当前位置: 仪器信息网 > 行业主题 > >

小鼠肝癌细胞

仪器信息网小鼠肝癌细胞专题为您提供2024年最新小鼠肝癌细胞价格报价、厂家品牌的相关信息, 包括小鼠肝癌细胞参数、型号等,不管是国产,还是进口品牌的小鼠肝癌细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠肝癌细胞相关的耗材配件、试剂标物,还有小鼠肝癌细胞相关的最新资讯、资料,以及小鼠肝癌细胞相关的解决方案。

小鼠肝癌细胞相关的资讯

  • 文献速递ㅣ多模式活体成像系统在肝癌药物载体研究中的应用
    肝癌是最常见的致命癌症之一。目前临床上主要采用手术切除癌变肝组织,同时以化疗、放疗等方式阻止正常肝细胞被感染恶化来治疗肝癌;但是,化疗会滥杀滥伤各组织的正常细胞,并产生极大的副作用,而且在肝癌细胞发生转移或再生后也难以治愈。因此,设计与制造出更好的用于肝癌治疗的药物,是医药研究人员亟待解决的难题。如何提高药物疗效,不仅可以从药物结构本身出发,而且可以从药物载体入手。选择新型药物载体或靶向基团,可以使有效药物分子直接作用于癌症患处,提高药物靶向性,减少药物对正常组织的伤害,减轻患者的疼痛。近日,辽宁新药研发重点实验室李丽教授课题组成功构建并制备了两种甘草次酸修饰的金属有机框架药物载体,并通过组织分布和活体成像实验,验证载体具有明显的肝靶向性。该成果已发表在纳米技术与精密工程领域国际权威期刊《Nanotechnology》。1. 甘草次酸(GA)甘草次酸(Glycyrrhetininc Acid,GA)是从中草药甘草中提取分离出来的具有抗炎、抗病毒、抗溃疡等多种药理活性的甘草酸苷元。近期研究发现,在肝细胞膜上镶嵌着许多GA特异性受体,可与GA特异性结合,因此,GA作为药物靶向分子进行修饰的药物载体已经成为研究热点和一种新的靶向性治疗肝癌的有效途径。2. 金属有机框架(MOFs)金属有机框架材料(Metal-organic Frameworks,MOFs),是一类通过组装无机金属离子与有机配体形成的具有多孔隙、高比表面积的新型材料。它的最大的优点是具有良好的生物相容性,而且会在体内特定环境中自行分解,减少药物在体内的副作用,降低耐药性,提高药物治疗效率。通过在MOFs表面修饰GA,可以实现MOFs的肝靶向性,并且MOFs的孔隙率高,具有超大比表面积,可以有效装载药物,提高载药能力。两种MOFs载体:Uio-66-COOH-1,4-丁二胺-GA与UiO-66-NH2-GA。3. 小鼠体内靶向性研究DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在小鼠体内不同时间段的荧光成像图DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在心、肝、脾、肺、肾的荧光成像图关于多模式动物活体成像系统AniView100多模式动物活体成像系统是广州博鹭腾生物科技有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机,具有极高的检测灵敏度。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和多组滤光片组合,极大的提高了荧光信号的特异性,并大大缩短曝光时间。
  • 大连化物所许国旺、朴海龙团队合作新成果 揭示肝癌脂代谢异常的关键分子机制
    近日,中科院大连化物所生物分子功能与机制研究组(1821组)朴海龙研究员团队与生物分子高分辨分离分析及代谢组学研究组(1808组)许国旺研究员团队,以及大连医科大学附属第一医院谭广教授团队合作,在前期对蛋白质泛素化及去泛素化相互作用的研究基础上(Oncogene,2020;iScience,2019),进一步发现了去泛素化酶USP22可调控肝癌脂代谢的合成过程,并揭示了USP22可通过氧化物酶体增殖物激活受体γ(PPARγ)促进肝癌脂肪酸合成的新机制,为靶向肝癌脂质合成途径的药物开发提供了新思路。代谢重编程是癌症的重要特征。脂肪酸从头合成增强是癌细胞中常见的代谢紊乱方式,正常细胞主要是通过外源来摄取和获取脂质的,而癌症细胞则更依赖脂肪酸从头合成维持脂质稳态,以此来满足自身增殖和生长的需求。因此,明确靶向癌症细胞脂肪酸合成过程是治疗肝癌的重要方法之一。本工作中,研究人员首先通过分析肝癌病理组织中USP家族蛋白的表达情况,并结合代谢组学发现了去泛素化酶USP22与肝癌脂质合成具有显著的相关性;后续通过对细胞分子生物学实验和代谢物的分析,进一步佐证了PPARγ是USP22参与肝癌脂质代谢的重要底物分子。PPARγ是一种配体激活的转录因子,能够激活脂肪酸合成关键酶ACC、ACLY、FASN等的表达,进而促进脂质生成。但是,目前对其调控机制的研究并不完善。研究人员通过生物化学实验证实了USP22可以通过切除PPARγ多个赖氨酸位点的K48泛素链来稳定其表达,稳定表达的PPARγ会进一步激活其靶基因ACC、ACLY的表达,最终促进了脂肪酸从头合成并导致了肝癌的发生。此外,研究团队通过对小鼠模型的研究证实了干扰USP22-PPARγ-ACC/ACLY的信号传导途径除了会抑制脂质合成,还会显著抑制裸鼠瘤的生长。临床组织中USP22与PPARγ、ACC、ACLY的表达都具有显著的正相关性,USP22高表达的肝癌病人预后较差。该工作为靶向肝癌脂肪酸合成的治疗提供了新的科学依据。相关研究成果以“USP22 Regulates Lipidome Accumulation by Stabilizing PPARγ in Hepatocellular Carcinoma”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是中科院大连化物所1808组博士后宁振、1821组助理研究员刘晓龙和博士毕业生郭新、卢畅。上述工作得到了国家自然科学基金、辽宁省兴辽人才计划、中科院大连化物所创新基金、博士后基金、中科院青促会基金等项目的资助。(文/刘晓龙 图/宁振)文章链接:https://doi.org/10.1038/s41467-022-29846-9
  • Nature重磅:“饿死”癌细胞,又添新线索
    近年来,随着国家工业化、城市化迅速发展,随之而来的环境污染以及人口老龄化加剧,导致我国癌症发病率持续上升。  2020 年全球最新癌症负担数据显示,2020 年全球新增癌症病例 1929 万例,其中中国新增癌症病例 457 万例,占到了全球的 23.7%。 同时,由于目前人们健康意识普遍较低,癌症筛查不到位,我国绝大多数癌症患者确诊时已处于晚期,治疗方案有限,预后较差。2020 年中国癌症死亡人数更是突破了 300 万。因此,亟需研发新的治疗,来改善癌症患者生存。  近日,美国麻省理工科赫综合癌症研究所 Matthew G. Vander Heiden 博士带领的研究团队和丹娜-法伯癌症研究中心的科研人员合作,在小鼠研究中发现,脂肪含量高、碳水化合物含量低的饮食,可以抑制小鼠肿瘤生长。  同时,研究人员还找到了其中的具体机制,癌细胞需要脂肪构建细胞膜,当组织中没有脂肪时,癌细胞可以通过 SCD 酶来将饱和脂肪酸转化为不饱和脂肪酸供癌细胞利用。而生酮饮食和热量限制饮食均可抑制 SCD 酶活性,但生酮饮食会同时提供大量的脂肪。相比之下,热量限制饮食既减少了脂肪含量,又抑制了 SCD 酶活性,从而会使得肿瘤生长显著减慢。  相关研究成果,发表在最新一期的顶级期刊 Nature 杂志上。  对此,本文主要作者麻省理工科赫综合癌症研究所 Evan C. Lien 博士表示,“热量限制不仅会使肿瘤缺少脂肪而饿死,还会抑制 SCD 酶,损害癌细胞对此的适应过程。这两个机制的结合可以显著抑制肿瘤生长。”  “不过,本研究的目的并不是推荐饮食,而是真正了解潜在的生物学机制。本研究揭示了热量限制饮食如何抑制癌细胞生长的机制,为未来新药的研发提供了方向。例如,改变癌症患者饮食中不饱和脂肪酸的比例,同时开发新药抑制 SCD 酶活性,或许是一个不错的方向。”  限制糖摄入“饿死”癌细胞,不太靠谱  众所周知,我们身体的其他正常细胞在分裂增殖到一定次数后,就会停止分裂增殖,体内的细胞逐渐衰老、减少,最终影响器官组织的功能,导致衰老和与衰老有关疾病。  而癌细胞是一种生长增殖非常快速,且可以无限分裂增殖的细胞,理论上只要有足够的营养和适合的环境,癌细胞可以无限制的生长。正是因为癌细胞生长速度快,消耗营养多,所以很多晚期癌症患者会出现消瘦现象。  因此,早在几十年前美国国家科学院院士、美国国家科学院医学研究中心院士、肿瘤血管新生理论之父 Folkman 教授就曾提出“饿死”癌细胞这一设想。简单来说,就是通过切断癌细胞血液和营养供应,来抑制癌细胞增殖。随后,众多科学家在这个方向上进行了大量的探索。  (来源:University of Missouri)  随后的研究发现,癌细胞在生长增殖过程中需要消耗大量的葡萄糖。因此,德国的生物学家约翰内斯• 科伊博士在《抗癌饮食》一书中表示,通过调整饮食,降低糖的摄入,长期依赖葡萄糖糖为营养的癌细胞,在持续的低糖饮食下会快速死亡。  那么,“饿死”癌细胞真的这么简单吗?  答案显然是否定的,约翰内斯• 科伊博士严重低估了癌细胞的能力。后续一系列的研究表明,葡萄糖并不是癌细胞唯一的能量来源。例如,2019 年的时候,来自加州大学洛杉矶分校的 Heather Christofk 和 Bill Lowry 等人就发现,癌细胞在葡萄糖缺乏的时候可以改变代谢方式利用谷氨酰胺提供能量。  不仅如此,对于中晚期,特别是晚期癌症患者,由于经过化疗、手术等一系列的治疗方案后,往往会处于一种营养不良状态,导致患者免疫能力下降。此时,限制患者葡萄糖摄入,不但患者无法忍受,相应的治疗无法完成,还会导致患者免疫力进一步下降,病情迅速恶化而死亡。所以临床上经常要求癌症患者吃高营养、高热量、易消化的食物,就是保证患者治疗过程中体质不过度下降。  因此,单纯从葡萄糖利用角度“饿死”癌细胞是不明智的。  限制脂肪摄入“饿死”癌细胞,或许可行  虽然大量研究表明,癌细胞在没有葡萄糖的情况下,可以改变代谢方式充分利用其他物质供能,仍旧可以快速生长,但是,近年来一系列的证据表明,饮食干预的确可以帮助减缓肿瘤生长。  生酮饮食和热量限制饮食是目前临床上癌症患者经常关心的两种饮食模式。  所谓生酮饮食就是少吃主食多吃脂肪和蛋白质的饮食模式,这种情况下人体会改变代谢利用酮体而不是葡萄糖供能,因此被称为生酮饮食。  (图注:生酮饮食(来源:Epilepsy Foundation))  同样地,所谓能量限制饮食,就是将每顿饭摄入的能量按正常标准减少 25%-50%。初步研究显示,在某些情况下,能量限制饮食或生酮饮食可能可以延长小鼠和其他多种生物的寿命。  那么,饮食干预是如何限制肿瘤生长的呢?为了弄清楚其中的原因,Vander Heiden 博士带领的研究团队在小鼠体内对生酮饮食以及热量限制饮食进行了研究,试图揭示饮食控制抑制癌细胞生长的奥秘。  通过胰腺癌小鼠模型的初步饮食干预,研究人员发现,相比于生酮饮食,热量限制饮食对肿瘤的抑制作用要大的多。  (图注:热量限制饮食(CR),而不是生酮饮食(KD),能够移植肿瘤的生长(来源:Nature)  随后,通过对小鼠胰腺肿瘤组织生长速度和各种营养物质浓度进行系统分析,研究人员发现,相比于正常饮食小时,热量限制饮食和生酮饮食小鼠中葡萄糖浓度均明显下降。不过热量限制饮食小鼠血脂水平也明显下降,但是生酮饮食小鼠血脂水平明显上升。)  这意味着,葡萄糖水平的降低对于癌细胞生长的抑制没有起到很明显的作用。相反,脂肪水平的变化或许是癌细胞生长抑制的关键。  由于癌细胞在增殖过程中需要脂肪来构建细胞膜,因此脂肪水平下降理论上是可以抑制癌细胞增殖的。不过,一般情况下,组织脂肪耗竭时,癌细胞可以通过硬脂酰辅酶 A 去饱和酶(SCD)将饱和脂肪酸转化为不饱和脂肪酸,从而加以利用。  在实验过程中,研究人员也发现,热量限制饮食和生酮饮食均可降低 SCD 酶活性,但是生酮饮食可以为小鼠提供脂肪,而热量限制饮食无法为小鼠提供足够的脂肪,因此肿瘤生长显著减慢。  最后,研究人员还对人类的数据进行了分析,以探索饮食模式和胰腺癌患者生存的关系,结果发现不同类型脂肪摄入似乎也会影响低糖饮食胰腺癌患者的生存。  总的来说,这一研究表明,热量限制饮食可以通过抑制 SCD 酶活性,降低肿瘤组织脂肪含量来抑制肿瘤生长,可能对癌症患者有利。  但是研究人员表示,他们不建议癌症患者使用热量限制饮食,以免产生不良反应。不过,针对 SCD 酶和肿瘤组织脂肪依耐性开发新的药物或许是一个更好的方向。
  • 拉曼光谱成像技术获突破 肝癌早期检测成可能
    据媒体报道,日前由中国科学技术大学侯建国院士领衔的单分子科学团队董振超研究小组,在高分辨率化学识别与成像领域取得重大突破。这项研究结果突破了光学成像手段中衍射极限的瓶颈,将具有化学识别能力的空间成像的分辨率提高到一个纳米以下,这对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造,以及包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。据悉,该研究工作是在科技部、科学院和国家自然科学基金委的资助下完成的,是该研究团队继2005年实现单分子磁性调控(文章发表在《科学》杂志上)后在单分子科学领域取得的又一项重大进展。   据文章通信作者之一董振超教授介绍,印度科学家拉曼于1928年发现了光子被物质分子散射后能量发生变化的光散射现象,并在两年后因此贡献获得了诺贝尔物理学奖,是亚洲第一位获此殊荣的科学家。拉曼散射中光子的能量变化通常起源于分子振动能量与入射光子能量的叠加,因此拉曼散射光中包含了丰富的分子振动结构的信息。而由于不同分子的拉曼光谱的谱形特征各不相同,因此可作为分子识别的&ldquo 指纹&rdquo 光谱,就像人的指纹可以用来识别人的身份一样。如今,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   据介绍,激光光镊拉曼光谱技术是将激光光学囚禁技术和拉曼光谱技术相结合应用于悬浮细胞、生物大分子等进行研究的一种光子技术,更是一种无损、快速、灵敏的光谱学的检测方法。   专业人士表示,鉴于水的拉曼散射非常微弱,该技术适合于对水溶液中生物大分子、细胞等进行研究。该技术应用光镊把细胞俘获或囚禁在玻片上方10微米左右的位置,可以消除其他拉曼光谱技术将细胞囚禁在溶液中和玻片上所引起的不良影响。并且光镊将细胞长时间囚禁在激光的焦点附近,在优化了散射光的收集光路的同时,还可以得到更高信噪比的光谱。虽然激光光镊拉曼光谱技术已经具有如此多的优势,但这种技术只是对直径较小的细胞有很好的针对性,对像肝癌细胞这样直径较大的细胞并不能全部获取其中的光谱信息。   目前肝癌已经成为死亡率仅次于胃癌、食道癌的第三大常见恶性肿瘤,但初期症状并不明显。因此,对肝癌的检测就成为了目前医学研究的重要课题。而拉曼光谱成像可以在降低分子成像成本的同时,提供更高的图像敏感度、还有更强的空间分辨率以及更完善的浏览多重信号的能力。   分析人士指出,拉曼光谱成像已经成为当前所有成像技术中较为优越的一种技术。这种重构的激光拉曼光谱成像系统对肝癌细胞进行了成像研究,获得了单个肝癌细胞微区的拉曼光谱图谱,同时计算出786cm-1、1450cm-1和1658cm-1等特征峰的峰面积,这些特征峰分别归属于DNA、脂类和蛋白质,并根据归一化后的数值在相应的细胞扫描位置给出不同颜色值成像,进而重构出这些物质的拉曼特征峰在肝癌细胞中的分布图。结果表明,应用这种方法可以很明确的看到DNA、脂类及蛋白质特征峰在细胞中的分布情况,并且通过荧光染色验证了成像系统的可靠性。因此通过特征峰的成像图确定物质在细胞中的微区分布情况,为拉曼方法检测和诊断肝癌提供了可靠的依据和重要的参考价值。
  • 厦门研制出宫颈癌疫苗 杀癌细胞如同“打靶”
    癌症是严重威胁人类身体健康的重大疾病,已成为人类死亡的主要原因之一。面对中国癌症死亡率居高不下,而且还呈现持续增长的严峻形势,厦门大学一大群科研人员围绕着癌症发生的分子机理进行研究,取得了众多突破性成果,其中包括正在向国家递交新药报批申请的宫颈癌疫苗。   服用药物之后,可以使人体中一种蛋白质从癌细胞的“保护者”,“叛变”成能够杀死癌细胞的“杀手”,潜伏其中令癌细胞防不胜防、无处逃身 通过向人体内注射某种蛋白分子,迫使癌细胞纷纷自杀,让肌体细胞进行自我调节,从而避免癌症的发生 像接种乙肝疫苗、流感疫苗、狂犬病疫苗等一样接种癌症疫苗,让你一辈子都不用担心患上癌症……   这些听起来是不是不可思议,有点像是天方夜谭?或是以为这是科幻影视作品的情节,不可能在现实生活中出现。   其实,这并不是幻想,而是确确实实已经发生并且正在走入老百姓生活当中。   厦门大学科研人员最近宣布,他们已经研制出宫颈癌疫苗和尖锐湿疣疫苗,并正在向国家递交新药报批申请。一旦获得国家药监局批准,那么,疫苗就可以进入临床试验,一旦通过就能上市。   这就意味着,女性以后可以像接种乙肝疫苗一样来接种宫颈癌疫苗,一辈子可以高枕无忧地避免患上这种令人恐怖的癌症。宫颈癌是全球妇女第二大常见恶性肿瘤,仅次于乳腺癌,资料显示,全世界每2分钟就有1位妇女死于宫颈癌。   成功研制出疫苗的是设立于厦门大学的国家传染病诊断试剂与疫苗工程技术研究中心。在前不久举行的海西生物医药发展论坛上,该中心表示,他们科研人员已成功地利用大肠杆菌表达出HPV16、18、6、11共4种型别的类病毒颗粒,并已经建立大规模发酵工艺和中试纯化工艺,分别已向国家递交了宫颈癌疫苗(HPV16、18型)和尖锐湿疣疫苗(HPV6、11型)的新药报批申请。调查结果显示:针对16、18型的预防疫苗可以预防至少70%的子宫颈癌。而尖锐湿疣是最主要的性传播疾病之一,90%以上的尖锐湿疣由HPV6、11型引起。   在人类历史上,曾经出现过多种造成巨大生命和财产损失的疫症,而在预防和消除这些疫症的过程中,疫苗发挥了十分关键的作用。所以疫苗被评为人类历史上最重大的发现之一,因此,从某种意义上来说人类繁衍生息的历史就是人类不断同疾病和自然灾害斗争的历史,控制传染性疾病最主要的手段就是预防,而接种疫苗被认为是最行之有效的措施。   如今,疫苗被成功地应用到癌症的防治上来,可谓是人类发展史上一件具有里程碑意义的事件。   研究论文全部用英文撰写   厦门大学生命科学学院办公楼位于厦门大学上弦场体育场边上。当记者走进厦门大学生命科学学院院长、博导林圣彩教授的办公室时,感觉像是走进一个工厂一样,满眼都是各式各样的实验器材,连办公室外边走廊也都摆着大型的设备,瓶瓶罐罐摆得到处都是,空气中弥漫着一股说不出来的味道,再加上那些实验仪器运行的声音,生命科学学院整栋楼房成了一个巨大的实验室。   这与生命科学学院办公楼前边号称厦大最美体育场的上弦场有着天壤之别。而正是在这里,关于癌症的许多世界突破性研究诞生了。   林圣彩院长跟记者介绍说,厦门大学生命科学学院的前身是生物学系,创建于1922年,与厦门大学几乎同时创立,迄今已造就了一批在国内外享有盛誉的著名学者。学院由生物学系、生物化学与生物技术系、生物医学科学系、国家传染病诊断试剂与疫苗工程技术研究中心、细胞生物学与肿瘤细胞工程教育部重点实验室等单位组成。   前边提到的研制宫颈癌疫苗和尖锐湿疣疫苗的国家传染病诊断试剂与疫苗工程技术研究中心,正是厦大生命科学学院的一个组成单位,该研究中心是一个公益性、不以营利为目的的开放性研究开发平台。   在普通人眼里,或许这些科研人员的研究对象过于“微不足道”,因为都是肉眼无法看见的细胞、分子等,平常人根本就不可能深入了解。像生物医学科学系,是利用最新现代分子生物学实验技术方法,从生物学角度研究重要生理与重大疾病的分子机理,并将基础理论研究成果应用于保障健康和疾病的诊断与治疗。   因为林圣彩院长的说法太过于专业不好理解,记者提出查阅癌症方面的研究资料时,林院长说是有一大堆资料,这令早报记者喜出望外。结果,早报记者却发现所有的论文资料全部是英文撰写的,对于外行人而言简直就是“天书”,无法看懂。   林院长笑着说,如果用中文写的话,没有多少人能看懂,也无法写得出来,因此,他们科研人员的论文几乎都是用英文撰写,因为其研究水平属于国际一流,这些论文都是要发表在当今世界最有影响力的科技期刊上,其中包括发表在NatureImmunology等国际一流刊物上。   癌细胞“杀手”一年前已经发现   从厦门大学生命科学学院科研秘书王老师提供给早报记者的资料来分析,厦大众多的癌症研究已经处于国际一流水平。   2009年8月,厦大生命科学学院院长林圣彩教授课题组研究成果揭示了细胞如何防止癌变的内在机理,这属于癌症研究的新突破,这一发现可能为癌症治疗提供新的思路和途径。   林圣彩教授介绍说,从医学上来说,癌症发生的一个很重要的原因是因为细胞基因组发生了突变,继而出现细胞生长和分裂的异常,并将有缺陷的遗传物质传递下去,直至癌组织的出现。林圣彩教授课题组在一项研究中发现,存在于细胞内的一种名为Axin的蛋白分子可以通过控制一种名为p53的抑癌基因的活性来决定细胞“命运”,这也就意味着,含有过度受损基因组的细胞“命运”可以通过二者特定的相互作用促使细胞进行“死亡”,从而避免个体发生癌变。   林圣彩教授课题组的这一最新研究成果刊登在国际著名学术期刊《NatureCellBiology》(《自然—细胞生物学》)上。该杂志是英国《自然》杂志的子刊,被认为是细胞生物学领域的顶尖杂志。   2008年10月,厦大生物医学研究院教授、长江学者讲座教授张晓坤博士及其团队发现了一种神奇的小肽,它可以使人体中一种蛋白质从癌细胞“保护者”,“叛变”为能够杀死癌细胞的“杀手”。这种肽能直接作用于一个名为“Bcl-2”的蛋白质,使之从一个保护癌细胞免受程序性死亡调控转变为能够杀死癌细胞的蛋白。这一新发现被认为可能引发一种新型的癌症治疗模式,具有重大的意义。更为关键的是,这种肽十分容易合成,换句话说,这一新发现使科学家能够基于Bcl-2蛋白构象变化寻找新型治疗药物,为抗癌药物的研发提供了一个新方向。这被认为是肿瘤生物学领域的一个重大创新性发现,在国际生物医学科学研究领域激起了很大的反响和广泛的关注。   2006年12月,厦门大学生物医学工程研究中心研发出一种高效、低毒治疗恶性肿瘤的全新抗癌药物制剂。以往化疗药剂无法区分好坏细胞,导致癌症患者在化疗过程中会出现掉发、身体素质快速下降的状况,而这种药剂在应用过程中只对癌症细胞起到杀伤作用,在肿瘤局部药物浓度达到最高,具有定向给药的特点。   现状分析   厦门3人中有1个死于癌症   福建省是全国肿瘤发病率最高的省份之一,是肝癌、鼻咽癌等癌症的主要分布区之一。同时,福建的癌症死亡率位居全国前列,近年来平均每年新增约8万癌症患者,有4万人死于癌症,其中男性恶性肿瘤死亡率居全国第三位,女性居全国第四位。   厦门市放射肿瘤学会副主任委员、福建省放射肿瘤学会委员侯如蓉介绍说,厦门市癌症发病率、死亡率远高于全国平均水平。根据厦门市疾病预防控制中心公布的2008年全市居民死亡原因分析报告,全市居民前十位疾病死因中,恶性肿瘤依然以141.75/10万的死亡率居首,占总死亡率的31.3%,并出现年轻化趋势。这意味着3个死亡的厦门市民中,就有1个是被恶性肿瘤夺去生命的。其中,肝癌、肺癌、食道癌、胃癌、肠癌分列前五大肿瘤杀手。   与全国其他发达省市相比,福建省和厦门市癌症医疗资源还是比较缺乏。据统计,福建省肿瘤医院床位总数约1100张,厦门市肿瘤中心核定病床数为143张。但是,癌症病号的增加速度远远超过了病床位增加的速度。目前,在厦门十几万的癌症病人中,癌痛得到规范治疗的不到三成,七成癌症病人处于长期忍痛的状态之中。   作为一名从事肿瘤临床治疗长达30多年的老医生,侯如蓉主任用“太残忍、太可怕”来形容当前的厦门癌症现状,五六岁的癌症患者也有,20岁左右的乳腺癌患者也很普遍,连见多识广的侯如蓉主任也感觉到现在的癌症非常触目惊心。   杀死癌细胞就像打靶一样   一个立足于海峡西岸经济区、辐射港澳台和东南亚地区,实施治疗与研究的世界顶级肿瘤治疗与研究中心要落户厦门。有专家表示,随着治癌新药的问世,将来治疗方式越来越简单。   当前,癌症仍是我们人类面临的巨大挑战,就全球人口与先进国家来说,癌症均居国民死亡原因第二位。据日内瓦(GENEVA)世界癌症报告(当今全球综合性最强的调查),全球每年大约有1090万人被诊断出患有癌症,有670万患者死亡。   癌症极大威胁人类健康,人们一直在寻找有效的治疗方法去征服癌症,抗癌研究是当今生命科学中极富挑战性且意义重大的领域。   后基因组时代的到来,让人们对基因及其功能的认识逐渐深入,肿瘤细胞与正常细胞间在细胞内的信号转导途径的差异正在被认识,恶性肿瘤细胞内的信号转导、细胞周期的调控、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明,癌症在分子水平上的发病机制研究得越来越清楚。   随着肿瘤细胞增殖、凋亡等信号传导通路的阐明,过去那种以统一制式的疗法进行的癌症治疗,由于产生了许多副作用,这些副作用包含身体的不适,有些甚至威胁到生命安全,正在被近来悄然上市的靶向药物产品所替代,靶向治疗方式是以杀死癌细胞为主要目标。靶标抗癌药物直接针对的是分子靶点,就像击靶,将能有效克服目前临床上常用的细胞毒类抗肿瘤药物难以避免的选择性差、毒副作用强、易产生耐药等缺点。   厦门大学生物医学研究院下属有一个癌症研究中心。癌症研究中心的建设将以研究肿瘤细胞信号转导为基础,通过对肿瘤细胞信号转导通路的阐述,发现更多特异性强的分子靶点和途径,为发展新的肿瘤治疗、预防和诊断提供技术支持。   厦门要建顶级肿瘤中心   一边是社会对癌症治疗的强烈需求,一边是薄弱的癌症治疗技术力量,还有厦门大学强大的癌症科研水平,这形成了一对奇怪的矛盾。   建设肿瘤医院、开展癌症治疗研究,这对于促进经济社会和谐发展也具有重要意义。   为此,厦门市政府向省政府提出建议,依托厦门大学生命科学、医学、化学等学科优势,建设厦门肿瘤医院暨癌症治疗研究中心,即厦门肿瘤治疗与研究中心。该中心的长远目标是建成世界一流水平的肿瘤研究中心,短期目标则是厦门肿瘤医疗方面的水平三五年内要提升到全国先进水平。   2009年6月,厦门肿瘤治疗与研究中心筹备领导小组成立,由厦门大学朱崇实校长担任组长,厦门市副市长潘世建、厦门市卫生局局长黄如欣担任副组长。由厦大校长来担当这个肿瘤治疗与研究中心筹备领导小组的组长,其用意非常明显,那就是要充分调动厦大生命科学、医学、化学等学科的优势。   厦门市副市长潘世建表示,在厦门市的医疗卫生事业当中,让人“最不安心”的就是肿瘤的诊断、治疗水平。恶性肿瘤已经成了威胁厦门人民生命健康的第一大杀手。因此,厦门市必须要建立一个高起点、高标准的肿瘤治疗与研究中心。   据介绍,在起步阶段,厦门肿瘤治疗与研究中心在研究领域将主要依托厦门大学生命科学学院的力量建设,因为该学院的肿瘤研究团队已经是目前国内相关领域最优秀的团队之一。在未来的发展过程中,中心还会积极向美国休斯敦、中国台湾等地的相关机构取经。在建设过程中,中心会面向全球招聘精英,相关设备的购置也会遵循高起点的要求。   厦门大学生命科学学院院长林圣彩也是厦门肿瘤治疗与研究中心筹备领导小组成员之一。林教授表示,目前国内一流的肿瘤中心屈指可数,厦门的想法很有前瞻性。要把这个中心建设好,首先要密切厦大的科学研究和地方医院的临床诊疗之间的联系,要重视培养有临床背景的研究人才。同时,也要对现有的医疗资源进行充分的整合和利用。   观点   癌症研究任重道远   每年2月4日是“世界抗癌日”。早在前两年,美国国立癌症研究所所长埃申巴赫就提出,如果能将该研究所每年50亿美元的研究经费5年间再增加42亿美元,到2010年,他们就能实现“消除癌症患者痛苦和死亡”的目标。也就是说,只要研究经费充足,科学家完全可以提早让癌症患者免于死亡。   埃申巴赫所预言的2010年也就是今年,早报记者问林圣彩教授埃申巴赫的说法是否有可能实现。   林教授直言“不可能”,癌症的预防与治疗牵涉到许多方面,癌症的起因十分复杂,要在这样短的时间内攻克各种不同的癌症似乎不太可能,并非增加投入研究经费就可以立马解决的事情。林教授认为,如果经费有增加,可以用于研发先进的医疗技术,并用于临床试验的基础结构建设,2010年要达到“癌症患者免于死亡”这一目标是不可能的,但充足的经费必将有助于缩短实现这一目标的时间。   林圣彩教授是细胞生物学与肿瘤细胞工程教育部重点实验室和福建省肿瘤生物学重点实验室的主任,他领导的课题组长期致力于肿瘤细胞生物学的研究。   林教授认为癌症的发生和发展极其复杂,一项学术成果仅仅是癌症研究进展中的一项而已,接下来要走的路还很长很长。   癌症极大威胁人类健康,人们一直在寻找有效的治疗方法去征服癌症,抗癌研究是当今生命科学中极富挑战性且意义重大的领域。   作为一名研究癌症几十年的医生,侯如蓉主任表示,癌症其实是一种“生活方式”疾病。与其去寻找什么治癌的“灵丹妙药”,还不如在日常生活中培养良好的生活习惯。   侯如蓉主任表示,世界各地肿瘤高发区环境中存在着大量的致、促癌因素,而患癌者仅占千分之几,90%以上的人不发生癌症,这说明上述各种外界的致、促癌因素即使进入人体也不一定发病,因为正常人体具有完整的免疫系统,具有一定的抗癌能力。
  • 研究发现:人体血液中存在一种能消灭癌细胞的抗体
    癌症一直是威胁着人类身体健康最严重的疾病,科学研究人员一直在研究治疗癌症的有效药物。据广州优瓦标准品网的了解,近日日本冈山大学医院宣布,其研究人员在人体血液中发现了一种能遏制癌细胞增殖并消灭癌细胞的抗体,这一发现将有助于开发出副作用较小的化疗药物。  在健康人的体内,每天都会出现数千个癌细胞,不过都被各种抗体和免疫细胞清理掉了,但是科学家还不清楚其中的机制。该院研究人员注意到,在癌细胞中,核糖体蛋白L29得以高度表达,而人体血液中就存在核糖体蛋白L29的抗体。研究人员将每毫升中含有5微克(1微克是百万分之一克)抗体的溶液滴到人类肝癌细胞上,再调查癌细胞的增殖状况。结果发现,癌细胞的增殖减少40%。  研究还发现,这种抗体能够遏制胰腺癌、肺癌、乳腺癌、大肠癌、前列腺癌等癌细胞增殖。研究人员指出,血液中的抗体与核糖体蛋白L29结合后,能够遏制后者的功能,使癌细胞难以分裂,从而凋亡,因此这种抗体应该就是构成人体内肿瘤免疫系统的物质之一。  这项发现是近期来对癌症治疗研究的最新发现,将有助于研究出对治疗癌症更有效的化疗药物,给身患癌症的患者带来福音。对于目前治疗癌症的相关药物,广州优瓦能够为癌症科研实验提供各类标准品,如需要,敬请拨打我司服务专线咨询详情:020-81215950!
  • Cell:让癌细胞“沉默”
    研究人员发现可以通过靶向一些分子,令癌细胞进入沉默状态 所有类型的癌症中一种最常见的突变基因就是 p53 基因。然而不幸的是这种基因很难用药物直接靶向。 近期一个由 Weill Cornell 医学院Lewis Cantley博士等人领导的多机构研究团队发现了一个酶家族,对于 p53 遗传突变的癌症发生至关重要。利用新型药物靶向这些酶,也许能阻止 p53 突变的癌症生长,从而惠及大量的肿瘤患者,包括乳腺癌,卵巢癌,肺癌,大肠癌和脑瘤患者。 这一研究成果公布在11月7日的Cell杂志上,研究人员指出当细胞丢失 p53 的时候,两种细胞内的酶:II型磷脂酰肌醇-5-磷酸- 4 -激酶 &alpha 和 &beta (II型 PIP激酶) 就成为了癌细胞生长所必不可少的元素,&ldquo 超过一半的癌症失去了 p53 这个基因,令这些癌症肆无忌惮的生长。&rdquo 研究人员发现, II型PIP激酶对于是正常细胞的生长并不重要,但是对于 p53 突变或丢失的细胞生长却必不可少。科学家在动物实验和人类癌细胞实验室研究中发现,靶向这些分子能有效地关闭 p53 突变癌症的增长。 虽然这项研究是在人类乳腺癌细胞中进行的,但研究人员相信II型PIP激酶抑制剂能阻断与 p53 基因突变或缺失有关癌症的生长。 &ldquo 在正常人体细胞或小鼠中剔除II型PIP激酶基本上不会影响细胞的存活,这表明这些酶抑制剂毒性并不大,&rdquo 文章通讯作者,Weill Cornell 医学院Cantley博士说。 Cantley博士等人正在努力开发能关闭这些激酶的药物,&ldquo 研发II型PIP激酶抑制剂也许能逆转 p53 突变的癌症, &rdquo 他说。 关键关联 Cantley博士是著名的细胞生物学家、生物化学家,他的主要贡献是对PI-3激酶的酶的发现和研究,这对了解癌症和糖尿病十分重要。2013年获生命科学突破奖。 PI 3 -激酶( PI3K )与多种细胞功能有关,比如细胞生长和增殖,大多数癌症是通过一个或多个机制激活 PI3K 。Cantley博士的发现有助于个性化癌症疗法的发展。 PI3K 的活性在某些情况下与II型PIP激酶有关,因此在这项研究中,Cantley博士希望能理解这些酶的功能。研究人员知道乳腺癌的一个亚型能表达这些分子,由此他们在更具侵袭性的肿瘤:HER2阳性乳腺癌中寻找这些酶的作用。 结果研究人员发现这种酶在具有健康 p53 的细胞中是沉默的, p53 的关键作用之一就是&ldquo 拯救&rdquo 产生过量活性氧(ROS)的细胞,ROS 是细胞增长过快的副产品。ROS 引起的氧化应激会破坏细胞结构,因此 p53 努力减少受影响细胞内的 ROS 。&ldquo 但是,如果ROS水平超过了 p53 的处理能力,那么 p53 就会启动第二个功能&mdash &mdash 杀死细胞, &rdquo Cantley博士说。 &ldquo 这就是为什么癌细胞需要剔除 p53 基因,如果 p53 基因突变或消失,那么细胞就能保持一个非常高的速度进行增长, &rdquo 他说,&ldquo 然后 ROS 开始损伤基因,令癌症更加具有侵袭性。 &rdquo II型PIP激酶是 p53 的备份救援系统,但它们只会在确保细胞不会死亡的基础上减少 ROS。 (过多的ROS也会杀死细胞)。 这也就是说癌细胞变得&ldquo 依赖于这些激酶才能生长, &rdquo Cantley说。
  • 院士领衔 全球首个肝癌诊断试剂盒在沪问世
    p style=" text-align: center " img title=" 002.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/95c08ff1-ec58-45b5-8879-8c51883632e9.jpg" / /p p   1月26日,在复旦大学附属中山医院举行的“中山-顿慧诊疗新技术转化中心‘医-研-产’创新模式论坛”上传出消息:中科院院士、中山医院院长樊嘉教授,副院长周俭教授领衔团队,在肝癌诊治领域实现两项重大研发成果。团队研发“7种微小核糖核酸肝癌检测试剂盒”,采集0.2毫升血浆可提升肝癌早期诊断率;团队研制“全自动循环肿瘤细胞分选检测系统”,可提升肝癌复发转移、诊治疗效预测效果。据悉,这两项成果均拥有完全自主知识产权,实现技术转让,或将有望开创肝癌诊治新篇章。 /p p   肝细胞癌(简称肝癌)是世界上最常见的恶性肿瘤之一,我国每年新诊断肝癌占全世界55%,死亡率在所有恶性肿瘤中位列第二位。现有数据统计显示:晚期肝癌5年生存率接近0,早期肝癌经根治性手术治疗后,5年生存率可达60%以上。可现实非常残酷:肝癌起病隐匿,早期无特异性症状,约8成患者首诊已进入晚期,失去根治性手术机会 即便实施根治性手术治疗,5年内仍有60%至70%患者出现转移复发 肝癌患者5年总体生存率仅为7%左右。 /p p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201801/noimg/29c732d7-783f-4403-8309-5262516871ce.jpg" / /p p   突破早期诊断大关,对肝癌诊治的提升有着非同寻常的意义。樊嘉领衔团队历经9年攻关,在患者血浆中筛选到由7个miRNA组成的早期肝癌诊断分子标记物(目前分子标记物模型已获中、日、韩专利)。试剂盒仅需采集0.2ml血浆,通过对其中7个肝癌相关微小核糖核酸检测结果的综合评估,可准确诊断肝癌,灵敏度和特异性均达80%以上。 /p p   樊嘉告诉记者,临床约30%至40%的甲胎蛋白阴性(简称“AFP”)患者,很难通过常规手段发现肝内肿瘤。试剂盒突破了这一盲区,用84%的灵敏度、88%的特异性,可筛查出AFP阴性肝癌患者。应用试剂盒,进行血液检测同时配合影像学检查,还能显著提高对包括小于2厘米小肝癌在内的各种临床分型肝癌诊断效能,以此降低漏诊率和误诊率。试剂盒实时动态监测肝癌治疗效果,及时预警肿瘤复发和进展的发生,性能超出传统甲胎蛋白检测约35%。至于便捷的采集方式,将在患者整个治疗随访过程中发挥重要作用,临床可通过多次血液检测及时反映治疗效果、预警肿瘤进展,减少患者对传统影像学检查的依赖。 /p p   据悉,应用试剂盒已完成多中心临床验证,并通过国家食药监总局的认证。2017年8月获得CFDA的三类器械注册证和生产许可证。今年起将通过全国20个省多中心临床使用推广,成为临床医生肝癌诊断、患者预后疗效监测更有效的工具。 /p p   专家表示,随着试剂盒的普及,我国肝癌患者5年总体生存率或可提升至20%至30%,切实降低死亡率。 /p p   肝癌病人之所以生存率低,复发率高是关键症结。近年来,众多国内外学者一致认为外周血中游离的循环肿瘤细胞(CTC)是肿瘤转移复发的“种子”,扮演极其重要的角色。樊嘉院士、周俭教授团队在国际上首次检测“外周血中干细胞样循环肝癌细胞”,发现循环干细胞样肝癌细胞可作为肝癌切除术后复发预测新指标。团队自主研发了多种CTC分选检测技术,同时成功研制了全球首台 “全自动循环肿瘤细胞分选检测系统”原型机和检测试剂盒,相关核心技术已获3项发明专利,并申请发明专利5项。该系统可实现从全血标本→CTC的一站式全自动样本处理,包括血液离心,液体处理,CTC捕获,细胞染色等步骤 捕获CTC的灵敏度可达到90%以上,8小时可处理24个样本,捕获的CTC细胞还可用于下游的单细胞测序分析,揭示每一个CTC的基因突变和表达谱。这为临床实现肝癌早诊早治、有效预测复发、疗效监测以及干细胞研究建立了良好平台。 /p p   在当天的论坛上,复旦大学附属中山医院与上海顿慧医疗科技发展有限公司签署了《技术专利转让协议》和《技术专利许可协议》,以3000万人民币将研发过程中产生的8项核心发明专利授权转让或许可。该系统衍生产品“ChimeraX-120TM 循环肿瘤细胞全自动样本处理和检测系统”正在作CFDA注册申报准备工作。据悉,目前仅有美国CellSearchTM系统获得监管部门注册上市许可,是CTC检测的国际金标准。本系统与CellSearchTM系统相比,具有更高的自动化程度、更高的检测灵敏度、更多的CTC分选模式以及更好的CTC下游分析兼容性等优势。 /p p   樊嘉院士在论坛上介绍了打通“医-研-产”创新链和产业链实现“中山智造”的经验。据了解,中山医院通过与创新医疗企业上海顿慧医疗科技发展有限公司合作,成立中山-顿慧诊疗新技术转化中心,实现了从医院-转化平台研发-企业生产-实验室应用四点一线高度统一的协作模式,研发出了一系列具有自主知识产权的诊疗新技术。通过创立“医-研-产”新模式,打通医学创新、转化和产业化的关键环节,实现了创新链与产业链的无缝整合。这一新模式不仅将加快我国先进科研成果的临床转化,更能有效提升我国国产诊疗新技术核心竞争力至国际先进行列。“医-研-产”的中山创新模式,为将最先进的生物医学技术应用于疾病本质的研究,探索诊断和治疗新方法,并与企业合作将科研成果“落地”转化为可应用于临床、服务广大病人的医疗产品提供了有益经验。 /p
  • 俄开发能找到血液中癌细胞的新技术
    俄罗斯萨拉托夫国立大学科研人员确定了黑素瘤细胞受到激光辐射发热并产生的超声波信号参数,从而开发出找到血液中癌细胞的有效技术。相关研究结果近日发表在《科学报告》上。 众所周知,大约90%癌症患者的死亡与癌细胞转移有关,初生肿瘤的癌细胞进入淋巴和血管,并进一步通过生物液流扩散至全身。在许多情况下,可以通过外科手术成功切除初生肿瘤,非转移性癌症可以治愈。然而,发生在不同器官中的转移性恶性肿瘤很难被治愈。在这种情况下,当治疗尚有效时,尽早在患者血液中发现循环肿瘤细胞是很重要的,而流式细胞测定法可根据光散射和荧光信号研究血液。 俄研究人员称,为了“看到”血液中感兴趣的外来物,如循环肿瘤细胞,在研究中使用了光声学技术,它集激光医学(如使用激光脱毛)和超声波装置于一体。如果细胞吸收了激光波长上的辐射,它们就会发热,材料会发生热膨胀,产生与信号非常相似的声音,它用于超声波医疗设备。因为信号水平受癌细胞生长条件和阶段的影响很大,据此可以寻找在哪些激光参数下黑素瘤细胞开始有效加热并产生超声波信号。 俄科研人员根据研究结果开发出人工“癌细胞”,它们在相同的参数下开始“发声”,整体上表现得像癌细胞一样。人工“癌细胞”具有完全生物相容性,将它们注射到实验室的小鼠血液中,借助已开发的光声学流动式血细胞计数器“看到”了它们。 目前,研究人员正在完善光声学流动式血细胞计数器并明确实验模型的参数,这些参数可将测量技术从动物转移到人体组织。在不久的将来,研究人员将创建一个模型,可在激光安全参数下直接在人体血液中寻找癌细胞。
  • 曹雪涛小组发现人肝癌预后判断和治疗新靶标
    曹雪涛小组发现人肝癌预后判断和治疗新靶标   为进一步研究mRNA在肝脏生理和肝脏疾病中的作用奠定了基础   最新一期(当地时间2月15日)《癌细胞》(Cancer Cell)杂志发表了中国工程院院士、医学免疫学国家重点实验室主任曹雪涛课题组及其合作者的研究论文,报道了其通过深度测序技术进行人正常肝脏、病毒性肝炎肝脏、肝硬化肝脏和人肝癌microRNA组学分析,发现了microRNA-199表达高低与肝癌患者预后密切相关,证明microRNA-199能够靶向抑制促肝癌激酶分子PAK4而显著抑制肝癌生长,从而为肝癌的预防判断与生物治疗提供了新的潜在靶标。   肝癌对我国人民健康危害很大,特别是对于晚期肝癌患者,目前尚缺乏有效的治疗手段,因此,对肝癌发生发展分子机制的研究并结合肝癌患者临床资料寻找新的预后判断标志物与治疗靶标具有重要意义。   microRNA与多种疾病包括癌症的发生发展机制的研究是近年来生物医学界的前沿热点课题。为了探求在肝癌发生发展过程中哪些microRNA可能发挥了重要作用,曹雪涛课题组与清华大学医学院、浙江大学免疫所、上海东方肝胆外科医院、上海长征医院、复旦大学中山医院、广西肿瘤医院、中山大学生命科学院、华大基因、国家疾病控制中心等单位联合攻关,先通过深度测序技术首次获得了人正常肝脏、病毒性肝炎肝脏、肝硬化肝脏和人肝癌组织的microRNA组数据,了解到肝癌与正常肝脏microRNA的差别,通过4个独立的肝癌患者临床队列分析,发现人正常肝脏高丰度表达的microRNA-199在人肝癌中普遍性显著降低,并且microRNA-199的低表达与肝癌患者的生存期降低显著相关。进一步发现肝癌组织中组蛋白甲基化改变导致了microRNA-199表达降低,microRNA-199能够靶向抑制PAK4进而抑制下游的ERK信号通路,从而抑制了肝癌细胞的生长。通过肝靶向性腺相关病毒载体介导的microRNA-199基因治疗,显著延长了肝癌裸鼠生存期。由此证明microRNA-199是肝癌预防判断与治疗新的潜在靶标,为肝癌生物治疗提出了新方法。   该工作是面向我国重大疾病防治需求和医学界目前普遍重视的转化医学研究,在国家“十一五”重大专项以及国家自然基金委资助下,集基础研究、生物技术与临床标本和病人资料分析等多家单位和学科交叉合作的成果。有关专家认为,该工作揭示的正常与疾病肝脏microRNA组数据为后期进一步研究microRNA在肝脏生理和肝脏疾病中的作用奠定了基础。
  • 科学家发现癌细胞逃脱巨噬细胞吞噬的机制
    针对肿瘤的单克隆抗体疗法在很大程度上是通过触发巨噬细胞吞噬癌细胞来驱动癌细胞的清除。然而,癌细胞逃避吞噬作用的机制尚不完全清楚。近日,来自美国的科学家团队在《Nature》杂志发表题为“Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis”的文章,详细探讨了癌细胞逃避吞噬作用的机制。  研究人员对阻碍抗体依赖性细胞吞噬(ADCP)的因素进行鉴定。发现在癌细胞中除了簇分化抗原47(CD47)等已知因子外,还存在包括酶脂肪细胞质膜相关蛋白(APMAP)在内的许多对ADCP易感性调节因子。APMAP的缺失与肿瘤抗原靶向单克隆抗体和/或阻断CD47的单克隆抗体协同发挥作用,在多数癌细胞类型中显著增加吞噬功能。APMAP的缺失还可以与几种不同的肿瘤靶向单克隆抗体协同抑制小鼠肿瘤生长。使用全基因组反筛选技术,研究人员发现巨噬细胞中G蛋白偶联受体84介导了对APMAP缺陷癌细胞的吞噬增强作用。  该研究揭示了一种抗体驱动易化吞噬作用的肿瘤内在调节因子,扩展了我们对肿瘤抵抗巨噬细胞吞噬作用机制的认识。   论文链接:  https://www.nature.com/articles/s41586-021-03879-4
  • 合肥研究院发现脂肪肝发展成肝癌的代谢调控机制
    近日,中国科学院合肥物质科学研究院健康与医学技术研究所研究员杨武林课题组在肿瘤发生机制领域取得新进展,发现促进非酒精性脂肪性肝炎发生恶性转变的代谢调控机制。  脂肪肝是肝细胞内脂肪堆积过多常见肝脏病理改变。脂肪肝病一般分为酒精性脂肪肝和非酒精性脂肪肝两类。由于膳食和生活方式的改变,非酒精性脂肪肝病逐渐成为脂肪性肝病的主要形式。非酒精性脂肪性肝病的进展有多个阶段,其中非酒精性脂肪性肝炎NASH阶段是疾病不良发展的关键阶段,或直接进展为肝癌。  课题组从模拟人脂肪肝病演化的STAM小鼠模型出发,分析病变各阶段的基因表达模式和基因集变异,发现NASH阶段发生致癌信号的广泛激活,同时伴随有调控脂肪酸代谢的LPL/FABP4/CPT1信号轴的特异上调。二者协同作用将利于肿瘤起始细胞的发生,促进恶性转变。体内实验表明,对LPL/FABP4/CPT1信号轴的抑制可有效延缓STAM小鼠的肝肿瘤生长。细胞试验显示,靶向代谢轴的抑制剂可显著降低肝癌干细胞的自我更新和增殖能力。  该研究提示脂肪酸代谢信号轴的激活是肝癌起始细胞形成和维持的重要因素,而靶向此信号轴可能为NASH相关肝细胞癌的预防提供一个潜在方向。  相关研究成果在线发表在International Journal of biological sciences上。研究工作得到国家自然科学基金、安徽省医学物理重点实验室基金等的支持。  论文链接
  • 中大发现M1天然病毒 癌细胞有望精确杀灭
    在杀死癌细胞的同时,也杀死了正常细胞。”这个困惑着全世界医生和癌症病人的难题,终于可望破解。笔者13日从中山大学获悉,中山大学中山医学院教授颜光美课题组于7日在国际期刊《美国科学院院报》发表了天然甲病毒M1具有选择性抗肿瘤作用的最新研究,该研究表明,一种叫做M1的天然病毒能特异性杀死癌细胞而不伤害正常细胞,这种新型溶瘤病毒有望成为新一代抗癌利器全球癌症发病率呈现快速增长态势,现有的治疗手段远远未能满足临床需求。颜光美课题组历经多年研究,从海南岛分离得到一种M1的天然病毒。颜光美团队使用细胞培养方法发现,M1病毒能选择性地感染并杀死包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种癌细胞,而对正常细胞无毒副作用。整体动物模型证明,M1病毒“像长了眼睛一样准确找到肿瘤组织并将其杀灭”,正常细胞则不受影响。XY-EL-Ch1509c 鸡间隙连接蛋白26(CX26)ELISA试剂盒 Chicken CX26 (Connexin 26) ELISA Kit XY-EL-Ch1510c 鸡金属硫蛋白2 (MT2)ELISA试剂盒 Chicken MT2 (Metallothionein 2) ELISA Kit XY-EL-Ch1511c 鸡神经激肽A(NKA)ELISA试剂盒 Chicken NKA (Neurokinin A) ELISA KitXY-EL-Ch1512c 鸡细胞粘附蛋白相互作用蛋白(CYTIP)ELISA试剂盒 Chicken CYTIP (Cytohesin Interacting Protein) ELISA KitXY-EL-Ch1513c 鸡磷酸二酯酶4D(PDE4D)ELISA试剂盒 Chicken PDE4D (Phosphodiesterase 4D, cAMP Specific) ELISA KitXY-EL-Ch1514c 鸡5核苷酸酶(5-NT)ELISA试剂盒 Chicken 5-NT (5-Nucleotidase) ELISA KitXY-EL-Ch1515c 鸡γ1肌动蛋白(ACTG1)ELISA试剂盒 Chicken ACTg1 (Actin Gamma 1) ELISA KitXY-EL-Ch1516c 鸡细胞分裂周期蛋白23(CDC23)ELISA试剂盒 Chicken CDC23 (Cell Division Cycle Protein 23) ELISA KitXY-EL-Ch1517c 鸡谷胱甘肽S转移酶κ1(GSTκ1)ELISA试剂盒 Chicken GSTκ1 (Glutathione S Transferase Kappa 1) ELISA Kit XY-EL-Ch1518c 鸡血管紧张素II受体1(ANG II R1)ELISA试剂盒 Chicken ANG II R1/AGTR1 (Angiotensin II Receptor 1) ELISA Kit XY-EL-Ch1520c 鸡染色质区解旋酶DNA结合蛋白3(CHD3)ELISA试剂盒 Chicken CHD3 (Chromodomain Helicase DNA Binding Protein 3) ELISA Kit XY-EL-Ch1521c 鸡脂多糖结合蛋白(LBP)ELISA试剂盒 Chicken LBP (Lipopolysaccharide Binding Protein) ELISA KitXY-EL-Ch1523c 鸡唾液酸结合免疫球蛋白样凝集素8(SIGLEC8)ELISA试剂盒 Chicken SIGLEC8 (Sialic Acid Binding Ig Like Lectin 8) ELISA KitXY-EL-Ch1524c 鸡肝细胞生长因子(HGF)ELISA试剂盒 Chicken HGF (Hepatocyte Growth Factor) ELISA Kit XY-EL-Ch1525c 鸡脂蛋白脂酶(LPL)ELISA试剂盒 Chicken LPL (Lipoprotein Lipase) ELISA KitXY-EL-Ch1526c 鸡胸腺五肽(TP5)ELISA试剂盒 Chicken TP5 (Thymopentin) ELISA KitXY-EL-Ch1527c 鸡可溶性CD14分子(sCD14)ELISA试剂盒Chicken sCD14 (Soluble Cluster of Differentiation14) ELISA KitXY-EL-Ch1528c 鸡胰岛素(INS)ELISA试剂盒 Chicken INS (Insulin) ELISA KitXY-EL-Ch1530c 鸡甲状腺素(T4)ELISA试剂盒 Chicken T4 (Thyroxine) ELISA KitXY-EL-Ch1532c 鸡促红细胞生成素(EPO)ELISA试剂盒 Chicken EPO (Erythropoietin) ELISA Kit XY-EL-Ch1533c 鸡甘露糖受体C1(MRC1)ELISA试剂盒 Chicken MRC1 (Mannose Receptor C Type 1 ) ELISA KitXY-EL-Ch1535c 鸡胰岛素样生长因子2-mRNA结合蛋白3(IGF2BP3)ELISA试剂盒 Chicken IGF2BP3 (Insulin Like Growth Factor 2 mRNA Binding Protein 3) ELISA Kit XY-EL-Ch1536c 鸡T细胞活化连接蛋白(LAT)ELISA试剂盒 Chicken LAT (Linker For Activation of T-cell) ELISA KitXY-EL-Ch1538c 鸡激酶锚定蛋白1(AKAP1)ELISA试剂盒 Chicken AKAP1 (A Kinase Anchor Protein 1) ELISA Kit XY-EL-Ch1539c 鸡肿瘤特异生长因子/肿瘤相关因子(TSGF)ELISA试剂盒 Chicken TSGF (Tumor Specific Growth Facter/Tumor Supplied Group of Factor) ELISA KitXY-EL-Ch1540c 鸡胃动蛋白2(GKN2)ELISA试剂盒 Chicken GKN2 (Gastrokine 2) ELISA Kit XY-EL-Ch1542c 鸡丙酮酸脱氢酶E1(PDH E1)ELISA试剂盒 Chicken PDH E1 (Pyruvate Dehydrogenase E1) ELISA KitXY-EL-Ch1543c 鸡抗丙氨酰tRNA合成酶抗体(Anti-AlaRS/Anti-PL12)ELISA试剂盒 Chicken Anti-AlaRS (Anti-Alanyl-tRNA Synthetase/Anti-PL12-Antibody) ELISA KitXY-EL-Ch1544c 鸡脱氢表雄酮硫酸酯(DHEA-S)ELISA试剂盒 Chicken DHEA-S (Dehydroepiandrosterone Sulfate) ELISA Kit XY-EL-Ch1545c 鸡胚胎性硫糖蛋白抗原(FSA)ELISA试剂盒 Chicken FSA (Fetal Sulfoslycoprotein Antigen) ELISA KitXY-EL-Ch1546c 鸡酪氨酸羟化酶(TH)ELISA试剂盒 Chicken TH (Tyrosine Hydroxylase) ELISA KitXY-EL-Ch1547c 鸡α-胞衬蛋白(SPTAN1)ELISA试剂盒 Chicken SPTAN1 (Alpha-Fodrin) ELISA Kit 除细胞水平及动物实验之外,课题组还使用临床标本离体活组织培养模型进一步证实了上述新型溶瘤病毒的有效性和特异性。据介绍,更为重要的是,研究工作还证明了M1病毒作用的分子遗传学机制,这个发现为精准的临床用药和实施个体化疗法提供了可靠的科学依据,也极大地增加未来临床试验取得成功的机会。据专家介绍,新型天然溶瘤病毒M1将会安全而有效地治疗癌症,有望成为攻克人类癌症的新一代利器
  • 从肝癌突发事件浅谈HCC早期预防与实验室标志物检测
    突发事件2月3日,内地音乐人赵英俊家人发布讣告,赵英俊于下午因病离世,享年43岁,消息来得太突然,不少人都表示不愿意相信。据其好友透露,赵英俊于一年前患上肝癌,又因为常年熬夜,最终导致病情恶化。近日,最佳喜剧配角,陪伴70、80年代一群人长大的“达叔”也因为肝癌扩散而不幸离世,享年68岁。这让众多网友陷入悲痛之中。悲痛之余,也让大家再次重视起肝癌这一疾病。原发性肝癌(HCC)HCC是指由肝细胞或肝内胆管细胞发生的癌肿,是我国常见的恶性肿瘤之一。其病因尚未确定,目前认为原发性肝癌与肝硬化、病毒性肝炎、黄曲霉素等化学致癌物质和水土因素有关。而人们的不良生活习惯,如长期熬夜、吸烟、酗酒等,都有可能增加患肝癌的几率。除此之外,长期接触氯乙烯、吃发霉的食物、长期服用合成类固醇药物等也会诱发肝癌。早期肝癌一般无明显症状,中晚期患者常表现为腹胀、乏力、腹部疼痛、消瘦、肝脏进行性肿大等,症状严重者可出现消化道出血、肝脏破裂出血等。所以肝癌患者经常出现这些症状时,却已属晚期,这给家庭及社会带来不少负担。因此,肝癌的早期预防及检测对控制肝癌的病死率有重要的现实意义。肝癌的早期预防据公开资料显示,2020年全球肝癌新发病例约90万例。其中,中国占了45.3%。而在全球肝癌83万例的死亡病例中,中国占47.1%。导致如此高死亡率的最重要原因在于,我国肝癌患者中,71%患者为中晚期。那么,如何在早期预防肝癌呢?下面小编为大家整理了一些建议。(1)远离脂肪肝,合理控制饮食,每天保证适当运动(2)保持良好的生活习惯,戒烟戒酒、不熬夜、不滥用药物(一些药物能够导致肝损伤)、不吃霉变食物,切菜板和木筷子应定期更换和消毒(3)接种乙肝疫苗,如果属于乙肝高风险人群,注意监测乙肝抗体,必要时补充接种疫苗(4)肝癌与肝硬化关系密切,而肝硬化又和病毒性肝炎相关,所以有乙肝或丙肝肝炎的患者,应定期到医院检查,及时抗病毒治疗,别因为“没感觉”就忽略它(5)做好预防的同时,还应警惕健康信号。当出现肝区疼痛(上腹部)、腹部肿块、消瘦、黄疸等症状时也应及时到医院就诊(6)定期体检,尤其是肝癌的高危人群要定期做针对性体检。肝癌标志物检测目前,临床上常用于检测和辅助诊断HCC 的血清学标志物有甲胎蛋白(AFP)、甲胎蛋白异质体(AFP-L3)、异常凝血酶原(DCP)等,其中AFP 是HCC辅助诊断和疗效监测中最常用的标志物。1.AFPAFP是最早用来辅助诊断HCC的血清学指标,也是主要由胚胎肝脏、卵巢产生和分泌的一种胚胎特异性糖类蛋白,参与分子转运过程。妊娠期妇女血清AFP水平明显升高,但健康成人血清AFP水平极低。血清AFP≥400 ng/mL超过1个月,排除妊娠、慢性或活动性肝病、生殖腺胚胎源性肿瘤及其他消化道肿瘤后,高度提示HCC,联合影像学检查,对HCC有较好的诊断价值。AFP水平轻度升高患者,应进行动态观察 AFP阴性患者,需借助其他血清学标志物、影像学检查或穿刺活检等手段明确诊断。目前检测AFP的常用方法包括电化学发光法、化学发光法等。2. AFP-L3AFP-L3主要是由肝癌细胞产生,其与肿瘤组织的大小、分化、恶性程度密切相关,特异度高于AFP。血清高水平AFP-L3%与肿瘤增殖快、侵袭性高和预后不良明显相关。在慢性乙型肝炎患者及肝硬化高危人群中,AFP-L3%检测与影像学检查相比,可提前预警患者是否存在HCC。在HCC根治术后,若AFP-L3%降低不明显,提示存在转移灶或残余癌。因此,AFPL3%检测可作为HCC 复发及预后判断指标。目前,AFP-L3的检测方法包括亲和吸附离心法、磁微粒化学发光免疫分析法、微流控免疫荧光法等。亲和吸附离心法的优点是不需要特殊设备,可依托实验室定量检测AFP的设备完成检测,缺点是需要手工操作、步骤多、耗时长,结果重复性欠佳。磁微粒化学发光免疫分析法及微流控免疫荧光法可实现自动化检测,结果更稳定。随着方法学的不断进步,建议有条件的实验室在采用不同方法学时可依据临床自建临界值。3.DCP DCP是维生素K 缺乏或拮抗剂-Ⅱ诱导的蛋白质,又称PIVKA-Ⅱ,是凝血酶原的一种异常形式。在肝细胞癌变过程中,由于维生素K缺乏引起凝血酶原前体羧化不全,从而产生大量异常凝血酶原(DCP)。在HCC患者中,血清DCP水平与HCC肿瘤大小、分化程度、微血管侵犯和肿瘤复发高度相关,可单独作为早期筛查和预后评估的标志物。在鉴别肝硬化、慢性肝炎和HCC能力方面,DCP 诊断灵敏度和特异度均优于AFP。DCP和AFP作为两个独立的生物标志物,二者对HCC 诊断具有互补作用,AFP+AFPL3%和AFP+AFP-L3%+DCP联合检测诊断HCC的灵敏度更高。目前国内DCP检测方法主要包括酶联免疫化学发光法、微粒子化学发光法、微流控免疫荧光法。
  • “癌王”为何如此具有攻击性 胰腺癌细胞转移新机制揭示
    胰腺癌的侵袭性很强,患者预后很差,5年生存率仅为5%,而大多数与胰腺癌相关的死亡是由于肿瘤转移侵入了其他器官。在eLife发表的一项研究中,日本大阪大学研究人员揭示了一种以前未知的胰腺癌转移机制,这种分子机制或是开发有效靶向治疗的第一步。  该项研究分析了人类胰腺肿瘤组织,并证明一种名为ARL4C的小信号蛋白会在胰腺癌患者中过表达。关于这种蛋白质功能的初步研究结果表明,它可能与胰腺癌细胞的迁移和侵袭能力有关。  为了对此进行研究,并确认ARL4C在侵入胰腺癌细胞中的位置,研究人员精心设计了一个模拟癌细胞侵入人体的实验。他们创建了一个3D培养装置,可监测侵入周围胶原凝胶的癌细胞,并通过显微镜观察其中含有荧光标记的ARL4C对活细胞的侵袭。  研究人员原田秋和解释说:“我们发现ARL4C定位于细胞表面所谓的侵袭性伪足,其功能类似于侵袭足类,但在结构上与侵袭足类不同。”侵袭足类是癌细胞用来侵入其他组织的细胞腹面产生的足状突起,而侵袭性伪足比侵袭足类更长,直径更大,并从细胞前端延伸。“在这些伪足中,ARL4C招募了另一种称为IQGAP1的蛋白质(其在包括胰腺癌在内的多种癌症中也高度表达),它将一种称为MMP14的酶运输到伪足中,允许癌细胞打破并侵入胶原凝胶或细胞外基质。”  研究人员希望这种新机制的揭示有助于胰腺癌的治疗。具体来说,就是采用反义寡核苷酸(ASO)的治疗方法。ASO是单链DNA的短分子,在细胞内起作用以影响(阻断)蛋白质的产生。靶向ARL4C的ASO能够抑制植入在免疫缺陷小鼠胰腺的胰腺癌细胞的淋巴结转移。如果ARL4C被阻断,癌细胞的侵袭性较弱,扩散的可能性就较小。  研究人员称,该项发现尽管只是初步的,但为胰腺癌这种极具侵袭性的癌症开辟了有希望的新治疗途径,并阐明了其转移机制。
  • 东京大学宣布可利用新型纳米胶囊准确攻击癌细胞
    东京大学宣布可利用新型纳米胶囊准确攻击癌细胞昨天,一则题为“东京大学宣布可利用新型纳米胶囊准确攻击癌细胞”的新闻报道发表在新华视点微博,然后迅速在各大媒体相互转载。该新闻简要提到了东京大学一个课题组开发出了可以精准定位癌细胞的纳米胶囊,或许能够在五年内上市。该新闻极大鼓舞了人心,有的人甚至觉得是发现了癌症的万灵药,癌症的治愈指日可待,对于癌症未来我们不用忧虑。然而,癌症,作为一种存在着诸多形式的疾病,有着众多的诱因和非常高的的多样性,治疗方法也不应该一概而论。这里,小编梳理了东京大学该课题组的研究进展,从理性的角度重新解读这个新闻。早在上个月的13号,东京大学官方网站发布了一则新闻,题为“Polymeric micelles for targeting lymph node metastasis”的新闻。作者提到, 该校的一个课题组通过可注射、可操控大小的纳米颗粒,能够有效地抵抗转移到淋巴结的癌细胞。该研究其实是在小鼠体内完成的。文章末尾,研究的首席科学家片冈一则提到:“该研究是首次发现了,在治疗淋巴癌的实践中,控制纳米颗粒的大小对于癌细胞抑制有重要影响。”在本月的《科学美国人》第4期第312卷上,也出现了对该研究的评论文章Anticancer Drugs, Hidden in Nanoshells, Target Tumors Better Than Standard Chemotherapy。在小鼠上面的研究确实很激动人心,然而在人类的临床研究还有很长的路。继续追踪发现,该研究最早是发表在专业的科学期刊ACS Nano上的,并题为“Systemic targeting of lymph node metastasis through the blood vascular system by using size-controlled nanocarriers”。该课题组证明了,通过一种小于50nm的高分子纳米颗粒携带抗癌药物,通过系统性注射(而非手术)的方法,可以有效抑制转移进入淋巴结的癌细胞,进而抑制淋巴结中肿瘤的产生。对比更大尺寸(比如80nm和70nm)的携带抗癌药物的脂类纳米颗粒,较小的50nm以下的纳米颗粒有更好的效果。通过静脉注射大约30纳米大小的纳米颗粒(携带有抗癌药物DACHPt),能够有效杀伤原位黑色素瘤和转移进入淋巴结的黑色素瘤的癌细胞。在该研究中,这种特殊的纳米颗粒在血液循环中可以进入淋巴结,更可以有效聚集在已经被癌细胞侵入的淋巴结。可能的原因是,因为更小的尺寸,会导致这些纳米颗粒在毛细血管中有更大的穿透能力,能够有效地从毛细血管进入周围组织。
  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • 检测癌细胞新方法:让纳米粒子进入体内
    在实验时,颗粒会依附于血液样品中的每一个单独的癌细胞上,然后会发光。通过激光的辅助可以检测到癌细胞或对其分类。因为有很多不同类型的癌细胞,其中有一些癌细胞远远比其他的更加致命,通过使用这个技术可以检测到这些更致命癌细胞并采集它们,因为这些细胞在采集之后还可以在培养皿中进行培养,用纳米颗粒还可以在给病人真正治疗前,更容易地测试一些潜在的治疗方案。      研究人员表明,目前该纳米颗粒可检测小鼠不同类型的乳腺癌细胞。他们还表明,纳米颗粒在添加进人类血液后也能识别出乳腺癌细胞。他们下一步是确定该颗粒能否从患者体内提取的血液样本中发现癌细胞。   每个纳米耀斑都是由金色涂层的荧光微粒与DNA片断共同组成的。DNA被选择为对应于在特定的癌症细胞中发现的RNA。一旦引入到血液样本中,纳米颗粒就会进入癌细胞而且纳米颗粒的DNA将结合到靶RNA上,从而触发荧光微粒的释放,从而导致癌细胞发光。可以通过将不同的DNA片段与不同颜色荧光微粒和结合来检测不同类型的癌细胞。   范德比尔特大学生物医学工程的教授Melissa Skala表示,循环肿瘤细胞是最致命的一种癌细胞,因为它们会使癌细胞扩散。而这样的细胞,要发现它们是极具挑战性的,因为它们存在的数量非常的少。   其他的研究人员也正在开发类似的方法来检测循环肿瘤细胞,不过他们通常是使用纳米颗粒与肿瘤细胞的表面进行结合。而这种新方法具备了两个潜在的优点,第一点是用这种方法使得我们能够更好地区分各种癌细胞 第二点是用这种方法仍然可以保持细胞存活,这样的话它们可以人为培养,而其他方法都趋向于破坏细胞。   此前也有国外媒体报道称,Google X实验室也正在开发一种微型磁性纳米粒,可以巡查癌症、心脏病等致命疾病的早期迹象。为了展开项目研究,Google已经招募100多位专家,项目涉及的学科包括天体物理学、免疫学、生物学、肿瘤学、心脏病学和化学领域。Google所研发的技术就是我们上述所提到的纳米微利依附于人体内的细胞、蛋白质和其它分子上。Google会让患者通过服用药丸的方式来使用其纳米粒子。   要让基于纳米耀斑的测试获得治疗乳腺癌或其他类型疾病的临床治疗许可,仍然需要等待几年时间。正是因为该技术允许我们在实验室培养或测试特定类型的癌细胞,所以在正式应用于临床之前,通过纳米耀斑这种方法可以让人类更好地了解癌症并帮助人类发现新的治疗药物。
  • 北大-清华汤富酬和黄岩谊与合作者发布肝癌无创早期诊断新技术
    北大-清华生命科学联合中心、北大生物动态光学成像中心研究员汤富酬、黄岩谊与首都医科大学附属北京世纪坛医院(北京大学第九临床医学院)肝胆胰外科合作,研发了一种肝癌无创早期诊断新技术——甲基化CpG短串联扩增与测序(MCTA-Seq)。该项技术是通过对患者血浆游离DNA中异常高甲基化CpG岛进行全面测序分析,来实现对肝癌的早期诊断,是癌症诊断方法上的一个突破。研究结果在线发表于10月30日的《细胞研究》(Cell Research)杂志上。  DNA甲基化是指DNA的胞嘧啶(C)被加上一个甲基而形成甲基胞嘧啶的表观遗传修饰,主要发生于CpG二核苷酸。CpG二核苷酸高度聚集于被称为CpG岛的基因组区域,这些区域主要位于基因转录起始处,具有重要的转录调控功能。CpG岛在正常细胞中大多处于去甲基化状态,但在肿瘤细胞中,大量CpG岛会发生异常高甲基化。CpG岛异常高甲基化不仅与肿瘤的发生发展密切相关,而且也是一种非常有前途的肿瘤标志物。  坏死的癌细胞会将DNA释放到血液中成为循环游离DNA,能否通过检测血液中携带异常高甲基化CpG岛的游离DNA而发现早期癌症呢?虽然早在上世纪九十年代就有学者开始这种尝试,但研究工作一直进展缓慢。其中,一个关键的瓶颈是缺乏能够同时检测大量CpG岛的高通量技术。早期肿瘤释放到外周血中的游离DNA极其微量且呈高度片段化,目前已有的DNA甲基化组检测技术灵敏度均较低,无法满足对其进行高通量检测的要求。  MCTA-Seq技术巧妙地突破了这一瓶颈。通过选择性扩增甲基化CpG短串联CGCGCGG序列和随后进行高通量测序分析,MCTA-Seq可以在一个反应中同时检测到近九千个CpG岛 检测下限可低至1~2个细胞的基因组DNA。  肝癌是全球发病率最高的恶性肿瘤之一,死亡率居第三位。由于慢性乙型肝炎病毒感染者众多,肝癌的发病率在我国一直居高不下。目前,血清甲胎蛋白(AFP)是临床上最常用的肝癌早筛标记物,但有约40%的假阴性率,因此迫切需要研发新的肝癌早筛生物标记物。  研究者采用MCTA-Seq技术共分析了151份临床样本,包括57份癌与癌旁组织样本和94份来自肝细胞癌患者、肝硬化患者及正常个体的血浆样本。在肝癌组织中,他们发现有近九百个CpG岛发生了异常高甲基化。而在小肝癌(≤ 3cm)患者血浆样本中,则鉴定出近四百个甲基化水平显著增高的CpG岛 进一步提高筛选标准后,获得了四十多个表现最佳的血浆CpG岛标记物。研究发现肝癌患者血浆CpG岛标记物可以分为两类,其中一类部分直接来自肝癌组织,而另一类则由肝癌组织与非癌肝组织共同释放。在小肝癌(≤ 3cm)患者的血浆中,后一类标记物上升的水平甚至超过了前一类。肿瘤手术切除后,两类标记物均显著下降,表明它们都与肿瘤密切相关。后一组新型血浆CpG岛标记物的发现展示了MCTA-Seq技术无偏见筛选的优势。  通过联合两类血浆CpG岛标记物,MCTA-Seq技术诊断肝细胞癌的灵敏度为94%,特异度为89%。尤为重要的是,MCTA-Seq成功地对本研究中全部15例AFP呈现假阴性的肝细胞癌患者做出了正确的诊断。  鉴于大多数类型的肿瘤都会发生CpG岛异常高甲基化,MCTA-Seq技术还有望用于其它类型癌症的无创性早期筛查。另外,由于不同类型的肿瘤有独特的甲基化图谱,MCTA-Seq同时还具有识别肿瘤组织来源的潜力。MCTA-Seq的三步建库反应在一个PCR管中即可完成,仅需浅度测序,是一种简便、经济和具有广阔应用前景的游离DNA测序新技术。  北京大学生命科学学院生物动态光学成像中心博士文路,博士研究生李静宜、刘晓萌和北京大学医学部的硕士研究生郭化虎是这篇论文的并列第一作者。北大-清华生命科学联合中心、生物动态光学成像中心研究员汤富酬、黄岩谊和北京世纪坛医院胰外科教授彭吉润是该论文的共同通讯作者。该项目得到国家自然科学基金的支持。
  • 微型显微镜助医生在手术中识别癌细胞
    在切除恶性脑肿瘤时,医生既不想留下任何癌细胞,又要保护健康脑组织,将对神经的伤害尽可能降到最低。然而一旦打开了病人颅骨,就没时间在笨重的显微镜下对组织样本进行病理分析。据美国华盛顿大学最新消息,该校工程师与斯坦福大学纪念斯隆凯特琳癌症中心、巴罗神经学研究所合作,开发出一种手持式微型显微镜,让医生在手术时也能看到细胞水平,帮他们决定该在哪里果断下刀,在哪里刀下留情。 新的手持显微镜比钢笔略大一点,用了一种叫做“双轴共焦显微技术”的新方法,能更清晰地“看透”不透明组织,捕获组织表层以下半毫米的细节。研究人员之一、华盛顿大学机械工程副教授乔纳森刘说:“要看到组织表面以下,就像开着灯在浓雾中驾驶,无法看得太远。但我们用的(显微镜)就像雾光灯,从不同的角度照亮并减少炫光,能在浓雾中看得更远。” 要让显微镜更小,通常要牺牲图像质量或分辨率、视域、深度、对比度、处理速度等性能。研究人员结合了快速高质量图像的处理传输技术,实现了各种图像指标的平衡。他们发表在《生物医学光学快报》上的论文称,微型显微镜的分辨率足以看到亚细胞水平,其拍摄的小鼠组织图像能和在临床病理实验室经过多天处理后的图像媲美。 乔纳森刘表示,手术中要知道切除的究竟是不是肿瘤,外科医生只能用眼睛看,凭借触觉和术前脑成像,有时会相当主观。如果能在手术过程中放大组织,看到细胞水平,有助于他们精确区分肿瘤和正常组织,会让手术效果更好。 研究人员希望将微型显微镜作为一种临床癌症筛查工具,他们将在2017年对其进行测试,然后在2到4年里将其用于手术或其他临床程序。 上图为了造出手持双轴共焦显微镜,研究人员将原来的桌面显微镜原型缩小成约钢笔大小。
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
  • 癌细胞难逃“光测”法眼 或为癌症预防新途径
    科技日报讯 (通讯员吴军辉 记者冯国梧)记者5月26日从南开大学获悉,该校物理科学学院田建国、刘智波研究组利用全内反射下石墨烯对介质折射率异常敏感的光学现象,实现了超灵敏单细胞实时流动传感。这一成果可以使癌细胞在形成之初即被精确&ldquo 光测&rdquo 出来,将为癌症预防提供一条新途径。   石墨烯是一种呈蜂巢状排列的单层碳原子结构,是目前已知的最薄、最坚硬的纳米材料。在全内反射这种特殊的结构下,对于介质折射率异常灵敏是石墨烯材料的重要特性之一。田建国、刘智波领导的研究组发现,折射率的灵敏度与石墨烯的层数有极大关系,并且层数有一个最优值。他们通过与南开大学化学学院陈永胜课题组合作,不断控制石墨烯的层数,最终制出厚度为8个纳米的石墨烯材料,其折射率的灵敏度和分辨率达到目前国际上最高水平。   在此基础上,课题组结合微流体技术和病变细胞的折射率差异,将这一超高的折射率灵敏度成功应用于单细胞传感。记者在实验室看到,实验人员将制备出的8纳米厚石墨烯均匀铺于一块三棱镜的一面,紧贴石墨烯上方建有一条细胞通道。实验时,一束光从棱镜一面射入,穿透石墨烯照射在细胞通道上,反射光从棱镜另一面射出。实验人员通过光电转化,即可得到一份波形图。如果细胞通道中存在癌细胞,则波形图上将会呈现出明显的波峰。即使数千个正常细胞中有一个发生了病变,这种&ldquo 光测&rdquo 方法都可以将其准确识别出来。 该课题组论文已在国际纳米科学技术领域权威刊物《Nano Letters》上发表,美国著名的纳米技术与纳米科学网进行了同步报道。
  • 清华:真正“饿死癌细胞”尚需时日
    颜宁和邓东在实验室   很难想象眼前这群学生模样的人是传说中的&ldquo 科学家&rdquo 。   都是彩色T恤、卡其色中裤、架着眼镜的青涩面孔。团队里最&ldquo 老&rdquo 的博士后邓东33岁,站在清华大学生命科学院楼门口,带着耳机摇头晃脑地听着歌,以至于上门采访的中国青年报记者毫不犹豫地从他面前径直走了过去。   事实上,这个团队在世界顶级科学杂志《自然》上发表的最新成果,几乎是全国人民都知道的&ldquo 饿死癌细胞&rdquo 新闻。新浪微博的&ldquo 饿死癌细胞&rdquo 话题被网友浏览过435万次,连手机应用给用户推送的头条新闻也写着&ldquo 人类有望饿死癌细胞&rdquo 。   有人注意到,这项听起来非常高大上的新成果后面,是一帮年轻科学家。团队中多数成员,都是传说中的&ldquo 90后&rdquo 。   在愚人节得知论文被《自然》接受,邓东的第一反应是对方在开玩笑   6月7日,邓东沙哑着嗓子接受了中国青年报记者的专访。他解释说,前一天晚上,和同事们庆祝论文的发表,在KTV里&ldquo 唱嗨了&rdquo 。   他想重新解释一下自己的这项研究:&ldquo 要达到饿死癌细胞的程度,大概是几十年以后的事了。&rdquo   被大众认为&ldquo 饿死癌细胞&rdquo 的这项研究,实际是关于一个名为&ldquo GLUT1&rdquo 的葡萄糖转运蛋白。在我们的人体中,这个小家伙专门负责将能量的来源&mdash &mdash 葡萄糖&mdash &mdash 运送进一个个细胞里。   &ldquo 如果一个细胞是拳头那么大,葡萄糖分子顶多芝麻粒大小。&rdquo 邓东说。他懂得如何用简单易懂的语言描述自己的研究:&ldquo GLUT1就像是一道&lsquo 门&rsquo ,能量得从那门里进来。你想想我们周围的门有多少样子?木头的、玻璃的、朝里面开或者向外面开、还可能是旋转的自动门&hellip &hellip 我们现在就是摸清了这扇门的样子。&rdquo   这扇&ldquo 门&rdquo 是两束呈螺旋状的晶体,能牢牢扎在不溶于水的细胞膜上,让葡萄糖从螺旋之间&ldquo 溜&rdquo 进去。   但是,是不是真有这么一个&ldquo 塞子&rdquo ,能把癌细胞身上的这道门堵住呢?   邓东在今年4月1日收到了论文被《自然》杂志接受的消息,这位&ldquo 80后&rdquo 青年的第一反应是:不是骗我吧?   所以他绷住了,假装没看到来自导师的短信。最后他的导师、清华教授颜宁绷不住了,一个电话打过来:&ldquo 你怎么没反应呢?!&rdquo   颜宁今年37岁,被《人民日报》形容为&ldquo 我国生命科学领域杰出的青年科学家&rdquo 。她2007年从普林斯顿大学回到清华担任教授,是学生口中的&ldquo 大美女&rdquo 和&ldquo 偶像&rdquo 。她&ldquo 很爱跟人开玩笑&rdquo ,路过清华生命科学院三楼的走廊,清脆的笑声在一楼都听得见。   对她来说,在诸如《自然》或《科学》这样的期刊上发表论文并不稀奇,但这回邓东团队做出的成果分外不同&mdash &mdash 她终于可以在博客上写下一行句子:达到了我来清华时候的第一个目标,做出了想做的!   在颜宁刚回清华大学当老师的时候,有前辈对她描述过做科学家的三种境界:最下层的,是把科学家当做一种&ldquo 职业&rdquo ,将科研当成一种谋生手段 第二层的是&ldquo 兴趣&rdquo ,追求自己所喜欢的东西 最高的一层是&ldquo 永生&rdquo 。   前辈说到这一点的时候,颜宁的脑海中想起的是李白与杜甫,那些虽然去世、但姓名永远留在历史中的人物。   &ldquo 对颜老师来说,这是她从建立这个实验室起,最想做的课题&rdquo ,邓东解释说,&ldquo 就像我们的人生都是有一个追求目标的,而我们最想的是把某个世界级的课题做出来、解释一个什么样的科学问题。&rdquo   这项成果得到了美国科学院院士、转运蛋白研究专家罗纳德· 卡百克的盛赞:&ldquo 学术界对于GLUT1的结构研究已有半个世纪之久,而颜宁在世界上第一个获得了GLUT1的晶体结构,从某种程度上说,她跑赢了过去50年从事其结构研究的所有科学家。这也是至今获得的第一个人源转运蛋白的结构,并代表了一项重要的技术突破。&rdquo   和两位&ldquo 大侠&rdquo 一块儿&ldquo 跑赢过去50年所有结构研究科学家的&rdquo ,还有三位&ldquo 小弟&rdquo :博士二年级的徐超、吴建平,以及生命学院的本科生孙鹏程。   GLUT1是特别不安分的对手,被颜宁形容为&ldquo 人来疯&rdquo   &ldquo 你未来有什么目标?&rdquo 中国青年报记者问本科即将毕业的孙鹏程。   &ldquo 继续做下去,做出更好的东西。&rdquo 他不假思索地说。   &ldquo 你的目标太近了&rdquo ,邓东迅速纠正了孙鹏程的想法,&ldquo 理想总是要远大一点的&mdash &mdash 我觉得你的目标应该是5年之内顺利毕业。&rdquo   科学家的生活,当然就是被&ldquo 看文献&rdquo 和&ldquo 做实验&rdquo 填满了。不过在颜宁实验室里的这群人,还喜欢看《中国好声音》、《爸爸去哪儿》以及《舌尖上的中国》。   &ldquo 什么红我们就看什么,然后在实验间隙大家都聊&rdquo ,邓东总结了一下《舌尖上的中国》其中一集的内容:安徽毛坦厂中学的学生们为了高考在拼搏,全国各地的家长们则在为了孩子们的高考而拼搏,所以这辈子就指着这一考试了。   邓博士一边说,一边龇牙咧嘴。他自个儿是研究生才考进清华的。   另一方面,徐超出自艺术之家,却打小就立志要当科学家&mdash &mdash 考大学的时候,只填了生物一个专业。对这个气质还像高中生的年轻人来说,进实验室是顺理成章的选择。   孙鹏程黑黑壮壮的,与白净的徐超坐一块儿,也看不出来谁年纪大。他形容自己学生物是&ldquo 掉坑里了&rdquo :想想上高中那会儿,全社会都在使劲忽悠,&ldquo 21世纪是生物科学的世纪&rdquo !   不管怎样,等这几个小弟被选进颜宁的实验室时,大师兄邓东还是用恶搞片《一个馒头引发的血案》里的名句来引诱他们:&ldquo 跟着东哥,有肉吃!&rdquo   他们要搞定的GLUT1,是一个特别不安分的游戏对手,被颜宁形容为&ldquo 人来疯&rdquo 。它的个头小到不可能透过显微镜来一探究竟,性格又活泼,不乐意聚拢了排成队让科学家参观。   邓东等人的主要任务,就是把这些个葡萄糖转运蛋白们捉起来,攒在一处,直到能够从上千万个一模一样的蛋白组成的晶体身上摸索出它们的模样。   孙鹏程和徐超负责&ldquo 捉&rdquo ,从两种表达体系里面纯化出大量实验需要的蛋白质 吴建平帮着他们收集数据,邓东则把他们的成果&ldquo 攒&rdquo 起来,和颜老师一起设计实验,令蛋白质结晶。   每周,他们与颜宁讨论课题的进程,得到指导与建议。   邓东给队友定下的日程被称为&ldquo 7· 11&rdquo :大家要早晨7点到实验室,晚上11点离开。   这种规矩应用到一帮90后身上,就变成了&mdash &mdash 早上7点20,邓东醒过来,一拍脑袋往食堂赶,孙鹏程可怜巴巴地打来电话:&ldquo 东哥,我在实验室门口等着呢&rdquo 而徐超呢,4个小时前刚刚离开实验室,现在睡得正香。   时间一长,邓东发现也只能这样了:孙鹏程永远是最早到,最早走的,而中午才姗姗来迟的徐超也实验到半夜三点。他们的团队,就是大家都根据自己的作息来工作,人们穿着白大褂在实验室里来来往往,这里的灯,每天只有4个小时是暗着的。   做实验就像走在一团迷雾中,不知道下一步是深渊还是光明   &ldquo 我们用4年时间,看看这100条路里面哪一条路能走。&rdquo 一年前,决心死磕GLUT1的时候,邓东就这么跟团队说。   在可能的100条路里,几个年轻人得一条条地试过来。国外的研究人员钻研葡萄糖转运蛋白已有数十年,而在清华大学这间成立不到10年的实验室里,他们没有那么多经验。   他心里也飘过念头&mdash &mdash 最糟糕的话,也许几十年都做不出结果来:&ldquo 做实验最苦的地方,是你就好像走在一团迷雾中,不知道下一步是深渊,还是下一步就见到光明。如果陷入深渊,那就不能自拔了。&rdquo   这也是孙鹏程觉得最要命的地方。有那么大半年,他就在不断地迎接失败:&ldquo 这不对,那也不对,方法得不断改换。&rdquo   而这种很可能会&ldquo 不能自拔&rdquo 的研究工作并不会立即转化成可以实打实看见、应用的东西。   就譬如这回被媒体说成&ldquo 饿死癌细胞&rdquo 的研究,其实只是弄清了GLUT1这扇&ldquo 门&rdquo 的结构。这项研究成果也许可能是医学的福音:癌细胞消化葡萄糖所能产生的能量,不到普通细胞的15%,因此,癌细胞需要更多的葡萄糖转运细胞来帮它输入能量。在摸清了GLUT1晶体结构之后,根据其工作机理对癌细胞实施人工干预,也就成了未来可能发生的一种情况。   但是,就算这真的可行,到能够实施的那一步,也得是&ldquo 20年以后&rdquo 了。   &ldquo 目前这些都还在初级阶段。我们读过一些论文,了解可能有一些方式能作用于葡萄糖转移蛋白&rdquo ,邓东并不认为自己的这项研究重点是治病,&ldquo 对科学家来说,最重要的就是对未知世界的探索。&rdquo   为了让性格活泼的GLUT1能乖乖结晶,这些小伙子在低温的实验室里工作。翻阅大量文献后,他们找到了一个突变,让它以比平时慢了几千倍的速度持续工作。   今年1月,邓东发现了一颗颇为理想的结晶。因为从前有过把盐晶误认的糗事,他憋着没敢太激动,跟颜宁汇报的时候也只轻描淡写地提了一句。最后的确认要带到上海同步辐射光源去检验,等待结果的时候,邓大师兄这么安慰小弟:&ldquo 反正至少是个膜蛋白结构。&rdquo   上海真正传回信息的时候是1月17日晚上,所有成员都在实验室里,守着电脑。邓东看到电脑上模模糊糊地出现了一团深蓝色线条,他划拉了一下屏幕,见到了明显的一圈圈的螺旋形。那是典型的转运蛋白的结构。   实验室里所有人一阵欢呼,邓东一句话没说,跑出了实验室。   &ldquo 你可以想象那画面,深夜的教学楼,一个人蹬蹬蹬从走廊这头跑到那头,闯进颜老师办公室,瞪着她三秒钟,一个字都没说出来,就朝着她点了点头&rdquo ,邓东回忆道,&ldquo 然后两个人蹬蹬蹬从走廊那头跑回这头。&rdquo   &ldquo 那一刻我已经知道,这一定是一个里程碑式的研究结果。&rdquo 邓东说。   当今年的4月1日,《自然》杂志正式通知他们论文被接受的时候,邓东最激动的时候已经过去了。因为不想显得自己&ldquo 太hold不住&rdquo ,他连导师的短信都没回复。   直到颜宁给他打来电话催问。   &ldquo 我&hellip &hellip 我在给您回邮件。&rdquo 邓东磕磕巴巴地回复说。   谁也不知道,在接到短信后的几分钟里,邓东把自己关在屋里,&ldquo 小哭了一下&rdquo ,&ldquo 辛苦了那么久,总算没有白白浪费&rdquo 。
  • 组分中药国家重点实验室于海洋团队在Journal of Hematology & Oncology上报道澳洲茄边碱抗肝癌新机制
    近日,组分中药国家重点实验室于海洋研究团队在《Journal of Hematology & Oncology》(中科院医学一区TOP期刊,IF:17.388)上发表了题为“Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment”的研究成果。组分中药国家重点实验室博士研究生尹双双、西南交通大学硕士研究生靳文珂和天津医科大学邱玉玲副教授为该论文的共同第一作者;组分中药国家重点实验室于海洋教授、王涛教授和西南交通大学符雷蕾副教授为共同通讯作者,天津中医药大学为第一通讯单位。澳洲茄边碱(SM)抗肝癌作用机制中药龙葵(Solanum nigrum L.)是茄科茄属一年生草本植物,具有清热解毒、活血化瘀、利水消肿之功效,多用于肿瘤的临床治疗。该研究证实了龙葵的主要活性成分澳洲茄边碱在高剂量时通过调节LIF/miR-192-5p/CYR61/Akt信号通路诱导肝癌细胞凋亡和自噬,从而抑制肿瘤细胞的增殖。有趣的是该研究还发现低剂量的澳洲茄边碱通过抑制LIF/Stat3信号通路调节免疫细胞的生物学功能,重塑肿瘤微环境,抑制肿瘤细胞异质性进程,协同发挥抗肝癌作用。该研究以肿瘤细胞程序性死亡与肿瘤免疫调控的双环节为切入点,以澳洲茄边碱的潜在靶标LIF为剂量依赖的“分子开关”,诠释了澳洲茄边碱抗肝癌双重协同作用机制,丰富了中医药治疗肿瘤“祛邪与扶正”的科学内涵,为其临床应用提供了有力的科学依据。该研究得到国家中医药管理局中医药创新团队及人才支持计划、国家高层次人才支持计划、国家重点研发计划、国家自然科学基金等项目的资助。文章链接:https://jhoonline.biomedcentral.com/articles/10.1186/s13045-022-01248-w#MOESM1
  • 前沿合作丨LCMSMS助力光动力疗法新进展,让癌细胞“见光死”
    导 读近年来,不论国内外,恶性肿瘤的发病率都在明显上升,已成为严重威胁人类生命安全和社会发展的重大公共卫生问题,寻找一种有效的治疗方法至关重要。目前,恶性肿瘤的治疗方法多种多样,但每一种疗法都有其适应症和不良反应,对部分患者有效,但仍有许多患者出现不良结局,因此,肿瘤的新型治疗方法始终是学者们研究的重点。光动力疗法(PDT)是肿瘤治疗研究的热门疗法,与传统治疗方法相比,它是一种非侵入性治疗,不良反应轻,可多次重复,对肿瘤细胞选择性高的治疗方法。 我们与北京理工大学谢海燕团队左立萍博士针对此方法,从光和氧这两个因素进一步探索完善,从而增强了PDT效果,使PDT在临床上发挥更明显的作用,研究成果发表在《Angewandte Chemie》上。 光动力疗法简介光动力疗法(PDT)是一种新的肿瘤治疗方法。其利用肿瘤细胞代谢活跃的特点,在注射药物(光敏剂)后,肿瘤组织内浓度明显高于周围正常组织。在适当时间用特定波长的激光照射肿瘤组织,激活光敏剂,产生活性氧,特异性破坏肿瘤细胞及肿瘤新生血管。此疗法具有高选择性,微创性,疗效确切,毒性低微,可消灭隐性癌症病灶的特点。研究成果快览PDT在治疗过程中很少有光敏剂(PS)本身能够特异性地靶向肿瘤,并且其过程需要消耗氧杀灭癌细胞,而人体内的实体肿瘤生存的环境很多都是厌氧环境,会对这种疗法的“威力”产生不小的影响。北京理工大学谢海燕教授团队针对以上问题,进行了前沿性探索,研究人员将5-氨基乙酰丙酸己酯盐酸盐(HAL)和3-溴丙酮酸(3BP)同时封装到从X-射线照射的肿瘤细胞(X-MP)收集的微粒中。系统给药后,X-MP收集微粒的载药体(HAL/3BP@X-MP)可以特异性地靶向肿瘤组织并被肿瘤细胞摄取,其中HAL通过固有的血红素生物合成途径诱导光敏剂(PpIX)在线粒体中的合成;同时,3BP通过抑制线粒体呼吸显著增加线粒体内氧气浓度。PpIX和氧气的准确共定位和快速接触产生足够的活性氧(ROS)直接破坏线粒体,一次给药即可消除肿瘤生长并抑制肿瘤转移,从而显著改善PDT结果。 图1. HAL/3BP@X-MP的体外细胞毒性:不同药物处理3天后多细胞肿瘤的球体3D图片 经HAL/3BP@X-MP光动力疗法治疗后,与其他组别相比多细胞肿瘤的球体明显减小,表明 HAL/3BP@X-MP的PDT治疗效果最佳。图2. HAL/3BP@X-MP抗肿瘤疗效的体内评价:f)肿瘤组织的Ki67染色,标尺=100 mm;g) 不同组肺切片苏木精-伊红染色,标尺=100mm。 图2 f)中表示不同的PDT对肿瘤细胞增殖的抑制效果(通过Ki67染色表达),结果表明HAL/3BP@X-MP组的PDT对肿瘤细胞增殖的抑制效果最明显;g) 中表示不同的PDT对肿瘤细胞的抗转移作用,结果表明HAL/3BP@X-MP组的抗转移效果最明显。 LCMS-8045,科研好助手在此研究过程中,需要测定X射线照射的X-MP中的HAL和3BP的封装率,但由于分光光度法及液相色谱法的灵敏度无法满足检测需求,且有基质干扰,因此选用岛津LCMS-8045完成了封装率的测定——岛津LCMS-8045拥有最快30000U/S的扫描速度和5 msec超快速的正负极性切换功能,具有远高于紫外检测器的灵敏度,可实现对痕量HAL和3BP的定性、定量、正负离子同时检测。 岛津超高效液相-三重四极杆质谱联用仪LCMS-8045l 超快速扫描技术l 超快速切换正负极性技术l 具有增强型离子光学系统,提高离子传输效率和灵敏度 图3. 利用LCMS-8045测定X-MP中的HAL 216.15114.1 (正离子)与3BP 64.85 78.9(负离子) 本研究构建的智能肿瘤细胞衍生微粒为PDT提供按需合成光敏剂并能显著增加线粒体内氧气浓度,为开发安全高效的PDT治疗方式以对抗癌症提供了一种新思路。此外,使用岛津超高效液相-三重四极杆质谱联用仪LCMS-8045测定了封装进入X-MP微粒中的HAL和3BP的含量(见图3),为智能肿瘤细胞衍生微粒对药物封装率的测定提供了新的方法。 专家声音文章第一作者左立萍博士表示:近年来,智能肿瘤细胞衍生微粒作为一种理想的药物载体正在兴起,因为可以逃避非特异性结合和免疫清除。但对其载药量的研究目前主要是采用分光光度法与液相色谱法,但以上两种方法灵敏度差且容易受到基质干扰,岛津三重四极杆质谱联用仪LCMS-8045具有灵敏度高,特异性强的优点,是测定智能肿瘤细胞衍生微粒对药物封装率的有效工具,为我们课题研究提供了技术支撑。 撰稿人:石丹姝 *本文内容非商业广告,仅供专业人士参考。
  • Nature丨癌细胞中的“团伙作案”:ecDNA“犯罪中心”驱动癌基因分子间的协同表达
    DNA不仅可以按其序列编码信息,也可以按其形状编码信息。人类基因组被分割成由染色质纤维折叠成动态的层次结构组成的染色体。这种空间结构(包括许多染色质环)可以将远端元件拉近,并将转录活动组织到不同的区域,从而限制了DNA的调控和转录机制。而在癌症中,这种染色质环境则发生了深远的改变【1】。近年来,编码癌基因的环状染色体外DNA(ecDNA)被证明在癌症中广泛存在,是癌症基因组的普遍特征,也是人类癌症进展的有力驱动因素。ecDNA是共价闭合双链,不同于在健康体细胞组织中发现的千碱基大小的环状DNA,其大小从100千碱基到数兆碱基不等,且被高度扩增【1】。ecDNA缺乏着丝粒,并且在每次细胞分裂后随机分布在子细胞中,使得其可以快速积累,且可以选择具有耐药性或其他适应性优势的ecDNA变体【2】。ecDNAs可以重新整合到染色体中,因此也可能作为某些染色体扩增的前体【3】。ecDNA具有更高的染色质可及性而缺乏更高的染色质致密性,且包含内源性致癌基因增强子元件,这表明癌基因扩增子可能是通过调控依赖性来扩增转录的【1,4】。值得一提的是,ecDNA存在于正常染色体环境之外,但其在细胞核中的空间组织尚不清楚。此外,ecDNA可以在细胞分裂期间或DNA损伤后聚集,但此生物学后果也尚不清楚。2021年11月24日,来自美国斯坦福大学的Howard Y. Chang团队在Nature上在线发表题为 EcDNA hubs drive cooperative intermolecular oncogene expression 的文章,研究了致癌ecDNA的空间、表观遗传学和转录动力学,揭示了由聚集在间期细胞细胞核中的约10-100个ecDNA组成的ecDNA“中心”,可以驱动分子间增强子信号以促使癌基因表达扩增,从而作为癌基因协同转录的组合增强子平台。研究人员利用DNA荧光原位杂交(FISH)技术,使用靶向多个细胞系中的ecDNA扩增的癌基因的探针来观察间期细胞核中ecDNA的定位,包括前列腺癌细胞系PC3(MYC扩增)、结直肠癌细胞系COLO320-DM(MYC扩增)、多形性成胶质细胞瘤细胞系HK359(EGFR扩增)和胃癌细胞系SNU16(MYC和FGFR2扩增)。结果显示,在进行实验的所有ecDNA阳性癌细胞中,尽管有数十到数百个单独的ecDNA分子,这些ecDNA的DNA FISH信号在很大程度上都局限于间期细胞细胞核的特定区域,由此表明ecDNA彼此发生了强烈聚集,该特征被称为ecDNA“中心”。这些ecDNA“中心”所占据的空间比相同大小的相邻染色体片段大得多,提示它们由许多紧密聚集在该空间中的ecDNA分子组成。进一步实验发现,ecDNA的聚集可以发生在具有不同癌基因扩增的各种癌症类型和原发性肿瘤中。随后,研究人员通过联合DNA和新生RNA FISH,在PC3和COLO320-DM细胞系中观察MYC等位基因的活跃转录,并计算每个ecDNA分子的MYC转录概率。结果显示,大多数新生的MYC mRNA转录本来自ecDNA“中心”,而不是来自染色体位点。ecDNA“中心”上致癌基因的转录活性明显高于染色体位点,表明当同一细胞中有更多的ecDNA拷贝时,每个ecDNA分子转录癌基因的可能性更大,尤其是以ecDNA“中心”的形式。人类染色体8q24上的MYC癌基因是癌症中体细胞DNA重排的热点,在人类癌症中近30%的MYC扩增以ecDNA的形式存在,通常包含MYC和PVT1(浆细胞瘤变体转录本1,位于MYC 3’端55kb处,是人类癌症的常发断点)的5’端部分。MYC的两侧是超级增强子,以赖氨酸27处的组蛋白H3乙酰化(H3K27ac)和BET蛋白(如BRD4)为标记,MYC转录对抑制剂JQ1置换BET蛋白高度敏感。为了检测活细胞中的MYC ecDNA,研究人员在COLO320-DM细胞中的MYC ecDNA中插入Tet-operator (TetO)阵列,并用TetR-eGFP或TetR-eGFP(A206K)标记ecDNA,以最小化GFP二聚化。实验结果显示,JQ1能有效降低COLO320-DM细胞(含MYC ecDNA)中MYC mRNA的水平,但对COLO320-HSR细胞(染色体MYC扩增子或均匀染色区)中MYC mRNA的水平没有显著影响(注:这两种细胞来自同一患者肿瘤,除了MYC扩增的背景外,具有高度相似的遗传背景)。此外,TetO-GFP COLO320-DM细胞的活细胞成像显示ecDNA“中心”在有丝分裂期间分解成更小的颗粒,之后又重新形成大的“中心”。值得注意的是,有丝分裂后的ecDNA“中心”的组装会被JQ1阻断。这些结果表明,COLO320-DM细胞中ecDNA“中心”的形成、维持和癌基因转录对BET蛋白的溴域H3K27ac相互作用具有独特的依赖性。为了将ecDNA结构与MYC转录调控联系起来,研究人员使用五种正交方法重建了COLO320-DM ecDNA,报告了迄今为止组装的最大的ecDNA结构——一个4.328 Mb的ecDNA,包含PVT1-MYC融合、标准MYC序列和来自多个染色体起源的序列(染色体6、8、13和16)的多个拷贝,并且利用DNA FISH验证了PLUT、PCAT1和MYC基因在重建预测的ecDNA上的共定位。接下来,研究人员确定了与癌基因高表达相关的ecDNA调控元件。来自72,049个COLO320-DM和COLO320-HSR细胞的配对单细胞ATAC–seq和RNA-seq确定了47个与高MYC表达相关的ecDNA调控元件,而目前驱动ecDNA上MYC癌基因表达的PVT1启动子(PVT1p),在ecDNA“中心”内接受了广泛的组合增强子输入。进一步地实验表明,分子间增强子-启动子在ecDNA“中心”激活,同时研究人员证实PVT1p作为一种DNA元件,能够反式激活ecDNA“中心”。那么分子间增强子-基因的相互作用是否可以被精确定位和干扰呢?以SNU16细胞系(它包含两种不同的ecDNA类型:一种来自8号和11号染色体的MYC扩增子和一种来自10号染色体的FGFR2扩增子)为研究对象,实验结果表明FGFR2和MYC ecDNA是共同选择的,因此这两个扩增子上的增强子可协同激活MYC表达。然后,MYC蛋白又可以反过来激活FGFR2的表达。顺式和反式调控元件之间几乎没有重叠,这也证实分子间增强子元件是直接通过反式而非下游效应修改基因表达。而进一步评估独立癌症类型中的分子间ecDNA的相互作用显示ecDNA“中心”内的分子间增强子基因激活发生在不同的癌基因位点和多种癌症类型中。综上所述,ecDNA“中心”内ecDNA的局部聚集促进了新的分子间增强子-基因相互作用和癌基因过度表达(图1)。与偏向局部顺式调控元件并跨越100-300nm的染色体转录中心不同,ecDNA“中心”可以跨越1000 nm以上,且涉及位于不同ecDNA分子上的反式调控元件。毫无疑问,这一发现对于ecDNA如何进行选择以及ecDNA上癌基因调控的重组如何促进转录具有深远的意义。同时,对于ecDNA“中心”促进癌基因转录的认识为癌症治疗提供新的潜在机会。原文链接:https://doi.org/10.1038/s41586-021-04116-8
  • 可分离血液中癌细胞的生物芯片问世
    据澳大利亚广播公司日前报道,澳大利亚科研团队发明了一种可分离血液中癌细胞的生物芯片,能甄别出血液中的癌细胞并将其移除。该技术可大幅降低癌症治疗费用,有望延长患者生命。 澳大利亚新南威尔士大学的一个科研团队研发的这种生物芯片,在一个名为“癌症透析”的设备中过滤血液,甄别并移除癌细胞。该团队研发这种芯片的初衷,是想寻找一种较便宜且痛苦较少的癌症诊断方法。 团队负责人马吉德瓦尔基阿尼博士称,人类癌症中99%的癌症是实体瘤,而进入人体外周血(除骨髓之外的血液)循环的癌细胞会随着血液转移,扩散到身体其他部位。根据癌细胞比健康细胞大,代谢较旺盛的特点,医生将混有健康细胞和癌细胞的血液放入生物芯片中,在液体压力的影响下,较大的癌细胞和较小的健康细胞分别进入不同的出口,成功分离。 该芯片还能大幅降低与癌症相关的治疗成本。据了解,澳大利亚进行肿瘤检测的扫描费约700澳元(约合3229元人民币),而用这种芯片检测血液中癌细胞的成本仅为50到100澳元(约合230元至460元人民币)。 此外,该技术或能延长癌症患者的生命。有医生建议,如果能制作大型芯片,癌症患者的血液就如同接受肾透析一样得到“清洗”。将分离了癌细胞的血液重新输回患者体内,也避免了因输入他人血液造成的免疫反应。对于癌症早期患者,可通过这种技术降低癌症转移扩散的几率。
  • 单细胞ICP-MS应用:评估卵巢癌细胞对顺铂的摄入
    铂类化疗药物是非常著名的一类化疗药物。目前铂类化疗药物已经研制了三代,分别是一代顺铂,二代卡铂、奈达铂;三代奥沙利铂、洛铂。卡铂的有效性是由于其可以与DNA 结合从而导致DNA- 铂(Pt)加合物的形成,但这也会造成DNA 的弯曲。因此在化疗后细胞必须修复DNA 损伤,否则DNA 复制受阻会导致细胞死亡。许多癌症患者最初对基于铂类的治疗比较敏感,但一段时间后,患者通常对顺铂治疗表现出耐药性,导致了癌症的复发。顺铂耐药性归因于三种主要的分子机制:DNA 修复的加速,胞浆失活的加速和细胞摄取药物能力的变化。其中,细胞摄取药物能力的变化主要表现在细胞对顺铂的摄入能力降低或者顺铂转运的加速。分析单个细胞水平对顺铂的摄入和分布对于评估治疗的有效性具有非常重要的意义。传统方法是,将细胞群置于顺铂培养液中,然后使用原子吸收光谱(AAS)或者电感耦合等离子体质谱(ICP-MS)等技术测定细胞群内铂的总量,无法体现顺铂摄入在个体细胞之间的分布和差异。实际上,细胞对顺铂的摄入最有可能根据个体有很大差异,但至今还没有有效的方法来评估。本文使用全新的技术,可对金属在单一细胞水平上进行定量:单细胞电感耦合等离子体质谱 (SC-ICP-MS)。01样品所有实验使用卵巢癌细胞为A2780 和A2780/CP70 细胞系。其中,A2780 是顺铂敏感细胞系, 而A2780/CP70 是顺铂耐药型。按照下图所示流程处理。02仪器NexION® 电感耦合等离子体质谱(ICP-MS),结合Syngistix™ 单细胞应用软件模块进行数据采集和处理。 NexION 2000 ICP-MS表1.ICP-MS仪器条件03实验结果细胞对顺铂的摄入可利用时间过程实验来研究,即分析顺铂在细胞群内的分布如何随时间变化。将两个细胞系置于30μM顺铂培养液中1,2,4 和8 小时。如图可见,与顺铂耐药细胞A2780/CP70 相比,A2780 随时间推移能摄入更多的顺铂。为了判断顺铂摄入的差异性分布是否归因于细胞周期的不同,还对细胞进行了血清饥饿实验。04结论SC-ICP-MS 是一种在单细胞水平上稳定测量铂的方法。本文利用卵巢癌细胞系A2780 和A2780/CP70 表征了随着时间增加顺铂的摄入有所增长。相比A2780 敏感细胞系,顺铂摄入在耐药性的A2780/CP70 细胞系上水平降低。顺铂摄入的细胞差异性不是由于细胞周期的不同,因为血清饥饿细胞并不改变顺铂的整体摄入。顺铂摄入的胞内差异性是由于其他尚未确定的因素造成的。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 中国科学家给抗癌病毒绑上“烈性炸药包”
    p   中国科学家23日报告发现一种小分子化合物,能帮助抗癌病毒更有效地杀死肝癌细胞,其效果就好像给制导导弹绑上了“烈性炸药包”。这为治疗全球第二号癌症杀手——肝癌带来了新希望。 br/ /p p   专杀癌细胞而对正常细胞无害的病毒被称为溶瘤病毒。世界上最早的溶瘤病毒报告出现在上世纪50年代,当时发现一名子宫颈癌患者在感染狂犬病病毒后,肿瘤随之消退。2005年,中国批准将溶瘤病毒H101用于治疗难治性晚期鼻咽癌,这是世界上第一个由官方批准的溶瘤病毒药物。 /p p   中山大学颜光美教授团队当天在美国《科学转化医学》杂志上(论文链接)报告了在溶瘤病毒M1研究上取得的重要突破。M1病毒是1964年在海南蚊虫上首先发现的,它对人不致病,只在马和猪之间传播。2004年,研究人员在一次实验中偶然发现,M1病毒可将大鼠身上的胶质瘤溶解掉。 /p p   为提升M1病毒的抗肿瘤效果,颜光美团队在筛选了数百种临床抗肿瘤小分子化学药物后,发现一类靶向内质网相关降解通路(ERAD)的小分子化合物能将M1病毒的抗肿瘤活性增强3600倍,而且对正常细胞没有毒性。颜光美团队将这种增效方式称为“精准增效”。 /p p   研究人员联合应用低剂量的M1病毒和这种增效剂,发现能将患人类肝癌的小鼠生存期延长一倍以上。在接近人类的食蟹猴上,M1和增效剂的联合应用也表现安全。 /p p   颜光美对新华社记者解释说:“我们可以形象地将溶瘤病毒M1比喻为自动锁定肿瘤细胞的制导导弹,而ERAD抑制剂的加入如同在导弹上绑定了自带筛选功能的烈性炸药包,强强联手,效果不言自明。” /p p   至于这种增效剂是否合适配合M1病毒应用于病人,可通过检测ERAD通路中一个名为VCP的蛋白质来预测。具体来说,如果病人手术切除肿瘤组织上的VCP蛋白质高表达,则说明该病人适合此联合治疗方案,如若低表达则表示该病人不宜接受联合方案。在肝癌病人中,肿瘤组织VCP蛋白高表达较为常见。 /p p   颜光美说:“这些结果提示,将该方案应用于治疗在我国高发病率、高死亡率且缺乏有效药物的肝癌具有巨大潜力,给难治的肝癌带来了新的希望。” /p p   颜光美团队关于溶瘤病毒M1的临床转化研究获得中国国家“十三五”重大新药创制科技重大专项资金的支持。现阶段,他们仍在进行新药申报前的临床前研究,并计划2018年申请临床试验批件。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制