当前位置: 仪器信息网 > 行业主题 > >

偏硼酸钠八水合物

仪器信息网偏硼酸钠八水合物专题为您提供2024年最新偏硼酸钠八水合物价格报价、厂家品牌的相关信息, 包括偏硼酸钠八水合物参数、型号等,不管是国产,还是进口品牌的偏硼酸钠八水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合偏硼酸钠八水合物相关的耗材配件、试剂标物,还有偏硼酸钠八水合物相关的最新资讯、资料,以及偏硼酸钠八水合物相关的解决方案。

偏硼酸钠八水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。 序号 物质名称 EC CAS 可能用途 1 氯化钴 231-589-4 7646-79-9 干燥剂、例如硅胶 2 重铬酸钠二水合物 234-190-3 7789-12-0 金属表面精整、皮革制作、纺织品染色、木材防腐剂 3 五氧化砷 215-116-9 1303-28-2 杀菌剂、除草剂 4 三氧化二砷 215-481-4 1327-53-3 除草剂、杀虫剂 5 酸式砷酸铅 232-064-2 7784-40-9 杀虫剂 6 三乙基砷酸酯 427-700-2 15606-95-8 木材防腐剂 7 邻苯二甲酸二丁基酯(DBP) 201-557-4 84-74-2 增塑剂、粘合剂和印刷油墨的添加剂 8 邻苯二甲酸二(2-乙基己) 204-211-0 117-81-7 PVC 增塑剂、液压液体和电容器里的绝缘体 酯(DEHP) 9 邻苯二甲酸丁苄酯(BBP) 201-622-7 85-68-7 乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂 10 蒽(Anthracene) 204-371-1 120-12-7 染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。 11 三丁基氧化锡(TBTO) 200-268-0 56-35-9 木材防腐剂 12 二甲苯麝香 201-329-4 81-15-2 香水、化妆品 13 六溴环十二烷(HBCDD) 206-33-9 294-62-2 阻燃剂 14 C10-13氯代烃(短链氯化石蜡)(SCCP) 287-476-5 85535-84-8 金属加工过程的润滑剂、橡胶和皮革衣料、胶水 15 4,4'-二氨基二苯甲烷(MDA) 202-974-4 101-77-9 偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体 16 蒽油 292-602-7 90640-80-5 主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。 17 蒽油、蒽糊、轻油 295-278-5 91995-17-4 18 蒽油、蒽糊、蒽馏分 295-275-9 91995-15-2 19 蒽油、少蒽 292-604-8 90640-82-7 20 蒽油、蒽糊 292-603-2 90640-81-6 21 高温煤沥青 266-028-2 65996-93-2 主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作 22 硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 23 氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料 24 2,4-二硝基甲苯 204-450-0 121-14-2 用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。 25 邻苯二甲酸二异丁酯(DIBP) 201-553-2 84-69-5 增塑剂 26 铬酸铅 231-846-0 7758-97-6 色素,用于塑料、油漆着色 27 钼铬酸铅红(CI颜料红104) 235-759-9 12656-85-8 28 铬酸铅黄(CI颜料黄34) 215-693-7 1344-37-2 29 三(2-氯乙基)磷酸盐(TCEP) 204-118-5 115-96-8 阻燃剂 30 丙烯酰胺 201-173-7 1976-6-1 丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。 31 三氯乙烯 201-167-4 1979-1-6 金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体 32 硼酸 233-139-2 10043-35-3 具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。 33 四硼酸钠,无水 215-540-4 1330-43-4 具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等 34 四硼酸钠,水合物 235-541-3 12267-73-1 35 铬酸钠 231-889-5 7775-11-3 实验用分析试剂;生产其他含铬化合物 36 铬酸钾 232-140-5 7789-00-6 金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造 37 重铬酸铵 232-143-1 7789-9-5 氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理 38 重铬酸钾 231-906-6 7778-50-9 生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂 39 硫酸钴 233-334-2 10124-43-3 用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。 40 硝酸钴 233-402-1 10141-05-6 用于表面处理、电池、陶瓷颜料、催化剂。 41 碳酸钴 208-169-4 513-79-1 陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料 42 醋酸钴(乙酸钴) 200-755-8 71-48-7 用于表面处理、合金、颜料、染料和饲料添加剂。43 乙二醇单甲醚2- 203-713-7 109-86-4 用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂 44 乙二醇单乙醚2- 203-804-1 110-80-5 常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。 45 三氧化铬 215-607-8 1333-82-0 用于金属处理和木材防腐剂中的稳定剂。 46 三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等 231-801-5236-881-5 7738-94-513530-68-2 用于金属处理和木材防腐剂中的稳定剂。 47 乙二醇乙醚醋酸酯 203-839-2 111-15-9 用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程 48 铬酸锶 232-142-6 7789-6-2 用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层 49 邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP) 271-084-6 68515-42-4 用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂 50 肼 206-114-9 7803-57-8302-01-2 防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体 51 1-甲基-2-吡咯烷酮 212-828-1 872-50-4 用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料 52 1,2,3-三氯丙烷 202-486-1 96-18-4 用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水 53 邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP) 276-158-1 71888-89-6用于聚氯乙烯 (PVC)塑料增塑剂、密封剂和印刷油墨
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 硝酸钠和肥料中氮的测定
    硝酸钠和肥料中氮的测定devarda 蒸馏法测定硝酸钠和肥料中的氮1介绍本文介绍了一种简便、快速、灵敏的测定硝酸钠中氮含量的 Devarda 方法。采用 K-365 MultiKjel 进行 Devarda 蒸馏,然后在万通 Eco 滴定仪上进行硼酸滴定。Devarda 金属与氢氧化钠反应生成氢。产生的氢将硝酸盐和亚硝酸盐还原为氨。然后氨被硼酸溶液吸收,用标准硫酸滴定。2设备MultiKjel 和 万通 Eco 滴定仪 (11K36531211)300 mL 玻璃样品管 (11059690)分析天平(精度 ± 0.1 mg)Devarda 防溅保护器 (11071014)3试剂与材料试剂:NaOH 32%, VWR (9913.9010)硼酸 (H3BO3) 4%:200 g 硼酸, 稀释至 5L 蒸馏水, pH 调节到 4.65硫酸 0.1 mol/L 滴定液硝酸钠 ≥ 99.5% Devarda’s 合金粉末样品:在当地市场购买的化肥,含 15% 的硝酸盐 + 氨氮和微量尿素安全操作请参考所有相应的 MSDS!4步骤直接蒸馏然后硼酸滴定 —— 采用硼酸滴定法测定 Devarda 蒸馏过程中氨的蒸馏量。氨和硼酸形成硼酸络合物,直接用已知浓度的硫酸滴定。过量的硼酸保证了氨能够被完全吸收。氮的测定包括以下步骤:在碱性条件下,德瓦达合金将硝酸盐/亚硝酸盐还原为氨。用蒸汽蒸馏法将氨蒸馏到硼酸接收。硼酸滴定法测定氮含量。系统准备:先进行预热,然后进行启动步骤(选择相同的方法作为启动方法进行分析),或者在主屏幕上使用准备功能。在保持自动蒸馏模式上,即使间断性的中断之间的测定,也不需要进一步的预热或启动。空白制剂:本实验用一个空的 300ml 样品管,内含 2g 的 Devarda 合金作为空白。每个空白用一个新的样管。将样品管安装在蒸馏装置上,进行蒸馏和滴定。参考标准准备:小心地在每个 300ml 样品管中称量±0.2 g 硝酸钠,并在蒸馏前加入 2g 德瓦达合金。把准确的记下来。样品称重,将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。样品制备:仔细称量每个 300ml 样品管中 ±0.2 g 的样品,并在蒸馏前加入 2g 德瓦达合金。记下样品的确切重量。将样品管安装在蒸馏装置上,进行蒸馏,然后进行自动/手动滴定。注意事项:Devarda 合金由 ~ 45% 铝、~ 50% 铜和 ~ 5% 锌的混合物组成。在碱性条件下,铝和锌被还原,产生氢气。氢气在原地将硝酸盐还原为氨。这是一个放热反应,因此在反应过程中,液体温度升高,反应混合物产生泡沫。催化剂应准确称量。反应时间应保持足够长的时间,以使反应完全和强烈的反应平息下来。排空程序应该关闭,因为 Devarda 合金的残留物会堵塞管路!Devarda 合金的残留物对环境有潜在威胁!蒸馏后不要将样管中的废物倒入水槽中!一定要把它安全地处理掉。在样品测定前,先进行 5 次空白测定,再进行 5 次标准品蒸馏。所有蒸馏参数列于表 1。Table 1:蒸馏和滴定的参数(点击放大查看)计算 —— 结果是按氮的百分比计算的。用式 (1) 和 (2) 计算结果。对于对照品,其纯度如式 (3) 所示。wN:氮的重量分数VSample :样品消耗滴定酸的体积[mL]VBlank :空白消耗滴定酸的平均体积[mL]z :摩尔系数(1 for HCl, 2 for H2SO4)c:滴定液浓度[mol/L]f:滴定系数(商业溶液一般为 1.000 参照产品合格证)MN:氮的分子量 (14.007 g/mol)mSample:样品重量 [g]1000:转化因子 [mL to L]%N :氮的重量百分比%NNaNO3:为 NaNO3 纯度校正的氮的重量百分比[%]P:对照品 NaNO3 的纯度[%]5结果硝酸钠回收 —— 硝酸钠(纯度或含量 = 99.5%) 的氮测定和回收率的结果见表 3。硝酸钠含氮量为 16.48%。Table 2:空白测定结果Table 3:硝酸钠中氮的回收结果(点击放大查看)Table 4:标记 N % = 15 的肥料样品中氮的测定结果(点击放大查看)6结论用该方法测定硝酸钠和化肥中的氮,结果可靠,重现性好。这些结果与给定的硝酸钠值吻合得很好。加样回收率为 100.296 % (RSD = 0.049%),在 98 ~ 102% 的标准范围内。
  • MFI专注蛋白聚集分析,助力药物稳定性研究
    近日,美国明尼苏达大学药学院药理学科学家,利用MFI,在权威杂志Journal of ControlledRelease(IF:7.901)发表文章:Freezing-induced ProteinAggregation - Role of pH Shift and Potential Mitigation Strategies, J Control Release. 2020 Jul 10 323:591-599. --研究背景--在设计用于肠胃外给药的蛋白质药物产品中,聚集体的产生,除了在外观上引起不适之外,最重要的是它们具有细胞毒性作用,或是引起机体免疫原性应答。美国和欧洲药典对肠胃外药物产品中的不溶性聚集物有规定:对于小剂量的肠胃外药物,通过光阻法测量的小颗粒(≥10μm)和大颗粒(≥25μm)的推荐药典规范分别为≤6000/container和≤600/container。因此,预防和减轻蛋白质聚集对于维持蛋白质药物产品的安全性,功效和质量至关重要。药品加工步骤中,如纯化,搅动,冻融,填充,冻干,制剂成分,运输压力,都有可能将天然蛋白质转化为聚集体。而蛋白质溶液在配制为药物产品之前,通常以冷冻状态保存很长一段时间,所以,因反复冻融而产生的蛋白聚集体更应引起关注。蛋白质制剂如缓冲液可确保制剂的pH值在整个保质期内都保持在所需范围内。但在低温过程中,某些缓冲区的有效性可能会受到影响。例如,当冷冻含有磷酸二氢钠和磷酸二钠的水溶液(即磷酸钠缓冲液)时,磷酸氢二钠的选择性结晶导致冷冻浓缩液的pH降低,从而引起蛋白聚集体的产生。因此,本文旨在研究,在不同缓冲溶液的冻融循环过程中,两种模型蛋白质(牛血清白蛋白(BSA)和β-半乳糖苷酶(β-gal))聚集体的产生,以及这两种蛋白对缓冲液pH值变化的影响。同时,评价了添加的非结晶溶质对pH值变化的影响,以及pH改变对蛋白质聚集行为的影响。--研究结果--使用MFI表征冷冻和解冻后蛋白颗粒的形成利用MFI检测发现,无论何种缓冲液,BSA(10mg/mL)在制备和立即分析时均显示出较低的颗粒数。当这些溶液经受五个冻融循环时,在许多系统中颗粒数量都有小幅增加。但冻融循环在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖(纤维二糖(一种还原糖)被用作模型非结晶溶质,一种冷冻保护剂)后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。利用MFI检测发现,β-gal(10mg/mL)在水中冻融后的颗粒数(?100,000)急剧增加,表明该蛋白质对PH值的极端敏感性。同样,β-gal在磷酸钠缓冲液(100mM)中导致的颗粒计数增加显著。加入纤维二糖后,在磷酸钠缓冲液(100mM)中导致的颗粒数有明显缓解。低温pH测定将PBS和磷酸钠(100mM)冷却后,发现pH值变化幅度相似。当磷酸钠浓度为10mM时,冷却时的pH值变化不明显。而蛋白质的添加(10mg/mL)可以降低了PBS和磷酸钠(10mM)中pH值变化的幅度。当磷酸钠浓度很高(100mM)时,蛋白质的作用就不那么明显了,这表明,低蛋白浓度(10mg/mL)似乎不足以抑制缓冲盐的结晶和随之而来的pH偏移。低温XRD测定研究结果发现,当将磷酸钠缓冲溶液(10和100mM)冷却时,在-15°C时Na2HPO4• 12H2O结晶明显(分别参见图4B和4C)。而BSA的添加,可以使Na2HPO4• 12H2O的峰强度降低,特别是在较低的缓冲液浓度(10mM)下更为明显。这与观察到的BSA对缓冲溶液pH值变化幅度的影响密切相关。此外,纤维二糖的添加完全抑制了缓冲盐的结晶(图4D),以及冰峰的强度也受到了抑制。这些结果揭示了非结晶溶质在蛋白质制剂中的附加作用。通过抑制缓冲盐的结晶和随之而来的pH值变化,这些赋形剂可防止蛋白质不稳定性。热分析结果显示,当将BSA添加到PBS中时,在-54.4℃出现玻璃化转变温度(Tg′),随后在-22.4和0.1℃出现两个吸热峰。玻璃化转变温度反映了冷冻浓缩物组成发生了改变。BSA仅对100mM缓冲液的热行为有明显影响,导致Tg’(-47°C)和结晶温度(-30°C)降低。同时,纤维二糖的添加有望改变冷冻浓缩物的成分,这在Tg’(-34°C)中有所体现。结论:磷酸盐缓冲液被广泛用于肠胃外蛋白质制剂中。但在冷冻过程中,磷酸氢二钠(十二水合物)的选择性结晶会降低冷冻浓缩液的pH值,从而导致蛋白质聚集。可以通过降低缓冲液浓度来减小pH偏移。同时,BSA和β-gal可以通过对缓冲液结晶的抑制,减少pH的变化,但其作用程度要取决于缓冲液浓度。其它非结晶性赋形剂(纤维二糖)的添加,可通过抑制缓冲盐结晶,来提高蛋白质的稳定性。
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。   该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。   其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。   然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。   RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 冻干配方深度解析:不同组分的相互作用及对功能的影响
    随着生物制药的迅猛发展,冻干已经成为一种有效的技术来解决制药过程中存在的化学,物理,生物的不稳定性问题。结合冻干本身的技术特点,冻干产品开发的*目的是要保证产品质量的同时利用最短的生产时间来节约成本。产品的质量包括安全,高效,稳定,较短的复水时间,优雅的蛋糕外观等。众所周知,冻干是一个复杂的传热传质的过程,如果处理不当,在冷冻以及干燥过程中,样品中的活性成分以及赋形剂会发生一些物理或化学变化,从而破坏了各自原有的功能特性,因此需要进行采取合理的方法来加以解决,从而达到冻干制剂开发的*目的。 预冻阶段 样品溶液随着温度的降低,含有的水先冻结成冰晶析出,剩余的溶液的浓度越来越大,形成*浓缩冻结液,溶质和溶剂分离,在这个阶段,水分的结晶会导致蛋白浓度增加,赋形剂浓度增加,离子强度增加,粘度增加,赋形剂结晶或相分离,pH改变等,这些可能会影响到蛋白的稳定性。 干燥 结晶的冰通过升华去除,未结晶的冰通过解吸附去除,样品中的水分含量是一个动态变化的过程,样品会面临水分去除产生的应力,即干燥应力,导致配方中成分发生一定的变化。 储存 较低的水分含量,温度的偏差,赋形剂的相分离。常用赋形剂的功能性及物理状态赋形剂期望的物理状态常用成分保护剂/稳定剂无定形蔗糖,海藻糖填充剂晶体甘露醇缓冲液无定形磷酸盐缓冲液,组氨酸缓冲液,柠檬酸盐缓冲液等表1:常用赋形剂的功能性及期望的物理状态然而在冻干过程中,活性成分以及赋形剂之间具有复杂的相互影响,不同的浓度,不同的比例,不同的种类等都会引起一些结构状态的变化,从而导致其原本的功能丧失,比如:若海藻糖结晶会导致保护功能的丧失;若甘露醇变为无定形结构,会降低产品的关键温度,并且无定形态具有较差的稳定性,丧失了其作为填充剂的功能;若缓冲液成分结晶,会导致pH值的变化,缓冲功能丧失,蛋白稳定性受到影响。因此研究各个配方组分之间的相互影响作用对确保*产品的质量具有较大的作用。 01.糖类和填充剂功能性之间的相互影响 双糖是最常用的冻干保护剂,如蔗糖,海藻糖,双糖与蛋白的最小质量比通常为3:1到5:1,但是糖类通常会降低样品的玻璃态转化温度,使得冻干通常会花费较长的时间,因此会将糖类跟具有较高共晶融化温度的填充剂结合使用,如甘露醇,甘氨酸,这样可以让样品在较高的温度下进行干燥,形成良好的外观结构,节约干燥时间(Tang and Pikal, Pharm Res. 2004 Johnson, Kirchhoff and Gaud, J Pharm Sci. 2001)。市面上有一些药品就是以这种方式开发的,如阿必鲁泰(Tanzeum),是一种融合蛋白,糖尿病患者用药,配方中含海藻糖以及甘露醇成分;沙格司亭冻干粉注射剂(Leukine)是一种源于酵母的重组人粒细胞-巨噬细胞集落刺激因子(rhGM-CSF),能够刺激各种免疫细胞的生长和活化,已用于白血病患者降低感染风险,配方中含蔗糖和甘露醇成分;鲁磨西替(Lumoxiti)是一种单抗抗癌制剂,配方中含蔗糖和甘氨酸成分。 图1:阿必鲁泰(Tanzeum)这种结合的有效性取决于:在冻干和储存过程中两种赋形剂的物理形态;正确的比例以及冻干条件。理想状态下,整个过程中糖类应当处于无定形状态,起到稳定剂的作用;填充剂在干燥之前应当充分结晶,使得样品具有良好的结构强度,提高关键产品温度,缩短冻干时间。 Part.1 蔗糖对甘氨酸填充剂结晶的抑制影响实验通过将蔗糖和甘氨酸以不同比例(从1:9到9:1)溶解于水中,分别在15℃退火1h 和不进行退火,冻干后样品通过近红外光谱测定甘氨酸的结晶度。观察到当蔗糖:甘氨酸>4时,甘氨酸失去了其填充剂的功能(Bai et al., J Pharm. Sci. 2004)。 图2:蔗糖对甘氨酸填充剂功能的影响Figure plotted from data given in Bai et al., J PHarm. Sci. 2004 Part.2 海藻糖+甘露醇功能性的相互影响不同比例的海藻糖+甘露醇溶液进行冻干,二者的比例决定了各自的物理形态以及其发挥的功能性(Jena, Suryanarayanan and Aksan, Pharm Res. 2016)。海藻糖:甘露醇甘露醇的物理形态海藻糖物理形态3:1无定形无定形2:1晶体晶体1:1晶体晶体1:3晶体无定形表2:海藻糖和甘露醇比例对其物理形态及功能性影响海藻糖在酸性条件下不会水解,具有较高的玻璃态转变温度,但是具有结晶倾向性。当冻干的条件利于海藻糖无定形形态存在时,会抑制甘露醇的结晶,相反,当冻干的条件利于甘露醇结晶形态存在时,会促进海藻糖二水合物的产生,失去其无定形结构,二者相互抑制,因此需要确定*的一个比例条件,确保各自能发挥本身应起的作用。从实验结果来看,当海藻糖和甘露醇比例为1:3时,甘露醇保持其原有的晶体形态,海藻糖保持其原有的无定形态,在配方中分别起填充剂和稳定剂的功能(Sundaramurthi and Suryanarayanan, J. Phys. Chem. Letters 2010 Sundaramurthiet. al., Pharm. Res. 2010 Sundaramurthi and Suryanarayanan, Pharm. Res. 2010 )。 Part.3 海藻糖、API(BSA)和甘露醇的相互影响海藻糖—BSA---甘露醇冻干混合液,海藻糖和BSA的不同比例对海藻糖物理形态的影响,甘露醇浓度固定在10%W/W,总的固形物含量22%W/W(Jena et al., Int J. Pharm.2019)。BSA:海藻糖甘露醇物理形态海藻糖物理形态 _ _冻结过程中干燥产品中10:1δ-甘露醇无定形无定形2:1MHH, δ-& β-mannitol海藻糖二水合物部分结晶1:1海藻糖二水合物部分结晶1:2海藻糖二水合物无定形表3:BSA和海藻糖比例对海藻糖物理形态影响实验结果表明当BSA与海藻糖比例为10:1时,海藻糖能起到良好的稳定剂作用。 Part.4 蔗糖和甘露醇的相互影响除了抑制作用外,糖可能会改变甘露醇的存在形式,甘露醇有几种形态存在,无水甘露醇(α-,β-,δ-)和半水合物-MHH。研究发现当蔗糖:甘露醇为1:4时,蔗糖会保留无定形态,甘露醇为结晶态(部分以MHH形式存在),MHH甘露醇在*的干燥产品中是不希望存在的,在储存的过程中,MHH会脱水,释放水分,水分可能会跟产品中的其他组分进行反应,无定形状态的蔗糖吸收水分后会发生结晶,从而失去了对活性成分的保护功能(Thakral, Sonjeand Suryanarayanan, Int J. Pharm. 2020)。因此,综上所述,开发稳定的冻干产品配方,并达到期望的产品质量属性,需要正确地选择赋形剂的浓度,包括糖与填充剂的比例,蛋白与糖的比例,并且需要对冻干条件进行优化。 02.API/赋形剂对缓冲液功能性的影响 缓冲液需要加入到溶液中进行pH的控制。常见的缓冲液包括磷酸钠缓冲液,磷酸钾缓冲液,组氨酸缓冲液,tris 缓冲液,柠檬酸盐缓冲液,琥珀酸盐缓冲液等。冻干产品缓冲液的选择需要考虑蛋白的pKa以及缓冲液组分的结晶倾向,如磷酸钠缓冲液中,酸性的磷酸二氢一钠是无定形态;碱性的磷酸氢二钠在冻结过程中会结晶成Na₂ HPO₄ 12H₂ O,导致冻结浓缩液的pH降低,失去了缓冲液的功能,因此缓冲液成分的结晶往往是不期望的。 Part.1 缓冲液,蛋白,糖之间的相互影响有实验研究了10mM 磷酸钠缓冲液,100mM 磷酸钠缓冲液,含5% w/w的纤维二糖,纤维二糖,在低pH下不会水解,不会结晶(通过在冻结过程中测定其pH值以及使用原位X射线衍射仪对结晶组分进行鉴定)以及100mM 磷酸钾缓冲液三种缓冲液与纤维二糖,蛋白之间的相互影响,如下表所示(Thorat, Munjal, Geders and Suryanarayanan, J. Control Rel.2020)——缓冲液糖蛋白pH变化Na₂ HPO₄ 12H₂ O结晶100mM磷酸钠--- _4.1YES5%W/W纤维二糖 _1.1NO---10mg/ml BSA3.1YES5%W/W纤维二糖10mg/ml BSA1.0NO10mM磷酸钠 _ _2.8YES _10mg/ml BSA0.6NO100mM磷酸钾 _ _-0.2---_10mg/ml BSA-0.2---表4:缓冲液、糖及蛋白成分对pH变化的影响样品中活性成分蛋白、糖与缓冲液之间具有协同作用,蛋白可以抑制缓冲液结晶,使其保持无定形状态,缓冲液反过来可以维持特定的pH值,增加蛋白的稳定性;一定浓度的糖可以抑制缓冲液的结晶,保持其无定形态,从而维持特定的pH值,提高蛋白稳定性。 Part.2 甘氨酸对磷酸钠缓冲液结晶以及pH变化的影响磷酸钠缓冲液浓度甘氨酸浓度(%W/V)pH改变10mM无定形~1.50.4~0.50.8~2.5>0.8~2.7100mM--~3.20.4~2.70.8~2.4>0.8活动时间:12月1日-12月31日本轮活动奖品:兔年定制日历/挂历(奖品见下图)活动参与方式:1. 在德祥Tegent公众号12月中,发布的任意一篇文章后评论,评论越精彩,中奖几率越大;2. 我们将会在每篇文章后评论的粉丝中抽取一名幸运粉丝,送出奖品;3. 中奖名单将会在下一期推文公布!记得要关注德祥不要错过哦!4. 中奖的粉丝请将收件信息发送到德祥Tegent公众号后台,包含:姓名、联系方式、收件地址;5. 12月1日-12月31日内,每周每篇的推文文后进行评论,都有机会获得不同的奖品。 *图片来源于网络,旨在分享,如有侵权请联系删除
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 百灵威权威提供“地沟油”检测标样
    &ldquo 地沟油&rdquo 是y个泛指概念,是对各类劣质油的统称,y般包括潲水油、煎炸废油、食品及相关企业产生的废弃油脂等。&ldquo 地沟油&rdquo 对人体的危害j大,长期食用可能会引发癌症。 虽然g家明令禁止将废弃油脂再加工进行使用或者销售,但出于利益驱使,个别不法企业或个人仍冒天下之大不韪,造成每年几百万吨的&ldquo 地沟油&rdquo 流向餐桌,给民众食品安全带来严重威胁。 目前,我g还没有专门针对&ldquo 地沟油&rdquo 的检测标准。据了解,北京市食品安全监控中心在筛查了&ldquo 地沟油&rdquo 可能涉及的80多个技术检验项目后,已经找到了包括多环芳烃(PAHs)、胆固醇、电导率和特定基因组成等4类能够排查&ldquo 地沟油&rdquo 的有效指标,初步建立了&ldquo 地沟油&rdquo 检测的指标体系。 百灵威作为分析化学l域的引l者,以维护民众的生命安全为己任,整合全球优秀产品资源,提供专业的、品种齐全的检测标样,为&ldquo 地沟油&rdquo 的检测保驾护航! 针对性强、价格低廉、具有溯源性 纯品、液标等多种规格 液标具有多种溶剂、多种浓度 产品经过ISO 9001:2000、ISO 17025:1999质量认证 产品经过了NIST、NVLAP和EPA认证 订购标样附带质检报告、材料安全数据卡 ■ 混标 产品名称:PAHs Solution Mix(多环芳烃混标) 产品编号:Z-013-17 溶剂:0.2 mg/mL in CH2Cl2 : MeOH(1:1) 包装:1 mL 组分数量:16种 编号 CAS 英文名称 中文名称 浓度(mg/mL) 1 56-55-3 1,2-Benzanthracene苯并(a)蒽 0.2 2 83-32-9 Acenaphthene 二氢苊 0.2 3 208-96-8 Acenaphthylene 苊 0.2 4 120-12-7 Anthracene 蒽 0.2 5 50-32-8 Benzo(a)pyrene 苯并(a)芘 0.2 6 205-99-2 Benzo(b)fluoranthene 苯并(b)荧蒽 0.2 7 191-24-2 Benzo(g,h,i)perylene 苯并(g,h,i)二萘嵌苯 0.2 8 207-08-9 Benzo(k)fluoranthene 苯并(k)荧蒽 0.2 9 218-01-9 Chrysene 屈 0.2 10 53-70-3 Dibenz(a,h)anthracene 二苯并(a,h)蒽 0.2 11 206-44-0 Fluoranthene 荧蒽 0.2 12 86-73-7 Fluorene 芴 0.2 13 193-39-5 Indeno(1,2,3-cd)pyrene 茚并(1,2,3-cd)芘 0.2 14 91-20-3 Naphthalene 萘 0.2 15 85-01-8 Phenanthrene 菲 0.2 16 129-00-0 Pyrene 芘 0.2 ※若需要混标中的具体单标请致电400-666-7788垂询! ■ 单标 ■ 氘代单标 CAS 英文名称 中文名称 浓度 包装 1718-53-2 1,2-Benz(a)anthracene D12 氘代苯并(a)蒽 2.0 mg/mL in CH2Cl2 1 mL 15067-26-2 Acenaphthene D10氘代苊 4.0 mg/mL in CH2Cl2 1 mL 93951-97-4 Acenaphthylene D8 氘代苊烯 10 ng/&mu L 10 mL 1719-06-8 Anthracene D10 氘代蒽 2.0 mg/mL in CH2Cl2 1 mL 93951-66-7 Benzo(g,h,i)perylene D12 氘代苯并(g,h,i)苝 10 ng/&mu L 1 mL 1719-03-5 Chrysene D12 氘代屈 4.0 mg/mL in CH2Cl2 1 mL 13250-98-1 Dibenzo(a,h)anthracene D14 氘代二苯并(a,h)蒽 10 ng/&mu L 10 mL 93951-69-0 Fluoranthene D10 氘代荧蒽 ampule of 50 mg 1 EA 81103-79-9 Fluorene D10 氘代芴 10 ng/&mu L 10 mL 1146-65-2 Naphthalene D8 氘代萘 4.0 mg/mL in CH2Cl2 1 mL 1517-22-2Phenanthrene D10 氘代菲 0.2 mg/mL in CH2Cl2 1 mL 4.0 mg/mL in CH2Cl2 1 mL1718-52-1 Pyrene D10 氘代芘 0.5 mg/mL in Acetone 1 mL ※更多氘代单标请致电400-666-7788垂询! ■ 氟代单标 CAS 英文名称 中文名称 浓度 包装 17521-01-6 5-Fluoroacenaphthylene 5-氟代苊烯 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 113600-15-0 9-Fluorobenzo[k]Fluoranthene 9-氟代苯并(k)荧蒽 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL N/A 1-Fluorochrysene 1-氟代屈 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 36288-22-9 3-Fluorochrysene 3-氟代屈 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 1691-66-3 3-Fluorofluoranthene 3-氟代荧蒽 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 343-43-1 2-Fluorofluorene 2-氟代芴 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 321-38-0 1-Fluoronaphthalene 1-氟代萘 0.1 mg/mL in Acetone 1 mL 523-41-1 2-Fluorophenanthrene 2-氟代菲 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 440-40-4 3-Fluorophenanthrene 3-氟代菲 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL 1691-65-2 1-Fluoropyrene 1-氟代芘 10 &mu g/mL in Toluene 1 mL 100 &mu g/mL in Toluene 1 mL ※更多氟代单标请致电400-666-7788垂询! ■ 黄曲霉毒素类、胆固醇 CAS 英文名称 中文名称 备注 包装 1162-65-8 Aflatoxin B1 黄曲霉毒素 B1 定性用对照品 5 mg Aflatoxin B1 solution 黄曲霉毒素 B1 (液标) 标样20 &mu g/mL in methanol 1 U 7220-81-7 Aflatoxin B2 黄曲霉毒素 B2 定性用对照品 2 mg Aflatoxin B2 solution 黄曲霉毒素 B2 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 1165-39-5 Aflatoxin G1 黄曲霉毒素 G1 定性用对照品 2 mg Aflatoxin G1 solution 黄曲霉毒素 G1 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 7241-98-7 Aflatoxin G2 黄曲霉毒素 G2 定性用对照品 1 mg Aflatoxin G2 solution 黄曲霉毒素 G2 (液标) 标样3 &mu g/mL in benzene:acetonitrile (98:2) 1 U 6795-23-9 Aflatoxin M1 黄曲霉毒素 M1 定性用对照品 0.25 mg Aflatoxin M1 solution 黄曲霉毒素 M1 (液标) 标样10 &mu g/mL in acetonitrile 1 U 6885-57-0 Aflatoxin M2 黄曲霉毒素 M2 定性用对照品 0.25 mg 57-88-5 Cholesterol 胆固醇 标样 0.25 g ※更多产品欢迎致电400-666-7788垂询! ■ 配套溶剂 ■ 色谱溶剂 高纯度:HPLC分析中无干扰峰 低含水量:避免了正相色谱柱的失活 低 UV 背景吸收:避免了鬼峰及得出错误的结论 优异的批次稳定性:更换批次时无需更改 HPLC 标准方法 低挥发、低残留:使用前无需过滤,减少了色谱柱的污染并防止了系统堵塞 ■ 产品列表(以下产品可提供20 L / 200 L包装) CAS 产品编号 英文名称 中文名称 包装67-56-1 116481 Methanol, 99.9% [HPLC/ACS] 甲醇 1 L / 4 L 982150 Methanol, 99.8% [HPLC/PREP] 甲醇(制备j) 4 L/20 L/200 L 75-05-8 134752 Acetonitrile, 99.9% [HPLC/ACS] 乙腈 1 L / 4 L 925301 Acetonitrile, 99.9% [HPLC/PREP] 乙腈(制备j) 4 L/20 L/200 L 110-54-3 133516 Hexane, 95% [HPLC/ACS] 正己烷 1 L / 4 L 141-78-6 300999 Ethyl acetate, 99.9% [HPLC/ACS] 乙酸乙酯 1 L / 4 L 67-66-3 508435 Chloroform, 99.9% [HPLC/ACS] 氯仿 1 L / 4 L 109-99-9 990407 Tetrahydrofuran, 99.8% [HPLC/ACS] 四氢呋喃 4 L ※更多色谱溶剂欢迎致电400-666-7788垂询! ■ 离子对试剂 离子对试剂是高效液相色谱专用试剂,y般是将离子性化合物添加到流动相中以促使离子与带电荷分析物形成配对离子,达到可靠的分析效果。百灵威不仅可提供系列化磺酸类(酸性)或铵盐类(碱性)离子对试剂,而且可以根据实验要求,定制从5 g 至1 kg多种包装。 CAS 产品编号 英文名称 产品名称 包装 207605-40-1 256882 1-Pentanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 戊烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207300-91-2 238919 1-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 己烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207300-90-1 235385 1-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 庚烷磺酸钠y水合物 5 g/25 g/100 g/500 g 207596-29-0 165302 1-Octanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 辛烷磺酸钠y水合物 5 g/25 g/100 g/500 g 22767-49-3 358789 1-Pentanesulfonic acid sodium salt, 99% [HPLC grade] 戊烷磺酸钠 5 g/25 g/100 g 2832-45-3 573832 1-Hexanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 己烷磺酸钠 5 g/25 g/100 g 22767-50-6 149116 1-Heptanesulfonic acid sodium salt monohydrate, 98% [HPLC grade] 庚烷磺酸钠 25 g/100 g 5324-84-5 194500 1-Octanesulfonic acid sodium salt, 99.5% [HPLC grade] 辛烷磺酸钠 5 g/25 g/100 g ※更多离子对试剂欢迎致电400-666-7788垂询! ■ 配套仪器耗材 ■ 液相色谱柱 高度的柱间重现性 高度可控的单分子层形成和封尾技术 高选择性,提高了分离效率 适合分离酸性、中性和碱性化合物,以及多肽和蛋白等 产品编号 产品名称 适用pH范围 特征 包装 S02001 C18液相色谱柱 柱长:150× 外径4.6 mm 填料直径:5µ m pH 2-7 ★ 母体为高纯度(99.999%)硅胶; ★ 均y且完全呈球状的硅胶粒径,可以在低压力下使用; ★有理想的端基封尾处理,既不会有碱性化合物吸附问题,也不会有酸性化合物吸附问题; ★ 即使是在酸性条件下,也有着较高的耐受性。 1 Pak S02302 C18液相色谱柱 柱长:250× 外径4.6 mm 填料直径:5 µ m pH 2-7 1 Pak S02303 C18 WpH液相色谱柱 柱长:150× 外径4.6 mm 填料直径:5 µ m pH 1-10 ★ 保留能力强,与母体成分的分离更容易; ★ 均y且完全呈球状的硅胶粒径,使用压力小,给泵带来的负担更小; ★ 高惰性,不论酸性化合物还是碱性化合物,都能得到尖锐的峰型; ★ 硅胶纯度高,可用于分析金属配合物; ★ pH1-10,即使使用强碱性溶离液也能维持高性能。 1 Pak S02304 C18 WpH液相色谱柱 柱长:250× 外径4.6 mm 填料直径:5 µ m pH 1-10 1 Pak ※更多液相色谱柱欢迎致电400-666-7788垂询! ■ J&K-Abel气相色谱柱 高性能:低流失、独特的去活技术 高惰性:能得到更尖锐的锋形 高选择性:更高的信噪比 高的柱间稳定性:提高了分离效率,保证了结果的重现性 创新型设计:保证更长的色谱柱使用寿命 产品类型: 聚硅氧烷色谱柱 聚合乙二醇(PEG)色谱柱 PLOT色谱柱 熔融石英管 产品编号 型号规格 耐受温度 S010125-3002 AB-1, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091Z-433 S011125-3002 AB-1MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-933 S010525-3002 AB-5, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091J-433 S011525-3002 AB-5MS, 30 m × 0.25 mm × 0.25 &mu m -60 to 325/350 19091S-433 S016125-3002 AB-1701, 30 m × 0.25 mm × 0.25 &mu m -20 to 280/300 122-0732 S016132-3002 AB-1701, 30 m × 0.32 mm × 0.25 &mu m -20 to 280/300 123-0732 S016225-3014 AB-624, 30 m × 0.25 mm × 1.40 &mu m -20 to 260 122-1334 S016253-3030 AB-624, 30 m × 0.53 mm × 3.00 &mu m -20 to 260 125-1334S012025-3002 AB-INOWAX, 30 m × 0.25 mm × 0.25 &mu m 40 to 260/280 19091N-133 S018653-3030 AB-PLOT Q, 30 m × 0.53 mm × 30.0 &mu m -80 to 280/290 19095P-QO4 S011125-3002-G5 AB-1MS Builtin-Guard 30 m,0.25 mm,0.25 &mu m with 5 m Guard Column -60 to 325/350 ※更多气相色谱柱欢迎致电400-666-7788垂询! ■ 其它配套仪器耗材 产品编号 产品名称 包装 3581025 加热磁力搅拌器 1台 3810025 RCT 基本型磁力搅拌器 1台 1572500 磁力搅拌子 1PK E03935569 手动单道可调式移液枪,1000-5000 µ L 1支 E02901275 瓶口分液器,5-50 mL 1个 WX-7009-0020-1 8247 R95 有机蒸气异味防护口罩,120个/箱 1箱 5982-3236 SCX Polymer - Box, 50 x 3 mL tubes, 60 mg 50支/盒 959741-902 Eclipse Plus C18, 2.1 x 50 mm,1.8 µ m, 600 bar 1支 BR36849 100 mL, DURAN, NS 14/23, -stoer 1套 5182-0714 Screw cap vials, clear 100/PK 透明螺口2 mL样品瓶 1盒 WKLM-2.1 微孔滤膜Ф50 0.2 &mu (水)混合纤维素 100片/包 WKLM-4.1 微孔滤膜Ф50 0.2 &mu (有机)尼龙6 100片/包 RJGL1L-C 溶剂过滤器(1 L) 杯300 mL 瓶1000 mL,PTFE滤板 1套 5982-9110 12 Port Vacuum Extraction Manifold Assy 1套 ※更多产品欢迎致电400-666-7788垂询!
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 阿拉丁细胞培养总动员,一起快乐实验吧
    阿拉丁细胞培养总动员,一起快乐实验吧 Aladdin&i-Quip的优势细胞培养细胞培养技术也叫细胞克隆技术,在生物学中的正规名词为细胞培养技术。不论对于整个生物工程技术,还是其中之一的生物克隆技术。细胞培养都是一个必不可少的过程,细胞培养本身就是细胞的大规模克隆。细胞培养技术可以由一个细胞经过大量培养成为简单的单细胞或极少分化的多细胞,这是克隆技术必不可少的环节,而且细胞培养本身就是细胞的克隆。通过细胞培养得到大量的细胞或其代谢产物。因为生物产品都是从细胞得来,所以可以说细胞培养技术是生物技术中最核心、最基础的 技术。 细胞培养泛指所有体外培养,其含义是指从动物活体体内取出组织,于模拟体内生理环境特定的体内条件下,进行孵育培养,使之生存并生长。细胞培养工作现已广泛应用于生物学、医学、新药研发等各个领域,成为最重要的基础科学之一。 阿拉丁为您提供全面的细胞培养技术,现货充足的各种培养所需试剂。芯硅谷作为阿拉丁的耗材品牌,为细胞培养实验准备了各系耗材,包括:细胞培养板,深孔板,各容积培养皿、培养管等。阿拉丁-芯硅谷是您细胞培养实验的首选。 产品列表&mdash &mdash 细胞培养专用试剂货号品名规格CAS号包装A103539抗坏血酸 用于细胞培养50-81-7500gA103540抗坏血酸 用于植物细胞培养50-81-7100g,500gP110425L-苯丙氨酸 非动物源,EP, JP, USP ;用于细胞培养,98.5 to 10163-91-225g,100g,500gT108222L-苏氨酸JP, USP ;用于细胞培养,99.0-101.0%72-19-525g,100gI115775L-异亮氨酸EP, JP, USP73-32-525g,100g,500gE103809乙醇胺 99%,细胞培养专用141-43-5100ml,500mlT100896噻唑蓝(MTT) 98%298-93-11g,5g,25g,250mgC114435矮壮素 植物细胞培养级,&ge 99%(HPLC)999-81-55g,25gG115554D-半乳糖胺盐酸盐 for cell culture,99%1772-03-81g,5g,250mgC111538氯化钠 用于细胞和昆虫细胞培养,&ge 99.5% (T)7647-14-52.5kg,1kg,500gP100088亚碲酸钾 99.5%7790-58-125g,100gC139524干酪素 suitable for insect cell culture9000-71-9500gC110500干酪素 technical grade9000-71-92.5kg,500g,500mlH104201肝素钠 185 USP units/mg9041-08-11g,5gH123383肝素钠 &ge 180 USP units/mg9041-08-1100KU,250KU,500KU,1000KUB111605硼酸 用于细胞培养和植物细胞培养, &ge 99.5%10043-35-3500gM112543氯化锰,四水 昆虫细胞培养级,&ge 99%13446-34-9100gS104205水合胆酸钠 98%206986-87-05g,25g,100gS104206水合胆酸钠 for cell culture,&ge 99.0%206986-87-025g,100g产品列表&mdash &mdash 细胞培养专用耗材货号包装品名详细参数B1559-03100EA三角形细胞涂布棒三角推边宽度:30mm 全长:208mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋B1559-05100EA三角形细胞涂布棒三角推边宽度:60mm 全长:235mm 颜色:蓝色 材料:PP 是否消毒:是 包装类型:热封袋C1623-0250EA6孔细胞培养板孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0450EA24孔细胞培养板孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-0650EA96孔细胞培养板孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1250EA6孔细胞培养板,TC处理孔数:6 孔径:35mm 生长面积:9.61cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1650EA12孔细胞培养板,TC处理孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1750EA12孔细胞培养板孔数:12 孔径:22mm 生长面积:3.87cm 类型:平底,加盖 是否TC处理:否 是否灭菌:是C1623-1850EA24孔细胞培养板,TC处理孔数:24 孔径:16mm 生长面积:1.91cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C1623-1950EA96孔细胞培养板,TC处理孔数:96 孔径:7mm 生长面积:0.35cm 类型:平底,加盖 是否TC处理:是 是否灭菌:是C4219-0120EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0220EA细胞刮刀手柄长度:250mm 刀片长度:30mm 是否灭菌:是C4219-0320EA细胞刮刀手柄长度:400mm 刀片长度:18mm 是否灭菌:是C4219-0420EA细胞刮刀手柄长度:400mm 刀片长度:30mm 是否灭菌:是C6057-0150EA细胞筛材质:尼龙网 颜色:蓝色 尺寸:40&mu m 是否灭菌:是C6057-0250EA细胞筛材质:尼龙网 颜色:白色 尺寸:70&mu m 是否灭菌:是C6057-0350EA细胞筛材质:尼龙网 颜色:黄色 尺寸:100&mu m 是否灭菌:是D3815-0110EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0310EA384孔深孔板,方形孔类型:低吸附型 材质:聚丙烯 容积:120&mu l 颜色:透明 底部形状:V型 是否灭菌:否D3815-0510EA384孔深孔板,方形孔类型:普通型 材质:聚丙烯 容积:190&mu l 颜色:透明 底部形状:V型 是否灭菌:否L1557-01100EAL型涂布棒长度:156× 38mm 颜色:蓝色 材质:ABS 是否消毒:是 包装类型:纸塑袋M4939-011EA覆四氟涂层微量取样匙类型:海曼型 长度:150mmP4184-0160EA60mm细胞培养皿尺寸:60× 15mm 生长面积:26.17cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0260EA60mm细胞培养皿,TC处理尺寸:60× 15mm 生长面积:26.17cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4184-0360EA100mm细胞培养皿尺寸:100× 20mm 生长面积:55.65cm2 TC处理:否 灭菌:伽马 描述:普通型适合悬浮培养P4184-0460EA100mm细胞培养皿,TC处理尺寸:100× 20mm 生长面积:55.65cm2 TC处理:是 灭菌:伽马 描述:标准型适合贴壁培养P4940-011EA外覆PTFE涂层取样匙,双平头类别:双平头,圆形平头和锥形平头 长度:200mm 刀片尺寸(最宽的部位):约44× 6mmP4941-011EA外覆PTFE涂层取样匙,平头和勺头类别:平头和勺头 长度:225mm 直径:4.7mmR1596-04500EAPP培养管,无边外径× 高:12× 75mm 容量:5ml 材质:PP 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-05500EAPS培养管,无边外径× 高:13× 75mm 容量:5ml 材质:PS 类型:无刻度 是否消毒:否 包装类型:热封袋R1596-11250EAPS培养管,无边外径× 高:16× 100mm 容量:8ml 材质:PS 类型:无刻度 是否消毒:否 包装:热封袋T1558-01500EAT型细胞涂布棒,已灭菌长度:140mm 颜色:蓝色 材料:ABS 是否消毒:是 包装类型:纸塑袋D1554-011000EA普通型接种环类型:1&mu L环形 材料:软性PP 全长:200mm 环直径:30mm 颜色:蓝色 是否消毒:是 包装类型:纸塑袋更多产品请访问阿拉丁官网www.aladdin-e.com
  • 欧盟REACH法规高关注物质清单新增8种化学物质
    记者昨日从厦门检验检疫局获悉,欧洲化学品管理署(ECHA)7月底正式将三氯乙烯等8种新的化学物质纳入REACH法规中高关注物质(SVHC)清单。截至目前,该清单已包含38种高关注物质。该局提请广大出口欧盟化工品及其下游产品生产企业密切关注REACH法规中高关注物质(SVHC)清单最新情况,尽快做好相关产品是否含有高关注物质的核查工作。   厦门检验检疫局轻纺化矿检验监管处建议,当前广大进出口企业应以下几方面着手准备应对工作,避免出口欧盟产品受阻,遭受损失。   一是对自己生产的产品所含有的化学物质进行充分分析,尽量不使用列入REACH法规公布的高关注物质清单中的化学物质,或者尽早开发使用其他安全的替代物质。   二是要尽量使用已注册过并覆盖自己生产制品用途的化学物质。   三是对于无法开发替代品的高关注物质,并且其使用量超过REACH法规规定的限量要求的,尽快按照REACH法规的要求完成向欧盟化学品管理局通报或注册。   附表:REACH法规高关注物质(SVHC)清单 序号 物质名称 1 5-叔丁基-2,4,6-三硝基-间-二甲苯(二甲苯麝香) 2 4,4′-二氨基二苯基甲烷(MDA) 3 短链氯化石蜡(SCCPs) 4 六溴环十二烷(HBCDD) 5 邻苯二甲酸二-(2-乙基己)酯(DEHP) 6 邻苯二甲酸甲醇丁醇酯(BBP) 7 邻苯二甲酸二丁酯(DBP) 8 三乙基砷酸盐 9 蒽 10 二氯化钴 11 五氧化二钴 12 亚砷酐 13 重铬酸钠 14 双三丁基氧化锡 15 砷酸氢铅 16 蒽油 17 蒽油,蒽糊,蒸馏轻组分 18 蒽油,蒽糊,蒽馏分 19 蒽油,低含蒽量 20 蒽油,蒽糊 21 煤焦油沥青(高温) 22 硅酸铝耐火陶瓷纤维 23 氧化锆硅酸铝耐火陶瓷纤维 24 2,4-二硝基甲苯 25 邻苯二甲酸二异丁酯(DIBP) 26 铬酸铅 27 钼铬红(C.I.颜料红104) 28 铅铬黄(C.I.颜料黄34) 29 磷酸三(2-氯乙基)酯 30 丙烯酰胺 31 三氯乙烯 32 硼酸 33 无水四硼酸钠 34 水合硼酸钠 35 铬酸钠 36 铬酸钾 37 重铬酸铵
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 对美加征关税商品第八次排除延期清单公布
    6月29日,国务院关税税则委员会公布对美加征关税商品第八次排除延期清单。自2022年7月1日至2023年2月15日,对附件所列商品,继续不加征我为反制美301措施所加征的关税。清单中共124项商品,半导体晶圆制造用自粘式圆形抛光垫、数字控制器(专用于编号84798999.59电动式振动试验系统)、紫外线灯管或红外线灯泡、调速管等多类设备用零部件在列。对美加征关税商品第八次排除延期清单序号EX①税则号列②商品名称125070010高岭土225120010硅藻土325199091化学纯氧化镁425262020已破碎或已研粉的天然滑石525309020稀土金属矿626161000银矿砂及其精矿7ex26169000黄金矿砂8ex27101999白油(液体烃类混合物组成的无色透明油状液体,由原油分馏所得。商品成分为100%白矿油,40℃时该产品粘度为65mm2/s,闪点为225℃,倾点为-10℃,比重(20℃/20℃)为0.885)9ex27129010食品级微晶石蜡,相应指标符合《食品级微晶蜡》(GB22160-2008)的要求10ex28046190其他含硅量>99.9999999%的多晶硅(太阳能级多晶硅、多晶硅废碎料除外)1128100020硼酸1228181090其他人造刚玉1328401100无水四硼酸钠1428401900其他四硼酸钠15ex28439000贵金属汞齐16ex28439000其他贵金属化合物(不论是否已有化学定义),氯化钯、铂化合物除外17ex28444100氚、氚化物和氚的混合物,以及含有上述任何一种物质的产品[氚-氢原子比不超过千分之一的或含氚(任何形态)量小于1.48×103GBq 的产品]18ex28444290锕-225、锕-227、锎-253、锔-240、锔-241、锔-242、锔-243、锔-244、锿-253、锿-254、钆-148、钋-208、钋-209、钋- 210、铀-230或铀-232及其化合物;含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:发射α粒子,其α半衰期为10天或更长但小于200年的放射性核素(1.单质;2.含有α总活度为37GBq/kg或更大的任何这类放射性核素的化合物;3.含有α总活度为37GBq/kg或更大的任何这类放射性核素的混合物;4.含有任何上述物质的产品,不包括所含α活度小于3.7GBq的产品)19ex28444390其他放射性元素、同位素及其化合物(子目2844.10、2844.20、2844.30以外的放射性元素,同位素),含这些元素、同位素及其化合物的合金、分散体(包括金属陶瓷)、陶瓷产品及混合物。以下除外:铀-233及其化合物(包括呈金属、合金、化合物或浓缩物形态的各种材料);发射α粒子,其α半衰期为10天或更长但小于200年的放射性核素(1.单质;2.含有α总活度为37GBq/kg或更大的任何这类放射性核素的化合物;3.含有α 总活度为37GBq/kg或更大的任何这类放射性核素的混合物;4. 含有任何上述物质的产品,不包括所含α活度小于3.7GBq的产品)2028452000硼-10浓缩硼及其化合物2128453000锂-6浓缩锂及其化合物2228454000氦-32328459000税目2844以外的其他同位素及其化合物2428500012氮化硼2529032990其他无环烃的不饱和氯化衍生物2629034100三氟甲烷(HFC-23)2729034200二氟甲烷(HFC-32)2829034300一氟甲烷(HFC-41)、1,2-二氟乙烷(HFC-152)及1,1 -二氟乙烷(HFC-152a)2929034400五氟乙烷(HFC-125)、1,1,1-三氟乙烷(HFC-143a)及1,1,2-三氟乙烷(HFC-143)30290345001,1,1,2-四氟乙烷(HFC-134a)及1,1,2,2-四氟乙烷(HFC-134)31290346001,1,1,2,3,3,3-七氟丙烷(HFC-227ea)、1,1,1,2,2,3-六氟丙烷(HFC-236cb)、1,1,1,2,3,3-六氟丙烷(HFC-236ea)、1,1,1,3,3,3-六氟丙烷(HFC-236fa)32290347001,1,1,3,3-五氟丙烷(HFC-245fa)及1,1,2,2,3-五氟丙烷(HFC-245ca)33290348001,1,1,3,3-五氟丁烷(HFC-365mfc)及1,1,1,2,2,3,4,5,5,5-十氟戊烷(HFC-43-10mee)3429034900其他无环烃的饱和氟化衍生物35290351002,3,3,3-四氟丙烯(HFO-1234yf)、1,3,3,3-四氟丙烯(HFO-1234ze)及(Z)-1,1,1,4,4,4-六氟-2-丁烯(HFO-1336mzz)3629035990其他无环烃的不饱和氟化衍生物3729036100甲基溴(溴甲烷)3829036900其他无环烃的溴化或碘化衍生物3929051990其他饱和一元醇40ex290539901,3-丙二醇4129054400山梨醇42ex29159000其他饱和无环一元羧酸及其酸酐[(酰卤、过氧)化物,过氧酸及其卤化、硝化、磺化、亚硝化衍生物],茅草枯、抑草蓬、四氟丙酸和氟乙酸钠除外4329182900其他含酚基但不含其他含氧基羧酸及其酸酐等衍生物44ex29269090己二腈45ex29319000硫酸三乙基锡,二丁基氧化锡等(包括氧化二丁基锡,乙酸三乙基锡,三乙基乙酸锡)4629333100吡啶及其盐47ex29336990西玛津、莠去津、扑灭津、草达津等(包括特丁津、氰草津、环丙津、甘扑津、甘草津)4829371210重组人胰岛素及其盐4938030000妥尔油50ex38089400医用消毒剂5138112100含有石油或从沥青矿物提取的油类的润滑油添加剂5238180019经掺杂用于电子工业的,已切成圆片等形状,直径>15.24cm的单晶硅片5338180090其他经掺杂用于电子工业的化学元素,已切成圆片等形状;经掺杂用于电子工业的化合物54ex39012000茂金属高密度聚乙烯,密度0.962g/cm3,熔流率0.85g/10min55ex39014010粘指剂(一种乙烯丙烯共聚物,成分为乙烯65%,丙烯35%,比重小于0.94)56ex39014020线性低密度的乙烯与1-辛烃共聚物57ex39021000共聚抗冲等级聚丙烯,熔融指数MI0.5g/10min,UL认证黄卡中RTI(相当于长期工作温度)115℃,悬臂梁缺口冲击强度(测量方法ISO 180):23℃时为64KJ/m2,-40℃时为4.0KJ/m2585603129025g<每平米≤70g其他化纤长丝无纺织物595603131070g<每平米≤150g浸渍化纤长丝无纺织物605603139070g<每平米≤150g其他化纤长丝无纺织物61ex59119000半导体晶圆制造用自粘式圆形抛光垫6268042110粘聚合成或天然金刚石制的砂轮6368042190粘聚合成或天然金刚石制的其他石磨、石碾及类似品6468151900非电气用的石墨或其他碳精制品6569091100实验室、化学或其他技术用陶瓷器6669091200莫氏硬度为9或以上的实验室、化学或其他技术用品6770071110航空航天器及船舶用钢化安全玻璃6873181510抗拉强度在800兆帕及以上的其他螺钉及螺栓6974101100无衬背的精炼铜箔7074101210无衬背的白铜或德银铜箔7174102110印刷电路用覆铜板7275052200镍合金丝7375062000镍合金板、片、带、箔7475071200镍合金管7576082010外径不超过10厘米的铝合金管7681089040钛管7785013100输出功率不超过750瓦的直流电动机、发电机,不包括光伏发电机7885015200输出功率超过750瓦,但不超过75千瓦的多相交流电动机7985017100输出功率不超过50瓦的光伏直流发电机8085017210输出功率超过50瓦,但不超过750瓦的光伏直流发电机8185044014功率小于1千瓦,精度低于万分之一的直流稳压电源8285044091具有变流功能的半导体模块(静止式变流器)8385052000电磁联轴节、离合器及制动器8485073000镍镉蓄电池8585112010机车、航空器及船舶用点火磁电机、永磁直流发电机、磁飞轮8685113010机车、航空器及船舶用分电器及点火线圈87ex85143200真空电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)88ex85143900非真空电弧重熔炉、电弧熔炉和电弧融化铸造炉(容量1000-20000立方厘米,使用自耗电极,工作温度1700℃以上)8985168000加热电阻器9085177950光通信设备的激光收发模块91ex85249120用于雷达设备及无线电导航设备用的液晶平板显示模组,含驱动器和控制电路92ex85249220用于雷达设备及无线电导航设备用的有机发光二极管平板显示模组,含驱动器和控制电路9385258110高速电视摄像机9485258120高速数字照相机9585258210抗辐射或耐辐射电视摄像机9685258220抗辐射或耐辐射数字照相机9785258310夜视电视摄像机9885258320夜视数字照相机9985258911其他特种用途电视摄像机10085258921其他特种用途的数字照相机10185261010导航用雷达设备102ex85261090飞机机载雷达(包括气象雷达,地形雷达和空中交通管制应答系统)10385291010雷达及无线电导航设备用天线或天线反射器及其零件104ex85299020税目85.24所列设备用零件,用于雷达设备及无线电导航设备10585299050雷达设备及无线电导航设备用的其他零件10685371011用于电压不超过1000伏线路的可编程序控制器107ex85371090数字控制器(专用于编号84798999.59电动式振动试验系统)10885392120火车、航空器及船舶用卤钨灯10985392190其他卤钨灯11085394900紫外线灯管或红外线灯泡11185407910调速管112ex85437099飞行数据记录器、报告器11385439021输出信号频率小于1500兆赫兹的通用信号发生器用零件114ex85480000非电磁干扰滤波器115ex88062110最大起飞重量≤250克的遥控航拍无人机,用于特种用途的电视摄像或数字照相116ex88062210250克<最大起飞重量≤7千克的遥控航拍无人机,用于特种用途的电视摄像或数字照相117ex880623107千克<最大起飞重量≤25千克的遥控航拍无人机,用于特种用途的电视摄像或数字照相118ex8806241025千克<最大起飞重量≤150千克的遥控航拍无人机,用于特种用途的电视摄像或数字照相119ex88062910最大起飞重量>150千克的遥控航拍无人机,用于特种用途的电视摄像或数字照相120ex88069110最大起飞重量≤250克的其他航拍无人机,用于特种用途的电视摄像或数字照相121ex88069210250克<最大起飞重量≤7千克的其他航拍无人机,用于特种用途的电视摄像或数字照相122ex880693107千克<最大起飞重量≤25千克的其他航拍无人机,用于特种用途的电视摄像或数字照相123ex8806941025千克<最大起飞重量≤150千克的其他航拍无人机,用于特种用途的电视摄像或数字照相124ex90211000矫形或骨折用钛管;矫形或骨折用抗拉强度在800兆帕及以上的螺钉及螺栓,不论是否带有螺母或垫圈注:①ex表示排除商品在该税则号列范围内,以具体商品描述为准。②为《中华人民共和国进出口税则(2022)》的税则号列。附件:对美加征关税商品第八次排除延期清单.pdf
  • 生物学中的化学专家——百灵威!
    您看到的是神奇的生命现象,我们看到的是参与其中的化学反应; 您看到的是鲜活的组织、细胞,我们看到的是珍藏在里面的化学元素; 您看到的是美妙的蛋白电泳条带,我们看到的是错落有致的化合物; 您看到的是氨基酸连接成多肽的奇妙历程,我们看到的是多个化学基团的催化重组。 和您y样热爱生命科学,伴您勇闯科学难关,与您y起为生物学研究做出贡献! 为您的工作提供更为专业的产品服务! 十八年的创新发展铸就了有机化学行业的l导者, 十八年的资源整合精细制造成就了业界金字招p, 十八年的真诚沟通用心服务赢得了科研精英们的y致口碑! 贴心的不只是产品,还有我们的价格&mdash &mdash 低至八折,持续两个月真诚回馈。(活动时间:2010年11月20日&mdash &mdash 2011年01月20日) 产品编号 英文名称 中文名称 CAS 规格 目录价 折后价 160975 SDS, 99% 十二烷基硫酸钠 151-21-3 100g 500g ¥261 ¥383 ¥209 ¥306 20765 SDS in pellets, 99% 十二烷基硫酸钠 151-21-3 250g 1kg ¥362 ¥1013 ¥290 ¥810 166974 Acrylamide, 99% 丙烯酰胺 79-06-1 100g 500g ¥192 ¥466 ¥154 ¥373 402847 Bis-Acrylamide, 98% N,N-亚甲基双丙稀酰胺 110-26-9 100g ¥260 ¥208 19148 Brilliant Blue G 250 考马斯亮蓝G-250 6104-58-1 25g ¥405 ¥324 19149 Brilliant Blue R 250 考马斯亮蓝R-250 6104-59-2 5g ¥263 ¥210 17096 Ethidiumbromide, pure95% 溴化乙啶 1239-45-8 1g 5g ¥238 ¥958 ¥190 ¥766 149443 Imidazole, 99% 咪唑 288-32-4 500g ¥589 ¥471 42145 TCA, 99+% 三氯乙酸 76-03-9 100g ¥337 ¥270 32687 DMF, 99.8% N,N-二甲基甲酰胺 68-12-2 100mL ¥394 ¥315 149332 Glycine, 98% 甘氨酸 56-40-6 250g 1kg ¥200 ¥528 ¥160 ¥422 256725 Tricine, 99% 三(羟甲基)甲基甘氨酸 5704-04-1 25g 100g ¥300 ¥720 ¥240 ¥576 255989 TEMED, 99% N,N,N' ,N' -四甲基乙二胺 110-18-9 100mL 500mL ¥213 ¥520 ¥170 ¥416 288975 CHAPS, 98% 3-[3-(胆酰胺丙基)二甲氨基]丙磺酸内盐 75621-03-3 1g 5g ¥329 ¥1277 ¥263 ¥1020 415951 DTT, 99% [for molecularbiology] 二硫苏糖醇 3483-12-3 1g 5g ¥276 ¥679 ¥221 ¥543 168802 EDTA-2Na, 99% 乙二胺四乙酸二钠盐水合物 6381-92-6 250g 1kg ¥302 ¥906 ¥242 ¥725 226162 Tris, 99.5% 三(羟基甲基)氨基甲烷 77-86-1 100g 500g ¥247 ¥925 ¥198 ¥740 S0596 Sodium Cholate C24H39NaO5 361-09-1 5g ¥208 ¥166 23336 Tween 20 吐温20 9005-64-5 250mL ¥290 ¥232 27863 Tween 80 吐温80 9005-65-6 250mL ¥254 ¥203 21568 Triton X-100 曲拉通X-100 9002-93-1 250mL 1L ¥278 ¥739 ¥222 ¥591 16379 &beta -Alanine, 99% &beta -氨基丙酸 107-95-9 500g ¥520 ¥416 B3473 PMSF 苯甲磺酰氟化物 329-98-6 5g ¥779 ¥701 20587 Ammonium sulfate, for analysis, 99.5% 硫酸铵 7783-20-2 250g ¥420 ¥336 19228 PEG 6000 聚乙二醇 25322-68-3 1kg ¥792 ¥633 331686 Iminodiacetic acid, 98% IDA(亚氨基二乙酸) 142-73-4 100g ¥240 ¥192 41574 Nitrilotriacetic acid, 99% 次氮基三乙酸 139-13-9 250g ¥426 ¥340 13891 Thiourea, extra pure, 99% 硫脲 62-56-6 500g ¥368 ¥294 16769 1-Butanol, 99+% 正丁醇 71-36-3 100mL ¥206 ¥164 14849 Benzenesulfonamide, 98% 苯磺酰胺 98-10-2 500g ¥901 ¥720
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250gH109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mgF101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25gB101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • HORIBA地质流体拉曼光谱定量分析技术交流会
    主 题:Quantitative Raman spectroscopic analyses of geological fluids 地质流体的拉曼光谱定量分析 培训时间:2012年11月9下午3:00 主 讲 人:Prof. I-Ming Chou 报告地点:HORIBA 北京办公室(北京市建国门外大街甲6号SK大厦1801室) 网络会议直播地点: 无法抵达北京现场参会的用户可以选择到如下地点通过网络视频参会并进行交流 &bull HORIBA 上海办公室(上海市静安区南京西路1468号中欣大厦1701室) &bull HORIBA 广州办公室(广州市天河区体育东路138号金利来数码网络大厦1612室) 报告摘要 Standards were prepared in fused silica capillaries for the calibration of Raman systems for quantitative analyses of geological fluids, such as those found in fluid inclusions in minerals. The standards include fluids in unary (CH4, CO2), binary (CH4-CO2, CH4-H2O, CO2-H2O, CH3COOH-H2O) and ternary systems (CH4-CO2-N2). Three different ways of standards preparation were introduced and compared. After calibrating the Raman spectroscopic system with some of these standards, it is credible to determine, for example, (1) the pressures of CH4 in fluid samples, (2) the diffusion coefficient of CH4 in water at room temperature, and (3) the solubility of methane hydrate in water. Fluid standards prepared in fused silica capillaries are reliable for calibration of Raman systems and small enough that they can be used for inter-laboratory comparisons. 主讲人简介 I-Ming Chou教授,美国地质调查局资深科学家,主要从事地质流体性质、二氧化碳捕集储存技术、天然气水合物、海底沉积物、海底热液等流域研究。已在包括Science在内的国际学术刊物上发表学术论文180余篇,发表各类摘要文章130余篇。他曾任North America Chinese Earth Scientists Association主席(1998-1999), Overseas Chinese Environmental Engineers and Scientists Association主席(2000-2001),现任Overseas Chinese Earth Science and Technology Association主席(1998至今)。 个人主页: http://profile.usgs.gov/imchou 因场地和席位有限,为方便我们对会议的组织与安排,请您于11月8日(含当天)前确认参加。 为保证培训质量,名额有限,如有意者,请尽快报名,额满为止。 (如报名系统出现故障,请您直接发送邮件到如下邮箱,我们会帮助您登记报名) 会议联系人: 联系人:Ms.Yu 电话:010-85679966-212 邮件地址: nasi.yu@horiba.com
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 紧急采购:HM5 血液分析仪及VS2 生化分析仪试剂
    国外某企业委托湖南某机构寻找中国优质厂家,采购,HM5 血液分析仪和 VS2 生化分析仪的试剂,具体明细如下:生化分析仪:试剂,与 Abaxis VetScan VS2 分析仪完全兼容描述:内部装有冻干试剂珠的塑料盘用于在 VetScan VS2 兽医分析仪中分析动物的肝素化血液、血清或血浆。该盘用于量化丙氨酸氨基转移酶(ALT)、白蛋白(ALB)、磷酸酶(ALP)、淀粉酶(AMY)、总钙(CA)、肌酐(CRE)、球蛋白(GLOB)、葡萄糖(GLU)、磷( PHOS)、钾 (K)、钠 (NA)、总胆红素 (TBIL)、总蛋白 (TP) 和尿素 (BUN)。光盘是单独的,不能重复使用。组成:该圆盘由封闭的比色皿和装有固体球形试剂珠的容器组成。试剂以冻干形式处于稳定且低危害的状态。珠子中的试剂浓度是无毒的,不会对人类和环境产生不利影响。包括酶、防腐剂和稳定剂在内的活性物质浓度小于1%;该圆盘包含一个容器,其中的稀释剂含有少于 0.5% 的水和浓度低于 1% 的防腐剂。面板中存在的化学物质:D-manit - 不超过 16.5%聚乙二醇 8000 - 不超过 8.8%聚乙二醇 2000 - 不超过 6.1%三氰酸钠 - 不超过 5.8%三(羟甲基)氨基甲烷 - 不超过 5.7%聚乙二醇 3400 - 不超过 5.6%葡聚糖 70 不超过 4.9%氯化钠 - 不超过 3.7%氢氧化锂,一水合物 - 不超过 2%五水硫酸铜 - 不超过 1.1%肌醇浓度 - 不超过 1%。血液分析仪试剂:用于血液分析仪试剂描述容量溶剂,稀释剂一种等渗盐溶液,用于稀释全血样本并在测试之间冲洗分析仪流体系统。9 升洗涤,清洗剂用于对某些物种和某些清洁程序进行分析。500 毫升清洁剂、净化剂用于液体系统清洁过程300 毫升溶解、裂解剂它用于获得三组分白细胞形式的溶血物并确定白细胞和血红蛋白的总数。300 毫升溶解、裂解剂 2用于全血稀释和白细胞差异溶血,以按体积将嗜酸性粒细胞与其他白细胞分离。 用于测定嗜酸性粒细胞、%嗜酸性粒细胞、嗜碱性粒细胞和%嗜碱性粒细胞。800 毫升相关图片:委托中方洽谈机构:公司名称:湖南中星科技有限公司姓名:樊占财 联系方式:15388055177
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 【预警】五氯酚酸钠又超标了!
    近期,北京市市场监督管理局网站发布的关于2021年食品安全监督抽检信息的公告(2021年第2期)显示,该局组织抽检了12类食品1449批次样品,其中不合格样品15批次中含有2批猪肉、牛肉中五氯酚酸钠不符合国家相关规定。维德维康市场部对2020年国家及部分省级市场监督管理局(北京、山东、四川、河南省等等市场监督管理局)网站通告的动物性食品中兽药残留不合格项目统计发现,五氯酚酸钠在猪肉、猪肝、禽肉、牛羊肉、水产品等多种样本中都有检出。【五氯酚酸钠】五氯酚酸钠,又名五氯酚钠,易溶于水、醇、丙酮,不溶于苯,有臭味。它属于有机氯农药,常被用作除草剂或者杀菌剂。养殖户曾把它作为杀螺剂,用于鱼塘虾塘的消毒,消杀福寿螺、钉螺。五氯酚酸钠对蚂蟥、蟛蜞、果树害虫,真菌、细菌等也有杀灭功能,还可作为木材防腐和农业除草剂,用途广泛。五氯酚酸钠具有较高的水溶性,容易以水为载体广泛地扩散,对水源和土壤中造成污染,经环境积累进入饲料用植物中,通过食物链蓄积在动物体内,残留在动物性食品中。五氯酚钠通过食物链进入人畜体内分解为五氯酚,五氯酚具有有机氯和酚的毒性,能抑制生物代谢过程中氧化磷酸化作用,长期摄入这类物质,会对人体的肝、肾及中枢神经系统造成损害。《食品动物中禁止使用的药品及其他化合物清单》(农业农村部公告 第250号)中规定,食品动物中禁止使用五氯酚酸钠(动物性食品中不得检出)。【动物性食品中五氯酚钠残留量的测定标准】GB 29708-2013《食品安全国家标准 动物性食品中五氯酚钠残留量的测定 气相色谱-质谱法》(本标准适用于猪的肌肉、肝脏和肾脏及鸡的肌肉和肝脏组织中五氯酚钠残留量的检测,检测限为0.25 μg/kg,定量限:肌肉组织中为0.5 μg/kg,肝脏和肾脏组织中为1 μg/kg) GB 23200.92-2016 《食品安全国家标准 动物源性食品中五氯酚残留量的测定 液相色谱-质谱法》(本标准适用于猪肝、猪肾、猪肉、牛奶、鱼肉、虾、蟹等动物源性食品中五氯酚残留的测定,定量限为1 μg/kg)【五氯酚酸钠快速检测方案】五氯酚酸钠酶联免疫试剂盒检测样本:猪肉、鸡肉、鸭肉、牛肉、羊肉、鸡胗、猪肝、饲料原料检测限:1 μg/kg(ppb)五氯酚酸钠快速检测卡检测样本:猪肉、鸡肉、鱼肉、虾肉检测限:5 μg/kg(ppb)
  • 明天播!赠书|新能源之储能、清洁能源检测技术专场预告
    2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。明天(11月30日),将为大家直播储能材料检测技术专场、清洁能源检测技术专场。直播间还将设置分享赠书、发红包等活动,欢迎报名参会!一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 分享赠书活动将会议直播间分享朋友圈集赞10个,即可获得由袁志刚编著的《碳达峰碳中和:国家战略行动路线图》书籍一本,具体兑换方式见直播间管理员通知,欢迎参与活动。五、 “清洁能源检测技术”专场预告时间报告题目演讲嘉宾清洁能源检测技术(11月30日上午)09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员六、“储能材料检测技术”专场预告时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员七、 嘉宾简介及报告摘要(按分享顺序)张郁 中国科学院广州能源研究所 研究员【个人简介】张郁研究员主要从事天然气水合物领域的相关工作,包括复杂沉积物体系天然气水合物实验与理论、天然气水合物高效开采技术、天然气水合物钻采安全等方面,获2018年国家技术发明二等奖,2019年广东省自然科学一等奖,2013年广东省科学技术一等奖,入选2019年“广东特支计划”本团创新团队。主持国家自然科学基金,广东省促进经济发展专项资金项目课题等项目11项。共发表SCI论文85篇,获授权国家发明专利36件,美国专利7件,参与编制标准2项。担任可再生能源学会天然气水合物专业委员会与中国计量测试学会热物性专业委员会委员。【摘要】与传统油气藏不同,天然气水合物以固体的形式赋存于沉积物的孔隙或者裂隙,因此其不能像天然气或者原油直接依赖于自身的流动性而实现流动,必须吸收由储层、外界环境、或者人工提供的能量,将其分解成甲烷和水,方可能在沉积物中流动。沉积物的渗流能力决定了气水在储层中的流动,对水合物开采效果具有重要的影响,是天然气水合物开采模拟与方案制定中必须的关键基础物性。水合物存在时沉积物的渗流规律与孔隙空间的微观几何结构密切相关,水合物样品的合成以及在孔隙结构中复杂的赋存形式造成了含水合物沉积物渗流实验相对困难。本报告介绍了天然气水合物体系渗流特性测定的相关技术方法以及取得的部分研究进展与结果。张玮 捷欧路(北京)科贸有限公司 应用工程师【个人简介】现任日本电子应用工程师,主要负责FIB-SEM双束系统及氩离子截面抛光仪的样品测试、技术应用以及培训工作,具有丰富的聚焦离子束、双束系统、扫描电镜等理论基础和应用经历。硕士毕业于新南威尔士大学材料科学专业,主研方向为天然生物材料的压电性质和实际应用,积累了丰富的测试样品制备、超微切片、扫描电镜、原子力显微镜等测试研究经验。本科毕业于河北科技大学金属材料工程学系,主要学习方向为合金钢的热处理方案设计和力学性能优化。【摘要】本报告将从TEM设备联用、STEM快速检测、硬件更新,三个方面介绍JEOL年初发布的新一代高性能FIB-SEM双束系统。同时将介绍JEOL专门针对新能源汽车电池制造业开发的PCI颗粒物监测软件系统。肖立新 北京大学 教授【个人简介】肖立新,日本东京大学博士毕业,现为北京大学物理学院教授,博士生导师。英国皇家化学学会会士,中国材料学会太阳能分会秘书长、国际信息显示学会(SID) 中国北区执委会学术副主席、中国光学工程学会光显示专业委员会常务委员。 长期从事光电功能材料及器件方面的研究,如有机发光材料及其器件,光伏材料及其器件物理等。主持过多次国家自然科学基金,承担973项目子课题。发表国际学术论文160余篇及申请专利共30余件,入选2020全球前2%顶尖科学家“年度影响力”榜单。编著《钙钛矿太阳能电池》(第一、二版),译著《有机电致发光-从材料到器件》,参与编著《锂离子电池》。2015年度教育部自然科学一等奖(第一完成人)。【摘要】从介绍钙钛矿太阳能电池的关键问题出发,阐述非铅钙钛矿材料的重要性,继而介绍非铅钙钛矿材料的研究进展,通过分析目前存在的问题,进一步阐述非铅钙钛矿太阳能电池的瓶颈所在,从而阐述如何突破瓶颈。魏静 北京理工大学 特别副研究员【个人简介】北京理工大学材料学院,特聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一或通讯作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文20余篇,其中ESI高被引论文3篇,热点论文3篇,总被引次数超过2000。研究领域:新型能源材料与器件;钙钛矿光电材料与器件。【摘要】钙钛矿太阳能电池(PSCs)的光电转换效率已经超过26%,但寿命远低于工业所需的25年,严重限制了其商业应用。目前报道的多数钙钛矿电池在水分、光照、热或其他因素的干扰下都会严重失效。对此,我们通过设计新型电子传输材料和结构来提高钙钛矿器件的稳定性。本工作首先研究了钙钛矿薄膜的退化机理,之后通过优化电子传输层(ETL),特别是开发新型紫外惰性电子传输材料及基于聚合物矩阵网络的低温介孔结构,来提高PSCs在潮湿环境或光照下的工作稳定性。我们制备了ITO/UV惰性ETL/ Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio-MeOTAD/Au结构的太阳能电池,其功率转换效率达到21%,光稳定性得到明显改善。优化后的器件在一个太阳光强下持续光照,最大功率点电压下工作600小时后,保持99%以上的初始性能。在进一步的工作中,需要深入研究PSCs的复杂降解机理,在此基础上开发更具针对性的薄膜改性方法和新型器件结构。张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。八、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • REACH限制名单草案再添7种物质
    日前,欧洲化学品管理署(ECHA)继2008年将15种物质被列入首批REACH高关注名单(SVHC)后,公布了首批需ECHA授权才能使用的物质名单草案。根据该草案,7种物质首先被列入了清单(附件XIV)。   被列入清单的7种物质分别为:5-叔丁基-2,4,6-三硝基间二甲苯(二甲苯麝香)、短链氯化石蜡(SCCPs,C10~C13)、六溴环十二烷(HBCDD)和所有有关联的主要非对应异构体、邻苯二甲酸双(2-乙基己)酯(DEHP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二丁酯(DBP)以及4,4'-二氨基二苯甲烷(MDA)。   根据REACH法规,企业如果要使用进入授权名单的物质,就必须申请许可。申请者必须论证物质使用风险可以充分控制,或是社会经济利益超过使用风险,且没有替代物和相应的替代技术。   ECHA表示,他们是根据产品的固有特性、用途和批准用量来评估是否将这些化学品列入REACH限制清单的。各利益相关方必须于2009年4月14日对磋商做出回应,ECHA将于2009年6月1日之前确定优先列表。ECHA还建议,授权申请应当在以上物质进入REACH附件XIV后24~30个月期间提交。这些物质进入名单之后,42~48个月后将不再继续使用。   ECHA还建议,76/769/EEC指令中特殊条件下允许使用的豁免类物质,也应加入评估当中。ECHA表示,将参考协商期间所收到的评论及成员国委员会的意见,可能会对草案进行修改,并将该提议提交到欧盟委员会审议。对于是否对蒽、氯化钴、五氧化二砷、三氧化二砷、重铬酸钠二水合物、氧化双三丁基锡、酸式砷酸铅、三乙基砷酸酯等8种物质进入SVHC名单的物质进行授权,ECHA表示将在晚些时候再做考虑。   ECHA建议下游企业应尽快排查是否正在使用被列入SVHC的原料,定期审核供应商(必要时向原料供应商提供安全数据表),并在规定期限内逐步替代SVHC原料。
  • 药典8001试药修订草案二次公示 常用试剂增加质控指标
    近日,药典委发布关于8001 试药标准草案的公示(第二次),对此前公示过的草案进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿由广东省药品检验所起草,中国食品药品检定研究院、黑龙江省药品检验研究院、广州市药品检验所、无锡市药品安全检验检测中心、北京大学等单位进行复核。主要起草人包括洪建文、彭洁、肖慧、武建卓、王婷婷。试药指在本版药典中供各项试验用的试剂,但不包括各种色谱用的吸附剂、载体与填充剂。药品检验检测中使用试药的质量直接影响药品分析检验检测结果的质量。《中国药典》8001 试药通则在指导药品检验检测过程以及试药的使用与管理中发挥着重要的作用。 但随着《中国药典》收载品种的不断丰富,检验检测所需化学试剂门类和品种的不断增加,《中国药典》收载的试药在品种和数量上,关键质量指标的要求上已经不能满足目前药品检验检测对所使用试剂试药的需求,同时还缺乏相应的安全和储存指引。为促进药品科学监管、切实发挥《中国药典》 对药品检验用试剂试药的技术指导作用,本次对8001试药通则进行了修订。第一版草案,主要在试药的通用技术要求、常用试药的关键质量指标以及试药品种的补充与更新三方面进行完善。1、在试药的通用技术要求方面,针对8001试药通则存在的分级分类与现行版化学试剂国家标准不一致、缺乏安全和储存指引、有效性提示等问题,结合试药的生产、销售以及 在药品检验检测的使用情况,参考《GB/T 37885-2019 化学试剂分类》更新细化了药典试药的分类,进一步促进了药典试药通则与现行版化学试剂国家标准的协调。此次公示稿中针对此方面进行了协调,由传统的四个等级分类,修订为十个大类,而且提到试药管理“一般应符合其化学品安全标签及化学品安全技术说明书的要求,应关注并保持其有效性,必要或可行时,可通过制定有效期或采用灵敏度试验等方式予以保证”,为试药的正确选用提供了更好的指导。2、对常用试药增加了相应的质控指标,结合国内外药典及试药产品目前的质量情况,对甲醇等 21 种常用的 试药,根据其用途,通过实验研究考察其关键质量属性,结合该试药的质量标准及不同品牌产品的实际质量情况,增加了相应的质控指标。而本次草案,根据 2024 年2月8001试药第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:1. 将“供高效液相色谱使用时需满足要求”明确为“供高效液相色谱流动相使用时需满足要求”。 2. 修订辛烷磺酸钠、辛烷磺酸钠一水合物、溴化钾、氯化钾、硫酸钙的相关表述,详见附件公示稿。 3. 增加 8001 试药各品种的 CAS 号,详见附件 EXCEL 表格。8001 试药CAS编号表.xlsx附件1 8001 试药公示稿(第一次).pdf
  • 【干货】卡尔费休水分仪经常会出现的问题分析
    卡尔费休法是世界公认的测定物质水分含量的经典方法,可快速、准确的测定液体、固体、气体中的水分含量,广泛应用在石油、化工、电力、食品等行业。那么,卡尔费休水分仪常见的问题有哪些呢?又该如何解决呢?1.阳极电解液的颜色不是亮黄色,而是介于棕色和暗黄色之间?颜色太深,电极对电解液的响应能力降低。用纸巾清洗两个铂针电极,去除表面吸附物 检测电极是否正确连接 测量电极可能失效。2.预滴定新鲜阳极液,漂得太高?滴定系统中有残留水份。可更换干燥管中的分子筛和硅胶,检查滴定表的电极接口和插头接口是否紧密,硅脂可适当涂在一些松动的接口上。3.备用滴定中高漂移的原因是什么?阴极池中的水通过膜渗透到阳极池中。可以更换阳极池电解液,向阴极电解槽中加入少量的单组分容量法KarlFischer试剂进行干燥,阳极液的液位保持高于阴极池中液面高度,彻底清洗滴定杯,去除上一次试验剩下的样品所造成的连续副反应,检查滴定系统的密封性。4.样品滴定漂移值高?试样与阳极电解液反应生成水。更换其他种类的阳极电解液或其他样品预处理方法 这种情况发生在组合式干燥箱中,说明样品中的水没有完全蒸发,或样品中的一些挥发物与calfisher试剂发生了副反应。可以调整高炉温度或延长蒸发时间,也可以改进样品预处理方法。5.滴定时间长,滴定不停?控制参数选择不当可采用相对漂移终止作为末端参数,增加相对漂移终止值,增加终点。如果阳极的电导率太低,则需要更换阳极。与干燥炉配合使用时,水分蒸发速度慢且不规律,最大可停机时间,提高了炉温,延长了蒸发时间。6.预滴定时间过长?潜在电解质系统太低(小于350毫伏),碘生成速度慢的极化电流可以增加到5UA。系统仍然挂水墙,水会逐渐释放,导致太长预滴定。7.试验结果的重现性不好?试样量太小,试样水分含量偏低。可以增加样品量,保证每个样品中1MG~2mg的绝对含水量。由于样品的水分分布不均匀,采样误差会反映在最终结果中。可以加强混合时间,增加样品量,或根据需要对样品进行粉碎、溶解等预处理。另外,样品前处理和添加方法不当对测定结果的重现性有显著影响,特别是对含水率较低的样品。8.滴定结果为何?滴定过早终止,相对漂移可以被适当地降低到继续在剩余的水的反应。不合理加载模式使用的还原方法,以避免使装填不良的错误,特别是,附着力强的样品加载。另一种情况下不溶解于试样溶液以形成乳液,可以在此时更换阳极电解液,电解质溶液或添加助溶剂来提高样品的溶解度。9.双铂针电极和电解电极的颜色变黑。如何解决这个问题?这表明电极表面还有其他物质污染,需要清洗,可以用铬酸洗液去除大部分油,有机的,无机的,然后用蒸馏水清洗,然后用乙醇洗几次,然后吹干空气或氮气。10.你需要多久校准一次滴定剂?什么是校准Kjeldahl滴定剂的最佳方法?典型地,依赖于所采取以便不与污染物相接触的滴定剂和滴定剂措施的稳定性通常导致降低的浓度。常见保护滴定碘溶液或存储在棕色瓶中等的强光敏性 需要从湿气侵入的保护卡的分子筛或硅胶滴定剂 有些是强碱如氢氧化钠需要防止他们的二氧化碳的吸入。可以认为,校准卡尔费休试剂的最佳校准器是纯水。然而,由于水在称重时不稳定,且其分子量不够大,因此不宜作为参考物质。另外,如何准确地称量足够的水,以确保试剂的适当消耗是另一个难题。作为纯水的替代品,可提供不同浓度(0.1 mg/g(ML)至10 mg/g(ML)的标准溶液。所以我们可以确定一个更合适的注入。另一种选择是已知的确切含水量的固体样品,最常见的是酒石酸钠二水合物。标准物质中含有两种晶体水,其含水量仅为15.66%。使用它的好处是,它是一种稳定的,水基细粉..在100%纯净水的情况下,含水量仅为15.66%,实验人员可以参考合理的样品量,以获得良好的效价。本参考品唯一的缺点是不易溶于甲醇,甲醇是最常用的杯状溶剂..通常,约0.15克的物质溶解在40毫升甲醇中。接下来,如果校准浓度值增加,则表明溶解不完全,需要改变新鲜溶剂。11.分离或不滴定细胞含有膜被用于?DL32和dl39库仑湿度计有两个不同的库仑滴定池,带或不带隔膜。在大多数应用中,我们建议使用不带隔膜的滴定池,因为它不需要维护。由于革命性的突破性设计,无隔膜梅特勒-托利多滴定池可直接测定油品的含水量,无需助溶剂。膜片滴定仪适用于酮中水的测定。它也适用于极高精度的测量。12.我如何判断更换Kessler滴定器干管中的分子筛的时间?解决这个问题的最实用的解决方案是在干燥的上部管道添加一些蓝为指示剂的硅胶。只要二氧化硅的表面已成为粉红色标志,尊重替换或再生的分子筛。当然,增加需要更换分子筛是背景的信号漂移值。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制