当前位置: 仪器信息网 > 行业主题 > >

谷氨酸钠一水合物

仪器信息网谷氨酸钠一水合物专题为您提供2024年最新谷氨酸钠一水合物价格报价、厂家品牌的相关信息, 包括谷氨酸钠一水合物参数、型号等,不管是国产,还是进口品牌的谷氨酸钠一水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合谷氨酸钠一水合物相关的耗材配件、试剂标物,还有谷氨酸钠一水合物相关的最新资讯、资料,以及谷氨酸钠一水合物相关的解决方案。

谷氨酸钠一水合物相关的论坛

  • 关于对谷氨酸钠的测定

    我们公司的主要产品是鸡汁调味料和烧肉汁调味料,鸡汁调味料其中一个测定的方面便是谷氨酸钠.有一种产品叫鸡汁豆腐~就是鸡汁里添加了酱油,糖盐等一些东西,对鸡汁豆腐进行谷氨酸钠的测定,使用的是GB上的方法,但是测定出来的结果是空白值比鸡汁豆腐要大,仪器和方法都没有问题的。但就是不知道是什么原因,求各位同仁帮我找找问题到底在什么地方了!谢谢了=.=

  • 【分享】谷氨酸钠检验检疫类别之我见

    谷氨酸钠属于氨基酸类产品,俗称味精,是食品工业中用量最大的鲜味剂。它作为一种增加食品风味的食品添加剂,主要用于烹调、调味品、快餐方便食品、肉制品、水产制品和汤料等方面。谷氨酸钠曾一度让世界各国消费者对其食用的安全性产生怀疑,FAO/WHO对其进行了各种毒性试验,试验结果表明食用谷氨酸钠是安全的。这无疑对谷氨酸钠的消费起了极大的促销作用。近年来,我国的谷氨酸钠出口逐年增加,也是目前我国出口量最大的单品种氨基酸。如何对出口谷氨酸钠准确有效地实施检验检疫,是当前不容忽视的问题。El前,根据《出入境检验检疫机构实施检验检疫的进出境商品El录》的要求,出口谷氨酸钠主要实施检疫,未列明检验要求。笔者根据实际工作需要,结合该产品的特性,从以下几点谈谈出口谷氨酸钠无需检疫更需检验的问题。 一、复杂的加工工艺使谷氨酸钠失去了检疫的意义 谷氨酸钠即味精的生产加工工艺步骤为:玉米原料一淀粉一加水调浆一糖化一加火碱中和一用活性炭脱色一过滤一发酵一提取谷氨酸一加纯碱中和一脱色一过滤一蒸发、结晶一分离一湿谷氨酸钠一烘干一筛分一包装一成品谷氨酸钠(味精)。 上述工艺流程图中可以看出,玉米原料经过发酵、酸碱的中和以及高温结 晶、烘干等过程处理,形态性质已发生了质的变化,疫情风险已不复存在,不需检疫。 二、统一掌握检验检疫类别。确定检验方式 《出入境检验检疫机构实施检验检疫的进出境商品El录》(简称《检验检疫法检El录》)中所列谷氨酸钠的商品编码是2922422O00,实施的检验检疫类别是M。P/Q即进口商品检验、进境动植物、动植物产品检疫/出境动植物、动植物产品检疫。而味精报检出口时的检验检疫类别,在《检验检疫法检目录》中所列味精的商品编码是2l03901O00,实施的检验检疫类别是R 即进口食品卫生监督检验/出口食品卫生监督检验。实际上,谷氨酸钠和味精是同一种商品,仅名称不同而已,从上述味精即谷氨酸钠的加工工艺来看,实施检疫已没有多大意义,相反,对加工过程中添加的化学物质所形成的残留实施检测则更显得重要些。所以,谷氨酸钠作为食品,需进行食品卫生检验即R/S。

  • 关于调味品中谷氨酸钠含量检测

    [color=#444444]请教各位高手:调味品中的谷氨酸钠的含量检测一般都用甲醛法,现在我的样品是经过高温熬制的,里面的谷氨酸钠很可能变成了焦谷氨酸钠,这样用甲醛法检测的结果是否会受到影响?增高还是降低?[/color]

  • 谷氨酸钠99.0%的味精

    某标明为含谷氨酸钠99.0%的味精,挑选出其园粒状的结晶溶于水后,加入硝酸银溶液,有白色沉淀产生,证明该味精()。 A、纯度较高 B、掺有明矾 C、掺有白砂糖 D、掺有食盐

  • 关于8967谷氨酸钠和比旋光度的问题

    根据《8967》用旋光法做纯味精的谷氨酸钠,在26.4℃测得的旋光值266.6,换算结果谷氨酸钠大于100%。然后比旋光度28.1℃,值为266.3,换算后也大于25.3。是什么原因导致的呢,之前十几度的时候比旋光度也超标准限量要求

  • 谷氨酸钠检测问题

    采用GB 5009.43-2016对味精中谷氨酸钠进行检测,采用第三法 酸度计法,结果大大超过了100%;再换成第二法 旋光法,结果正常了,99.2%左右。大家有没有遇到过这种情况?用酸度计法经常超过100%。

  • 味精中谷氨酸钠的测定

    5009.43第一法,用高氯酸滴定谷氨酸钠的反应原理是什么,对萘酚苯甲醇乙酸指示剂的变色原理是什么?

  • 求助:月桂酰谷氨酸钠含量测定

    最近做月桂酰谷氨酸钠分析,活性物的测定,相关文献及方法显示用GB/T 5173-2018 进行我们按照这个标准进行测定,现象很明显,但是测定结果严重偏低!请问有没有做过该物质活性含量测定的?

  • 【原创大赛】旋光法测试味精中谷氨酸钠的含量

    【原创大赛】旋光法测试味精中谷氨酸钠的含量

    旋光法测试味精中谷氨酸钠的含量1. 原理 味精中谷氨酸钠含量是味精行业的一个重要指标,其含量的高低直接决定味精的好坏。谷氨酸钠分子结构中有不对称原子,具有光学活性,因此用旋光仪测定其溶液旋光度,便可换算出谷氨酸钠的含量。2. 测量2.1 仪器和试剂P850A全自动旋光仪(海能仪器)旋光管(200mm)电子天平(感量1mg)100mL容量瓶味精(市售)浓盐酸(分析纯)2.2 操作过程2.1 精确称取样品10g(精确至0.0001g),加少量水稀释并转移至100mL容量瓶中,变搅拌边加入16mL分析纯浓盐酸,冷却后,定容至100mL容量瓶中。2.2 开启旋光仪,待仪器稳定后,用配制试剂的蒸馏水校正零点。2.3 用待测溶液将旋光管洗涤三次,然后注满待测液,置于旋光仪中(不能有气泡),分别测试试样的旋光度和比旋度并记下,同时记下测试时溶液的温度。2.3 结果计算旋光度的计算公式:http://ng1.17img.cn/bbsfiles/images/2013/08/201308161017_457948_2599013_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/08/201308161017_457949_2599013_3.jpg比旋度的计算公式:http://ng1.17img.cn/bbsfiles/images/2013/08/201308161017_457950_2599013_3.jpg3. 结果与讨论 表1 味精中谷氨酸钠的旋光度和浓度测试结果T(℃)α(°)X(%)平均值(%)相对平均偏差(%)19.72.50599.599.60.08%19.92.50699.620.1[size=12p

  • CNS_12.001_谷氨酸钠

    CNS_12.001_谷氨酸钠

    [font='calibri'][size=24px]谷氨酸钠及鲜味调味剂浅谈[/size][/font][font='times new roman'][size=24px]苏志扬[/size][/font][font='times new roman'][size=24px]2021.7[/size][/font][font='times new roman'][size=24px].[/size][/font][font='times new roman'][size=24px]24[/size][/font][align=center][/align][align=center][font='黑体'][size=20px]谷氨酸钠及鲜味调味剂浅谈[/size][/font][/align][font='times new roman']摘要:[/font][font='times new roman']味精,或谷氨酸钠,是世界上使用最广泛的调味剂和增鲜剂之一,[/font][font='times new roman']在生活及生产中有广泛的应用,本文就此为起点,对以谷氨酸钠为代表鲜味调味剂进行了进一步了解,总结了其生产,呈味机理等各方面信息。[/font][font='times new roman']关键词:[/font][font='times new roman'][size=14px]谷氨酸钠,鲜味[/size][/font][font='times new roman'][size=14px]剂[/size][/font][font='times new roman'][size=14px],调味剂,生产标准[/size][/font][align=left][/align][align=left][font='times new roman'][size=18px]一、[/size][/font][font='times new roman'][size=18px]谷氨酸钠基本信息与研究历史[/size][/font][/align][align=left][font='times new roman']谷氨酸钠([/font][font='times new roman']MSG[/font][font='times new roman'],分子式[/font][font='times new roman']C[/font][font='times new roman'][size=13px]5[/size][/font][font='times new roman']H[/font][font='times new roman'][size=13px]8[/size][/font][font='times new roman']NNaO[/font][font='times new roman'][size=13px]4[/size][/font][font='times new roman']),化学名α[/font][font='times new roman']-[/font][font='times new roman']氨基戊二酸一钠,是谷氨酸的钠盐。为白色晶体,易溶于水[/font][font='times new roman'],有强烈的肉类鲜味[/font][font='times new roman']。[/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042205353376_4340_1608728_3.png[/img][/align][align=center][font='times new roman'][color=#000000]图[/color][/font][font='times new roman'][color=#000000]1. [/color][/font][font='times new roman'][color=#000000]谷氨酸钠分子结构[/color][/font][/align][font='times new roman'][color=#000000]关于“鲜味”[/color][/font][font='times new roman'][color=#000000]的概念事实上很早就已形成,代表的是一种能感到愉快病提高食欲的综合味感,我国在宋代时就有对鲜味的记载,清代时人们更是普遍接受了鲜味的说法。[/color][/font][font='times new roman'][color=#000000]而关于呈鲜物质成分的报告可以追溯至[/color][/font][font='times new roman'][color=#000000]1[/color][/font][font='times new roman'][color=#000000]908[/color][/font][font='times new roman'][color=#000000]年,日本学者池田菊苗教授从海带中分离出了谷氨酸。虽然在[/color][/font][font='times new roman'][color=#000000]1[/color][/font][font='times new roman'][color=#000000]866[/color][/font][font='times new roman'][color=#000000]年,德国人雷哈生就利用硫酸水解小麦面筋制得谷氨酸,但池田教授不仅分离出谷氨酸,并且提出鲜味的概念,命名为“[/color][/font][font='times new roman'][color=#000000]u[/color][/font][font='times new roman'][color=#000000]mami[/color][/font][font='times new roman'][color=#000000]”。他还试验了许多谷氨酸盐的味觉特性,在其中以谷氨酸钠可溶性最好,味道最佳,且易于结晶,他便为这一产物命名并为生产谷氨酸钠申请了专利。[/color][/font][font='times new roman'][color=#000000]就在第二年,[/color][/font][font='times new roman'][color=#000000]1[/color][/font][font='times new roman'][color=#000000]909[/color][/font][font='times new roman'][color=#000000]年铃木兄弟开始商业化生产,这是世界上首次制成谷氨酸钠,味精工业就此产生。[/color][/font][align=left][font='times new roman'][size=18px]二、[/size][/font][font='times new roman'][size=18px]其他鲜味成分与呈味机理概述[/size][/font][/align][align=left][font='times new roman'][size=18px]1. [/size][/font][font='times new roman'][size=18px]其他鲜味剂[/size][/font][/align][align=left][font='calibri']事实上,能够表现出鲜味的物质非常多,目前已知的鲜味成分主要为有机酸类,有机碱类,游离氨基酸及其盐类,核苷酸及其盐类,肽类等[/font][/align][align=left][font='times new roman'][size=14px][color=#000000]([/color][/size][/font][font='times new roman'][size=14px][color=#000000]1[/color][/size][/font][font='times new roman'][size=14px][color=#000000])[/color][/size][/font][font='times new roman'][size=14px][color=#000000]有机酸[/color][/size][/font][/align][align=left][font='calibri']具有鲜味的有机酸主要是琥珀酸钠,[/font][font='calibri']多存在于贝类等海产品中,香菇中也有存在,我国批准使用的有机酸类鲜味剂仅有琥珀酸二钠,主要用于酒,饮料,糖果等。[/font][/align][align=left][font='times new roman'][size=14px][color=#000000]([/color][/size][/font][font='times new roman'][size=14px][color=#000000]2[/color][/size][/font][font='times new roman'][size=14px][color=#000000])[/color][/size][/font][font='times new roman'][size=14px][color=#000000]有机碱[/color][/size][/font][/align][align=left][font='calibri']典型代表有甜菜碱和氧化三甲胺,在动、植、微生物中分布广泛,不仅可提高鲜味,也可与其他呈味物质共同作用是海产品呈现特有的鲜味。[/font][/align][align=left][font='times new roman'][size=14px][color=#000000]([/color][/size][/font][font='times new roman'][size=14px][color=#000000]3[/color][/size][/font][font='times new roman'][size=14px][color=#000000])[/color][/size][/font][font='times new roman'][size=14px][color=#000000]游离氨基酸[/color][/size][/font][/align][align=left][font='calibri']谷氨酸与天冬氨酸是两种主要呈鲜味的氨基酸,食物中游离的谷氨酸与天冬氨酸是影响食物特征风味的主要因素。[/font][/align][align=left][font='times new roman'][size=14px][color=#000000]([/color][/size][/font][font='times new roman'][size=14px][color=#000000]4[/color][/size][/font][font='times new roman'][size=14px][color=#000000])[/color][/size][/font][font='times new roman'][size=14px][color=#000000]核苷酸[/color][/size][/font][/align][align=left][font='calibri']核苷酸类的鲜味剂在食品鲜味呈鲜方面也有重要贡献。目前发现的有鲜味特性的核苷酸及其衍生物有3[/font][font='calibri']0[/font][font='calibri']余种,以5[/font][font='calibri']’-[/font][font='calibri']肌苷酸(5[/font][font='calibri']’-[/font][font='calibri']IMP),5[/font][font='calibri']’-[/font][font='calibri']鸟苷酸(5[/font][font='calibri']’-[/font][font='calibri']GMP)和5[/font][font='calibri']’-[/font][font='calibri']腺苷酸(5[/font][font='calibri']’-[/font][font='calibri']AMP)为代表。[/font][/align][align=left][font='times new roman'][size=14px][color=#000000]([/color][/size][/font][font='times new roman'][size=14px][color=#000000]5[/color][/size][/font][font='times new roman'][size=14px][color=#000000])[/color][/size][/font][font='times new roman'][size=14px][color=#000000]肽类[/color][/size][/font][/align][align=left][font='calibri']主要是一些从食物中提取的小分子肽[/font][font='calibri'],典型如1[/font][font='calibri']978[/font][font='calibri']年分离得的鲜味肽(氨基酸序列为[/font][font='calibri']Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala 的辛肽[/font][font='calibri']),其来源极广,在蛋白质含量丰富且有良好滋味的食物中均存在,不仅可直接增强食物口感,也可与食盐,谷氨酸钠等相互作用,提升食品口感。[/font][/align][align=left][font='times new roman'][size=18px]2.[/size][/font][font='times new roman'][size=18px]呈鲜机理简述[/size][/font][/align][align=left] [font='calibri']影响鲜味的因素主要有温度、盐、p[/font][font='calibri']H[/font][font='calibri']、含水量及鲜味成分之间的协同效应。[/font][/align][align=left][font='calibri']谷氨酸钠的呈味强度可随p[/font][font='calibri']H[/font][font='calibri']的改变产生咸、鲜、酸的风味变化。当p[/font][font='calibri']H[/font][font='calibri']为5[/font][font='calibri'].5[/font][font='calibri']-[/font][font='calibri']8.0[/font][font='calibri']时鲜味最强,小于4[/font][font='calibri'].0[/font][font='calibri']时[/font][font='calibri']鲜味降低,并随着p[/font][font='calibri']H[/font][font='calibri']下降转为酸味,而当p[/font][font='calibri']H[/font][font='calibri']大于8[/font][font='calibri'].0[/font][font='calibri']时酸味消失。[/font][font='calibri']而L[/font][font='calibri']-[/font][font='calibri']谷氨酸钠在p[/font][font='calibri']H[/font][font='calibri']小于5的环境下如果长时间受热会发生分子内脱水,形成焦性谷氨酸,使得鲜味消失。而其他的鲜味剂鲜味最强的p[/font][font='calibri']H[/font][font='calibri']范围不尽相同,不[/font][font='calibri']再[/font][font='calibri']赘述。[/font][/align][align=left][font='calibri']鲜味成分之间的增效作用主要有两种:对比作用和相乘(协同)作用,鲜味成分之间的增效效应属于协同作用,这可是鲜味大大提高,最高可达到单独成分的八倍之多。有研究阐明谷氨酸与5[/font][font='calibri']’-[/font][font='calibri']核苷酸与受体蛋白相互结合,使其空间构象改变[/font][font='calibri'],暴露出原本隐藏的受体部位[/font][font='calibri']而产生协同作用[/font][font='calibri']。谷氨酸与肌苷酸间的作用在其比例为1:[/font][font='calibri']1[/font][font='calibri']时最为明显,可比单独使用谷氨酸的味觉鲜度提高七倍。[/font][/align][align=left][font='calibri']除此之外,不同的氨基酸类或核苷酸类鲜味成分之间也有相互作用。举例而言,核苷酸类的鲜味成分若配合使用克明显降低味觉阈值,提高增味效果。而氨基酸之间的协同作用,典型如[/font][font='calibri']甘氨酸和[/font][font='calibri']L[/font][font='calibri']-[/font][font='calibri']丙氨酸——[/font][font='calibri']两者[/font][font='calibri']本身[/font][font='calibri']都[/font][font='calibri']具有甜味,在与[/font][font='calibri']诸如谷氨酸钠这样的鲜味物质[/font][font='calibri']共存时,也有有效增鲜的作用。[/font][/align][align=left][font='calibri']无机离子对于鲜味的呈现也有重要作用。当去除钠离子与氯离子后,谷氨酸钠鲜味会消失,而去除鲜味物质后又只有无机金属离子的咸味,这表明无机离子并不会表现出鲜味,而其实质可能是由于其与鲜味物质相作用而体现出了鲜美的滋味。以谷氨酸钠为例,它所电离出的谷氨酸虽然具有鲜味,但必须要有大量的钠离子(或者其他碱金属离子)包围住这种负离子,这样才易被鲜味受所接受,而谷氨酸钠自身所电离出的钠离子又不足以完全包裹负离[/font][font='calibri']子,因此必须靠食盐来供给所缺失的钠离子。但是,当食盐过量时,由钠离子和氯离子所产生的咸味又会掩盖谷氨酸的鲜味。而谷氨酸二钠虽然能电离出更多的钠离子,但由于谷氨酸二钠本身是谷氨酸钠在碱性条件下形成的,其氨基被破坏,也就意味这谷氨酸表征鲜味的基团被破坏,使得谷氨酸二钠反倒不表现出鲜味。[/font][/align][align=left][font='calibri']而鲜味是由鲜味成分与G蛋白偶联受体作用产生的——鲜味物质激活受体,在细胞内启动一系列复杂的信号传递过程,最后经味觉神经传入大脑味觉中枢,产生鲜味。[/font][/align][align=left][font='calibri']鲜味成分入口后先与舌上皮的味蕾、味细胞及味觉受体作用,产生味感,再由与味觉相关的跨膜G蛋白偶联受体,产生级联放大作用和信号转导,从而诱导细胞电位变化,使得味蕾中特异的离子通道发生改变,将味觉信号经神经传导给大脑。[/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042205355036_6600_1608728_3.png[/img][/align][align=center][font='times new roman'][color=#000000]图[/color][/font][font='times new roman'][color=#000000]2[/color][/font][font='times new roman'][color=#000000]. [/color][/font][font='times new roman'][color=#000000]鲜味分子的识别与信号传导[/color][/font][/align][align=center][font='times new roman'][size=6px][color=#000000]引自[/color][/size][/font][font='times new roman'][size=6px][color=#000000]刘源[/color][/size][/font][font='times new roman'][size=6px][color=#000000],[/color][/size][/font][font='times new roman'][size=6px][color=#000000]王文利[/color][/size][/font][font='times new roman'][size=6px][color=#000000],[/color][/size][/font][font='times new roman'][size=6px][color=#000000]张丹妮[/color][/size][/font][font='times new roman'][size=6px][color=#000000].[/color][/size][/font][font='times new roman'][size=6px][color=#000000]食品鲜味研究进展[/color][/size][/font][font='times new roman'][size=6px][color=#000000][J].[/color][/size][/font][font='times new roman'][size=6px][color=#000000]中国食品学报[/color][/size][/font][font='times new roman'][size=6px][color=#000000],2017,17(09):1-10.[/color][/size][/font][/align][align=left][font='calibri']G蛋白在接受信号后,其[/font][font='calibri']β[/font][font='calibri']及[/font][font='calibri']γ[/font][font='calibri']两亚基将分离,从而激活磷脂酸酶,水解磷脂酰肌醇二磷酸,进而产生两个第二信使——1,[/font][font='calibri']4[/font][font='calibri'],[/font][font='calibri']5[/font][font='calibri']-肌醇三磷酸和二酯酰甘油。肌醇三磷酸与肌醇三磷酸受体结合后,导致细胞内钙库[/font][font='calibri']中的钙离子释放,胞内钙离子浓度上升,使得瞬时受体电位通道打开,钠离子随之内流,这导致膜去极性化,由此而产生了动作电位并释放ATP。这些被释放的ATP将作为神经递质,由膜联蛋白通道传入神经纤维上的嘌呤受体。[/font][/align][align=left][font='calibri']对于呈鲜分子,必须具有带正[/font][font='calibri']电[/font][font='calibri']、带负电荷[/font][font='calibri']和[/font][font='calibri']亲水性残基分子团,三种分子团分别接触对应的感受器才能令人感受到鲜味。以谷氨酸钠为例,其鲜味主要是由[/font][font='calibri']α[/font][font='calibri']-NH[/font][font='calibri'][size=13px]3[/size][/font][font='calibri'][size=13px]+[/size][/font][font='calibri']和[/font][font='calibri']γ[/font][font='calibri']-COO[/font][font='calibri'][size=13px]-[/size][/font][font='calibri']两个静电基团[/font][font='calibri']互相吸引而形成五元环结构。[/font][font='calibri']对于呈鲜的氨基酸,事实上都可以归属于谷氨酸钠类型,它们的共同是是都具有一个[/font][font='calibri'][size=13px]-[/size][/font][font='calibri']O-(C)[/font][font='calibri'][size=13px]n[/size][/font][font='calibri']-O[/font][font='calibri'][size=13px]-[/size][/font][font='calibri'](n[/font][font='calibri']=3-9[/font][font='calibri'])的骨架结构,当n[/font][font='calibri']=5[/font][font='calibri']时其鲜味最强,而当n[/font][font='calibri']=5[/font][font='calibri']时该物质即为氨基戊二酸——也就是谷氨酸——这也是谷氨酸钠可作为代表性的鲜味氨基酸的原因。而谷氨酸的分子结构中不仅有鲜味受体的结合位点,也同时具有酸、甜、苦、咸感受器的结合位点——这也就解释了为什么在p[/font][font='calibri']H[/font][font='calibri']不同的环境下谷氨酸钠会表现出截然不同的风味。[/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042205358074_7881_1608728_3.png[/img][/align][align=center][font='times new roman'][color=#000000]图[/color][/font][font='times new roman'][color=#000000]2[/color][/font][font='times new roman'][color=#000000]. [/color][/font][font='times new roman'][color=#000000]谷氨酸分子结构及其上的受体结合位点[/color][/font][/align][align=center][font='times new roman'][size=6px][color=#000000]引自[/color][/size][/font][font='times new roman'][size=6px][color=#000000]龚骏[/color][/size][/font][font='times new roman'][size=6px][color=#000000],[/color][/size][/font][font='times new roman'][size=6px][color=#000000]陶宁萍[/color][/size][/font][font='times new roman'][size=6px][color=#000000],[/color][/size][/font][font='times new roman'][size=6px][color=#000000]顾赛麒[/color][/size][/font][font='times new roman'][size=6px][color=#000000].[/color][/size][/font][font='times new roman'][size=6px][color=#000000]食品中鲜味物质及其检测研究方法概述[/color][/size][/font][font='times new roman'][size=6px][color=#000000][J].[/color][/size][/font][font='times new roman'][size=6px][color=#000000]中国调味品[/color][/size][/font][font='times new roman'][size=6px][color=#000000],2014,39(01):129-135.[/color][/size][/font][/align][align=left][font='calibri']对于核苷酸类的鲜味剂,有研究指出核苷酸呈鲜必须满足两个条件:只有核糖部分5[/font][font='calibri']’[/font][font='calibri']碳原子上链接磷酸基的5[/font][font='calibri']’-[/font][font='calibri']核苷酸才能表现出鲜味活性;只有嘌呤部分的第六位碳原子上有一个羟基的5[/font][font='calibri']’-[/font][font='calibri']核苷酸才能产生鲜味。进一步的研究表明了,只有嘌呤类的核苷酸才会呈现出鲜味,而其他类型的核苷酸不呈鲜鲜味。[/font][/align][align=left][font='times new roman'][size=18px]三[/size][/font][font='times new roman'][size=18px]、[/size][/font][font='times new roman'][size=18px]谷氨酸钠的工业生产与应用[/size][/font][/align][align=left][font='times new roman']现今谷氨酸钠的生产主要采用发酵法[/font][font='times new roman'],该法基本可分为以下三个阶段:[/font][/align][align=left][font='times new roman']1[/font][font='times new roman'].[/font][font='times new roman']淀粉水解为葡萄糖[/font][/align][align=left][font='times new roman']2[/font][font='times new roman'].[/font][font='times new roman']葡萄糖发酵,生成谷氨酸[/font][/align][align=left][font='times new roman']3[/font][font='times new roman'].[/font][font='times new roman']发酵液制成味精[/font][/align][align=left][font='times new roman']以上三个阶段分别对应了生产厂的糖化、发酵、提取和精制四个主要车间,其中,核心为谷氨酸中和提取和浓缩结晶。[/font][/align][align=left][font='times new roman']而目前提取谷氨酸主要采用冷冻等电[/font][font='times new roman']-[/font][font='times new roman']离子交换法,该法主要操作如下:[/font][/align][align=left][font='times new roman']发酵液在等电罐中一边用冷冻盐水缓慢搅拌冷却降温至[/font][font='times new roman']5[/font][font='times new roman']℃,一边用硫酸调[/font][font='times new roman']Ph[/font][font='times new roman']值至[/font][font='times new roman']3.22[/font][font='times new roman'],沉淀后离心即得粗谷氨酸[/font][font='times new roman'];[/font][/align][align=left][font='times new roman']在装有[/font][font='times new roman']60[/font][font='times new roman']~[/font][font='times new roman']65[/font][font='times new roman']℃底水的中和罐中加入谷氨酸,搅拌,并缓慢加入纯碱溶液,中和至[/font][font='times new roman']Ph[/font][font='times new roman']值[/font][font='times new roman']6.2[/font][font='times new roman']~[/font][font='times new roman']6.4[/font][font='times new roman'];[/font][/align][align=left][font='times new roman']待中和液降温至[/font][font='times new roman']50[/font][font='times new roman']℃以下,加入适量的硫化钠溶液以除铁;然后用粗谷氨酸回调[/font][font='times new roman']Ph[/font][font='times new roman']值至[/font][font='times new roman']6.2[/font][font='times new roman']~[/font][font='times new roman']6.4[/font][font='times new roman'],并升温至[/font][font='times new roman']60[/font][font='times new roman']℃,再加入粉末活性炭,搅拌半小时后送入压滤机压滤[/font][font='times new roman'];[/font][/align][align=left][font='times new roman']再将滤液用颗粒活性炭柱二次脱色得清液;清液送入真空煮晶锅内在[/font][font='times new roman']60[/font][font='times new roman']~[/font][font='times new roman']70[/font][font='times new roman']℃下蒸发浓缩,加入晶种[/font][font='times new roman'];[/font][/align][align=left][font='times new roman']放料后,经育晶槽,再离心分离得结晶味精,母液或经脱色后再蒸发结晶,精制收率可达理论量的[/font][font='times new roman']92%[/font][font='times new roman']。[/font][/align][align=left][font='times new roman']但是该法提起谷氨酸后的尾液化学需氧量高、产生量大、酸碱消耗量大等缺点,与现今提倡的清洁绿色生产不符。目前也有如连续等电[/font][font='times new roman']-[/font][font='times new roman']转晶法等更清洁的新提取方法。[/font][/align][align=left][font='times new roman']除发酵法之外,也有如[/font][font='times new roman']α[/font][font='times new roman']-[/font][font='times new roman']酮戊二酸合成法[/font][font='times new roman'],[/font][font='times new roman']丙烯腈合成法[/font][font='times new roman']等方法。[/font][/align][align=left][font='times new roman']α[/font][font='times new roman']-[/font][font='times new roman']酮戊二酸合成法[/font][font='times new roman']是使[/font][font='times new roman']NH[/font][font='times new roman'][size=13px]4[/size][/font][font='times new roman'][size=13px]+[/size][/font][font='times new roman']和供氢体还原性辅酶[/font][font='times new roman']II[/font][font='times new roman']([/font][font='times new roman']NADPH[/font][font='times new roman'])存在的条件下,α[/font][font='times new roman']-[/font][font='times new roman']酮戊二酸在谷氨酸脱氢酶([/font][font='times new roman']GHD[/font][font='times new roman'])的催化下,发生还原氨基化反应,或转氨酶([/font][font='times new roman']AT[/font][font='times new roman'])催化转氨反应,或谷氨酸合成酶([/font][font='times new roman']GS[/font][font='times new roman'])催化,形成谷氨酸。[/font][/align][align=left][font='times new roman']谷氨酸发酵液与盐酸离心搅拌并育晶、搅拌、沉淀生成谷氨酸钠。[/font][/align][align=left][font='times new roman']丙烯腈合成法[/font][font='times new roman']是[/font][font='times new roman']在[/font][font='times new roman']120~150[/font][font='times new roman']℃和[/font][font='times new roman']20~30MPa[/font][font='times new roman']条件下,钴催化剂局部选择催化丙烯腈氢甲酰化,生成[/font][font='times new roman']3-[/font][font='times new roman']氰基丙醛(直链醛产率为[/font][font='times new roman']80%[/font][font='times new roman']),然后通过[/font][font='times new roman']Strecker[/font][font='times new roman']降解反应(斯特雷克氨基酸合成反应)合成生成[/font][font='times new roman']L-[/font][font='times new roman']谷氨酸钠。这种办法曾经是一种工业生产工艺路线,但被更经济的办法取代。[/font][/align][align=left][font='times new roman']谷氨酸钠广泛作为调味剂使用,其强烈的鲜味即使稀释[/font][font='times new roman']3[/font][font='times new roman']000[/font][font='times new roman']倍仍能感受到,一般用量为[/font][font='times new roman']0[/font][font='times new roman'].2[/font][font='times new roman']-[/font][font='times new roman']0.5[/font][font='times new roman']%[/font][font='times new roman']。[/font][/align][align=left][font='times new roman']除了单独使用之外,也常与其他核酸调味剂(如[/font][font='times new roman']I[/font][font='times new roman']MP[/font][font='times new roman'])配成复合调味剂,可提升效果。与食盐共存时也能增强呈味作用。[/font][/align][align=left][font='times new roman']我国规定各类食品生产中可按需适量使用谷氨酸钠。而关于味精会对人体有害的言论大[/font][font='times new roman']部分属无稽之谈,研究表明只有在短时大量摄入的情况下才可能产生影响。[/font][/align][align=left][font='times new roman']除调味剂外,谷氨酸钠也可作为医药试剂。由于谷氨酸在肝脏氮代谢中发挥着重要作用,当肝功能受损时,血液中含氮量提高会引起氮代谢紊乱和肝昏迷,因此医药上可用谷氨酸钠预防肝昏迷。同时谷氨酸也可作为脑组织的供能物质[/font][font='times new roman'],因此谷氨酸钠也用于脑营养剂。[/font][/align][align=left][font='times new roman']谷氨酸钠也有用于有机合成中间体,[/font][font='times new roman']可[/font][font='times new roman']用于[/font][font='times new roman']助剂、渗透膜、丝蛋白改性、皮革助剂、生物医学材料、改性再生胶原纤维等[/font][font='times new roman'],但该应用[/font][font='times new roman']占[/font][font='times new roman']的比例极小[/font][font='times new roman']。[/font][/align][align=left][font='times new roman'][size=18px]四、[/size][/font][font='times new roman'][size=18px]国标相关指标及检测方法[/size][/font][/align][font='calibri']我国对于谷氨酸钠的生产及使用标准主要有三份,分别为GB 2760-2014、[/font][font='calibri']GB 2720-2015[/font][font='calibri']与[/font][font='calibri']GB/T 8967-2007[/font][font='calibri'],前两份分别为食品国家安全标准的视频添加剂使用标准和味精的强制性标准,第三份则是关于谷氨酸钠(味精)生产的推荐性标准。[/font][font='calibri']关于[/font][font='calibri']GB 2720-2015[/font][font='calibri']与[/font][font='calibri']GB/T 8967-2007[/font][font='calibri']中关于味精产品的标准摘录如下图:[/font][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042205360017_6074_1608728_3.png[/img][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/08/202108042205360905_5211_1608728_3.png[/img][/align][align=left][font='times new roman']标准中[/font][font='times new roman']同样也定义了加盐味精和增鲜味精两种产品,前者指在谷氨酸钠(味精)中定量添加了精制盐的混合物,后者指在谷氨酸钠(味精)中定量添加了核苷酸二钠[/font][font='times new roman'][[/font][font='times new roman']包括[/font][font='times new roman']5[/font][font='times new roman']’-[/font][font='times new roman']鸟苷酸二钠([/font][font='times new roman']GMP[/font][font='times new roman'])、[/font][font='times new roman']5[/font][font='times new roman']’-[/font][font='times new roman']肌苷酸二钠([/font][font='times new roman']IMP[/font][font='times new roman'])或呈味核苷酸二钠([/font][font='times new roman']IMP[/font][font='times new roman']+GMP[/font][font='times new roman'])[/font][font='times new roman']][/font][font='times new roman']等增味剂的混合物。[/font][font='times new roman']国标中要求以上两种衍生产品均需在[/font][font='times new roman']9[/font][font='times new roman']9[/font][font='times new roman']%[/font][font='times new roman']味精基础上进行添加生产,也同样有对含量等理化性质的要求,此不再列出赘述。[/font][/align][align=left][font='times new roman']对于谷氨酸钠,国标中对各个指标也有检测方式的规定。[/font][/align][align=left][font='times new roman']谷氨酸钠含量这一重要指标使用经典滴定法进行测定,在乙酸(醋酸)存在下,用高氯酸标准溶液滴定样品中的谷氨酸钠。终点指示可以采用传统的颜色指示剂——以[/font][font='times new roman']α[/font][font='times new roman']-[/font][font='times new roman']萘酚苯基甲醇为指示剂,滴定至溶液变绿色,即为终点。或是使用自动电位滴定仪,利用电位指示终点,实现自动化滴定。[/font][/align][align=left][font='times new roman']因为谷氨酸钠中含有一个[/font][font='times new roman']不对称[/font][font='times new roman']的[/font][font='times new roman']手型[/font][font='times new roman']碳原子,分子具有旋光异构体,也可使用旋光法对谷氨酸钠含量进行测定,使用旋光仪即可测定旋光度,并计算出样品中谷氨酸钠含量。[/font][/align][align=left][font='times new roman']除以上国标中规定的检测方法外,实验室中也可采用全自动氨基酸分析仪,其原理是通过阳离子交换柱将氨基酸分离,并通过显色反应测定不同氨基酸的吸光度。[/font][/align][align=left][font='times new roman']关于其他几项指标,透光率与[/font][font='times new roman']p[/font][font='times new roman']H[/font][font='times new roman']均有对应仪器可直接测定,氯化物、铁及硫酸盐含量也均可以使用滴定法进行测定——只需选择对应的滴定剂和指示剂即可。[/font][/align][align=left][font='times new roman']而核苷酸类的鲜味剂可以直接使用检测核苷酸的实验方法,包括紫外分光光度法,毛细管电泳,离子交换色谱和高效液相色谱等。[/font][/align][align=left][font='times new roman'][size=18px]五[/size][/font][font='times new roman'][size=18px]、[/size][/font][font='times new roman'][size=18px]结语[/size][/font][/align][align=left][font='times new roman']毫无疑问地,随着生活水平的提高人们对于味觉上的感受越来越高,尤其在现今所提倡与流行的健康绿色饮食的大背景下,针对人们在饮食方面提出的新要求,我认为包括调味剂在内的食品添加剂都应该考虑这些新的需要,以顺应时代的变化发展,改善人民生活品质。而对此,除了严格执行国家安全生产标准,为人民提供合规优质产品以外,对于[/font][font='times new roman']更为健康,绿色的新型添加剂的开发也需加速进行。对于鲜味分子而言,随着[/font][font='times new roman']2[/font][font='times new roman']1[/font][font='times new roman']世纪分子生物科技与计算机技术的迅猛发展,一大批诸如细胞微流控,细胞芯片等具有方便、快速、有效等新优点的新检测技术如雨后春笋,同时分子动力学等学科研究也步步前进,毫无疑问这将有益于继续探究鲜味分子与受体蛋白之间的相互作用机理,并在此基础上有目的地改造、设计及合成新的鲜味分子。[/font][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][/align][align=left][font='times new roman'][size=16px][color=#000000]参考文献:[/color][/size][/font][/align][font='times new roman'][1][/font][font='times new roman']刘源[/font][font='times new roman'],[/font][font='times new roman']王文利[/font][font='times new roman'],[/font][font='times new roman']张丹妮[/font][font='times new roman'].[/font][font='times new roman']食品鲜味研究进展[/font][font='times new roman'][J].[/font][font='times new roman']中国食品学报[/font][font='times new roman'],2017,17(09):1-10.[/font][font='times new roman'][2][/font][font='times new roman']黄毅梅[/font][font='times new roman'],[/font][font='times new roman']邓丰[/font][font='times new roman'],[/font][font='times new roman']李静[/font][font='times new roman'].[/font][font='times new roman']我国味精行业清洁生产技术的应用[/font][font='times new roman'][J].[/font][font='times new roman']广东轻工职业技术学院学报[/font][font='times new roman'],2015,14(02):14-18.[/font][font='times new roman'][3][/font][font='times new roman']龚骏[/font][font='times new roman'],[/font][font='times new roman']陶宁萍[/font][font='times new roman'],[/font][font='times new roman']顾赛麒[/font][font='times new roman'].[/font][font='times new roman']食品中鲜味物质及其检测研究方法概述[/font][font='times new roman'][J].[/font][font='times new roman']中国调味品[/font][font='times new roman'],2014,39(01):129-135.[/font][font='times new roman'][4][/font][font='times new roman']孙芝杨[/font][font='times new roman'].[/font][font='times new roman']鲜味剂的应用及发展前景[/font][font='times new roman'][J].[/font][font='times new roman']中国调味品[/font][font='times new roman'],2011,36(06):1-3+9.[/font][font='times new roman'][5][/font][font='times new roman']武彦文[/font][font='times new roman'],[/font][font='times new roman']欧阳杰[/font][font='times new roman'].[/font][font='times new roman']氨基酸和肽在食品中的呈味作用[/font][font='times new roman'][J].[/font][font='times new roman']中国调味品[/font][font='times new roman'],2001(01):19-22.[/font][font='times new roman'][6]GB 2760-2014 [/font][font='times new roman']食品安全国家标准食品添加剂使用标准[/font][font='times new roman'][7]GB 2720-2015 [/font][font='times new roman']食品安全国家标准味精[/font][font='times new roman'][8]GB/T 8967-2007 [/font][font='times new roman']谷氨酸钠(味精)[/font]

  • 食品味精中谷氨酸钠的测定

    味精中谷氨酸钠的测定、以及酱油中氨基酸态氮的测定、根据国标Gb5009.43,(前面处理我就不说了)为什么要先使用氢氧化钠滴定Ph到8.2后再加甲醛(掩蔽剂)、可以开始就加入么?求指点

  • 味精中谷氨酸钠含量测定

    [color=#444444]原理上味精谷氨酸钠含量测定可以和酱油氨基酸态氮的测定方法一样,实际上甲醛法就是同一个方法。现在我们用测酱油的比色法测味精含量,结果却差的很离谱。测到味精含量在[/color][color=#444444]2900[/color][color=#444444]%,大了很多,感觉不知道出错在哪里。哪位高手指点下啦[/color]

  • 味精中谷氨酸单钠含量的旋光法测定

    一、实验目的掌握旋光法测定谷氨酸单钠的原理,熟悉旋光法测定谷氨酸单钠含量的方法。二、实验原理谷氨酸单钠分子结构中含有一个不对称碳原子,具有光学活性,能使偏振光面旋转一定角度,所以,可用旋光仪测定其旋光度,并根据旋光度换算成谷氨酸单钠的含量。三、仪器与试材1.仪器与器材旋光仪(精度±0.010),带有钠光谱D线589.3nm的钠光灯。2.试剂除特别说明外,实验中所用试剂均为分析纯,水为去离子水或蒸馏水。常规试剂:HCl。3.实验材料2~3种味精(纯度大于99%),各50g。四、实验步骤1.样品处理(1)称取样品10.0000g,加少量水溶解并全部移入100mL容量瓶中。(2)加20mILHCl,混匀,冷却至20℃后,补加水至刻度,摇匀。2.测定在20℃恒温室中,先用标准旋光角校正仪器。然后,将上述试液置于旋光管中(注意不能产生气泡),观测其旋光度,同时记录旋光管中溶液的温度。3.计算样品中谷氨酸单钠的含量按下式计算:a/LcX=─────────×10025.16+0.047×(20-t)式中,X为样品中谷氨酸钠的含量,%;a为实测试液的旋光度;L为旋光管的长度(即液层厚度),·dm;c为1mL试液中含谷氨酸钠的质量,g/mL;25.16为谷氨酸钠的比旋光度苫;t为溶液的温度,℃;0.047为温度校正系数。

  • 如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定

    如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定 一、准备工作 1.仪器准备 首先要准备好滴定装置,这就像准备好做饭的锅碗瓢盆一样重要。卡尔?费休滴定仪得检查好,确保它能正常工作。比如滴定管要畅通无阻,而且刻度要清晰准确,这样才能精确量取卡尔?费休试剂。还有搅拌装置也要正常运转,因为在滴定过程中,良好的搅拌能让反应更充分。 2.试剂准备 卡尔?费休试剂得是新鲜配制或者妥善保存且未过期的。酒石酸钠二水合物要确保是干燥、纯净的。称取酒石酸钠二水合物的天平也要精准,就像我们称东西的时候得用个准秤一样。天平要提前校准好,精确到小数点后几位,这可关系到标定结果的准确性呢。 3.环境控制 标定的环境很关键。要在一个相对湿度较低的环境中进行,因为卡尔?费休试剂很容易吸收空气中的水分,如果环境湿度大,就会干扰标定结果。就好比在潮湿的天气里晒东西,东西很难晒干是一个道理。理想的相对湿度最好在 40% - 60% 之间。 二、具体标定步骤 1.称取酒石酸钠二水合物 用经过校准的天平准确称取一定量的酒石酸钠二水合物。这个量要合适,不能太多也不能太少。比如说可以称取 0.2 - 0.3 克左右(具体量可以根据实际情况和仪器的精度调整)。把称好的酒石酸钠二水合物小心地放入滴定容器中,就像把宝贝小心翼翼地放进盒子里一样。 2.开始滴定 然后往滴定容器中加入适量的溶剂,这个溶剂要能溶解酒石酸钠二水合物,并且不会和卡尔?费休试剂发生反应。开启搅拌装置,让酒石酸钠二水合物充分溶解。 接下来就可以开始用卡尔?费休试剂进行滴定了。慢慢打开滴定管的阀门,让卡尔?费休试剂一滴一滴地滴入滴定容器中。一边滴一边观察滴定仪上的读数或者颜色变化(如果是用有颜色指示的卡尔?费休试剂的话)。这个过程要特别仔细,就像给花浇水一样,一滴一滴地浇,不能一下子倒很多。 3.确定滴定终点 当达到滴定终点时,就要停止滴定。如果是用电位滴定仪,会有电位的突变来指示终点;如果是用目视法,可能会看到颜色的明显变化。这个终点的判断要准确,一旦判断失误,整个标定结果就错了。就像跑步比赛,冲线的那一刻判断错了,比赛结果就不对了。 4.计算卡尔?费休试剂的浓度 根据酒石酸钠二水合物的质量、它里面结晶水的含量(酒石酸钠二水合物中结晶水的摩尔质量是固定的,可以查出来)以及滴定所消耗的卡尔?费休试剂的体积,就可以计算出卡尔?费休试剂的浓度了。计算的时候要仔细,可不能算错数哦。

  • 哪些因素会影响酒石酸钠二水合物的溶解平衡

    哪些因素会影响酒石酸钠二水合物的溶解平衡 一、温度方面 1.温度高低 温度就像一个调皮的小助手,对溶解平衡影响可大了。如果温度升高,就像给酒石酸钠二水合物的溶解加了把劲儿。因为温度高了,分子运动就变得更活跃了,溶剂分子就更容易把溶质分子(酒石酸钠二水合物)包围起来,让它溶解。就好比天气热的时候,糖在水里溶解得更快更多一样。反过来,如果温度降低,分子运动就慢下来了,酒石酸钠二水合物的溶解能力也会跟着下降,可能本来溶解了不少,温度一低就有一部分析出来了。 二、溶剂的性质 1.溶剂种类 不同的溶剂就像不同的小房子,对酒石酸钠二水合物的容纳能力不一样。如果是一种和酒石酸钠二水合物 “合得来” 的溶剂,那它就容易溶解。比如说,在水里酒石酸钠二水合物能溶解得挺好,但是如果换一种有机溶剂,像乙醇之类的,可能溶解的量就少多了,甚至几乎不溶解。这是因为酒石酸钠二水合物分子和水分子之间的相互作用力比较强,能让它很好地分散在水中,而和乙醇分子的相互作用力就弱很多。 2.溶剂的量 溶剂的量也很关键。如果溶剂很多,就像有很大的空间来容纳酒石酸钠二水合物,那它就能溶解更多的溶质。就像你有一个大杯子装水,能放很多糖溶解在里面;如果杯子很小,水少,能溶解的糖也就少了。不过呢,这里有个极限,就是达到饱和状态后,再增加溶剂也不能再溶解更多的酒石酸钠二水合物了。 三、溶质的状态 1.溶质的颗粒大小 酒石酸钠二水合物本身颗粒的大小也会影响溶解平衡。如果颗粒很大,就像一个大石块,溶剂分子要把它慢慢 “啃碎” 才能溶解,溶解的速度就慢。要是颗粒很细小,就像沙子一样,溶剂分子就能很快把它们包围起来溶解掉。不过这主要影响的是溶解的速度,当时间足够长的时候,最终达到的溶解平衡状态是一样的,只是颗粒小的时候会更快达到平衡。 2.溶质的纯度 纯度高的酒石酸钠二水合物溶解起来比较单纯。如果里面混有杂质,这些杂质就像捣乱的小坏蛋。比如说,杂质可能会占据溶剂分子和酒石酸钠二水合物分子结合的位置,或者改变溶液的性质,从而影响酒石酸钠二水合物的溶解平衡。可能会使它溶解得少一些,或者达到平衡的速度变慢。 四、搅拌情况 1.搅拌与否 搅拌就像给溶液做按摩一样。如果搅拌溶液,就能让酒石酸钠二水合物周围的溶剂不断更新,这样溶剂分子就能更快地接触到溶质分子,加快溶解的速度。不搅拌的话,溶质周围的溶剂很快就饱和了,新的溶剂分子过不来,溶解就慢。不过搅拌不会改变最终的溶解平衡状态,只是影响达到平衡的快慢。

  • 如何确定酒石酸钠二水合物的溶解平衡是否已经建立

    如何确定酒石酸钠二水合物的溶解平衡是否已经建立 一、观察溶液外观 1.颗粒状态 首先呢,还是用眼睛好好瞅一瞅溶液。如果溶液里已经好长一段时间看不到酒石酸钠二水合物的小颗粒了,不管是在溶液中间,还是在容器的底部或者壁上,都没有那种白花花的东西,这是个好迹象。就像你等一杯咖啡里的糖完全溶解一样,看不到糖粒了,才有可能达到溶解平衡。不过这还只是第一步,光看这个还不能完全确定。 2.溶液的均匀性 除了看有没有颗粒,还要看溶液是不是均匀的。你可以把溶液轻轻晃一晃,如果溶液看起来就像水一样清澈、均匀,没有哪里浓哪里淡的感觉,也没有什么浑浊的地方,那说明它很可能接近或者已经达到溶解平衡了。就像你调果汁,调好之后果汁是均匀的颜色和浓度,没有沉淀或者分层,那这个果汁就调好了,酒石酸钠二水合物的溶液也是这个道理。 二、持续观察一段时间 1.短时间内无变化 你得盯着溶液看一会儿,比如说看个 5 - 10 分钟。如果在这几分钟里,溶液的样子没有任何变化,既没有新的小颗粒冒出来,也没有溶液变浑浊或者变清澈,那就有可能是达到溶解平衡了。这就像你在等一个蛋糕烤熟,你得等一会儿看它有没有变化,如果一直保持一个样子,那可能就烤好了。 2.延长观察时间 为了更保险,你可以观察得更久一点,比如 30 分钟甚至一个小时。如果这么长的时间里溶液还是老样子,那基本上就可以确定溶解平衡已经建立了。因为如果还没有达到平衡,这么长的时间里溶液的状态肯定会发生变化的,要么有更多的酒石酸钠二水合物溶解,要么会有一些已经溶解的重新析出来。 三、进行简单测试(如果可能) 1.取少量溶液测试 如果条件允许的话,你可以用个小滴管取一点点溶液出来。然后用一些简单的方法来检测溶液里酒石酸钠二水合物的含量是不是固定的。比如说,如果有办法检测溶液里钠离子或者酒石酸根离子的浓度,你可以做个简单的测试。要是你取几次溶液,每次检测出来的浓度都一样,那这也能说明溶解平衡已经建立了。不过这种方法可能需要一些特殊的仪器或者试剂,不是所有情况都能做的。 总之,确定酒石酸钠二水合物的溶解平衡是否建立,要多方面观察,不能只看一点就下结论。

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 如何判断酒石酸钠二水合物是否已经完全溶解

    如何判断酒石酸钠二水合物是否已经完全溶解 一、直接观察法 1.整体观察 你就眼睛直勾勾地看着装着酒石酸钠二水合物和溶剂的容器呗。如果溶液看起来清清爽爽的,没有那种白花花的小颗粒或者小块块在里面晃悠,那很可能就已经完全溶解了。就像你冲一杯白糖水,白糖完全化了的时候,水就是均匀的,看不到白糖颗粒了。不过呢,你得仔细看,有时候小颗粒可能躲在角落里或者附着在容器壁上,可别把它们给漏掉了。 2.透光观察 把容器拿到有光的地方,从侧面看过去。如果溶液是均匀透明或者半透明的,光线能很顺畅地穿过,没有被什么东西挡住,那也说明溶解得差不多了。要是还有没溶解的东西,光就会在那些颗粒上散射,看起来就会有一些浑浊或者暗影。这就好比你透过干净的玻璃看东西很清楚,但是玻璃上有脏东西的时候,看东西就模糊了。 二、搅拌相关的判断法 1.搅拌时的观察 在搅拌溶液的时候,你看溶液里的情况。如果搅拌了一会儿,溶液里一直都没有出现那种顽固的小颗粒或者沉淀,而且溶液的流动很顺畅,就像水一样平滑,那可能是完全溶解了。要是还有没溶解的东西,搅拌的时候它们就会像调皮的小豆子一样在溶液里滚来滚去,很容易被发现。 2.搅拌停止后的观察 搅拌停下来之后,这时候最能看出问题了。等个一小会儿,大概一分钟左右,看看溶液里有没有东西又冒出来了。如果溶液安安静静的,没有沉淀或者小颗粒从溶液里跑出来,那基本可以确定是完全溶解了。这就像你搅和一盆沙子和水,一停搅拌,沙子就会沉下去,如果不沉,就说明沙子已经均匀地分散在水里了。 三、时间检验法 1.延长观察时间 有时候溶解得比较慢,你不能太着急。可以多等几分钟,就这么盯着溶液看。如果好几分钟过去了,溶液还是老样子,清清爽爽、安安静静的,那肯定就是完全溶解了。这就像炖肉一样,你得给它足够的时间才能炖烂,酒石酸钠二水合物溶解也需要一点时间来确定是不是真的完全溶解了。

  • 水合物中的水

    [color=#444444]质谱可以打出水合物中的水吗,[color=#444444]比如五水合物质谱上最大的峰是含水的还是不含水的呀,真心求问。[/color][/color]

  • 关于谷氨酸和焦谷氨酸

    最近在做一个课题,夏天测谷氨酸的标线还是好好的,这俩天就不行了,我想问下谷氨酸的液相测定方法是如何测定的,我用的流动相是磷酸水溶液,因为谷氨酸是微溶于水的,所以配的浓度最高是25 mmoL/L,想问下大神们液相测定谷氨酸和焦谷氨酸的方法~ 谢谢~

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

  • 【分享】谷氨酸发酵液除菌体提取谷氨酸研究进展

    谷氨酸发酵液除菌体提取谷氨酸研究进展作者:佚名 文章来源:本站原创点击数: 222 更新时间:2010-4-14 13:19:04 file:///C:/Users/%E9%83%AD%E9%9B%B7/AppData/Local/Temp/msohtml1/01/clip_image001.gif我国味精生产,从发酵液中提取谷氨酸大多采用带菌体冷冻等电加离交法,由于发酵液中存在大量的菌体蛋白、悬浮物及其它杂质,给谷氨酸提取操作、提取收率、谷氨酸质量带来显著影响,且废水含高C0D、高B0D等严重污染环境的物质,又给废水治理带来重重困难。 近几年来,国内一些味精生产企业、研究所,对谷氨酸发酵液除菌体及提取谷氨酸进行了大量研究,除菌体工艺有高速离心机分离,絮凝剂分离、膜分离等,都取得了明显成果。按除菌体不同工艺、除菌体率分别达到70%~96%,以膜分离法除菌率最高达95%以上,得到的发酵液澄清,0D低,谷氨酸提取操作方便,由于除去了影响谷氨酸结晶的大量杂质,因而谷氨酸结晶颗粒大,纯度高、质量好,易于沉降分离,提取收率明显提高。高纯度谷氨酸有利于味精精制,味精中和脱色过滤可降低活性碳或树脂用量,提高味精结晶质量,大大降低味精生产成本。除菌体后的发酵液及等电提取后的废液中C0D、BOD大大减少,减轻了环境污染,降低了废水治理负荷与难度。得到的菌体经干燥后可以综合利用,作高蛋白质饲料或作核苷酸的生产原料。 谷氨酸发酵液除菌体及多种新工艺提取谷氨酸的研究,是对我国味精工业清洁生产的有益探索。随着研究的不断深化,许多先进工艺技术将会被应用,味精生产终将进入一个新水平。 1 高速离心分离除菌体,浓缩等电提取 沈阳味精厂从瑞典引进4台ALFA—LAVA公司的FESX5l2S一3lC型蝶片式高速喷咀离心机,转速4650I1) 分,功率45kw,对玉米淀糖为碳源,尿素作氨源、玉米浆为生物素的T一6l3菌发酵液进行了工业性除菌体,进料量20m ,喷咀直径1.0mm,菌体分离率达70%以上,轻流占75% ,重流占25%左右,除菌体后发酵液中谷氨酸略增,还原糖下降,0D值明显降低,工业规模运转证明,该设备对分离谷氨酸发酵液性能可靠,比较适宜。 发酵液除菌体后采用浓缩等电点提取法。 除菌体后的发酵液,经减压蒸发到含谷氨酸12%~15% ,后与重液经水解浓缩制成的二次蒸发液进行等电中和(60℃、40l1)m搅拌),然后冷却、沉淀、离心分离,提取达83.14%~85.03%,比带菌体浓缩等电点提取收率77.24%显著增加。且谷氨酸含量高达96%(干),用于制造味精时脱色液过滤快,透光率高,味精质量好。 2 凝聚剂除菌体一次等电或浓缩等电提取 使用安全性高的壳聚糖作絮凝剂,其阳离子性能与发酵液中菌体(带负电荷)与蛋白凝聚使其沉淀而进行分离。壳聚糖对金属离子、蛋白质、氨基酸、核酸均有很强的吸附能力,特别对胶体微粒有甚大的絮凝作用,其官能基团主要是氨基。在最佳pH、搅拌速度、用量、温度条件下,菌体去除率可达9O%左右。 壳聚糖不易溶于水,而溶解于酸性溶液中。配成一定浓度后,于发酵液中慢慢加人,搅拌速度也以慢为好。过快易将凝絮物打碎,难过滤。菌体凝聚沉降后,抽取上清液,沉降物可加硅藻土或珍珠岩作助滤剂,尤以硅藻土作助滤剂好,不吸附谷氨酸。中试规模过滤可用板框压滤,小试规模实验室中,采用高速离心机分离。应用国产高速离心机分离除菌体凝絮物(包括菌体)至今未见报导,这也是用凝絮法除菌体不能很快推广的一个较大问题。凝聚法去除菌体后的谷氨酸发酵液的提取方法有: 2.1一次等电点法 谷氨酸发酵液经絮凝处理后,采用一次等电点法,(即用酸逐步调到pH3-2法)提取收率可达76.18% ,比对照收率71.3%提高6.2% ,谷氨酸结晶的透光率52.25% ,比对照l1.25%提高了4倍;谷氨酸提取后的母液,可减少谷氨酸0.06%~0.11%。这是提高谷氨酸收率的一个重要原因,即去除了干扰谷氨酸结晶因素。 2.2 浓缩等电点法 将除菌体经过滤的发酵液,真空浓缩一倍,用加热快速调pH的方法,一次性直接调到pH3.2。搅拌到常温,再搅拌2h~3h时,沉淀3h,离心分离谷氨酸,谷氨酸一次收率平均可达85%左右,纯度可达95%左右,且调节pH的酸用量比普通谷氨酸等电点法用量要少。 2.3 先等电提取后浓缩再提取法 谷氨酸发酵液除菌体后,先用一次等电点法(常温或冷冻)提取出谷氨酸的60%~75%,残母液中含1.2%~1.5%左右的残谷氨酸,再加以浓缩(通过多效蒸发器)3倍,再提出剩余谷氨酸,总收率可达85%以上。母液浓缩成浆状可作肥料,再根据当地的土质情况,适当添加磷、钾等肥效成分。这条工艺路线是既提高了谷氨酸的提取收率,又产生综合效益。从发酵液分离出

  • 【原创】天然气水合物

    打开能源的“牢笼”在冰的天然气水合物矿床中,可以发现大量的天然气,但是将这些天然气开采出来却是一个严峻的挑战。一万亿立方英尺 (tcf) 有多大? 尽管我们知道这个体积非常大,但是要想像其具体的大小将会相当困难。这里有一种方法。假定我们站在足球场或橄榄球球场一端的球门附近。在另一端俯视球场,设想一条长度为 30 倍球场长度的直线。(这一距离大概为 3 公里(约 1.9 英里)或相当于 3500 步。)现在右转 90 度,然后按照该方向设想一条相同距离的直线。最后,直视前方,设想一条长度相同并且垂直于地面向天空方向延伸的直线。那么,这个立方体的三条边所包含的体积就大约为一万亿立方英尺!平均而言,地球上的每人每月大约消费七万亿立方英尺天然气! 燃烧的冰地球上的人使用天然气(甲烷,CH4)这种矿物燃料提供日常所用能源的 45%。目前,每年的天然气燃烧量约为 2.4 万亿立方米(85 万亿立方英尺)。不幸的是,按照这一速度,我们所发现的地球天然气储量只能使用 60 年。这意味着按照目前所知的情况,对于今天正在上高中的学生而言,他们的子孙就没有可用的天然气了。对于这一暗淡的前景也有一些好的消息。看起来还有另外一个天然气资源的世界,足以满足我们当前以及将来 2000 年的能源需求。这完全可以惠及我们子子孙孙!不幸的是,我们还没有找到开采这一天然气的经济方式。我们目前正在研究。 这些特殊的天然气储量称为天然气水合物,它们由其甲烷(天然气)分子中类似小鸟笼一样的冰结构构成。基本的水合单元是中空的水分子晶体,其中包含一个天然气单分子。这些晶体以紧密的网格结构相互联接在一起。如果这些天然气水合物的联接程度紧密上几倍,那么它们看起来将更象是冰。但是其属性和冰不同:它们在适当的条件下可以燃烧!这是 21 世纪一个相当热门的话题。全球天然气水合物的储量丰富,因此有些国家已经开始研究和探索计划,致力于理解水合物的行为、确定其精确储量并开发可行的开采方法。日本、印度、美国、加拿大、挪威和俄罗斯等国家都在进行天然气水合物的勘测。 天然气水合物是一个晶体结构。这一天然气水合物的每个单元小室都包含 46 个水分子,构成两个较小的十二面体和 6 个较大的十四面体。天然气水合物只能承载较小的气体分子,例如甲烷和乙烷。在常温常压(STP)下,一体积的饱和甲烷水合物将包含 189 体积的甲烷气体。天然气水合物这么大的气体储量意味着重要的天然气来源。

  • 谷氨酸二乙酸四钠的氯化物检测

    目前使用谷氨酸二乙酸4钠即GLDA-4Na作为产品中的螯合剂,在使用银量滴定法检测其中氯化物含量时,无法识别终点,是否为其中什么成分干扰检测,各位大神有什么办法解决吗?

  • 【求助】气相出口居然还会形成水合物?

    HYSYS模拟低温分离器,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口居然还会形成水合物,怎么办啊?这是用HYSYS模拟现场集输的问题。流程为天然气和乙二醇混合,节流,进低温分离器,节流前后无水合物形成,但分离后,由于乙二醇被分走了,[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]出口温度又低,水合物公用工具显示的水合物形成的温度和压力都在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]物流的温度和压力范围内,经换热器仍然是这个效果,人家总不能形成水合物还往外输吧?但是水露点和烃露点又都很低小于-10度。请高手给点思路,希望您不要惜字如金啊,有什么想法都可以说的!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制