当前位置: 仪器信息网 > 行业主题 > >

吡咯并喹啉苯醌钠盐

仪器信息网吡咯并喹啉苯醌钠盐专题为您提供2024年最新吡咯并喹啉苯醌钠盐价格报价、厂家品牌的相关信息, 包括吡咯并喹啉苯醌钠盐参数、型号等,不管是国产,还是进口品牌的吡咯并喹啉苯醌钠盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合吡咯并喹啉苯醌钠盐相关的耗材配件、试剂标物,还有吡咯并喹啉苯醌钠盐相关的最新资讯、资料,以及吡咯并喹啉苯醌钠盐相关的解决方案。

吡咯并喹啉苯醌钠盐相关的论坛

  • 【求助】三甲基苯醌含量的化学滴定方法

    我用滴定对苯醌的方法(溶液加碘化钾,盐酸,暗处静置后用硫代硫酸钠滴定)测三甲基苯醌含量,但是终点总是反色,找不到终点,请问高人们有解决的办法吗?谢谢!

  • 苯醌气质联用检测不出

    [color=#444444]做了一个苯醌的反应,GC-MS不仅产物检不出,原料也检不出,柱分离后的可能产物再打GC-MS也检不出,这是为什么?[/color]

  • 关于叔丁基对苯醌类的质谱行为

    关于叔丁基对苯醌类的质谱行为

    大家好,我用的是[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url],ESI负离子模式下,跑了一个叔丁基对苯醌(相对质量164)的标,结果响应全在【m/z=165】处,即产生了[M+H](-)的峰,请问可能是什么原因和什么结构呢?之前一直是用的是正离子模式,效果不好。然后看文献找到了一个相似结构的物质(2,6-二叔丁基苯醌,相对质量220.3),文献中ESI使用负离子模式,在低分辨质谱下前体离子的峰是219.4或者220。[img=叔丁基对苯醌,395,317]https://ng1.17img.cn/bbsfiles/images/2024/01/202401021422052343_7686_6301581_3.png!w395x317.jpg[/img]

  • 关于苯醌检测波长的选择

    [color=#444444]请教下各位大神,我做的样品中有一个是对苯二酚反应后的产物,推测可能是对苯醌,出峰位置对应的最大吸收波长是245nm。现在要拿去做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url],那我选取的检测波长就用245nm还是有对应醌类物质的检测波长?(比如酚类物质通常选取280nm,是否醌类物质也有类似的检测波长呢?)[/color][color=#444444]谢谢各位了![/color]

  • 求助,叔丁基对苯醌和叔丁基对苯酚的色谱分离方法

    大家好,一直在尝试做这两种物质,采用ESI源负离子模式,叔丁基对苯醌(TBBQ)会形成【M+H】(-)的特殊准分子离子,m/z=165,和叔丁基对苯酚(TBHQ)的准分子离子一样,m/z=165,导致他们的MRM通道完全一致,只能在色谱上区分,但是他们的保留时间测出来一模一样,改了不少次条件了都不太好。 我想请问 1.是不是两种物质已经发生了某种转化呢,实际已经是同一种物质,怎么验证呢? 2.如果没发生转化,怎么样在色谱上分开他们两个,应该怎么调整?实验室有T3 和C18 柱子,各种流动相都有

  • 关于叔丁基对苯酚和叔丁基对苯醌的液相色谱分离问题

    大家好,我想在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]上分离叔丁基对苯酚和叔丁基对苯醌,但尝试了很多次始终做不到,他们两个的峰几乎完全在同一时间,我想请问一下大家,应该从哪方面尝试呢?实验室有T3和C18两种色谱柱,各种流动相和药品几乎都有。

  • 苯醌负离子模式高分辨质谱解析

    苯醌负离子模式高分辨质谱解析

    苯醌做高分辨质谱,ESI负离子模式,仪器型号是[font=宋体]德国[/font][font='Times New Roman','serif']Thermo Scientific [/font][font=宋体]公司[/font][font='Times New Roman','serif']Q Exactive[/font][font=宋体]高分辨[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url],质谱出108,为M而不是M-1,求解?[/font][font=宋体][/font][font=宋体][/font]

  • 【求助】求助:邻羟基苯乙酸的一钠盐、二钠盐液相无法定量问题??

    如题,在合成中有一步反应是用邻羟基苯乙酸制备其二钠盐,其中产物中可能含有的成分有邻羟基苯乙酸、邻羟基苯乙酸的一钠盐、二钠盐,请问如何建立检测方法将其分离呢?谢谢! 试过液相的方法,但是分不开,也试过双相滴定,但是里面还有过量的NaOH,影响结果,也试过用酚羟基的显色反应,但这个又太灵敏了,无法定量。请大家指导一下吧。

  • 【原创大赛】基于近红外光谱分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究

    【原创大赛】基于近红外光谱分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究

    [align=center][b]基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的2,3,5-三甲基苯醌粗品萃取过程定量模型优化研究[/b][/align][b]中文摘要:目的[/b]实际工业生产工艺中,萃取是一项耗时耗力的过程,萃取终点的确定通常采用离线的HPLC, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]或由熟练工人根据经验判断,这些方法操作较复杂或是不够准确,在实际生产中缺乏一种快速有效的检测手段以判断萃取终点,节省操作时间,避免过分萃取浪费溶剂。利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术可以明显改善萃取工艺。[b]方法[/b]本实验针对2,3,5-三甲基苯醌(TMBQ)粗品萃取环节,采用偏最小二乘法(PLS)建立模型,考察了不同预处理方法与变量选择方法对模型的影响以优化模型,采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合PLS算法建立TMBQ萃取过程含量快速检测模型,并使用不同预处理方法与波段选择方法对模型进行优化,最终确定使用一阶导数+SG15点平滑预处理结合iPLS选择波段建立PLS模型。[b]结果[/b]建立模型的各项参数为:波普区间4385.33cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup], 5928.11cm[sup]-1[/sup]-6309.94cm[sup]-1[/sup],模型决定系数R[sup]2[/sup]=0.996, RMSEP=0.1350。[b]结论[/b]建立的模型精密度与准确度良好,可以满足含量分析的需要,是TMBQ萃取过程含量快速检测的有效方法,可以快速准确的对三甲基苯醌粗品萃取过程进行在线监测,提供了一种用于该工艺环节的快速检测手段,如果应用于生产,可以节省操作时间,避免溶剂浪费。[b]关键词:[/b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析;2,3,5-三甲基苯醌;萃取 2,3,5-三甲基苯醌是维生素E的主要中间体。2,3,5-三甲基苯醌在国外已有生产, 但国内尚未见文献报道。国内用2,3,5-三甲基苯醌主要依赖进口。因此,开展2,3,5-三甲基苯醌的合成研究对发展国内维生素 E 的生产具有重要意义。TMHQ的合成工艺国内外己有多种报道,较为先进的是TMP法与异佛尔酮法,TN[b]B[/b]Q粗品萃取过程是合成TMBQ的关键环节。在制药领域,NIRS作为一种重要的PAT工具,已成功用于药物的原辅料评价、关键过程的监测和控制、成品的快速放行和质量监测等各个环节,为保证产品质量、降低生产成本、革新生产过程发挥了重要的作用。[b]1实验材料与仪器1.1仪器[/b] Antaris Ⅱ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国Thermo Fisher公司),7890A[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-氢焰离子化检测器(美国Agilent公司),HP-1毛细管色谱柱(美国Agilent公司)BT224S电子分析天平(德国Sartorius公司),容量瓶,100ml圆底烧瓶,分液漏斗,[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url](美国ThermoFisher公司)。RESULT[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]采集软件,TQAnalyst[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析软件,Matlab数据处理软件。[b]1.2试剂[/b] 2,3,6-三甲基苯醌(合成步骤见第二章),石油醚(天津富宇精细化工有限公司,沸程60℃-90℃)。[b]2方法2.1样品制备和处理[/b] 按照第二章步骤合成得TMBQ得其石油醚溶液,萃取水相合并有机相,旋蒸浓缩除去石油醚至橙黄色油状液体,称重,再用石油醚作为溶剂配置1ug/ml~50mg/ml一系列溶液。[b]2.2光谱采集[/b] 波长范围4000 cm[sup]-1[/sup]-10000cm[sup]-1[/sup];扫描次数32;分辨率8 cm[sup]-1[/sup],使用4mm光程的玻璃样品管乘装液体样品,采集样品前采集背景以消除背景干扰,每个样品重复采集三次光谱。光谱采集在恒定室温(24℃)与恒定湿度的条件下进行。[b]2.3样品集划分[/b] 使用K-S分类法将所有66个样品换分为48个校正集与18个验证集。[b]2.4模型建立与优化[/b] 采用导数、平滑等方法对原始光谱进行预处理,应用偏最小二乘法(PLS)建立模型,结合RMSEP等评价参数,通过变量选择方法选择特征波段优化模型。[b]2.5 重复性考察[/b] 选择3个验证集样品,每个样品连续采集10次光谱,使用建立好的模型预测每张光谱,并计算出每个样品十次预测值的均值和标准偏差。是第i个样品的第j张光谱,第i个样品共测定ri个光谱,第i个样品的预测平均值为:[align=center][img=,90,83]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311044_01_1626619_3.png[/img][/align] 复测定的标准偏差为:[align=center][img=,164,102]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311044_02_1626619_3.png[/img][/align] 用c[sup]2[/sup]检验来考察这些重复性标准偏差是否属于同一总体:[align=center][img=,271,245]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311045_01_1626619_3.png[/img][/align] z为需要重复测定的样品数,将所得χ[sup]2[/sup]与自由度(z-1)临界值比较,若χ[sup]2[/sup]在临界值以下,则重复测定的所有方差属于同一总体,标准偏差均值σ可以作为近红外测定的标准偏差,近红外分析方法的重复性为z××σ[sub]max[/sub]。如果χ[sup]2[/sup]大于临界值,近红外分析方法的重复性随样品组分浓度不同而不同,这时,近红外分析方法的重复性不大于z××σ[sub]max[/sub](σ[sub]max[/sub]为σi中的最大值)。[b]2.6[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测[/b] 初始温度180℃恒温5min,以10℃/min的速率升温至240℃。进样口温度:300,检测器温度:300,载气:氮气,载气流速:3ml/min,进样量:0.5ul。[b]3结果3.1校正集与验证计划分[/b] 使用K-S分类法将所有66个样品换分为48个校正集与18个验证集。校正集与验证集的第一第二主成分分布图如图1,其中黑色符号代表校正集样品,红色符号代表验证集样品,验证集均匀分布于校正集中,可见使用该方法分类合理。[align=center][img=,553,217]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311047_01_1626619_3.png[/img][/align][align=center]图1 所有样品主成分分布图[/align][b]3.2预处理方法的选择[/b] 考察无预处理、一阶导数+SG5点平滑、一阶导数加SG9点平滑、一阶导数+SG15点平滑、二阶导数加15点平滑这几种方式的建模结果,以RMSEC、RMSECV、RMSEP以及R[sup]2[/sup]作为评价指标,结果见表1。[align=center]表1 预处理方法评价参数[/align][align=center][img=,566,164]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311104_01_1626619_3.png[/img][/align] 无预处理的模型结果最差,说明噪声对模型结果有较大影响,原始光谱如图2。SG15点平滑+一阶导数的预处理结果RMSEC、RMSECV以及RMSEP最小,R[sup]2[/sup]最高。因此选择SG15点平滑+一阶导数作为模型的预处理方法,预处理后光谱如图3。[align=center][img=,524,224]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311048_01_1626619_3.png[/img][/align][align=center]图2 原始光谱图[/align][align=center][img=,532,210]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311049_01_1626619_3.png[/img][/align][align=center]图3 一阶导数+SG15点平滑预处理光谱图[/align][b]3.2异常样本的剔除[/b] 图4为校正集样品在学生残差-杠杆值图中的分布。图中5号(红色方框标记)样品学生残差值与杠杆值都非常高,判定为异常样品,猜测为溶液配制错误或者在光谱采集过程中出现错误,因此在后期模型优化中剔除这一异常值。[align=center][img=,563,217]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311050_01_1626619_3.png[/img][/align][align=center]图4 学生残差-杠杆值关系图[/align][b]3.3波段选择结果[/b] 以一阶导数+SG15点平滑为最优预处理方法进行波段选择,主要考察ForwardiPLS、SPA、相关系数法三种方法。[b]3.3.1iPLS波段选择结果[/b] 设定20为最大主成分数,分别考察以50、100、200个变量为波段基础的建模效果。红色虚线是全波段建模的RMSECV,红色与绿色条带的高度代表以此条带的变量建模所得RMSECV,从图5中可见,绿色条带的RMSECV值最小,因此绿色条带是被选择用于建模的波段,红色条带则表示不被选择的区域。表2为各变量基础的模型参数。[align=center][img=,558,268]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311051_01_1626619_3.png[/img][/align][align=center]图5 以50个变量为基础的iPLS法波段选择效果图[/align][align=center][img=,572,266]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311052_01_1626619_3.png[/img][/align][align=center]图6 以100个变量为基础的iPLS法波段选择效果图[/align][align=center][img=,618,262]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311052_02_1626619_3.png[/img][/align][align=center]图7 以200个变量为基础的iPLS法波段选择效果图[/align][align=center]表2 不同变量基础的建模结果[/align][align=center][img=,646,111]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311053_01_1626619_3.png[/img][/align][b]3.3.2 SPA法波段选择结果[/b] SPA算法首先通过完成n个波长分组各M个波长选择,然后通过多元定量校正模型完成m(1£m£M)个最优波长的选定。图8为SPA法选择变量的效果图。 运行SPA算法共选择3个变量,对应波数为4188.65cm[sup]-1[/sup],4885.50cm[sup]-1[/sup],7503.50cm[sup]-1[/sup],为图中红色方框标注,以此3个变量建立PLS模型,结果如表 所示,RMSECV与RMSEP均有所增加,R[sup]2[/sup]降低,表明模型预测能力与线性都有所降低。分析原因可能是此方法在选择波段过程中由1557个变量减少到3个,光谱变量删除过多,去除大量无关变量的同时导致许多有价值信息的丢失。[align=center][img=,501,246]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311053_02_1626619_3.png[/img][/align][align=center]图8 SPA算法变量选择结果图[/align][b]3.3.3相关系数法波段选择结果[/b] 将相关系数阈值设定为0.6、0.7、0.8,使用相关系数法计算出TMBQ含量值与波数的相关系数图,如图9,图中虚线为设定的相关系数阈值,虚线以上及以及的部分代表相关系数大于阈值的波段,阈值越高,被选择的波段越少,当阈值设为0.8时,大于阈值的波段已经较少。以超过阈值的波段建立PLS模型。模型结果如表3,可见将阈值设为0.6时模型结果最好。[align=center] a[img=,402,175]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311055_01_1626619_3.png[/img][/align][align=center] b[img=,409,187]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311056_01_1626619_3.png[/img][/align][align=center] c[img=,409,176]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311056_02_1626619_3.png[/img][/align][align=center]图9 不同阈值的波数相关图(a阈值设为0.6,b阈值设为0.7,c阈值设为0.8)[/align][align=center]表3 相关系数法建模参数[/align][align=center][img=,496,105]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311058_01_1626619_3.png[/img][/align][b]3.4 小结[/b] 综合比较全波段建模与三种波段选择方法建模结果,参数如表。其中使用iPLS法选取600个变量,波段区间为4385.33cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup],5928.11cm[sup]-1[/sup]-6309.94 cm[sup]-1[/sup],分别对应双键上C-H第一组合频与一级倍频吸收,建模后具有最高的决定系数和最低的各项方差值,这些参数表明使用该方法建立的模型预测能力最好,与真实值最接近。因此本实验主要选择iPLS方法选择变量,结合一阶导数+SG15点平滑建立模型,应用于TMBQ萃取过程含量的快速检测。[align=center]表4 各变量选择方法比较[/align][align=center] [img=,374,136]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311059_01_1626619_3.png[/img][/align][align=center][img=,524,214]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311059_02_1626619_3.png[/img][/align][align=center]图10 优化后模型预测线性图[/align][b]3.5重复性试验考察[/b] 采集验证集8号、25号、36号样品,对TMBQ含量模型进行重复性测试,每样品采集10次光谱。预测结果见表5。[align=center]表5 重复性考察结果[/align][align=center][img=,578,337]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311100_01_1626619_3.png[/img][/align] 自由度为2时,χ[sup]2[/sup]临界值为5.99。实际χ[sup]2[/sup]小于临界值,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析方法重复性为0.154,可以满足分析应用。[b]3.6NIR预测考察[/b] 第一次使用20ml石油醚萃取,之后每次使用等体积10ml石油醚萃取,共萃取8次,使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]测定TMBQ峰面积,并使用NIR采集8次萃取液[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],使用优化好的定量模型对其含量进行预测。[align=center][img=,490,255]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311102_01_1626619_3.png[/img][/align][align=center]图11 NIR预测值[/align] 图11为NIR对萃取过程的预测结果,第一次萃取即将大部分产品萃取出,随后的每次萃取量呈逐渐下降的趋势,在第五次萃取后,萃取液中产品含量几乎为0,并且随后没有变化,表明已达到萃取终点。使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测第4~8次萃取液,记录TMBQ峰面积,结果如表6。[align=center]表6 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测结果表[/align][align=center][img=,529,66]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311103_01_1626619_3.png[/img][/align] 第五次萃取后,TMBQ峰面积已经很小,并且基本没有变化,因此在4次萃取完全可以将水相中的TMBQ萃取完全,继续萃取已经没有意义,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]检测与NIR预测结果相符,表明此模型预测能力良好,对萃取工艺具有一定指导意义。[b]4讨论[/b] 本实验采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]结合PLS算法建立TMBQ萃取过程含量快速检测模型,并使用不同预处理方法与波段选择方法对模型进行优化,最终确定使用一阶导数+SG15点平滑预处理结合iPLS选择波段建立PLS模型,建模所用波段区间为4385.33 cm[sup]-1[/sup]-5152.86cm[sup]-1[/sup],5928.11 cm[sup]-1[/sup]-6309.94cm[sup]-1[/sup],模型决定系数R[sup]2[/sup]=0.996,RMSEP=0.1350。使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]验证了NIR模型对萃取过程与终点的预测能力。以上结果表明模型精密度与准确度良好,可以满足含量分析的需要,是TMBQ萃取过程含量快速检测的有效方法。[b]5参考文献[/b]孙月婷. 维生素E 的合成与分析研究现状. 广州化工, 2011, 39(6): 34-35.O.A.Kholdeava Synthesis of Vitamia E J.Mol.Cotal,1992,88(5):235~ 244孔黎明, 周涛, 菅盘铭. 2, 3, 5- 三甲基苯醌和2, 3, 5- 三甲基氢醌的一种合成方法: 中国, 102219665. 2011-10-19.A BShishmakov, Yu V Mikushina, O V Koryakova. Oxidation of 2,3,6-Trimethylphenolon Titanium Dioxide Xerogel by Hydrogen Peroxide in the Absence of an OrganicSolvent. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2011, 84(9):1555-1559. O V Zalomaeva, N N Trukhan,I D Ivanchikova, et al. EPR study on the mechanism of H[b][sub]2[/sub][/b]O[b][sub]2[/sub][/b]-basedoxidation of alkylphenols over titanium single-site catalysts. J. Mol.Catal. A: Chem., 2007, 277(1-2), 185~192.褚小立. 化学计量学方法与分子光谱分析技术.北京 化学工业出版社. 2011.董学锋,戴连奎,黄承伟等.结合PLS-DA与SVM的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]软测量方法

  • 【求助】杂环化合物钠盐的元素测定,前处理方法?

    [font=宋体][size=3]有机原料之杂环化合物:[/size][/font][size=3][font=Times New Roman] [/font][/size][size=3][font=宋体]喹啉硫酸钠盐,吡啶盐酸钠盐中测试杂质[/font][font=Times New Roman]Fe[/font][font=宋体],[/font][font=Times New Roman]Cd[/font][font=宋体],[/font][font=Times New Roman]Pb[/font][font=宋体]请教方法:[/font][/size][size=3][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])干法消解需注意什么?有一阵子冒烟很厉害,[/font][font=Times New Roman]500[/font][font=宋体]度要[/font][font=Times New Roman]24[/font][font=宋体]小时以上还够呛[/font][/size][size=3][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])湿法消解用[/font][font=Times New Roman]HNO[sub]3[/sub]+H[sub]2[/sub]O[sub]2[/sub][/font][font=宋体],还是[/font][font=Times New Roman] [/font][font=Times New Roman]HNO[sub]3[/sub]+HClO[sub]4?[/sub][/font][/size][size=3][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])标准加入法可以不消解吗?[/font][/size]

  • 维生素 b1 的问题

    检测维生素B1项目遇到一个问题,产品配方中添加了维生素B1,检测添加的维生素B1原料结果合格,但是在检测对应产品则无法检测出维生素B1,产品大致配方如下(西柚果汁粉、低聚果糖、二氢槲皮素粉、吡咯并喹啉醌二钠盐,复配维生素、复配矿物质、柠檬酸、香精),不知道该配方基体中什么对维生素B1的检测有如此大的影响,请各位大佬帮忙分析一下!

  • 【分享】日本拟批准异喹啉和吡咯作为食品添加剂使用

    2011年6月9日,日本农林水产省发布G/SPS/N/JPN/279号通报:食品卫生法实施条例及食品和食品添加剂和标准规范修订案。该修正案批准异喹啉和吡咯作为食品添加剂使用并规定此类物质的标准和规范。该草案评议截止期为2011年8月8日,此后会尽快批准和生效。更多详情参见:http://members.wto.org/crnattachments/2011/sps/JPN/11_1820_00_e.pdf

  • 【涨姿势】低钠盐,你了解吗?

    低钠盐是什么?低钠盐是一种健康食盐。以加碘食盐为基础,添加一定量氯化钾(含量约30%)。与普通钠盐相比含钠低(氯化钠70%左右),富含钾(氯化钾30%左右),有助人体钠钾平衡,降低高血压、心血管疾病的风险。在食盐中,导致咸味的是氯离子而非钠离子,故低钠盐能够实现减钠补钾而基本不减咸。低钠盐的基本介绍低钠盐的两大功能:减盐不减咸,帮助人体钠钾平衡;重要功效:防控高血压。适用人群:最适合中老年人和患有高血压,以及身怀六甲的孕妇长期服用。但高钾药物服用者和肾功能不全、高血钾患者须遵医嘱。不适人群:不适合心脏有疾病的人群,K+易增加心脏负担,如滥用可能引起猝死。2013年1月31日,世界卫生组织发布新的食盐摄取指南,明确指出钠摄入过量或钾摄入不足都是导致高血压的风险因素。从饮食结构来看,中国人主要的钠摄入源自食盐,而低钠盐是能实现减钠补钾的最佳选择。注意事项1、必须注意的是,千万不可因为低钠盐有好处就大把大把的用,不咸其实是心理因素,做菜时若用太多,就失去了减盐的意义了。2、荤菜和半荤素的菜使用低钠盐不会有口味上的不同,纯青菜的烹饪上,可能会有些口感上的差异。针对此点在料理青菜时,可以用葱姜蒜等香辛料来提味,久了就会习惯。3、肾脏病应该低钠饮食,但也不可用低钠盐,这是因为低钠盐中含有较多的钾,肾脏病人,尤其是排尿功能出现障碍(例如尿毒症)的患者,不可以吃低钠盐,较多的钾不能有效排出体外,堆积在体内会造成高血钾,容易造成心律不整,心衰竭的危险。4、甲状腺机能亢进(甲亢)用无碘盐,甲状腺机能亢进和慢性淋巴球性甲状腺炎病人,除了不可以吃含碘的食物,譬如海菜、昆布(海带),还应该用不含碘的食盐,因为碘是制造甲状腺荷尔蒙的原料。【来源:生活中的化学】

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制