当前位置: 仪器信息网 > 行业主题 > >

火棉胶

仪器信息网火棉胶专题为您提供2024年最新火棉胶价格报价、厂家品牌的相关信息, 包括火棉胶参数、型号等,不管是国产,还是进口品牌的火棉胶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合火棉胶相关的耗材配件、试剂标物,还有火棉胶相关的最新资讯、资料,以及火棉胶相关的解决方案。

火棉胶相关的资讯

  • 面条被曝添加食用胶增加弹性 湿面条能燃烧
    面条店使用的柠檬黄、蓬灰等添加剂,在粮油店调料店就可买到   近日读者投诉称,卖面条的在面条里掺食用胶,买回的湿面条能点着燃烧!记者调查时发现,确有一些经营者在使用化工添加剂,一些粮油店也销售这些添加剂。不法商贩在面条中添加化工产品如食用胶、柠檬黄、蓬灰、复合磷酸盐等,以增强面条的筋度和弹性,有的加入明矾使面条白亮光洁。   绝对猛料   面条掺食用胶,湿面条能燃烧   19日,郑州的赵女士向记者投诉称:“有个亲戚做面条生意,里面掺有食用胶。这样的面条咋煮都不会断,亲戚说卖面条的都加有这种东西,米线里也掺有食用胶,吃起来很筋。我上网一查,很多人说吃一碗米线等于吃进一个塑料袋。”   20日,家住经三路的张先生对记者说:“中午我从农贸市场买回湿面条,做饭时两根面条掉火旁很快被燃着了。我拿几根面条用火机点燃,想不到面条都燃烧了,烧后有股刺鼻的气味,烧后的粉末发硬,面条里到底添加的是啥东西?”   骇人调查   面条店用得多,添加剂卖得俏   3天来,记者在枣庄农贸市场和都市村庄暗访10多家面条店,发现做面条的在面条里掺有添加剂。在一家面条店记者看到,面条里掺有一种叫“蓬灰”的添加剂。记者问:“这东西添进去能吃吗?”女店主说:“现在都用这种东西,拉面、面条和米粉中都加有这东西。”   记者在枣庄市场一面条店以买面粉为名进入店内,见地上放着一瓶落满灰尘的玻璃瓶,内装铁红色添加剂。拂掉灰尘后记者看到是半瓶柠檬黄。记者问这是干啥用的,老板说:“是往热干面里加的。”   记者在另几家面条店调查时,有店主直言不讳地说:“现在有哪家不用添加剂?”   记者调查时了解到,面条店使用的柠檬黄、蓬灰、复合磷酸盐等,在粮油店调料店都可买到。记者在枣庄农贸市场问几家粮油店,果真有卖的。记者分别买几种后,与一店主攀谈:“这些东西卖得好吗?”   女店主:“卖得可好了,市场卖面条的都用这个。卖面条的有的在面中加有明矾,这样面条看上去白亮光滑,好卖。明矾加到油条里,炸出的油条好看还不塌架。”   另一调料店老板告诉记者:“我这里添加剂都卖完了,马上要进货。” 记者买来湿面条试验,湿面条一点就烧出了火苗   眼见为实   记者亲自试验,面条烧出火苗   记者分别购买了5种面条,在点燃试验后发现湿面条真的可以燃烧,还烧出了火苗,如不人为熄灭,长长的面条可全部烧完。面条烧后发出皮毛烧焦的气味,很刺鼻,剩下发黑的灰烬用手捏感觉非常硬。   为验证购买的面条与自己做的手工面有无区别,记者和面后做成面条用火点燃,面条着火后很快自动熄灭,燃后的灰烬一捏即成碎末。
  • 烟用热熔胶及其粘接材料表面性能的研究
    研究背景近年来,随着我国工业自动化进程的不断加快,热熔胶由于具有环保、固化速度快等特点,其发展取得显著成效。与此同时,高装饰包装材料的应用不断扩大,对热熔胶的粘接性能提出了新的挑战。卷烟工业中对烟支的“软包硬化”包装材料便是其中之一。烟支包装材料的正面和背面均为光滑平面,使用EVA或聚烯烃热熔胶对其进行粘接,经常出现开胶、粘接不牢等问题。 为了扩大EVA热熔胶的应用范围,提高其在难粘材料上的应用,本文采用OWRK法测定热熔胶及其原料、烟用包装材料在常温下的表面能,初步讨论烟用包装材料的表面能,热熔胶原料表面能与热熔胶表面能的关系,最后结合粘接力学数据,讨论材料表面能与粘接性能的关系。 实验方法仪器:Drop Shape Analyzer-DSA25接触角测量仪,德国KRÜSS有限公司方法:将热熔胶或原料分别放在隔离纸上,放入烘箱中30min(150℃)后取出,室温冷却至少2h,选择表面平整处,裁剪成2 cm × 1cm 样品,备用。将上述样品放在DSA25平台上,使用去离子水和二碘甲烷两种液测定接触角,然后进行表面能及分量的计算。 file:///C:/Users/Thinkpad/AppData/Local/Temp/ksohtml10020/wps961.jpg 结果与讨论1.包装材料包装材料的接触角、表面能及其分量见表1。表1 烟用包装材料数据表 烟用包装材料在生产过程中,其表面处理工艺有一定的不同,纸箱表面的瓦楞纸需要加入大量的疏水剂和施胶剂(如疏水性淀粉胶等),为提高强度防止吸水后变软,所以其与水的接触角大于90°,实测在103.5°,二碘甲烷则体现完全润湿,无法测定其接触角。 普通条盒纸和软包硬化纸均是以白卡纸为基材,具有一定的强度,表面进行不同处理更加考虑其外观性及手感。普通条盒纸的正反面与水的接触角远低于软包硬化纸,同时,前者正面与二碘甲烷的接触角同样低于后者正面的。前者正面的表面能及其分量均高于后者正面,条盒白卡纸正面表面能44.7mN/m,软包硬化纸正面31.5mN/m。因此,普通条盒纸为易粘接材料,而软包硬化材料属于难粘接材料。 2.烟用热熔胶主要原料烟用热熔胶主要原料的接触角、表面能及其分量见表2。表2 烟用热熔胶主要原料数据表 增粘树脂的表面能在42.0 ~61.4mN/m,属于高表面能材料,用于提高热熔胶的粘接性。由表2可知,1#~4#原料为烟用热熔胶主体树脂,均为乙烯的共聚物。值得注意的是,在相同条件下,低醋酸乙烯含量的聚醋酸乙烯与乙烯共聚树脂对纤维类基材的粘接性要优于高醋酸乙烯含量。
  • 大靶面拼接焦面测量技术取得进展
    大视场相机是大视场望远镜的核心设备,而由于单片传感器大小的限制,对于大视场相机的焦面没法使用单片传感器来满足大焦面的需求,因此大靶面探测器拼接是大视场相机的研制的关键技术。高精度的焦面拼接首先要求高精度的加工和高精度的测量,由于探测器工作温度往往都是在低温下,以减小探测器的暗电流,因此需要在常温以及低温工况下进行测量,以保证探测器在低温工况下具有良好的平整度,提高探测器的成像质量。基于国内外天文学发展的现状,把握实测天文科学和技术发展趋势,结合已有研究团队的人才技术优势和研究基础,在多年准备和积累的基础上,中国科学技术大学和中国科学院紫金山天文台提出共同建设北半球具备最高巡天能力的光学时域巡测设备-2.5米口径大视场巡天望远镜(Wide Field Survey Telescope,以下简称WFST),抢占时域天文观测研究制高点。而大靶面拼接主焦相机正是WFST望远镜的关键设备,科学成像采用9片9K×9K CCD芯片拼接而成,设计成像靶面直径达到D325mm,像面拼接平整度小于PV20um,是国内面积最大,达到国际领先水平的主焦相机,如图1所示。从表1可以看出WFST的焦面拼接平整度要求是最高的。主焦相机的研制首先要解决高精度测量的问题,尤其是在低温工况下的测量。 表1 国际大型光学图像巡天项目利用的望远镜和安装的CCD拼接相机参数表   相机研制团队在WFST望远镜副总设计师、中国科学技术大学物理学院核探测与核电子学国家实验室王坚教授领导下,进行了主焦相机关键技术的攻关,包括探测器真空低温封装,大靶面探测器高精度测量和拼接,探测器低噪声低功耗读出和驱动,高效相机控制等。对于大靶面探测器高精度测量,研制团队攻克了低温工况下高精度平面度非接触测量的难点,基于激光三角测量法提出了适合于传感器低温封装工况下的差分三角测量方法(Differential Triangulation Measurement),在真空封装下的测量误差不超过0.5%,重复测量精度能达到±2μm。并在此基础上完成DTS测量仪的研制(如图2所示),并最终完成WFST主焦相机低温工况下的测量,如图3所示。目前WFST主焦相机已经完成研制,运往冷湖和望远镜本体进行安装和联调联测。图1 WFST主焦相机及其焦面拼接图2 高精度测量仪DTS 相关成果于2023年7月发表在测量和仪器的知名杂志IEEE Transactions on Instrumentation and Measurement。   本工作获得中国科学技术大学创新团队培育基金,重要方向培育基金,国家自然科学基金委,双一流学科建设,深空探测实验室前沿科研计划的资助。
  • 《布面童胶鞋》强制国标明年实施
    记者从首届中国童鞋产业高峰论坛上获悉,《布面童胶鞋》强制性标准将于明年7月实施。   参与该项标准起草与制订的中国化工学会橡胶鞋分委会秘书长沈但理表示,这套标准属强制执行的国家标准,因此,今后童鞋企业须提前半年时间把控好原材料,并熟悉相关的检测项目,以免产出不合格童鞋。
  • 中国化学会第十七届胶体与界面化学学术会议
    由中国化学主办, 中国化学会胶体与界面化学专业委员会与江南大学共同承办的“ 中国化学会第十七届全国胶体与界面化学学术会议”拟定于2019年7月28日-8月1日在素有“太湖明珠”之称的江苏省无锡市召开。本次会议围绕(1)胶体与界面的基础问题;(2)两亲分子聚集体;(3)微纳材料;(4)软物质;(5)两亲分子与大分子的相互作用;(6)表面活性剂及其日用化学品工业应用;(7)食品和生物胶体 (8)应用胶体与界面化学 (9) 新理论、现象和实验技术;(10) 工业领域的胶体与界面化学等多个研究领域开展交流讨论.本次会议将邀请国内外学术和企业界知名专家和学者参加, 共同展示胶体与界面化学领域的最新进展和研究成果, 开展学术交流,为国内相关领域的科研技术人员提供一个良好的交流平台.会议主题近两年来胶体与界面化学领域的研究进展会议时间2019年7月29日-8月1日活动地点无锡君来湖滨饭店Biolin光学接触角测量仪Biolin光学接触角测量仪Attension Theta Flex,将进一步增强百欧林品牌在光学接触角仪器市场上的占有率和地位。有了这款产品,并搭配百欧林全新推出的网上支持系统Support Portal,能够提供更加优质的用户体验。1一台接触角测量仪,满足所有测试需求2一流的用户界面3优越的分析精度4实时分析5实时分析6为每个需求提供灵活性7便捷的数据处理和导出8优化工业使用Biolin全自动表面张力仪力学表面张力仪可测量表面张力、界面张力、临界胶束浓度、动态接触角、固体表面自由能、粉体润湿性、悬浊液沉降速度和液体密度等。可用于科研、研发和质量控制领域。力学表面张力仪可精确测量一系列的材料性质,表界面张力和接触角可以为气液固三相间的相互作用提供非常有价值的信息。而这一相互作用在如下研究中起到重要作用:润湿性、吸附性、配方科学、表面活性剂研发、粘附性。PMX颗粒电位滴定及粒度分析仪通过使用stabino,可实现快速便捷的颗粒的电位滴定测试。分散体中,同性带电离子的静电排斥作用是分散体避免凝聚保持稳定的主要原因,故带电粒子界面的表征是必不可少的。当颗粒离子化后,总电荷和电荷密度是需要知道的重要参数。电荷测量是通过建立动电信号来完成的。
  • 大昌华嘉参加第十三届胶体与界面化学会议
    大昌华嘉公司科学仪器部于本月20日-22日参加了在山西太原由中国日用化学工业研究院和山西大学化学化工学院联合承办的第十三届胶体与界面化学会议。 。2011 年为&ldquo 国际化学年&rdquo (International Year of Chemistry),本次会议是中国化学会以&ldquo 化学-我们的生活,我们的未来&rdquo 为主题,举办系列&ldquo 国际化学年在中国&rdquo 活动的一部分。中国化学会胶体与界面化学专业委员会诚邀全国从事胶体与界面化学科研、教学和开发的各类人士参加,交流自2009 年青岛会议以来我国在胶体与界面化学领域的最新研究进展,展示胶体与界面化学在各个领域中的应用成果,分析当前国际胶体与界面化学领域的研究动态、热点、前沿和发展趋势,研讨学科发展规划和人才战略等问题,促进我国胶体与界面化学事业的发展。会议期间还将安排新仪器、新产品发布活动。 大昌华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 激光粒度分析仪-美国麦奇克(MICROTRAC)公司 视频光学接触角测量仪、表面/界面张力仪-德国克吕士(Kruss)公司 比表面/孔隙度分析仪&mdash 日本拜尔BEL公司 密度计/旋光仪/折光仪/糖度仪-美国鲁道夫(Rudolph)公司 全自动氨基酸分析仪-英国Biochrom公司 元素分析仪、TOC总有机碳含量分析仪、稳定同位素质谱仪-德国elementar公司 薄层扫描仪、点样仪-德国迪赛克(DESAGA)公司 近红外分析仪-德国优泰科(ZEUTEC)公司 水份活度仪-瑞士novasina公司 凯氏定氮仪-德国贝尔(behr)公司 高压反应釜-瑞士premex公司 全自动反应量热仪-瑞士Systag公司 LB膜分析系统&mdash 芬兰Kibron公司 颗粒图像分析系统&mdash 挪威AnaTec公司
  • 科学岛团队在大气棕碳气溶胶光谱特性研究方面取得新进展
    近日,中科院合肥物质院安光所张为俊研究员团队在大气棕碳气溶胶光谱特性研究方面取得新进展,相关研究成果以“木材热解一次棕碳的宽光谱特征及辐射效应”为题在线发表于爱思唯尔(Elsevier)出版的Science of the Total Environment上。   棕碳(Brown Carbon)是一类重要的吸光性含碳气溶胶,在近紫外到可见光范围内的吸光能力随波长变短迅速增强,对区域乃至全球的气候和辐射平衡具有显著影响。大气中棕碳气溶胶的来源复杂,包括一次直接排放和二次氧化生成,其中生物质燃烧是一次棕碳的重要排放源。受限于测量方法和手段,当前生物质燃烧棕碳的光谱特性的认识不足,导致其辐射强迫评估存在较大不确定性。   团队赵卫雄研究员和刘芊芊博士等人利用自主研制的四波长宽带腔增强反照率光谱原位测量系统在线测量了不同类型木材热解排放棕碳的光谱特性(消光系数、散射系数、吸收系数,以及单次散射反照率(SSA)),气溶胶在生物质热解过程中的变化特征可以用光学参数来解释。基于多波长在线测量参数,发展了SSA光谱反演方法,获得了一次棕碳在300-700 nm范围内的宽光谱特性,并用于气溶胶直接辐射强迫的评估。结果表明,在近紫外波段,SSA降低35%将会导致一次棕碳的地面直接辐射强迫减少46%。本研究强调了SSA光谱特性在棕碳辐射强迫评估中的重要性,对气溶胶气候效应的准确评估具有重要的科学意义。   该研究工作得到国家自然科学基金、安徽省自然科学基金、合肥物质科学研究院院长基金和中科院青年创新促进会的资助。生物质热解棕碳气溶胶的消光系数、散射系数、吸收系数和SSA的光谱特性棕碳气溶胶在不同反照率表面的直接辐射强迫
  • 安光所在大气棕碳气溶胶光谱特性研究方面取得新进展
    近日,安光所张为俊研究员团队在大气棕碳气溶胶光谱特性研究方面取得新进展,相关研究成果以“木材热解一次棕碳的宽光谱特征及辐射效应”为题在线发表于爱思唯尔(Elsevier)出版的Science of the Total Environment(SCI一区,IF=10.754)上。棕碳(Brown Carbon)是一类重要的吸光性含碳气溶胶,在近紫外到可见光范围内的吸光能力随波长变短迅速增强,对区域乃至全球的气候和辐射平衡具有显著影响。大气中棕碳气溶胶的来源复杂,包括一次直接排放和二次氧化生成,生物质燃烧是一次棕碳的重要排放源。受限于测量方法和手段,当前生物质燃烧棕碳的光谱特性的认识不足,导致其辐射强迫评估存在较大不确定性。团队赵卫雄研究员和刘芊芊博士等人利用自主研制的四波长宽带腔增强反照率光谱原位测量系统在线测量了不同类型木材热解排放棕碳的光谱特性(消光系数、散射系数、吸收系数,以及单次散射反照率(SSA)),气溶胶在生物质热解过程中的变化特征可以用光学参数来解释。基于多波长在线测量参数,发展了SSA光谱反演方法,获得了一次棕碳在300−700 nm范围内的宽光谱特性,并用于气溶胶直接辐射强迫的评估。结果表明,在近紫外波段,SSA降低35%将会导致一次棕碳的地面直接辐射强迫减少46%。本研究强调了SSA光谱特性在棕碳辐射强迫评估中的重要性,对气溶胶气候效应的准确评估具有重要的科学意义。该研究工作得到国家自然科学基金、安徽省自然科学基金、合肥物质科学研究院院长基金和中科院青年创新促进会的资助。 生物质热解棕碳气溶胶的消光系数、散射系数、吸收系数和SSA的光谱特性棕碳气溶胶在不同反照率表面的直接辐射强迫
  • 宁波材料所在盐适应海洋传感凝胶方面取得进展
    传感技术是现代信息产业的支柱之一。由软材料构建的柔性传感器件可作为传统硬质传感器件的重要补充,在可穿戴传感、智慧医疗、软机器人、人机交互等领域具有重要的应用价值。得益于离子导电凝胶材料良好的生物相容性、力学匹配性和类生物导电机制,离子导电凝胶被认为是最有发展潜力的柔性传感材料之一,在运动感知、健康监测、通讯交流等领域得到广泛研究。然而,由于凝胶网络本征的亲水特点,传统离子导电凝胶传感材料在水环境中缺乏稳定性,无法应用于包括海洋在内的各类水环境中。而海洋与陆地一样,是人类的重要活动空间,尤其是随着海洋开发战略的推进,发展海洋传感材料成为迫切的需求。因此,解决离子导电凝胶材料的海洋稳定性问题,发展适用于海洋环境的高性能凝胶传感器件对于海洋活动具有重要意义。近年来,中国科学院宁波材料技术与工程研究所智能高分子材料团队研究员陈涛和博士魏俊杰,致力于离子导电凝胶基智能传感材料的研究,并利用疏水界面对水分子和导电离子的扩散屏障功能实现了导电凝胶材料的水下多功能传感应用。然而,含盐海水的高导电性会对离子凝胶传感器的传感性能产生明显的抑制作用,导致离子导电凝胶的海洋传感性能存在不足。对此,该团队近期在疏水界面结构的基础上,进一步利用质子导电机制和盐诱导解离效应设计了在海水环境中具有盐适应能力的离子液体凝胶材料,实现了海洋传感应用。如图所示,该工作合成了一种同时含有亲水链段(接枝有磺酸基团-SO3-和季铵根基团-N(CH3)3+)和疏水链段的聚合物Proton Conductive Material(简称PCM),并将其引入到由疏水单体(MMA)和疏水离子液体([BMIm]PF6)构建的耐水性离子导电凝胶中。聚合物PCM中的疏水链段可以使其在疏水凝胶中具有良好的相容性,而亲水链段中的两性离子基团可促进离子液体发生解离,提高凝胶中的自由离子含量。此外,-SO3-与[BMIm]+的静电作用为质子提供了迁移通道,在离子导电凝胶中形成了特殊的质子导电机制,进一步提高了凝胶的导电性,为改善其在高导电性海水中的传感性能奠定了基础。[BMIm]+-Cl-的作用强度高于Na+-Cl-和[BMIm]+-PF6-的作用强度,因此海水中的盐能够对凝胶中的离子液体产生诱导解离作用,使凝胶的导电性随着盐含量的增大而提高,即导电能力的盐适应性增强。这种盐适应导电增强能力使得凝胶传感器的传感灵敏度不会因为高盐含量海水的高导电性而受到削弱,反而展现出远超空气环境和纯水环境的传感性能。基于这种特性,该盐适应离子导电凝胶被应用于潜水人员的呼吸监测、运动感知、海下信息通讯以及海洋机器人的动作识别等海洋传感领域,展现出良好的传感性能。这一盐适应凝胶传感材料初步满足了海洋应变传感需求,为未来进一步构建高灵敏、多模式海洋传感材料提供了设计思路。相关研究成果以Salt-Adaptively Conductive Ionogel Sensor for Marine Sensing为题,发表在Small(DOI:10.1002/smll.202305848)上。研究工作得到国家自然科学基金、中国博士后科学基金、宁波市重点研发计划和宁波市自然科学基金等的支持。导电凝胶的盐适应结构与海洋传感应用
  • 安光所团队在气溶胶光学厚度反演方面取得进展
    近期,安光所光学遥感研究中心孙晓兵研究员团队为满足单角度多波段偏振气溶胶探测的需求,提出了一种多波段强度和偏振信息联合利用的最优化反演算法,相关成果发表在学术期刊《Remote Sensing》上。   大气气溶胶光学厚度(Aerosol optical depth, AOD)用来表征气溶胶对太阳辐射的消光作用,在遥感大气校正及细颗粒物污染评估中都具有重要作用。孙晓兵团队提出的反演算法主要利用短波红外波段的偏振信息,在不需要地面先验信息的情况下,对地面和大气信息进行分离,然后使用标量信息来获得最终结果。利用该方法进行地气解耦,避免了地表反射率数据库更新不及时造成的反演误差和时空匹配误差。   研究人员利用搭载在高光谱观测卫星(GF-5B)上的高精度偏振扫描仪(POSP)的观测数据对该算法进行了验证。与不同地区AEROENT站点的AOD产品比对结果表明,该算法能反演不同地表上空的AOD;与MODIS的AOD产品进行比对,验证了算法在不同污染条件下的有效性。   该研究得到了航天科技创新应用研究项目、中国高分辨率对地观测系统项目、中国资源卫星应用中心项目资助。图1 POSP的反演结果与AEROENT产品比对图2 POSP的AOD反演结果(a)与MODIS产品(b)对比(2022年5月4日)
  • 苏州纳米所在电纺纤维复合凝胶研究方面获进展
    近日,中国科学院苏州纳米技术与纳米仿生研究所研究员张珽团队在《纳微快报》(Nano-Micro Letters)上发表最新研究成果。该研究开发了一种新策略,通过将电纺纤维网络嵌入水凝胶中,从而实现同时具有超薄结构和优异力学性能的复合水凝胶薄膜(纤维复合水凝胶设计和制备      图2 纤维复合水凝胶薄膜力学性能     常规的水凝胶材料具有容易失水的缺点,长期暴露于空气中时,由于体系水分的蒸发从而使水凝胶体系失效。该研究通过在纤维复合水凝胶体系中掺入甘油作为保水剂,使复合水凝胶体系具有优异的抗失水性能。暴露于空气中七天后,仍具备优异的柔性。此外,为了改善纤维复合水凝胶的导电性,甘油/NaCl体系使纤维复合水凝胶在空气中维持长期的高导电性能(图3)。      图3 纤维复合水凝胶薄膜抗失水性能 得益于纤维复合水凝胶薄膜超软和超薄的特性,其可实现对各种不同粗糙表面的无缝贴附,其广泛可调的力学性能几乎可实现对所有生物软组织(如脑、肝脏、心脏、肺和皮肤)模量的完美匹配,可伴随组织产生形变而不损伤组织,是构建柔性生物电子器件的理想材料(图4)。 图4 纤维复合水凝胶薄膜的柔性和贴附性能      基于甘油/NaCl体系的纤维复合水凝胶构建的贴附型生物电极具有比商业凝胶电极更加优异的信噪比和长期使用性能。商用凝胶电极长期(48h)暴露于空气中会由于失水从而丧失性能,甘油/NaCl体系的纤维复合水凝胶电极在7天后仍旧保持良好信噪比,可实现对人体肌电信号的采集。甘油/NaCl体系的纤维复合水凝胶电极用于检测人体肌电信号,可实现对不同运动姿势和不同运动强度肌肉电信号的监测(图5)。     图5 纤维复合水凝胶电极用于人体肌电信号监测 研究人员通过将电纺纤维网络包埋于水凝胶,开发了一种制备超软、超薄、力学增强复合水凝胶的新策略。该工作为超薄柔性生物电子提供了新颖的设计和构建思路。
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.
  • 科学岛团队在多功能液态金属水凝胶方面取得新进展
    近期,中科院合肥物质院固体所高分子与复合材料研究部田兴友和张献研究员团队联合郑州大学杨艳宇副教授等,利用镓铟合金( EGaIn)引发聚合,并作为柔性填料,构建了一种可用于人机交互和红外伪装的超拉伸、自愈合的 LM/PVA/P(AAm-co-SMA)双网络水凝胶。相关结果发表在 Materials Horizons 上。   水凝胶是一种具有三维网络结构的软材料,通过引入离子、导电聚合物和导电填料,可获得导电水凝胶。但是,由于导电聚合物共轭结构的固有刚性、导电填料与水凝胶基体的不相容性,以及盐析效应,目前大多数导电水凝胶的机械性能较差,如韧性低、抗拉强度低、自恢复和自愈合性能不理想,大大限制了水凝胶的应用领域。   镓铟合金(EGaIn)作为一种熔点接近或低于室温的液态金属(LM),可以通过超声波分散制备成EGaIn微球,用作纳米填料。与其他刚性纳米填料不同,它们可以适应聚合物基体的变形,从而有效地增韧聚合物。此外,EGaIn中的镓(Ga)可以引发乙烯基单体发生自由基聚合。Ga3+能够与羧基、羟基进行配位,形成动态牺牲键,用于耗散能量。因此,镓基液态金属具有改善聚合物基体机械性能的潜力。   鉴于此,研究人员利用镓铟合金( EGaIn)引发聚合,同时作为柔性填料,构建了一种超拉伸和自愈合的 LM/PVA/P(AAm-co-SMA)双网络水凝胶。刚性的 PVA微晶网络和韧性的 P(AAm-co-SMA)疏水网络的协同作用,以及聚合物网络之间的离子配位和氢键(多重物理交联),赋予了 LM水凝胶优异的超拉伸性( 2000%)、韧性( 3.00 MJ/ m3)、抗缺口性和自愈性(室温 24 h愈合效率大于 99%)。 LM水凝胶表现出敏感的应变感应行为,可用于人机互动以实现运动识别和健康监测。另外由于 EGaIn具有良好的光热效应和低红外发射率, LM水凝胶在红外伪装方面显示出巨大的应用潜力。   合肥物质院张献研究员和郑州大学杨艳宇副教授为文章的共同通讯作者,硕士生李宵飞为论文第一作者。该研究工作得到国家自然科学基金、合肥物质院院长基金的支持。图 1. 液态金属水凝胶的机械性能表征。图 2. (a) 压力传感器的原理图; (b, c) 在压力传感器上写 "CAS " 和 "USTC " 时的电阻变化; (d) 人机交互系统的示意图; (e) 戴着人机交互手套的志愿者打开他的手指, LED 屏幕显示数字 "5" ; (f) LM 水凝胶制备的人机交互手套根据志愿者手指的弯曲情况显示数字。
  • 安光所在气溶胶光谱特性探测技术方面取得新进展
    p style=" text-align: justify "   近日,安光所张为俊研究员课题组在气溶胶光谱特性探测技术方面取得新进展,相关研究成果以Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols为题发表于美国光学学会(OSA)出版的Optics Express上。 /p p style=" text-align: justify "   气溶胶的光谱特性与其化学组分、尺寸和混合状态等密切相关,反映着气溶胶的种类和排放源特征。受测量方法的限制,现有的气溶胶光学测量系统,多为单波长、单参数测量系统,难以实现多个光学参数的在线原位同步测量,而气溶胶光谱特性测量系统更为缺乏。 /p p style=" text-align: center " img title=" 343434.jpg" alt=" 343434.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7152b73b-6d9a-4a5e-9f76-b110c1934866.jpg" / /p p style=" text-align: justify "   课题组赵卫雄研究员和徐学哲博士等人,于2014年首次将宽带腔增强吸收光谱技术与积分球技术相结合,研制了国际上首台腔增强反照率光谱仪,实现了大气气溶胶的消光、散射和吸收系数,以及单次散射反照率的在线原位同步测量(Atmospheric Measurement Techniques, 7(8), 2551-2566, 2014)。近期,他们将该系统的探测波长扩展至紫外-红光波段,发展了一套宽波段腔增强反照率光谱系统,实现了气溶胶多个光学参数的光谱测量(Optics Express, 26(25), 33484-33500, 2018),并已多次用于京津冀、长三角和珠三角等地区的大气综合观测,展现了很好的科研和业务应用前景,得到了国内外同行的高度认可,部分观测成果发表于地学TOP期刊:Atmospheric Chemistry and Physics, 16(10), 6421-6439, 2016 Atmospheric Chemistry and Physics, 18(23), 16829-16844, 2018。 /p p style=" text-align: justify "   该研究工作得到国家自然科学基金、安徽省杰出青年科学基金和中科院青年创新促会资助。 /p p /p
  • 在用于制药和化妆品的表面活性剂凝胶中,不同的生产工艺会产生不同性能的凝胶
    化妆品,如护发素,必须符合许多的要求,来切合客户的需求。稳定性,香味和外观,奶油状的质地和改变头发表面亲水性的能力都是一些最重要的要求。在适当的处理条件下,少量的长链醇和阳离子表面活性剂可以形成膨胀的双分子层,从而锁住大量的水。这些凝胶网络主要由多层囊泡(MLVs)组成,囊泡壁是由六边形填充的酒精和表面活性剂分子组成的脂质双分子层。这种多层囊泡凝胶网络使得护发素呈现奶油质地。 尽管冷却速度在长链醇和表面活性剂凝胶的生成中一直是一个重要的因素,但造成这些差异的物理化学原因仍然难以捉摸。鲸蜡硬脂醇和氯化十六烷基三甲基氯化铵(CTAC)是构成许多药品和化妆品配方的基础。在一项研究中,来自意大利巴里大学化学系的研究人员与欧莱雅和瑞典隆德大学合作,阐明了冷却过程和凝胶流变特性之间的联系。利用多种技术方法,他们发现使用不同的冷却速率会生成具有不同重复距离的多层囊泡。不同工艺形成的凝胶具有明显不同的弹性模量和粘性模量。 在加热至85℃的条件下,制备了含有5%的鲸蜡硬脂醇和6%的CTAC的凝胶样品。样品在冰水中淬火,或在空气中冷却到室温。淬火凝胶的弹性(G’)和粘性(G’’)模量是空气中的冷却凝胶的4倍,因此影响了凝胶的涂抹性能和手感。两种样品的小角X射线散射(SAXS)结果证实了多层囊泡的存在。Kratky图分析显示,两种样品的层间长周期存在差异,淬火样品为31.4 nm,空气冷却样品为28.5 nm。通过对比Lβ相的理论值,发现淬火样品完全由膨胀的Lβ相组成,而空气冷却样品则是由Lβ相为主的多相凝胶网络组成。利用脂质双分子层形状因子,对散射密度进行拟合,得出两种样品相似的双分子层厚度为3.8 nm (δ)。结合两种样品的双层膜厚度和平均长周期,可以计算出淬火样品中鲸蜡硬脂醇和CTAC的体积分数为0.83,空气冷却样品为0.77。也就是说,在空气冷却的样品中,较大体积分数的鲸蜡硬脂醇和表面活性剂形成的脂质双分子层没有合并到囊泡中。这对平均弯曲刚度有影响,淬火样品的弯曲刚度更大。 综上所述,本研究表明,尽管快速冷却和缓慢冷却都能导致多层囊泡的形成,但囊泡中所含物质的数量不同,层间的膨胀程度也不同。这些差异导致了不同的弯曲刚度和不同的流变性能。了解这些参数有助于制备具有所需厚度、丰富质感和涂抹性能的复杂药物和化妆品配方。
  • 全国胶体与界面化学奖学金颁奖仪式在北大举行
    第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式在北京大学举行 “东方胶化”杯全国胶体与界面化学奖学金是北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合,由北京东方德菲仪器有限公司独资设立的。以资鼓励在胶体化学与材料科学领域孜孜不倦努力进取的博士生,研究生。该奖项的创立为胶体化学及材料科学领域搭建了良好的学术交流平台。 第七届“东方胶化”杯全国胶体与界面化学奖学金颁奖仪式于2009年3月26日在北京大学英杰交流中心第二会议室举行,本届“东方胶化”杯经专家组评审、复议后,来自中国科学院化学所、北京大学、扬州大学、清华大学、北京航空航天大学、山东大学等学校的9名在校研究生获得了此次奖励。具体名单如下: 一等奖:张轶群(中国科学院化学研究所) 李 澄(北京大学化学与分子工程学院) 二等奖:周传强(扬州大学化学化工学院) 王 朝(清华大学化学系) 陈洪艳(中国科学院化学研究所) 三等奖:周 苇(北京航空航天大学化学与环境学院) 赵玉荣(山东大学胶体与界面化学教育部重点实验室) 范海明(北京大学化学与分子工程学院) 沈玉文(山东大学胶体与界面化学教育部重点实验室) 在颁奖仪式上,受邀到场的嘉宾如下:张希院士 清华大学化学系系主任 吴凯教授 北京大学化学与分子工程学院副院长 刘鸣华研究员 全国胶体与界面化学专业委员会副主任 科学院基础局副局长 中国科学院化学所研究员 黄建滨教授 全国胶体与界面化学专业委员会副主任 北京大学化学与分子工程学院教授 表面活性剂与胶体研究开发中心主任 侯万国教授 全国胶体与界面化学专业委员会成员 山东大学化学化工学院教授王毅琳研究员 中国科学院化学所研究员 齐利民教授 全国胶体与界面化学专业委员会成员 北京大学化学与分子工程学院教授 徐宝财教授 北京工商大学化学与环境工程学院副书记王武宁经理 北京东方德菲仪器有限公司总经理 其中,张希院士、吴凯教授、刘鸣华研究员、黄建滨教授、侯万国教授、徐宝财教授、王武宁总经理等到场嘉宾亲自为获奖同学颁奖。 颁奖仪式过后,张希院士、刘鸣华研究员、黄建滨教授受邀做了非常精彩的学术报告。获奖同学中的张轶群、李澄、王朝、陈红艳四位同学也就自己的科研成果做了非常精彩报告,得到了各位老师和同学的一致好评。 此次活动由北京东方德菲仪器有限公司与全国胶体与界面化学专业委员会联合举办,并得到清华大学、北京大学等知名高校师生的大力支持。 北京东方德菲仪器有限公司 www.edcc.com.cn
  • 中国化学会第十六届胶体与界面化学会议将于青岛召开!
    由中国化学会主办,中国石油大学(华东)承办的“中国化学会第十六届胶体与界面化学会议”将于2017年7月24日-28日在青岛召开。主题:胶体与界面化学,走向工业界内容及范围:1. 溶液中新型两亲分子聚集体的构筑与调控;2. 软物质材料;3. 分散体系与微纳米材料;4. 界面化学与有序分子膜;5. 两亲分子与大分子的相互作用;6. 新型高分子与表面活性剂;7. 胶体与界面化学在石油及其他工农业领域中的应用;8. 胶体与界面化学研究现状与学科发展战略;大昌华嘉(DKSH)&瑞典百欧林(Biolin)携手为大家展示表界面分析的最新技术成果及应用,交流胶体与界面化学领域的最新研究热点、进展、发展趋势、欢迎相关企业、高校、科研院所工作者的莅临参与。瑞典百欧林科技有限公司是一家先进科研仪器生产商,在北欧的瑞典,丹麦和芬兰都有主要产品的研发和生产基地。提供的高科技、高精度科研设备可用于表界面、材料科学、生物科学、药物开发与诊断等研究领域。瑞典百欧林竭诚为广大用户带来简单、易用、智慧的仪器。- 接触角测量仪 配置双通道自动分液器的theta 和theta lite Attension光学接触角测量仪器被广泛用于表界面研究的科研、开发和质量控制,是企业和科研工作者的首选。接触角测量仪Theta系列可测量:- 动/静态接触角- 表面自由(SFE)- 表/界面张力- 批处理接触角- 粗糙度修正接触角- 界面流变(粘弹性) - 表面张力仪大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。
  • 接触角测量仪表面电荷和接触角的关系
    接触角测量仪表面电荷和接触角的关系表面电荷和接触角之间存在一定的关系,表面电荷状态可以影响液体在固体表面上的润湿性质,从而影响接触角。以下是表面电荷和接触角之间可能的关系:表面电荷引起的电场效应: 表面电荷会在固体表面形成电场。这个电场可以影响液体分子在表面的分布,进而改变液滴在表面上的形状。在一些情况下,表面电荷可能导致电场效应使得液滴更容易在表面展开,从而使接触角减小。表面电荷和表面能: 表面电荷状态可以影响固体表面的表面能。一般而言,表面电荷越高,表面能越大。而表面能的变化会直接影响接触角,即固液界面的润湿性。高表面能通常与低接触角(液滴更容易湿润表面)相关。电荷导致的化学反应: 表面电荷可能引发固体表面与液体之间的化学反应,形成新的化合物。这些化合物的性质可能与原有的表面性质不同,从而改变了液体在固体表面上的润湿性,影响接触角。电荷中性化和润湿性质:表面电荷可能被中性化,特别是在高湿度环境下。这种中性化可能导致原先带有电荷的固体表面变得更加亲水(亲湿),从而减小接触角。电荷分布和表面纹理:表面电荷的分布可能影响固体表面的纹理。表面纹理是影响液滴在固体表面行为的重要因素,进而影响接触角。需要注意的是,表面电荷与接触角之间的关系是复杂的,取决于多种因素的相互作用,包括表面材料的性质、电荷密度、液体性质、环境条件等。在研究和应用中,需要综合考虑这些因素,以更好地理解和控制固液界面的性质。
  • 加热磁力搅拌器的盘面有哪些?
    加热磁力搅拌器是实验室常用的仪器,主要实现加热和搅拌功能:加热功能:在底盘设置加热装置,也会设置相应的装置对加热进行监控,工作的盘面会安装有温度传感器(热电偶)。搅拌功能:通过位于工作盘下面的永久磁铁进行驱动磁力搅拌子,永久磁铁可以穿透工作盘面,磁铁直接固定于马达的转轴上,通过马达转动,带动搅拌子转动。 加热磁力搅拌器的顶部盘面,起到了承载工作介质,热传导,磁力传导,抗腐蚀等作用。顶部盘面是加热磁力搅拌器的关键部件之一。过多年的发展,盘面也形成了多种不同材质和规格:1、纯金属盘面 一般用铝合金或不锈钢等金属材质作为盘面,具有经济,加工简便的优势。多用于经济型的加热磁力搅拌器。最高温度一般低于350℃。在使用过程中,局限于金属本身的性质,容易受到化学试剂腐蚀和氧化作用。长期使用之后,金属盘面会受到腐蚀影响,严重得情况甚至发生腐蚀,锈穿的现象,极大影响仪器的使用性能。2、陶瓷盘面 为了解决金属盘面的耐腐蚀性问题,在金属盘面上覆盖了一层陶瓷,做成陶瓷盘面。陶瓷对酸碱等溶剂的耐腐蚀性远优于金属。因为有了陶瓷的保护,盘面的耐腐蚀性得到了极大提升。3、陶瓷玻璃盘面 陶瓷玻璃又称微晶玻璃,是经过高温融化、成型、热处理而制成的一类晶相与玻璃相结合的复合材料。陶瓷玻璃具有机械强度高、热膨胀性能可调、耐热冲击、耐化学腐蚀、低介电损耗等优越性能,是新一代的加热磁力搅拌器的盘面材料。陶瓷玻璃具有可以透过红外线的性质,可以采用红外辐射的高效率加热方式。陶瓷玻璃盘面一般用于高性能加热磁力搅拌器。WIGGENS的WH220/240,SLR等系列采用最新的陶瓷玻璃盘面,红外辐射加热方式,具有耐化学腐蚀,热传导性高,加热效率高等优点。WH220/240系列最高温度达500℃,红外辐射加热,对需要大体积、快速加热的工作,如:培养基融化等,可以有效提高工作效率。红外辐射加热相比普通加热磁力搅拌器,同等的工作效能对电能的消耗可以节省30%以上,是名副其实的实验室绿色仪器。
  • 【磁力搅拌器】实验室加热搅拌“多面手”,无惧严苛的挑战任务!
    磁力搅拌器是实验室中较为常见的前处理设备,主要用于搅拌或同时加热搅拌低粘稠度的液体或固液混合物。通过和不同附件或其他装置组合使用,其应用领域得到了扩展。海道尔夫作为一家创新型实验室前处理设备制造厂商,致力于让科研工作变得更容易、更高效。为此,海道尔夫对产品进行优化,推出了Hei-PLATE MIX 'n' 系列磁力搅拌器,从外观、功能性、安全性等方面为用户提供更好的操作体验。加热盘面及外壳设计Hei-PLATE Mix 'n' 系列磁力搅拌器配备专利的Kera-Disk® 加热盘面(DE102006005155 B3),具有很好的导热性能,耐刮擦、耐化学腐蚀,可轻松清洁盘面上的溶剂、油或其他污染物。防火铝压铸外壳防护等级可达IP 42,坚固耐用,满足高温及冷却实验的不同要求。磁力搅拌器背部防护盖,在连接好电缆和温度传感器后,进一步加强电缆连接部分对溅射液体的防护水平。独立控制系统双旋钮设计可分别控制搅拌及加热功能,旋钮的锁定功能可防止误操作,LED环形指示灯实时显示设备运行状态。通过带背光的显示屏清晰读取参数的设定值和实际值,方便进行参数设定和监控。Expert/Ultimate型号可对加热和搅拌功能进行独立定时设定,操作更灵活。温度控制800W的加热功率, 有效缩短加热时间,内置PID控制系统可确保精确控制,避免温度过冲。通过连接外部Pt 1000温度传感器(选件),可选快速加热模式和精确加热模式,实现精确控温。加热按钮环形指示灯闪烁指示余热风险,即使在加热功能关闭后也能有效地发出警告以防止烫伤。海道尔夫所有的加热型号磁力搅拌器均具有两个安全电路,当设备发生短路、传感器损坏、电机故障或其他问题发生时,设备将自动停止运行,Core+/Expert/Ultimate型号磁力搅拌器的屏幕将显示报错代码,提示操作人员故障原因。Expert/Ultimate型号最高温度可达350℃,可选配双头温度传感器,同时监测样品和导热介质的温度,控温更精确。转速控制转速最高可达1,400rpm,强大的磁力可实现搅拌子在高达20L低粘度溶剂中安全地进行搅拌。Expert/Ultimate型号具有三种软启动模式,确保搅拌效果的同时,有效避免样品的损失或泼溅。搅拌方向可选,充分混合难溶样品。Expert/Ultimate型号具备搅拌子跳子检测与自动调节功能,帮助实验人员针对特定的应用实验及搅拌子找到合适的转速,有效避免跳子现象。程序控制Expert/Ultimate型号通过接口,可连接免费的Hei-Control软件,对实验进行记录和控制,确保实验结果的可重复性和准确性。END关于HeidolphHeidolph集团是创新型实验室前处理设备的制造厂商。磁力搅拌器、顶置式搅拌器、台式旋转蒸发仪、工业大型旋转蒸发仪、蠕动泵、混匀器、恒温摇床等相关产品构成了Heidolph实验室设备的产品线。集团总部位于德国南部的纽伦堡附近的施瓦巴赫市。作为Heidolph集团全资子公司,海道尔夫仪器设备(上海)有限公司于2019年正式成立,旨在为中国用户提供更为直接、更快速的服务。如需更多详细信息请致电400-021-7800或邮件sales@heidolph-instruments.cn,我们将竭诚为您服务。
  • 中国科大在提升3D打印水凝胶结构分辨率研究方面取得重要进展
    墨水直写3D打印是一种应用广泛的增材制造技术,该方法依赖的墨水成分选择空间大并且制造成本相对低廉。然而,墨水直写方法受制于低打印分辨率,在打印高分辨率的三维结构方面十分困难。水凝胶是一个高度溶胀的高分子网络,失水时可以产生巨大的体积变化,利用三维水凝胶结构的体积收缩来制造微型结构是一个可选的方案。此外,墨水直写方法在打印具有复杂悬空结构时同样面临着挑战,常用的策略是后期将目标材料灌入打印的牺牲模板中来间接制造复杂三维结构。最近的研究工作集中在光固化牺牲模板上,但是去除这些模板一般需要高温处理或有毒溶剂,极大地限制了可灌注的目标材料种类。   近日,中国科大俞书宏院士团队报道了一种提升墨水直写3D打印技术分辨率的方法,该方法是基于一种可打印水凝胶(卡波姆凝胶)的可控收缩特性。研究人员通过引入分子链间的共价键交联赋予了水凝胶干燥后均匀收缩的特性,3D打印水凝胶结构的体积可收缩至原先的0.5%,提升了墨水直写3D打印技术的制造分辨率。此外,研究人员利用该水凝胶体系预先打印牺牲模板,而非将目标材料墨水直接纳入打印墨水体系,无需对目标墨水的流变性能进行重新设计,拓展了可制造材料的种类。该研究成果以“Controlled desiccationof preprinted hydrogel scaffolds toward complex 3D microarchitectures”为题发表在Advanced Materials上。我校博士生崔晨为论文的第一作者,俞书宏院士和高怀岭教授为通讯作者。   为了提高墨水直写3D打印技术的打印复杂度和打印分辨率,研究人员利用具有可控收缩特性的水凝胶微粒作为牺牲模板的墨水,打印的水凝胶牺牲模板在受控干燥后体积收缩了99.5%(图1g),成功制造了具有亚毫米分辨率的复杂三维结构(以双螺旋结构为例)。研究表明,水凝胶中的分子间共价交联是实现水凝胶均匀收缩的关键因素之一。研究人员测试了多种交联方式的水凝胶,验证了该策略的普适性。图1 可控收缩水凝胶通过墨水直写3D打印制备牺牲模板,打印结构经过自然干燥,在保持原先结构的前提下体 积大大减小,由此提升了制造分辨率   为了进一步研究牺牲模板中孔道的几何各向异性对收缩均匀性的影响,研究人员分别打印了具有水平和竖直圆柱形孔道的支架。水平和竖直孔道截面的重叠系数分别为0.94和0.95,表明了孔道结构收缩前后的高形状保持率和水凝胶支架在三维空间的均匀收缩(图2a)。为了探索水凝胶的最大收缩倍数,使用氢氧化钠中和的卡波姆凝胶分别实现了在水平方向上5.95倍、在竖直方向上5.32倍的均匀收缩(图2b)。   研究人员进一步设计了一个具有三维导电通路的逻辑电路和磁性微型机器人作为概念验证。可控收缩的3D打印水凝胶在干燥后构成了微电路支架,注入的液态金属EGaIn构成了内部的导电通路。Micro LED被固定在立方体电路的五个表面上,通过连接底部不同的触点对,Micro LED会被依次点亮(图2g)。利用可控收缩的3D打印水凝胶作为牺牲模板还制造了特征尺寸为90微米的磁性微型机器人。在可控磁场的作用下,该微型机器人具有良好的旋转和运动功能。 图2 水凝胶牺牲支架中孔道的几何各向异性对均匀收缩的影响及制造的三维电路器件   研究人员利用可打印水凝胶的可控收缩特性提升了墨水直写3D打印技术的制造分辨率和结构复杂度。未来,水凝胶辅助3D打印方法将为解决三维微纳制造的经济性和灵活性问题提供新的思路。   该工作受到国家重点研发计划、国家自然科学基金、安徽省高校协同创新项目、中央高校基本科研专项资金等资助。
  • 宁波材料所在水凝胶软体机器人越野爬行方面取得进展
    智能变形水凝胶作为一种软、湿态智能材料,能在外界环境的刺激下将自身化学能转化为机械能,同时伴随体积及形态的转变,因此一直以来被认为是理解与验证生物变形的理想平台。经过多年的发展,智能变形水凝胶已然能模仿自然界中的大部分变形行为,并展现出多刺激响应、可编程、程序化形态转变等诸多特点。然而,自然界的生命体不仅能改变自身形态,还可将这种原位的变形高效地转化为运动,从而满足自身示警、捕食及避险等需求。因此如何模仿生命体的运动行为,并进一步使智能变形水凝胶实现越野运动依然是一个巨大的挑战。   中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员长期从事功能与智能高分子水凝胶及其在仿生变形、变色及运动等方面的前沿探索研究。近期,该团队与浙江大学、之江实验室的郑音飞教授合作,基于前期提出的界面扩散聚合(IDP)策略(CCS Chem. 2022, DOI: 10.31635/ccschem.022.202201942),成功编程智能高分子水凝胶的各向异性结构,从而模仿尺蠖的爬行行为,实现了智能变形水凝胶全地形的越野爬行行为(图1)。   为了能实现高效的变形-运动转变,研究人员利用冰模板的方法,制备了具有超快温度响应的聚N-异丙基丙烯酰胺(PNIPAm)凝胶海绵。其可在5s内收缩到自身体积的40%,并且由其制备而得的双层水凝胶驱动器展示出88°/s的快速弯曲变形(图2)。值得一提的是,与传统的智能变形材料通过减小自身厚度来加快响应速度的方式不同,即使该凝胶厚度增加到2mm,其驱动速度也不会有较大损失。因此,在保证凝胶驱动变形速度的同时,PNIPAm凝胶海绵能具有更大的体积从而能将自身更多的化学能转化为机械能。   进一步地,为了增强凝胶变形的可控性,研究人员基于凝胶结构设计以及IDP策略,通过在PNIPAm凝胶海绵的表面定制化地生长含有Fe3O4纳米颗粒的光热凝胶,使得所制备的双层水凝胶驱动器能在近红外(NIR)光驱动下产生向光性及自持振动行为(图3)。除此之外,研究人员还可通过IDP策略,将制备好的双层水凝胶驱动器切断并重新排序组装,从而实现在NIR光下的多自由度程序化变形。   基于凝胶的程序化变形,这种双层的水凝胶驱动器能通过模仿自然界中尺蠖爬行的过程,利用时空调控的原位变形与环境的交互来实现高效的爬行运动。具体而言,一束NIR光首先照射的凝胶的头部,由于Fe3O4纳米颗粒的光热作用与PNIPAm凝胶海绵的热响应形变的协同作用,凝胶头部快速弯曲变形,并与粗糙基底形成卯榫结构增大其与基底的摩擦力。而后,NIR逐步移向凝胶中部,并不断触发所经凝胶的热弯曲收缩,使得凝胶整体收缩前进。当NIR移动到凝胶尾部时,对称相反的结构使得凝胶尾部凝胶向上弯曲从而抬起凝胶头部,使得其与基底的卯榫结构打开,解除锚定作用。最后,当移除NIR光后,头部的凝胶会快速回复到初始状态从而触发下一次循环。因此水凝胶也可在这种动态的卯榫锚定模式下,实现持续地爬行过程(图4)。值得一提的是,利用这种动态的卯榫锚定模式,该双层水凝胶驱动器可以适应多种粗糙表面,甚至可在普通的自然沙地上实现快速爬行。   此外,得益于IDP策略对凝胶结构的编程,双层水凝胶驱动器可进一步仿生进化出二维的六触手形态,通过水凝胶触手之间的互相配合实现快速的二维爬行。并且通过触手的程序化变形,水凝胶还可在爬行过程中不断调整自身体积,从而适应地形的变化,并成功穿越隘口,山谷以及山脊等一系列复杂地形(图5)。   该工作近期以题为“The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion”的论文在线发表在Science合作期刊Research(DOI: org/10.34133/research.0015)上。本研究得到了国家重点研发计划(2022YFB3200071)、浙江省自然科学基金(LD22E050008,LD22A020002)、浙江省重点研发计划(2022C01002)、中国科学院青年创新促进会(2019297)、浙江省医药卫生重点科技项目、国家卫生健康委员会科研基金(WKJ-ZJ-2009)和国家重大科研仪器开发项目(81827804)等项目的支持。图1 水凝胶的仿生进化及越野爬行图2 具有快速温敏驱动的凝胶海绵图3 NIR下光热水凝胶驱动器的程序化变形过程图4 仿尺蠖多地形快速爬行图5 水凝胶二维越野爬行
  • 中国药典《橡胶密封件表面硅油量测定法》二次公示
    橡胶密封件通常需要使用硅油以增加润滑性,使其在贮存及运输过程中减少因摩擦产生的微粒,便于胶塞的分装与压塞。但过多的硅油可能会影响药品质量和安全,因此对其进行控制是非常有必要的。现行国家药包材标准中仅有预灌封注射器用橡胶活塞产品设置有硅油量检测项目,其余橡胶密封件产品标准均未设置,应填补此空白。本标准起草过程中参考《国家药包材标准》中硅油量测定方法以及ISO国际标准、《美国药典》和《欧洲药典》。重点说明的问题 1.规定了检测橡胶密封件表面硅油量所用仪器,包括傅里叶变换红外光谱仪,明确仪器需配备液体池附件。 2. 确定了供试品的制备方法。为保证使用仪器可准确测量,对样品的数量、 溶剂比例及整个提取过程做了相应规定要求。对于测试含量超过标准曲线上限的样品应进行稀释后进样。3. 测试方法的选用。考虑到企业自身仪器配置的不同,收载了透射法和衰减全反射法两种测试方法,满足不同需求。4. 设置了两种结果表示方式。考虑到企业不同需求,分别采用两种结果表示方式评价橡胶密封件表面硅油量。5. 本标准为方法标准,限度规定见相关通则项下。附件:4222 橡胶密封件表面硅油量测定法草案公示稿(第二次).pdf
  • PerkinElmer全面提升空心胶囊Cr检测效率解决方案
    随着更多使用超标Cr限度空心胶囊辅料的制药企业被陆续曝光,国家食品药品监管局 进一步加大涉明胶的企业的管理力度。其要求,凡药用明胶、胶囊和胶囊制剂药品生产企业自2012年5月1日起必须对购进的原辅料和销售的产品逐品种、逐批次严格检验。同时在2012年5月31日前完成对4月30日前生产或已上市销售的胶囊剂药品逐品种、逐批次铬限量检查。作为监管部门,地省级药检所将加大对申报合格的胶囊制剂品种复检力度以及加强对封存产品的抽检。 对Cr限度检测已经成为当前制药企业和药检系统最大的检测分析能力挑战: 作为明胶与空心胶囊制造企业,相信您正在寻找整套解决方案来完成国家要求的检测Cr限度能力建设; 作为制药企业与药检系统,面对时间紧任务重的高强工作压力,相信您正在寻求多种提升检测效率的辅助手段; 作为检测人员,看着实验室多余出来的火焰原子吸收,相信您正在希望它像石墨炉原子吸收一样发挥出效力。 PerkinElmer公司作为一家为了环境健康与人类健康而不懈努力的仪器供应商,同时作为全球原子光谱技术领导者。我们希望在这个时候不仅为用户提供最先进的仪器设备,更希望带给您全面的解决方案,提升用户检测效率与水平。我们通过与全国广大一线用户深入沟通,挖掘分析用户遇到的各种问题,推出了全面提升胶囊Cr检测水平的完整解决方案SOP。 我国2010版药典要求——采用石墨炉原子吸收对明胶空心胶囊中的Cr进行限度分析,而PerkinElmer新近推出的原子吸收PinAAcle 900将完全满足用户需求。 PerkinElmer PinAAcle 900 同时为了解决目前用户样品多任务重的境况,我们更是创新性的提出了辅助检测方案,将单样品检测时间从过去4-5小时减少到30min。 我们可以提供的胶囊Cr限度检测SOP方案: A.如何依照药典要求,应用微波消解石墨炉原子吸收对空心胶囊Cr限度检测分析 B.如何提升前处理速度,应用半消解石墨炉原子吸收对空心胶囊Cr限度检测分析 C.如何提升检测速度,应用干法灰化火焰原子吸收对空心胶囊Cr限度检测分析 SOP方案论证: 我们对七批样品,依照不同检测策略SOP进行分析;并就相应的实验结果,检测时间,溶剂消耗等进行了对比: 七批次不同空心胶囊样品 按照不同的SOP,分别采用四种前处理方式(包括药典要求的微波消解)对七批次样品进行分析的结果比对;红色表示样品检测值超过国家Cr限定标准2ppm可以看出不同的前处理方式均能很好的完成Cr元素限定检测 不同胶囊Cr检测的SOP特点分析: PerkinElmer除了提供技术成熟,性能稳定的原子吸收光谱仪PinAAcle 900来出色完成目前测试任务;我们还提供Optima 8000DV电感耦合等离子体发射光谱仪和NexION 300 电感耦合等离子体质谱仪满足用户未来无机元素测试需求,例如: 对多元素快速检测的需求; 对欧美日药典重金属检测即将发生改变的应对(USP 即将替代); 对包括Cr元素在内的元素形态分析的挑战; PerkinElmer Optima 8000DV PerkinElmer NexION 300
  • BBC报道微胶囊造粒仪在细胞包埋方面的成功应用!
    激动人心的消息!!——BBC报道了微胶囊造粒仪在细胞包埋方面的成功应用! Doctors in London have cured a baby boy of a life-threatening disease which was destroying his liver. The boy was treated by implanting encapsulated liver cells. This is the first case reported worldwide so far. The liver cells were encapsulated in alginate using the Inotech Encapsulator IE-50R, which is a precursor model of the BUCHI Encapsulator B-395 Pro. BBC News showed also the Encapsulator IE-50R in the following report: http://www.bbc.co.uk/news/health-15745948 . 伦敦一名医生通过肝细胞微胶囊移植手术成功救治了一位患肝脏疾病的重症男婴。迄今为止,这是世界首例相关报道。肝细胞通过Inotech Encapsulator IE-50R也就是步琦公司现在的微胶囊造粒仪B-395 Pro,包埋在海藻酸钠中,形成微胶囊。另外,BBC新闻还报道了Encapsulator IE-50R在其他方面的应用,见下面链接:lhttp://www.bbc.co.uk/news/health-15745948 This report demonstrates that the Encapsulator is excellent for cell encapsulation. 该报道表明微胶囊造粒仪在细胞包埋方面有着优越性能。
  • 宁波材料所:面向水下可穿戴传感的耐水导电凝胶
    可穿戴传感器可以通过非侵入的方式捕捉人体的各种信号并转化为可识别的电信号,从而达到实时监测的目的,在健康管理等领域展现出了重要价值。相比于传统的刚性可穿戴传感器,由导电凝胶等软材料构建的皮肤式可穿戴传感器能与动态皮肤形成紧密的共型结构,提高传感器的传感准确性和稳定性,甚至实现对人体运动状态的实时感知。   尽管基于导电凝胶的可穿戴传感器研究已经取得巨大进展,并广泛应用于动作监测、健康管理、表情和声音识别、人机交互等诸多领域,但由于导电凝胶在水环境中存在吸水溶胀、导电组分流失、粘附性能衰退等问题,限制了其在水下探索等领域的应用与发展。近年来,通过对导电凝胶进行耐水性能的设计,研究人员实现了导电凝胶基可穿戴传感器的水下传感领域的应用,促进了该领域的研究快速发展   近日,中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员和魏俊杰博士基于在耐水导电高分子凝胶的构筑及其水下传感方面的研究基础,在Advanced Materials上发表题为“Water-Resistant Conductive Gels Toward Underwater Wearable Sensing”的综述文章(Adv. Mater. 2023, DOI: 10.1002/adma.202211758)。   在该综述中,作者首先对提高导电凝胶耐水性的方法进行了总结,归纳提出了封装设计、疏水网络结构和多重交联作用这三种耐水设计策略,并详细讨论了各种策略的耐水原理、具体设计方法以及存在的优缺点,从而为未来的耐水导电凝胶设计提供指导。随后对用于水下传感领域的耐水导电凝胶的多功能性质进行了介绍。除了水下稳定性之外,探讨了耐水导电凝胶的拉伸性质、水下粘附性质、水下自修复性质、可回收性质和3D打印性等性质对导电凝胶基水下可穿戴传感器的传感性能和制造加工工艺的影响,并重点讨论了这些性质的优化改善方法。此外,对现有耐水导电凝胶在水下传感领域的具体应用方向进行了汇总,着重总结了耐水导电凝胶在水下运动感知、水下健康监测、水下通讯、水环境分析几个方向的研究进展,并分析了耐水导电凝胶在这些应用中存在的不足,为未来的水下传感研究指明了方向。   尽管导电凝胶的耐水设计和传下传感研究已经取得了一定的成果,但该领域的发展尚处于起步阶段,仍然存在一些问题和挑战亟需解决。导电凝胶在水环境中的传感性能与陆上性能有着明显差异,相关的水下传感机制和传感模型有待进一步阐明;耐水导电凝胶的水下稳定性和水下传感性能测试还没有标准的方法,亟需建立统一的检测方法进行有效对比和评估;在耐水导电凝胶和水下可穿戴传感器的多功能设计上需要进一步努力,例如实现基于变色功能的可视化感知、基于自清洁功能的抗污能力和基于生物可降解的环境友好等。   为了满足耐水导电凝胶基水下可穿戴传感器的实际应用需求,需要进一步发展与水下可穿戴传感器匹配的无线传输技术和自供能技术;如何实现多感知功能和多技术模块在水下凝胶传感系统中的一体化集成,尤其是如何实现“软”凝胶材料与“硬”电子元件的稳定界面结合依然是该领域需要面临的一个重要挑战。   该论文得到了国家自然科学基金(51773215)、中国博士后科学基金(2021M690157、2022T150668)、宁波市自然科学基金(2121J206)、国家重点研发计划项目(2022YFC2805204、2022YFC2805202)等项目的支持。耐水导电凝胶的设计策略与水下传感应用   (中科院海洋新材料与应用技术重点实验室 魏俊杰)
  • 赛百味面包被曝含橡胶鞋底成分 或致呼吸性疾病(转自网络)
    赛百味面包含鞋底成分 国内面粉业仍用该添加剂 官方称中国区面包不含该物质  新年伊始,洋快餐赛百味就因面包含有偶氮二甲酰胺(azodicarbonamide)陷入了食品安全危机,据外媒报道,该成分通常拿来作为橡胶(15565, 140.00, 0.91%)鞋底和瑜伽垫的原料。对于事件,赛百味中国通过官方网站回应称,中国区的面包中不存在上述成分。  ■新快报记者 陆琨倩  偶氮二甲酰胺通常用作增筋剂  据外媒报道,全球连锁快餐Subway(赛百味)的面包内因含有化学物质偶氮二甲酰胺,已于美国时间2月6日自主宣布停用此成分。  消息称,偶氮二甲酰胺通常拿来作为橡胶鞋底和瑜伽垫的原料。中国台湾“卫福部食药署副署长”姜郁美接受媒体采访时表示,偶氮二甲酰胺具有氧化和漂白的效果,通常添加在面粉中作为增筋剂,加强面筋的弹性与韧性。  据记者了解,目前联合国食品法典委员会(Codex)及美国FDA均将其列为合法食品添加物,但欧盟与澳大利亚禁止使用这项化学物质,因为可能会引致呼吸性疾病和过敏。而根据FDA的限制,每公斤面包偶氮二甲酰胺含量不得超过45毫克,就不会影响身体健康。  赛百味中国否认使用该成分  对于事件,赛百味中国在官方网站发布声明称,中国区的面包中不存在上述成分,虽然该添加剂的使用已获得美国政府部门的批准,美国赛百味餐厅仍已经开始去除面包中的偶氮二甲酰胺。并出示了两家供应商的声明,其中供应商mission称,在中国、新加坡、马来西亚的面包都没有采用上述这种物质。  消息称,中国台湾当局已经采取行动,姜郁美说,中国台湾Subway过去未有添加偶氮二甲酰胺过量的纪录,这次美国厂商自主停用,会要求中国台湾Subway提交报告。  中国台湾林口长庚医院肾脏科主治医师颜宗海接受采访时也表示,动物实验曾发现偶氮二甲酰胺的代谢物氨基 (SEM)有致癌疑虑,新加坡、澳大利亚、日本等国都已禁用,就算是合法食品添加,气管较敏感的民众,食用过量可能会出现气喘、过敏等反应。  记者昨日试图联系赛百味中国相关负责人了解公司是否有向国内相关监督部门提供安全报告,但至截稿,仍未收到回复。(来源:新快报)
  • 宁波材料所在Janus气凝胶实现季节适应性热管理温度调节方面获进展
    进入21世纪,人口的爆炸性增长加速了能源的消耗,进而引发了不必要的能源危机,甚至出现了严重的极端天气。其中,基于空调的空间制冷和供暖等是能源消耗的重要组成部分之一,每年约占全球能源消耗的12%。在发达国家,建筑系统能耗的占比甚至提高到40%以上。尽管已经采用了传统的隔热材料和相关的加热-冷却设备,但是目前迫切需要的是开发具有非能耗或者低能耗的新型热调节材料和技术。   其中,辐射调节被认为是一种直接、高效、有前途的方式,通过吸收输入的阳光调节内部环境温度,进而实现节能。辐射调节在很大程度上取决于物理/化学改性和合成的材料、合理的结构设计和有效的功能配合。然而,生物相容性和多功能性对材料要求非常高。同时,复杂的制备工艺和多层结构设计也限制了辐射调控材料的发展及其应用。为此,合理设计和制造热调节材料至关重要,它可以通过可调节的物理或化学结构显著提高冷却或加热性能。   之前的工作中,已经通过反向聚合在织物表面设计了由聚吡咯和全氟十二烷基三乙氧基硅烷组成的超疏水仿生类黑素体分级纳米球织物,实现了人体热管理温度调节和光热蒸发应用(Nano Lett. 2022, 22, 9343-9350)。但是在材料稳定性和季节适应性温度调节方面仍有不足。基于此,中国科学院宁波材料技术与工程研究所智能高分子材料团队陈涛研究员、肖鹏副研究员通过免冻干的方法,设计了由光热MXene-CNF层和CNF层组成的Janus结构气凝胶(JMNA),该气凝胶能够实现可切换的热调节,将被动辐射冷却和加热集成到一个材料系统中,以适应多变的环境。   基于良好的机械性能,Janus气凝胶可用作季节适应性辐射热调节的智能屋顶。当CNF层暴露于外部环境时,外层高反射率和内层低红外发射率的结合使得夏季能够有效地进行被动辐射冷却。为了应对寒冷的冬季,MXene-CNF层可被用作外层,有效将阳光转化为可观的热能。产生的热量可以通过CNF层高红外发射率进一步传递到内部环境,从而产生显著的被动辐射加热。Janus结构气凝胶简单的制造方法和合理设计为开发可扩展的气候适应性热调节材料提供了一条替代途径。   该工作以“Engineering Structural Janus MXene-nanofibrils Aerogels for Season-Adaptive Radiative Thermal Regulation”为题发表在Small,2023,2302509(DOI:10.1002/smll.202302509)。本研究得到了国家自然科学基金项目(52073295)、中国科学院青年创新促进会(No.2023133)、宁波市科技局项目(2021Z127)、国家自然科学基金委中德交流项目(M-0424)、宁波市公益性科技计划项目(2021S150)及中科院王宽诚国际交叉团队(GJTD-2019-13)等项目的资助。
  • 核酸筛查如何更安全?百泰克采样小屋新功能避免气溶胶污染
    01GAOKAO“核酸采样亭”异军突起最近,随着中央毫不动摇坚持“动态清零”总方针的定调,IVD行业“核酸采样亭”异军突起,各大IVD企业纷纷涌入赛道;可以预见,核酸采样亭或将成为继方舱实验室、移动检测车之后的又一爆款产品,在中国城市的大街上,如上世纪的报刊亭一样随处可见。02GAOKAO对采样工作人员如何进行保护但是,我们能像上前买份报纸或杂志一样,走近小屋随意进行核酸采样吗?如果大流量人群导致空气中含有一定量的病毒,在我们摘下口罩张大嘴巴、与环境中的空气充分交融的片刻,有没有被感染的风险?全民核酸筛查的采样场景目前我国核酸采样小屋的功能设计,首当其冲考虑的是对采样工作人员的保护,正压系统、空调都是标配,而尚未有保护被采样者的产品面世。针对持续不断关于病毒气溶胶危害大、传染性强的研究进展,近日美国密歇根大学的一项研究结果分别在《暴露科学与环境流行病学杂志》和Nature 子刊发表,表明通过空气吸入导致新冠病毒感染的风险比接触物体表面导致感染的风险可能要高出1000倍。可以推断,“空气净化”对于防止新冠病毒传播如同釜底抽薪,可以通过净化空气介质有效阻断病毒传播。03采样防护仪式核酸采样亭横空出世对此,百泰克生物快速成立专题研发小组,从保护被采样者的角度出发,推出带有采样防护仪的核酸采样亭;此外还推出了独立的核酸采样防护仪,用于不具备采样小屋安装条件的场所使用。采样小屋整体设计简约大方,在配备正压系统、空调设施等基础功能外,秘密武器位于采样出口下的蓝色箱体---核酸采样防护仪,通过负压将可能具有传染性的空气气溶胶吸入,利用HEPA技术、紫外催化羟基技术以及等离子模块,高效快速对气溶胶中的有害微生物进行处理,检测报告显示单次冠状病毒净化效率大于99.9%。百泰克核酸采样小屋实物图04解决公共卫生的实际问题更值得思考仅用于核酸采样的小亭子,技术门槛并不高;如何利用技术原理,通过科技创新研发产品、转化落地技术应用,从而解决公共卫生的实际问题,更是值得IVD企业技术研发团队深入思考的问题。全方位防护、功能更完善的核酸采样设备与环境,未来或将成为我国常态化防疫体系的新型武器。
  • 直面用户,一起精彩 --- 2017上海胶粘剂展纪实
    2017年8月23-25日,作为胶粘剂及密封剂行业的风向标,中国国际胶粘剂及密封剂展(CHINA ADHESIVE)在上海世博展览馆隆重举行。与此同时,展会迎来20周年盛典。借此胶粘剂行业的二十周年盛会,美国BROOKFIELD公司和广大胶粘剂及密封剂行业的用户朋友一道携手同行。有你们,怀揣梦想、笃定前行的路上注定一起精彩。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制