终端用户,为科学分析环境污染趋势、领导决策和行政执法提供有力的技术支持。  ■价格低廉易部署  □数据实时且精准  价格低廉,可以大规模部署  空气质量传感设备价格只有传统大气监测设备的几分之一,无需花费大量经费即可满足空气质量监测、数据传输功能,可以大规模部署,和现有的环境空气监测站点形成有力互补,对空气质量数据发布有参考意义。  云计算海量数据处理技术  架构云计算海量数据处理平台,采用先进的云计算处理技术,支持自动容错和动态扩展,具有实时性、高可靠性、可伸缩性、高性价比等特点。  实时性  测定速度快,自动化程度高。测试方法决定了测试的实时性,采集时间实现秒级响应,且采集时间可以任意设定,采集的数据实时入库,可实时查询。  采集数据的准确性  采集的数据经过精确的校准,且灵敏度很高,和环保部门发布的空气质量数据及趋势接近,数据真实有效。  实时推送通知  通过对系统设置阈值,超过阈值就第一时间报警,并实时地通过邮件、App推送、短信等形式通知行政执法人员。  扩容性  空气质量监测前端设备可以根据需求进行增加,扩展整个系统的覆盖面积,但是不需要继续复杂的操作,可以动态地增加空气质量测试的节点,并能自动组网,具有很强的扩容性。  数字web展示  通过web或手机终端就可以查看每个监测点周边,以及整个地区的空气质量状况。
  • 石化和涂料油墨制造行业VOCs排放量计算方法(2017版)来了!
    p  通过一年多的试行,上海市环保局组织修订并发布了《上海市石化行业VOCs排放量计算方法(2017年修订版)》和《上海市涂料油墨制造业VOCs排放量计算方法(2017年修订)》。新版的内容有哪些变化?/pp 1.新增储罐修正周转量《修订方法》在储罐公式法中增设了修正周转量,其根据实测“液位高度变化”与“最高液位高度”比值对储罐周转量进行了修正。/pp 2. 新增储罐和装卸平衡管效率系数《修订方法》中在储罐和装卸公式法增设了平衡管效率系数,充分考虑了油气平衡管控制效率和减排效果,更接近实际排放情况。/pp 3. 加入废水WATER9《修订方法》中废水公式法加入WATER9了模型法,丰富了在废水中VOCs全组份种类及浓度已确定的情况下VOCs排放量计算方法。/pp 4. 加入冷却塔汽提实测法《修订方法》中冷却塔加入汽提实测法,更加精准测算冷却塔、循环水中VOCs排放量。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制