当前位置: 仪器信息网 > 行业主题 > >

稻梨孢

仪器信息网稻梨孢专题为您提供2024年最新稻梨孢价格报价、厂家品牌的相关信息, 包括稻梨孢参数、型号等,不管是国产,还是进口品牌的稻梨孢您都可以在这里找到。 除此之外,仪器信息网还免费为您整合稻梨孢相关的耗材配件、试剂标物,还有稻梨孢相关的最新资讯、资料,以及稻梨孢相关的解决方案。

稻梨孢相关的资讯

  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 岛津福包奖励揭晓
    过了一个幸福年,不知道朋友们是不是都胖了三斤呢? 那就让我们将幸福延续吧,在新春之前送出的祝福,今天到了揭晓的日子啦。 我们在参与活动的朋友当中随机抽取了200个幸运者,将送出面值50元的京东电子卡一张,奖品近期以短信的形式发送,请注意查收。同时感谢对岛津公司一直以来的大力支持,还请继续关注我们的其他活动~ 擦一擦机器的尘土,带着饱满的热情开始新一年的工作,奔跑吧,朋友! 【卡券一旦送出不做更改,本次活动最终解释权归岛津企业管理(中国)有限公司所有】 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津应用:ICPMS测定玻璃药包材中浸出金属元素含量
    玻璃药包材化学稳定性高,耐药物腐蚀性,与药物相容性好。同时卫生安全,无毒无异味,吸收小,可回收利用成本低。YBB00172005-2015 《药用玻璃砷、锑、铅、镉浸出量限度》中明确规定了元素测定金属元素的限度及相应的前处理方法,根据YBB00372004-2015 《砷、锑、铅、镉浸出量测定法》测试浸出元素,其中砷、锑采用紫外法,铅、镉采用原子吸收法。ICPMS测定快速快、灵敏度高等优点备受测试者的亲睐。本文采用岛津电感耦合等离子体质谱仪ICPMS-2030,建立了玻璃药包材中溶出的砷、钡、镉、铜、铅、锑和硒的ICP-MS 测定方法,该方法具有检出限低、灵敏度高、线性范围宽、基体效应小、准确度和精密度高、简便快捷、可同时多元素分析等优点。岛津电感耦合等离子体质谱仪ICPMS-2030 了解详情,敬请点击《ICPMS-2030 测定玻璃药包材中浸出金属元素含量》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津推出LC/MS/MS 颗粒蛋白前体和颗粒体蛋白肽方法包
    岛津从即日起推出《LC/MS/MS 颗粒蛋白前体和颗粒体蛋白肽方法包(英文)》。该方法包(仅适用于LCMS-8080)是通过用老鼠生物样品或肽的胰蛋白酶消化物中所提取出的蛋白质来对颗粒蛋白前体和颗粒体蛋白肽进行分别定量的MRM 分析,方法包提供了包括分析条件及化合物信息的方法文件。 这一方法包包含了血清(例子)的样品前处理方案,所以即使对有过LC/MS/MS分析经验但不熟悉蛋白质分析的研究人员来说,仍可轻松地使用这一方法包和疾病模型或转基因动物模型的血液样本来对血液中的颗粒体蛋白肽和颗粒蛋白前体进行定量。此外,因为样品前处理方案也可以用于除血清外的生物样品,本产品有助于从事于老鼠细胞和组织分析的人员。本产品不仅适用于正在研究诸如肥胖和糖尿病等生活方式疾病的研究人员,也适于首次安装LC/MS/MS 的蛋白质研究人员。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以&ldquo 为了人类和地球的健康&rdquo 为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津“细胞培养上清液方法包”介绍
    “细胞培养上清液方法包”采用超快速三重四极杆液质联用仪(LCMS-8040/8045/8050/8060),仅需 17分钟(包含分析时间和平衡时间),使用最优化的MRM参数,可同时监测分析95种化合物(不仅可分析培养基的基础成分也可分析细胞的代谢产物,包括氨基酸类、核苷酸类、维生素类、糖类以及其他类化合物等)的相对丰度变化。该方法包既可分析高浓度组分(例如葡萄糖和谷氨酰胺),也可分析低浓度组分(例如维生素等)。该方法包无需标准品,只需一个内标即可检测细胞培养过程中各组分随时间的变化曲线和培养基批次间的一致性。如用户需要对培养基或者细胞培养上清液中组分进行绝对定量,则需要另行准备对应的标准品,从而通过内标法对组分进行绝对定量。 “细胞培养上清液方法包”前处理操作简单方便,流程如下图所示: “细胞培养上清液方法包”中95个化合物(糖类、氨基酸类、维生素类、核苷酸类以及其他的抗生素、有机酸、生长因子等)列表详见表1。该方法包所检测化合物可增加扩展,也可根据用户需求选择性除去不关注化合物。 表 1. “细胞培养上清液方法包”中96种化合物列表(包含一个内标)关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • HORIBA | 厉害了!青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道
    作者 | 王喜先单个细胞是地球上生命体功能和进化的基本单元,蕴藏着生长发育、衰老死亡、新陈代谢、信号传导等众多奥秘。单细胞精度的功能分选是解析每个细胞千差万别的原因、探索自然界海量陌生细胞(不可培养微生物)的重要工具,分选通量的提高将帮助研究人员累积更多的研究样本,拓展更广的筛选范围(自然环境、突变体库等)。因此,实现单细胞精度的高通量功能分选至关重要。近,中国科学院青岛生物能源与过程研究所传来喜讯,该所单细胞中心马波研究员与徐健研究员带领的多学科交叉团队,将单细胞拉曼光谱(SCRS)与液滴微流控技术耦合,发明了高通量拉曼激活单细胞液滴分选技术(RADS,Raman-activated single-cell Droplet Sorting)。该工作于2017年11月3日在线发表于美国化学会《Analytical Chemisrtry》。注:单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成。巧妙的“后液滴包裹”设计本研究开发的高通量拉曼激活单细胞液滴分选技术(RADS技术),是一种巧妙的“后液滴包裹”设计,它在微流控芯片的拉曼光谱检测点后方引入液滴包裹单元,这样就克服了制约通量提高的电磁阀作为分选驱动力的瓶颈问题,实现了基于介电力驱动的高通量分选。这使得从自然界中筛选新型的种子选手,或是从突变体库中找到更优秀的候选者,都变成现实。这项研究成功地将传统的“先养再选”思路扭转成了“先选再养”,避免了传统分选的涂平板和挑克隆的过程,省去了扩大培养、提取以及定量等繁琐过程。与传统技术相比,RADS技术的优势为:从筛选到采集,高效一体化拉曼分析过程接下来我们就来看看整个从筛选到采集的工作是如何进行的。具体来说,如下图,在微流控芯片中,细胞排着队(从左向右)一个个经过拉曼检测点(Raman),之后被逐个包裹在液滴(Oil)里面,与此同时计算机对采集到的单细胞拉曼信号进行判别,满足分选条件的,启动介电力(Dielectrophoresis),目标细胞将进入分选通道(Collect),而不满足分选条件的细胞将流入废液通道(Waste)。拉曼激活单细胞液滴分选技术在上述“流程”中的拉曼分析环节,研究团队利用HORIBA HR 800型拉曼光谱仪来采集单细胞拉曼光谱信号,配置EMCCD使得信号强度大幅提升,这对分选通量提高起到了重要作用。如果说微流控芯片、拉曼光谱仪及RADS是分析过程的三大核心结构,那么本项工作更加重要的“总指挥”则是团队自主开发的分析软件,该软件将拉曼采集、分析、单细胞液滴包裹及分选过程集成在一起,充分实现了从分选到采集的高度自动一体化。实践中的应用在上述分选技术的基础上,研究团队成功完成了大量实践研究,如高产虾青素之雨生血球藻的精确化(分选准确率98.3%)、高通量(260细胞/分钟)筛选等,并通过实验发现并证明,分选后92.7%的雨生血球藻细胞仍可保持活性并可增殖。相信后续还会有更多令人兴奋的实践研究成果不断诞生。本工作在中国科学院青岛生物能源与过程所完成,同时得到了中科院武汉水生所胡强研究员、北京大学王玮教授等的帮助,并得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。相关研究成果以“Raman-activated Droplet Sorting (RADS) for Label-free High-throughput Screeningof Microalgal Single-cells.”为题发表在《Analytical Chemisrtry》上。后 记报道成文过程中,小编有幸采访到以上研究的作者之一籍月彤老师,她告诉小编,“这是一个多学科交叉共同完成的工作,分析化学、生物化学、电子信息、自动化等背景的同事一起努力,终实现多信息获取下的高通量分选方案。”团队介绍中科院青岛生物能源与过程研究所单细胞研究中心(http://www.Single-Cell.cn/)拥有约60人的研发队伍,其核心使命是研制和应用示范包括单细胞拉曼成像、拉曼激活细胞分选、单细胞测序、单细胞培养等在内的新一代单细胞分析系列仪器,以及元基因组、拉曼组等生物大数据软件,进而以微藻合成生物学、共生菌群与健康、海洋生物资源等为模式研究体系,探讨单个活体细胞精度的微生物组功能与进化机制。近,徐健研究员团队还发明了基于“拉曼组”的单细胞快检技术,能够在单个细胞精度同时测定淀粉、甘油三酯、蛋白质含量以及油脂不饱和度,为细胞工厂的性能测试平台增添了一个崭新手段。该工作于11月19日在线发表于Biotechnology for Biofuels。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 生成胰岛素的胰岛细胞可“再生”
    一个国际研究小组日前发现,一旦胰腺中生成胰岛素的胰岛&beta 细胞全被破坏,那么胰腺中就会有其他细胞出来&ldquo 救急&rdquo ,&ldquo 变身&rdquo 为胰岛&beta 细胞。这一发现表明,胰岛&beta 细胞可以&ldquo 再生&rdquo ,这也许有助于医学专家重新设计对糖尿病的疗法。 一般而言,胰腺中的胰岛&alpha 细胞负责制造胰高血糖素,胰岛&beta 细胞负责制造胰岛素。但日本奈良尖端科学技术大学院大学和瑞士日内瓦大学研究人员通过小鼠实验表明,这种分工并不是不可改变的。 研究人员给小鼠使用了一种名为白喉的毒素,将小鼠体内的胰岛&beta 细胞全部破坏,结果小鼠出现糖尿病症状。为了维持小鼠的生命,研究人员给它们注射胰岛素。两到四周后,他们惊讶地发现,小鼠体内的胰岛&alpha 细胞出现变化,原本只负责制造胰高血糖素的胰岛&alpha 细胞现在开始制造新的胰岛&beta 细胞。 在接受实验的8只小鼠中,有一半在10个月以后胰岛&beta 细胞增殖到原有数量的20%左右,摆脱了糖尿病症状。 此前,研究人员从未发现胰岛&alpha 细胞能够成为胰岛&beta 细胞的来源。他们指出,如果人体内胰岛&alpha 细胞能够代替数目减少或者功能减弱的胰岛&beta 细胞,将会为糖尿病治疗带来希望。这一研究成果刊登在最新一期英国《自然》杂志网络版上。
  • 缉枪治爆(二)|岛津EDX快速鉴定爆炸物来源
    导读 7月中旬,湖北孝感某黑作坊通过自购的烟花爆竹,在非法“提取黑火药”的过程中发生爆炸,致3死3伤。枪爆物品问题直接关系公共安全和社会大局稳定,直接关系人民群众根本利益和国家长治久安。X射线荧光可快速无损地对黑火药等爆炸物进行早期的定性-定量分析,帮助公安司法机关初步快速查明爆炸物的来源。岛津EDX-7000能量色散型X射线荧光光谱仪具有高灵敏度和高分辨率的特点,无需复杂的化学前处理,可快速鉴定黑火药等爆炸物,为打击犯罪活动提供科学依据。 目前市面上爆炸物主要来源有以下几种: 1)黑火药类:硝酸钾、硫磺、炭粉;2)烟花类:氯酸钾、高氯酸钾、硫磺及产生颜色的金属粉未(Mg/Al/Cu/Ti等);3)高锰酸盐类:高锰酸钾、硫磺、炭粉;4)灼热剂类:黑铜矿、赤铁矿、金属铝;5)肥料类易爆物:硝酸铵;6)有机类爆炸物:三硝基甲苯(TNT)、戊硝酯(PETN)、1.3.5三氮杂苯(RDX)等。 根据各类爆炸物的主量元素不同,通过X射线荧光的定性-定量分析即可初步筛查为何种爆炸物,这为公安司法机关的快速查明爆炸物的来源提高了效率。 表1. 爆炸物主要成分及元素 根据爆炸物定性主要元素进行爆炸物来源的初步判定如图1。 图1. 爆炸物来源初步判定程序 说明:1)主要针对表1中爆炸物主要成分及元素而进行爆炸物种类的初步判定;2)有机爆炸物如三硝基甲苯(TNT)、戊硝酯(PETN)、1.3.5三氮杂苯(RDX)等的最终精确判定需要傅里叶变换红外光谱(FTIR系列)的定性分析及确认以后的GC-MS进一步的定量分析。 将爆炸物样品直接装样品杯中直接使用定性-定量分析条件进行分析,无须化学前处理(如图2)。根据目前爆炸物来源的主要成分及其含有元素, 使用岛津EDX-7000(如图3)进行定性-定量分析。 定性-定量分析结果及谱图如图4。 说明:归一法定性-定量分析结果中不包括仪器不能测试的Na以前的元素(如C等) 图4. 分析结果及谱图 根据爆炸物定性主要元素进行爆炸物来源的初步判定程序得出,上述样品定性-定量结果中主要元素为S/K,无高Cl, 无高Mn,无高Al/Cu/Fe,故样品可初步判定为黑火药类爆炸物。进行以C(炭)作平衡、K以KNO3的形式表示的数据重新归一法处理后结果如图5。 图5. 定性分析处理后结果 如果需要更进一步确认爆炸物为黑火药中硝酸钾、硫磺、炭粉的含量及物相,也可使用岛津电子探针显微镜分析仪(EPMA系列)、X射线衍射仪(XRD系列)、原子光谱(AAS/ICP系列)、傅里叶变换红外光谱(FTIR系列)等仪器配套完成。 岛津EDX-7000能量色散型X射线荧光光谱仪可快速对爆炸物进行快速定性-定量分析,以初步确认爆炸物的来源。正所谓: 轰隆一响天地动,荧光一扫露真容。硫氯钾锰各为主,镁铝铜铁在其中。简捷无损速定性,寻根溯源解迷踪。安保维稳添慧眼,识别鉴定显神功。
  • 岛津提供干细胞研究的全面解决方案
    干细胞作为再生医学的重要手段与研究核心,涵盖了基础与临床医学多个方面。在基础研究方面,干细胞成为生命科学的重要模型,有助于我们更进一步探索人体内各种生理及反应的分子机制。在临床应用方面,干细胞可以应用到人类面临的诸多医学难题中。岛津公司,支持干细胞研究的各个阶段,从分离培养到研究分析,不论是科研实验耗材,还是鉴定检测设备,岛津均能提供解决方案。细胞分选细胞成像应用案例:1.优化单克隆细胞筛选流程2.跟踪细胞增殖情况3.判定干细胞球(spheroid/EB)的大小和数量 细胞培养及检测应用案例:1.培养3D细胞微组织块用于药物筛选2.96孔V形底板应用实例,由人类胚胎干细胞形成视网膜组织 作为重要的一个新事业,自2015年起岛津致力于iPS细胞及ES细胞等细胞解析事业。为了促进干细胞相关的再生医疗的普及及发展,确保细胞安全性的品质管理技术、自动化分析技术将必不可少。岛津不仅利用现有分析设备投入细胞分析领域,还引入先进的分析观察设备及细胞培养耗材,希望进一步推动干细胞相关的再生医疗事业的发展与进步。促进人类和地球的健康,是岛津永恒不变的追求。 更多信息,请点击“原文链接”查看。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 南理工实验室爆炸是因工人盗拆金属
    4月30日,南京理工大学一处废弃实验室发生爆炸,造成1死3伤。5月1日,南京理工大学举行新闻发布会,表示经校方调查组调查,“爆炸系施工人员盗拆实验室金属构件引起”。不过,公安和安监部门并没有参加这次发布会。  到底是什么东西引发了爆炸?   校方:实验残留物确实危险,但也可能是工人的自带设备出问题   “经过数十年的实验,试验场内的土地、墙壁以及各种设备上,都沾染了大量的实验残留物,这些残留物易燃易爆十分危险。”南京理工大学党委宣传部部长宫载春说,“发生事故的实验室建于上个世纪60年代,只是试验场的一部分,在被停用之前,名为“化工学院原319实验室。”   宫载春说,在2003年该试验场被停用之前,包括319实验室在内的好几个实验室,都曾经进行过包括“炸药实验”在内的火化工实验。   不过,校方并不认定爆炸一定由实验残留物引起。“也可能是工人带进去的氧气瓶和液化气罐出了问题。”宫载春说,事故的具体原因应该由权威部门认定。   实验室这么危险,为何迟迟不搬?   校方:拆迁难度大,需要专业人士制定方案   “火化工试验场的搬迁是一个专业性极强的工作。”宫载春说,这项工作的难度很高,因为试验场旁边就是居民区,所以需要反复论证,还要请专业人士制定包括“销爆处理”在内的安全拆迁方案,所以,试验场搬迁的工作一直未能进行。   不过,校方表示,尽管停用,但从未放松过对火化工试验场的管理。宫载春说,试验场内只有几幢老旧的房屋,而且常年大门紧闭,校方请了专门的人员在试验场值守,想要进出这里,必须持有“出入证”。“试验场里到处都是防火标语,我们就怕出事。”宫载春说。   “这与校庆无关,所以不存在赶工期。”宫载春说,事故之前,校方实际上已经专门制定了包括销爆处理在内的安全拆迁方案,并计划于5月中下旬完成。   施工队是怎么进实验室的?   校方:他们欺骗门卫进入试验场,并撬开实验室的门   “事发前,(火化工)试验场中的化工学院原307实验室委托了一个施工队对该实验室的空调、自行车棚等设施进行拆除。”南京理工大学表示,为了进出方便,学校为施工队中的几名工人发放了临时出入证。“证件上有照片姓名,进出都得出示。”宫载春说,校方曾经反复向施工方强调试验场的危险,让他们千万不要去接触实验室,但在事故前,校方并不知道,这几名工人,其实并非是最初的承包方他们只是从承包方手中接下了工程,又由承包方出面,帮他们办理了临时出入证。   “该施工队在拆除过程中,看到已停用的化工学院原319实验室中有大量的金属构件。于是,他们在假期利用临时出门证,携带氧气瓶和液化气罐及切割工具,欺骗门卫进入试验场中,并撬开319实验室的门,私自盗拆实验室里的金属构件,引发爆炸……”   宫载春说,警方尚未出具调查报告,这是由学校成立的事故调查组公布的调查结果。   但几位在事故中受伤的工人,并不承认这个说法。在接受现代快报采访时,一位谷师傅说,他们是从一个张姓包工头手中,转包下了“拆除变卖试验场废旧钢铁”的活,为此,他们还向包工头支付了数千元钱。   谷师傅说,事故发生前,他们已经在试验场中工作了数天,从未有人说他们是“盗拆”。   善后工作进行得怎么样了?   居民:必须尽快修理,还要赔偿   警方为了调查这件事,已经将事故中的当事人控制,承包方的包工头张某也已经被警方带走调查。   爆炸产生的气浪和巨响,也影响了附近居民的生活,清新家园小区的03、04、05幢居民楼首当其冲爆炸后,这三幢居民楼上有数十块玻璃被震碎。   昨天,记者再次来到这个小区时,发现被震碎的窗户还没能全部换完,有的被木板挡住,有的则保留了事故后的模样。小区的地面上,还残存着一些碎玻璃碴。“理工大学的施工队已经来过了,挨家挨户测量了相关的尺寸,要帮我们修理。”小区的一位居民说,意外已经发生,居民只希望能及时处理。   “事故后,我们就跟街道和社区的工作人员上门走访了。”宫载春说,受损比较严重的,大概有十多户的居民,为此,学校为他们准备了食物,还在附近的快捷酒店开好了房间。  不过,一些居民并不买账,“窗户坏了,要是进贼怎么办,必须尽快修理,而且,要谈赔偿。”   昨天,南京理工大学几处学生论坛中,谈论爆炸事件的学生们在逐渐变少。不过,试验场附近依然“戒备森严”,南京理工大学表示,因为警方与安监部门仍在调查具体的事故原因,而且试验场中危险重重,依然不能对记者开放。   高危实验室并未   登记为重大危险源   4月30日南理工实验室爆炸事件,让不少心有余悸的南京人回想起2010年的“728”爆炸案。惨痛的教训,让南京从当年8月开始行动,对全市各领域进行了一系列安全生产大检查,排查隐患,并强化了多项安全管理责任体制。   然而,如今又因为拆迁导致爆炸,难道当年的教训吸取得还不够吗?为何类似的事件会再度上演?   实验室未被作为“重大危险源”登记   其实,对于可能发生潜在危险的设备,南京早有管理规定。2009年,《南京市重大危险源管理暂行规定》出台,强化了各领域重大危险源的登记注册制度。其中第二十六条规定,新建、改建、扩建工程项目中涉及重大危险源的,其集中监控系统与重大危险源远程监测预警系统的联网应纳入“安全设施审查”内容。那南理工实验室及相关设备,是否被作为“重大危险源”被登记在案?   对此,现代快报记者从有关方面了解到,这个实验室已在多年前就停止使用,属于废弃实验室,而且有关人员专门对此清理过。因此按照相关规定,这里未被作为“重大危险源”登记在案。但记者也从南理工了解到,发生爆炸的实验室墙壁以及各种设备上,都沾染了大量的实验残留物,这些残留物易燃易爆“十分危险”。   拆迁“危险建筑”,需要一定资质和规范   拆除存在安全隐患的实验室,对于招投标以及施工方的资质,国家或地方有没有相关规定?这次发生爆炸事件,南理工校方是否需要承担一定责任?   对于拆除规范,南京市安监局负责人告诉现代快报记者,这类存在潜在危险的建筑,在拆迁时要考虑三个关键点。首先是施工方,看有没有相关的拆迁资质 其次是具体的施工人员,是否具备相应的技术水平 最后是拆迁过程中,有没有遵守技术规范上的要求。这三个关键点都做到位了,才能保证拆迁的安全。   对于南理工校方是否需要承担责任,这位负责人表示,这要看校方有没有对施工者尽到告知义务。至于具体的责任划分,由于目前事件还在调查处理中,因此暂时还无法得出结论。但也有网友表示,不管怎么说,在理应严格监控的炸药实验室里,发生这样的监管漏洞,不论对方是否具有相关施工资质,校方也负有不可推卸的责任。
  • 技能成才,为国保粮——岛津鼎力支持第六届粮食行业职业技能大赛
    2023年11月13日-15日,由国家粮食和物资储备局办公室、中国就业培训技术指导中心、中国财贸轻纺烟草工会全国委员会联合举办的2023年全国行业职业技能竞赛——第六届全国粮食行业职业技能竞赛顺利开展,本次竞赛旨在深入实施“人才兴粮”和“科技兴粮”,持续推进粮食行业高技能人才队伍建设,岛津企业管理(中国)有限公司(以下简称“岛津”)从第三届全国粮食行业职业技能竞赛开始,一直不遗余力地支持全国粮食行业职业技能竞赛,助力我国粮食行业职业技能水平提高。本届竞赛,岛津提供了Essentia LC-16型号液相色谱仪、紫外检测器、进样针和定量环等配套设备,助力粮食中真菌毒素的液相色谱法定量分析赛区。为确保竞赛顺利举办,岛津全程关注竞赛,动员公司多个部门的力量为竞赛保驾护航。赛前,竞赛用仪器设备进入赛场,岛津工程师便开始紧张而有序的安装调试工作,在有限的时间内完成仪器设备的安装调试,为竞赛的顺利推进做好前期准备。竞赛开始,参赛选手在赛场内应用岛津仪器进行着紧张而有序的分析实验,他们身为国家的“粮工巧匠”,守护着“大国粮仓”。岛津工程师坚守岗位,为第六届粮食行业职业技能大赛保驾护航岛津作为业内知名的分析仪器和解决方案供应商,不仅在色谱、质谱、光谱等分析仪器方面具有完整的产品线,同时致力于成为优质的实验室合作伙伴,为客户提供兼具科学性、便捷性和经济性的检测技术和解决方案。如与粮食行业的中粮营养健康研究院、湖南杂交水稻全国重点实验室检验检测中心建立合作实验室,与国家粮食科学研究院合作开发脂溶性维生素自动前处理分析系统(SFC-LC-MS),与多家单位合作开发、建立并正式发布了团体标准《T/CSTM 00745-2022/T/CAIA/SH 018-2022(IDT)植物油 苯并(a)芘测定 超临界流体色谱在线净化-反相高效液相色谱法》,同时针对粮食行业,岛津积极开发了相关分析应用方法,并汇编成《粮油营养与安全检测整体解决方案》等。扫描二维码可下载《粮油营养与安全检测整体解决方案》比赛间隙,参赛的各省代表团老师及选手与岛津食品安全行业的相关负责人在展位进行了更加深入的交流,分享更多行业与产品信息。岛津相信在竞赛的推动下,必将涌现出一大批知识型、技能型、创新型的技能人才,为粮食行业高质量发展提供高素质技能人才及强大人才支撑。本文内容非商业广告,仅供专业人士参考。
  • 安捷伦参与研究分析诱导成体细胞为胚胎干细胞的机制
    免疫共沉淀芯片和基因表达谱芯片 用于研究Yamanaka因子如何启动细胞多能干性 2009年3月9日,中国上海&mdash 安捷伦科技有限公司(NYSE: A)近日宣布与中科院上海生命科学研究院和同济大学的研究团队合作发现诱导成熟细胞成为具备&ldquo 多能干性&rdquo 的胚胎干样细胞过程中的新机制。 作为文章的合著人之一,安捷伦公司的李坚表示:&ldquo 有关胚胎干细胞生物学特性的新发现无疑是非常有价值的。有关诱导成体细胞为胚胎干样细胞的研究是2006年重大科学发现。我们的研究对这个诱导过程有了一些新的理解。&rdquo 该项研究结果发表在《细胞研究》(Cell Research),标题为《小鼠胚胎干细胞发育信号通路网络中Yamanaka因子的重要调控作用》。 研究人员发现了发育调控网络中的16个信号传导通路,其中的9个通路以往从未被报道参与维持或诱导细胞的多能干性。 该项研究使用了安捷伦公司的免疫共沉淀芯片技术(ChIP-on-chip)结合基因表达芯片数据研究了已知的Yamanaka因子在诱导小鼠细胞多能干性中的作用。 安捷伦通过2008年科研基金项目资助了基因芯片用于该项研究。基因芯片是指在玻璃基片上布放大量DNA探针用于研究基因组的技术。免疫共沉淀芯片技术专门用于研究基因组中&ldquo 启动子区域&rdquo 的特性,该区域控制着各种基因的活性从而决定了细胞的功能。 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测量公司,是通信、电子、生命科学和化学分析领域的技术领导者,公司的19,000名员工在110多个国家为客户服务。在2008财政年度,安捷伦的业务净收入为58亿美元。要了解安捷伦科技的信息,请访问: http://agilent.instrument.com.cn/
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar= 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • 纳米隧道电穿孔技术可对细胞精确用药
    据美国物理学家组织网10月16日报道,美国俄亥俄州立大学科学家开发出一种名为“纳米隧道电穿孔”的新技术,或称为NEP。利用其给细胞注射基因治疗药剂时,不用针头,而是用电脉冲通过微小的纳米隧道,几毫秒内就能把精确剂量的治疗用生物分子“注射”到单个活细胞内。该研究发表在最近的《自然纳米技术》杂志网站上。   长期以来,在进行基因治疗时,人们对插入细胞的药剂数量无法控制,因为人体绝大部分细胞都太小,最小的针头也无能为力。而“NEP让我们能研究药剂和其他生物分子是怎样影响了细胞的生物和基因路径的,现有其他技术都无法达到这么细微的水平。”该校化学与生物分子工程教授詹姆斯李说。他们用这种方法,将定量的抗癌基因成功插入到白血病细胞中并杀死了它们。   研究人员用聚合物压制成一种电子设备样机,用DNA(脱氧核糖核酸)单链作为模板来构建纳米隧道。詹姆斯李发明了一种使DNA链解旋的技术,并使其按照需要形成精确结构。他们给DNA链涂上一层金涂层并加以拉伸,使之连接两个容器,然后将DNA蚀去,在设备内部留下一条连通两个容器的尺寸精确的纳米隧道。   隧道中的电极将整个设备变成一个微电路,几百伏特的电脉冲从一个装药剂的容器经纳米隧道到达另一个装细胞的容器,在隧道出口处形成了强大的电场,与细胞自身的电荷相互作用,迫使细胞膜打开一个小孔,足够投放药物而不会杀死细胞。调整脉冲时间和隧道宽度,就能控制药物剂量。   为了测试NEP能否递送活性药剂,他们把一些治疗用RNA(核糖核酸)插入了白血病细胞,发现5毫秒的电脉冲能递送足够剂量的RNA杀死这些细胞 而更长的脉冲,如10毫秒,能杀死几乎所有的白血病细胞。作为对照,他们还插入了一些无害的RNA到白血病细胞中,这些细胞都没死。   詹姆斯李指出,由于这种方法一次只能给一个或几个细胞注射,更适合用在实验室。目前他们正在开发一种机械式细胞装载系统,一次能给10万个细胞注射,有望用于临床诊断和治疗。   “我们希望NEP能最终用于早期癌症检测与治疗,比如在干细胞或免疫细胞中插入精确剂量的基因或蛋白质,引导它们分化改变,不必担心过量注射带来的安全问题,然后把这些细胞放回体内作为一种细胞基础疗法。”詹姆斯李说,这种方法还可能用于白血病、肺癌及其他肿瘤。
  • 探索从细胞到微孔板到动物的成像技术发展-《科学》杂志网络研讨会系列
    《科学》杂志网络研讨会系列: 探索从细胞到微孔板到动物的成像技术发展。 请于 12 月 7 日在线参加我们的网络研讨会:探索治疗疾病的新药物:小动物活体成像技术在新药研发中的最新应用进展 麻省总医院系统生物学中心Matthias Nahrendorf博士 Charles River实验室分子影像中心主任Patrick McConville 立即注册。 按需查看:发现治疗疾病的新药物:发展细胞成像技术 发言人:加拿大安大略省哈密尔顿市麦克马斯特大学的 David W. Andrews 博士和爱尔兰都柏林大学的 Jeremy Simpson 博士 立即下载。 按需查看:发现治疗疾病的新药物:发展测井成像技术 发言人:法国巴黎巴斯德研究院的 Spencer Shorte 博士美国北卡罗来纳大学教堂山分校的 Klaus Hahn博士 立即下载。 随着人们越发重视对基因转译的深入理解,研究疾病的分子机制并将体外模型转化为体内结果的能力体现出了前所未有的重要性。PerkinElmer 在检验分析、成像和信息学方面具有业界领先的解决方案和享有盛誉的专业技术,可为您提供全面的帮助和支持。无论您研究的是测井、细胞还是小动物,现在都可以将全副精力投入到科学研究中,更早地洞察一切,更快地取得成功。
  • 单个活细胞&细胞器操纵新突破丨多功能单细胞显微操作技术首次实现活细胞间线粒体移植
    前所未有的全自动高精度单细胞操纵平台!多功能单细胞显微操作FluidFM技术首次将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级别中空探针,完美实现了单个细胞水平、fL级别超高精度、全自动化的细胞及细胞器的操作。是一套超温柔,纳米级,全自动的细胞操纵方案。这项技术将传统细胞显微操作实验无法触及领域的大门彻底打开,科学家可以在单个细胞上实现前所未有的精妙操纵。其主要功能包括单细胞提取、单细胞分离、活细胞细胞器移植、单细胞注射、单细胞力谱等。图1 FluidFM技术整机外观及原理示意图在活细胞中也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。1从活细胞中提取线粒体在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构最终被拉断,并在悬臂中呈现为球状线粒体(图2)。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生独立的球形线粒体,而管状结构的其余部分放松并恢复。图2 提取线粒体后的FluidFM悬臂探针的显微图像及示意图2线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了最佳的两步走方案:第一步,用FluidFM技术直接提取线粒体,第二步,将提取的线粒体注入到新的宿主细胞中。该方案的成功率高达95%,而且保持了细胞活力,其优点是细胞器在细胞外停留的时间短(作者标记供体细胞的线粒体(su9-mCherry)和受体细胞的线粒体(su9- BFP),能够观察移植细胞线粒体网络的实时状态(图3)。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内首次观察到融合事件而后扩展到线粒体网络。综上所述,作者建立了将线粒体转移到单个培养细胞的方法。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。图3 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是独一无二的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。单个线粒体移植视频该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 谢晓亮:从单细胞研究到高通量测序
    2011年7月第八期《自然&mdash 方法学》刊登了Monya Baker撰写的一篇人物特写,详细介绍了在当期发表的论文 &ldquo Fluorogenic DNA sequencing in PDMS microreactors&rdquo 的主要作者哈佛大学谢晓亮教授的高通量测序技术。全文翻译如下:   在科学界,合情合理的实验也可能会出现令人吃惊的结果。当谈到他的实验室时,谢晓亮把他的主要研究分成三个领域:活体细胞中的动态基因表达研究,单分子酶学和免标记显微成像技术,而现在,又多了一个由于意外而诞生的新领域&mdash &mdash 高通量测序。   目前常见的测序技术&ldquo 焦磷酸测序&rdquo 是通过边合成DNA边测序实现的,当加入新三磷酸核苷酸时,荧光素酶水解三磷酸键所产生的能量会以光的形式发出,然而光信号转瞬即逝,需要检测系统能够灵敏地捕捉到这一瞬间的光信号。 另一种常见的技术是基于荧光的测序,相比之下,它可以产生一个稳定的光信号,但需要很多额外的化学修饰步骤才能产生荧光。在这篇Nature Method的文章中(指Sims, P.A., Greenleaf, W.J., Duan, H. & Xie, X.S.. Nat. Methods 8, 575&ndash 580 (2011).),谢晓亮和他的同事们推出了一种新型的测序技术,这种技术兼顾焦磷酸测序的简单流程和荧光检测的稳定信号,这使得高精确度并循环周期短的测序成为可能。   单分子荧光酶学的开端要追溯到十多年前,当时谢晓亮作为美国太平洋西北国家实验室的一位研究员,正在研究表征单个酶分子活性的方法,为此,他和同事曾应用过一个含有可发荧光的吖啶黄素基团的酶。那时,诸如 Helicos和Pacific Bioscience等公司也刚刚宣布了他们的DNA单分子测序计划。谢晓亮对把单分子酶学应用于DNA测序领域很感兴趣,但由于他已经在哈佛就职,这个想法仅仅被搁置于专利层面。&ldquo 我需要学着做个教授&rdquo ,谢晓亮说。   谢晓亮偶尔会尝试把基于荧光基团测序的想法推荐给一些研究生或博士后,但是年轻的科学家们通常不大敢尝试这一想法。&ldquo 提些建议对我来说是很容易的,因为我有很多项目,总有一些会成功的&rdquo ,谢晓亮解释道,&ldquo 但是对学生来说这是个很大的赌注,并不是所有人都敢于接受这种挑战。&rdquo 一位四年级的研究生Peter Sims听说了这个想法,当即接受了这个挑战,尽管当时他完全可以由单分子马达在活细胞的研究来获得学位。 Sims表示这种潜在的高通量测序激发了他的浓厚兴趣,但是对于所需的在核酸上修饰荧光基团的化学工作,他还没有经验。&ldquo 他当时刚刚涉足于此,才开始学习&rdquo ,谢晓亮说。谢晓亮和Sims共同商定了一个期限,如果Sims在此之前还没有获得显著的成绩,他就退回到原来的课题上,开始写毕业论文。   捕捉荧光信号就像成功产生荧光一样重要。在博士后William Greenleaf帮助下,他们解决了这个难题。&ldquo 微反应容器和荧光化学二者的结合,便是这项测序新技术的精髓。&rdquo 谢晓亮说。Greenleaf设法加工出了这些含有微反应容器的芯片,它是由可以重复密封的聚二甲基硅氧烷(PDMS)聚合物制成。谢晓亮说,没有这种材料,他的实验室的研究人员不可能做出这种尝试。&ldquo 我想把推广PDMS的功劳归于George Whitesides(George也在哈佛大学工作)&rdquo ,他说,&ldquo 基于PDMS我们才能够制作出各式各样的芯片上的实验室,而且他们真的很好用。&rdquo   但是研究进展并非一帆风顺。在后来的实验中,含有荧光基团的分子总是会扩散到PDMS 中或是产生一些不可信的伪信号。实验室的另一位成员段海峰加入了他们的小组,负责合成新型的荧光分子。此时,Sims和谢晓亮定下的期限也快到了,但他们仍没有做出很好的结果。   Sims和Greenleaf制定了另外一项计划,但是仅仅是对多拷贝的DNA测序而并非单分子测序。当时谢晓亮正在苏格兰出差,一天深夜他和Sims进行了一次电话长谈,讨论Sims是否应该退回到原来的项目来写毕业论文。谢晓亮回忆道: &ldquo 那真费了我好大一笔电话费。我说,&lsquo Peter,请你再想想,我们再尽快地尝试一下,如果你真的做到了,学术界将对你的毕业论文产生极大的兴趣。&rsquo &rdquo 几周后,他们果真拿到了数据,并且Sims在他的答辩中成功地阐述了这种测序方法。谢晓亮富有哲理地说:&ldquo 你开始一直在对着一堵墙作战,后来你稍微改变了方向,这就大不一样了&rdquo 。Sims也有另外的动机,他曾和谢晓亮开玩笑说,&ldquo 我做这个只是想毕业。&rdquo   虽然这项测序技术本身还是基于DNA扩增的,但谢晓亮希望它能为通用单细胞基因组测序提供一条道路。谢晓亮说:&ldquo 尽管我们的技术并不是我最初希望的DNA单分子检测,但它依然为单细胞中DNA单分子测序提供了可能。&rdquo
  • 青岛能源所开发智能化、自动化的微生物单细胞分选仪
    单细胞分析已成为生命科学的有力工具,原位样品在单个细胞精度的识别、分选、测序/鉴定对于深入解析微生物组的结构和功能具有重要作用。青岛能源所单细胞中心与青岛星赛生物合作,成功开发微生物单细胞自动分选系统EasySort AUTO,可将常规显微镜升级为微生物单细胞的智能化、自动化分选装置,并利用酵母和大肠杆菌细胞示范了单细胞分选—测序/培养的全流程,为微生物资源的探测和挖掘提供了有力手段,该研究成果近日发表于《微生物》mLife杂志。 EasySort AUTO的“慧眼”和“巧手”服务微生物组资源挖掘   微生物组(亦称菌群)在自然界及人体中无所不在,它们蕴含着精准健康、碳减排、环境保护、清洁能源等当今人类社会重大挑战的解决方案。然而,微生物细胞尺寸小,操控难度大,单个细胞的识别与分选极具挑战性;同时,菌群中的庞大的细胞数量让原位、单细胞层面的菌群研究对于自动化、高通量的需求尤为迫切。   针对上述问题,单细胞中心刁志钿博士、阚凌雁工程师、赵怡龙工程师带领的研究小组,基于青岛星赛生物的单细胞微液滴分选系统EasySort Lego,开发了新一代人工智能辅助的微生物单细胞自动化分选系统EasySort AUTO。经测试,系统搭载的AI辅助图像识别算法可以智能化、自动化地识别目标细胞,准确率达80%;系统嵌入的光镊技术可以捕捉并精准操控目标细胞;最后,基于界面接触的微量液体分离专利技术,目标细胞能够以单管单细胞(One-Cell-One-Tube)的形式自动收集于PCR管中,通量为~120细胞/小时,单细胞率高于93%。该系统分选的目标单细胞可以直接开展单细胞测序、培养等工作,单细胞测序成功率高于84.2%,酵母细胞和大肠杆菌单细胞培养的成功率分别为~85%和~80%。   此外,EasySort AUTO的设计还具备三个显著特点:1)广谱适用性,由于光镊可以操控不同尺寸的细胞,该系统广泛适用于各类单细胞的分离、分选、培养及测序实验;2)灵活性,该系统采用模块化的设计,可通过安装“巧手”—光镊模块和自动收集模块,将生物实验室常见的正置显微镜升级为单细胞分选装置;3)高活性保持,分选后的目标细胞具备较高的活性和DNA/RNA质量。   单细胞中心长期致力于微生物单细胞技术开发、装备研制和产业化,前期和青岛星赛生物合作已陆续推出高通量流式拉曼分选仪(FlowRACS)、临床单细胞拉曼药敏快检仪(CAST-R)、单细胞拉曼光镊分选仪(RACS-Seq)、单细胞微液滴分选系统(EasySort)等产品,并已进入市场。作为EasySort仪器系列的新成员,EasySort AUTO的设计聚焦在为显微镜的“慧眼”提供一双自动的“巧手”,使得显微镜可以智能化发现目标单细胞,并自动化分离获取。基于上述创新,EasySort AUTO系统将以便捷的操作、灵活的组装、自动化的细胞收集、目标细胞的高活性保持等优势为微生物单细胞的分选工作提供特色解决方案。   该工作由单细胞中心马波研究员和李远东工程师主持,与青岛星赛生物合作完成,得到了国家重点研发计划的资助。
  • 保卫水质安全 岛津积极开展水分析方法包培训
    当前我国水质安全状况不容乐观,2009年,全国七大水系总体为轻度污染,但408个地表水国控监测断面中,仍有28%劣于Ⅴ类水质标准;国家重点监控的26个湖库中,仍有35%劣于Ⅴ类水质标准。部分湖库和河流水华频繁发生,甚至影响到周边群众的饮水安全。从2012年7月1日起,我国将全面实施《生活饮用水卫生规范》 GB 5749-2006和配套的《生活饮用水标准检验方法》GB 5750-2006,相对85版卫生规范,检测指标从35项增加至106项。 岛津公司作为全球顶尖的分析仪器制造商,充分发挥其仪器先进,服务一流,技术能力强的特点,及时响应国家加大环境保护力度、保障饮用水安全的&ldquo 十二五&rdquo 规划,推出应对针对《生活饮用水卫生规范》GB 5749-2006和《地表水环境质量标准》GB 3838-2002 中VOC/SVOC 检测的方法包。岛津开发的水质检测方法包,另外还提供Compound Composer快速筛查数据库,无需标准品即可快速对未知样品进行筛查的技术。 为使岛津水分析方法包为保卫水质安全发挥出更大的威力,岛津公司已启动全国范围的针对环境、自来水、疾控等领域客户的水分析方法包现场培训活动。水分析方法包现场培训率先在岛津广州分公司召开,为广东省环境,自来水领域11个重量级单位相关客户详细介绍了岛津水分析方法包及相关法律法规。 水分析方法包现场培训现场 来自岛津北京分公司陈志凌先生帅先为客户剖析了《生活饮用水卫生规范》GB 5749-2006和配套的《生活饮用水标准检验方法》GB 5750-2006及《地表水环境质量标准》GB 3838-2002,并参考国外现阶段的水质管控法规,向客户介绍了国家标准的将来可能会扩展的管控项目。陈志凌先生向客户详细介绍了方法包提供的水质检测中VOC/SVOC的全套解决方案,该解决方案适用于疾控系统,自来水系统,环境水监测系统等常规检测使用,也可用于突发事件对于水中有机污染物的定性定量分析。用户无需购买全部标准品,只需内标和部分标准品以及正构烷烃,这些特点得到了客户的极大关注。之后岛津广州分析中心刘晓华女士为客户讲解了水质分析方法包的前处理与仪器操作部分,就客户关心的实际问题进行了相应解答并在广州分析中心为客户做了现场演示。 陈志凌先生介绍岛津水分析方法包 刘晓华女士讲解了水质分析方法包的前处理与仪器操作 来自广东省环境及自来水领域的各专业人员,对岛津公司提供的水分析方法包与现场培训活动高度赞赏。在培训与现场演示环节,不少客户踊跃发言,就相关法规及岛津水质分析方法包与岛津技术专家展开了热烈的讨论。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 《自然》血液中不同类型免疫细胞的浓度随着肠道细菌变化
    这是第一个将微生物群与人类免疫系统动态联系起来的研究。报道依旧来自纪念斯隆-凯特琳癌症中心,他们首次拿到了肠道微生物群直接塑造人类免疫系统构成的证据。这项研究采集了2000多名患者长达十年的跟踪数据。“科学界已经接受了肠道微生物对人类免疫系统健康很重要的观点,但这种假设的数据来自动物研究,”纪念斯隆-凯特琳癌症中心系统生物学家Joao Xavier说。“而我们有一个非常好的机会了解接受血癌治疗的人群的微生物群组成变化。”研究中使用的数据来自接受异基因干细胞和骨髓移植(BMT)的人。在强烈的化疗或放疗被用来破坏癌细胞后,病人的造血系统被供体的干细胞所取代。在捐献者的血细胞(包括构成免疫系统的白血球)建立自己之前的几个星期里,病人极易受到感染。在这段时间里,为了保护他们,病人被给予抗生素。但这些抗生素中的许多都有有害的副作用,即破坏肠道内健康的微生物群,让危险的菌株占据上风。当病人的免疫系统重建后,抗生素停止使用,肠道微生物群开始慢慢恢复生长。这两个免疫系统的修复给了我们一个独特的机会来分析这两个受损的免疫系统之间的联系。十多年来,MSK的BMT服务人员在整个BMT过程中定期收集和分析患者的血液和粪便样本。MSK的Lucille Castori微生物、炎症和癌症中心的工作人员对细菌DNA进行了处理,该中心在创建大量微生物群数据集方面发挥了关键作用。“我们每天都收集样本,这样我们就能真正看到每天发生的事情。微生物群的变化是迅速和戏剧性的,几乎没有其他环境可以让你看到它们,” Marcel van den Brink博士说。MSK团队创建的数据库包含了不同时期病人肠道中微生物种类的详细信息。随后,包括Jonas Schluter博士和Xavier在内的计算团队使用机器学习算法来挖掘电子健康记录中有意义的数据。健康记录中的数据包括血液中存在的免疫细胞类型、患者服用药物的信息以及患者所经历的副作用。分析这么多数据是一项艰巨的任务。Schluter博士当时是Xavier博士实验室的博士后研究员,他为此开发了新的统计技术。“这项研究的目的并不是说某些微生物对免疫系统是‘好的’还是‘坏的’,”Xavier博士解释说。“这是一段复杂的关系。我们想要增加或减少的免疫细胞的亚型每天都在变化,这取决于身体里发生了什么。重要的是,现在我们有了研究这个复杂生态系统的方法。”研究人员说,他们还计划将他们的数据应用于研究接受其他癌症治疗的患者的免疫系统。他们以前的研究使用了从这项工作中收集的样本,研究了在骨髓移植过程中肠道微生物群如何影响患者的健康。一项发表于2020年2月的研究报告称,肠道微生物群中物种的多样性更大,与BMT后的死亡风险较低相关。研究还发现,移植前微生物群的多样性较低,导致移植物抗宿主病的发生率较高,这是供体免疫细胞攻击健康组织的潜在致命并发症。
  • 青岛能源所单细胞拉曼流式分选技术研究获进展
    日前,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中取得新进展,相关成果于2月5日在线发表在Analytical Chemistry (Zhang PR, et al, Anal Chem, 2015)。   单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。   由研究员徐健和马波领导的研究团队针对上述瓶颈开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别(下图A)。通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles 下图B),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。   单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。   该研究得到了科技部创新方法专项、国家自然科学基金面上项目、微进化重大研究计划及中科院重点部署方向项目等的支持。   原文链接:   1. Raman-activated Cell Sorting based on dielectrophoretic single-cell trap and release, Anal. Chem., 2015, doi: 10.1021/ac503974e.   2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip, 2014 Dec 21 14(24):4599-603. doi: 10.1039/c4lc00833.   3. Raman activated cell ejection for isolation of single cells, Anal. Chem., 2013. doi: 10.1021/ac403107p.      (A)基于阵列介电单细胞捕获/释放单细胞拉曼分选示意图 (B)基于电磁阀吸吮的微流控细胞分离技术(Cover Article)。
  • 化工废料“跨省倾倒”曝出黑色利益链
    十多米外就能闻到刺激性气味,黑色液体从破桶里流出,被污染土壤装填了1700多个编织袋、重达80吨 毒性强且致癌的化工废料,被随意倾倒在河坡上,随时可能导致大面积水体严重污染……   近日发生在安徽两县的危险化工废料倾倒污染事件触目惊心。有毒性、腐蚀性、传染性强的危险废物,按环保法规定应做无害化处理,缘何会被肆意倾倒?   “被污染”突如其来   2011年12月,安徽省亳州市利辛县旧城镇丰桥村的村民不断闻到刺鼻的味道。“大冷的天,哪儿来的味道呢?”最后,村民终于在废弃的砖窑厂找到了罪魁祸首:一堆不知道装着啥液体的铁桶。   铁桶掩埋的位置附近有水沟,并且连接外田和村庄,平时都用于庄稼灌溉。附近的村民们十分担心地下水受到污染。   当地村民告诉记者,在发现铁桶后,很快就向利辛县环保局进行了举报,环保部门的工作人员也到了现场。“我在接到举报的当天赶到了倾倒现场,发现了70多个装有危化品的铁桶,气味刺鼻老远就能闻到。”安徽省环保厅环境监察局副调研员刘严告诉记者。   安徽省环保厅的化验结果显示,这些倾倒的危险化学品里含有二氯苯、苯已铜等,有毒性,如果被人吸入或者接触皮肤对人体会有危害。经测量,仅利辛县境内被污染的土壤重量就达80吨。   在同处亳州市的涡阳县向阳河,环保部门在河边也发现数十个装有危险废物的铁桶,被倾倒出来的黄色化工废料,距河水不足一米,水面上泛着厚厚的白色泡沫。   “利辛县政府和环保部门立刻组织人员对地下的危险化学品进行了挖掘和清理,连带被污染的土壤也被装进袋子里运走。目前,所有危险废物和被污染土壤已经被装车运往滁州进行无害化处理,环保隐患已经基本消除。”刘严告诉记者。   “这次违法倾倒危险废物共有7名涉案人员,目前已经抓获了6名,尚有1名主要犯罪嫌疑人在逃。”亳州市环保局监察支队支队长韩冰告诉记者。   废料转移农村暴利惊人   利辛县公安局副局长孙亚峰介绍,根据嫌疑人供述,其向利辛、涡阳两县倾倒的废弃物约22吨,这批危险废物由家住江苏大丰市的犯罪嫌疑人卞某与同伙梁某从开发区一家生产化工原料的企业拉出,从企业获得每吨700元的处理费用。随后又以每吨400元的处理价格,将危险废物转给涡阳县在江苏打工的嫌疑人邱某等,由他们来负责运输、填埋。   邱某是安徽涡阳县人,常年从事废品收购。他和卞、梁谈好价格后,利用自己熟悉的便利,专程返回涡阳县,接应这批化工废料。废料被运到涡阳县和利辛县交界处。邱某又找来当地村民,一些化工废料被倾倒在窑厂旁的水沟内。邱某等人因此获利9000多元。例   “这批废料如果在江苏省进行无害化处理,成本花费在10万元以上,但卞某等人支付给邱某的处理费用是9000多元,加上运输费用,总共只有1万多元,两者悬殊极大。”利辛县公安局治安大队副大队长刘子亚告诉记者。“化工废料存放、运输、处理等国家有严格规定,必须有国家认可的资质证明。但是,嫌疑人对相关规定置若罔闻,不仅没有合格资质,危废交接极其随意。”   在利辛县此次事件以及2009年的跨省倾倒化工废料等污染事件中,都存在着黑色利益链,操作隐秘,分工细化。据孙亚峰介绍,此类犯罪行为从企业至农村倾倒化工废料的下线之间,经常会有四五个环节,钱款通过银行账户汇款交易,操作隐秘。一些企业明知废料危险性,仍与下线签订危废处理合同。从企业接手废料的二线中间人,有的还拥有一两个自己注册成立的化工废料处理公司,打着无害化处理的幌子,一边骗取国家补贴,一边将本应无害化处理的废料转手给下线。三线中介、四线中介接手危废后,再以更低价格转给外地打工者,把废料运到农村偏远地区。   警方在侦办案件过程中发现,这样的利益链与化工企业产业群有着密切关系,并且呈现随着化工产业群迁移而转移的趋势。   据安徽省环境监察局局长黄建树介绍,从全国范围内看,跨界倾倒化工废弃物已成为多发的环境污染突发事件。安徽省环保部门在2009年、2010年、2011年三年内发现近十起跨省倾倒危险废料污染事件,这些化工废料大都名列国家危险废物目录。“一吨危废无害化处理费用至少要在3000元以上,在地下交易中,上线的价格仅仅每吨百元甚至几十元,可谓暴利。”   加大“危废”监管惩处力度   黄建树说,在利辛县危废污染事件利益链上的丰桥村民王某等人,想当然把危废当作普通垃圾随意倾倒,为了个人的蝇头小利,不仅污染了自己世代生存的土壤、水源,还可能要为此承担刑事责任。“加大在农村地区的环保宣传,增强农民环保意识,是遏制危废肆意倾倒的重要环节。”   “每一起非法倾倒、掩埋危险废料,相当于在当地埋下了一枚‘生态炸弹’。”中国人民大学副研究员黄家亮说,危险废物对生态环境和人类健康的损害可能在相当长时间内无法消除。   专家分析说,与一些地方不断上马化工项目的速度相比,危险废物利用处置能力已远远不能满足要求。一些无经营资质企业大量存在,非法经营活动猖獗。一些企业唯利是图,无视法律规定,不规范处置危险废物现象屡禁不止。   针对跨界倾倒危废污染事件频发,专家建议,首先应严格新建项目环境准入,应特别注意审查危险废物的产生量和利用、处置去向。其次加大危险废物环境监管和环境信息公开力度,如公布辖区内危险废物重点产生、运输和经营企业相关信息,重点企业应向社会发布企业年度环境报告等。第三,建议在全国范围内进行专项非法倾倒化工废料检查,建立危险废物污染责任终身追究制,加大贯彻固废法等环保法规。对恶意倾倒危废的企业和个人,加大处罚力度严厉追究责任。
  • 岛津推出LC/MS/MS 滥用药物方法包
    近年来,药物滥用和非法使用毒品已成为一个社会问题,导致越来越多的犯罪以及精神类药物和安眠药物的成瘾性倾向。同时,滥用药物还出现了多元化的趋势。寻找和确认在法医、毒理和临床领域的违规化合物,这需要一个快速和高灵敏度的分析方法。 目前,液相色谱四极杆质谱联用仪(LC/MS/MS)已经被用于此类分析,对于低浓度化合物也能提供高选择性的定量分析结果,减少样品前处理时间、降低成本并提高工作效率。为此,奉行实现&ldquo 人类与地球健康&rdquo 这一经营理念的岛津公司及时地推出了LC/MS/MS滥用药物方法包。 岛津LC/MS/MS滥用药物方法包包含分析条件、化合物信息和子离子质谱图【禁用药物(87种)、精神类药物(105种)、安眠药物(70种)、其他组分(24种)】。方法包中包括优化后的同步检查扫描(Synchronized Survey Scan&trade )参数(基于MRM阈值强度的子离子谱图采集参数),用于筛选分析。并且提供包括禁用药物、精神治疗药物、安眠药物、其他组分在内的100种常见组分的同时分析方法。因此,方法包使得用户从分离条件选择、各目标化合物质谱参数优化等繁琐的工作中解脱出来,迅速开展LC/MS/MS分析,从而大大提高了多组分同时分析时的效率。 岛津LC/MS/MS滥用药物方法包特点: 1)提供分析解决方案 方法包中包含方法文件,其中列出了质谱分析条件,液相色谱分离条件,各化合物保留时间信息,报告文件等,用户只需简单准备实验条件即可快速启动分析工作。由于这些分析方法已在实验室验证,因此可以显著减少分析方法开发所需的时间。 2)简化LC/MS/MS多组分同时分析时的分析流程 在进行LC/MS/MS 分析时,必须对各化合物的质谱分析参数进行优化。由于方法包中已经包含了经过优化后的各化合物质谱分析参数,从而可以大幅减少参数优化所需的时间和精力。如需化合物列表,请参见本发售通知所附的方法包化合物列表。 3)提供优化后的同步检查扫描参数以用于筛查分析 通过方法包中的质谱图数据库,可以对产物离子扫描结果进行相似度检索。 4)轻松自定义方法文件 LabSolutions LCMS 可以轻松自定义方法文件,增加或减少待分析目标化合物。并且,该方法包中的分析参数列表可以用于针对待分析目标化合物创建特定的新方法文件。 5)提供质谱图数据库手册 质谱图数据库手册中列出了各化合物质谱图以及化合物信息。该手册可以作为确认分析数据的一个简单方便的指南。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 液质方法包巡礼:饮用水中PFAS分析方法包
    前言 若要实验室分析工作得心应手,除了性能优异的硬件,功能强大的软件也是必不可少。作为提高工作效率、将分析人员从繁重的方法摸索过程中解放出来的利器,液质方法包的出现降低了质谱分析门槛、提高了实验室分析通量。 液质分析方法包一般包括预先设置好的方法文件,包括LC分离条件,MS离子源参数,MRM参数,各目标化合物的保留时间等,以及用于输出定量结果的报告模板。只需准备指定色谱柱、流动相以及标准品就可以开始分析工作了。方法包导入后,还可以根据HPLC的配置进行保留时间的修正。用户也可以直观地追加或删除目标成分,自行创建感兴趣化合物的目标成分表。 本期将为您介绍的是饮用水中PFAS分析方法包。 背景 全氟烷基化合物和多氟烷基物化合物(PFASs) 因其防水、耐热、耐化学性和其他特性而被广泛用于涂料、表面处理剂、乳化剂、灭火剂和各种其他产品。同时,由于担心其持久性、生物累积性、对生物有机体的毒性以及在环境中的长距离迁移性,一些 PFASs 已成为《关于持久性有机污染物的斯德哥尔摩公约》(POPs Convention)的管理对象。公约原则上禁止或限制目标物质在签署国的制造、使用和进出口。我国是《斯德哥尔摩公约》的签约国之一。 美国环境保护署 (EPA) 于 2018 年制定并发布了 EPA 537.1方法,用于分析饮用水中的 18 种 PFAS 化合物;并于 2019 年制定并发布了 EPA 533方法 ,其中列出了 25 种 PFAS 化合物。本文介绍的饮用水中PFAS分析方法包,是基于EPA 533 和 537.1 方法开发的的即用型分析方法,包含了两种方法的分析步骤示例以及各种其他信息,例如样品制备和分析的注意事项。利用该方法包,可以分析饮用水中的 52 种 PFAS 化合物(包括内标物质、同类物等)。应用 该方法包提供从样品制备到分析结果的完全解决方案。下面展示了基于EPA 533 和 537.1 方法分析的典型色谱图。 提示 通常,痕量PFAS的分析容易受到系统中氟化物的干扰。一部分来自LC系统中的含氟化物管路和部件,一部分来自于流动相体系。 对于高灵敏度的PFAS分析,有两种方法可以减少外源性污染的影响,岛津为这两种方法都提供了解决方案。 l 使用“延迟柱”通过将“延迟柱”连接到自动进样器的前端,来自流动相和色谱系统中的PFASs 被捕获在延迟柱中,然后晚于样品中目标物被洗脱。EPA方法也推荐使用延迟柱。 l 更换色谱流路中使用的含氟管路部件建议配置“PFAS分析用选配套件”。该部件通过替换常规色谱流路中含氟化物的管路和配件,可以更大限度地减少系统中液体接触表面带来的有机氟化合物干扰,实现更高可靠性和稳健性的PFAS分析。 小结 LC/MS/MS饮用水中PFAS分析方法包特点:• 包括用图表示例说明符合EPA方法的分析步骤,这些插图有助于更加清晰地理解EPA方法。• 包括确保有效分析过程的预防措施和建议。• 优化的 MS/MS 参数。• 无需摸索条件、即时可用的方法,适用于LCMS-8045/8050/8060和LCMS-8060NX。 注:本产品仅用于研究,不能用于医疗诊断目的。 本文内容非商业广告,仅供专业人士参考。
  • 单细胞分析的丝滑IMAX体验: icpTOF 以多元素指纹量化海藻细胞与纳米颗粒间相互作用为例
    Hendriks L., Skjolding L. M., Robert T., 确定细胞中金属元素的生物利用率的传统方法一般需对细胞进行酸消解,然后利用溶液进样电感耦合等离子体质谱(ICP-MS)进行后续分析。这种方法的缺点是需要大量的细胞,并且只能为给定的细胞群体提供平均值1。众所周知,千人千面,不同群体以及同群体细胞的特异性在文献中也多有报道2。基于这个大前提,使用特定的分析方法对不同群或同群细胞进行逐序单个分析,获取与单个细胞特异性有关的大数据就尤其重要(见图1)。本文中介绍的单细胞-电感耦合等离子体质谱法(sc-ICP-MS)与之前介绍过的单颗粒ICP-MS(sp-ICP-MS)基本类似(微信公共号:粒粒皆信息:什么是单颗粒物ICP-MS质谱分析法?)。事实上,上述两种技术都依赖于相同的基本原理和icpTOF瞬时事件全谱多元素测量能力,从而可以获得由单一个体产生的微秒时间区间内的瞬时信号,例如单个纳米颗粒(NPs)或单个细胞。(译者注:这等同在拍一段有很多快速武术对打的电影场景,需要使用高速摄像机来捕捉每一个武打动作细节和变化,同时也不漏过颜色,声音等关键信息,这样才能最终呈现出高清120Hz的作品。) 单颗粒ICP-MS方法的基础概念和硬件构架3源于2003年Degueldre等发表的第一篇论文。在过去的二十年间,通过进样系统,数据采集硬件和数据处理专用软件的进一步发展和商业化,不断增加的科研文献见证了该技术领域的迅速成熟。在单颗粒ICP-MS上投入的研究和应用开发同样的也使单细胞ICP-MS分析受益。 在单细胞ICP-MS中,细胞悬浮液经超声波雾化后形成的液滴被带入ICP-MS等离子体中。细胞在等离子体中依次被汽化、原子化和最终离子化。每个细胞产生一个含有多种元素的离子云,在仪器上被检测为高于背景的时长几百微秒的单个信号峰。与单颗粒ICP-MS类似,记录到的尖峰频率与细胞数量浓度成正比,这些尖峰的强度则与细胞中该元素质量有关。这种技术已经成功的应用在测定海藻中的镁元素含量4,并进一步用于纳米颗粒物毒理学研究中评估细胞对纳米颗粒物的摄取情况5,6,7。 虽然单细胞ICP-MS的测量方法看起来很简单,但要获得真实可靠的数据,实施起来需要注重的细节很多。除了需要额外注意来自培养基的可能高背景信号和细胞在样品导入系统中的潜在破损,在单细胞研究中反复报道的一个主要瓶颈是细胞进样装置的低运输效率,这是因为与纳米颗粒物相比,细胞的尺寸更大,在传输过程中也更容易损失。事实上,传统的系统通常包括一个旋风式雾化室,是专为引入较小的溶液液滴而设计的,导致细胞传输效率低于10%。而用于单细胞导入的定制系统,包括改进的雾化器或全消耗喷雾室8,9,以及其他创新设计10,11,经过多年反复测试,已被验证可以高效传输单细胞进入ICP-MS。 另一个瓶颈在于质谱仪器质量分析器的性能:传统的ICP-MS仪器具有单四极杆或扇形场质量分析器,在进行单细胞分析时最多只能同时检测一到两种元素信息(只能拍黑白影片)。而在常见的单颗粒分析场景中,比如在纳米毒理学研究中,在试图量化纳米颗粒物(特征金属元素)和细胞(蛋白固有元素)的关联时,需要同时获得单细胞事件内多种元素浓度信息。为了获得微秒级事件信息全貌,快速且广谱分析的质量分析器,如飞行时间质量分析器等高精尖‘摄影器材’是必不可少的(译者注:例如,等同于可提供高清彩色120Hz影片给观众更加真实的IMAX观影体验)。图1:a)在对细胞进行酸消解后,通过传统的雾化法将溶液样品引入ICP-MS,并记录仪器获得的稳态信号。这种整体分析法对初始样品中所包含的数千个细胞获得一个平均值。然而这种实验是基于细胞是均匀的假设,而忽略了细胞具有多样性的事实。因此,少数细胞群(用绿色和紫色表示),在元素组成上虽与主类细胞有差异,却没有被体现在结果中,这完美的诠释了辛普森悖论。b)在单细胞ICP-MS方法中,将细胞悬浮液稀释后,在单位时间内仅有一个细胞个体被引入ICP-MS等离子体。每个细胞产生一个独立的离子云,作为信号峰被ICP-MS仪器记录。这种方法允许检测每一个单独的细胞,从而保证了细胞特异性信息的无损获取和保存。简单来说,在单细胞ICP-MS中,细胞是以个为单位进行分析的,可以根据它们不同的分析物含量识别出不同的群体,而不是仅仅产生一个平均值。icpTOF飞行时间质谱法 在飞行时间质谱法(TOF-MS)中,其基本原理是根据离子到达检测器前通过固定长度的飞行管的飞行时间来精确分辨离子。离子束在脉冲加速电压后具有相同的动能,但轻的离子会比重的离子获得更高的速率,进而更早到达检测器。测量所有离子的陆续到达时间可以得到一个连续时间谱,经过简单的校准和换算后可以得到一张全质谱谱图(一般6-280 Th)。TOF质量分析仪的主要优点是:对分析的元素及同位素的数量没有限制,而且全谱数据采集速度快(通常几十微秒就可以获得一张全元素谱图)。这样的快速全谱数据采集能力在处理单一实体(如单细胞)检测时尤其重要,因为单细胞产生的瞬时事件长度很短,一般在200-500微秒区间。 飞行时间技术在单细胞分析领域并不是一个新概念,最初是由Bandura在2009年提出的,其原型机12用于单个细胞的时间分辨分析13,从而为众所周知的 "质谱流式 "领域打开了大门。这项应用使用稳定的稀土金属同位素来标记细胞,从而允许通过其金属标记物来检测相应细胞14。除了展现了生物研究和药物筛选应用中的巨大潜力,质谱流式也被用于检测细菌细胞中的银纳米颗粒15。然而,由于质量检测范围有限(80 Da)和涉及染色的样品制备程序,质谱流式细胞技术无法检测许多固有元素。 与质谱流式不同的,如图2a) 所示的ICP-TOF (TOFWERK AG, 瑞士) 可以测量从质荷比6到280的全谱图16,从而可以覆盖轻质元素,如Na, Mg, P, S, K, Ca, Mn, Fe, Cu, Zn等。这些元素是活细胞的固有元素,它们的分布(也被称为细胞离子组17)可以作为细胞发育状态的指标18。例如,磷存在于核酸(DNA和RNA)中,也是ATP、CTP、GTP和UTP等能量化合物的重要成分。钠和钾在电信号的传输中起作用,而锌被不同的生物过程中的多种酶用作催化剂。由于ICP-TOF-MS的同时多元素检测能力,可以在多种元素的相关分析基础上进行指纹识别19。如图2b) 所示,镁、磷、锰、铁、铜和锌被鉴定为被分析藻类的本征指纹元素。不需要标记或染色,即可依据细胞的 "天然 "元素指纹来进行单细胞分析20,21。通过测量特定细胞类型的金属微量元素,则可以获得更细致的指纹信息。例如,海藻细胞富含镁等金属微量元素,镁是叶绿素的核心组成部分,对光合作用至关重要。因此,金属微量元素的组成可以作为一种独特的指纹来明确识别不同的细胞种类。通过测量单细胞的金属元素组分,可更好地了解由金属蛋白和金属酶调节的基本生物过程,从而解密细胞生命周期不同状态22。尽管细胞的生物化学并不完全反映在其离子组上,但通过监测其金属含量的变化,可以确定地获得对细胞状况和生物过程的更深入了解。 通过使用TOF质量分析仪作为检测器,可以动态系统地获得完整的质谱数据,从而可以对发现特定实体本身及其所处环境进行连续或高通量表征。因此在纳米毒理学背景下,人们可以很容易地确定纳米颗粒物是否与细胞相关联。图2:a) icpTOF仪器(TOFWERK AG, Thun,Switzerland)的示意图:在iCAP Q(Thermo Scientific, Bremen, Germany)的框架上搭配一套高分辨率飞行时间质量分析器。因此,ICP-TOF受益于与iCAP Q相同的ICP离子源、离子光学、碰撞/反应池技术和样品引入设备。b) 用48 µ s时间分辩率采集的淡水藻类细胞raphidocelis subcapitata的瞬时信号速率。c) 藻类细胞通常用于毒理学风险评估研究,这里在暴露于金纳米颗粒一段时间后进行分析,以调查其摄取情况。在ICP-TOF的全质量数范围内,可以根据检测细胞的本征元素指纹对细胞进行追踪,并能直接定量测量纳米颗粒物-细胞的关联。icpTOF单细胞分析应用实例 单一实体分析,与批量样品测量相比,能产生信号的质量相对有限,这对仪器灵敏度要求更高。下面的应用案例研究展示了icpTOF S2仪器(TOFWERK AG,瑞士)的性能指标:具有与单四极杆ICP-MS类似的高灵敏度,又可同时快速检测全谱信号,特别适合分析单一实体,如单细胞或纳米颗粒(NPs)等。随着工业和日常生活中纳米颗粒物的广泛使用,纳米安全和纳米毒理学在过去20年一直是深入研究的课题。纳米颗粒物的安全评估研究中的一个重要参数是其在细胞摄取的分析和量化。 透射电子显微镜(TEM)和扫描电子显微镜(SEM)具有高空间分辨率,它们经常被用于细胞内纳米颗粒物的分析23,24。尽管有令人印象深刻的成像能力,基于电子显微镜方法的一个主要缺点是对样品制备的繁琐要求。此外,由于没有额外的元素定量或自动图像分析,获得的图像是定性的且结果较难被解读25,26。如前所述,单细胞ICP-MS也可用于量化细胞对纳米颗粒物的摄取,根据观察到的信号峰的强度大小,提供与细胞相‘关联’的纳米颗粒数量的信息5,6。这类实验通常有以下三个明显的观察结果: 只检测到纳米颗粒物中的特征元素,表明溶液中存在纳米颗粒物 只检测到细胞固有元素而没有任何纳米颗粒物中的元素,表明细胞并没有与纳米颗粒物相关联 同时检测到细胞固有元素和纳米颗粒物中的元素,意味着两者有关联 根据观察到的相关联的纳米颗粒/细胞峰的频率和幅度,可以确定摄取了纳米颗粒物的细胞的百分比以及与每个藻类细胞相关的纳米颗粒数量的估计值。在理想的情况下,可以根据浓度和暴露时间动态地对海藻细胞和纳米颗粒数量的相关性的进行评估。 在本案例研究中,将海藻细胞暴露在BaSO4(NM-220)溶液中72小时,接着按照Merrifield等人提出的程序进行清洗5,去除未与细胞结合的纳米颗粒。在暴露后并在ISO8692藻类培养基中进行冲洗后27,样品中预计只包含与藻类细胞相关联的纳米颗粒物。随后,样品被储存在15毫升的试剂管中,用锡纸包裹,等待分析。 在使用四极杆ICP-MS进行单细胞的初始研究中,我们发现清洗后的细胞悬浮液中仍存在BaSO4纳米颗粒,如图3a所示。有学者认为未关联的纳米颗粒已经去除,而这些检测到的纳米颗粒是与海藻细胞相关联的。然而由于只测量了一种元素138Ba,并不能完全证实这一猜想。 我们使用单细胞ICP-TOF-MS(见图2a)重复了一个类似的实验。从图2b中我们可以知道被分析的藻类细胞的本征元素指纹,即只有同时检测到Mg、P、Mn和Fe等元素时才被认为检测到了藻类细胞。令人惊讶的是,即使暴露72小时后,BaSO4 纳米颗粒与水藻细胞的指纹信号没有显著关联(图3b)。可以看到,Ba仅与Mg和Fe的信号同时被检测到,而没有水藻的其他指纹信号同时出现。虽然缺失的元素信号强度有可能是低于仪器检测极限,但至少这说明检测到的元素与藻类细胞的本征元素指纹不一致。然而在检测到藻类细胞的指纹信号中,没有观测到Ba元素信号。综上所述,如果没有icpTOF瞬时多元素检测能力,在清洗后细胞悬浮液中检测到的纳米颗粒的Ba信号很容易被误解为是与藻类细胞相关联的颗粒物。图3:a)实验流程图。在样品暴露于纳米颗粒物72小时后,细胞被清洗以去除上清液中游离态的纳米颗粒物。b) 通过使用飞行时间质谱仪重复单细胞测量,可以跟踪细胞的元素指纹,以验证纳米颗粒物信号和细胞信号的是否同时出现。结果显示虽然纳米颗粒物和细胞没有直接关联,但Ba信号与Mg和Fe信号是一起出现的。 这些结果导致了对可能引发该现象的机制的讨论。一个合理的解释是海藻细胞通过释放胞外聚合物物质(EPS)来清除粘附在细胞表面的纳米颗粒物。EPS被认为是影响藻类细胞对纳米颗粒的生物利用率的关键因素28,29。EPS产量的增加可使藻类细胞主动脱落纳米颗粒,从而减轻摄取或吸附到细胞外部,而纳米颗粒仍然以被包含在EPS中的形式存在于溶液中。虽然缺乏关于这种行为的定量数据,但足以解释BaSO4纳米颗粒信号与Mg和Fe信号的契合。当然Fe与Ba信号的同时出现还可以被解释为溶解的Ba与ISO 8692培养基中的EDTA络合在了一起,而EDTA被添加在溶液中以保持Fe的生物可利用率。要回答这个问题,我们使用TEM观察到EPS聚集体中包裹有纳米颗粒(图4)。由于TEM局限于定性分析,再加上EPS结构微妙,这种包裹的确切机制和发生频率很难被量化。然而单细胞ICP-TOF-MS则可以直接对这一现象进行定量分析,而不需要对样品进行复杂的制备,同时还可以在较短的时间内分析更多的藻类细胞及EPS聚集体,提供更可靠的统计数据。此外,单细胞ICP-TOF-MS可以动态地从藻类悬浮液中不间断取样,评估这种清除行为的发生频率与样品浓度和时间的关系,进一步了解藻类细胞和纳米颗粒之间的相互作用。这种利用ICP-TOF研究动态摄取和清除行为的研究思路不仅限于藻类细胞,还可以扩展到纳米医学或纳米生物技术的其他类型细胞,如哺乳动物细胞或细菌。图4:一个藻类细胞(Raphidocelis subcapitata)的透射电子显微镜图像,该细胞之前暴露在银纳米颗粒物中,脱落的细胞外聚合物物质(EPS)含有银纳米颗粒。(由Louise H. S. Jensen和Sara N. Sø rensen提供)。 正如本研究强调的那样,尽管传统的四极杆质谱(sc-ICP-Q-MS)可以测量单细胞,但它最多只能同时测量一种或两种元素或同位素,所以即使检测到纳米颗粒信号也不能100%确定其与细胞直接关联。另外还需要TEM来确定颗粒物是否被藻类吸收在内部或简单附着在细胞外部。然而使用ICP-TOF-MS可以将被暴露在纳米颗粒物中藻类的离子组与对照藻类的离子组进行比较,从而评估它们的状况。这些信息对于从机理上理解海藻细胞与纳米颗粒物的相互作用非常有价值,并可以进一步促进开发以生理学为基础的纳米颗粒物风险评估工具。icpTOF结论与展望 单细胞ICP-TOF-MS是一个新兴的、令人兴奋且快速发展的研究领域。虽然尚需数年时间才能达到质谱流式技术在单细胞多参数分析方面的水平,但ICP-TOF-MS得益于灵敏度的提高和同时全谱检测能力,能够基于元素指纹检测未被标记的细胞,从而为新的实验设计创意提供可能性。例如,除了测量纳米颗粒物和细胞的相关性外,ICP-TOF-MS记录的多元素数据可用于评估细胞在纳米颗粒介导毒性影响下的不同状态。 除了液体样品引入方法之外,也可以使用激光剥蚀(LA)-ICP-TOF-MS进行单细胞分析30,31。通过将制备有细胞的载玻片放在样品台上并使用激光扫描,可以产生单个完整细胞层面上的元素分布二维图像,其中每个像素包含一个完整的全元素谱图。LA-ICP-TOF-MS成像的高空间分辨率对纳米毒理学研究特别有意义,因为它可以观察和定位纳米颗粒物在亚细胞结构中的聚集,以进一步了解和解释各种现象(如摄取、积累和释放纳米颗粒)。 此外,所生成的大量数据可以通过降维技术进行处理,如主成分分析(PCA)或机器学习工具,并提取与细胞状态和类型有关的信息,从而使细胞的分类变得更容易。这在质谱流式工作流程中是常见的处理方法。这项技术不仅限于纳米毒理学研究,还可以扩展到金属组学和细胞生物学中。无论如何,我们将继续努力改进飞行时间质谱ICP-TOF-MS技术,使其在更广阔的应用领域发挥作用。icpTOF致谢作者感谢Olga Meili和Aiga Mackevica校对本文并提供反馈。Lars M. Skjolding得到了PATROLS – Advanced Tools for NanoSafety Testing项目资助(760813)。感谢Louise Helene Sø gaard Jensen和Sara Nø rgaard Sø rensen允许使用图4中的TEM图像。最后特别感谢Robert Thomas邀请在Spectroscopy杂志中的 "原子视角专栏 "刊登此文。原文链接:Hendriks L., Skjolding L. M., Robert T., Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint, Spectroscopy, 2020, Volume 35, Issue 10, Pages 9–16https://www.spectroscopyonline.com/view/single-cell-analysis-by-inductively-coupled-plasma-time-of-flight-mass-spectrometry-to-quantify-algal-cell-interaction-with-nanoparticles-by-their-elemental-fingerprint (请点击左下角“阅读原文”跳转)本文由TOFWERK中国-南京拓服工坊科技编译,结论以英文原文为准。参考文献1 S. J. Altschuler and L. F. Wu, Cell, 2010, 141, 559–563.2 W. M. Elsasser, Proc. Natl. Acad. Sci. U. S. A., 1984, 81, 5126–5129.3 C. Degueldre and P. Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.4 K. S. Ho and W. T. Chan, J. Anal. At. Spectrom., 2010, 25, 1114–1122.5 R. C. Merrifield, C. Stephan and J. R. Lead, Environ. Sci. Technol., 2018, 52, 2271–2277.6 F. Abdolahpur Monikh, B. Fryer, D. Arenas-Lago, M. G. Vijver, G. Krishna Darbha, E. Valsami-Jones and W. J. G. M. Peijnenburg, Environ. Sci. Technol. Lett., 2019, 6, 732–738.7 I. L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y. J. H
  • 岛津推出塑料分析仪及配套方法包
    基于傅立叶变换红外光谱的塑料分析专用系统 塑料分析的要求是什么? 分析塑料时会使用红外谱库对其材质进行定性。但因受热或紫外光照发生变性(老化)的塑料红外光谱会与标准品光谱的形状有所不同,从而导致难以顺利进行定性。 岛津新发布的塑料分析仪及配套方法包通过搭载老化谱库,能够实现反映老化状态的高精度定性分析。 塑料分析方法包 紫外光照老化塑料谱库该谱库使用岩崎电气株式会社生产的加速老化人工环境气候箱,收录了相当于自然光老化10年的一系列塑料的红外光谱。其中包括针对14种常见塑料,通过紫外光照射不同时间进行老化的200多张红外光谱。 紫外光照老化塑料谱库中收录的硬质PVC 热老化塑料谱库该谱库收录了静冈县工业技术研究所滨松工业技术支援中心所测量、获取的热老化塑料红外光谱。其中包括针对13种常见塑料,在200 ~ 400℃下进行老化的100多张红外光谱。 热老化塑料谱库中收录的聚乙烯(PE) IR Pilot 专用分析程序/方法包其中附带了可便于直接开始测量光谱以及自动创建报告的IRSpirit专用程序 IR Pilot以及用于塑料测量的一般性红外方法参数,因此可方便地对目标样品进行快速测量、分析及打印报告。 即使不熟悉FTIR分析的用户也能够立刻上手。 IRSpirit 专用向导式程序IR Pilot
  • 岛津中国同时推出三款LCMS/MS方法包
    岛津中国即日起推出LCMS/MS药物毒物快速筛查方法包、LCMS/MS脂质介质分析方法包、LCMS/MS主要代谢产物分析方法包,这将极大地提高相应分析工作的效率、方便分析工作者。 LCMS/MS药物毒物快速筛查方法包,提供药物毒物快速筛查并且以地西泮-d5作为所有化合物的内标,提供106种化合物的简易定量数值。可以进行106种化合物的快速药物毒物筛查,且无需定量所需的标准品。可提供从样品前处理、数据采集到数据分析的实际整体解决方案。 LCMS/MS脂质介质分析方法包,是专为分析各种生物样品中的脂质介质设计的。方法包中提供130种化合物的批处理分析条件,其中包含来自于花生四烯酸级联及其相关物质。基于其物理性质,130种化合物被分成13组,每组一个内标。根据物理性质对化合物进行分组,使用内标对每组化合物的样品处理和测定时离子化效率这两个过程中的提取效率进行校正。 LCMS/MS主要代谢产物分析方法包,是专为进行代谢组学相关研究设计的方法包,通过采用离子对色谱实现55种主要代谢产物在一个分析批次内高速测定。能够测定的化合物包括糖酵解系统、TCA途径和戊糖磷酸途径相关的主要代谢产物及和氨基酸、核苷酸。方法包包括已由CE/MS验证过的生物组织前处理方案和通过2个内标来保证不同样品结果标准化的工作流程。 有关详情,敬请咨询岛津公司 · 北京分公司 (010) 8525-2310/2312 · 浦西分公司 (021) 2201-3888 · 广州分公司 (020) 8710-8661 · 四川分公司 (028) 8619-8421 · 沈阳分公司(024) 2341-4778 · 西安分公司(029) 8838-6350 · 乌鲁木齐分公司(0991) 230-6271 · 昆明分公司(0871) 315-2986 · 南京分公司(025) 8689-0258 · 重庆分公司(023) 6380-6068 · 深圳分公司(0755) 8287-7677 · 武汉分公司(027) 8555-7910 · 河南分公司(0371) 8663-2981 岛津用户服务热线电话:800-8100439 400-6500439 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 月兔抱礼|点“柱”成金赢好礼
    月兔抱礼在中秋节这个寓意家庭团聚的美好日子里,SGLC邀请大家和亲朋好友一起参与“点‘柱’成金,中秋有礼”小游戏。“点‘柱’成金,中秋有礼”小游戏活动时间:9月12日-9月17日参与方式非常简单——点击下方【马上玩游戏】前往活动页面,跟随指引玩游戏。记得只需要从下到上按顺序依次点击“岛津ShimNex色谱柱橙块“哦!活动成绩到达45分,即为挑战成功可抽奖。每人每日有5次游戏机会,奖品丰厚,数量有限,先到先得哦!马上玩游戏点击立即查看最新药斯卡排行榜
  • 预测:到2020年细胞检测市场价值为183亿美元
    到2020年,全球细胞检测市场有望从2015年的大约108亿美元增长到183亿美元,其中,2015年到2020年之间的复合年增长率为11.16%。细胞检测市场增长因素包括研发支出的增加,细胞检测越来越多的用于药物筛选,同时自动化和高通量技术的进展也有助于该市场的增长。  研发支出的增加将有助于细胞检测市场的增长。生物技术和制药公司数目的增加也将有助于细胞检测市场在市场上主要份额的生长。全球生物制药行业,也是增长最快的领域,2014年的收入被估计为1630亿美元,占药品市场约20%。  据医疗信息的IMS研究所估计,在预测期内(2014年至2019年)全球制药行业的复合增长率有望在7%和12%之间。制药和生物技术公司在药物研发方向投入的加大,预计将带动细胞检测市场。  新兴市场的增长率预计将高达11%至14%,亚太地区有望见证这个行业最高的年复合增长率。随着新药研发项目支出的规模增大,较高的增长速度将成为细胞检测市场的重要驱动力。  报告中的产品包括耗材、仪器、服务和相关软件。耗材细分为基础试剂、测定试剂盒、细胞系和微孔板。试剂和测定试剂盒进一步划分包括:报告基因检测、第二信使检测、细胞增殖检测、细胞死亡检测和其它检测。细胞系进一步分类为永生化细胞系、原代细胞系和干细胞系。在应用的基础上,报告分为基础研究、药物发现、预测毒理学、ADME研究和其他应用。  2015年,药物研究占细胞检测市场的最大份额。预测毒理学被预计是2015年到2020年间增长最快的应用之一。  报告中的地域包括北美洲、欧洲、亚洲和世界其余区域。在2015年,北美占有这个市场的最大份额,而亚洲被预计会以最快的速度增长。亚洲细胞检测市场的增长主要来自该地区日益增加的医疗支出和不断增长的人口两个因素。  细胞检测市场的公司主要包括:BD(美国),默克(美国),丹纳赫(美国),赛默飞世尔(美国),珀金埃尔默(美国),CST(美国),CISBIO(法国),DiscoveRx(美国),GE(美国)和Promega(美国)。
  • 青岛能源所发明拉曼激活单细胞液滴分选技术
    p   单个细胞是地球上细胞生命体功能和进化的基本单元。单细胞精度的高通量功能分选是解析生命体系异质性机制、探索自然界微生物暗物质的重要工具。单细胞拉曼光谱(SCRS)能够在无标记、无损的前提下揭示细胞固有的化学组成,因此拉曼激活细胞分选技术(RACS)日益受到广泛关注。但是分选通量是当前限制其广泛应用的最重要的瓶颈之一。据此,青岛能源所单细胞中心马波研究员与徐健研究员带领的多学科交叉团队通过耦合SCRS和液滴微流控技术,发明了拉曼激活单细胞液滴分选技术(Raman-activated single-cell Droplet Sorting RADS),这是目前已公开报道的工作中分选通量最高的RACS系统。该工作于11月3号在线发表于Analytical Chemistry。 /p p   单细胞中心前期发明了基于微流控芯片的流式RACS技术(Zhang, et al, Analytical Chemistry, 2015),通过集成基于介电的单细胞捕获释放和电磁阀吸吮技术,实现了高速流动状态下单细胞的捕获、拉曼采集、释放和分选,通量达~60 个细胞/分钟。为了进一步提高通量,研究人员提出,单细胞经液滴包裹后,通过耦合介电可实现超高通量分选。液滴包裹不仅可以保护细胞免受分选过程中的损伤,还能够与分选后细胞的培养、DNA、RNA、蛋白等的提取与分析等无缝衔接。因此,RADS技术有着广阔应用前景。 /p p   然而,在RADS技术中存在诸多技术难题。首先,液滴表面凸/凹的形状会产生透镜效应,从而影响拉曼激光聚焦,降低空间分辨率,最终导致无法获取液滴中细胞的拉曼信号。其次,单细胞液滴包裹需要油相的引入,而油相具有强拉曼背景,会严重影响细胞拉曼信号的精确获取。第三,如何实现拉曼采集、分析、单细胞液滴包裹及分选的自动化集成未见先例。单细胞中心研究人员巧妙利用先获取单细胞拉曼信号,后进行单细胞液滴包裹的策略,有效解决了液滴对拉曼信号采集的影响 同时,在线集成液滴发生和分选同步进行,大大简化了系统操作步骤 最后,通过自主开发的软件,实现了拉曼采集、分析、单细胞液滴包裹及分选的高度自动化。该系统实现了高产虾青素之雨生红球藻的精确化(分选准确率高达98.3%)、高通量(260 细胞/分钟)筛选。研究人员还证明,分选后有92.7%的雨生红球藻细胞保持活性并可增殖,和未经分选的对照组相比没有显著性差异,说明RADS技术充分保护了细胞的活性。 /p p   单细胞中心前期已证明,基于单细胞拉曼成像的拉曼组(Ramanome)技术能够非标记、非破坏性地识别与分析几近无限的细胞功能。与拉曼组技术相耦合的RADS将能够高通量分选广泛的细胞功能,从而允许下游特定功能单细胞的培养或组学分析。这一工作为研制高度通量化与集成化的单细胞拉曼分选与测序系统奠定了基础。 /p p   论文共同一作是青岛能源所单细胞中心的王喜先与任立辉。本工作得到了中科院武汉水生所胡强研究员、北京大学王玮教授等的帮助,并得到了中科院仪器专项、国家自然科学基金、中国博士后科学基金和山东省自然科学基金等的支持。 /p p style=" TEXT-ALIGN: center" img title=" W020171108322918001267.jpg" style=" HEIGHT: 279px WIDTH: 500px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201711/noimg/dee566b0-1166-47be-9cbd-0a240348aece.jpg" width=" 500" height=" 279" / /p p /p p & nbsp /p p style=" TEXT-ALIGN: center" 图1 拉曼激活单细胞液滴分选(RADS)系统示意图 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制