当前位置: 仪器信息网 > 行业主题 > >

小鼠肝癌细胞

仪器信息网小鼠肝癌细胞专题为您提供2024年最新小鼠肝癌细胞价格报价、厂家品牌的相关信息, 包括小鼠肝癌细胞参数、型号等,不管是国产,还是进口品牌的小鼠肝癌细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合小鼠肝癌细胞相关的耗材配件、试剂标物,还有小鼠肝癌细胞相关的最新资讯、资料,以及小鼠肝癌细胞相关的解决方案。

小鼠肝癌细胞相关的论坛

  • 【资料】人肝癌细胞系研究进展

    肝癌(hepatocellular carcinoma,HCC)是发病率高、治疗困难、死亡率高的恶性肿瘤,全球每年有1000000人死于肝癌。我国肝癌的死亡率在所有恶性肿瘤中居第二位,年死于肝癌的人数占全世界肝癌年死亡总数的53%。虽然肝癌的诊断和治疗有了长足的进步,但生存率在总体水平上变化不是很明显。迄今已建立的一系列人肝癌细胞系(cell line)和人肝癌细胞系的动物模型,为肝癌的发病机理和治疗研究奠定了良好的基础。咱们坛子里是否有做这方面工作的战友,分享一下相关文献。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=122088]人肝癌细胞系研究进展[/url]

  • 【分享】我学者证实树莓可抑制肝癌细胞生长

    水果树莓可明显抑制肝癌细胞系增殖,使肝癌细胞血管内皮生长因子(VEGF)的表达减弱,并使抑癌基因野生p53的表达增强。由哈医大附属第四医院刘明博士完成的一项国家自然基金课题,首次成功锁定树莓预防肝癌生长的两个特异性蛋白质作用靶点,为果蔬预防原发性肝癌提供了重要的理论依据。这一成果近日获得2008年度黑龙江省医药卫生科技进步一等奖。   2000年,刘明博士赴美国康奈尔大学研修深造期间,尝试将树莓中的鞣化酸与肝癌细胞混合培养,发现前者能显著抑制后者的生长。近年来,他从医学、营养学等角度开展了“树莓预防及抑制肝癌机制的研究”。   研究结果表明,随着树莓中植物化学物质浓度的增加,总抗氧化自由基清除能力也随之增强。0.25毫克/毫升至10毫克/毫升的树莓提取物对肝癌细胞系HepG-2的抑制率呈逐渐增加趋势,最高抑制率可达90%%左右。   在利用化学毒物黄曲霉毒素和二乙基亚硝胺建立的稳定大鼠原发肝癌模型上,随着树莓提取物浓度的增高,实验组大鼠肝脏上的瘤径变小,肿瘤的数量减少,成瘤率减低,结节程度减轻;肝癌细胞VEGF、增殖细胞核抗原表达的程度亦明显降低。同时,实验组大鼠血清在两种特异蛋白(M2597、M4513)质峰上与树莓干预组及正常大鼠血清差异明显,说明蛋白质峰M2597、M4513极有可能为树莓预防肝癌的蛋白质作用靶点。   专家评价,今后,利用树莓中提取的植物化学成分,进行合理搭配及组成预防剂,十分有助于防范肝癌的发生,并能抑制肝癌的发展,提高患者生存率。

  • 【金秋计划】基于Akt/mTOR通路研究地榆皂苷II诱导肝癌细胞凋亡和自噬作用机制

    肝癌是全球第3大癌症死亡原因,其中肝细胞癌约占所有肝癌类型的80%[1]。据世界卫生组织统计,每年因肝细胞癌死亡的人数高达83万例,且其发病率和死亡率仍呈现上升趋势,严重损害人类生命健康[2]。在慢性肝病的基础上,基因突变、表观遗传变化、信号通路失调和血管生成异常等分子机制相互作用,共同推动慢性肝病向肝细胞癌过程的发展[3]。目前肝细胞癌治疗的一线药物主要是索拉菲尼、仑伐替尼等靶向药及阿替利珠单抗、贝伐珠单抗等免疫治疗药物[4]。然而,靶向药及免疫治疗药的耐药性和不良反应导致肝细胞癌的5年生存率仍然不高。因此,亟需寻找安全性高、不良反应少的治疗药物,为肝细胞癌患者提供更有效、安全的治疗选择。 近年来,随着对肝细胞癌研究的不断深入,自噬在肝细胞癌中的作用逐渐被关注。在肝细胞癌的发展过程中,自噬一方面通过维持细胞内稳态来抑制肿瘤起始,另一方面通过影响信号通路的效应因子来抑制早期肝细胞癌的进程[5]。自噬受到多种机制的严格调控和影响,涉及自噬的几条重要信号通路有Wnt/β-catenin、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、p53通路等[6],这些通路在肝细胞癌中异常激活,参与肝癌细胞的增殖、凋亡和自噬等生物学行为。研究表明,mTOR通路在自噬调控机制中发挥至关重要的作用[7],mTOR是自噬的负性调控因子,可以与UNC-51样激酶1(Unc-51 like autophagy activating kinase 1,ULK1)的丝氨酸结合抑制自噬的启动过程,也可以通过磷酸化使自噬调节复合物失活影响自噬小体的发生,磷酸化自噬相关蛋白14(autophagy-related protein 14,Atg14)、自噬和Beclin-1调节器1(activating molecule in beclin-1 regulated autophagy protein 1,AMBRA1)和核受体结合因子2(nuclear receptor binding factor 2,NRBF2)直接调节自噬的成核步骤[8]。因此,针对自噬及其机制开展治疗可能是肝细胞癌的有效对抗策略。 地榆为蔷薇科植物地榆Sanguisorba officinalis L.的干燥根,具有凉血止血、解毒敛疮的功效。地榆皂苷II是从地榆中提取的一种三萜皂苷类化合物,现代药理学研究发现,地榆皂苷II不仅具有抗炎、抗氧化、免疫调节的药理作用,同时具有广泛的抗肿瘤活性[9-11],能通过多种途径抑制多种癌症的发生和发展,其机制可能与阻滞细胞周期、促进细胞凋亡和细胞自噬有关[12-15]。课题组前期研究发现,地榆皂苷II能够抑制小鼠肝细胞癌的发展[15]。然而,地榆皂苷II是否能通过影响Akt/mTOR通路诱导凋亡和自噬抑制肝细胞癌尚不明确。本研究中选择人肝癌HepG2细胞和小鼠肝癌Hepa1-6细胞作为研究对象,探究地榆皂苷II对肝癌细胞增殖、自噬和凋亡的影响,探讨地榆皂苷II在抗肝细胞癌方面的潜在作用机制,为将来用于临床治疗提供数据支持。 1 材料 1.1 细胞 HepG2细胞购自中国科学院上海细胞生物学研究所,Hepa1-6细胞购自上海富衡生物科技有限公司。 1.2 药品与试剂 地榆皂苷II(批号MUST-11051204,质量分数≥98%)购自上海源叶生物科技有限公司;PVDF膜(批号IPVH00010)购自美国Sigma公司;青霉素-链霉素(批号S11JV)购自上海源培生物科技股份有限公司;DMEM培养基(批号C11995500BT)、胎牛血清(批号A3160801)购自美国Gibco公司;PBS(批号WHB823K091)购自武汉普诺赛生命科技有限公司;0.25%胰酶消化液(批号C0203)、RIPA组织/细胞裂解液(批号P0013C)、蛋白酶抑制剂混合物(批号P1050-1)、磷酸酶抑制剂混合物(批号P1050-2)、EdU-555细胞增殖检测试剂盒(批号C0075S)购自上海碧云天生物技术有限公司;CCK-8试剂盒(批号A311-02)、BCA蛋白浓度测定试剂盒(批号E112-01)、高敏型ECL化学发光检测试剂盒(批号E412-01)、相对分子质量为1.8×105的蛋白marker(批号MP-102AA)购自南京诺唯赞生物科技股份有限公司;一抗稀释液(批号G2025)、二抗稀释液(批号G2009)、高相对分子质量marker(批号26625)购自武汉赛维尔生物科技有限公司;7.5% PAGE凝胶快速制备试剂盒(批号PG111)、10% PAGE凝胶快速制备试剂盒(批号PG112)、12.5% PAGE凝胶快速制备试剂盒(批号PG113)购自上海雅酶生物医药科技有限公司;β-actin、Beclin1抗体(批号分别为20536-1-AP、11306-1-AP)购自美国Proteintech公司;B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)、p62抗体(批号分别为ab196495、ab56416)购自英国Abcam公司;Bcl-2相关X蛋白(Bcl-2 associated X protein,Bax)、半胱氨酸天冬氨酸蛋白酶-3(cystein-asparate protease-3,Caspase-3)、Caspase-8、cleaved Caspase-3、Akt、p-Akt、mTOR、p-mTOR抗体(批号分别为5023T、9662S、4790T、9664T、4685S、4060T、2972S、5536T)购自美国CST公司;甲醇(批号10014118)购自国药集团化学试剂有限公司;山羊抗兔二抗(批号RS0002)购自美国ImmunoWay公司;Annexin V-FITC染色液(批号E-CK-A211)购自武汉伊莱瑞特生物科技股份有限公司。 1.3 仪器 AL104型电子分析天平(瑞士梅特勒-托利多有限公司);HH-S型恒温水浴锅(北京市永光明医疗仪器厂);CKX53型倒置生物显微镜、IX73倒置荧光显微镜(日本Olympus公司);3111型CO2培养箱、Multiskan Go-1510型全波长酶标仪(美国Thermo Fisher Scientific公司);Centrifuge 5424R型微量离心机(德国Eppendorf公司);SDS PAGE凝胶电泳及转膜电泳仪(美国Bio-Rad公司);BETS-M5型转移微型翘板摇床(海门市其林贝尔仪器制造有限公司);XH-C型涡旋混合器(金坛市医疗仪器厂);MINI-4K型微型离心机(杭州米欧仪器有限公司);5200型全自动化学发光图像分析系统(上海天能科技有限公司);CytoFLEX流式细胞仪(美国贝克曼库尔特有限公司);ThermoCell恒温金属浴(杭州博日科技股份有限公司)。 2 方法 2.1 CCK-8实验 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于96孔板中,贴壁生长24 h,设置对照组、不同剂量地榆皂苷II组,对照组仅加入培养基,其余各组分别加入5、10、15、20、30、40、60、80、100 μmol/L相应药物,继续培养24 h,用CCK-8试剂盒测定各组吸光度(A)值,计算细胞存活率。 细胞存活率=(A实验-A空白)/(A对照-A空白) 2.2 EdU实验 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于96孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。将EdU稀释到2×EdU工作液(20 μmol/L),预热后等体积加入96孔板中,孵育细胞2 h后去除培养液,加入100 μL固定液(4%多聚甲醛),孵育10 min后去除固定液,用100 μL洗涤液洗涤细胞3次后每孔加入100 μL通透液(含0.3% Triton X-100的PBS),室温孵育15 min。去除通透液,每孔用1 mL洗涤液洗涤细胞2次,每次5 min。参考说明书配制Click反应液。每孔加入50 μL Click反应液,轻轻摇晃培养板后室温避光孵育30 min。洗涤液洗涤3次,吸除洗涤液后,每孔加Hoechst 33342溶液100 μL,室温避光孵育10 min。用洗涤液洗涤3次,每次3~5 min,随后进行荧光检测。 2.3 细胞凋亡检测 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于6孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。用胰酶消化细胞,300×g离心5 min,弃上清,收集细胞,PBS洗涤,轻轻重悬细胞,300×g离心5 min,弃上清。用PBS洗涤细胞,离心后弃上清,加入Annexin V Binding Buffer重悬细胞。细胞悬液中加入Annexin V-FITC Reagent和5 μL的碘化丙啶(PI),轻柔涡旋混匀后,室温避光孵育15~20 min,立即上机检测。 2.4 Western blotting检测相关蛋白表达 将HepG2和Hepa1-6细胞分别以1×105个/mL接种于6孔板中,贴壁生长24 h,设置对照组和地榆皂苷II(10、20、40 μmol/L)组,给药组给予相应药物,对照组仅加入培养基,继续培养24 h。加入RIPA中强度缓冲液裂解后收集细胞,使用BCA蛋白定量试剂盒检测蛋白浓度。蛋白样品经凝胶电泳,转至PVDF膜,加入5%脱脂奶粉,封闭1.5 h,加入一抗,4 ℃孵育过夜;洗膜3次后加入二抗,4 ℃孵育1.5 h;最后使用ECL化学发光检测试剂盒,用化学发光图像分析系统显影。 2.5 统计学分析 采用GraphPad Prism 9统计软件对实验数据进统计学分析,计量资料以表示,多组间比较采用单因素方差分析(One-way ANOVA)。 3 结果 3.1 地榆皂苷II对HepG2和Hepa1-6肝癌细胞增殖的影响 如图1所示,与对照组比较,随着地榆皂苷II浓度的升高,HepG2和Hepa1-6肝癌细胞的存活率明显降低,且呈剂量相关性。经GraphPad Prism 9软件分析,地榆皂苷II对HepG2、Hepa1-6细胞的IC50值分别为26.94、26.18 μmol/L,因此以10、20、40 μmol/L作为后续地榆皂苷II的给药剂量。 图片 3.2 地榆皂苷II对HepG2和Hepa1-6肝癌细胞增殖的影响 EdU-555阳性表示细胞正处于增殖状态,Hoechst33342阳性指示细胞为活细胞,EdU-555/Hoechst33342表示细胞的增殖率。如图2所示,与对照组比较,地榆皂苷II给药后HepG2和Hepa1-6细胞的EdU-555/Hoechst33342值明显降低(P<0.05、0.001),表明地榆皂苷II能够抑制肝癌细胞的增殖。 图片 3.3 地榆皂苷II对HepG2和Hepa1-6肝癌细胞凋亡的影响 如图3所示,与对照组比较,地榆皂苷II给药组HepG2和Hepa1-6细胞凋亡率显著升高(P<0.01、0.001)。凋亡蛋白(包括调控凋亡的激活因子和执行凋亡的效应因子)参与细胞凋亡的过程。采用Western blotting检测地榆皂苷II对HepG2细胞和Hepa1-6细胞凋亡相关蛋白表达的影响,如图4所示,与对照组比较,地榆皂苷II给药组Caspase-3、Caspase-8、Caspase-9、Bcl-2蛋白表达量显著降低(P<0.05、0.01、0.001),cleaved Caspase-3、Bax蛋白表达量显著升高(P<0.05、0.01)。以上结果说明地榆皂苷II促进HepG2和Hepa1-6细胞的凋亡。 图片 图片 3.4 地榆皂苷II对HepG2和Hepa1-6肝癌细胞自噬的影响 采用Western blotting检测细胞中代表自噬的核心蛋白LC3II、LC3Ⅰ、Beclin1、p62表达量,如图5所示,与对照组比较,地榆皂苷II给药组LC3Ⅱ/LC3Ⅰ值明显升高(P<0.05、0.01、0.001),Beclin1蛋白表达量上升(P<0.05、0.01),p62蛋白表达量明显下降(P<0.05、0.01),表明地榆皂苷II促进HepG2和Hepa1-6肝癌细胞的自噬。 图片 3.5 地榆皂苷II对HepG2和Hepa1-6细胞中Akt/mTOR信号通路蛋白表达的影响 采用Western blotting检测地榆皂苷II给药后Akt/mTOR信号通路蛋白表达量,如图6所示,与对照组比较,地榆皂苷II给药组p-Akt/Akt、p-mTOR/mTOR值明显下降(P<0.05、0.01、0.001),表明地榆皂苷II能够抑制Akt/mTOR信号通路。 图片 4 讨论 肝细胞癌具有高发病率、高病死率的特点,虽然目前肝细胞癌研究备受关注,但其5年生存率仍为14.1%[16]。因此,迫切需要发现新的治疗策略和候选药物。近年来,地榆皂苷II在抗肿瘤方面的研究不断深入,研究发现地榆皂苷II抑制肿瘤与细胞自噬和凋亡存在紧密的关联,地榆皂苷II可通过诱导细胞凋亡来显著抑制乳腺癌MDA-MB-435细胞和胃癌BGC-823细胞的增殖[14-15],诱导自噬显著抑制结直肠癌细胞增殖[17]。课题组既往研究证明,地榆皂苷II可在体内抑制肝细胞癌,其机制可能与抑制表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路有关[15]。然而,目前关于地榆皂苷II是否通过自噬和凋亡抑制肝细胞癌及其机制尚不明确。因此,本研究利用体外实验对地榆皂苷II刺激后肝癌细胞的增殖、自噬、凋亡及相关机制进行探究,结果表明,地榆皂苷II能抑制肝癌细胞的增殖,促进肝癌细胞的凋亡和自噬,其机制与抑制Akt/mTOR通路有关。 自噬又被称为II型程序性死亡,负责真核生物细胞质中细胞器、蛋白质和大分子的降解和回收。细胞中降解和回收的底物被吞噬后形成自噬体,自噬体与溶酶体结合形成自噬酶体最后降解。本研究检测了自噬中具有代表性的LC3、p62和Beclin1蛋白。Beclin1蛋白是一种自噬启动子,帮助自噬过程中囊泡的形成[18],地榆皂苷II作用于肝癌细胞后,Beclin1蛋白表达量上升,促进自噬启动,囊泡形成增多,从而自噬水平升高。在自噬形成时,LC3I通过泛素激活酶E1和泛素结合酶E2与磷脂酰乙醇胺偶联,生成LC3II,LC3II存在于自噬体的表面,负责膜的融合和选择性降解过程[19],p62在自噬体表面与LC3II相互作用后包裹进自噬体降解,与LC3II共同调节选择性降解过程[20]。地榆皂苷II给药后LC3II/LC3I值增高,p62蛋白表达量下降,促进自噬过程中自噬囊泡的融合和降解,进而促进自噬。Beclin1是自噬过程中的核心因子,已有研究证明Beclin1可以与抗凋亡因子Bcl-2相互作用,从而对凋亡过程产生影响[21]。细胞凋亡是一种生理性或病理性的程序性的死亡过程,近年来通过诱导促进癌细胞的凋亡来控制癌症一直是抗肿瘤的热点。Caspase级联反应是细胞凋亡过程的关键步骤,其启动受到抗凋亡因子和促凋亡因子Bcl-2和Bax的调节。在Caspase级联反应中,启动性Caspase包括Caspase-8、Caspase-9被激活后调控下游执行性Caspase如Caspase-3进而引起凋亡反应[22-24]。地榆皂苷II作用于肝癌细胞后,细胞中的Bcl-2蛋白表达量减少,Bax蛋白表达量增多,Bax蛋白在线粒体表面形成孔道,释放细胞色素C,引发Caspase级联反应,Caspase-8、Caspase-9激活进而诱导下游的Caspase-3活化为cleaved Caspase-3,切割下游多种底物,促进细胞凋亡典型形态变化。 Akt/mTOR信号通路在正常细胞生理过程中发挥关键作用,同时在多种癌症中,该通路的异常激活对自噬、细胞凋亡、化疗耐药性及转移过程产生重要影响[25]。诸多研究证据表明,Akt/mTOR途径是调控癌症细胞自噬反应的核心通路[26-28]。地榆皂苷II作用于肝癌细胞后,Akt和mTOR蛋白的磷酸化水平显著下降,Akt/mTOR信号通路被抑制,激活肝癌细胞凋亡和自噬,抑制肝癌细胞的增殖(图7,由Figdraw绘制)。 图片 上述体外研究结果初步解析了地榆皂苷II抑制肝细胞癌的机制,即地榆皂苷II通过抑制Akt/mTOR信号通路诱导肝癌细胞的凋亡和自噬,抑制肝癌细胞增殖,为地榆皂苷II在肝细胞癌治疗的药物研究开发中提供了药理学证据。

  • 伟大的发现——中山大学发现杀癌细胞病毒 不损伤正常细胞

    广州中山大学研究发现天然病毒M1可杀灭癌细胞中新网广州10月13日电(许青青 蔡珊珊) 记者13日从广州中山大学获悉,该校中山医学院颜光美教授课题组研究发现天然病毒M1能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。全球癌症发病率呈现快速增长态势,现有的治疗手段远远未能满足临床需求。颜光美教授课题组发现,M1病毒是一种从中国海南岛分离得到的天然病毒,能选择性地感染并杀伤包括肝癌、结直肠癌、膀胱癌、黑色素瘤在内的多种体外培养的癌细胞,而对正常细胞无毒副作用。整体动物实验表明,经尾静脉注射的M1病毒能显著富集在肿瘤组织并抑制肿瘤生长,正常器官则不受影响。除细胞水平及动物实验之外,课题组还使用临床标本离体活组织培养模型进一步证实了上述新型溶瘤病毒的有效性和特异性。据悉,该研究成果对阐明新型天然溶瘤病毒M1选择性杀伤肿瘤细胞的机制和研发新型靶向抗肿瘤药物都具有重要意义。相关资料:癌细胞增殖方式癌细胞是一种变异的细胞,是产生癌症的病源,癌细胞与正常细胞不同,有无限生长、转化和转移三大特点,也因此难以消灭。癌细胞由“叛变”的正常细胞衍生而来,经过很多年才长成肿瘤。“叛变”细胞脱离正轨,自行设定增殖速度,累积到10亿个以上我们才会察觉。癌细胞的增殖速度用倍增时间计算,1个变2个,2个变4个,以此类推。1912年8月13日,法国医生发现癌细胞。

  • “光测”让癌细胞难逃法眼

    记者5月26日从南开大学获悉,该校物理科学学院田建国、刘智波研究组利用全内反射下石墨烯对介质折射率异常敏感的光学现象,实现了超灵敏单细胞实时流动传感。这一成果可以使癌细胞在形成之初即被精确“光测”出来,将为癌症预防提供一条新途径。 石墨烯是一种呈蜂巢状排列的单层碳原子结构,是目前已知的最薄、最坚硬的纳米材料。在全内反射这种特殊的结构下,对于介质折射率异常灵敏是石墨烯材料的重要特性之一。田建国、刘智波领导的研究组发现,折射率的灵敏度与石墨烯的层数有极大关系,并且层数有一个最优值。他们通过与南开大学化学学院陈永胜课题组合作,不断控制石墨烯的层数,最终制出厚度为8个纳米的石墨烯材料,其折射率的灵敏度和分辨率达到目前国际上最高水平。 在此基础上,课题组结合微流体技术和病变细胞的折射率差异,将这一超高的折射率灵敏度成功应用于单细胞传感。记者在实验室看到,实验人员将制备出的8纳米厚石墨烯均匀铺于一块三棱镜的一面,紧贴石墨烯上方建有一条细胞通道。实验时,一束光从棱镜一面射入,穿透石墨烯照射在细胞通道上,反射光从棱镜另一面射出。实验人员通过光电转化,即可得到一份波形图。如果细胞通道中存在癌细胞,则波形图上将会呈现出明显的波峰。即使数千个正常细胞中有一个发生了病变,这种“光测”方法都可以将其准确识别出来。 该课题组论文已在国际纳米科学技术领域权威刊物《Nano Letters》上发表,美国著名的纳米技术与纳米科学网进行了同步报道。

  • 得没得肝癌,撒泡尿照照

    得没得肝癌,撒泡尿照照

    额。。。。看题目比较有趣,医学领域的,看着比较深奥,竟然使用的是分光光度计法,当课外知识读读吧~ 随着转基因技术的不断发展,转基因作物、转基因牲畜、转基因疫苗等相继出现,现在,科学家们又研制出了能够检测肿瘤的转基因细菌。小鼠口服这种转基因大肠杆菌后,细菌会经由肠道吸收进入肝脏,如果小鼠的肝脏内存在转移瘤,细菌就会开始大量繁殖并产生萤光素(luciferin);最终,萤光素会随小鼠的尿液排出体外,只要尿液检测发现小鼠尿液中出现萤光素,就说明小鼠出现了肝转移瘤。研究论文于5月27日发表在《科学》子刊《科学转化医学》(Science Translational Medicine)上。在癌症致死的病例中,有90%都是因为癌症发生了扩散和转移。肝脏是肠癌、乳腺癌、胰腺癌等转移瘤发生的主要部位,而肝转移瘤由于体积小且数量多,对临床治疗上提出了很大挑战。虽然对肝转移瘤的治疗在近些年取得了一些进展,但由于诊断不及时,很多时候不能根治性切除肿瘤。因此,亟需一种能够在早期发现肝转移瘤存在的检测方法。由于肿瘤部位的免疫屏障受损,加上腐坏的肿瘤中心营养过剩,微生物通常会在此聚集繁殖。虽然人们过去也使用过细菌进行癌症治疗,但都是直接将高浓度细菌注射到血液系统中,而这样做会产生一定的安全隐患。为了让细菌选择性地只在肝脏内繁殖,并尽量减少其在全身的扩散,研究人员们希望用口服的方式,利用正常的生理消化过程,让细菌从肠道通过肝门静脉进入肝脏。研究者通过转基因手段制造了一种不会让小鼠致病的大肠杆菌——E. coli Nissle 1917(EcN)。在给小鼠喂食这种菌以后,通过核磁共振成像和病例组织分析,发现EcN仅在长有转移瘤的肝脏进行繁殖,在血液和其他健康器官上都基本检测不到,并且小鼠在服用EcN后没有出现不良反应。由于肝转移瘤的来源较多,研究者分别利用人卵巢癌、肠癌,以及小鼠结肠癌、肺癌和胰腺癌细胞在小鼠身上诱导出了肝转移瘤,结果发现EcN都可以在其中进行繁殖——这意味着,EcN可以用来探测各种原因引起的肝转移瘤。接下来就是这种转基因细菌最神奇的地方了。EcN会产生半乳糖苷酶,这种酶能够将LuGal(一种可溶的萤光素和半乳糖的结合体)分解产生萤光素。因此在给小鼠喂食EcN一定时间后,只需向小鼠血液中注入LuGal,收集尿液,然后利用试剂盒和分光光度计检测其中的萤光素就可以了。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221002_578955_2980891_3.jpg检测原理:转基因大肠杆菌EcN经小鼠口服后,会通过肝门静脉被吸收至肝脏,并在肝脏内进行增殖。之后给小鼠血液内注射酶切底物引入的底物被益生菌产生的酶剪切,生成萤光素,随尿液排除后即可进行检测。图片来源:研究论文随着患肝癌的病人越来越多,这种高敏感、无创、无放射性的方法可以用于长时间内的多次检测。这种检测方法不但有利于尽早发现肝转移瘤,同时还能减少治疗产生的毒副作用。一旦需要结束治疗,只需服用抗生素就能将EcN从体内清除。此外,其他消化道肿瘤如大肠癌和结肠癌,也可以利用这一方法进行检测。研究人员希望今后可以将这种方法应用于临床,不过在这之前,还需要进一步研究这种口服益生菌是否会对人肠道内的共生菌产生影响,以及是否会触发免疫反应。另外,如果能够开发出廉价的尿检试纸,将会让这种方法更加方便快捷。参考文献:Danino, Tal, et al. "Programmable probiotics for detection of cancer in urine."Science Translational Medicine 7.289 (2015): 289ra84-289ra84.PS:“萤光素尿”意味着你患了癌症,那下图这种呢?别担心,你只是甜菜根(也可能是红心火龙果或者红苋菜)吃多了而已。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221003_578961_2980891_3.jpg文章转载自果壳网。

  • 世界最快速相机可用于探测“流氓”癌细胞

    http://photocdn.sohu.com/20120710/Img347740451.jpg 加州大学洛杉矶分校的工程师们开发了一种全新的光学显微镜,显微镜上配备了世界上最快速的相机,可用于探测“流氓”癌细胞。  【搜狐科学消息】据国外媒体报道,美国加州大学洛杉矶分校(UCLA)的工程师们近日研制出了一款世界上最快速的相机,可用于探测难以捉摸的“流氓”癌细胞。这一科研成果的研究报告发表在了最新一期的《美国国家科学院院刊》上。  从大量各类正常细胞中识别和分离出一些罕见细胞对于某些疾病的早期发现、监测和治疗来说正在变得越来越重要。这些罕见细胞中,在体内自由移动的癌细胞就是一个很好的例子。通常情况下,在10亿个健康细胞中也只有一小撮癌细胞,然而它们会抢先转移,癌细胞扩散导致癌症患者的死亡率高达约90%。这样的“流氓”细胞除了癌细胞以外,还包括用于再生医学的干细胞及其它类型的细胞。不幸的是,检测这样的细胞是很困难的。要取得良好的统计准确性需要一台自动化、高通量的仪器,可以在相当短的时间内对数以百万计的细胞进行检测。配备了数码相机的显微镜是目前分析细胞的唯一设备,但是该设备对于这项研究来说速度显得太慢了。  现在,美国加州大学洛杉矶分校(UCLA)的工程师们开发了一种全新的光学显微镜,可以让这项艰巨的任务变得轻松许多。加州大学洛杉矶分校电气工程学院的工程师巴赫拉姆•贾拉利(Bahram Jalali)说:“为了抓拍到这些难以捉摸的细胞,相机必须具备在非常高的帧速率下持续捕获并对数百万张图像进行数字化处理的能力。传统的CCD和CMOS摄像头达不到这样的速度和灵敏度,因为从像素阵列读取数据需要时间,它们在速度极快的情况下对光变得不那么敏感。”  目前的流式细胞仪具有较高的通量,但是因为它依靠单点的光散射而不是拍照,在检测非常罕见的细胞类型时还不够灵敏,比如对于那些目前处于早期阶段或癌细胞转移前的癌症患者不适用。为了克服这些限制,巴赫拉姆•贾拉利和UCLA的的生物工程学副教授迪诺•迪•卡罗( Dino Di Carlo)领导的一个包括生物技术、光学、高速电子和微流体的跨学科研究团队开发出了高通量流式光学显微镜,这款显微镜非常灵敏,具备实时探测含量为百万分之一的罕见细胞的能力。  贾拉利的团队以他们在2009年创建的光子时间飞梭相机技术为基础,研制出了世界上最快的连续运行的相机。贾拉利、迪•卡罗和他们的同事在报告中描述了他们如何将这台相机与先进的微流体和实时图像处理技术进行整合,以对血液样本中的细胞进行分类。新的血液筛查技术每秒可筛查10万个细胞,比传统的基于成像的血液分析仪高出约100倍的通量。迪•卡罗说:“这项科研成果需要与一些尖端技术进行整合,通过生物工程部门、电气工程部门和加州纳米技术研究院的合作,并采用了UCLA细胞诊断学部门开发的重要的技术基础设施。”贾拉利和迪•卡罗均是加州大学洛杉矶分校的加州纳米技术研究院的成员。  他们的研究演示了如何实时辨别血液中罕见的乳腺癌癌细胞。初步结果表明,这种新技术有可能迅速地在大量血液中检测到极稀少的循环癌细胞,并将提高癌症早期检测、监测药物和放射治疗的效率。加州大学洛杉矶分校的电气工程和生物工程的项目经理本田惠介(Keisuke Goda)说:“这项技术可以大大减少错误,并将降低医疗诊断成本。”  研究人员通过将实验室生长的癌细胞与模拟现实生活中的病人的不同比例的血液进行混合得到了检测结果。加州纳米技术研究院的一名成员格达(Goda)说:“为了进一步验证该技术的临床应用效果,我们目前正在与临床医生合作进行临床试验。这项技术也将可能用于进行尿液分析、水质监测和相关的应用。”(尚力)

  • 【分享】日本成功利用有机 EL材料发光识别癌细胞

    [font=Arial,Helvetica,sans-serif]据日本共同社网站6月12日报道,日本群马大学副校长竹内利行(内分泌代谢专业)等人近日成功研发出了通过有机EL材料使体内的癌细胞发出红色可视光的新技术。极为细小的癌细胞若仅靠肉眼经常容易被忽视。据称,该技术在内视镜检查的配合下,有助于发现胃和肠等器官表面上细小的癌细胞。 据竹内等人介绍,有机EL材料“铱络化物”在特殊光线的照射下,在与空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]同的氧气浓度约20%的环境下不会发光,而在浓度低于10%时则会发光。癌细胞因扩散速度快而经常处于低氧状态,因此在“铱络化物”的作用下可以发光。 竹内等人将“铱络化物”注射到带有癌细胞的白鼠的静脉中,成功令发生癌变的部位发光。据称,实验中即使仅2毫米的癌细胞也可以识别,只要距离表面深度1厘米以内均可以发现。 该技术应用于人体时,通过从内视镜的前端喷射“铱络化物”,被消化道吸收后即可凭借发光与否识别癌细胞。与目前癌细胞检查所使用的正电子发射断层成像装置(PET)和磁共振成像装置(MRI)相比,此项技术的费用相对较低。[/font]

  • 科学家发现癌细胞不死原因

    【西班牙《国家报》1 0月26日报道】巴塞罗那瓦尔德希伯伦大学附属医院的一个研究小组日前宣布,确认了癌细胞的一种基因物质能够使恶性肿瘤不老化并失控地增殖。   玛蒂尔德·列奥纳特医生领导的这项研究成果刊登在《医学研究评论》杂志上。研究报告指出,小核糖核酸(m icroARNs)对细胞不死发挥了突出的作用。  核糖核酸在蛋白质的生成过程中起到重要作用,但此前对小核糖核酸的功用实际上并不了解。最新研究表明,小核糖核酸与另一种遗传物质之间相互作用,阻断或激活细胞的增殖过程。瓦尔德希伯伦大学的研究小组已经确认了28种能使癌细胞继续增殖的小核糖核酸。研究人员认为,对这些小核糖核酸采取行动会为阻止甚至消除癌细胞的这种特性打开大门,是在抗击癌症方面的一大显著进步。癌细胞会不停地分裂和增殖,而健康细胞能够进行40-60次分裂,然后就停止分裂,最终死亡。  癌细胞的有害之处正是其不老化的能力,这种能力使其成为一种不死组织,因为它在不会自我消灭的同时还毫无控制地成倍增加。新研究成果确认了造成这种不死特性的小核糖核酸,便于今后研究出一种能够阻断这种能力,让癌细胞像健康细胞一样老化和自我毁灭的机制。 (来源: 新华国际)

  • 新型微芯片可快速检测癌细胞

    新华社华盛顿11月20日电 (记者林小春)美国研究人员20日在美国《科学转化医学》杂志上报告说,他们开发出的一种微芯片可简单、快速地检测人体体液中是否存在癌细胞,这一成果将有助于早期的癌症诊断。 癌变细胞的变形能力要比正常细胞大得多。研究人员利用癌变细胞的这一特征开发出一种有多个小孔的微芯片,从胸水提取的细胞进入这些小孔后会撞上芯片的“墙壁”弹回而发生变形,变形程度会被高速成像设备记录下来,以每秒100个细胞的速度分析,从而判断是否存在癌细胞。 领导研究的美国加利福尼亚大学洛杉矶分校教授饶建宇对新华社记者说,他们利用微芯片检测了100多个样本,结果100%地找出了癌变样本。而现有的癌症检查方法通常只能检测出80%到90%。下一步,他们将开展更大规模的临床试验。 饶建宇说,目前的癌症检查往往是间接地判断癌变细胞的一些行为特征,如浸润性和转移能力、对药物的敏感性等,一般要先对细胞进行固定处理再染色,或提取DNA及蛋白成分等进行分析,程序多而复杂,但所得结果往往是片面和间接的。 而微芯片技术则是直接判断癌变细胞的物理及行为特征,无需对细胞处理或染色,因此简单而快速,也更加精确。饶建宇说:“这就好像判断一个人的角斗能力,光看高矮胖瘦或家庭背景等也许有一些帮助但不够,而直接的比赛是最管用的。” 他说:“人们谈癌色变往往是由于癌细胞具有浸润和转移的共性,同时又有千变万化的个性,因此以直接的方法来判断癌细胞的物理及行为特征尤为重要,这使得我们对癌细胞的认识更直接、全面和准确,对癌症的诊断由此上了一个新平台。”

  • 【转帖】石榴汁的成分能抑制癌细胞迁移

    石榴汁的成分能抑制癌细胞迁移 在美国细胞生物学会于费城召开的第50届年会上公布了这项研究根据今天在美国细胞生物学会(American Society for Cell Biology)于费城举行的第50届年会上公布的一项研究,加州大学里弗赛德分校(UCR)的科研人员发现石榴汁中的一些成分似乎能够抑制癌细胞的运动并且削弱它们被一种化学信号吸引的能力,这种信号已经被证明能够促进前列腺癌向骨的转移。加州大学里弗赛德分校(UCR) Manuela Martins-Green博士实验室的科研人员打算在一个前列腺癌体内模型中进行进一步的测试,从而确定这两种成分的剂量依赖性效应和副作用。石榴汁对前列腺癌恶化的作用即便存在,也是有争议的。在2006年的一项针对每天饮用一杯8盎司石榴汁的前列腺癌患者的研究中,加州大学洛杉矶分校(UCLA)的科研人员检测到了前列腺特异性抗原(PSA)水平的下降,这提示癌症恶化可能减缓。加州大学洛杉矶分校(UCLA)的科研人员并没有设法描述该研究中石榴汁效应背后可能的生物机制。

  • 嵌合抗原受体T细胞治疗原发性肝癌临床研究进展

    【序号】:2【作者】: 李爽1,2刘哲睿1,2赵琦【题名】:嵌合抗原受体T细胞治疗原发性肝癌临床研究进展【期刊】:临床肝胆病杂志. 【年、卷、期、起止页码】:2023,39(05)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKu87-SJxoEJu6LL9TJzd50nI0DjkU0CSu7pAH5H12y2Hz0YPKtNX023recmbj_ZiKaPt0FLpIr2G&uniplatform=NZKPT

  • 【转帖】纳米微粒结合转铁蛋白 猎杀癌细胞

    美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫—德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。

  • 维生素C可以杀死一类顽固癌细胞

    有研究说足够浓度的维生素C可以杀死一类顽固癌细胞,对治疗胰腺癌、结肠癌和卵巢癌有疗效。所以多吃富含维生素C的蔬菜对健康很有帮助。

  • 【转帖】纳米粒子与转铁蛋白结合即可猎杀癌细胞

    转铁蛋白与纳米粒子结合就可瞄准并杀死拉莫斯癌细胞,而无需负载其他化疗药物,此项发现将有望发展出癌症靶向治疗的新策略。   相关研究成果发表在本周的《美国化学协会杂志》上。  美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。   转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。   然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。   德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。   研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。   化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。   不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。(科技日报)

  • 晚期肝癌的希望 全球首个的癌系统化疗药物获批

    人民网北京3月26日电 (记者 赵敬菡)世界领先的医药健康企业赛诺菲宣布,旗下乐沙定(注射用奥沙利铂)于3月12日获得国家食品药品监督管理局批准用于“不适合手术切除或局部治疗的局部晚期和转移的肝细胞癌(HCC)的治疗”的适应症,成为全球首个获批的用于肝癌系统化疗的药物,为晚期肝细胞癌这一具有中国特色癌症的治疗带来了突破与希望。 我国每年肝癌发病人数超过40万,占全球的55%;肝癌可以称为最具“中国特色”的癌症病种。如何通过多学科联合攻关以取得理想的规范化综合诊疗效果成为了众多专业医生亟待攻克的难题。 EACH研究首次证实,含有乐沙定?(注射用奥沙利铂)的FOLFOX化疗新方案使晚期肝癌患者死亡风险降低20%,复发转移风险降低38%,且肿瘤客观缓解率显著提高到达8.2%。解放军南京八一医院秦叔逵表示:“含乐沙定?(注射用奥沙利铂)化疗新方案的提出和治疗效果的确定,首次改变了医生对肝癌系统化疗的传统认识,为医生和患者提供了切实有效的治疗方案。中国肝癌患者终于拥有了疗效好,花费低以及对肝脏损伤较小的治疗方案。” 赛诺菲亚太研发总裁江宁军介绍说:“基于当前肝癌在中国的临床实践和需求的急迫性,凭借EACH研究中证实的明显生存获益,乐沙定?成为全球首个获批的肝癌系统化疗药物, 可为临床提供一个有明确疗效证据的治疗选择,也有利于在今后肝细胞癌领域内临床研究的开展,为患者带来更多获益。” 目前,FOLFOX方案为主的系统化疗被收录于国家卫生部颁发的《原发性肝癌诊疗规范(2011年版)》,推荐用于治疗晚期HCC的全身系统治疗。并且,该方案的化疗药物全部纳入我国医保报销范围,更多的中国患者可以承受治疗费用。

  • 【分享】电磁辐射会加速癌细胞增长

    医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。电磁辐射过度还会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并加速人体的癌细胞增长。专家提醒消费者——由于电脑产品具有生产组装过程相对简单,市场需求较大的特点,吸引了很多企业加入电脑的生产行业。目前国家信息技术设备电磁兼容性标准要求在生活环境中使用的电脑产品辐射干扰指标要达到《信息技术设备的无线电骚扰限值和测量方法》中B级限值的要求。非生活环境中使用的电脑产品辐射干扰指标要达到A级限值的要求。抽查结果表明,一些企业在批量生产时产品一致性没有很好的控制,致使被抽样品电磁兼容辐射干扰指标达不到B级限值的要求。辐射干扰是台式电脑工作时向空间发射的一种电磁波干扰。医学研究证明,长期处于高电磁辐射的环境中,会使血液、淋巴液和细胞原生质发生改变。此外,电磁辐射过度会影响人体的循环系统、免疫、生殖和代谢功能,严重的还会诱发癌症,并加速人体的癌细胞增长。这种电磁辐射污染已经成为室内环境污染的新威胁。庭用户要尽量避免把家电摆放得过于集中,以免使自己暴露在超限量辐射的危险之中。特别是一些易产生电磁波的家电,如电脑、电视、冰箱、收音机等,最好不要集中摆放在卧室里。要避免长时间使用家用电器、手机等,还要尽量避免同时启用多种家电。与家电保持安全距离很有必要,距离越远,受电磁波侵害就越小。另外,必须长期处于高电磁辐射环境中工作的人需要多食用胡萝卜、豆芽、西红柿、油菜、海带、卷心菜、瘦肉、动物肝脏等富含维生素A、C和蛋白质的食物,以此加强机体抵抗电磁辐射的能力。

  • 生物靶向治疗成为肝癌治疗关注点,利卡汀领军肝癌治疗领域

    原发性肝癌是全球常见的五大恶性肿瘤之一,占肿瘤致死原因的第3位。全世界每年新发肝癌患者约六十多万,其中一半以上在中国,原因在于我国乙肝患病人数多,丙型肝炎的发病率近年亦有明显的上升趋势,肝癌多在乙肝、丙肝等慢性肝炎后肝硬化的基础上形成,是我国发病率高的一个重要原因。由于处于早中期的肝癌患者无明显的临床表现,不易及时发现,已经发现多数属于中晚期,给肝癌治疗带来较大难度。肝癌当今治疗提倡外科切除、介入栓塞、消融、生物治疗(分子靶向治疗)、免疫治疗等多学科应用、综合治疗方式。而生物技术进步,生物靶向药物(单克隆抗体药物)的研究和应用,一直是肝癌治疗和攻克的新亮点,受到高度重视和关注。生物单抗靶向治疗因作用靶点特异性高、毒性小、副作用相对较小等优点,已成为抗癌领域的重要药物类型,其巨大的市场及前景使得国际大制药公司纷纷投入巨资研制和生产,罗氏、诺华、强生、拜耳、默沙东等均有重要抗体药物上榜,罗氏公司的阿瓦斯汀(贝伐珠单抗)、利妥昔单抗(美罗华)、曲妥珠单抗(赫赛汀)是抗癌单抗的“重磅级炸弹”,2011年销售额分别是58亿美元、66亿美元、48.8亿美元。国内上市用于肝癌治疗的靶向药物有华神生物公司生产的利卡汀(碘美妥昔单抗注射液)。利卡汀是全球首个用于原发性肝细胞肝癌的单抗药物,于2007年上市,已在全国许多医院进行临床应用,资料显示,改善肝癌患者生存质量、延长患者生存期能够使患者获益,靶向性和内照射作用机制是利卡汀的突出特点。

  • 以肝癌组织单外泌体表面蛋白组为基础的肝癌预后模型构建

    [align=center][font='宋体'][size=21px]以肝癌组织单外泌体表面蛋白组为基础的肝癌预后模型构建[/size][/font][/align]1、 [font='宋体']:[/font][align=left][size=16px]研究内容[/size][/align][align=left][size=16px]从肝细胞肝癌和癌旁组织中提取外泌体,深入探讨肝癌组织外泌体和癌旁组织外泌体的差异,通过生物信息学手段发现关键分子,并通过实验验证关键分子的作用,[/size][size=16px]结合临床信息构建肝癌预后模型,[/size][size=16px]具体研究内容为:[/size][/align][align=left][font='calibri'][size=16px][color=#000000]1[/color][/size][/font][font='calibri'][size=16px][color=#000000])临床样本收集:收集肝细胞肝癌和癌旁组织[/color][/size][/font][font='calibri'][size=16px][color=#000000]20[/color][/size][/font][font='calibri'][size=16px][color=#000000]例,分别提取外泌体;后期验证收集肝细胞肝癌和癌旁组织[/color][/size][/font][font='calibri'][size=16px][color=#000000]80[/color][/size][/font][font='calibri'][size=16px][color=#000000]例。[/color][/size][/font][/align][align=left][font='calibri'][size=16px][color=#000000]([/color][/size][/font][font='calibri'][size=16px][color=#000000]2[/color][/size][/font][font='calibri'][size=16px][color=#000000])外泌体表面蛋白测定及关键分子检测:前期采[/color][/size][/font][font='calibri'][size=16px][color=#000000]?[/color][/size][/font][font='calibri'][size=16px][color=#000000]邻近编码技术([/color][/size][/font][font='calibri'][size=16px][color=#000000]Proximity Barcoding Assay, PBA[/color][/size][/font][font='calibri'][size=16px][color=#000000])对单外泌体进行分析,对样本中的外泌体进行高通量、单颗粒、多种蛋白的检测;[/color][/size][/font][font='calibri'][size=16px][color=#000000]miRNA[/color][/size][/font][font='calibri'][size=16px][color=#000000]组学分析:与疾病发生相关的外泌体源功能分子;差异分子的功能、通路的富集与注释;组织外泌体验证关键分子;关键分子上下游通路预测、功能富集、表型预测;[/color][/size][/font][/align][font='calibri'][size=16px][color=#000000]([/color][/size][/font][font='calibri'][size=16px][color=#000000]3[/color][/size][/font][font='calibri'][size=16px][color=#000000])功能机制研究:获得或缺失关键分子后的外泌体处理肿瘤细胞,检测干性表型;体内实验验证[/color][/size][/font][font='calibri'][size=16px][color=#000000]其对小鼠成瘤的影响。[/color][/size][/font]1、 [font='宋体']研究方案:[/font][font='宋体'][size=16px]1.研究方案(有关方法、技术路线、实验手段、关键技术等说明,项目可行性分析)[/size][/font][font='宋体'][size=16px]研究方法[/size][/font][font='宋体'][size=16px](1)临床样本收集:收集肝细胞肝癌和癌旁组织20例,分别提取外泌体;[/size][/font][font='宋体'][size=16px](2)[/size][/font][font='宋体'][size=16px]外泌体表面蛋白测定及关键分子检测:[/size][/font][font='宋体'][size=16px]前期采用[/size][/font][font='宋体'][size=16px]邻近编码技术([/size][/font][size=16px]Proximity Barcoding Assay[/size][size=16px],[/size][size=16px] [/size][size=16px]PBA[/size][font='宋体'][size=16px])对单外泌体进行分析,[/size][/font][font='宋体'][size=16px]对样本中的外泌体进行高[/size][/font][font='宋体'][size=16px]通量、单颗粒、多种[/size][/font][font='宋体'][size=16px]蛋白[/size][/font][font='宋体'][size=16px]的检测;[/size][/font][size=16px]miRNA[/size][font='宋体'][size=16px]组学分析:与疾病发生相关的[/size][/font][font='宋体'][size=16px]外泌体[/size][/font][font='宋体'][size=16px]源功能分子;差异分子的功能、通路的富集与注释;组织外泌体验证关键分子;关键分子上下游通路预测、功能富集、表型预测[/size][/font][font='宋体'][size=16px];[/size][/font][font='宋体'][size=16px](3)功能机制研究:获得或缺失关键分子后的外泌体处理肿瘤细胞,检测干[/size][/font][font='宋体'][size=16px]性表型;体内实验验证其对小鼠成瘤的影响;[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px])预后模型的构建:将临床信息与关键分子信息相结合,构建肝癌预后模型。[/size][/font][font='宋体'][size=16px]实验方案[/size][/font][font='宋体'][size=16px]一、组织外泌体的提取[/size][/font][font='宋体'][size=16px]1.组织切片解离,获得[/size][/font][font='宋体'][size=16px]外泌体[/size][/font][font='宋体'][size=16px]悬液[/size][/font][size=16px]([/size][size=16px]1[/size][size=16px])冰冻切片机对组织进行切片处理[/size][size=16px], [/size][size=16px]([/size][size=16px]2[/size][size=16px])将提前配好的消化酶转移到[/size][size=16px]50[/size][size=16px] [/size][size=16px]ml[/size][size=16px]的离心管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]3[/size][size=16px])[/size][font='宋体'][size=16px]将[/size][/font][size=16px]装有切片组织的离心管转移至于[/size][size=16px]37℃[/size][size=16px]水浴锅中水浴孵育[/size][size=16px] 10[/size][size=16px]-[/size][size=16px]15[/size][size=16px] [/size][size=16px]min[/size][size=16px],过程每隔[/size][size=16px] 5[/size][size=16px] [/size][size=16px]min[/size][size=16px]充分混合一次观察组织形态消化情况。[/size][size=16px] [/size][size=16px]([/size][size=16px]4[/size][size=16px])[/size][size=16px]37℃[/size][size=16px]孵育结束后将组织消化混合液放置在冰上,用[/size][size=16px]70[/size][size=16px] [/size][size=16px]μm[/size][size=16px]滤膜过滤上述溶液到新的[/size][size=16px]15[/size][size=16px] [/size][size=16px]ml[/size][size=16px]的离心管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]5[/size][size=16px])向每个[/size][size=16px]15[/size][size=16px] [/size][size=16px]ml[/size][size=16px]的离心管中加入[/size][size=16px] 25[/size][size=16px] [/size][size=16px]ul [/size][size=16px]蛋白酶和磷酸酶抑制剂[/size][size=16px]([/size][size=16px]1:100[/size][size=16px])[/size][size=16px]。[/size][size=16px] [/size][size=16px]2.[/size][size=16px]外泌体[/size][size=16px]悬液差速离心[/size][size=16px] [/size][size=16px]([/size][size=16px]1[/size][size=16px])[/size][size=16px]4℃[/size][size=16px],[/size][size=16px]300×g[/size][size=16px],离心[/size][size=16px] 10 min[/size][size=16px],转移上清到新的[/size][size=16px] 15[/size][size=16px] [/size][size=16px]ml [/size][size=16px]离心管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]2[/size][size=16px])[/size][size=16px]4℃[/size][size=16px],[/size][size=16px]2000×g[/size][size=16px],离心[/size][size=16px] 10 min[/size][size=16px],转移上清到新的[/size][size=16px] 15[/size][size=16px] [/size][size=16px]ml [/size][size=16px]离心管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]3[/size][size=16px])[/size][size=16px]4℃[/size][size=16px],[/size][size=16px]10, 000×g[/size][size=16px],离心[/size][size=16px] 20 min[/size][size=16px],上清转移到新的[/size][size=16px] 15[/size][size=16px] [/size][size=16px]ml [/size][size=16px]离心管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]4[/size][size=16px])步骤([/size][size=16px]3[/size][size=16px])得到的上清液用[/size][size=16px] 10[/size][size=16px] [/size][size=16px]ml [/size][size=16px]注射器通过[/size][size=16px] 0.22[/size][size=16px] [/size][size=16px]μm [/size][size=16px]滤膜过滤进入大超离管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]5[/size][size=16px])[/size][size=16px]4℃[/size][size=16px],[/size][size=16px]150,000[/size][size=16px] [/size][size=16px]×g[/size][size=16px],超离[/size][size=16px]2 h[/size][size=16px]。[/size][size=16px] [/size][font='宋体'][size=16px]([/size][/font][size=16px]6[/size][size=16px])超离结束后,弃上清,沉淀以[/size][size=16px]0.4 ml+0.4 ml[/size][size=16px]遇冷的[/size][size=16px]PBS[/size][size=16px](含有蛋白酶和磷酸酶抑制剂)溶解后,获得小囊泡。[/size][size=16px] [/size][size=16px]3. SEC [/size][size=16px]排阻[/size][size=16px]+[/size][size=16px]超滤[/size][size=16px] [/size][size=16px]([/size][size=16px]1[/size][size=16px])将超离后[/size][size=16px]1[/size][size=16px] [/size][size=16px]ml[/size][size=16px]的[/size][size=16px]PBS[/size][size=16px]洗涤的外泌体加入到排阻柱中,待液面下降至上筛板时,依次加入[/size][size=16px]PBS[/size][size=16px],并同时[/size][size=16px]([/size][size=16px]2[/size][size=16px])收集对应馏分加入[/size][size=16px] 100kd [/size][size=16px]超滤管中。[/size][size=16px] [/size][size=16px]([/size][size=16px]3[/size][size=16px])[/size][size=16px]4℃[/size][size=16px],[/size][size=16px]4000×g[/size][size=16px],离心[/size][size=16px] 1min[/size][size=16px]。[/size][size=16px]([/size][size=16px]4[/size][size=16px])超滤至合适体积后,对着滤膜反复吹打,吸出[/size][size=16px]200[/size][size=16px] [/size][size=16px]ul[/size][size=16px]后进行[/size][size=16px]BCA[/size][size=16px]蛋白浓度检测。[/size][size=16px] [/size][size=16px]4. BCA[/size][size=16px]检测[/size][size=16px] [/size][size=16px]将超滤得到的外泌体进行[/size][size=16px]BCA[/size][size=16px]蛋白浓度检测。[/size][size=16px]二、外泌体表面蛋白及[/size][size=16px]miRNA[/size][size=16px]组学分析[/size][size=16px]1.[/size][size=16px] [/size][size=16px]与疾病发生相关的[/size][size=16px]外泌体[/size][size=16px]源功能分子,差异分子的功能、通路的富集和注释。[/size][size=16px]2.[/size][size=16px] [/size][size=16px]组织外泌体验证关键分子,供体细胞的推断。[/size][size=16px]3.[/size][size=16px] [/size][size=16px]关键分子上下游通路预测,功能富集,表型预测。[/size][size=16px]4.[/size][size=16px] [/size][size=16px]预后模型的构建:将临床信息与关键分子信息相结合,构建肝癌预后模型。[/size][size=16px]三、功能机制研究[/size][size=16px]1.[/size][size=16px] [/size][size=16px]获得或缺失关键分子后的外泌体处理肿瘤细胞,检测干性表型。[/size][size=16px]2.[/size][size=16px] [/size][size=16px]体内实验验证其对小鼠成瘤的影响:经溯源分析得出不同亚群外泌体的来源,将特定来源的外泌体注入小鼠体内,研究其对小鼠成瘤的影响。[/size][size=16px]可行性分析[/size][size=16px]本课题组前期进行了外泌体提取的相关研究,已取得学术成果。[/size][size=16px]1[/size][size=16px])科研基础扎实:申请者研究团队从事相关基础研究多年,近年在国内外期刊上发表论文多篇,具备高质量完成项目的能力。[/size][size=16px]2[/size][size=16px])研究目标切实:本课题密切联系外泌体研究现状,旨在研究组织外泌体与疾病关系,并为疾病的诊断和治疗提供切实合理的方案。[/size][size=16px]3[/size][size=16px])技术平台与硬件设施完善:申请者所在单位的分子生物学及生物信息学各项研究方法比较成熟,具备完成实验所需的全套设备,并且已熟练掌握上述技术路线涉及的各种实验方法。[/size][size=16px]4[/size][size=16px])项目组成员近年来连续从事外泌体捕获及分离方法研究,熟悉该研究领域的动态前沿,有一定的研究功底。[/size][size=16px]5[/size][size=16px])本项目的研究团队人员配置合理,骨干成员均为年富力强的中青年科学工作者和技术骨干,有较强科研履约能力和良好履约记录。[/size]创新点:[size=16px]目前对于外泌体的研究大多局限于体液外泌体,体液来源的[/size][size=16px]外泌体[/size][size=16px]在疾病研究和早诊方面存在一定的局限性。首先,体液[/size][size=16px]外泌体[/size][size=16px]来源于机体内的各种细胞、组织导致其组成复杂,鉴定出的标志物是否为肿瘤所特异并无清晰阐述。其次,组织微环境中包括肿瘤细胞和其他各种细胞的复杂作用。本研究直接从组织中提取的[/size][size=16px]外泌体([/size][size=16px]Ti-EVs[/size][size=16px])[/size][size=16px]具有组织特异性、准确反映组织微环境以及携带更丰富的信息等优点。[/size]

  • Nature:破解癌细胞永生化之谜

    我们体内所有的正常细胞都配备一种自动的自我摧毁机制:在经过大约60次分裂之后,它们都死亡。这种内在时钟引起癌症研究人员的极大兴趣,这是因为大多数类型的癌症在这种天生的定时机制上存在缺陷。癌细胞的分裂发生差错而不受控制,因而它们能够继续无限分裂下去而导致肿瘤快速生长。在一项新研究中,瑞士研究人员发现一种蛋白复合物参与这种不受控制的过程。2012年7月4日,相关研究成果发表在《自然》杂志上。http://www.bioon.com/biology/UploadFiles/201207/2012070615373433.jpg

  • 利卡汀用于肝治疗癌复发机理的研究初探

    原发性肝癌(下称肝癌)是我国第二位的肿瘤死亡原因,其根治性切除术后的高复发率严重影响肝癌总体外科疗效。国内外的临床研究表明:肝癌术后的3年复发率为40%~50%左右,5年复发率为60%~70%乃至更高。高复发率也见于局部微创治疗和肝移植后。探索肝癌术后复发的治疗措施是有效延长患者生存时间的重要课题。从临床病理角度分析,肝癌术后复发转移是指肝癌的原有病灶,虽经“根治性切除”,由于微小原发灶的残留,原发癌在肝内播散形成的微小转移灶,癌细胞经门、体循环播散至重要隐匿部位,形成肝外转移并待机再度侵犯肝脏等原因。而从分子生物学的角度看,肝癌复发转移是一个多步骤、多环节的过程。 其分子机制涉及癌基因、抑癌基因、转移相关基因、生长因子及其受体、黏附分子及细胞外基质、肿瘤血管及机体免疫等多个环节。国产靶向治疗药物利卡汀(碘美妥昔单抗注射液)的靶抗原为肝癌细胞膜抗原HAb18G/CD147是肝癌侵袭、转移过程中重要的信号转导分子,利卡汀结合到靶抗原后,一方面能阻断肝癌的侵袭和转移,同时能杀灭残余的微小病灶和肿瘤细胞。从肝癌的复发机制来看,残余的微小病灶和肿瘤细胞是复发的重要因素。通过现在的治疗方式的综合应用,增强对已有病灶的杀灭能力,可有效的降低复发率。对有乙肝病毒背景的肝癌患者来说,乙肝病毒的慢性感染也能增大术后复发的几率。因此目前临床上肝癌术后(切除术、移植术、消融术)后进行抗病毒治疗、化疗栓塞治疗等已普遍开展,取得了不错的疗效。近年来随着分子靶向药物的出现,肝癌术后联合靶向治疗逐步成为了临床研究和应用的热点。通过已经进行的临床研究已经证实,利卡汀能降低肝癌移植术后、消融术后和TACE术后的降低。

  • Science:生物“计算机”能识别并摧毁癌细胞

    近日来自哈佛大学、麻省理工学院以及瑞士苏黎世联邦高等工业学院的研究人员在新研究中成功地将生物“计算机”诊断网络导入到人类细胞中,这种生物网络通过对5种肿瘤特异性分子进行逻辑组合分析识别出了特异的癌细胞,并触发了这些癌细胞的毁灭过程。这一研究成果在线发表在9月2日的《科学》(Science)杂志上。文章的通讯作者是哈佛大学系统生物学中心的生物工程学家Yaakov Benenson及麻省理工大学的Ron Weiss教授。Benenson长期致力于开发在活体细胞内运作的生物计算机。生物计算机是一种完全由DNA、RNA及蛋白质构成的分子自动机(molecular automata),它们的“输入”是细胞质中的RNA、蛋白质以及其他化学物质,“输出”的则是很容易辨别的分子信号。由于生物计算机能够探测和监控基因突变等细胞内一切活动的特征信息,因此它们可以确定癌细胞等病变细胞。此外,它们还能够自动激发微小剂量的治疗行为。利用这些“分子医生”将有望引发人类医学的重大变革——明确地对人体病变细胞或组织进行治疗,而健康的细胞完全不会受到干扰。不过,要最终实现这一目标,还有很长的路要走。科学家近期进行的一些相关研究,大都是尝试以不同方式开发具有多种用途的生物计算机。在这篇文章中,研究人员成功构建了一个多基因合成“电路”,此电路负责鉴别肿瘤细胞与正常细胞,进而靶向性摧毁识别的肿瘤细胞。其具体工作原理是:对细胞内5种肿瘤特异性分子及出现频率进行抽样及综合分析。是由当5种因子同时在细胞内出现时,该电路才做出正识别响应。这使得肿瘤检测的精确性大大增高。研究人员希望这一成果能为开发出特异的抗癌治疗奠定基础。随后科学家们用这一多基因合成网络对实验室中培养的两种人类细胞Hela细胞(一种子宫颈癌细胞)和正常细胞进行了检测。当遗传生物计算机被导入到这两种不同的细胞类型中时,只有Hela细胞被摧毁,而正常细胞则安然无恙。获得这一结果并非易事,研究人员为之投入了大量的基础工作。Benenson及同时首先针对正常健康细胞和Hela细胞中的miRNA分子进行了高通量筛查,最终确定了能将Hela细胞从健康细胞中鉴别出的5种特定的miRNA组合。“这些miRNA分子被导入到细胞中进行检测。新型的生物计算机利用诸如‘是’与‘非’的逻辑运算对这五种miRNA分子进行组合。只有当对所有分子的整体运算结果为逻辑‘真’时才会生成需要的结果——即促使细胞死亡,”Benenson说。目前研究人员已确定这一生物计算机网络在活细胞中能够非常稳定地工作,准确组合所有细胞内因子并生成正确答案,这代表着研究者们在该领域又向前迈进了重要的一步。 http://www.bioon.com/biology/UploadFiles/201109/2011090911135106.jpgdoi:10.1126/science.1205527 PMC:PMID:Multi-Input RNAi-Based Logic Circuit for Identification of Specific Cancer CellsZhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss, Yaakov BenensonEngineered biological systems that integrate multi-input sensing, sophisticated information processing, and precisely regulated actuation in living cells could be useful in a variety of applications. For example, anticancer therapies could be engineered to detect and respond to complex cellular conditions in individual cells with high specificity. Here, we show a scalable transcriptional/posttranscriptional synthetic regulatory circuit—a cell-type “classifier”—that senses expression levels of a customizable set of endogenous microRNAs and triggers a cellular response only if the expression levels match a predetermined profile of interest. We demonstrate that a HeLa cancer cell classifier selectively identifies HeLa cells and triggers apoptosis without affecting non-HeLa cell types. This approach also provides a general platform for programmed responses to other complex cell states.

  • 48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    【作者】 但操;【导师】 张继民; 【作者单位】 广州医学院, 外科学,【摘要】 研究背景:5’-脱氧氟尿苷(5’-deoxy-5-fluorouridine, 5’-DFUR)是临床治疗消化道恶性肿瘤的口服抗癌药物,为5-氟尿嘧啶(5-FU)的前体药物。其本身没有细胞毒作用,需要在细胞内经过胸苷磷酸化酶(thymidine phosphorylase,TP)转化为5-FU才能发挥抗肿瘤作用。已有文献报道乳腺癌和胃癌细胞可以表达TP活性,而大肠癌细胞是否表达TP则持论不同。我们在前期研究中发现大肠癌组织中TP活性主要由间质细胞中的巨噬细胞表达,而测定6株结肠癌细胞系也几乎没有TP蛋白表达。在癌细胞不表达TP的情况下5’-DFUR在结直肠癌组织中如何转化尚属疑问。我们前期体内实验对结肠癌小鼠动物模型应用化疗药物5’-DFUR进行治疗,结果发现与5-FU相比平均荷瘤生存期更长,平均瘤重轻,同期平均体重下降缓慢,提示5’-DFUR在小鼠结肠癌组织比正常组织中转化率高,抗癌选择性高。其原因可能是TP酶在癌组织中分布较正常组织多。前期体外实验把5’-DFUR加入培养基中同人血单核细胞一起培养24h,5’-DFUR对4种癌细胞的IC50明显下降,提示血液中单核细胞也可表达TP。由于尚未发现实验比较在癌组织和血液中TP含量,故两者TP的含量高低尚需要实验进一步证实。本实验应用高效液相色谱法(high performance liquid chromatography,HPLC)测定应用5’-DFUR后癌组织和血液中5-FU的转化情况,间接推断TP酶在癌组织和血液中分布差异,为进一步研究5’-DFUR在结直肠癌组织中转化及TP酶调控机制提供资料。实验材料:1、实验动物SPF级近交系BALB/c小鼠28只,6-8周龄,雄性,体重20.00±2.34g,购自广东省医学实验动物中心。2、肿瘤细胞株BALB/c小鼠结肠腺癌细胞株(CT26),购自美国菌种保藏中心(American Type Culture Collection, ATCC)。3、实验药物5’-DFUR由Roche公司日本研究中心提供; 5-FU注射液,江苏南通精华制药有限公司生产(批号: 080607);5-FU标准品购自Sigma有限公司提供(批号: 097K1352)。4、实验仪器岛津高效液相系统;色谱柱:Diamonsil C18柱(250mm×4.6mm,5μm)实验方法:1、小鼠结肠癌CT-26细胞株的培养10%胎牛血清1640培养基,含青霉素100×103 U/L和链霉素100 mg/L,37℃,5%CO2水浴恒温培养箱中培养,隔日换液,2-3天酶消化法传代。2、细胞悬液制备制备模型当天取指数生长期的细胞,用0.25%胰蛋白酶消化,机械吹打成细胞悬液,2 000r/min离心5 min,弃上清液,加适量生理盐水调整细胞浓度至1×107个/ml,以台盼蓝测定细胞活力在95%以上。3、结肠癌模型制作方法将体外培养的CT26细胞悬液0.2ml注入小鼠(BALB/c)背部皮下,约2周后基本可以形成肉眼可见的肿瘤隆起。4、动物分组及给药荷瘤小鼠28只随机分为4组:①5’-DFUR给药15分钟组;②5’-DFUR给药30分钟组;③5-FU给药15分钟组;④5-FU给药30分钟组。根据动物体重,5-FU用量0.020mg/g ,配制浓度为1.0 mg/ml。5’-DFUR用量0.038mg/g;配置浓度为2.0mg/ml。各组分别腹腔注射给药15分钟、30分钟后处死小鼠立即取血和瘤组织。5、标本处理小鼠眼眶动静脉取血0.5 ml后放置入37℃水浴30分钟,3200rpm离心5min,取上清液4℃保存。肿瘤组织用滤纸吸干血迹后称重,然后按0.5g组织与4 ml生理盐水(1:8)加入匀浆器匀浆5min, 3200rpm离心5min,取上清液4℃保存。6、制作血液和肿瘤组织的5-FU药物标准曲线取未给药小鼠血清7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使血清中药物浓度分别为6.25,12.5,25.0,50.0,100.0,200.0,400.0μg·mL-1,制作血清标准曲线;取未给药小鼠肿瘤组织匀浆液7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使肿瘤匀浆液中药物浓度分别为1.0,2.0,4.0,8.0,16.0,32.0,64.0μg·mL-1,制作肿瘤标准曲线。7、测量各标本浓度取血清100μL,置于5mL玻璃试管中,加入乙酸乙酯2mL,漩涡振荡2min后,3200rpm离心5min,取上层析液置于另一玻璃试管中。再次加入乙酸乙酯2mL进行第二次提取,漩涡振荡2min后,3200rpm离心5min,取上层析液,然后合并两次提取的上层析液,离心浓缩挥干。加入100μL流动相定容,混匀取出,置于EP管中,10000rpm离心7min,取上层析液20μL进样。记录药物峰面积,代入相应标准曲线计算药物浓度;取肿瘤匀浆液100μL,以同样方法处理标本测量浓度。8、观测指标给药15分钟、30分钟处死组5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度。9、统计学方法应用统计软件SPSS13.0数据包对5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度采用配对样本t检验进行比较。当P0.05时,认为差异有统计学意义。结果:1、注射药物5’-DFUR 15、30分钟后,癌组织转化的5-FU浓度分别54.64μg/g±12.80μg/g和45.58μg/g±18.82μg/g,血清中中5-FU浓度分别为8.83μg/ml±1.68μg/ml和9.82μg/ml±2.93μg/ml,15分钟、30分钟组癌组织5-FU浓度分别为血清的6.36、4.47倍(P0.05);2、注射药物5-FU 15、30分钟后,癌组织转化的5-FU浓度分别86.13μg/g±15.42μg/g和94.68μg/g±39.89μg/g,血清中5-FU浓度分别为133.35μg/ml±20.69μg/ml和112.70μg/ml±26.27μg/ml,15分钟、30分钟组血清5-FU浓度分别为癌组织的1.59、1.62倍(P0.05)。结论:小鼠结肠癌模型体内,癌组织内5’-DFUR转化率高于血液,考虑分布在癌组织中的PyNPase酶比血液高。 【谱图】http://ng1.17img.cn/bbsfiles/images/2012/08/201208142214_383901_1609970_3.jpg

  • 美陆军研发超级抗癌药 宣称可彻底消灭癌细胞

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120113/00241d8fef0e1079d1f91e.jpg美国陆军开发出超级抗癌药物腾讯科技讯(亮亮/编译) 据国外媒体报道,来自美国陆军部队的专家近日在位于德克萨斯州的圣安东尼奥市军事医疗中心成功研制出一种名为“E-75”的超级抗癌药物,对多种肿瘤的治疗都具有很好的效果。据了解,研究人员研制这种化学药物最开始的初衷是为了降低乳腺癌的再发率,但在研究的过程中,研究人员却意外的发现这种药物同时还具有其他的功效。因为,那些吞服了这种药物的人们与服用普通控制药物的人们相比,前者患上结肠癌、前列腺癌、肺癌的概率有了明显的降低。研究人员在实验中选择了一些经基因测试或医疗审定后,被断定为有患上乳腺癌危险的女性,并将其分为两组,一组吞服控制性药物,另一组吞服了“E-75”药物。研究结果显示,吞服“E-75”药物的研究对象的乳腺癌再发率仅有10%,而吞服控制药物的一组竟高达20%。这就意味着超级抗癌药物“E-75”具有着正面积极的保护作用。研究人员之所以会选择这样的研究方法,是因为避免出现类似人们在感染流感后再注射流感疫苗的现象。研究人员解释说,抗癌药物“E-75”的“工作方式”相对来说较为简单,它能够成功的在人们体内建立一个特有的免疫系统,这种系统能够搜寻、识别以及确认呈现在多种类型癌细胞表面的蛋白质,从而对应的进行免疫。但是并不是所有肿瘤都是由分泌这种蛋白质分子的细胞组成的,这也是为何抗癌药物“E-75”不能治疗目前所有癌症类型的主要原因。而且,抗癌药物“E-75”在人体内所建立的特有免疫系统不能击败所有癌症细胞的主要原因之一,还因为有一些癌细胞具有“欺骗”免疫系统的功能,以至于当免疫系统进行识别时,会把这些癌细胞误认为是人体的一部分。但是一旦免疫系统“揭穿”这些癌细胞的“伪装面具”,它们就会毫不留情的对这些癌细胞进行消灭,不留任何一个“活口”。但是即便这样,研究人员仍然坚信,只要在该药物的基础上继续进行研究,未来一定会出现治疗癌症的新型药物和治疗方法,它们定会拥有帮助全世界数百万人改善生活质量的巨大潜力。研究人员表示,它们在过去几十年的主要研究任务就是激活该独特的免疫系统,这也是与癌症“战斗”的主要方法之一。该军队的陆军上校补充解释道,现在出现的关键问题是大多数癌症疫苗在被发现时,癌症患者往往已经处于癌症末期或晚期,因此通过直观的方式去检查是没有意义的。(中国科技网)

  • MSI1 在人小细胞肺癌细胞系中的表达及 MSI1 低表达细胞模型的构建

    MSI1 在人小细胞肺癌细胞系中的表达及 MSI1 低表达细胞模型的构建

    [font='times new roman'][color=#000007]MSI1[/color][/font][font='times new roman'][color=#000007] [/color][/font][color=#000007]在人小细胞肺癌细胞系中的表达及[/color][color=#000007] [/color][font='times new roman'][color=#000007]MSI1[/color][/font][font='times new roman'][color=#000007] [/color][/font][color=#000007]低表达[/color][color=#000000]细胞模型的构建[/color]MSI1 在人小细胞肺癌细胞系中高表达提取人正常肺上皮细胞 BEAS-2B,SCLC-A 型 H69、H209、DMS153 细胞,SCLC-N 型 H446、H82、H2066 细胞,SCLC-P 型 H526、H211 细胞,SCLC-Y 型 H841、DMS114、SW1271 细胞的 RNA,利用 q-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] 检测 MSI1 在正常肺上皮及小细胞肺癌细胞系中的表达情况,结果如图 2-1 显示,MSI1 在小细胞肺癌细胞系中的表达远远高于正常肺上皮细胞,综合分析,选取了 H69、H82、H526 及 SW1271 细胞用于后续实验。 [img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326443512_4838_5389809_3.png[/img]图 小细胞肺癌细胞系中 MSI1 mRNA 的表达(***P0.001)MSI1 低表达细胞模型的构建本实验选取人小细胞肺癌细胞系 H69、H82、H526、SW1271 细胞,使用慢病毒感染技术敲低 MSI1 的表达,同时设置对照组除外病毒本身对细胞产生的影响,待细胞状态良好使用嘌呤霉素筛选, 然后在荧光显微镜下观察如图 , 可见 H69-NC 、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2、SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2细胞均产生绿色荧光,表明人小细胞肺癌细胞慢病毒感染成功。 [img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326451025_2121_5389809_3.png[/img]图 慢病毒感染后 4X 荧光显微镜下图片(H69、H82、H526、SW1271 明场及荧光照片) 敲低 MSI1 后转录和蛋白水平验证分别提取对数生长期的 H69-NC 、H69-shMSI1-1 、H69-shMSI1-2 、H82-NC 、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2、SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞的 RNA 和蛋白,利用 q-[url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url] 技术分别检测各细胞 MSI1 mRNA 相对表达量,结果如图 所示,与对照组相比,H69-shMSI1-1、 H69-shMSI1-2 、 H82-shMSI1-1 、 H82-shMSI1-2 、 H526-shMSI1-1 、 H526-shMSI1-2 、SW1271-shMSI1-1、SW1271-shMSI1-2 组 MSI1 mRNA 表达量明显降低(P0.01), 抑制率约为 75%。利用 Western blot 技术检测各细胞内 MSI1 蛋白的表达情况。结果如图 2-3 所示,与对照组相比,MSI1 蛋白表达在 H69-shMSI1-1、H69-shMSI1-2、H82-shMSI1-1、H82-shMSI1-2、H526-shMSI1-1、H526-shMSI1-2、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞中明显降低。表明 MSI1 低表达细胞模型构建成功。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211232326454704_2148_5389809_3.png[/img]图 敲低 MSI1 在转录水平和蛋白水平的验证(***P0.001)

  • 敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    敲低 MSI1 对小细胞肺癌细胞生长增殖的影响

    [align=center][size=18px]敲低[/size][size=18px] MSI1 对小细胞肺癌细胞生长增殖的影响[/size][/align][size=16px]检测 MSI1 对人小细胞肺癌细胞生长增殖的影响[/size][size=16px]收集[/size][size=16px] H69、H82、H526、SW1271 的对照组和实验组[/size][size=16px]细胞细胞[/size][size=16px]离心,并用完全培养基调整细胞浓度,H69-NC、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、[/size][size=16px] [/size][size=16px]H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2 以每孔 1×104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2,以每孔 1.3×[/size][size=16px]104 [/size][size=16px]个[/size][size=16px]细胞平铺于 96 孔板中,37℃ 恒温培养箱中培养。铺板后,分别于 24 h、48 h、72 h、96 h、120h 在每孔加入 10 [/size][size=16px]μL[/size][size=16px] CCK-8 溶液,37℃ 恒温培养箱中孵育 4h。并用酶标仪测定波长 450 nm 处 OD 值,利用 [/size][size=16px]Graphpad[/size][size=16px] prism5 计算增殖情况。[/size][size=16px]检测 MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]收集[/size][size=16px] H69 、H82 、H526 、SW1271 的对照组和实验组细胞, 其中 H69-NC 、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、[/size][size=16px]H526-shMSI1-1、H526-shMSI1-2 细胞系以 1×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细胞密度接种于 96 孔板中,SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 以 1.3×104 [/size][size=16px]个[/size][size=16px]细胞/孔的细[/size][size=16px]胞[/size][size=16px]密度接种于[/size][size=16px] 96 孔板中。待细胞融合率约 80%,加入不同浓度顺[/size][size=16px]铂[/size][size=16px]。每组均设置对照组及空白组(仅有同体积培养基)。H69、H82、H526 的对照组和实验组[/size][size=16px]加药浓度梯度为 0、1、2、4、8、16、32、64 nmol/mL,SW1271 对照组和实验组细胞加药浓度梯度为 0、2、4、8、16、32、64、128、256 nmol/mL,(加药浓度梯度根据细胞类型、前期预实验结果及细胞对药物的敏感程度而定)。每种浓度设 6 [/size][size=16px]个[/size][size=16px]复孔,每孔总体积为 100 [/size][size=16px]μL[/size][size=16px],培养 24、48、72、96、120 h 后[/size][size=16px]分别检测细胞活力。每孔加入[/size][size=16px] 10 [/size][size=16px]μL[/size][size=16px] 的 CCK-8[/size][size=16px](避光),培养箱中孵育[/size][size=16px] 4 h 后取出,使用酶标仪测定波长为 450 nm 的吸光度(OD 值)。利用公式:抑制率=(加药组-空白组)/(对照组-空白组)计算增殖抑制率。实验重复 3 次,取平均值。以药物浓度为横坐标,细胞增殖抑制率为纵坐标,利用[/size][size=16px]Graphpad[/size][size=16px] prism5 绘图。[/size] [size=16px]敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞增殖能力的影响[/size][size=16px]CCK-8 是一种基于 WST-8 而广泛应用于细胞增殖和细胞毒性的快速、高灵敏度、无放射性的比色检测试剂盒。WST-8 在电子耦合试剂存在的情况下,可以被线粒体内的一些脱氢酶还原生成橙黄色的甲[/size][size=16px]瓒[/size][size=16px],生成的甲[/size][size=16px]瓒[/size][size=16px]物的数量与活细胞的数量呈正比,因此可以直接进行细胞增殖和毒性分析。[/size][size=16px]CCK-8 法 测 生 长 曲 线 实 验 结 果 如 图[/size] [size=16px]3-1 显 示 , 实 验 组 H69-shMSI1-1 、[/size][size=16px]H69-shMSI1-2 、 H82-shMSI1-1 、 H82-shMSI1-2 、 H526-shMSI1-1 、 H526-shMSI1-2 、[/size][size=16px]SW1271-shMSI1-1、SW1271-shMSI1-2 细胞的 OD [/size][size=16px]值明显[/size][size=16px]低于对照组。[/size][size=16px]表明敲低[/size][size=16px] MSI1[/size][size=16px]抑制了[/size][size=16px] SCLC 细胞的生长增殖。[/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321138249_2126_5887180_3.png[/img][size=16px] [/size][size=16px]图[/size][size=16px] [/size] [size=16px]MSI1 低表达对 H69、H82、H526、SW1271 对照组和实验组细胞增殖的抑制情况。应用 [/size][size=16px]Graphpad[/size][size=16px] prism5 作图所示(*P0.05,**P0.01,***P0.001,表示与对照组相比,[/size][size=16px]敲低组[/size][size=16px] OD 值减小[/size][size=16px]具有统计学意义)。[/size] [size=16px]测敲低[/size][size=16px] MSI1 对人小细胞肺癌细胞药物敏感性的影响[/size][size=16px]药敏实验结果如图[/size][size=16px] 3-2 所示,与对照组相比,实验组 H69-shMSI1-1、H69-shMSI1-2、H82-shMSI1-1、H82-shMSI1-2、H526-shMSI1-1、H526-shMSI1-2、SW1271-shMSI1-1、[/size][size=16px]SW1271-shMSI1-2 经不同浓度[/size][size=16px]顺铂处理[/size][size=16px] 24、48、72、96、120 h 后细胞的药物敏感性无明显变化。[/size][size=16px] [/size][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211302321124223_9282_5887180_3.png[/img]

  • 壳聚糖-磺酸甜菜碱对人肝癌HepG-2细胞的siRNA递送实验研究

    【序号】:1【作者】: 董伟1,2李大玉2惠景【题名】:壳聚糖-磺酸甜菜碱对人肝癌HepG-2细胞的siRNA递送实验研究【期刊】:遵义医学院学报. 【年、卷、期、起止页码】:2017,40(01)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=ZYYB201701008&uniplatform=NZKPT&v=StH2kq_HG2bzzyIrTM3pmPFVDXkwXZsKpFyzf0WcfKLJzHZVemREjOiPpJtEz2wK[/url]

  • 禽类病毒或能杀死癌细胞

    维吉尼亚马里兰大学兽医学院科学家发表的文章称感染鸡的病毒有望能够治疗人类前列腺癌。纽卡斯尔病毒对鸡类有害但是不影响人类。科学家改造该病毒发现能够杀死各种类型的前列腺癌细胞。该文章发表在4月份Journal of Virology上。近六分子一的男人会发展成前列腺癌。通常采用激素疗法或化疗方法治疗前列腺癌病人,但是两者都有副作用。马里兰大学兽医系教授Elankumaran Subbiah博士希望开发出新的更高效并副作用小的治疗方法。纽卡斯尔病毒感染家禽和野生禽类,特别是鸡。尽管该病毒能引起人类轻度结膜炎和感冒样症状,但是并不对人类健康有很大危害。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制