当前位置: 仪器信息网 > 行业主题 > >

无水肌酸

仪器信息网无水肌酸专题为您提供2024年最新无水肌酸价格报价、厂家品牌的相关信息, 包括无水肌酸参数、型号等,不管是国产,还是进口品牌的无水肌酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无水肌酸相关的耗材配件、试剂标物,还有无水肌酸相关的最新资讯、资料,以及无水肌酸相关的解决方案。

无水肌酸相关的资讯

  • 医疗污水检测 吉大• 小天鹅助力科技战“疫”
    2月1日,深圳确诊患者粪便中检出病毒RNA阳性的新闻一经发布,#粪便中可能有活病毒存在#的话题迅速登上热搜。随后钟南山院士团队和李兰娟院士团队均提出在新冠肺炎患者的粪便中分离出活病菌的信息,这意味着除了飞沫传播外,新冠肺炎也可能通过粪-口传播。 为了有效应对疫情,生态环境部印发了《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》,要求规范医疗污水处理,严防新冠病毒通过粪便和污水扩散传播。并在应急处理技术方案中提出“强化消毒灭菌,控制病毒扩散”的总体要求。 通知指出“当前公共场所和家庭为防控疫情多采用含氯消毒剂进行消毒,排入城镇污水处理厂的污水余氯量可能偏高,影响生化处理单元正常运行。地方生态环境部门要督促各城镇污水处理厂密切关注进水水质余氯指标的变化情况,及时采取有针对性的应对措施,确保出水达标。” 医院污水消毒常采用含氯消毒剂(如次氯酸钠、漂白粉、漂白精、液氯等)消毒、过氧化物类消毒剂消毒(如过氧乙酸等)、臭氧消毒等措施。 疫情当前,吉大小天鹅公司针对医疗污水检测提出相应的解决方案,用科学的手段对抗疫情,通过检测仪器快速分析出消毒后水中消毒剂及其副产物的含量,以确保水质达标。■医疗污水检测 GDYS-101SN2余氯测定仪(点击查看仪器详情) GDYS-101SN余氯总氯测定仪(点击查看仪器详情) GDYS-101SA便携式氨氮现场测定仪(点击查看仪器详情) GDYS-201M多参数水质分析仪(点击查看仪器详情)■消毒剂及其副产物检测 GDYS-601SB消毒剂及其副产物检测仪(点击查看仪器详情) GDYS-101SN2余氯测定仪(点击查看仪器详情) GDYS-101SN余氯总氯测定仪(点击查看仪器详情) GDYS-101SE2二氧化氯测定仪(点击查看仪器详情) GDYS-104SL亚氯酸盐测定仪(点击查看仪器详情) GDYS-101SC2臭氧测定仪(点击查看仪器详情) GDYS-104SM有效氯检测仪(点击查看仪器详情)相关新闻分享:吉大小天鹅有效氯检测仪热卖中!
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 禁毒新技术:一滴污水验出毒品藏匿踪迹
    根据《2021年中国毒情形式报告》,2021年,中国禁毒部门持续加大毒品打击整治工作力度,全国毒情整体向好态势继续得到巩固拓展,呈现境外毒品输入数量和国内制毒产量“双减”,国内毒品供应量和流通量“双降”,毒品走私贩运和制毒物品流失问题得到遏制,毒品滥用规模和涉毒犯罪案件连续多年下降的良好态势。同时,受百年变局和世纪疫情影响,全球毒品产量居高不下,毒品网上交易更加活跃,毒品滥用人数持续上升,中国禁毒斗争面临的外部环境更加复杂,国内毒情形势出现新情况新变化。毒品滥用不仅给吸毒者本人及其家庭带来严重危害,也诱发盗抢骗等一系列违法犯罪活动。长期滥用合成毒品还极易导致精神性疾病,由此引发自伤自残、暴力伤害他人、“毒驾”等肇事事件,给公共安全带来风险隐患。在此背景下,仪器信息网特别建立“质谱在毒品分析领域的技术应用进展”专题,聚焦质谱技术在毒品检测领域的最新应用,以增强业界质谱专家和技术人员、司法公安相关机构工作者之间的信息交流,同时向仪器用户提供毒品分析领域更丰富的质谱产品、技术解决方案。本文特别邀请岛津公司来谈谈污水验毒相关的一系列产品技术及解决方案。毒品吸食后经人体代谢,其代谢物和原型物会随着尿液和粪便会被排入生活污水,通过测定未经处理的生活污水中毒品的浓度并推出毒品的消耗量。这种技术来源于污水流行病学,是了解区域毒情的新兴的重要技术手段。通过准确测定未经处理生活污水中的毒品及其代谢产物的浓度,并应用相应数学模型计算,可将测得的毒品浓度(ng/L)推算为该区域内吸毒人员服用的某种类型的毒品数量(单位:g/1000人/天)。2005年,意大利首次采用污水分析技术对国内的可卡因消耗情况进行了评估。此后,有更多的实验室和毒品监测机构将污水分析技术应用于不同国家、城市的毒情评估中,监测的毒品种类有海洛因、苯丙胺类毒品、氯胺酮、可卡因、大麻等。污水分析技术已受到联合国毒品与犯罪办公室(UNODC)和欧盟EMCDDA、美国环保署(EPA)等机构的重视与支持。我国不仅利用该技术大规模监测大中城市的毒品滥用情况,全面评估城市毒品滥用情况,更成功利用该技术精确打击制毒、吸毒的违法行为。污水毒品检测主要面临两大技术难点:1. 目标分析物浓度极低。毒品及其代谢物经人体代谢排入生活污水管网,随着水体的流动而扩散、稀释,另外化合物的代谢率,以及化合物在污水管网中存在吸附和降解,因此毒品及其代谢物在生活污水样品中的浓度极低,一般在ng/L水平。2. 基质复杂。生活污水所含的污染物主要是有机物和大量微生物,其中有机物中的表面活性剂、治疗药物及微生物的代谢物均会干扰质谱检测,影响目标分析物的灵敏度。准确测定污水中毒品的浓度,是污水毒品检测技术能够发挥作用的重要前提,因此可靠的检测方法至关重要。目前,超高效液相色谱-串联质谱技术是痕量有机物分析的首选技术手段,具有快速、高效、灵敏度高的优势,其多反应监测模式(MRM)可以有效避免因基质干扰而造成的假阳性现象。由于污水中大部分毒品及代谢物的最终浓度极低,无法使用LC-MS/MS技术直接分析检测。因此,污水样品必须经过富集和除杂的前处理过程,才能上机检测。固相萃取技术是目前文献报道最多的污水毒品检测的前处理手段,离线固相萃取技术因其固相萃取柱填料种类丰富和规格多样而被广泛应用,但是该技术前处理过程繁复,费时费力,不仅样品用量大,还容易造成实验误差。在线固相萃取技术是近年来热门的样品前处理技术,在多个分析领域中,被越来越多的用于代替传统离线固相萃取,特别是大体积水样的分析。这种技术既能满足 “mL”级样品的直接进样分析,又能保证目标分析物的富集效果,同时还具有自动化程度高、溶剂消耗少且稳定性好的特点。由于所需耗材和硬件都基于商品化产品,方法建立后容易进行推广和复制。岛津全自动固相萃取分析系统(Automatic Online Extraction System,简称AOE系统,专利号:ZL 201710854264.7),将样品前处理、超高效液相色谱分离、质谱或光谱检测、数据处理等高度集成,轻松实现自动化分析,告别繁复的手动前处理。岛津全自动固相萃取分析系统专利证书(专利号:ZL 201710854264.7)污水样品仅需经过简单的过滤,即可上机分析,不仅可以大幅减少样品用量,极大简化样品前处理过程,节约前处理时间,还可以有效增加分析通量,具有高效性与便捷性。分析效率较传统离线前处理方法提升了80%。可以实现生活污水样品的即时检测,有效避免部分代谢物随时间增加而降解,可满足未来生活污水分析中密集采样、快速分析等检测需求。可替宁和13种毒品色谱图,其中1-可替宁(100 ng/L)、2-吗啡、3-MC、4-可待因、5-苯丙胺、6-MDA、7-O6-单乙酰吗啡、8-甲基苯丙胺、9-MDMA、10-去甲氯胺酮、11-苯甲酰爱康宁、12-氯胺酮、13-可卡因、14-四氢大麻酸(10 ng/L)将同一份样品分别用离线与在线固相萃取两种技术进行分析,通过对比检测结果发现,两种方法在检出项目和检测浓度上均表现出良好的一致性,表明两种方法在检测能力和检测准确度方面表现相当,在线固相萃取技术可代替传统固相萃取分析方法。岛津AOE系统,作为在线固相萃取技术的代表,具备24h不间断样品制备能力-样品制备后可立即检测,减少因样品等待仪器分析时间过长造成的主成分损失,大大降低了实验室人力运行成本,真正实现了污水中毒品的“快、准、稳”的分析检测,实现缉毒“精确制导”!禁毒工作从“新发现一种、列管一种”的“追着管”,到现在“防在先、提前划清禁区”,岛津始终致力于解决前沿禁毒问题,引领推动禁毒科技工作创新发展,努力为从事法医毒理的客户提供前瞻性的解决方案和专业支持。
  • 【技术指导】石油产品水溶性酸及碱测定仪的使用方法及安装
    石油产品水溶性酸及碱测定仪使用方法、安装A1181技术指导产品介绍产品名称:石油产品水溶性酸及碱测定仪产品型号:A1181概 述:本仪器用蒸馏水或乙醇水溶液抽提试样中的水溶性酸及水溶性碱,然后,分别用甲基橙或酚酞指示剂检查抽出液颜色的变化情况,或用酸度计测定抽提物的pH值,以判断有无水溶性酸或水溶性碱的存在。适用于按GB/T 259所规定的方法测定液体石油产品、添加剂、润滑脂、石蜡及含蜡组分的水溶性酸及水溶性碱。使用方法1、当试验液体石油产品时,将50 ml试样和50 ml蒸馏水放入烧瓶,加热试样至50~60℃,倒入分液漏斗。然后轻轻摇动分液漏斗5min,不许乳化,放出澄清后下部的水层,经滤纸过滤后,滤入锥形烧瓶中。2、当试验添加剂产品时,向分液漏斗注入10 ml试样和40 ml溶剂油,再加入50 ml加热至50~60℃的蒸馏水。将分液漏斗摇动5min,澄清后分出下部的水层,经有滤纸的漏斗,滤入锥形烧瓶中。3、若石油产品用水混合后产生乳化时,则用50~60℃、1:1的95%乙醇溶液代替蒸馏水处理。4、当试验润滑脂、石蜡、地蜡及含蜡组分产品时,取50克预先熔化好的试样,将其置入瓷蒸发皿中,然后注入50 ml蒸馏水,并煮沸至完全熔化,冷却至室温后,将下部水层经有滤纸的漏斗,滤入锥形烧瓶中。5、用指示剂测定水溶性酸或水溶性碱:向两个试管中分别放入1~2ml抽提物,在第一支试管中加入2滴甲基橙溶液,并将它与装有相同体积蒸馏水和甲基橙溶液的第三支试管相比较。如果抽提物呈玫瑰色,则表示所试石油产品里有水溶性酸存在。在第二支盛有抽提物的试管中加入3滴酚酞溶液,如果溶液呈玫瑰色或红色时,则表示所试石油产品里有水溶性碱存在。当抽提物用甲基橙溶液或酚酞溶液为指示剂,没有呈现玫瑰色或红色时,则认为没有水溶性酸或水溶性碱。6、用酸度计测定水溶性酸或水溶性碱:向烧杯中注入30~50ml抽提物,电极浸入深度为10~12mm,按酸度计使用要求测定pH值,根据下表确定试样抽提物水溶液或乙醇水溶液中有无水溶性酸或水溶性碱。石油产品水(或乙醇水溶液)抽提物特性pH值1酸性4.52弱酸性4.5~5.03序号5.0~9.04弱碱性9.0~10.05碱性10.0用酸度计测定时同一操作者两结果之差不应大于0.05pH,取重复测定两个pH值的算术平均值作为试验结果。警告:仪器若出现故障应及时切断电源,请专业技术人员检修并排除故障后方可继续使用,防止发生意外!安装1、取出可调电热器,置于平整、耐高温、阻燃的工作台或平板上,按照图示和以下步骤安装仪器。2、将支架杆和固定台按图安装好,拧紧螺钉固定。3、将冷凝管夹持器在支架杆的合适位置,用管夹夹住分液漏斗。4、在分液漏斗下部装入烧瓶。5、试调加热器。将加热器调整旋钮逆时针调到底,接通电源,顺时针转动旋柄,逐渐加大电热器功率到适合程度(如果调小功率后,仍感到电热板温度过度,可在烧瓶与电热板间垫薄石棉网),然后关闭电源待用。
  • 夏芮污水验毒勘破毒情线索
    阳光的背后总有黑暗,在城市灯红酒绿、纸醉金迷的背面也有藏污纳垢的阴暗角落。城市的排污管道看起来污秽不堪,一文不值的生活污水里包含着大量有用信息,默默讲述着城市的角落里,哪些区域、有多少人在悄悄吸毒、制毒。通过对城市污水进行监测,执法部门可以精准掌握一定区域内涉毒人员数量和 du pin 消耗量,以及具体种类和所占比例。污水毒情监测为上级执法部门制定高效精准的禁毒政策提供了准确的依据和数据支撑,用技术探索出一条智慧禁毒之路。污水毒情监测污水毒情监测原理示意图污水验毒主要是对污水处理厂或者人群聚集点、地表河流及湖泊等未经生化处理的生活污水进行检测,根据人体代谢机理、区域人口数量等,对特定区域生活污水中 du pin 及其代谢物含量进行抽样检测,结合水质参数等进行综合分析,从而准确测定特定区域 du pin 消耗(排入)总量、 du pin 种类以及吸毒人群规模等,判断出各地 du pin 使用情况和分布规律。绘制“污水地图”,相当于搭建起毒情观察哨。精准检测水样中人体代谢产物的数量和种类,对于预防和打击 du pin 犯罪颇有效果。案例案例1:2021年6月,阳江警方在一次污水检测中,利用在线污水智能采样系统发现辖区内污水里的 bing du 、海洛因浓度较高,表明辖区内 bing du 、海洛因吸毒人群有扩散情况。根据这一毒情,阳江警方精准排查,并共抓获涉毒人员84名,缴获各类可疑 du pin 515.7克。案例2:2021年8月,江西丰城市全市污水检测中,警方发现丰城市个别区域γ-羟基丁酸物质严重超标。这说明,该区域内有人涉嫌滥用含有γ-羟基丁酸的 du pin 。经过排查,警方成功抓获的涂某、孟某、王某等人。经调查,几人通过非法途径购得γ-羟基丁酸,经调制后卖给吸毒人员,警方从他们手中共缴获γ-羟基丁酸17618.1克。夏芮解决方案夏芮DT-CR0200在线污水自动取样器,是一款专为污水毒情监测设计,集自动分瓶、自动采样、恒温冷藏、远程控温、视频监控、远程电控锁、电子标签自动识别、样品溯源、北斗+GPS卫星定位、4G通讯、内置锂电池为一体的小型在线智能化水样采集监测系统。夏芮DT-CR0200在线污水自动取样器适用于公安禁毒污水毒情监测取样及污水 du pin 溯源取样工作的流程管理和设备远程监控。系统包括污水采样监测管理云平台、手机管理程序和污水在线采样仪、蓝牙标签打印机等。污水在线采样监测云平台可以对污水采样设备进行在线管理,对设备进行分组,根据工作需要定时定点下达单台、多台或整体采样指令,并接收采样设备工作状态数据及异常报警,方便设备管理和异常处置。系统优势:1、 手机管理小程序:可以对污水设备进行管理,上传采集点各类信息,生成样本存储容器唯一溯源标识,并通过蓝牙打印机打印标签;2、 数据安全:设备通过4G/5G/蓝牙等无线信号进行数据通讯及传输,提供唯一设备ID平台注册管理;3、 自动分装样品:控制分瓶装置自动分装样品,分装自动定位准确可靠,可设置分瓶方式,完成单采或混合采集;4、 高可靠蠕动泵:混合式步进电机细分驱动,运行平稳可靠,易拆装的泵头,液体与管路接触无污染、耐高温、耐腐蚀;5、 智能采样程序:可模块化程序结构,一键启动;6、 模块化的程序结:多CPU控制电路,可编程控制,光电隔离,提高了产品的综合性能,预先编制多种采样程序。夏芮DT-CR0200在线污水自动取样器可以检测出海洛因、 pin du 、氯胺酮等 du pin 及滥用药物50多种,常见 du pin 的检出限可达到纳克级别。通过分析污水中 du pin 的浓度,评估辖区毒情,为执法部门针对性地开展 du pin 打击整治工作、遏制 du pin 犯罪提供有力支撑。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 污水验毒再升级,岛津自动化来助力
    导 读污水毒品检测是近几年禁毒领域新兴的检测项目,不仅能够客观、全面的反应城市毒情,更而且能够为公安机关锁定“毒源”提供有利的技术支持。岛津与相关单位合作,进一步升级污水毒品检测方法,做到简便、快速、准确度高,轻松实现自动化分析,告别繁复的手动前处理,为禁毒工作保驾护航。岛津全自动固相萃取分析系统(AOE系统)岛津全自动固相萃取分析系统原理图(AOE系统)污水毒品检测技术2.0工欲善其事必先利其器,岛津推出特色全自动固相萃取分析系统(Automatic Online Extraction System,简称AOE系统),该系统将样品前处理、超高效液相色谱分离、质谱或光谱检测、数据处理等高度集成,轻松实现生活污水样品的自动化分析。岛津AOE系统通过在线固相萃取技术提高样品利用率,既能够减少样品用量,又能够简化前处理过程,节约分析时间,大大降低实验室人力运行成本。生活污水样品离线固相萃取和AOE系统分析流程对比 岛津首次将人口标记物与13种常见毒品和代谢物一针进样分析,成功克服了化合物浓度差异大、化学性质差异大的困难,还解决了四氢大麻酸在离线固相萃取方法种灵敏度不足的问题。1-可替宁(100 ng/L)、2-吗啡、3-MC、4-可待因、5-苯丙胺、6-MDA、7-O6-单乙酰吗啡、8-甲基苯丙胺、9-MDMA、10-去甲氯胺酮、11-苯甲酰爱康宁、12-氯胺酮、13-可卡因、14-四氢大麻酸(10 ng/L) 本方法不仅完成了方法学验证,还对比了离线固相萃取方法和岛津AOE系统分析同一份样品的检测结果,检出的主要毒品的浓度见下图。两种方法在检出项目和检测浓度上均表现出良好的一致性,说明岛津AOE 系统可代替离线固相萃取分析方法用于污水毒品检测。结合岛津最新污水检测技术推出《全自动固相萃取分析系统(AOE)应对生活污水毒品解决方案》,帮助用户“拿到即用”,欢迎识别上图二维码下载。 污水验毒助力禁毒科学决策,实现缉毒“精确制导”! 岛津AOE系统,作为在线固相萃取技术的代表,具备24h不间断样品制备能力-样品制备后可立即检测,减少因样品等待仪器分析时间过长造成的主成分损失,大大降低了实验室人力运行成本,真正实现了污水中毒品的“快、准、稳”的分析检测。 撰稿人:刘佳琪
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图添加回收结果回收率88%~89%(添加水平:10、50、100 mg/kg)相对标准偏差(n=5) 2%线性范围0.25~100 mg/L定量下限5.0 mg/kg* 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息:货号名称规格样品前处理37177针头式过滤器 Nylon13 mm,0.22 μm 100/pk37180针头式过滤器 Nylon13 mm,0.45 μm 100/pk色谱柱及保护柱99503耐100%纯水流动相反相液相色谱柱Platisil ODS C18250 × 4.6 mm, 5 μm标准品46672顺丁烯二酸酐[108-31-6]1 g46671顺丁烯二酸[110-16-7]1 gHPLC溶剂 缓冲盐 离子对试剂50102甲醇 HPLC级4 L50108无水乙醇 HPLC级4 L50133磷酸 HPLC级50 mL通用色谱产品52401B瓶架/蓝色50 孔52401A瓶架/白色50孔5323样品瓶(棕色/螺纹2 mL, 100/pk5325样品瓶盖/含垫(已经组装)100/pkH80465HPLC 进样针25 μL
  • 污水应急处理需过几道坎?
    weixin://private/setresult/SCENE_FETCHQUEUE&eyJmdW5jIjoiZ2V0TmV0d29ya1R5cGUiLCJwYXJhbXMiOnt9LCJfX21zZ190eXBlIjoiY2FsbCIsIl9fY2FsbGJhY2tfaWQiOiIxMDA0In0=污水应急处理需过几道坎?工业水处理  业界把污水的常规处理和应急处理称为“阵地战”和“游击战”。在当前条件下,两者的结合成为防止污水直排、治理河湖黑臭的经济有效方式。“阵地战”解决了全国约80%的污水处理,“游击战”是阵地战的有益补充,解决剩余的20%直排污水。  目前,在“阵地战”上,各地政府已经具备了丰富的经验和模式。而“游击战”怎么打,还处于探索中。记者近日来到位于北京清河的污水应急处理站,实地调查了污水应急处理的技术和效果。  项目建设: 规模和投入不必像污水处理厂那么大,应体现投资小、运营机动灵活的特点  清河是北京北部主要的城市排水河道,全长23.6公里,流域面积达210平方公里,在北京的河湖水系中占有重要地位。2006年,北京市曾经投入超过6.4亿元整治清河,用于形成北京奥运会重要场地之一的奥林匹克公园及周边生态环境水清岸绿的景观。  然而好景不长,清河水质在奥运会后再度恶化,不少河段出现黑臭现象。究其原因是清河两岸排污口众多,工业企业和城中村排污口对河流的污染严重。  对此,北京市再次治理清河水质,重点针对未纳入管网污水进行治理。清华大学环境学院高级工程师钟晓红介绍说,城市发展中会存在临时排污的情况,由于污水收集管网建设不能一蹴而就,临时排污点就需要应急处理措施。应急处理技术设施规模和投入不必像污水处理厂那么大,要体现投资小、机动灵活的特点。  这样的设想在清河北岸河北村项目中得以实现。北京市对清河的新一轮整治中,按照务实有效的思路,通过认真的技术比选,选择了超磁透析技术对河北村集中排污口进行应急处理。  处理站建设在河北村排污口上游、清河路北绿化带北侧的一块荒地上,集装箱式的可移动主体设备占地仅约40平方米,整个水处理站总占地面积也仅520平方米,处理规模却能达到2000立方米/日。  记者在现场看到,污水处理应急设备就建在清河岸边,设备外观是一个矩形厢体,厢体内的装置全部标准化配置。  据处理站工作人员介绍,这套污水应急处理设施从安装到运营只需要两个星期的时间。由于设备自动化程度高,目前处理站有两名工作人员进行日常维护。  据介绍,这样的污水处理站基建设备投资按吨水计仅为500元左右,是同等规模污水处理厂的1/6~1/8,其运行费用在0.1元~0.5元/立方米,略低于城市污水处理厂。也就是说,一级强化应急处理在成本方面具有很大的优势。  技术选择: 一级强化处理是应急处理的优选技术,成本低、效果好,悬浮物和总磷去除率可达90%以上  有些污水之所以要采取应急处理手段,就是因为存在种种客观原因,不便做常规处理,如城中村、城郊接合部、边缘住宅小区的存在,注定在城市化进程中应急处理应该是常态化的。那么,应急处理应该选择什么样的技术呢?  中国工程院院士钱易认为,污水处理采用什么技术手段,应当根据污水处理后的用途来选择,在当前国情之下,不宜一刀切地追求高标准技术。 业界专家普遍认为全面覆盖污水处理,需要3种层次技术的协调配合。三级处理是着眼回用的高级处理,标准高、投入大;二级处理是普遍化的常态处理,当务之急是要使之稳定正常运转,发挥预定的作用;与此同时,还需要污水的一级强化处理作为补充。应急处理采用一级强化技术就是这种补充。  据研究,虽然一级强化工艺出水水质标准没有二级处理高,但是其单位污染物的去除成本却远高于二级处理和三级处理。因此,在当前,解决20%污水直排问题,采取应急的一级强化处理技术措施就是最有效的选择。只有这样,才能更好地抑制黑臭,整体水环境会显著改善。  在清河河北村项目中所采用的超磁透析技术就属于物化法的一级强化处理技术。  记者在河北村污水处理站看到,未处理的污水与处理后的出水形成了鲜明对比,一边浑浊一边清澈,处理后的出水与清澈的清河干流融为一体,再也不是以前在排污口下游形成扇形污染带的样子。  有关技术人员介绍说,虽然为一级强化处理技术,但是悬浮物和总磷去除率可达到90%以上,COD去除率可达40%~60%,非常显著地削减了污染负荷。  据悉,由于停留时间短、处理效果好,2012年,超磁分离技术获得了北京市科技进步奖一等奖。  商业模式:探索建立1~5年的应急合同环境服务模式,以效果为导向的合同环境服务值得推广   污水的应急处理弥补了常规污水处理的不足,是形成污水处理全覆盖的重要补充手段。在当前城市污水常态化、阵地战的二级处理已经取得巨大进展的情况下,正视仍然存在20%左右直排污水的现状,以求真务实、积极作为的思路加强一级强化的应急处理的应用,就显得十分必要。而要扩大污水应急处理的应用,还需要建立合理的商业模式。  “目前,合同环境服务在环保产业中的运用得到了环境保护部的鼓励和支持,作为一种商业模式正得到探索、走向完善。针对水污染应急处理需求,应当以效果为导向,探索建立应急合同环境服务。”钟晓红说,新建污水处理厂的建设—运营—移交模式(BOT)是合同环境服务模式的一种,已经成熟。污水应急处理的商业模式可以多样化,既可以采用甲方购买设备并委托乙方运营的模式,也可以采用甲方购买环保服务的模式,这些都属于以效果为导向的合同环境服务。  据了解,在河北村项目中,甲方并不购买设备、也不承担工程建设费用,而是双方合同约定处理效果,由乙方承担工程建设、生产制造并集成安装设备,直至负责运营,达到约定的处理效果,甲方按照合同约定实行吨水付费。这是典型的政府采购环境保护公共服务的范例,也是应急合同环境服务的典型案例,值得大力推广。www.boqu17.com
  • 医疗污水处理过程中的微生物检测标准及方法解析
    为什么需要如此重视医疗污水和城镇污水监管工作呢?美国PM Gundy的研究团队曾在《Survival of Coronaviruses in Water and Wastewater》一文中指出,水体中的有机物和悬浮固体可以吸附冠状病毒,为病毒的存活提供了保护。同时,从污水流向的我们不难看出,粪便最终排到了污水处理厂,这些可能携带新型冠状病毒的废水,在污水处理中形成携带病毒的气溶胶,从而形成了气溶胶传播的环境,使污水处理人员成为感染风险较大的群体,对阻止疫情传播有很大的影响。因此,医疗机构、污水处理机构及环境监测部门,都是控制病毒通过污水传播的关键。 目前,为有效防止新型冠状病毒通过粪便和污水扩散传播,生态环境部门要求对要接收新型冠状病毒感染的肺炎患者或疑似患者诊疗的定点医疗机构(医院、卫生院等)、相关临时隔离场所及研究机构,严格执行《医疗机构水污染物排放标准》,并参照《医院污水处理技术指南》、《医院污水处理工程技术规范》和《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》等有关要求,对污水和废弃物进行分类收集和处理,确保稳定达标排放;同时,地方生态环境部门要督促城镇污水处理厂切实加强消毒工作,结合实际,采取投加消毒剂或臭氧、紫外线消毒等措施,确保出水粪大肠菌群数指标达到《城镇污水处理厂污染物排放标准》要求。 通过对比以上标准发现,在这些污水处理过程中,粪大肠菌群数是评判污水处理是否合格的关键微生物指标。研究表明,污水中粪大肠菌群数量与肠道致病菌数量存在相关关系,当污水中粪大肠菌群数超过1174个/L时,即可在污水中检出病原菌,因此将粪大肠菌群数作为特征指示性指标对这些微生物进行控制。 根据检测方法、应用领域和污染情况的不同,各标准中对粪大肠菌群数的限量也不同(表1)。目前,可用于检测水体中粪大肠菌群数的方法有4种,分别是多管发酵法、膜过滤法和快速荧光检测法、酶底物法,其中前三种认可度较高,且使用较广泛。 1 膜过滤法 膜过滤法是目前最常用于水体中粪大肠菌群数检测的一种标准方法,也是《新型冠状病毒污染的医疗污水应急处理技术方案(试行)》中的指导方法,可于地表水、地下水、生活污水、工业废水及医疗污水等样本的检测。 该方法使样品通过孔径为0.45μm的滤膜过滤,细菌被截留在滤膜上,然后将滤膜置于MFC选择性培养基上,在特定的温度(44.5℃)下培养24h,胆盐三号可抑制革兰氏阳性菌的生长,粪大肠菌群能生长并发酵乳糖产酸使指示剂变色,通过颜色判断是否产酸,并通过对呈蓝色或蓝绿色的菌落进行计数,从而测定样品中粪大肠菌群浓度。 膜过滤法的关键在于样品前处理,需借助抽滤装置才可完成,使微生物被截留在无菌滤膜上,并通过物理的方式进行富集,以保证粪大肠菌以菌落形态被检出。目前,市面上已有较为成熟、有效的的水中膜过滤装置,可用于水体中微生物前处理操作。专为水质样品前处理、富集等操作设计;结构精巧,配合精密抽滤泵,保证良好的抽滤效果;不锈钢材质,可高温高压灭菌,避免交叉污染;直抽直排,防止废液倒吸。 2 多管发酵法 多管发酵法又称最大可能数(most probable number,MPN)法或稀释培养计数法,该方法是用于检测地表水、地下水、生活污水和工业废水中粪大肠菌群的测定中粪大肠菌群数的一种标准方法。 该方法是一种基于泊松分布的间接计数法,利用统计学原理,根据一定体积不同稀释度样品经培养后产生的目标微生物阳性数,查表估算一定体积样品中目标微生物存在的数量(即单位体积存在目标微生物的最大可能数)。 采用多管发酵法时,先将样品加入含乳糖蛋白胨培养基的试管中,37℃初发酵富集培养,大肠菌群在培养基中生长繁殖分解乳糖产酸产气,产生的酸使溴甲酚紫指示剂由紫色变为黄色,产生的气体进入倒管(杜氏小管)中,指示产气。然后再44.5℃复发酵培养,培养基中的胆盐三号可抑制革兰氏阳性菌的生长,最后产气的细菌确定为是粪大肠菌群。最后通过查MPN表,即可得出粪大肠菌群浓度值。 实验小贴士 该方法在操作过程中,根据样品检出限的不同,可选择12管法(检出限为3MPN/L)或15管法(检出限为3MPN/L)进行实验,因此需要大量使用试管和液体培养基(每个样品需准备12或15支试管)。若检测样品量较大时,建议可采用培养基分液器来降低工作量。可用于生理盐水、液体及半固体培养基自动分装;1L溶液分装到100个MPN法试管中,最快仅需2分钟;微电脑系统与精密泵体联合控制,分装精度高;分装量、分装速度、分装时间、停顿时间、分装次数等参数可自由设定。 采用自动微生物试剂分液器进行实验用品准备,不仅能实现准确的连续分装,还可在保证进度的同时,大大降低工作量。 3 快速荧光检测法 快速荧光检测法是一种利用ATP荧光原理与微生物特性相结合的快速检测方法,虽然该方法暂未被纳入国家标准中,但由于其操作方便,检测与培养时间短(仅为膜过滤法、多管发酵法的1/3),目前被很多大型企业作为内部微生物自检的一种重要手段。通过与对应的采样、增菌拭子配合使用,可快速检测水体中粪大肠菌群数量。 快速荧光检测法是在荧光素酶(lueiferase)和Mg2+的作用下,荧光素(lueiferin)与ATP发生腺苷酰化反应后被活化,活化的荧光素与荧光素酶相结合,形成了荧光素-AMP复合体焦磷酸(PPi)。该复合物在氧化作用下,产生荧光信号。通过ATP检测液检测微生物ATP的发光量,达到检测细菌的目的。该方法现已获得AOAC研究机构的检测方法性能担保认证。 目前,杭州大微已开发了DW-ES800型微生物实时检测系统,该系统基于ATP荧光快速检测法,采用双模块设计,实现对水体中粪大肠菌群、大肠菌群、大肠杆菌、细菌总数等多种微生物的检测和计数。耗时短:培养时间短(定性8小时,定量1~8小时),检测时间仅需15秒范围广:细菌总数、大肠杆菌、总大肠菌群、粪大肠菌群等多种微生物效率高:双培养通道,可同时培养不同温度微生物易操作:五步即可完成(增菌拭子采样→培养→转移→检测拭子激活→检测)可将RLU值转换为CFU值 4 酶底物法 酶底物法是检测水体中大肠菌群、粪大肠菌群和大肠埃希氏菌的一种标准方法。该方法是利用在特定温度下培养特定的时间,总大肠菌群、粪大肠菌群、大肠埃希氏菌能产生特定的β-半乳糖苷酶将选择性培养基中的无色底物邻硝基苯-β-D-吡喃半乳糖苷(ONPG)分解为邻硝基酚(ONP),呈黄色反应;且大肠埃希氏菌同时又能产生β-葡萄糖醛酸酶将选择性培养基中的4-甲基伞形酮-β-D-葡萄糖醛酸苷(MUG)分解为4-甲基伞形酮,在紫外灯照射下呈荧光反应。统计阳性反应出现数量,查MPN表,再除以接种样品的稀释度。计算相应水样中总大肠菌群、粪大肠菌群、大肠埃希氏菌的浓度值。由于操作起来较为繁琐,工作量巨大,故在日常检测中很少被使用。
  • 数字PCR应用——污水中流感病毒监测
    导读由流感病毒引起的急性呼吸道传染病每年会呈季节性流行。中国国家流感中心发布的2024年第14周中国流感监测周报显示,近期甲流、乙流的来势比较凶猛。如何快速检测流感病毒种类并预测其传播趋势是各国研究者共同关注的热点。瑞士苏黎世联邦理工学院生物系统科学与工程系、巴塞尔城市州立实验室环境微生物学系和巴塞尔州卫生局的研究者在SWISS MED WKLY发表了题为Influenza transmission dynamics quantified from RNA in wastewater in Switzerland的文章。作者使用naica微滴芯片数字PCR系统量化了瑞士三家最大的污水处理厂流入的甲型和乙型流感病毒(IAV和IBV)载量,估算了监测时间内这些区域的感染发病率和有效生殖数(Re)的趋势,并将估算结果与临床流感监测数据进行了比较。流感疫情的发现和监测是一项至关重要但具有挑战性的任务,因为轻症和无症状病例的比例很高,其症状也容易和其他常见循环呼吸道疾病症状相混淆。因此在人群层面监测流感感染具有挑战性。流感样疾病(ILI)和实验室确诊流感病例的报告系统可用于监测流感传播的时间趋势,而在临床报告外追踪病例的方法可以改善对流感传播的动态监测。排放到污水中的流感病毒是一个很有前景的信息来源,它能够区分具有重叠症状的疾病,并且可以捕获未报告的病例。一个社区污水样本中病原体负荷可以预示社区的疾病负担。在该研究中,作者检测了瑞士三个最大的污水处理设施中IAV和IBV的浓度应用亮点:▶ 使用naica微滴芯片数字PCR系统量化了污水中甲型和乙型流感病毒(IAV和IBV)载量。▶ 污水中流感病毒监测对瑞士IAV发病率的峰值更为敏感,与相同地理位置的确诊病例数据相比,可以得到更精确的估算结果。▶ 首次采用统计模型从污水数据中量化了流感传播动力学。这项研究的目的是在瑞士范围内实施污水流感监测,并估算污水中的IAV和IBV传播动力学。作者从瑞士苏黎世、日内瓦和巴塞尔(Zurich、 Geneva、Basel)的污水处理设施收集的污水样品中提取RNA用于IAV和IBV定量。先前的研究表明,污水中可检测到IAV用于研究社区传播动力学。但污水中IBV的浓度很低,经常无法检测到。作者在naica微滴芯片数字PCR系统上使用了IABV和RESPV4两种assay,通过逆转录数字PCR(RT-dPCR) 进行病毒核酸绝对定量。IABV assay是针对IAV和IBV的双重检测。RESPV4是一种四重检测方法,可以同时定量IAV、IBV 、SARS-CoV-2核蛋白座2(N2)和呼吸合胞病毒基质蛋白(RSV)。IAV分析使用了IABV和RESPV4 两种assay的结果,而IBV在IABV assay中阴阳性微滴分离度不够,只使用了RESPV4 assay的检测结果。实验结果:在检测时间范围内,作者能够在超过90%的采样日检测到污水中的IAV(苏黎世37/38天,从日内瓦39/42天,从巴塞尔45/50天。在污水中检测到IBV的频率较低(苏黎世7/35天,日内瓦9/33天,巴塞尔1/50天)。污水负荷数据和每周确诊病例数据都表明,每个集水区都有一个或多个IAV爆发高峰(图A)。区域层面的确诊病例数据比全国ILI(流感样疾病)更好地与污水检测值相对应 (图B)。▲图.污水与临床监测流感数据的比较。(A)用于估计Re的两个数据源。蓝色:污水检测流感平均值(点)和范围(误差线)。没有检测到病毒的天数显示为交叉点。红色:每周报告确诊病例数连接的折线。(B)同期全国每周流感样疾病发病率(橙色)和经校正的流感样疾病拭子每周流感阳性率(棕色)。结论:在这项工作中,作者提出了基于污水病毒载量的流感传播动力学量化的概念证明结果,能够在瑞士三个最大的污水集水区估计感染发病率的趋势。作者通过naica微滴芯片数字PCR系统定量了IAV的有效繁殖数量,也可检测到低浓度IBV。综合起来,这些数据与确诊病例数据相比,描绘了不同的流感爆发动态,基于污水的动态变化更好地符合研究时间范围内SARS-CoV-2变种造成的人口流动限制带来的流感感染趋势。艾普拜生物提供甲型流感、乙型流感检测试剂,同时提供多种病原微生物检测试剂和试剂盒,欢迎订购和咨询。个性化定制服务艾普拜生物数字PCR个性化定制服务覆盖多种检测试剂需求 ( 如鉴定、易位、突变检测、多重突变、高阶多重等 ),更多信息请联系您身边艾普拜生物工作人员或电话联系我们。
  • 解决方案丨食品中酸价的测定
    方法及步骤方法及实验步骤酸价是脂肪中游离脂肪酸含量的标志,当酸价发生严重变质,可能危害人体健康。因此,我国食用植物油标准中规定了油脂的酸价的限量。GB5009.229-2016 《食品中酸价的测定》中规定了各类食品中酸价的三种测定方法—冷溶剂指示剂滴定法(第一法)、冷溶剂自动电位滴定法(第二法)和热乙醇指示剂滴定法(第三法)。各类食品中酸价的测定方法:●常温下能够被冷溶剂完全溶解成澄清溶液的食用油脂样品经有机溶解后就可以采用指示剂滴定或电位滴定进行滴定;●常温下不能被冷溶剂完全溶解成澄清溶液的食用油脂样品,则经热乙醇溶解后,再采用指示剂滴定法进行滴定;●植物油料类样品则需经过乙醚或石油醚的索式提取,提取液经减压浓缩至干,再经有机溶解后采用指示剂滴定或电位滴定进行滴定;●最后是含油食品类样品则需经过石油醚静置提取,提取液经减压浓缩至干,再经有机溶剂溶解后采用电位滴定进行滴定。滴定反应的原理如下式:仪器、试剂仪器睿科FOC9高通量油脂浓缩仪电位滴定仪试剂异丙醇(C3H8O)乙醚(C4H10O)无水乙醚(C4H10O)石油醚,30 ℃-60 ℃沸程试剂配制●氢氧化钾标准滴定水溶液,浓度为0.1mol/L,按照 GB/T601标准要求配制和标定,也可购买市售商品化试剂。●乙醚-异丙醇混合液:乙醚+异丙醇=1+1,500ml的乙醚与500ml的异丙醇充分互溶混合, 用时现配。分析步骤试样的制备称取500g粉碎的速冻牛肉样品(其它食品,称重量随着所含油脂的量而变化,确保所提取油脂的量够试样测定),加入800ml的石油醚,并用磁力搅拌器充分搅拌30min-60min,然后在常温下静置浸提12h以上。再用滤纸过滤,收集并合并滤液于真空平行浓缩杯中,将其转移至FOC高通量油脂浓缩仪上,设置好浓缩条件,浓缩温度为35℃,振荡速度为170rad/min,将其浓缩至干,取残留的液体油脂作为试样进行酸价测定。表-1.FOC9高通量油脂浓缩仪真空梯度表试样的测定取一个干净的200mL的烧杯,用天平称取制备好的样品10g。准确加入乙醚-异丙醇混合液50ml,再加入1颗干净的聚四氟乙烯磁力搅拌子,将此烧杯放在磁力搅拌器上,以适当的转速搅拌30s,使油脂试样完全溶解并形成样品溶液,维持搅拌状态。然后将已连接在自动电位滴定仪上的电极和滴定管插入样品溶液中,注意应将电极的玻璃泡和滴定管的防扩散头完全浸没在样品溶液的液面以下,但又不可与烧杯壁、烧杯底和旋转的搅拌子触碰,同时打开电极上部的密封塞。启动自动电位滴定仪,用标准滴定溶液(2.3.1)进行滴定。实验结果具体滴定体积如表2所示:表-2.滴定体积将得到的滴定体积带入以下公式计算出酸价XAV=3.1mg/g和3.2mg/g,计算得该样品所含酸价为3.15mg/g。式中:XAV———酸价,单位为毫克每克(mg/g) V———试样测定所消耗的标准滴定溶液的体积,单位为毫升(mL) V0 ———相应的空白测定所消耗的标准滴定溶液的体积,单位为毫升(mL) c ———标准滴定溶液的摩尔浓度,单位为摩尔每升(mol/L) 56.1———氢氧化钾的摩尔质量,单位为克每摩尔(g/mol) m ———油脂样品的称样量,单位为克(g)。注意事项(1)整个实验尽量快速完成,防止样品酸败影响实验结果。(2)油脂浓缩仪真空度尽量降低得慢点,防止溶剂暴沸。(3)测定过程中加乙醚异丙醇的量应超过氢氧化钾标准溶液量,以保证有足够的乙醚使油脂充分溶解,有足够量的乙醇防止滴定过程中发生皂粒沉淀析出或皂液水解。(4)部分样品在温度低的时候可能加完乙醚异丙醇后不能完全溶解,可以在水浴上微热溶解后再滴定。(5)KOH固体会吸收空气中的二氧化碳,导致滴定反应复杂化,甚至产生误差,所以配置时,稀释用的蒸馏水在使用前应煮沸15min,并迅速冷却,以除去其中的二氧化碳。仪器优势针对酸价的测定,大部分样品需进行油脂的提取和浓缩,传统旋蒸一次只能浓缩一个样品,且需多次人为转移提取液。而采用睿科高通量油脂浓缩仪(FOC9),一次可同时浓缩9个样品,单个样品浓缩体积高达900mL,浓缩效率是旋蒸的4-5倍,采用梯度真空模式,极大避免暴沸的产生。此外,浓缩全程无需人员值守,既减少溶剂对实验员的伤害,又节省人力。高通量油脂浓缩仪
  • 环保部:氨基酸生产企业排放执行标准
    环境保护部办公厅函环办函〔2009〕94号  关于氨基酸生产企业适用国家水污染物排放标准问题的复函  福建省环境保护局:  你局《关于福建省麦丹生物集团有限公司等两企业执行相关标准问题的请示》(闽环科函〔2008〕88号)收悉。经研究,现就氨基酸生产企业执行排放标准问题函复如下:  一、《味精工业污染物排放标准》(GB 19431-2004)适用于味精(谷氨酸钠)生产企业和利用半成品生产谷氨酸的企业。若企业不生产上述产品,则不适用该标准。  二、以发酵工艺生产药用氨基酸的企业适用《发酵类制药工业水污染物排放标准》(GB 1903-2008)。若麦丹生物集团有限公司等两企业采用发酵工艺生产药用氨基酸,则应执行《发酵类制药工业水污染物排放标准》。  三、目前,国家尚未制定适用于味精和药用氨基酸以外的其他氨基酸生产企业的行业型污染物排放标准,在这类国家排放标准出台前,上述氨基酸生产企业应执行《污水综合排放标准》等国家综合型污染物排放标准或地方污染物排放标准。  二○○九年二月二日
  • 盛奥华 | 污水厂里傲娇的COD君
    在污水处理厂里,有一个大名鼎鼎的人物,上至世界环境大会,下至普通老百姓,都能说上他的名号,他就是我们今天要认识的主角,大名鼎鼎的COD君。 “自打我进污水厂以来,就独得人们恩宠。这污水后宫佳丽三千,人们偏偏宠我一人,于是我就劝人们,雨露均沾。可人们呢,非是不听呢,人们就宠我,就宠我...... ”COD君如此傲娇的自述,究竟是什么鬼?为什么我脑补的画面是宋小宝呢? 让我们来了解下COD君的吧,COD君的全名是“化学需氧量”,英文名“Huaxuexuyangliang”,哦,不是,是Chemical Oxygen Demand,看起来和污水完全不搭界的,为什么它在污水厂里起到了举足轻重的角色? 这个还是要从自然界的受到污染的水说起,受到污染的水,呈现出有颜色,有气味,有悬浮颗粒,水质粘稠等等的特性,这些特性和洁净的水形成对比,人们通过这些感官上的指标可以粗略的判断水质是被污染了。但是这些指标都很难量化,很难用一些数字来准确说明水的污染程度有多大。 人们对污水水质的检测分为三个阶段,从1870年开始到1920年,人们最常用于污水的测量的参数是颜色,气味,还包括针对各种污染物的一些测量手段,包括测量CH4(甲烷)、CO2等方式,来判断污水的污染情况。1920年到1970年间,人们开始有了比较简单的方式来测量污水中的特定指标,比如BOD,COD,DO,PH,固体物质等。在这个阶段主要的问题就是没有一个标准的方法来检测这些指标,往往是一个水样,在不同的实验室做出来的数据相差甚远。1970年以后,人们在测量中引入了计算机技术进行自动测量,包括COD、AOX(可吸收有机卤化物)等大量的水质可以被测量,最重要的是这些指标在国际之间制订了标准的取样保存化验方法,这样就对COD等指标进行了标准化的规定,统一的方法使这个数据成为人们对污水的一个重要的检验指标。 那么除了历史原因,还有什么是COD君这么傲娇的理由呢?俗话说,打铁还要自身硬,化学需氧量COD君是采用化学方法来检验水质的化验手段,它是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示污水中还原性物质多少的一个指标。由于COD化验中,采用是极强的氧化剂,还要在强氧化剂(浓硫酸)的催化下进行反应。这样在污水中的还原性物质包括各种有机物、亚硝酸盐、硫化物、亚铁盐等,这些绝大部分都是污水中的污染物质,特别是生活污水中大部分污染物质都是来自于我们的饮食,洗漱,排泄物等的有机污染物都会被强氧化剂氧化,而通过计算消耗的药品量,再折合成消耗氧气的量,就是我们今天讨论的COD君了。这样看,COD君由于自身强大的氧化能力,秒杀一切污水中的污染的还原性物质,而且检测方法简单,标准,人们开始越来越多的使用COD来说明污水的污染程度,最终也就形成了COD君在污水界一统天下的局面。 COD君其实不是一个人,它有很多的兄弟,但是在漫长的历史中,最终留下的只有两个兄弟,一个是CODMn,一个是CODCr。CODMn是采用的高锰酸钾(KMnO4)作为氧化剂进行氧化反应的,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值及清洁地表水和地下水水样时,可以采用。CODCr是利用重铬酸钾(K2Cr2O7),氧化率高,再现性好,适用于废水监测中测定水样中有机物的总量。所以在污水厂里还是CODCr君的天下。 由于COD君的历史悠久,化验方法霸道强硬,人们就用它作为一个污水污染的综合性指标,通过化验COD,就判断出污水的污染程度,在各种场合下,利用COD值来说明水的污染,也就有了污水厂的里傲娇的COD。(国家十二五计划中,把氨氮指标作为污水厂的重点在线考核指标,COD君就宠它一人的傲娇被打破了。。。)
  • 污水处理厂该检测什么运行指标?
    一、污水的物理性质指标1、温度 对污水、污泥的物理性质、化学性质及生物性质有着直接影响。在活性污泥系统的曝气池中,主要依靠大量活性微生物(菌胶团)进行处理,他们比较适合的温度一般在20~30℃左右,因此,如果要保证较好的有机物处理效果,温度应该尽可能的控制在20~30℃左右。温度监测在现场进行,常用的方法有水温计法、深水温计法、颠倒温度计法和热敏温度计法。2、色度 城市污水处理厂的污水与工业废水的污水不同,其色度并不是很明显,但是并不说对于色度的监测不重要。其实,通过对进入污水处理厂的污水颜色的观察,可以判断污水的新鲜程度。通常,新鲜的城市污水呈灰色,可是如果在管道输送过程中厌氧腐败,DO很少,则污水呈黑色并带有臭味。另外,在我国,由于通常采用将工业废水与生活污水合流排放的排水体制,所以有时城市污水厂的色度有时有较大差异。色度给人以不悦的感觉,我国对于污水厂排放标准中对于色度有排放要求,因此,如果进水的色度较大时,出水的监测指标中色度应该予以重视。3、臭味 水中臭味主要来自有机质的腐败产生的,也会给人带来不快,甚至会影响到人体生理,呼吸困难、呕吐等。因此,臭味是比较重要的物理指标,不过,目前污水厂并没有对臭味进行专门的监测。二、污水的化学(包括生化)性质指标 污水水质化学指标有悬浮物、pH、碱度、重金属离子、硫化物、生化需氧量、化学需氧量、总需氧量、总有机碳、有机氮、溶解氧等等。1、化学需氧量(COD) 化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。它是表示水中还原性物质多少的一个指标。水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。 COD的测定是污水处理厂日常主要监测项目,通过对不同构筑物的进出水COD的测定,可以准确掌握构筑物的运行情况,通过对一段时期的数据分析,可以对构筑物的运行进行适当调整,以便保证污水的处理效果。另外,对污水厂出水而言,COD是必须监测的项目,出水应该达到相应国家标准。 化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(KmnO4),氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时可以采用。重铬酸钾(K2CrO7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。2、生化需氧量(BOD) 生化需氧量(BOD),是在有氧的条件下,由于微生物的作用,水中能分解的有机物质完全氧化分解时所消耗氧的量称为生化需氧量。它是以水样在一定的温度(如20℃)下,在密闭容器中,保存一定时间后溶解氧所减少的量(mg/L)来表示的。当温度在20℃时,一般的有机物质需要20天左右时间就能基本完,成氧化分解过程,而要全部完成这一分解过程就需100天。但是,这么长的时间对于实际生产控制来说就失去了.实用价值。因此,目前规定在20℃下,培养5天作为测定生化需氧量的标准。这时候测得的生化需氧量就称为五日生化需氧量,用BOD5表示。如果污水中的有机物的数量和组成相对稳定,则两者之间可能有一定的比例关系,可以互相推算求定。生活污水的BOD与COD的比值大致为0.4~0.8。对于一定的污水而言,一般说来,CODBOD20BOD5。BOD5也是污水处理厂日常重要监测项目之一。进行BOD5监测的具体意义基本与COD相同。 不过,由于我国存在的河流之排水体制,因此城市污水厂污水中含有一定量的工业废水,相对与生活污水而言,工业废水水质变化大而且难于降解,通过监测污水厂进水中BOD及COD,可以大致的判断污水的可生化性。 生化需氧量的经典测定方法是稀释接种法。3、溶解氧DO 溶解在水中的分子态氧称为溶解氧,天然水的溶解氧含量取决于水体与大气中氧的平衡。溶解执的饱和含量和空气中氧的分压、大气压力、水温有密切关系。清洁地地表水溶解度一般接近饱和。由于藻类的生长,溶解氧可能过饱和水体受有机、无机还原性物质污染时溶解氧降低。当大气中的氧来不及补充时,水中溶解氧逐渐降低,以全趋近于零,此时厌氧菌繁稍,水质恶化,导致鱼虾死亡。 废水中溶解氧的含量取决于污水排出前的处理工艺过程,一般含量较低,差异很大。鱼类死亡事故多是由于大量受纳污水,使水体中耗氧性物质增多,溶解氧很低,造成鱼类窒息死亡,因此洛解氧是评价水质的重要指标之一。 在污水厂整个运行过程中,十分重视水中溶解氧的测定。 国内外进行城市污水处理的主要是考生物二级处理系统,多为好氧法。顾名思义就是利用好氧微生物的新陈代谢过程分解去除水中的有机物。从中也可以看出,DO氧的控制是十分重要的,首先,应该保证水中有足够的溶解氧,这样好氧微生物才能正常工作,这是取得较好的运行效果的前提。可是,如果充氧过多,就会造成浪费,导致运行成本增加。因此,曝气池中的DO一般控制在2~4mg/L之间。 当由于设备问题或其他原因导致溶解氧不足时,处理系统就会出现故障。例如,曝气池中DO不足,结果多会导致活性污泥的丝状菌膨胀。原因在于,细菌和丝状菌对不足的DO进行竞争,可是在DO不足条件下,丝状菌的竞争力要远远大于细菌,因此,细菌获得的DO会更少,它们的生长受到抑制,相反,丝状菌得到机会大量繁殖,最终结果就是丝状菌膨胀。 在A/O、A2/O等具有一定的脱氮除磷工艺中,对于DO的控制也非常重要。为了得到想应的N、P的去除率,必须保证有合适的DO值。 可见,在污水厂的日常运行的监测中,对于DO的监测是十分有意义的。通唱采用的方法有碘量法及其修正法、膜电极法和现场快速溶解氧仪法。4、总需氧量(TOD) 总需氧量(TOD)。有机物中含C、H、N、S等元素,当右机物全都被氧化时,这些元素分别被氧化为CO2、H20、NO2和SO2,此时的需氧量称为总需氧量(TOD)。 总需氧量测定原理和过程是向氧含量中注入一定数量的水样,并将其送入以铂钢为触媒的燃烧管中,以900℃的高温加以燃烧,水样中的有机物因被燃烧而消耗了载气中的氧,剩余的氧用电极测定,并用自动记录器加以记录,从载气原有的氧量中减去水样燃烧后剩余的氧,即为总需氧量。 此指标的测定,与BOD、COD的测定相比,更为快速简便,其结果也比COD更接近于理论需氧量。5、总有机碳(TOC) 总有机碳(英文缩写TOC)。表示水中所有有机污染物的总含碳量,是评价水中有机污染质的一个综合参数。它是用燃烧法测定水样中总有机碳元素量来反映水中有机物总量的一种综合测定指标。其测定结果以C含量表示,单位为mg/L。 它的测定原理与过程是:将水样加酸,通过压缩空气吹脱水中的无机碳酸盐,以排除干扰,然后将水样定量地注入以铂钢为触媒的燃烧管中,在氧的含量充分而且一定的气流中,以900℃的高温加以燃烧,在燃烧过程中产生二氧化碳,经红外气体分析仪测定,以自动记录器加以记录,然后再折算其中的碳量。 TOC的测定采用燃烧法,因此能将有机物全部氧化,它比BOD5或COD更能直接表示有机物的总量,因此常常被用来评价水体中有机物污染的程度。 近年来,国内外已研制成各种类型的TOC分析仪。按工作原理不同,可分为燃烧氧化一非分散红外吸收法、电导法、气相色谱法、湿法}L化一非分散红外吸收法等:其中燃烧氧化-非分散红外吸收法只需一次性转化,流程简单、重现性好、灵敏度高,因此这种TOC分析仪广为国内外所采用。6、氮(有机氮、氨氮、总氮) 有机氮是反映水中蛋白质、氨基酸、尿素等含氮有机化合物总量的一个水质指标。 若使有机氮在有氧的条件下进行生物氧化,可逐步分解为NH3、NH4+、N02-、NO3-等形态,NH3和NH4+称为氨氮,NO2-称为亚硝酸氮,NO3-称为硝酸氮,这几种形态的含量均可作为水质指标,分别代表有机氮转化为无机物的各个不同阶段。 总氮(英文缩写TN)则是一个包括从有机氮到硝酸氮等全部含量的水质指标。 氨氮( NH3-N )是污水厂出水的重要监测指标,水中氨氮的来源卞要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。 测定水各种形态的氮化合物,有助于评价水体被污染和“自净”状况。鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。 以游离氨NH3)或铵盐(NH4-)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。因此,在监测时应该对pH和水温进行足够的注意。氨氮的测定方法,通常有纳氏比色法、气相分子吸收法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。 水中N会导致水体富营养化,污水厂出水中的N应该按照国家及地方政府的相应要求进行处理后达标排放。因此,对于出水中N的监测是污水厂水质监测的重要项目之一。 此外,对于广泛采用二级处理为主的城市污水厂而言,为了保证污水厂的正常运行,必须保证生化池中微生物对营养的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,对于污水厂进水N的监测,有利于对微生物营养的控制,当污水中含磷比例较少时,需要人为的进行补充,以保证微生物的营养需求,进而保证污水处理系统的正常运行。7、磷(总磷、溶解性磷酸盐和溶解性总磷) 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷(如磷脂等),它们存在于溶液中,腐殖质粒子中或水生生物中。 一般天然水中磷酸盐含量不高。化肥、冶炼、合成洗涤剂等行收的工业废水及生活污水中常含有较大量磷。磷是生物生长必需的兀素之一。但水体中磷含量过高(如超过0.2mg/L),可造成藻类的过度繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。磷是评价水质的重要指标。 为了进一步防止水中P导致水体富营养化,污水厂出水中的P应该按照国家及地方政府的相应要求进行处理后达标排放。因此,对于出水中P的监测是污水厂水质监测的重要项目之一。 此外,对于广泛采用二级处理为主的城市污水厂而言,为了保证污水厂的正常运行,必须保证生化池中微生物对营养的需求,好氧法一般控制在:BOD:N:P=100:5:1,因此,对于污水厂进水P的监测,有利于对微生物营养的控制,当污水中含磷比例较少时,需要人为的进行补充,以保证微生物的营养需求,进而保证污水处理系统的正常运行。8、pH值 pH值是指示水酸碱性的重要指标,在数值上等于氢离子浓度的负对数。pH值的测定通常根据电化学原理采用玻璃电极法,也可以用比色法。 pH值能表示水的最基本性质,对水质的变化、水处理效果等均有影响,对pH值的测定和控制,对维护污水处理设施的正常运行、防止污水处理及输送设备的腐蚀、保护水生生物的生长和水体自净功能都有重要的实际意义。 污水的pH值如过高或过低,会影响生化处理,因为适宜于生物生存的pH值范围往往是非常狭小的,并且也是很敏感的。比如,在活性污泥法系统的曝气池中,如果由于pH发生了变化,如从正常的6.5~8.5变化到了5.5,那么,系统很有可能出现活性污泥的丝状菌膨胀。这将直接影响出水水质,导致出水恶化。其主要原因在于,在活性污泥中应该细菌占优势地位,其喜欢的最佳pH 范围是6.5~8.5,当pH值正常时,细菌占主要地位,丝状菌数量有限。但是,当pH变化到了5.5后,由于非常适合丝状菌生长,缺抑制了细菌的生长,这样就会导致丝状菌在活性污泥中占优势,致使污泥膨胀。 另外,在污泥或高浓度废水进行厌氧消化处理时,也应该格外注意pH值的控制。因为,在厌氧消化处理过程中,主要是由产甲烷菌群和非产甲烷菌群起作用。其中,产甲烷菌群对于pH值要求非常苛刻,需要控制在6.5~7.5,最好控制在6.8~7.2之间,否则,甲烷产气率就会明显下降,影响消化效果。 一般要求处理后污水的pH值为6~9,当pH值小于5时,就能使一般的鱼类死亡。9、悬浮物(SS) 悬浮物(SS)指不能通过过滤器(滤纸或滤膜)的固体物质。污水中的固体物质包括悬浮固体和溶解固体两类。悬浮固体指悬浮于水中的固体物质。悬浮固体也称悬浮物质或悬浮物,通常用SS表示。悬浮物透光性差,使水质浑浊,影响水生生物的生长,大量的悬浮物还会造成河道阻塞。从国家及地方相应的污水排放标准而言,SS是进行监测的重要项目之一。10、有毒物质 有毒物质是指污水中达到一定的浓度后,能够危害人体健康、危害水体中的水生生物,或者影响污水的生物处理的物质。由于这类物质的危害较大,因此,有毒物质含量是污水排放、水体监测和污水处理中的重要水质指标,有毒物质是人们所普遍关切的,有毒物质可分为无机毒物和有机毒物。 无机物主要代表是一些重金属离子如汞、铬、镉等,这些离子在水中如果不去除或处理效果不好,会进入天然水体或生生系统,最终可通过食物链转移到人体中进行大量付集,最终导致各种公害性疾病的出现。如水俣病、骨痛病等。 有机毒物的典型代表有氰化物、酚、有机氯化物等。这些物质也会导致严重伤害性事故。 因此,对于城市污水处理厂的出水、出泥进行有毒有害物质进行认真、严格、科学的监测是必须的。只有真正达到了排放标准才能排放或做他有。三、生物指标 水是微生物广泛分不布的天然环境,不论是地表水或地下水,甚至雨水或雪水,都含有多种微生物。当水体受到人、畜粪使、生活污水或某些工业废水污染时,水中微生物的数量可大量增加。因此,城市污水厂出水的细菌学测定,特别是肠道细菌的检验,在环境质量评价、环境卫生监督等方面具有重要的意义。但是,在直接检查水中各种病原微生物,方法较复杂,有的难度大,而且检查结果为阴性也不能保证绝对安全。所以,在实际工作中经常以检查水的细菌总数,特别是检查作为粪便污染的指示菌,来间接判断水体污染状况。水中含有细菌总数与水污染状况有一定的关系,但是不能直接说明是否有病原微生物存在。粪便污染指示菌一般是指如有该指示细菌存在于水体中,即表示水体曾有过粪便污染,也就有可能存在肠道病原微生物。那么该水反在卫生学上是不安全的。1、细菌总数 细菌总数是指lmL水中所含有各种细菌的总数。反映水所受细菌污染程度的指标。 在水质分析中,是把一定量水接种于琼脂培养基中,在37℃条件下培养24小时后,数出生长的细菌菌落数,然后计算出每毫升水中所含的细菌数。 细菌总数测定是测定水中好氧菌、兼性厌氧菌和厌氧菌密度的方法。因为细菌能以单独个体、成双成对、链状、成簇等形式存在,而且没有任们单独一种培养基能满足一个水样中所有细菌的生理要求。所以,由此法所得的菌落可能要低于真正存在的活细菌总数。2、大肠菌数 大肠菌数是指1L水中所含大肠菌个数。大肠菌本身虽非致病菌,但由于大肠菌在外部环境中的生存条件与肠道传染病的细菌、寄生虫卵相似,而且大肠菌的数量多,比较容易检验,所以把大肠菌数作为生物指标。比较常见的病原微生物有伤寒、肝炎病毒、腺病毒等,同时也存在某些寄生虫。 总大肠菌群的检验方法中,多管发酵法可适用于各种水样(包括底泥),但操作较繁需要时间较长 滤膜法主要适用于杂质较少的水样,操作简单快速。 如果是使用滤膜法,则总大肠菌群可重新定义为:听有能在含乳糖的远腾氏培养基上,于37℃,24h之内生比出带有金属光泽暗色萄落的、需氧的和兼性厌氧的革兰氏阴性无芽孢杆菌。另外,除了应该重视在出水中进行微生物的监测外,其实在运行过程注重对微生物的监测是十分必要的。例如,污水处理厂进行污泥的镜检,主要就是观察生物相的形状、组成等,通过定期的镜检,可以判断运行设施的正常工作与否,甚至可以提前预防一些异常现象,如:如果通过检验,发现污泥中有丝状菌增殖加快的趋势,就可以采取一定的措施,将可能发生的活性污泥丝状菌膨胀消灭在萌芽状态,有效的保证污水厂的运行,保证出水达到要求。 综上所述,如果要想保证正常运行,其根本保证。来源于科学有效的运行管理。从中,对于污水厂的运行指标的定期、准确的监测,并对获得的数据进行分析、统计,从而指导污水厂运行则是污水厂工作的根本。
  • 新隔膜瓶盖-无水溶剂新包装
    更多相关信息: 无水溶剂-防水新包装 ; 《默克实验室通讯》2009年2版联系我们: http://www.instrument.com.cn/netshow/SH101341/office.asp 默克集团 (Merck KGaA) 简介   默克集团是一家全球化的医药和化学企业,2008 年总销售额达76 亿欧元。它的历史可以追溯到1668 年。目前在全球60 个德家拥有近33,000 名员工,共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团 (Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917 年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
  • 盛奥华 | 画说污水性质与污染指标、检测仪表
    污水的类型 物理性质与污染指标污水的污染指标一般可以分为物理性质、化学性质和生物性质三类,其中物理性质分为: 工业企业排出的污水都有较高的温度,会导致水体缺氧和水质恶化; 是一项感官性指标,纯天然水清澈透明无色,污水往往五彩斑斓,污水排放对色度有严格要求; 水的易臭来源于还原性硫氮化合物、挥发性有机物和氯气等污染物质。 固体包括溶解性固体和悬浮固体,悬浮固体和挥发性悬浮固体是重要的水质指标,也是污水处理厂设计的重要参数。化学性质与污染指标有机物:生化需氧量BOD是有机物被生物分解所消耗的溶解氧量;化学需氧量COD是有机物被化学氧化剂氧化所消耗的溶解氧量;这两个参数被广泛运用于表达水中有机物的含量。此外,代表水中所有有机物含碳量总碳TOC以及氧化这些碳的总需氧量TOD也是衡量水中有机物含量的重要参数。 污水中的苯类化合物、酚类化合物、有机酸减、有机农药等,这些物质对微生物都有毒害与抑制作用,属于有毒物质。 污水中的油类污染物和表面活性剂(俗称洗涤剂)虽然无毒,但是对自然界的危害依旧很大,前者直接坑死动物;后者会让水体富营养化,间接坑死动物。 无机物:这个主要指示水样的酸碱性,正常水的pH值在6~9之间。 无机污染物也有有毒和无毒之分,重金属、砷(本身没毒,但极易氧化成砒霜)、含硫化合物、氰化物等都属于有毒物质。无毒的无机污染物主要是植物营养素氮、磷,农田里求之不得的肥料放在自然界的水里就是水生生物的大杀器,过量的氮磷造成水藻疯长、水体富营养化,严重影响鱼类生存。 生物性质与污染指标 细菌总数反映了水体受细菌污染的程度;大肠杆菌则是被视为最基本的粪便污染指示菌群;病毒则是比细菌还小还麻烦的东西。水体自净作用 水体的自净分为以挥发、稀释和沉淀为主的物理净化;以氧化、还原和分解为主的化学净化;以微生物分解为主的生物净化。污水处理就是使用自然净化的模式在小区域内人工加速这一过程,让废水达到排放标准。
  • 用科学解“毒”污水:全自动固相萃取,以一当十!
    毒品吸食后经人体代谢会被排入生活污水中,依据“污水流行病学”对特定区域生活污水中的毒品原药或其代谢物含量进行检测,再结合污水流量和污水处理厂服务区域的人口数量,就可以评估和判断污水厂服务区内毒品滥用情况并进行层层溯源。“污水验毒”不仅可用于监测城市或地区的毒品滥用情况,还可以通过监测污水中毒品的异常情况为追查制毒窝点、打击毒品犯罪和预警新精神活性物质等提供线索。但由于该方法属于纳克级检测,且污水量大、基质复杂,对前处理仪器提出了很高的要求。屹尧科技的“全自动固相萃取-液相色谱-串联质谱同时测定污水样品中10种常见毒品毒物的分析方法”,采用EXTRA全自动固相萃取仪进行污水样品前处理,既可快速、高效自动连续处理大批量污水样品,又可确保样品分析的稳定性和平行性。EXTRA采用高精度工业级丝杆机械臂搭载定量环进样方式,确保样品不进入泵阀,配合液位追踪和流动式清洗功能,避免仪器本身带来的交叉污染风险,对真实数据做出更精确的解读。全自动固相萃取-液相色谱-串联质谱同时测定污水样品中10种常见的毒品毒物仪器和材料EXTRA全自动固相萃取仪;N1全自动氮吹浓缩仪;液相色谱-串联质谱仪(AB SCIEX Exion LC-Triple Quad 5500);MCX阳离子交换柱(WondaSep MCX 60mg/3mL)污水样品前处理方法污水样品充分摇匀后,加入盐酸调节pH值小于2,使用溶剂过滤器和玻璃纤维滤膜过滤,取滤液50mL于50mL 离心管中,进行固相萃取净化。固相萃取净化步骤洗脱液采用N1全自动氮吹浓缩仪在40℃条件下氮吹浓缩至近干,用250 uL 0.1%甲酸水复溶后,过滤膜上LC-MS/MS进行分析。液质联用条件色谱柱:ACQUITY UPLC BEH C18 (100mm ×2.1 mm×1.7 μm )流速:0.40 mL/min柱温:40°C进样量:5 μL检测器:AB 5500离子模式:ESI+流动相:A:0.1%甲酸水,B:0.1%甲酸乙腈洗脱梯度:方法学验证:空白样品中添加浓度为0.05 μg/L的10种毒品标准品,按照上述步骤进行操作,结果表明:10种化合物的平均回收率在88.9%~106.3%之间,RSD小于5.0%。总结:采用EXTRA全自动固相萃取仪配套N1全自动氮吹浓缩仪进行污水样品前处理,可连续自动处理40个污水样品。SPE步骤完成后无需更换试管,即可自动完成固相萃取和氮吹浓缩全过程,减少工作人员长时间接触有毒有害溶剂,确保方法的稳定性和平行性,避免交叉污染的同时,有效提高工作效。
  • 核污水排海,合成生物学能做什么?
    在“双碳”、“日本核污水排海”的背景下,以低成本代替现有材料及制备新材料能力的合成生物学极具发展优势,具备技术及成本优势的合成生物学企业也将有望充分获得更多竞争力。合成生物学有望在未来5-10年保持高速增长。随着基因测序、基因合成和基因编辑的技术突破,合成生物学被称为 “第三次生物科学革命”。合成生物学是在现代生物学和系统科学以及合成科学基础上发展起来、融入工程学思想和策略的新兴交叉学科,通过将自然界存在的生物元件标准化、去耦合和模块化来设计新的生物系统或改造已有的生物系统。简言之,其本质在于通过改写细胞 DNA,生产出人类所需的物质。海洋鱼类食品富含优质蛋白质、多不饱和脂肪酸及多种微量营养素和功能因子,约占全球人口所需动物蛋白的20%左右,预计2050年需求增量将达到亿吨级。为减小海水污染加剧和海洋资源掠夺性开发等多重因素对优质鱼类供应造成的影响,建立高通量、低成本、可再生鱼肉细胞工厂及规模化生产模式至关重要,是缓解我国优质海洋鱼类蛋白资源短缺及营养保障的重要途径与策略之一。浙江大学细胞培养鱼肉团队联合大连工业大学朱蓓薇院士团队也成功实现了生物合成细胞培养鱼肉。通过动物干细胞在体外进行细胞增殖和分化成功合成国内首例厘米级细胞培养鱼肉产品,生产的培养肉组织具有与真实鱼片、鱼块类似的质构与口感。在营养素市场中,长链不饱和脂肪酸DHA及ARA对婴幼儿记忆力、思维能力及视网膜发育具有重要作用,广泛应用与婴幼儿配方奶粉及保健品,随着人们健康意识的提高,对DHA及ARA的需求不断增加,DHA的主要生产来源为深海鱼类,但随着“日本核污水排海”海洋污染加剧,鱼油DHA存在食品安全风险,且鱼油含有大量EPA,限制了其使用范围,而通过生物发酵法生产的DHA能有效规避以上风险,在DHA市场中的市占率不断提高。
  • AV9000 流量计在污水处理厂回流系统中的应用
    AV9000 流量计在污水处理厂回流系统中的应用A2O工艺是较为常见的一种污水生物处理工艺,其中回流系统包括混合液内回流和污泥外回流,混合液内回流是将好氧池混合液回流至缺氧池,使回流至缺氧池的硝酸盐和亚硝酸盐进行反硝化脱氮。污泥外回流是将污泥从沉淀池底部回流至厌氧池,以确保整个A2O生物系统保持一定的污泥浓度。因此控制回流量,对于污水工艺的稳定运行和处理效果至关重要。长期以来,污水厂运营人员通常以回流泵额定流量和性能曲线,并配合个人经验估算和控制回流量,但是随着国家节能减排战略实施和污水处理厂工艺的精细化管理需要,精确的回流量计量和控制成为其中一项污水处理流程的改善目标。本案例为某采用A2O工艺的污水处理厂为更好的控制回流系统的运行,合理安排回流比。使用FL1500控制器和AV9000浸没式流量计系统监测回流系统的流量变化情况,指导工艺运行,提高运行效率。A2O工艺流程图监测点位选取污泥回流池其中一部分总长约20米的直管段,安装点位于直管段靠近中心部位,池深1.4米,宽度1.2米,符合流量计安装前十后五的基本原则,即流量计安装点上游10倍管道宽度和下游5倍管道宽度的距离范围内是平稳流态,没有弯折和支流。AV9000浸没式流量探头符合IP68防水级别,使用L型支架安装于回流池底部,安装高度略高于污泥常年沉积面之上,支架固定部分位于侧壁,可上下调节方便维护,参见下图1。FL1500控制器安装于回流池上方的空置处,安装于不锈钢机箱内,下方使用膨胀螺栓固定于混凝土基质上,参见下图2。整套系统使用220VDC市政供电,可通过FL1500控制器现场查看瞬时流量,实时监控流量变化,指导工艺流程。监测数据通过4-20ma信号上传至客户数据平台查看下载。图1 AV9000安装点图2 FL1500安装点现场AV9000流量计测量数据稳定,可输出水深、流速、流量等常规参数。其中最重要的流量数据与回流泵估算流量一致。测试阶段内,回流泵估算数据在1600-1700立方米/小时,AV9000流量计数据在1650立方米上下,呈小幅波动状态,符合实际情况。现场长期数据的稳定性良好,可以反馈回流系统整体流量情况并指导回流泵运行,对于流量控制起到了重要作用。流速面积法测量,数据稳定可靠。现场显示和后台数据同步,可实现多种数据查看方式。安装维护简便,无需复杂经验。整体系统稳定,兼容性良好,易于操作。本案例中的AV9000流量计和FL1500控制器组成回流池流量监测系统,用于市政污水处理厂内部工艺管控,实现工艺精细化管理。总体来看,在保证运维工作能够按照标准流程完成的情况下,AV9000流量计可以完成回流池流量监测,为客户监测回流流量和控制污水处理过程中的回流比提供帮助。END
  • 紫金矿业再次渗漏500立方污水
    两周前因污水大量渗漏到汀江而引发重大突发环境事件的紫金矿业集团股份有限公司,昨晚再次发生渗漏事故,所幸在8个多小时后被基本堵截。  今天(17日)上午,中国青年报记者获悉紫金矿业昨晚又发生事故,随即赶赴事故发生地上杭县。中午,《第一财经日报》记者致电紫金矿业公司副总裁刘荣春进行求证,刘表示,迄今为止未接获此类信息,外界的传言不足采信。下午,有两家媒体记者先期赶到事故现场,但被保安拦在大门外。保安说“调查组正在调查取证,外人不得入内”。之后,本报记者在上杭县委宣传部官员的陪同下,才被允许进入现场。记者看到,黑乎乎的污水正源源不断地流入刚挖好的应急池,而池内连防渗膜也没有铺完整,周围几辆推土机还在进行培土加高作业。  在厂区办公室,一位不愿透露姓名和职务的工作人员向记者介绍说,昨天晚上10点半,公司下属的紫金山金铜矿值班人员巡查时发现,3号应急中转污水池发生渗漏,污水通过排洪洞流到汀江,经采取堵截、调度等措施,今天上午7点基本堵截住污水外排汀江。初步估算,此次渗漏污水约500立方米。  当记者问及事故原因时,这位工作人员以自己不懂技术为由不予回答。  记者注意到,此前官方调查组公布的7月3日发生重大渗漏事故的原因之一是“人为非法打通6号集渗观察井与排洪洞,致使渗漏污水直接进入汀江”,而“2009年9月福建省有关环保部门检查时发现排洪洞有超标污水排入汀江,要求企业立即进行整改,但直至本次事件发生企业仍未整改到位”。昨晚发生的渗漏事故是否出于同一原因,今后是否还会发生类似事故,这是此间民众迫切关心的问题。  多家媒体记者曾建议上杭县委宣传部联系紫金矿业,请企业方面安排合适人员在今晚就此次事故的原因向媒体进行答疑,但紫金矿业有关负责人答复说“晚上在山上开会,没有时间和记者见面”。  晚上,本报记者打通紫金矿业公司副总裁刘荣春的电话,问他中午为何向媒体否认昨晚发生过事故,他辩称并没有接受过媒体采访,而且“已经发生的事情不可能说没有”。之后,《第一财经日报》记者再次致电刘荣春,他解释说自己当时的确不知道再次发生渗漏的消息,他是下午才知道这事的。  另据紫金矿业今天发布的公告称,公司已决定对紫金山金铜矿分管安全环保工作的副矿长和紫金山金铜矿环保安全处处长进行停职检查。据悉,刚刚离开上杭的环保部调查组在渗漏事故再次发生后,又紧急重返事故现场。
  • 十三种污水处理基础指标的分析方法汇总
    p  span style="color: rgb(0, 112, 192) "strong一、化学需氧量(CODcr)的测定/strong/span/pp  化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而我国一般采用重铬酸钾法作为依据。/pp  1、方法原理/pp  在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。/pp  2、仪器/pp  (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml锥形瓶的全玻璃回流装置)。/pp  (2)加热装置:电热板或变组电炉。/pp  (3)50ml酸式滴定剂。/pp  3、试剂/pp  (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。/pp  (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。/pp  (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌便缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。/pp  标定方法:准确吸收10.00ml重铬酸钾标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀。冷却后,加入三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色及为终点。/pp  C[(NH4)2Fe(SO4)2]=0.2500× 10.00/V/pp  式中,c—硫酸亚铁铵标准溶液的浓度(mol/L) V—硫酸亚铁铵标准滴定溶液的用量(ml)。/pp  (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。/pp  (5)硫酸汞:结晶或粉末。/pp  4、注意事项/pp  (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,是保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。/pp  (2)水样去用体积可在10.00-50.00mL范围之间,但试剂用量及浓度按相应调整,也可得到满意结果。/pp  (3)对于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重铬酸钾标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。/pp  (4)水样加热回流后,溶液中重铬酸钾剩余量应为加入少量的1/5-4/5为宜。/pp  (5)用邻笨二甲酸氢钾标准溶液检测试剂的质量和操作技术时,由于每克邻笨二甲酸氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二甲酸氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。/pp  (6)CODCr的测定结果应保留三位有效数字。/pp  (7)每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。/pp  5、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取3个磨口锥形瓶,编号0、1、2 向3个锥形瓶中分别加入6粒玻璃珠。/pp  (3)向0号锥形瓶中加20mL蒸馏水(用胖度移液管) 向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管) 向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。/pp  (4)向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。/pp  (5)将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。/pp  (6)从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。/pp  (7)插上电子万用炉插头,从沸腾开始计时,加热2小时。/pp  (8)加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。/pp  (9)从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。/pp  (10)加入蒸馏水后会放热,取下锥形瓶冷却。/pp  (11)彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。/pp  (12)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。/pp  (13)记录读数,计算结果。/pp span style="color: rgb(0, 112, 192) "strong 二、生化需氧量(BOD5)的测定/strong/span/pp  生活污水与工业废水中含有大量各类有机物。当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化。水体因缺氧造成鱼类及其他水生生物的死亡。/pp  水体中所含的有机物成分复杂,难以一一测定其成分。人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。/pp  生化需氧量的经典测定方法,是稀释接种法。/pp  测定生化需氧量的水样,采集时应充满并密封于瓶中。在0——4摄氏度下进行保存。一般应在6h内进行分析。若需要远距离转运。在任何情况下,贮存时间不应超过24h。/pp  1、方法原理/pp  生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。此生物氧化全过程进行的时间很长,如在20摄氏度下培养时,完成次过程需要100多天。目前国内外普遍规定于20加减1摄氏度培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升表示。/pp  对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧。稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。/pp  为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气,便稀释水中溶解氧接近饱和。稀释水中还应加入一定量的无机营养盐和缓冲物质,以保证微生物生长的需要。/pp  对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物。当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。当水样BOD5大于6000mg/L,会因稀释带来一定的误差。/pp  2、仪器/pp  (1)恒温培养箱/pp  (2)5——20L细口玻璃瓶。/pp  (3)1000——2000ml量筒/pp  (4)玻璃搅棒:棒的长度应比所用量筒高度长200mm。在棒的底端固定一个直径比量筒底小、并带有几个小孔的硬橡胶板。/pp  (5)溶解氧瓶:250ml到300ml之间,带有磨口玻璃塞并具有供水封用的钟型口。/pp  (6)虹吸管,供分取水样和添加稀释水用。/pp  3、试剂/pp  (1)磷酸盐缓冲溶液:将8.5磷酸二氢钾,21.75g磷酸氢二钾,33.4七水合磷酸氢二钠和1.7g氯化铵溶于水中,稀释至1000ml。此溶液的PH应为7.2/pp  (2)硫酸镁溶液:将22.5g七水合硫酸镁溶于水中,稀释至1000ml。/pp  (3)氯化钙溶液:将27.5无水氯化钙溶于水,稀释至1000ml。/pp  (4)氯化铁溶液:将0.25g六水合氯化铁溶于水,稀释至1000ml。/pp  (5)盐酸溶液 :将40ml盐酸溶于水,稀释至1000ml。/pp  (6)氢氧化钠溶液 :将20g氢氧化钠溶于水,稀释至1000ml/pp  (7)亚硫酸钠溶液:将1.575g亚硫酸钠溶于水,稀释至1000ml。此溶液不稳定,需每天配制。/pp  (8)葡萄糖—谷氨酸标准溶液:将葡萄糖和谷氨酸在103摄氏度干燥1h后,各称取150ml溶于水中,转入1000ml容量瓶内并稀释至标线,混合均匀。此标准溶液临用前配制。/pp  (9)稀释水:稀释水的PH值应为7.2,其BOD5应小于0.2ml/L。/pp  (10)接种液:一般采用生活污水,在室温下放置一昼夜,取上清液使用。/pp  (11)接种稀释水:分取适量接种液,加入稀释水中,混匀。每升稀释水中接种液加入量为生活污水1——10ml 或表层土壤侵出液20——30ml 接种稀释水的PH值应为7.2。BOD值以在0.3——1.0mg/L之间为宜。接种稀释水配制后应立即使用。/pp  4、计算/pp  1、不经稀释直接培养的水样/pp  BOD5(mg/L)=C1-C2/pp  式中:C1——水样在培养前的溶解氧浓度(mg/L) /pp  C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L)。/pp  2、经稀释后培养的水样/pp  BOD5(mg/L)=[(C1-C2)—(B1-B2)f1]∕f2/pp  式中:C1——水样在培养前的溶解氧浓度(mg/L) /pp  C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L) /pp  B1——稀释水(或接种稀释水) 在培养前的溶解氧浓度 (mg/L) /pp  B2——稀释水(或接种稀释水) 在培养后的溶解氧浓度 (mg/L) /pp  f1 —— 稀释水(或接种稀释水)在培养液中所占比例 /pp  f2 —— 水样在培养液中所占比例。/pp  B1——稀释水在培养前的溶解氧 /pp  B2——稀释水在培养后的溶解氧 /pp  f1——稀释水在培养液中所占比例 /pp  f2——水样在培养液中所占比例。/pp  注:f1,f2的计算:例如培养液的稀释比为3%,即3份水样,97份稀释水,则f1=0.97,f2=0.03。/pp  5、注意事项/pp  (1)水中有机物的生物氧化过程,可分为二个阶段。第一阶段为有机物中的碳和氢、氧化生成二氧化碳和水,此阶段称为碳化阶段。完成碳化阶段在20摄氏度大约需20天左右。第二阶段为含氮物质及部分氮,氧化为亚硝酸盐及硝酸盐,称为硝化阶段。完成硝化阶段在20摄氏度时需要约100天。因此,一般测定水样BOD5时,硝化作用很不现著或根本不发生硝化作用。但对于生物处理池的出水,因其中含有大量的硝化细菌。因此在测BOD5时也包括了部分含氮化物的需氧量。对于这样的水样,,可以加入硝化抑制剂,抑制硝化过程。为此目的,可在每升稀释水样中加入1ml浓度为500mg/L的丙烯基硫脲或一定量固定在氯化钠上的2-氯带-6-三氯甲基啶,使TCMP在稀释样品中的浓度大约为0。5 mg/L。/pp  (2) 玻璃器皿应彻底清洗干净。先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水,蒸馏水洗净。/pp  (3) 为检查稀释水和接种液的质量,以及化验人员的操作水平,可将20ml葡萄糖-谷氨酸标准溶液用接种稀释水稀释至1000ml,按测定BOD5的操作步骤。测得BOD5的值应在180—230mg/L之间。否则应检查接种液、稀释水的质量或操作技术是否存在问题。/pp  (4) 水样稀释倍数超过100倍时,应预先在容量瓶中用水初步稀释后,再取适量进行最后稀释培养。/pp  span style="color: rgb(0, 112, 192) "strong三、悬浮性固体物质(SS)的测定/strong/span/pp  悬浮固体表示水中不溶解的固体物质的量。/pp  1、方法原理/pp  测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。/pp  2、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。/pp  (3)开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。/pp  (4)测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。/pp  (5)测出水SS:将出水样摇匀,润洗三次小盒?(方法同上)/pp  3、计算/pp  进水SS的结果为:稀释倍数*测进水样读数 出水SS的结果直接为测出水样仪器读数/pp  span style="color: rgb(0, 112, 192) "strong四、总磷(TP)的测定/strong/span/pp  1、方法原理/pp  在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。/pp  本方法最低检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度) 测定上限为0.6mg/L。可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。/pp  2、仪器/pp  分光光度计/pp  3、试剂/pp  (1)1+1 硫酸。/pp  (2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。如颜色变黄,则弃去重配。/pp  (3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24· 4H2O]于100ml水中。溶解0。35g酒石酸锑氧钾[K(SbO)C4H4O6· 1/2H2O]于100ml水中。在不断的搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。试剂贮存在棕色的玻璃瓶中于冷处保存。至少稳定2个月。/pp  (4)浊度-色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。此溶液当天配制。/pp  (5)磷酸盐贮备溶液:将磷酸二氢钾(KH2PO4)于110° C干燥2h,在干燥器中放冷。称取0.217g溶于水,移入1000ml容量瓶中。加(1+1)硫酸5ml,用水稀释至标线。此溶液每毫升50.0ug磷。/pp  (6)磷酸盐标准溶液:吸取10.00ml磷酸盐贮备液于250ml容量瓶中,用水稀释至标线。此溶液每毫升含2.00ug磷。临用时现配。/pp  4、测定步骤(仅以测进、出水样为例)/pp  (1)将取回的进水样、出水样摇匀(生化池上点的水样要摇匀放置一段时间取上清液)。/pp  (2)取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线 第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线 第三支具塞刻度管/pp  的盐酸浸泡2h,或用不含磷酸盐的洗涤剂刷洗。/pp  (3)比色皿用后应可以稀硝酸或铬酸洗液浸泡片刻,以除去吸附的钼蓝呈色物。/pp span style="color: rgb(0, 112, 192) "strong 五、总氮(TN)的测定/strong/span/pp  1、方法原理/pp  在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O??KHSO4+1/2O2 KHSO4& #8594K++HSO4_ HSO4& #8594H++SO42-/pp  加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。在120℃-124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后用紫外分光光度法分别于波长220nm与275nm处测定其吸光度,按下式计算硝酸盐氮的吸光度: A=A220-2A275 从而计算总氮的含量。其摩尔吸光系数为1.47× 103/pp  2、干扰及消除/pp  (1)水样中含有六价铬离子及三价铁离子时,可加入5%盐酸羟胺溶液1-2ml,以消除其对测定的影响。/pp  (2)碘离子及溴离子对测定有干扰。碘离子含量相对于总氮含量的0.2倍时无干扰。溴离子含量相对于总氮含量的3.4倍时无干扰。/pp  (3)碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。/pp  (4)硫酸盐及氯化物对测定无影响。/pp  3、方法的适用范围/pp  该方法主要适用于湖泊,水库,江河水中总氮的测定。方法检测下限为0.05mg/L 测定上限为4mg/L。/pp  4、仪器/pp  (1)紫外分光光度计。/pp  (2)压力蒸汽消毒器或家用压力锅。/pp  (3)具塞玻璃磨口比色管。/pp  5、试剂/pp  (1)无氨水,每升水中加入0.1ml浓硫酸,蒸馏。收集流出液于玻璃容器中。/pp  (2)20%(m/V)氢氧化钠:称取20g氢氧化钠,溶于无氨水中,稀释至100ml。/pp  (3)碱性过硫酸钾溶液:称取40g过硫酸钾,15g氢氧化钠,溶于无氨水中,稀释至1000ml,溶液存放在聚乙烯瓶内,可储存一周。/pp  (4)1+9盐酸。/pp  (5)硝酸钾标准溶液:a、标准贮备液:称取0.7218g经105-110℃烘干4h的硝酸钾溶于无氨水中,移至1000ml容量瓶中定容。此溶液每毫升含100毫克硝酸盐氮。加入2ml三氯甲烷为保护剂,至少可稳定6个月。b、硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得。此溶液每毫升含10毫克硝酸盐氮。/pp  6、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线 第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线 第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。/pp  (3)分别向3个比色管加5mL碱式过硫酸钾/pp  (4)将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。/pp  (5)加热完毕,拆开纱布,自然冷却。/pp  (6)冷却后,再向3个比色管分别加1mL1+9的盐酸。/pp  (7)向3个比色管分别加蒸馏水至上部刻度线,摇匀。/pp  (8)使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数 再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。/pp  (9)计算结果。/pp  span style="color: rgb(0, 112, 192) "strong六、氨氮(NH3-N)的测定/strong/span/pp  1、方法原理/pp  典化汞和典化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在教宽的波长范围不内具强烈吸收。通常测量用波长在410—425nm范围。/pp  2、水样的保存/pp  水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时加硫酸水样酸化至PH 2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氨而遭致污染。/pp  3、干扰及消除/pp  脂肪胺、芳香胺、醛类、丙酮、醇类和有机氮胺类等有机化合物,以及铁,锰,镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可以酸性条件下加热以除去对金属离子的干扰,还可以加入适量的掩蔽剂加以消除。/pp  4、方法的适用范围/pp  本法最低检出浓度为0.025mg/l(光度法),测定上限为2mg/l.采用目视比色法,最低检出浓度为0.02mg/l。水样作适当、预处理后,本法可适用于地面水,地下水、工业废水和生活污水。/pp  5、仪器/pp  (1)分光光度计。/pp  (2)PH计/pp  6、试剂/pp  配制试剂用水均应为无氨水。/pp  (1)纳氏试剂/pp  可选择下列一种方法制备/pp  1、称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,该为滴加饱和的二氧化汞溶液,并充分搅拌,出现朱红色沉淀不在溶解时,停止加氯化汞溶液。/pp  另称取60g氢氧化钾溶于水中,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静至过夜,将上清液移入聚乙烯瓶中,密塞保存。/pp  2、称取16 g氢氧化钠,溶于50ml水中,充分冷却至室温。/pp  另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。/pp  (2)酸钾钠溶液/pp  称取50g酒石酸钾钠(KNaC4H4O6.4H2O)溶于100ml水中,加热蒸沸以除去氨,冷却,定溶至100ml。/pp  (3)铵标准贮备溶液/pp  称取3.819g经100摄氏度干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。/pp  (4)铵标准使用溶液/pp  移取5.00ml胺标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。/pp  7、计算/pp  从校准曲线上查得氨氮含量(mg)/pp  氨氮(N,mg/l)=m/v*1000/pp  式中,m——由校准查得氨氮量(mg),V——水样体积(ml)。/pp  8、注意事项/pp  (1)钠氏试剂碘化汞与碘化钾的比例,对显色反映的灵敏度有较大影响。静止后生成的沉淀应除去。/pp  (2)滤纸中长含痕量铵盐,使用时注意用无氨水洗涤。所有玻璃器皿应避免实验室空气中氨的沾污。/pp  9、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)将进水样、出水样分别倒入到100mL的烧杯内。/pp  (3)向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。/pp  (4)静置3分钟后开始过滤。/pp  (5)将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯)/pp  (6)分别过滤完烧杯内的剩余水样。/pp  (7) 取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线 第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定)/pp  (8)分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂。/pp  (9)分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。/pp  (10)计算结果。/pp  span style="color: rgb(0, 112, 192) "strong七、硝酸盐氮(NO3-N)的测定/strong/span/pp  1、方法原理/pp  水样在碱性介质中,硝酸盐可被还原剂(戴氏合金)在加热情况下定量被还原为氨,经蒸馏后被吸收于硼酸溶液中,用纳氏试剂光度法或酸滴定法测定。/pp  2、干扰及消除/pp  亚硝酸盐在此条件下,亦被还原为氨,需预先除去。水样中的氨及氨盐亦可在加入戴氏合金以前,预蒸馏使除去。/pp  本法尤适用于严重污染的水样中硝酸盐氮的测定,同时,亦可作为水样中亚硝酸盐氮的测定(由水样在碱性预蒸馏去除氨和铵盐后,测定亚硝酸盐总量,减去单独测定的硝酸盐量后,即为亚硝酸盐量)。/pp  3、仪器/pp  带氮球的定氮蒸馏装置。/pp  4、试剂/pp  (1)氨基磺酸溶液:称取1g氨基磺酸(HOSO2NH2)溶于水,稀释至100ml。/pp  (2)1+1盐酸/pp  (3)氢氧化纳溶液:称取300g氢氧化纳溶解于水,稀释至1000ml。/pp  (4)戴氏合金(Cu50:Zn5:Al45)粉剂。/pp  (5)硼酸溶液:称取20g硼酸(H3BO3)溶于水,稀释至1000ml.。/pp  5、测定步骤/pp  (1)将取回的3号点和回流点的样摇匀后放置澄清一段时间。/pp  (2)取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线 第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。/pp  (3)取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。/pp  (4)向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右)/pp  (5)开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时)/pp  (6)蒸干后,取下蒸发皿冷却。/pp  (7)冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。/pp  (8)分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。/pp  (9)分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。/pp  (10)计算结果。/pp span style="color: rgb(0, 112, 192) "strong 八、溶解氧(DO)的测定/strong/span/pp  溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。/pp  一般采用采用碘量法测溶解氧/pp  1、方法原理/pp  水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。/pp  2、测定步骤/pp  (1)用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法)/pp  (2)用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。/pp  (3)向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入)/pp  (4)盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。/pp  (5)再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。/pp  (6)向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。/pp  (7)静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。/pp  (8)将量筒内的液体倒入到锥形瓶中。/pp  (9)用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。/pp  (10)计算结果。/pp  溶解氧(mg/L)=M*V*8*1000/100/pp  M为硫代硫酸钠溶液浓度(mol/L)/pp  V为滴定时消耗硫代硫酸钠溶液的体积(mL)/pp span style="color: rgb(0, 112, 192) "strong 九、总碱度/strong/span/pp  1、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。/pp  (3)分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。/pp  (4)向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。/pp  (5)分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升)/pp  (6)计算结果。用氢离子标液的用量*5即为体积。/pp  span style="color: rgb(0, 112, 192) "strong十、污泥沉降比(SV30)的测定/strong/span/pp  1、测定步骤/pp  (1)取一个100mL的量筒。/pp  (2)将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。/pp  (3)开始计时30分钟后,读出分界面的刻度读数并记录。/ppspan style="color: rgb(0, 112, 192) "strong  十一、污泥体积指数(SVI)的测定/strong/span/pp  SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。/pp  span style="color: rgb(0, 112, 192) "strong十二、污泥浓度(MLSS)的测定/strong/span/pp  1、 测定步骤/pp  (1)将取回的9号点的样和回流点的样摇匀。/pp  (2)将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可)/pp  (3)用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别)/pp  (4)取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。/pp  (5)取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。/pp  (6)冷却后用精密电子天平称量并记数。/pp  (7)计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000/pp  span style="color: rgb(0, 112, 192) "strong十三、挥发性有机物质(MLVSS)的测定/strong/span/pp  1、测定步骤/pp  (1)将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。/pp  (2)开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。/pp  (3)两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。/pp  (4)取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。/pp  (5)计算结果。/pp  挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000。/ppbr//p
  • 华北发现17万平方米工业污水渗坑 河北大成官方作出回应
    p 19日,针对有媒体报道河北等地发现多处污水渗坑,对当地环境造成威胁一事,河北省大城县官方回应称,渗坑污染系由该县旺村镇村民李某某叔侄将废酸倾倒进坑塘所致。2013年5月28日,大城县公安局对该案立案,后将犯罪嫌疑人抓获。/pp 4月18日,“两江环保”微信公众号发布《华北地区发现170000平方米超级工业污水渗坑》的图文报道,文章称大城县南赵扶镇存在17万平方米和3万平方米两个工业污水渗坑,并将有关情况上报环保部及有关部门。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201704/noimg/e5adb53d-6349-438a-bbfa-c81dbe05e4d7.jpg" title="中新网.jpg"//pp 大城县人民政府19日回应称,大城县委、县政府对此事高度重视,18日晚,该县组织县环保、公安等部门对渗坑情况进行详细调查。两渗坑均位于大城县南赵扶镇,分别为原南赵扶砖厂渗坑和原化肥厂渗坑。渗坑污染系由旺村镇村民李某某叔侄将废酸倾倒进坑塘所致。2013年5月28日,大城县公安局对该案立案,后将犯罪嫌疑人抓获。/pp 大城县人民政府就前期渗坑治理情况通报称,2014年3月,大城县政府经过调查比较,选定了两家公司分别对砖厂渗坑和化肥厂渗坑进行治理。2016年底,大城县政府将两个渗坑治理工程列入2017年县政府重点工程,预算3848万元。/pp 大城县官方表示,4月19日,国家、省市环保部门来到大城,对该项工作进行了实地考察,对该县过去的治理工作表示认可,并根据现在的实际情况,提出指导性意见。按照环保部提出的意见和要求,大城县现已成立了县长为组长,分管副县长为副组长,环保、公安和有关乡镇为成员的渗坑治理领导小组,加快推进渗坑治理工作。/pp 大城县官方称,由环保、国土部门对渗坑水样、土样进一步检测,查清污染物主要构成,为制定治理方案提供依据。该县正在积极联系国内顶尖治理公司对污染水体进行研究,制定切实有效的治理方案。并由县财政局和有关乡镇负责,对已列入2017年重点工程的渗坑治理项目,尽快开展治理招标有关工作。/pp 与此同时,举一反三,由大城县环保局牵头,各乡镇配合,迅速在全县范围内继续开展工业污水渗坑治理回头看、新工业污水渗坑摸排、生活垃圾坑以及生活垃圾堆摸排工作,形成台账,制定治理方案,迅速治理。并将聘请国内先进的治理公司,按照水样、土样检测结果,有针对性的大力开展水体、土壤修复工作。/p
  • 污水毒品检测,这些技术助力“毒品地图”溯源!
    污水分析技术并非仅仅用于毒品检测,而是起源于20世纪90年代美国环境保护署 (EPA) 的环境监测项目。当时,EPA 希望通过分析污水中残留的药物和化学物质,评估人类活动对环境的影响,并监测水体的健康状况。随后,科学家们发现污水分析技术可以用于流行病学研究,即通过分析污水中残留的药物代谢产物,了解特定区域内人群的用药情况,例如抗生素、止痛药、避孕药等。这一发现为禁毒工作带来了新的思路。由于毒品使用者会在体内代谢产生特定的代谢产物,并通过尿液排出体外,这些代谢产物会进入污水系统。因此,通过分析污水中特定毒品代谢产物的浓度,可以推断出特定区域内人群的毒品使用情况,为禁毒情报工作提供重要的数据支持。2023年,我国共缴获毒品25.9吨,而污水排放量高达645亿吨。将缴获的毒品融入生活用水中,其浓度仅为40kg/亿吨,难以通过传统方法检测。为了应对这一挑战,污水毒品检测技术应运而生,成为打击毒品犯罪、维护社会安全的重要手段。污水毒品检测利用了药物代谢动力学原理。人体服用毒品后,会在体内代谢产生各种代谢产物,并最终通过尿液排出体外。这些代谢产物会进入污水系统,并在一定程度上反映出当地居民的吸毒情况。自2021年起,污水毒品检测的行业标准规范数量增加,由上海司法鉴定科学研究院与同济大学联合起草的团体标准T/SHSFJD 0001-2021中规范了生活污水采样及常见毒品检测的原理、试剂、仪器和材料、操作方法及分析结果评价。如上图可见,标准中规定了生活污水中14种目标化合物分析的检出限,那么生活污水样品中毒品及代谢物的检出限为0.5ng/L是如何得出的?(下方为标准中检出限指标可能的制定考量,污水中每种毒品的含量数据其实是无法做到精确计算的,所以标准中所有毒品的检出限是参考值)1)目前污水中毒品检出限:0.5ng/L,即0.5kg/亿立方米,即0.5kg/亿吨。2)以2023年为例,全年共缴获毒品25.9吨(《2023年中国禁毒形势报告》),我国污水排放量645亿吨,将缴获的毒品融 入生活用水中,浓度计算如下:25.9吨毒品/646亿吨=40kg/亿吨。3)考虑到毒品进入人体后代谢有折算校准系数,需要在如上的浓度中除以该系数得到污水中代谢后毒品浓度,系数以甲基苯 丙胺为最大,取其系数,计算得浓度为0.85kg/亿吨;因此,0.5ng/L的毒品检出限可满足现有污水中毒品含量的检测。随着仪器分析技术的发展,高灵敏度和低检测限的质谱技术出现,使得对污水中痕量目标物的检测成为现实。国内多以液相色谱-质谱/质谱联用(LC-MS/MS)仪器分析污水复杂基质体系中的待测物,大大提高了分析的专一性和灵敏度,保证结果的准确性。目前针对污水中毒品检测制定的主要标准如下:《生活污水采样及常见毒品检测技术规范》团体标准主要是规定了采样点、采样方式(采样量)、采样后处理、存储要求、实验室样品处理方法、检测方法和检出限。生活污水样品中13种毒品及代谢物的检出限为0.5ng/L,定量下限为1ng/L;《GA/T 2059-2023 法庭科学 水样中吗啡等10种毒品及代谢物检验 液相色谱-质谱法》规定了法庭科学水样检材中10种毒品和代谢物的液相色谱-串联质谱(LC-MS)检验方法。可以看到,污水中毒品检出限0.5ng/L,当前实验室LCMS检出限为0.1ng/ml,目前采用的技术主要是固相微萃取,其萃取能力对预浓缩的水量提出了要求,需要对500ml的污水进行预浓缩,且单次萃取时间在30分钟以上。每次采集500ml,每隔两小时采样一次,将24h内采集的样品等比例混合,取500mL样品进行预浓缩。每天需要采集6L的水,如1个月进行一次集中运输,每月需要存储和运输的水量为180L。图源公安部第三研究所金洁副研究员报告《毒品快速检测及污水/废液毒品监测技术发展》可以说,污水毒品检测技术面临挑战:低浓度检测)毒品在污水中的浓度极低,需要高灵敏度的检测技术才能准确测量。复杂基质干扰)污水成分复杂,各种杂质和干扰物会影响检测结果,需要有效的样品前处理和信号处理技术。数据解读)污水毒品检测结果需要结合流行病学、社会学等多学科知识进行解读,才能得出可靠的结论。污水毒品检测技术的兴起,为禁毒工作提供了新的思路和方法。相信随着技术的不断进步和完善,污水毒品检测将成为守护清水之源、构建无毒社会的有力武器。仪器信息网特别举办“第三届法医毒物与毒品分析技术进展”主题网络会议,点击了解精彩报告。
  • 污水处理支持政策将出台 万亿市场蛋糕待切
    8月24日召开的国务院常务会议在谈到地下水污染防治措施时,明确提出要提高城镇生活污水处理率和回用率。根据记者了解的情况,污水处理支持政策将陆续出台。这意味着,已经走过“十一五”黄金周期的污水处理行业,在“十二五”期间继续“有戏”。  产能需求巨大  国务院常务会议提出,要严格控制影响地下水的城镇污染。削减城镇生活污染负荷,推进管网系统改造,提高城镇生活污水处理率和回用率,加强垃圾填埋场建设和治理。  地下水是我国生活、工业、农业用水的重要水源,但由于地表水的污染加剧,地下水的水质也在日益恶化。环保部提供的数据显示,我国90%城市地下水不同程度遭受有机和无机有毒有害污染物的污染。并且这种形势还在恶化,国土资源部近几年的调查显示,有40%的城市地下水水质在不断恶化。  地下水污染的加剧,与城镇生活污水处理率不高有关。数据显示,2009年底我国的污水处理率仅为73%,今年的目标是达到80%,即使今年达到目标,仍然与发达国家90%的污水处理率存在较大差距。据业内人士估算,“十二五”期间,污水处理产能需要增长67%才能满足污水处理需要。  专项规划年内报批  出于地下水污染防治等方面需要,污水处理将继续得到政策的支持。据记者了解,《全国城镇污水处理及再生利用设施建设规划(2011~2015年)》和《全国城镇生活垃圾无害化处理设施建设规划(2011~2015年)》两项规划已经纳入《“十二五”期间报国务院审批的专项规划整体预案》,将于年内正式报批。  据上述两项规划测算,“十二五”期间,包括中央政府、地方政府和个人投资在内,城市污水处理总投资达到4500亿元。环保部环境规划院日前发布的一份报告预测,未来五年,我国城镇生活污水、工业污水的治理投资将大幅增加。预计“十二五”期间,我国污水治理累计投入将达到1.06万亿元。  除此之外,据记者了解,为加大污水处理力度,未来五年,我国还将适度提高城镇污水处理收费和排污收费标准,并推进氨氮等主要污染物排污权有偿使用和交易工作。  据国家环保部科技标准司副司长胥树凡此前介绍,“十二五”我国环保发展第一大重点领域就是污水处理。具体包括脱氮除磷、现有污水处理厂升级改造、中小城市污水处理厂建设以及工业废水处理等。
  • 《农村生活污水治理水质检测化验室技术规程》征求意见
    p  随着社会经济的快速发展,农民经济收入不断提高,农民的生活方式也发生了巨大变化,自来水的普及,卫生洁具、洗衣机、沐浴等设施也走进平常百姓家,使得农村人均生活用水量和污水排放量增加,2016年,我国农村污水排放量达到202亿吨,同比增长9.8%,预测到2020年可达到接近300万吨,可见我国农村污水排放量体量惊人。/pp  总体来说,我国对农村污水的处理可以分为三个阶段:起步阶段、发展阶段和快速发展阶段。2005-2008年为起步萌芽阶段,该阶段国家逐渐开始重视农村环境保护问题 2008-2015年为发展阶段,该阶段的特点为政策探讨、资金配套和示范建设,主要表现为23个省、直辖市及自治区的“全国农村环境连片整治示范”及相关政策配套。2015之后为快速发展阶段,该阶段的特点为政策及机制完善、大力推进和区域综合服务。2016年以来,党中央治理农村污水的决心进一步加强,甚至将农村污水治理纳入国家规划层次。/pp  《水污染防治行动计划》曾提出“到2020年,新增完成环境综合整治的建制村13万个”。即到2020年将总计完成20万个农村的环境综合整治,以行政村占比来看,农村污水处理率可达到29%。与此同时,住建部也曾提出“到2020年,使30%的村镇人口得到比较完善的公共排水服务,并使中国各重点保护区内的村镇污水污染问题得到全面有效的控制,从2016年起用大约30年时间,在中国90%的村镇建立完善的排水和污水处理的设施与服务体系”。可以看到,如按照规划,我国农村污水治理市场大约在2040年基本达到饱和。/pp  随着市场的不断扩大和发展,农村生活污水治理水质检测工作也急需规范,而目前我国农村生活污水的排放标准由各省制定,因此水质检测化验室也可能是由各省制定。浙江省是我国农村生活污水治理工作开展较好的省份,有比较好的示范效应,在标准和技术规范方面也走在前列。/pp  近日,浙江省住建厅发布了《农村生活污水治理水质检测化验室技术规程》(征求意见稿),规范农村生活污水处理设施运维服务机构水质检测化验室建设,确保化验室安全有序运行,确保农村生活污水水质得到保障。/pp  征求意见表示,化验室应配齐包括现场测试和采样、样品保存运输和制备、化验室分析及数据处理等监测工作各环节所需的仪器设备。现场测试和采样仪器设备在数量配备方面应满足相关监测标准或技术规范的要求。实验室应有strong各种型号的采水器、pH 计或离子活度计、磁力搅拌器、玻璃温度计0-50℃、电子天平、COD 消解装置、酸式滴定管、分光光度计、蒸馏装置、高压蒸汽灭菌锅、电炉、红外测油仪、水平振荡器、马弗炉、全玻璃或有机玻璃微孔滤膜过滤器、循环水式多用真空泵、烘箱(干燥箱)、显微镜、超净台、恒温培养箱、冰箱、生物安全柜/strong等其他配套的玻璃仪器设备。/pp  随着农村生活污水治理市场的发展,此类仪器又将迎来新的市场机遇。/pp附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202012/attachment/66c5e7a9-3b96-4d8c-8918-1a9d899b45d0.pdf" title="《农村生活污水治理水质检测化验室技术规程》(征求意见稿).pdf" style="color: rgb(0, 102, 204) font-size: 14px text-decoration: underline "span style="font-size: 14px "《农村生活污水治理水质检测化验室技术规程》(征求意见稿).pdf/span/a/ppbr//p
  • 液质联用污水验毒,助力毒品溯源
    p style="text-align: justify text-indent: 2em margin-bottom: 10px "在追查毒品过程中,毒品溯源一直是困扰警方的难题。毒品经过人体代谢后,仍会有相当比例的残留物被排进生活污水,通过测定污水中毒品残留物的浓度,再结合进水流量、人口数量等,就可估算该地区人群消费滥用药物和毒品等情况,从而调查该区域吸毒信息。/pp style="text-align: justify text-indent: 2em margin-bottom: 10px "6月26日是国际禁毒日,齐鲁晚报报道:自2018年5月份起,山东省禁毒办通过政府购买服务的方式,与中国海洋大学联合成立了山东省“污水验毒”项目组,对山东省16个市、170余个县(市、区)内139个污水处理厂的污水样本进行抽样。通过处理后,采用“固相萃取—a href="https://www.instrument.com.cn/zc/51.html" target="_blank" style="color: rgb(84, 141, 212) text-decoration: underline "strongspan style="color: rgb(84, 141, 212) "液相色谱—质谱联用技术”(点击进入液质联用(LC-MS)专场)/span/strong/a对污水进行分析,结合水参数及周边环境让毒品无处遁形,即使“1克冰毒投入大明湖也能检测出来”。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/0ca4cf69-209e-4f80-a9d7-ff0bf62cbdf1.jpg" title="550px-Liquid_Chromatography_Mass_Spectrometer.png" alt="550px-Liquid_Chromatography_Mass_Spectrometer.png"//pp style="text-align: justify text-indent: 2em margin-bottom: 10px "据介绍,检测污水中毒品的第一步是采样,样品来自污水厂进水口,进水口下有一个很大的储水池,可以保留一段时间的污水信息。第二步是运输,样品通过冷链运送到实验室,并加入一系列试剂保存。/pp style="text-align: justify text-indent: 2em margin-bottom: 10px "第三部是前处理,通过固相萃取柱萃取目标物,经过洗脱后,将毒品洗脱下来,再用高纯氮气低温吹干,将50ml的水样浓缩成0.2ml的样品。第四步是检测,通过高效液相色谱—多级质谱联用技术进行目标毒品的检测分析。最后再结合当地的生活习惯和周边环境差异,对检验的数据进行校正,得到各地区污水毒品含量的数据。/pp style="text-align: justify text-indent: 2em margin-bottom: 10px "从检验结果上看,山东各地的污水中的毒品冰毒占比达95%以上,其余大部分是海洛因,非常个别检测出氯胺酮,可以忽略不计。/pp style="text-align: justify text-indent: 2em margin-bottom: 10px "据了解,今年年初,山东警方已经通过此方法,成功破获了一起制毒贩毒的案件,抓获制贩毒嫌疑人6名、吸毒人员8名,缴获冰毒80克、冰毒半成品15公斤以及其他制毒原料40公斤。/ppbr//p
  • 珂睿:在线固相萃取-质谱系统助力污水验毒
    2020年6月23日习近平总书记在全国禁毒工作先进集体和先进个人表彰会议上就禁毒工作做出了重要指示,要求坚持厉行禁毒方针,打好禁毒人民战争,完善毒品治理体系,深化禁毒国际合作,推动禁毒工作不断取得新成效,为维护社会和谐稳定、保障人民安居乐业作出新的更大贡献。在国家“十四五”规划中污水检毒也已经成为了禁毒工作的重要手段,污水验毒可以客观、全面的反应城市毒情,为公安机关锁定“毒源”提供有利的技术支持。目前,污水验毒已成为各省监控毒情的重要技术手段,很多省市在2018年就已经开始开展对全省的污水样本进行检测,并取得了一定的成效,目前该技术已经开始得到大范围的推广。污水中主要检测的毒品包括:吗啡、可待因、、O6-单乙酰吗啡、苯丙胺、甲基苯丙胺、MDMA、苯甲酰爱康宁、氯胺酮、去甲氯胺酮、MDA、可卡因、美沙酮等,同时需要检测常量的可替宁,作为人群基数标志物。目前,较常见的污水毒品检测方法有离线固相萃取法和在线固相萃取法两种方案,两种方案前处理流程如下:离线固相萃取法:在线固相萃取法:两种前处理方法对比:离线固相萃取法在线固相萃取法污水取样量50ml10ml是否需要对水样进行酸化需要不需要单个样本耗时175分钟18分钟前处理耗材(按照每个样品做两次平行计算)一次性过滤器3-5个一次性酸性SPE小柱 2个一次性碱性SPE小柱 2个分析色谱柱 1套一次性过滤器1个在线富集柱 1套分析色谱柱 1套需要配置的前处理设备全自动固相萃取仪离心浓缩仪移液枪移液枪每天可处理和分析的样品数量20个100个自动化程度中等高综上所述,在线固相萃取法相较于离线固相萃取法,具有明显的方法学优势,样本检测耗时只有离线法的十分之一,检测成本只有离线法的十分之一,每日检测速度是离线法的十倍。目前,成都珂睿开发的双鱼-I在线固相萃取系统,在与质谱联用后,可以非常方便而有效的将污水验毒工作开展起来,可同时监测多达近30种毒品,且可随着工作的深入,形势的变化,对监测的毒品种类进行扩展,有效达到毒情监测的目的。目前珂睿可以检测的毒品包括但不限于:a. 常见毒品及代谢物15种:吗啡、可待因、O6-单乙酰吗啡、苯丙胺、甲基苯丙胺、MDMA、MDA、可卡因、苯甲酰爱康宁、氯胺酮、去甲氯胺酮、美沙酮、甲卡西酮、卡西酮、四氢大麻酸。b. 芬太尼类毒品6种:芬太尼、去苯乙基芬太尼,呋喃芬太尼,舒芬太尼、卡芬太尼、瑞芬太尼。c. 新精活物质8种:氟硝西泮、MDPV、对甲氧基甲基苯丙胺、甲氧麻黄酮、1-(3-三氟甲基苯基)哌嗪、1-(3-氯苯基)哌嗪、苄基哌嗪、氟胺酮。d. 制毒原料5种:麻黄碱、伪麻黄碱(冰毒原料)、邻酮(氯胺酮原料)、NPP和4-ANPP(芬太尼原料)本方案完全满足公安部JD/Y JY02.10-2021“水样中21种毒品及代谢物与可替宁的测定”技术规范要求。我们按照方法要求,对污水中12种毒品进行了方法学相关的一系列测试,包括准确性、方法检出限、定量限、污水中基质效应、标准曲线线性相关系数、每种毒品保留时间偏差、样品重复性和双样平行相对相差等,得出了一系列数据,充分证明了双鱼-I在线固相萃取系统的方法可靠性。本次测试所用仪器设备为:双鱼-I在线固相萃取系统+API4000型三重四级杆串联质谱仪。样本情况:A、B、C三个污水样本(每瓶200ml),其中含有的12种毒品已知浓度。操作步骤:1.取样本10ml,过0.22um水相膜,至进样瓶中2.进样瓶中加入氘代内标(12种氘代含量均为25ng/mL),振匀3.取进样瓶中2mL样本进样目标物检出限ng/L(S/N≥3)定量限ng/L(S/N≥10)内标在盲测污水样本中基质效应%(回收率)线性关系方程线性相关系数吗啡0.3183.2Y=0.02679X-0.048700.9997706-单乙酰吗啡0.51109Y=0.01876X+0.006400.99864可待因0.51101Y=0.02034X+0.003560.9986美沙酮0.21123Y=0.01639X+0.105360.99903甲基苯丙胺0.2194Y=0.01933X+0.117440.99929苯丙胺0.2187.3Y=0.0187X+0.109710.99924氯胺酮0.2190.1Y=0.01889X+0.094030.99967去甲氯胺酮0.5179.5Y=0.02229X+0.069610.99981MDMA0.2197.5Y=0.02199+0.016020.99762MDA0.5199.5Y=0.01991X+0.050.99985可卡因0.21106Y=0.02293X+0.016480.99718苯甲酰爱康宁0.5168.8Y=0.02117X+0.026960.99847方法检出限、定量限、污水中基质效应、线性关系考察(定量限均可达1ng/L, 回收率均在68%-125%之间,线性相关系数均优于0.998)目标物保留时间偏差(%)样品重现性(RSD, %, n=6)平行双样相对相差(%)ABCABCABC吗啡0.1290.1210.1932.5171.9893.5920.680.982.0406-单乙酰吗啡0.1280.0370.0372.0521.6260.9682.983.380.47美沙酮0.1560.2150.1952.2641.1311.531 4.551.030.74甲基苯丙胺0.1560.0670.0373.391.7643.0054.711.035.79苯丙胺0.1970.1970.1970.8210.6161.484.923.282.78氯胺酮0.1240.1240.1471.4120.6512.3282.431.982.75去甲氯胺酮0.110.110.111.2230.9611.3752.363.661.11MDMA0.0640.0350.0351.1831.3440.5643.481.493.13MDA0.1810.060.060.5290.9550.7172.222.164.82可卡因0.1040.1040.1040.5030.7342.270 0.111.613.09苯甲酰爱康宁0.1790.1790.1092.9764.1252.574.121.685.22保留时间与标准品的偏差均小于0.2%,样品的重现性RSD均小于3%,双样平行相对相差小于6%珂睿双鱼-I在线固相萃取与Sciex三重四级杆串联质谱系统联用(客户现场)考虑到污水毒品检测中,可替宁为常量组分,不适合采用大体积进样,双鱼-I专门设计了双进样器的高配方案,可以在一次序列分析中实现大体积进样分析痕量毒品和常量可替宁,无需对硬件进行任何手动更换或切换,无人值守,全自动获得检测结果。同时考虑到相关用户除污水毒品检测外,可能会开展其它如毛发毒品检测、理化检测等常量分析,双进样器高配方案用户仅通过系统升级和软件控制,即可方便地实现大体积进样与常规小体积进样分析的快速无缝切换,满足多种应用需要。 成都珂睿科技双鱼-I型在线固相萃取系统目前已经多家客户处开展污水中毒品分析的应用,包括公安局和第三方司法鉴定机构,用户反馈良好。2020年珂睿推出了双鱼-I型在线固相萃取系统以及国产第一套污水中毒品分析的在线固相萃取液质联用方案,希望让国产色谱分析仪器能够更好地助力到关系国计民生的检测项目中,真正做到“中国制造服务于中国崛起”!
  • 中央下拨43.9亿治理城镇污水垃圾处理
    近日,财政部下拨2011年中央预算内基建支出预算43.9亿元,专项用于河北、浙江、四川、青海等30个省(区、市)城镇污水垃圾处理设施及污水管网建设项目,支持环境质量改善,确保群众饮水安全,推动经济社会全面协调可持续发展。  推进城镇污水生活垃圾处理设施建设,是城镇污水生活垃圾处理的一项重要基础性工作,是治污减排的关键举措,既关系到群众的生产生活和身体健康,又关系到生态环境和经济社会发展。中央财政将大力支持城镇生活污水和垃圾处理能力建设,推动城市污水处理率和生活垃圾无害化处理率在“十二五”时期分别达到85%和80%。  欲了解更多行业动态,请查看“我要测资讯中心”
  • 山东今年将斥资1.5亿处理城镇污水垃圾
    山东省今年将安排1.5亿元专项资金进行城镇污水垃圾处理,推进城镇污水垃圾处理设施建设,这一专项资金比上年增加1000万元。  近日,山东省财政厅会同省住房建设厅制定了城镇污水垃圾处理专项资金管理办法,采取贷款贴息和投资补助的方式,重点支持已列入山东省“十二五”污水垃圾处理规划的新建扩建城镇污水垃圾处理、再生水利用、污泥处置项目,以及城乡生活垃圾收集运输、餐厨垃圾收集处理项目。  据了解,专项资金优先支持贷款贴息项目。截至提交专项资金申请之日,上一年内已落实建设贷款的项目,最高将获得与同期贷款基准利率相同的财政贴息支持。对未落实贷款的项目,将择优给予补助。其中,对再生水利用、升级改造工程,每1万吨/日最高补助50万元 对污泥处置工程,每建设1项最高补助50万元 对餐厨垃圾处理、城乡生活垃圾转运工程,将根据建设规模给予适当支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制