当前位置: 仪器信息网 > 行业主题 > >

二乙二醇二乙酸酯

仪器信息网二乙二醇二乙酸酯专题为您提供2024年最新二乙二醇二乙酸酯价格报价、厂家品牌的相关信息, 包括二乙二醇二乙酸酯参数、型号等,不管是国产,还是进口品牌的二乙二醇二乙酸酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二乙二醇二乙酸酯相关的耗材配件、试剂标物,还有二乙二醇二乙酸酯相关的最新资讯、资料,以及二乙二醇二乙酸酯相关的解决方案。

二乙二醇二乙酸酯相关的资讯

  • PEN聚萘二甲酸乙二醇酯的粘度测量
    聚萘二甲酸乙二醇酯简称PEN,是聚酯家族中重要成员之一,是由2,6-萘二甲酸二甲酯(NDC)或2,6-萘二甲酸(NDA)与乙二醇(EG)缩聚而成,是一种新兴的优良聚合物。目前主要应用于磁带的基带、柔性印刷电路板、电容器膜、F级绝缘膜等方面,也开始逐渐延伸至碳酸饮料瓶、酸性饮料瓶等包装领域和工业电缆料、过滤器介质用单丝等工业用纤维领域。PEN化学结构与PET相似,其各项特性也与PET类似,但在分子链中PEN由刚性更大的萘环代替了PET中的苯环。使PEN比PET具有更高的物理机械性能、气体阻隔性能、化学稳定性及耐热、耐紫外线、耐辐射等性能。国标GB/T 1632.5-2008中对聚萘二甲酸乙二醇酯特性黏度的测量方法给出了详细的说明:对于无定型的PEN采用苯酚四氯乙烷作为溶剂,结晶PEN采用苯酚三氯苯酚作为溶剂,再通过相关辅助设备测试PEN溶液的黏度。在PEN的黏度测试流程中,传统的手动测试方式是使用乌氏粘度管在温控精准度较高的恒温水浴槽中进行黏度测试,采用传统的手动测试方法会存在:测试精度低,测试流程繁琐等诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,自动化的乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV3000系列全自动乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例:实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV3000系列乌氏粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV3000系列全自动粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表和外推分析等多种功能。5. 粘度管清洗干燥过程:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。清洗模式可多种选择,同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。IV3000系列乌氏粘度仪可实现自动测试、自动排废液、自动清洗及干燥过程的自动化,告别粘度管是耗材的时代。
  • 世界首创万吨级“煤制乙二醇”成套技术通过鉴定
    世界首创万吨级“煤制乙二醇”工业化示范获得成功  5月7日,中国科学院“世界首创万吨级煤制乙二醇工业化示范”新闻发布会在北京人民大会堂隆重举行。全国人大常委会副委员长、中国科学院院长路甬祥出席会议。科学技术部、工业和信息化部、国土资源部、自然科学基金委、中国石油化工协会等相关部门领导,福建省人民政府领导、江苏省人民政府领导、内蒙古自治区领导以及技术成果鉴定专家组组长何鸣元院士等共同出席了发布会。会上获悉:中国科学院福建物质结构研究所依托20多年的技术积累与江苏丹化集团、上海金煤化工新技术有限公司联手合作,成功开发了“万吨级CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”(简称“煤制乙二醇”)成套技术。该成套技术已通过中国科学院组织的成果鉴定。  “世界首创万吨级煤制乙二醇工业化示范”新闻发布会举行     全国人大常委会副委员长、中国科学院院长路甬祥讲话  鉴定委员会专家一致认为,此项成果标志着我国领先于世界实现了全套“煤制乙二醇”技术路线和工业化应用,是一项拥有完全自主知识产权的世界首创技术。该技术的推广应用将有效缓解我国乙二醇产品供需矛盾,对国家的能源和化工产业产生重要积极影响,具有重要的科学意义、突出的技术创新性和显著的社会经济效益。  乙二醇是重要的化工原料和战略物资,用于制造聚酯(可进一步生产涤纶、饮料瓶、薄膜)、炸药、乙二醛,并可作防冻剂、增塑剂、水力流体和溶剂等。“煤制乙二醇”即以煤代替石油乙烯生产乙二醇。专家指出,此类技术路线符合我国缺油、少气、煤炭资源相对丰富的资源特点。中国科学院福建物质结构研究所通过长期基础研究、应用研究和产业化获得的该项成果,拥有多项技术专利和自主知识产权 该成套技术符合循环经济 “减量化、再利用、资源化”三原则,其显著特点还在于全部采用工业级的CO、NO、H2、O2和醇类为原料,对形成规模化产业极为有利。鉴定委员会专家在现场考察后认为,万吨级工业试验装置运行稳定,具备了进一步建设大规模工业化生产装置的条件。据专家测算,用石油乙烯路线每生产一吨乙二醇约耗2.5吨石油。目前全世界用石油乙烯生产的2000多万吨乙二醇,若都以煤为原料进行生产,那么,节省下来的石油相当于新开发一个年产5000万吨石油的大庆油田。  煤制乙二醇技术是国家“八五”、“九五”重点科技攻关项目。中科院福建物构所自1982年起经过多年前期研究,获得了一系列具有完全自主知识产权的小试技术和模试技术 江苏丹化集团技术团队拥有化工新技术产业化的长期积淀,曾在国内首创“碳化法制碳酸氢铵”、“羰基化合成醋酐”和“变压吸附分离CO”等多项化工新工艺。2005年起,由上海盛宇企业投资有限公司投资约1.8亿元,与中科院福建物构所、丹化集团、上海金煤化工新技术有限公司等强强联手启动了“CO气相催化合成草酸酯和草酸酯催化加氢合成乙二醇”的产业化试验,经过3年多的艰苦努力,在国家发改委、科技部、中科院、福建省、上海市和江苏省政府的大力支持下,相继在丹化集团建成年产300吨中试和1万吨工业化试验两套装置,在多项关键技术领域取得突破,2007年12月万吨装置顺利开车打通全流程,经过一年多的实际运行检验,并经专家组鉴定,证明全球首套“万吨级煤制乙二醇”技术已完全取得成功。  经中国科学院和国家财政部批准,中科院福建物构所和上海金煤化工新技术有限公司已将全部煤制乙二醇技术入股通辽金煤化工有限公司,该企业正在内蒙古通辽市建设全球首套年产20万吨煤制乙二醇示范装置,该项目是我国煤化工五大重点示范工程之一,预计今年年底前即可建成投产,未来五年内将建成120万吨生产规模,有望成为国内最大的乙二醇生产企业,实现部分替代进口。  关于该项目的合作模式,全国人大常委会副委员长、中国科学院院长路甬祥认为:在学习实践科学发展观、建设创新型国家进程中,中国科学院实施创新工程,构建了知识创新、技术创新和工程产业化的“金三角”并发挥三者互动的科技创新体系,在推动科技创新、科技成果转移转化与产业化、创建高新技术企业等方面谋划了独具特色的创新机制。在应对国际金融危机的新形势下,它将为企业通过科技成果转移转化,提升自主创新能力提供一些宝贵的经验,为实现我国国民经济的平稳快速发展,探索出一条合作共赢的创新之路。
  • 我国工业排放气制乙二醇技术获突破
    开创乙二醇生产新原料路径 降低投资30%  记者从西南化工研究设计院获悉,该院开发的“回收和利用工业排放气制乙二醇技术”,日前通过由四川省科技厅组织的专家鉴定。新技术不仅开创了乙二醇生产的新原料路径,降低投资30%,还有效解决工业排放气的污染问题,已具备成熟工业化条件。  西南化工院自1986年在国内率先开展合成气制乙二醇技术研究,并承担“十一五”国家科技支撑计划重点项目“非石油路线制备大宗化学品关键技术开发”。经过25年不懈努力,科研人员先后完成该技术的关键催化剂及配套工艺集成开发,开发了具有工业应用价值的两个核心催化剂,实现转化率100%、选择性90%条件下,6000小时以上长周期考核 通过减去复杂的“煤气化”设备和工艺,每吨产品节省甲醇消耗0.16吨、蒸汽消耗2.5吨 形成加氢反应器、聚酯级乙二醇产品精制等五大关键工艺技术,目前已获4项国家发明专利。  专家介绍,与传统石油路线、煤制路线制备乙二醇相比,采用黄磷尾气或电石炉尾气等工业排放气生产乙二醇的新技术,成本仅为4000元/吨,分别节省3500元和1000元。而从环保效益分析,按国内每年产100万吨黄磷计算,每年可减排3750吨磷化物、7500吨硫化物、200吨砷化物和1250吨氟化物。  乙二醇作为用于溶剂、防冻剂以及合成涤纶的主要原料,今年年底在我国产能将达到每年450万吨,消费量则为每年800万吨。若近400万吨产能缺口采用工业排放气为原料替代生产,每年可节约外汇30多亿美元,同时减少200多万吨乙烯消耗。
  • 电力设备蒸汽冷凝水中乙二醇泄漏的早期探测
    背景矿物燃料与核电力设施使用换热器,使工艺蒸汽冷凝回到液体形态。热交换器的工作原理是,通过从一种介质(蒸汽)中转移热量至另一种介质(空气、水、或乙二醇)中。很多新近的封闭式冷却水系统、电力设施使用乙二醇(C2H6O2)作为热传递液体,因为乙二醇有很高的热传递效率。虽然乙二醇是超级好的热传递流体,但如果它从冷却器中泄漏并进入冷凝蒸汽中时,会造成严重问题。在升高的温度与压力下,水中乙二醇会降解为有机酸,会酸化冷凝液,导致系统内快速的腐蚀。有机酸的增长也会严重破坏离子交换树脂床与矿物质脱除塔。发现早期针孔大的热交换器泄漏,对于保持维护电力设施与工艺设备的完整性,非常重要。虽然很多工厂使用痕量水平的胺来中和,来控制回路的pH,但这些胺常规地都是按照控制来自二氧化碳溶解产生的碳酸,来给药的。乙二醇泄漏造成的有机酸的大量流入,很容易压垮这种pH控制,并造成冷凝液明显的酸化。问题电厂通常检测pH与阳离子电导率来监测蒸汽回路水的纯度。然而,那些参数并不总是足够。充分早地探测乙二醇的早期泄漏以预防显著的下游问题十分重要。因为pH与阳离子电导率的偏离,仅仅在乙二醇分解之后才产生,这些检测对于探测泄漏来说,经常已经太晚了。水中乙二醇在热的高压蒸汽回路中降解。如果热交换器中发生泄漏,这种泄漏的现象在乙二醇降解之前,可能无法通过pH与电导率探测到。在这一点上,工艺设备(例如:矿物质脱除塔、树脂床、冷凝液抛光器、锅炉、涡轮机等)可能已经暴露在酸性的冷凝液或蒸汽中。乙二醇是一种含碳38.7%的有机分子,因此能够使用在线、连续的总有机碳(TOC)分析来探测到。Sievers M系列在线TOC分析仪能够在乙二醇在冷凝液蒸汽中降解之前,更早地检测到乙二醇的泄漏。解决方案在Sievers分析仪进行的实验室研究中,Sievers M系列TOC分析仪表现出对乙二醇的回收率在97.3%-99.1% ,对于碳含量在0.5-25 ppm 碳 (1.3-64.7ppm 乙二醇)。Sievers M系列TOC分析仪的回收率总结如下表:在图2中,分析仪显示出对检测乙二醇有高的线性响应。基于定量回收率(≥97.3%),与高度的线性(R2=1.0000),Sievers M系列TOC分析仪很适用于检测冷凝液蒸汽中宽广范围的乙二醇浓度。几个著名的组织(EPRI、VGB、与 Eskom)建议100-300 ppb作为蒸汽循环补给水的合适的背景TOC水平。水或蒸汽循环中的这个TOC背景很好地位于Sievers M系列TOC分析仪的检测水平0.03 ppb之上,同时这个TOC背景也足够低,可以轻松检测背景TOC浓度之上的乙二醇泄漏造成的TOC偏移。由于乙二醇泄漏造成的事故的成本,从设备维修与更换、以及停产期间损失的能量产出等方面,可能是成百上千美元。由于乙二醇有毒并有危险,额外的缓和被污染的冷凝水也非常关键。使用Sievers M系列在线TOC分析仪,冷凝蒸汽每2分钟被分析一次,提供给设备操作者高解析度的数据,使用这些数据,可以快速识别并解决使用乙二醇溶液的热交换器的泄漏。◆ ◆ ◆联系我们,了解更多!参考文献1.Berry, D. and Browning, A. Guidelines for SelectingandMaintaining Glycol Based Heat Transfer Fluids.2011. Chem-Aqua, Inc.2.EPRI Lead in Boiler Chemistry R&D. PersonalCommunication. January 28, 2015.3.Ethylene vs. Propylene Glycol. www.dow.com.Accessed January4.22,2015.http://www.dow.com/heattrans/support/selection/ethylene-vs-propylene.htm.5.Heijboer, R., van Deelen-Bremer, M.H., Butter, L.M.,Zeijseink, A.G.L. The Behavior of Organics in aMakeup Water Plant. PowerPlant Chemistry. 8(2006):197-2026.Faroon, O., Tylenda, C., Harper, C.C., Yu, Dianyi,Cadore, A., Bosch, S., Wohlers, D., Plewak, D.,Carlson-Lynch, H. Toxicological Profile for EthyleneGlycol. 2010. US Agency for Toxic Substances andDisease Registry (ASTDR).7.Maughan, E.V., Staudt, U. TOC: The ContaminantSeldom Looked for in Feedwater Makeup and OtherSources of Organic Contamination in the Power Plant.PowerPlant Chemistry. 8(2006): 224-233.8.Rossiter, W.J. Jr., Godette, M., Brown, P.W., Galuk,K.G. An Investigation of the Degradation of AqueousEthylene Glycol and Propylene Glycol Solutions usingIon Chromatography. Solar Energy Materials. 11(1985): 455-467.9.Vidojkovic, S., Onjia, A., Matovic, B., Grahovac, N.,Maksimovic, V., Nastasovic, A. Extensive FeedwaterQuality Control and Monitoring Concept forPreventing Chemistry-related failures of Boiler Tubesin a Subcritical Thermal Power Plant. Applied ThermalEngineering. 59(2013): 683-694.
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 粘度测定仪用毛细管法测定PET(聚对苯二甲酸乙二醇酯)树脂稀溶液的特性黏度
    PET又名聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate)是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。PET分为纤维级聚酯切片和非纤维级聚酯切片。①纤维级聚酯用于制造涤纶短纤维和涤纶长丝,是供给涤纶纤维企业加工纤维及相关产品的原料。涤纶作为化纤中产量最大的品种。②非纤维级聚酯还有瓶类、薄膜等用途,广泛应用于包装业、电子电器、医疗卫生、建筑、汽车等领域,其中包装是聚酯最大的非纤应用市场,同时也是PET增长最快的领域。众所周知,聚酯生产过程中,产品粘度是影响产品质量的一项重要指标,特别是热灌级聚酯产品生产过程中,由于该品种粘度指标范围窄,一旦受原料、生产过程控制等因素影响,未及时判断出原因进行调整,基础切片粘度无论是下降还是升高,若未及时将该部分切片进行有效隔离,直接进入到后续系统,将对后续固相增粘造成极大影响,致使调整困难,导致产品质量降等。聚酯生产过程中影响聚酯产品质量的因素很多,从纺丝的角度出发,主要有色相、端羧基、二甘醇含量及黏度等,其中以黏度对可纺性的影响最为显著。目前,绝大多数聚合装置都与直接纺长丝或短纤维的装置街接,并且越来越多的纺丝装置采用高速纺和细旦的品种,这就对熔体的质量特别是熔体的特性黏度稳定提出了更高的要求。 乌氏毛细管法是PET(聚对苯二甲酸乙二醇酯)材料质量控制中常用的分析方法之一,由乌氏毛细管法测量得出的特性粘度也是PET(聚对苯二甲酸乙二醇酯)材料的核心指标之一。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:苯酚、四氯乙烷、三氯甲烷、丙酮或无水乙醇。1、溶剂的配置选择:根据PET材料分类所选溶剂配比不同,纤维级聚酯切片可选择苯酚/1,1.2,2-四氯乙烷(质量比3:2)亦可选苯酚/1,1.2,2-四氯乙烷(质量比1:1),瓶级聚酯切片选择苯酚/1,1.2,2-四氯乙烷(质量比3:2); 2、溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入苯酚/1,1.2,2-四氯乙烷,软件中启动测试任务待结束。3、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。4、PET树脂稀溶液样品的制备:在万分之一天平上精准称量精确到0.0001g,通过ZPQ-50自动配液器将溶液浓度精准配制到0.005g/ml,再将样品瓶放置到MSB-15多位溶样器中(纤维级90~100℃,瓶级110℃~120℃),待半小时内溶解完毕后取出冷却到室温待用。5、样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。6、粘度管的清洗:再次启动卓祥自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。苯酚/1.1.2.2—四氯乙烷(质量比50:50)作溶剂的试验,按公式(1)、(2)、(3)计算相对黏度(ηr)、增比黏度(ηsp)和特性黏度([η]):式中:ηr——相对黏度;t1——溶液流经时间,单位为秒(s);to——溶剂流经时间,单位为秒(s);ηsp——增比黏度;[η]——特性黏度;c——溶液浓度,单位为克每百毫升(g/100mL)苯酚/1.1.2.2一四氯乙烷(质量比60:40)作溶剂的试验,其结果按公式(4)计算:本文章为原创作品,无原作者授权同意,不得随便转载拷贝,侵权必究!
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试选择GSB 07-3163-2014 200748水质 总硬度质控样进行测试。质控样真值为2.81±0.08mmol/L (2.73-2.89)。测定结果及滴定最终颜色见下图。质控样测定结果质控样测试-滴定最终颜色样品测试-人机比对取50ml自来水进行测试并进行人机比对,测试数据及滴定最终颜色见下图。自来水人机比对测试数据注意事项若水样中含有金属干扰离子,使滴定终点延迟或颜色变暗,可另取水样,加入0.5mL盐酸羟胺及1mL硫化钠溶液或0.5mL氰化钾溶液,再次滴定。水样中钙、镁的重碳酸盐含量较大时,需要预先酸化水样,并加热除去二氧化碳,以防碱化后生成碳酸盐沉淀,影响滴定。水样中含悬浮性或胶体有机物可影响终点的观察。可预先将水样蒸干并于550℃灰化,用纯水溶解残渣后再进行滴定。结果与讨论使用睿科Auto Titra08全自动滴定仪可以完成标准物质的测定,滴定结果平行性、准确性良好。也可以达到人工滴定的标准。因此,可以使用Auto Titra08自动滴定仪可以代替人工进行水质总硬度的测定。睿科Auto Titra 08自动滴定仪采用仿生颜色识别,完全模仿滴定时人眼颜色识别动作,内置实验方法,节省时间、操作简单,易于掌握;仪器自动滴定,自动判定终点,节省了实验人员的滴定时间;此外仪器还可自动计算结果,一键生成报告。
  • 使用表面增强拉曼光谱检测瓶装水中的聚对苯二甲酸乙二醇酯纳米塑料
    近日,挪威科技大学与南开大学合作在Environmental Science & Technology上发表了题为“Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy”的研究论文。研究合成了一种新型的表面拉曼增强光谱(SERS)衬底,该衬底可增强纳米颗粒的拉曼光谱信号,通过对不同粒径的聚苯乙烯(PS)纳米颗粒测试发现,粒径越小拉曼光谱信号增强因子越高。使用该SERS衬底,对经100 纳米滤膜过滤后瓶装水进行了检测,通过与标准谱图比对,发现瓶装水中的纳米塑料为聚对苯二甲酸乙二醇酯,浓度高达108 个/毫升。全文速览微纳塑料作为新型污染物,引起了全球范围的广泛关注。而作为微纳塑料研究的基石,检测分析方法一直是该领域的重点和难点,尤其是粒径更小的纳米塑料。本研究合成了一种新型三角孔隙阵列SERS衬底,该衬底可增强纳米塑料的拉曼信号。通过对不同粒径(50,200,500,1000 nm)的PS纳米塑料测试,发现粒径越小,拉曼光谱信号的增强因子越高。对于50 nm的PS纳米塑料检测限为0.001%,约为1.5×1011 个/毫升。使用该衬底,检测了市售的瓶装水,瓶装水经100 nm滤膜过滤后,滴加在衬底上,可直接检测到拉曼光谱信号,经过与标准谱图的比对,发现为聚对苯二甲酸乙二醇酯,该塑料主要为瓶身材质,浓度约为108 个/毫升。该研究提供了一种快速且灵敏的纳米塑料检测方法。引言微纳塑料由于其独特物化性质,分析检测一直是微纳塑料研究领域的重点和难点。拉曼增强由于其可对小分子有机化合物以及纳米颗粒的拉曼光谱信号进行增强,近年来也逐渐应用于纳米塑料的检测。但目前关于SERS测试纳米塑料多集中于实验室内的加标样品,对于实际样品的检测的研究仍然很少。本研究通过合成一种新型的三角孔隙阵列衬底,测试了其对PS纳米塑料的增强效果,并检测分析了市售瓶装水中纳米塑料的赋存。图文导读阵列合成Figure 1. A schematic illustration of fabrication process for the triangular cavity arrays (TCAs). First, close-packed polystyrene (PS) nanospheres are self-assembled on a silicon substrate (i). A thin silver (Ag) film is deposited over the nanospheres (ii), which are then tape stripped away, leaving Ag nanotriangle arrays (iii). A gold (Au) film is then deposited over the entire substrate (iv). An adhesive epoxy is applied on the top of Au and then peeled off, transferring two metals Ag and Au sitting in a complementary arrangement side-by-side on epoxy (v). Simply removing of the Ag parts using chemically etching, revealed gold triangular cavity arrays as shown in (vi).图1展示了该拉曼衬底的合成示意图,首先将一层500 nm的PS纳米微球平铺在硅胶板上,然后在表面添加一层Ag,去除掉纳米微球后,形成了Ag纳米三角阵列,再添加一层150 nm的Au薄膜,之后添加一层粘合剂环氧树脂,在紫外线照射下固化后剥离掉带着两层金属的环氧树脂,再去除孔隙中的Ag后,形成最终的三角阵列衬底。阵列表征Figure 2. Scanning electron micrographs (SEMs) of the corresponding processing steps in Figure 1 to fabricate gold TCAs substrate: (a) Close-packed PS nanospheres that corresponds to step i in Figure 1 (b) Ag triangle arrays after removing of PS nanospheres that corresponds to step iii in Figure 1 (c) Top-view of morphology after depositing Au layer that corresponds to step iv in Figure 1 (d) Au TCAs arrays after removing of Ag parts that corresponds to step vi in Figure 1. Scale bar in a-d: 250 nm. (e) Patterned gold TCAs over large area, scale bar in e: 1 µm.图2为经过图1合成的衬底的扫描电镜图,分别表示了衬底在不同合成阶段的扫描电镜图。从图中可清楚的表明于实际合成的衬底与图1中的示意图完全吻合。PS纳米颗粒测试Figure 3. (a) Raman spectra of PS nanoplastics with different sizes on Au TCAs substrates at concentration of 1%. (b) Enhancement factor (EF) as a function of PS size. (c) Raman spectra of 50 nm PS nanoplastics with concentrations varying from 1% to 0.001% on TCAs substrates and on plain glass substrate at the concentration of 1% (control line). (d-g) Raman mapping images of 50 nm PS nanoplastics on Au TCAs substrates with different concentrations from 1% to 0.001%. Scale bar in d-g: 200 nm.图3展示了不同粒径的PS纳米微球的增强测试,在50、200、500和1000 nm四个粒径中,50 nm的PS微球增强因子最高,随着粒径增加,增强因子变低。此外,还对50 nm的PS微球的不同浓度做了分析测试,发现在0.001%仍可检测到清晰的信号,特征峰1003 cm-1的信噪比为88。瓶装水前处理Figure 4. (a) Schematic of sample preparation from commercially bottled drinking water. (b-d) SEM images of an extracted sample that drop-casted on a silicon wafer after drying under ambient conditions. Scale bar: (b) 300 µm (c) 5 µm (d) 200 nm.图4为瓶装水的处理过程和SEM结果。在采购瓶装水后,取100 mL过100 nm的滤膜,对过滤后的水样进行SEM检测,从图中可看出,在扫描电镜下,存在大量的颗粒物,经过不同倍数的放大,粒径小的可低至几十纳米。同时,采用去离子水做了过程空白对照,在扫描电镜下,无颗粒物检出,排除了实验过程中外部的污染。瓶装水检测Figure 5. (a)Schematic of sample preparation from bottled drinking water. (b) Raman mapping image of sample extracted from bottled drinking water on TCAs substrate. Scale bar: 500 nm. (c) Raman spectra of sample extracted from bottled drinking water on TCAs substrate (red line) and plain glass substrate (brown line), and PET film (purple line). (d) Finite track length adjustment (FTLA) concentration/size image for NTA of sample extracted from bottled drinking water on TCAs substrate: indicating mean size of nanoplastics is ca. 130.8 ± 58.0 nm.图5为瓶装水的拉曼检测结果,将过滤后的瓶装水直接滴加在衬底上,经过拉曼检测后,可鉴别出1620和1760 cm-1两个峰,与PET纳米塑料标准品和PET膜进行对比,可知瓶装水中的颗粒物为PET,在检测空白和过程空白中均无信号。此外,水样还进行了NTA测试,平均粒径约为88.2 nm(三个平行样品的平均值),浓度为1.66×108 个/毫升。小结通过合成新的SERS衬底,可实现对纳米塑料的拉曼信号的增强,纳米塑料的粒径越小增强因子越高,且该衬底的灵敏度高,可对过滤后的水样直接检测,同时还可重复使用。瓶装水的检测结果表明塑料瓶身是水样中纳米塑料的主要来源。
  • 色谱检测新标准来啦——HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱
    有机酸极易富集在大气颗粒物上,不仅对城市环境和人体健康造成诸多影响,还关系到全球大气系统能量平衡。有机酸在一定条件下可明显增加酸雨强度,降低城市大气能见度,影响区域和全球的气候。最常见的有机酸为甲酸、乙酸和乙二酸,对其含量的检测不仅是未来环保规范的迫切需要,同时也为大气颗粒物中化合物的示踪及其来源解析提供依据,是大气颗粒物环境治理工作的重要需求。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,生态环境部组织制定了《HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱法》,规范环境空气颗粒物中甲酸、乙酸和乙二酸的测定方法。本文内容非商业广告,仅供专业人士参考。
  • 环境部征求意见 《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》
    有机酸对水体、大气、土壤、建筑物、人体等都可能产生危害,在环境空气颗粒物中,有机酸的来源有以下几种方式。有机酸颗粒物排放源在有机物含量测定研究中,人们发现甲酸和乙酸的比值与人类污染对大气有机酸的贡献量有一定的联系,因而可以用来判断大气有机酸的主导来源是自然源还是人类污染源。多数已知的有机酸来源可以同时向大气中释放数种低分子有机酸,因此,通过测定多种低分子有机酸,可以在不同来源的有机酸贡献量之间建立多元方程,从而计算出不同来源对大气有机酸的贡献比例。因此,开展关于有机酸在大气化学中的监测研究是非常有必要的,该结果对于了解大气颗粒物中有机物的变化规律与来源解析具有重要的科学意义。目前有机酸含量的测定方法主要有电位滴定法、分光光度法、酶分析法、毛细管电泳法、气相色谱法、液相色谱法、质谱法和离子色谱法等。有机酸分析方法的比较而目前国内标准中,有机酸的分析标准有:国内有机酸测定相关标准综合考虑有机酸含量、对颗粒物源解析支撑作用以及离子色谱的检测能力,本次制定的标准最终确定了甲酸、乙酸、乙二酸三种目标化合物。在方法验证报告中,本标准使用了9家单位的11台离子色谱仪,详情如下:单位序号仪器厂家仪器型号性能状况(计量/校准状态、量程、灵敏度等)备注A赛默飞ICS-5000+良好氢氧根体系B赛默飞AQUION良好氢氧根体系C赛默飞ICS-5000良好氢氧根体系/碳酸盐体系D瑞士万通940Professional良好碳酸盐体系赛默飞Integrion HPIC良好氢氧根体系E赛默飞ICS-2000良好氢氧根体系F赛默飞ICS-5000+良好氢氧根体系瑞士万通925型良好碳酸盐体系G青岛普仁PIC-10良好碳酸盐体系H瑞士万通940良好碳酸盐体系I青岛盛瀚CIC-D100良好碳酸盐体系在颗粒物源解析领域,离子色谱仪以前主要用于颗粒物中水溶性阴阳离子的测定,如果此标准发布,那么离子色谱仪在颗粒物源解析领域将发挥更大作用。不过从参与验证的仪器来看,国产仪器还需要多多努力。除离子色谱仪外,此标准涉及的仪器还包括大气采样器、超声波清洗仪。征求意见稿全文如下:《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》(征求意见稿).pdf
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准
    工业和信息化部批准《工业用乙二胺四乙酸》等586项行业标准(见附件1)。其中,化工行业32项、石化行业13项、黑色冶金行业9项、有色金属行业51项、机械行业71项、汽车行业43项、船舶行业8项、轻工行业141项、纺织行业35项、包装行业2项、电子行业16项、通信行业165项。批准《水处理剂混凝性能的评价方法》等53项行业标准外文版(见附件2)。其中,化工行业16项、有色金属行业4项、稀土行业3项、建材行业8项、机械行业7项、轻工行业2项、纺织行业3项、通信行业10项。现予公布。以上化工行业标准(含外文版)由化学工业出版社出版,石化行业标准由中国石化出版社出版,黑色冶金行业标准、有色金属行业标准(含外文版)及稀土行业标准外文版由冶金工业出版社出版,建材行业标准外文版由中国建材工业出版社出版,机械行业标准(含外文版)由机械工业出版社出版,汽车行业标准及包装行业标准由北京科学技术出版社出版,船舶行业标准由中国船舶工业综合技术经济研究院组织出版,轻工行业标准(含外文版)由中国轻工业出版社出版,纺织行业标准(含外文版)由中国纺织出版社出版,电子行业标准由中国电子技术标准化研究院组织出版,通信行业标准(含外文版)由人民邮电出版社出版,通信行业工程建设标准由北京邮电大学出版社出版。附件:1.586项行业标准编号、名称、主要内容等一览表.doc   2.53项行业标准外文版名称及主要内容等一览表.doc工业和信息化部 2023年4月21日
  • 甲醇中16种挥发性有机物混合-16种TVOC(含乙酸正丁酯)(GB50325-2020)
    81073KACAS号规格2mL库存≥50有效期2021-06-01标准值2000μg/mL1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 【新案例】重氮乙酸乙酯微反应连续流新工艺
    重氮乙酸乙酯是重要的合成片段,在有机合成中具有非常重要的作用,主要应用在C-H键的插入反应和不饱和键上的环化反应。 重氮乙酸乙酯在路易斯酸催化剂的存在下,与醛发生的C-H键插入反应具有十分重要的应用价值,因为产物 β-酮酸乙酯是多种原料药的中间体。 重氮乙酸乙酯试剂在加热情况下会引起分解和爆炸,还会自动分解出有毒物质,储存和运输都需要特别注意。 目前重氮乙酸乙酯的生产主要采用间歇釜式滴加工艺,即向釜内反应体系滴入亚硝酸钠水溶液,由于该滴加过程伴随着剧烈的热量释放,若不能及时有效地移走这些热量,将会造成局部飙温,导致产物分解,严重时甚至引起安全事故。 与传统釜式反应器相比,微通道反应器 面积/体积比提高了上千倍,反应传热快速且稳定,避免局部温度过高造成爆炸。 此外,由于采用连续化操作方式,生成的产物能够及时移出反应器进行冷却处理,从而最大限度地避免产物分解。 本文将向读者介绍今年6月份常州大学张跃教授研究团队发表在《现代化工》上的“重氮乙酸乙酯的连续合成工艺研究”研究成果。 该研究以甘氨酸乙酯盐酸盐和亚硝酸钠、硫酸为原料,合成重氮乙酸乙酯,采用微通道连续流反应器系统研究重氮乙酸乙酯的连续合成工艺。该工艺提高了产品收率并具有系统结构简单、操作简便、安全性高、易于自动化控制等优点。 研究介绍 一、微通道反应器模块结构通道反应系统由一系列特定的模块以及连接件组成,通过微通道模块、连接配件、物料输送装置的组合,形成适用于本反应的反应器系统。二、实验步骤1. 在室温下,将甘氨酸乙酯盐酸盐溶于定量的水记为原料1。2. 按照物料配比将亚硝酸钠溶于水记为原料2。3. 再按照物料配比将浓硫酸配制成5% 硫酸记为原料3。4. 在进行实验前将原料1和原料3混合在一起记为混合原料,待换热器系统温度稳定后,混合原料与原料2分别通过质量计量泵进入预冷模片,在2股物料分别充分预冷后,进入反应区中进行重氮化反应。5. 产物从出口连续出料,系统运行稳定后取样进行分析检测。反应装置及流程如图2所示。三、反应条件研究 研究者对重氮乙酸乙酯的微通道连续合成工艺多个影响因素进行了考察,探究亚硝酸钠用量、反应温度、酸用量和停留时间对反应的影响,研究过程分别如下图。最终研究者获得了该合成工艺的最佳条件:取用 n(甘氨酸乙酯盐酸盐):n(亚硝酸钠):n(5%硫酸) = 1 : 1.1 : 2,反应停留时间120 s,反应体系温度为10℃,此时收率可达92.8%。结果讨论与小结 研究者成功应用微通道反应器进行重氮乙酸乙酯的合成,大大缩短了反应时间,扩大工艺条件选择区间,实现对重氮化反应的有效控制,增加了安全系数,提高了反应效率并得到较高的收率 从乙酸乙酯的重氮化反应工艺研究过程来看,连续流技术充分发挥了其技术优势 连续流微反应器持液量小、高效的传热传质特点,保证了反应快速平稳的进行及反应安全性 康宁反应器无缝放大的优势为后续工业化应用提供了研究基础 该工艺可以实现重氮乙酸乙酯的连续化生产,为在其它反应中该产物现制现用提供了可能性,降低了储存和运输的安全风险 参考文献[1]岳家委,辜顺林,刘建武,朱佳慧,李孟金,张跃,严生虎.重氮乙酸乙酯的连续合成工艺研究[J].现代化工,2021,41(06):205-208.
  • 泰坦科技特种酯化溶剂工厂投产
    转载自 2015-12-20 《化工资讯》 国内领先的特种溶剂综合提供商之一的泰坦科技,(以下称“泰坦”)已经设立了一个新的酯类溶剂工厂。新工厂位于江苏仪征,是泰坦特种溶剂服务持续扩张的组成部分,旨在更好地为客户服务。工厂将采用进口为主的优质原料,能够生产二丙二醇甲醚醋酸酯(DPMA)、二乙二醇丁醚醋酸酯(DBA)、3-乙氧基丙酸乙酯(EEP)、3-甲氧基乙酸丁酯(MBA)等高沸程环保用酯类溶剂,一期产能5000吨。这些酯类溶剂适合生产那些对气味、酸度、环保需求较高的产品。 该公司特种化学品部门负责人表示:“这个新工厂是泰坦利用国外优质供应原料,推动本土化深加工和销售的的重要一步。新工厂进一步增强了我们在特种溶剂市场的独特地位。并将为进一步引入更多酯化产品本土化生产,打下基础。” 查询泰坦化学溶剂产品的详情,请登录 www.titanchem.com 关于泰坦 上海泰坦科技股份有限公司(以下简称泰坦科技)由在读博士生创办的高科技企业,一直得到科技部、教育部和上海市政府的重点扶持。公司产品分为高端试剂、通用试剂、分析试剂、特种化学品、仪器设备、安防耗材、实验室建设和科研信息化软件八大业务板块,为生物医药、新材料、新能源、化工化学、精细化工、食品日化、分析检测等领域提供全方位的产品与服务。公司已成功搭建具有国际化视野、全球供应链整合、专业化咨询的国内首家科学一站式服务平台,真正实现“有实验室的地方就有专业的产品和服务”,成为“中国科学服务首席提供商”。 泰坦科技总部设在上海,目前在北京、广州、重庆、成都、南京、杭州、香港、欧洲和北美等地设有分支机构或销售网点。公司汇聚了200名科学服务及相关领域的精英加入,其中博士、硕士研究生数十名,得到了东方汇富(证券“教父”阚治东先生和尉文渊先生创立)、上海市大学生科技创业基金会(国内首家支持大学生科技创业的公益性组织)和上海市科技投资股份公司的多轮风险投资。经过六年多的快速发展,泰坦科技已经成为上海市科技创业领军企业, 2011年入选上海市“创新驱动、转型发展”经典案例,2012年成为“上海市创新型企业”、“上海市科技小巨人培育企业”,2013年被上海市股权投资协会评为“2012年度最具成长价值企业”(全国十家)。泰坦人将继续在服务我国结构调整和科技创新事业上奋力拼搏、不断进取。 联系方式:泰坦 张经理 021-51701617 / 18964538285 jie.zhang@titanchem.com
  • 740项行业标准集中复审 这些仪器标准拟修订/废止
    按照《工业和信息化部办公厅关于开展工业和通信业推荐性标准集中复审工作的通知》(工信厅科函〔2016〕321号)的程序和要求,工信部科技司日前对740项推荐性行业标准集中复审,确定继续有效379项、修订142项、废止219项。  本次复审共涉工程建设、节能与综合利用、安全生产、产品4个领域,其中产品领域有8项仪器标准拟废止,15项仪器标准计划修订,52项继续有效,仪器涉及色谱、光谱、电化学、热分析等。  仪器信息网摘录部分仪器标准如下:产品领域推荐性行业标准集中复审结论汇总表标准编号标准名称标准化技术组织复审结论主要理由继续有效修订废止修订拟列入计划年度SH/T1055-1991工业用二乙二醇中水含量的测定微库仑滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1141-2015工业用裂解碳四烃类组成测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1157.2-2015生橡胶丙烯腈-丁二烯橡胶(NBR)中结合丙烯腈含量的测定第2部分:凯氏定氮法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1483-2004工业用异丁烯中含氧化合物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1484-2004工业用异丁烯中异丁烯二聚物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.2-1995工业用二乙烯苯中各组分含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.3-1995工业用二乙烯苯中聚合物含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.4-1995工业用二乙烯苯中特丁基邻苯二酚含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1485.5-1995工业用二乙烯苯中溴指数的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1486.2-2008石油对二甲苯纯度及烃类杂质的测定气相色谱法(外标法)全国化学标准化技术委员会石油化学分技术委员会√    SH/T1489-1998石油对二甲苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1493-2015碳四烯烃中微量羰基化合物含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.5-1997尼龙66盐中假二氨基环己烷含量的测定紫外分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.6-1997尼龙66盐中硝酸盐含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1498.7-1997尼龙66盐UV指数的测定紫外分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.10-2012精己二酸第10部分:水分含量的测定热失重法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.2-1997精己二酸含量的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.3-1997精己二酸氨溶液色度的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.5-1997精己二酸中铁含量的测定2,2联吡啶分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.7-2012精己二酸第7部分:硝酸含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1499.8-1997精己二酸中可氧化物含量的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1550-2012工业用甲基叔丁基醚(MTBE)纯度及杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1551-1993芳烃中溴指数的测定电量滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1613.2-1995石油邻二甲苯纯度及烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1627.2-1996工业用乙腈纯度及有机杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1628.4-1996工业用乙酸乙烯酯酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1727-2004丁二烯橡胶微观结构的测定红外光谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1745-2004工业用异丙苯纯度及杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1746-2004工业用异丙苯过氧化物含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1747-2004工业用异丙苯苯酚含量的测定分光光度法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1748-2004工业用异丙苯酚含量和过氧化氢异丙苯含量的测定高效液相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1754-2006工业用仲丁醇纯度的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1756-2006工业用丁酮纯度与杂质的测定-气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1760-2007合成橡胶胶乳中残留单体和其他有机成分的测定毛细管柱气相色谱直接液体进样法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1762-2008橡胶氢化丁腈橡胶(HNBR)剩余不饱和度的测定红外光谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√    SH/T1765-2008工业芳烃酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1766.2-2008石油间二甲苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1767-2008工业芳烃溴指数的测定电位滴定法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1773-20121,2,4-三甲基苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1774-2012塑料聚丙烯等规指数测定低分辨率脉冲核磁共振法全国塑料标准化技术委员会石化塑料树脂产品分技术委员会√    SH/T1775-2012塑料线型低密度聚乙烯(LLD)组成的定量分析碳-13核磁共振波谱法全国塑料标准化技术委员会石化塑料树脂产品分技术委员会√    SH/T1778-2014化学级丙烯纯度与烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1782-2015工业用异戊二烯纯度和烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1784-2015工业用异戊二烯中微量抽提剂含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1786-2015工业用异戊烯纯度和烃类杂质含量的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1787-2015工业用异戊烯中含氧化合物的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1790-2015工业用裂解碳五中烃类组分的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1793-2015工业用裂解碳九组成的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1796-2015工业用三乙二醇纯度与杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1798-2015工业用1-己烯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会√    SH/T1759-2007用凝胶渗透色谱法测定溶液聚合物分子量分布全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会√   该标准系合成橡胶基础通用方法,适用范围为所有溶液聚合物分子量。等同采用ISO11344:2004。鉴于标准广泛的适用性,建议转化为国家标准。SH/T1148-2001工业用乙苯纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2015  SH/T1155-1999合成橡胶胶乳密度的测定全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会 √2017  SH/T1482-2004工业用异丁烯纯度及其烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1492-2004工业用1-丁烯纯度及烃类杂质测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1547-2004工业用1-丁烯中微量甲醇和甲基叔丁基醚的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1548-2004工业用1-丁烯中微量丙二烯和甲基乙炔的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1549-1993工业用轻质烯烃中水分的测定在线分析仪使用导则全国化学标准化技术委员会石油化学分技术委员会 √2017  SH/T1054-1991工业用二乙二醇中乙二醇和三乙二醇的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1496-1992工业用叔丁醇酸度的测定滴定法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1497-2002工业用叔丁醇含量及其杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2018  SH/T1752-2006合成生胶中防老剂含量的测定高效液相色谱法全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会 √2018  SH/T1628.2-1996工业用乙酸乙烯酯纯度及有机杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1674-1999工业用环己烷纯度及烃类杂质的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1769-2009工业用丙烯中微量羰基硫的测定气相色谱法全国化学标准化技术委员会石油化学分技术委员会 √2019  SH/T1612.10-2005工业用精对苯二甲酸b*值的测定色差计法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第7部分:b*值的测定色差计法》GB/T30921.7-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.3-1995工业用精对苯二甲酸中金属含量的测定原子吸收分光光度法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第2部分:金属含量的测定》GB/T30921.2-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.5-1995工业用精对苯二甲酸中钛含量的测定二安替吡啉甲烷分光光度法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第4部分:钛含量的测定二安替吡啉甲烷分光光度法》GB/T30921.4-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1612.7-1995工业用精对苯二甲酸中对羧基苯甲醛和对甲基苯甲酸含量的测定高效液相色谱法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定》GB/T30921.1-2014已于2014年发布实施,因此本标准可废止。SH/T1612.8-2005工业用精对苯二甲酸中粒度分布的测定—激光衍射法全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第6部分:粒度分布的测定》GB/T30921.6-2016已于2016年6月14日发布,2017年1月1日实施,因此本标准可废止。SH/T1687-2000工业用精对苯二甲酸(PTA)中对羧基苯甲醛和对甲基苯甲酸含量的测定高效毛细管电泳法(HPCE)全国化学标准化技术委员会石油化学分技术委员会   √国家标准《工业用精对苯二甲酸(PTA)试验方法第1部分:对羧基苯甲醛(4-CBA)和对甲基苯甲酸(p-TOL)含量的测定》GB/T30921.1-2014已于2014年发布实施,因此本标准可废止。SH/T1771-2010生橡胶玻璃化转变温度的测定差示扫描量热法(DSC)全国橡胶与橡胶制品标准化技术委员会合成橡胶分技术委员会   √该标准和GB/T29611-2013《生橡胶玻璃化转变温度的测定差示扫描量热法(DSC)》均等同采用了国际标准ISO22768:2006制定。因此该标准废止。YS/T574.8-2009电真空用锆粉化学分析方法次甲基蓝分光光度法测定硫量全国有色金属标准化技术委员会√    JB/T7088-1993局部放电检测仪全国电动工具标准化技术委员会 √2017  JB/T6864-1993气象仪器系列型谱机械工业气象仪器标准化技术委员会   √目前已没有用户或生产方参照或按照此标准对气象仪器型谱分类,也没有被其它标准所引用使用;标准中所列产品多为国外生产,并没有遵照此标准执行(已被QX/T7-2001气象仪器系列型谱代替)  附件:推荐性行业标准集中复审结论.docx
  • 冷烫液、染发剂巯基乙酸等超标
    冷烫液、染发剂质量监测抽查结果播报视频链接哈尔滨市工商局2009年第三季度头发用冷烫液定向监测合格产品名单经 销 单 位经销地点样品名称品牌规格生产生 产 企 业检测结论名称型号批次哈尔滨市南岗区华尔姿美容美发用品商行哈尔滨市南岗区巴陵街99号小四郎冷烫液------120m×2+10ml20111017广州市白云区小四郎化妆品厂合格哈尔滨市南岗区伯村兴辉美容美发用品商店哈尔滨市南岗区光芒街49号艾尼尔丝蛋白光速烫------120×2+25ml20100918广州市美度化妆品有限公司合格哈尔滨市南岗区华尔姿美容美发用品商行哈尔滨市南岗区巴陵街99号艾斯迪尔植物修复电发水艾斯迪尔120ml×220080321广州市星海岸精细化工有限公司合格简爱形象设计哈尔滨市南岗区和兴路黄金水能烫(热塑升级版)------100ml×220111011广州市嘉倩化妆品有限公司合格22-4号乐强剪业哈尔滨市道里区北安街124号安妮丝茵多澜烫发水------100ml×220090417广州茵多澜精细化工有限公司合格广仔发型设计室哈尔滨市道里区红霞街25号JOVIAL乔薇尔烫发液(氨基酸生化烫)JOVIAL1剂110ml、2剂100ml20081214吴江兴博隆日用化学品有限公司合格时尚理容中心哈尔滨市和平路41号阿丽德新星波浪烫发液------100ml×220081112韩国一珍化妆品株式会社合格哈尔滨市工商局2009年第三季度头发用冷烫液定向监测不合格产品名单经 销 单 位经销地点样品名称品牌规格生产生 产 企 业检测不合格项名称型号批次结论哈尔滨市南岗区梦之美美发用品店哈尔滨市南岗区光芒街72-2号宝露美瞬间计时烫-----120ml×220090321广州市白云区卡淇日用化妆品厂不合格巯基乙酸含量超标哈尔滨市南岗区伯村兴辉美容美发用品商店哈尔滨市南岗区光芒街49号世纪畅想闪电生化烫------120ml×220111027广州白云雅力化妆品厂不合格巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供四海美容美发用品商行哈尔滨市南岗区光芒街59-1号超速智能生化烫-----100ml20090309广州姿采化妆品厂不合格巯基乙酸含量超标、执行标准错误、超项生产、许可证附表未提供哈尔滨市南岗区丽丽美容美发用品商行哈尔滨市南岗区巴陵街99号欧莱雅生化抛光烫欧莱雅120ml×220081018 不合格执行标准错误、PH值超标哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行哈尔滨市南岗区光芒街74-1号DIWEI生化中性烫DIWEI120ml×220111219广州白云区荻薇日用化妆品厂不合格巯基乙酸含量超标哈尔滨市南岗区华威美发用品商店哈尔滨市南岗区光芒街51-3号荻薇烫发水------120ml×220090314广州白云区黄石荻薇日用化妆品厂不合格巯基乙酸含量超标毫末时尚造型哈尔滨市道里区通江街9号BEAVER维妮B.H.T智能电发水BEAVERA剂100ml、B剂110ml、C剂60ml20111022广州博氏化妆品有限公司不合格巯基乙酸含量超标秀色形象设计哈尔滨市道里区经纬六道街15号晨彩冷烫液(3D幻魅烫)-----120ml×220111201鹤山金辉美发美容用品有限公司不合格巯基乙酸含量超标型男塑女时尚沙龙哈尔滨市道里区红霞街7号瑞缤梨菲酸性冷烫精瑞缤A剂82ml、B剂18ml、C剂100ml20080411吴江兴博隆日用化学品有限公司不合格巯基乙酸含量低张昕美发哈尔滨市南岗区花园街256号宝美奇蓝波曲线烫发剂------100ml×2------美国强保罗米契尔公司、洛杉矶比佛利山庄、进口商:肯信贸易(上海)有限公司不合格巯基乙酸含量超标、无生产日期芙蓉理容名店哈尔滨市南岗区花园街371号沸蓝露新兰全能冷烫精沸蓝100ml×220120406吴江兴博隆日用化学品有限公司不合格巯基乙酸含量超标好心情专业烫染形象店哈尔滨市法院街33号博柔3D立体电发剂博柔120ml×220110108广州至尚日用化妆品厂不合格巯基乙酸含量超标、生产企业与许可证号不符合四海美容美发用品商行哈尔滨市南岗区光芒街59-1号浩鑫欧米伽速效生化烫浩鑫120ml×220120103广州市浩鑫精细化工有限公司不合格查无XK16-108 6006许可证哈尔滨市南岗区丽丽美容美发用品商行哈尔滨市, 南岗区巴陵街99号莎萱梅香元素香水烫------120ml×220120308广州市白云区莱丹精细化工厂不合格生产企业与许可证号不符合、超项生产哈尔滨市南岗区超越美容美发用品商店哈尔滨市南岗区光芒街49号1栋1单元一层1号可立雅半胱胺植物电发水------120ml×220090102广州柏仙奴化妆品有限公司不合格执行标准错误、超项生产哈尔滨市南岗区华顺泰美容美发用品商店哈尔滨市南岗区光芒街59-1号雅丝兰黛生化烫------120ml×220120318(中外合资)谊发精细化工有限公司不合格执行标准错误、超项生产哈尔滨市南岗区经典美容美发用品商行哈尔滨市南岗区光芒街80号花粉生化烫------120ml×220111129中国广州市鑫锦化妆品有限公司不合格超项生产哈尔滨市南岗区兰羽东田洋美容美发仪器设备商行哈尔滨市南岗区光芒街74-1号莎圣纳米无氨香水烫莎圣110ml×220081008广州奥雅化妆品有限公司不合格超项生产哈尔滨市南岗区经典美容美发用品商行哈尔滨市南岗区光芒街80号鑫锦烫发水鑫锦120ml×2201204中国广州市鑫锦化妆品有限公司不合格超项生产哈尔滨市南岗区华威美发用品商店哈尔滨市南岗区光芒街51-3号香薰香水烫------120ml×220090108广州市白云区新莉雅化妆品厂、雅丹尔美发用品有限公司不合格超项生产哈尔滨市南岗区华顺泰美容美发用品商行哈尔滨市南岗区光芒街59-1号黑人头贵族香熏香水烫------110ml×220120608广州市白云区石井新莉雅化妆品厂、雅丹尔美发用品有限公司不合格超项生产哈尔滨市南岗区梦之美美发用品店哈尔滨市南岗区光芒街72-2号威拉基因再生疗发冷烫液------120ml×220120328广州市景红达精细化工有限公司不合格超项生产、许可证附表未提供哈尔滨市南岗区超越美容美发用品店哈尔滨市南岗区光芒街49号1栋1单元一层1号国色天香氨基酸低温快速生化烫------120ml×220120525广州市景红达精细化工有限公司不合格超项生产、许可证附表未提供 哈尔滨市工商局2009年第三季度染发剂定向监测合格产品名单经 销 单 位经销地点样品名称品牌规格生产生 产 企 业检测结论名称型号批次哈尔滨家乐福超市有限公司新阳店哈尔滨市道里区新阳路365号三精植物染发三精50g×220090218北京三精国药日化有限公司合格哈尔滨世纪联华顾乡超市有限公司哈尔滨市道里区顾乡大街85号标美蓝天海洋植物系列彩发霜标美56ml×220120523港商独资广州温雅日用化妆品有限公司合格大商集团哈尔滨新一百购物广场有限公司哈尔滨市道里区石头道街118号章华深海植物派焗发霜章华40ml×220120427上海章华保健化妆品有限公司合格沃尔玛深国投百货有限公司哈尔滨友谊路分店哈尔滨市道里区友谊路万达商业广场卡尼尔营彩滋养染发膜卡尼尔A:60ml20120116苏州尚美国际化妆品有限公司合格B:40ml沃尔玛深国投百货有限公司哈尔滨友谊路分店哈尔滨市道里区友谊路万达丝精桑丝精华焗发霜丝精60ml×220120502上海章华保健化妆品有限公司合格商业广场哈尔滨好又多百货商业广场哈尔滨市道外区南马路蓓泽丝彩焗染发乳蓓泽丝A剂50g、 20120516汉高股份有限公司合格有限公司68号 B剂50ml北京华联超市哈尔滨第一分公司哈尔滨市香坊区中山路章华生态焗油染发霜(31号)章华生态60ml×220120409上海章华保健化妆品有限公司合格63号哈尔滨润富商业有限公司哈尔滨市香坊区赣水路68号温雅翠红珊瑚染发剂温雅1号60ml、20101011广州威捷日用化妆品有限公司、广州温雅日用化妆品有限公司合格2号60ml 哈尔滨家乐福超市有限公司新阳店哈尔滨市道里区新阳路365号迪彩零负担染发焗油(自然黑)迪彩1号25g、20101231广州从化晶彩化妆品有限公司合格2号25g哈尔滨中央红集团股份有限公司中央商城哈尔滨市道里区中央大街邦维丝染发剂(自然黑)邦维丝50ml×220090302上海沪南日化有限公司、上海邦维丝化妆品技术有限公司合格100号哈尔滨中央红集团股份有限公司中央商城哈尔滨市道里区中央大街光明一焗黑光明1剂40g、2剂40g20110707汉高股份有限公司合格100号大商集团哈尔滨新一百购物广场有限公司哈尔滨市道里区石头道街118号现代貂油黑发霜(棕黑色)现代40g×2 20111229佛山市顺德区现代保健用品有限公司合格百盛商业发展有限公司哈尔滨分公司哈尔滨市道里区中央大街222号L’OREAL卓韵霜护发染发霜L’OREALA剂:48ml、B剂:72ml20120313苏州尚美国际化妆品有限公司合格北京华联超市哈尔滨第一分公司哈尔滨市香坊区中山路63号彩蕴速染焗油膏彩蕴135ml20120201北京顺捷彩悦化妆品有限公司、北京先明日用化工有限公司合格哈尔滨润富商业有限公司哈尔滨市香坊区赣水路68号标美黑发霜标美40ml×220111011广州威捷日用化妆品有限公司、广州温雅日用化妆品有限公司合格黑龙江远大购物中心有限公司哈尔滨市南岗区果戈里大街Bigen美源快速染发霜Bigen40g×220140422日商独资朋友化妆品(苏州)有限公司合格378号黑龙江远大购物中心有限公司哈尔滨市南岗区果戈里大街温雅染发焗油温雅100ml×220120618(港商独资)广州温雅日用化妆品有限公司合格378号广仔发型设计室哈尔滨市道里区红霞街乔薇尔染发膏乔薇尔60ml20080130吴江兴博隆日用化学品有限公司合格25号张昕美发哈尔滨市南岗区花园街256号施华蔻伊采染发膏6-0------60ml20111024德国汉斯施瓦茨科普夫&汉高责任有限公司合格芙蓉理容名店哈尔滨市南岗区花园街美奇丝炫棕染发膏------60ml20081126苏州尚美国际化妆品有限公司合格371号好心情专业染烫形象店哈尔滨法院街33号帝彩草本植物专业染发剂星海岸染发膏------100ml20080612广州市星海岸精细化工有限公司合格北京华联超市哈尔滨第一分公司哈尔滨市香坊区中山路63号L’OREAL可丝莹温和染发霜L’OREAL48ml、72ml20110419苏州尚美国际化妆品有限公司合格哈尔滨润富商业有限公司哈尔滨赣水路68号施华蔻幻彩染发霜施华蔻60g×220111001汉高股份有限公司北京分公司合格毫末时尚造型哈尔滨市道里区通江街美奇丝炫棕染发膏-----60ml20080715苏州尚美国际化妆品有限公司合格9号乐强剪业哈尔滨市道里区北安街124号染发膏------100ml20081125广州市采奴化妆品有限公司合格九红美发厅哈尔滨市道里区新阳路福同街53号弗茜雅专业染膏------100ml×220120525广州市采奴化妆品有限公司合格时尚理容中心哈尔滨市和平路41号美奇丝炫棕染发膏------60ml20081025苏州尚美国际化妆品有限公司合格大志发型设计哈尔滨市南岗区花园街235号乔薇尔染发膏------60ml20080223吴江兴博隆日用化学品有限公司合格北京华联超市哈尔滨第一分公司哈尔滨市香坊区中山路Bigen美源快速染发霜Bigen40g×220121007日商独资朋友化妆品(苏州)有限公司合格63号 哈尔滨市工商局2009年第三季度染发剂定向监测不合格产品名单 经 销 单 位经销地点样品名称品牌规格生产生 产 企 业检测不合格项名称型号批次结论简爱形象设计哈尔滨市和兴路82-4号韩秀香薰专业染发色组韩秀100ml20090313广州市海露(鑫博隆)化妆品有限公司不合格执行标准错误
  • SCIEX公司宣布乳制品中氟乙酸筛查的新方法
    生命科学分析技术和解决方案的全球领导者SCIEX公司,于2015年5月20日宣布其应用团队正在积极开发针对氟乙酸(MFA)的筛查方法(注MFA也被称为&ldquo 1080&rdquo 。)  2008年,三聚氰胺食品安全事件在中国乳制品市场爆发出时,SCIEX公司与业界科学家合作并在第一时间提供了三聚氰胺和三聚氰酸的检测方法。2013年,新西兰牛奶样品被检测出含有低含量化合物&ldquo 双氰胺&rdquo (又为DCD), 对此,SCIEX公司也开发了相应的检测方法。近期,另一个重大食品安全事件最近正在亚太地区发酵。新西兰全国养殖协会和一些乳品公司于2014年年底收到来源不明的恐吓电子邮件,声称部分牛奶和婴幼儿配方奶粉已被人工添加了具高毒性的氟乙酸。新西兰政府将此次事件定义为&ldquo 生态恐怖主义&rdquo 。警方报告说,该威胁邮件旨在迫使新西兰停止使用含有氟乙酸成分的农药。这种农药广泛运用于保护植物免受啮齿动物,哺乳动物的和昆虫的侵害 摄入人体内后可能会引起食物中毒,心脏异常,肌肉抽搐,痉挛和昏迷等不良反应。该农药在许多其他国家已被禁止使用。  新西兰是世界上最大的牛奶生产国和出口国之一,该事件威胁到全球食品安全。在事件爆发后,新西兰乳制品业、政府以及上下游产业合作伙伴一起,开始研发可快速检测1080的方法。出于对检测效率的考虑,科学界需要一种快速和易于实施的检测方法。  SCIEX公司致力于帮助应对全球食品安全问题。对此,公司投入大量人力物力,已经初步开发了利用QTRAP4500系统在牛奶和婴幼儿配方奶粉筛查1080的方法。 该方法包括一种不需要衍生作用的简化样品制备过程,大大消减了试验的时间,并且可以在食品基质中检测到低于10纳克/毫升的1080成分,同时满足优异的精准度和再现性。在初步的研究中,我们发现该方法的定量动态范围可覆盖0.1至100纳克/毫升,实现在广泛的浓度范围内进行精准的定量分析。目前SCIEX正在计划进一步的实验来提高灵敏度,简化样品制备并加入内部标准品来纠正低回收率和基质效应的问题。  &ldquo 氟乙酸威胁可能会损害全球食品安全,因此,我们的专家团队以最快的速度开发了这样一个容易使用的方法 。利用这个方法,实验室的科学家能在短时间内快速地对大量样品进行污染物筛查。&ldquo 来自SCIEX公司的高级业务总监文森特· 派斯如是说。&ldquo 作为全球食品检测团队的一部分,快速开发新的分析解决方案来应对食品安全事件是我们的使命。&rdquo   登陆SCIEX官网可了解详情并下载应用报告。
  • 生态环境部公开征求《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》等5项国家生态环境标准意见
    为贯彻《中华人民共和国环境保护法》,规范生态环境监测工作,我部组织编制了《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法》等5项国家生态环境标准征求意见稿,现公开征求意见。标准征求意见稿及其编制说明,可登录我部网站(http://www.mee.gov.cn)“意见征集”栏目检索查阅。  各机关团体、企事业单位和个人均可提出意见和建议。请于2024年1月20日前将意见建议书面反馈我部,并注明联系人及联系方式,电子文档请同时发送至联系人邮箱。  联系人:生态环境部监测司陈春榕、滕曼  电话:(010)65646262  传真:(010)65646236  邮箱:zhiguanchu@mee.gov.cn  地址:北京市东城区东安门大街82号  邮编:100006  附件:  1.征求意见单位名单  2.固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)  3.《固定污染源废气 一氯乙酸等9种卤代乙酸的测定 气相色谱法(征求意见稿)》编制说明  4.固定污染源废气 氯甲基甲醚和二氯甲基醚的测定 气相色谱法(征求意见稿)  5.《固定污染源废气 氯代甲基醚和二氯甲基醚的测定 气相色谱法(征求意见稿)》编制说明  6.固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)  7.《固定污染源废气 硫化氢的测定 亚甲基蓝分光光度法(征求意见稿)》编制说明  8.环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)  9.《环境空气和废气 三氟甲烷、四氟甲烷、六氟乙烷和六氟化硫的测定 气相色谱-质谱法(征求意见稿)》编制说明  10.环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)  11.《环境空气和废气 臭气的测定 动态稀释嗅辨法(征求意见稿)》编制说明  生态环境部办公厅  2023年12月15日  (此件社会公开)
  • 爱拓发布ATAGO(爱拓)便携式过氧乙酸检测仪新品
    过氧乙酸消毒剂是一种强氧化剂,为无色液体,有强烈刺激性气味,具有酸性腐蚀性,必须稀释后使用。过氧乙酸可分解为乙酸、氧气,与还原剂、有机物等接触会发生剧烈反应,有燃烧爆炸的危险。临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。ATAGO(爱拓)全新推出“过氧乙酸检测仪 PAL-Peracetic Acid (COVID-19)”仅需少量样品,3秒就能快速检过氧乙酸浓度!钛电极,耐用性更好,抗腐蚀性更高!型号PAL-Peracetic Acid (COVID-19)货号1557测量范围10-1000ppm电源2 x AAA 碱性电池 国际防护等级IP 65尺寸和重量5.5 x 3.1 x10.9cm,100g创新点:临床医学上,过氧乙酸水溶液可用以对物块表层、皮肤、黏膜、餐具、蔬菜水果、新鲜水果、自然环境的消毒杀菌。依据临床医学认证说明,过氧乙酸水溶液的使用方法使用量是黏膜消毒杀菌用0.02%浓度值,皮肤和环境污染的物件表层、水果蔬菜等消毒杀菌用0.2%浓度值,1.5%水溶液可用以厨具、纺织物、电子温度计等的侵泡消毒杀菌。喷雾器或加温挥发蒸熏用以环境消毒,日用量1~3g/m3(按过氧乙酸计)。ATAGO(爱拓)便携式过氧乙酸检测仪
  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。  对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。  检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”
    Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”胡金胜食品安全国家标准修订2021年3月26日,国家卫生健康委员会食品安全国家标准审评委员会秘书处发函,对组织起草的《食品添加剂使用标准》等12项食品安全国家标准(征求意见稿)公开征求意见。备受关注的GB 2760时隔多年再次修订,变更的内容涉及到多个常用的食品添加剂,其中防腐剂“脱氢乙酸及其钠盐” 使用规定的修改引发了热议。左右滑动查看GB 2760中脱氢乙酸及其钠盐修订细节 脱氢乙酸及其钠盐作为一种广谱食品防腐剂,毒性较低,对霉菌和酵母菌的抑制能力强,按标准规定的范围和使用量使用是安全可靠的。然而通过汇总近些年来全国各地食品安全监督抽检结果,我们不难发现脱氢乙酸及其钠盐超限量、超范围使用的情况屡有发生。由于脱氢乙酸及其钠盐能被人体完全吸收,并能抑制人体内多种氧化酶,长期过量摄入脱氢乙酸及其钠盐会危害人体健康。随着GB 2760征求意见稿的发布,针对食品添加剂脱氢乙酸及其钠盐,收窄了使用范围,降低了最大使用量,释放了监管部门将进一步加强监管的信号。由于政策信息传递的延迟及生产工艺革新的滞后,部分食品企业可能会面临因脱氢乙酸及其钠盐超限量、超范围使用而被监管部门处罚的风险。 目前,食品检测实验室参照GB 5009.121-2016开展脱氢乙酸的测定也会遇到一系列的难题,其中最突出的问题就是脱氢乙酸峰型拖尾,影响定性和定量结果的准确性。脱氢乙酸属于非羧基酸类,分子结构存在烯醇互变,导致在普通C18 上峰型容易出现拖尾。相关文献显示,通过调节缓冲盐pH(调酸或调碱)和有机相比例可以在一定程度上抑制脱氢乙酸的拖尾,但是在食品安全监督抽查中对于实验室方法的偏离及变更有着较为严格的审核流程,这也是实验室体系管理难以回避的问题。 基于此,赛默飞实验室筛选了一款特色色谱柱—Acclaim Organic Acid,在不变更标准色谱条件的前提下,开展了一系列的验证工作,完美解决了脱氢乙酸峰型拖尾的问题,并且在实际样品分析过程中有着出色的表现。Acclaim Organic Acid有机酸分析专用柱,极性嵌入,专利封端技术,可耐受 100% 水相,PEEK 柱管,可有效消除硅胶表面残余硅羟基及金属柱管内壁与有机酸分子次级作用导致的拖尾。 实验谱图及数据色谱条件液相色谱仪:Vanquish™ Core HPLC 液相色谱系统色谱柱:Acclaim Organic Acid, 5 μm, 4.0×250 mm (P/N: 062902)柱温:30 ℃;进样量:5 µL;流动相:A为20 mM 乙酸铵溶液,B为甲醇洗脱程序:A:B=90:10,等度洗脱流速:0.8 mL/min检测波长:293 nm采样频率:5 Hz采集时间:15 min 分离谱图 脱氢乙酸标准品溶液5.00 μg/mL,保留时间为7.107 min,不对称因子为1.04,理论塔板数为13830。脱氢乙酸在 Acclaim Organic Acid 色谱柱上获得了出色的峰型和优异的灵敏度。图1. 脱氢乙酸标准品溶液色谱图(5.00 μg/mL) 脱氢乙酸标准工作液线性范围为0.50-50.0 μg/mL,线性方程y=0.6283x-0.0141,线性相关系数r2=0.99990,线性关系良好。图2. 脱氢乙酸线性方程图及标准曲线点叠加色谱图(0.50-50.0 μg/mL)以脱氢乙酸峰高为 S,选取 4-6 min 基质噪音的平均值为 N,采用 Chromeleo 数据处理软件计算信噪比 S/N,脱氢乙酸线性低点 0.50 μg/mL信噪比S/N为181.8。实验室可根据实际情况设置合适的线性最低点,以满足方法检出限的要求。图3. 脱氢乙酸线性低点 0.50 μg/mL 色谱图及信噪比脱氢乙酸标准品溶液 1.00 μg/mL 重复进样,保留时间RSD为0.04%,峰面积RSD为0.28%,不对称因子RSD为0.34%,重现性良好。图4. 脱氢乙酸标准品溶液 1.00 μg/mL 6次重复进样叠加谱图在实际样品分析中,面对各种复杂基质的干扰,Acclaim Organic Acid 表现出了非常出色性能。以下谱图分别展示了Acclaim Organic Acid 应用于鸡蛋挂面、猪肉脯、肉松面包、法式小面包及芒果汁中脱氢乙酸的测定。样品前处理方法采用标准推荐的直提法,其中芒果汁样品基质复杂,对流动相比例和柱温进行了适当调整。图5. 鸡蛋挂面中脱氢乙酸的测定图6. 猪肉脯中脱氢乙酸的测定图7. 肉松面包中脱氢乙酸的测定图8. 法式小面包中脱氢乙酸的测定图9. 芒果汁中脱氢乙酸的测定 本试验基于Vanquish™ Core HPLC液相色谱系统,采用Acclaim Organic Acid有机酸分析专用柱,对多种食品基质中脱氢乙酸的测定开展了验证。实验结果表明,Acclaim Organic Acid能够完美解决脱氢乙酸峰型拖尾的问题,有效排除各种复杂样品基质的干扰,为食品实验室准确定性和定量分析脱氢乙酸,提供了一个高效便捷的方法。 那么,有请我们的主角闪亮登场… … 此处应有掌
  • 国标委下发2016第二批国标制修订计划 又一批检测标准将出台
    9月20日,国家标准化管理委员会下达2016年第二批国家标准制修订计划(见附件)。本批计划共计224项,其中制定183项,修订41项 推荐性标准223项,指导性技术文件1项。  在这224项标准中,有数十条涉及仪器检测,包括质谱、高效液相色谱-质谱联用法、高效液相色谱法、电感耦合等离子体原子发射光谱、X射线衍射、扫描电镜等检测方法,仪器信息网摘取部分供参考。 计划编号 项目名称 标准性质 制修订 主管部门 归口单位 20161229-T-608纺织品 消臭性能的测定 第3部分:气相色谱法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161231-T-608纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161232-T-608纺织品 苯并三唑类物质的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161233-T-608纺织品 定量化学分析 氨纶与某些其他纤维的混合物推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161234-T-608纺织品 过滤性能 最易穿透粒径的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161237-T-608纺织品 消臭性能的测定 第1部分:通则推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161238-T-608纺织品 抗真菌性能的测定 第2部分:平皿计数法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161240-T-608纺织品 抗真菌性能的测定 第1部分:荧光法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161323-T-606肥料中植物生长调节剂的测定 高效液相色谱法推荐制定中国石油和化学工业联合会全国肥料和土壤调理剂标准化技术委员会20160920-T-609超薄玻璃硬度和断裂韧性试验方法-显微维氏硬度压痕法推荐制定中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会20161327-T-606光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 萃取值测定方法推荐制定中国石油和化学工业联合会全国光学功能薄膜材料标准化技术委员会20161295-T-469粒度分析 液体重力沉降法 第4部分:天平法推荐制定国家标准化管理委员会全国颗粒表征与分检及筛网标准化技术委员会20161283-T-469喷气燃料中芳烃总量的测定 气相色谱法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161284-T-469汽车手动变速箱同步器用润滑剂摩擦磨损性能测定 SRV试验机法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161285-T-469石油和液体石油产品 储罐中液位和温度自动测量法 第2部分:油船舱中的液位测量推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161303-T-607玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推荐制定中国轻工业联合会全国玩具标准化技术委员会20161310-T-606硫化橡胶 样品和试样的制备 化学试验推荐修订中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161314-T-606炭黑 第26部分:炭黑原料油中碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161315-T-606橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161316-T-606炭黑 第25部分:碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161346-T-306同位素组成质谱分析方法通则推荐制定科学技术部全国仪器分析测试标准化技术委员会20161347-T-306水中锶同位素丰度比的测定推荐制定科学技术部全国仪器分析测试标准化技术委员会20161348-T-306晶体材料X射线衍射仪旋转定向测定方法推荐制定科学技术部全国仪器分析测试标准化技术委员会20161361-T-334琥珀鉴定分类推荐制定国土资源部全国珠宝玉石标准化技术委员会20161363-T-334珠宝玉石 鉴定推荐修订国土资源部全国珠宝玉石标准化技术委员会20161226-T-608化学纤维 微观形貌及直径的测定 扫描电镜法推荐制定中国纺织工业联合会中国纺织工业联合会20161227-T-608化学纤维 热分解温度试验方法推荐制定中国纺织工业联合会中国纺织工业联合会20161228-T-608化学纤维 二氧化钛含量试验方法推荐制定中国纺织工业联合会中国纺织工业联合会
  • 新版工业冰乙酸国家标准即将实施
    近日,应国家标准化管理委员会邀请,国泰公司参加了国家工业冰乙酸质量标准修订工作,国泰公司工作人员结合醋酸质量管理工作的先进做法,针对工业冰乙酸标准在实施过程中存在的问题提出大量修改建议并得到采纳,该公司醋酸产品多项质量指标被确定为国家工业冰乙酸质量标准。  新版工业冰乙酸国家标准(标准号GB/T1628-2008)已在全国发行并将从2009年2月1日起实施,国泰公司名列参加起草的单位行列。国泰公司醋酸质量指标进入国家标准,标志着兖矿集团醋酸产品质量管理和分析试验研究工作走在了国内同行业的前列。
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 超短链全氟烷基化合物“三氟乙酸”分析利器——超临界流体色谱质谱联用技术
    近年来,以三氟乙酸(TFA)为代表的超短链全氟烷基化合物(超短链PFAS)大量赋存于城市河水中这一问题已对城市生态及饮用水生产带来了巨大挑战,监测和精确定量饮用水源中的超短链PFAS已经迫在眉睫。针对高极性的超短链PFAS,高效环保的超临界流体色谱质谱联用技术可以提供良好保留和高灵敏度检测结果。背景介绍PFAS是一类广泛用于消费品和工业生产的含氟有机化合物。全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)是两种含八个碳的全氟烷基酸类化合物(PFAA),因具有较高的环境持久性和毒性,已在全球范围内逐步淘汰。然而,取而代之的是一些超短链(C1&minus C3)(图1)和短链(C4&minus C7)PFAA,其在环境、血液及尿液样本中正在被广泛检出【1,2】,引发了人们对健康影响的担忧。图1 超短链(C1&minus C3)全氟烷基化合物特别是含量较高的三氟乙酸被认为含有损坏生育能力和儿童发育毒性,正在全球范围内引起广泛关注。据欧洲新闻网报道,欧洲农药行动网络(PAN Europe)及其成员于5月27日联合发布了一项研究报告,对来自10个欧盟国家的23个地表水样本和6个地下水样本的联合调查发现,所有检测的水样中均检测到PFAS,其中23个样本(79%)的TFA浓度超过了欧盟饮用水指令中“PFAS总量”的拟议限值;而在检测到的总PFAS中,TFA占总量的98%以上【3】。TFA是含有两个碳的全氟羧酸,属于超短链(C1&minus C3)全氟烷基化合物。其在环境中普遍存在,主要来源包括PFAS农药、氢氟碳化物制冷剂、污水处理和工业污染(图2)。尽管目前对TFA的生物毒性效应研究有限,考虑到其持久性和全球传播特性,正在引起全球多国的密切关注【4,5】。图2 杀虫剂、杀菌剂和药品中的碳键全氟甲基在环境条件下通过氧化裂解转化为TFA特色应用方案使用高效环保的超临界流体色谱(SFC)分离技术,结合超高灵敏度三重四级杆质谱检测器,岛津中国创新中心开发了包括TFA在内的五种超短链PFAS快速分析方法。与反相液相色谱不同,SFC可以充分保留仅有一到三个碳的超短链PFAS,有效降低基质的干扰(图3)。图3 SFC-MS/MS和LC-MS/MS分析超短链PFAS色谱对比图(1ng/mL标液)使用SFC-MS/MS对纯水配置的系列标准溶液进行分析,可得到良好线性和较低检测限(见表1),进一步,对不同地表水样品进行检测,结果发现,均检测到一定量TFA,使用内标法定量,分别为几百个到几千个ppt,说明TFA在城市水体都存在较为严重的污染(图4、图5)。图4 SFC-MS/MS分析地表水样品1中超短链PFAS图5 SFC-MS/MS分析地表水样品2中超短链PFAS表1 SFC-MS/MS分析水样中超短链PFAS线性和检出限总结采用超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)建立超短链(C1&minus C3)全氟烷基化合物的快速分析方法。由于超临界流体色谱独特的分离选择性,使用SFC-MS/MS分析种类繁多的PFAS,可以得到与反相色谱截然不同的溶出顺序和出峰行为。SFC-MS/MS可作为反相液相色谱质谱联用技术一种有力补充,对超短链PFAS进行更准确定量。随着对PFAS及其降解产物(TFA等)认识的不断深入,全球各国需要加强对这些持久性化学品的监管和限制, 旨在减少PFAS污染,保护生态系统和人类健康。超临界流体色谱串联三重四极杆质谱仪(SFC-MS/MS)注解*:超临界流体色谱(SFC):使用超临界流体作为流动相的色谱分离技术。以超临界流体CO2为流动相的SFC分离技术不仅高效而且节能环保,作为一种绿色分离技术在制药、食品和石油领域得到越来越广泛的应用。参考文献1. Guomao Zheng, Stephanie M. Eic, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 42, 15782–15793.2. Isabelle J. N., Daniel H., Hanna L. W., Vassil V., Ulrich B., Karsten N., Marco S., Sarah E. H, Hans P. H. A., and Daniel Z., Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environ. Sci. Technol. 2022 56, 10, 6380-6390.3. 欧洲水体中的PFAS污染引发关注:塞纳河等河流中令人惊讶的三氟乙酸浓度.【微信公众号:新污染物监测与分析】4. Cahill, T. M. Increases in Trifluoroacetate Concentrations in Surface Waters over Two Decades. Environmental Science & Technology, 2022, 56,9428-9434.5. Thomas M. Cahill. Assessment of Potential Accumulation of Trifluoroacetate in Terminal Lakes. Environ. Sci. Technol. 2024, 58, 6, 2966–2972.本文内容非商业广告,仅供专业人士参考。
  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 7项新规严控涂料质量,蓝天白云指日可待!
    导读 2020年3月4日,国家市场监督管理总局、国家标准化管理委员会联合发布《中华人民共和国国家标准公布(2020年第2号)》,批准公布了7项国家强制性标准:GB 18581-2020《木器涂料中有毒物质限量》、GB 18582-2020《建筑用墙面涂料中有害物质限量》、GB 24409-2020《车辆涂料中有害物质限量》、GB 30981-2020《工业防护涂料中有害物质限量》、GB 33372-2020《胶粘剂挥发性有机物限量》、GB 38507-2020《油墨中可挥发性有机物(VOCs)含量的限值》、GB 38508-2020《清洗剂挥发性有机物含量限值》。这些标准的发布,以制定产品质量标准的角度综合考虑环境保护,开辟了大气污染源头防控的路径,进一步明确了《大气污染防控治法》及《打赢蓝天保卫战三年行动计划》关于低挥发性有机物含量的胶粘剂、涂料、油墨、清洗剂的定义,这7项标准中除GB 38507-2020于2021年4月1日实施外,其余6个标准均将于2020年12月1日正式实施。 7项新发布国家标准中,VOCs的指标比之前的法规更为严格,重金属的指标整体变化不大,个别指标提高,同时增加了一些SVOCs的项目和指标,如多环芳烃、邻苯二甲酸酯、乙二醇醚及醚酯类化合物等。这一系列的措施反映了国家严抓涂料的质量的坚定决心。“为了人类和地球的健康”,岛津也在行动,在国家标准正式实施前推出了《涂料中有毒有害物质检测解决方案》,供涂料相关检测工作者参考,一起来看看我们的方案吧! 挥发性有机物分析 涂料在生产及使用过程中会释放出各种各样的挥发性有机物(VOCs)。目前岛津用于涂料中VOCs分析的仪器主要有GC和GCMS,外围附件有顶空进样器和热脱附仪。 GC-2010 ProNexis GC-2030 典型案例1:GC法测定车辆涂料中苯、甲苯、乙苯和二甲苯含量1、叔丁基甲醚(内标) 2、苯 3、甲苯 4、乙苯 5、间/对-二甲苯 6、邻-二甲苯 典型案例2:顶空-GCMS法测定水性涂料中23种挥发性有机物含量1、1,1-二氯乙烯 2、二氯甲烷 3、反-1,2-二氯乙烯 4、氯丁二烯 5、顺-1,2-二氯乙烯 6、三氯甲烷7、四氯化碳 8、苯 9、1,2-二氯乙烷 10、三氯乙烯 11、环氧氯丙烷 12、甲苯 13、四氯乙烯14、氯苯 15、乙苯 16、邻二甲苯 17、对二甲苯 18、苯乙烯 19、三溴甲烷 20、异丙苯21、1,4-二氯苯 22、1,2-二氯苯 23、六氯丁二烯 典型案例3:热脱附-GCMS法测定涂料中挥发性有机物含量1、异丁醇 2、苯 3、三乙胺 4、正丁醇 5、甲苯 6、1,2-丙二醇 7、乙苯 8、间/对-二甲苯9、邻二甲苯 10、1,3-丙二醇 11、乙二醇单丁醚 12、二乙二醇 13、二乙二醇乙醚醋酸酯14、二乙二醇单丁醚 15、2,2,4-三甲基-1,3-戊二醇 16、二乙二醇丁醚醋酸酯 半挥发性有机物分析 涂料中在生产及使用过程中也会释放出各种各样的半挥发性有机物(SVOCs)。 SVOCs GCMS-QP2020 NXGCMS-QP2020 NX 典型案例:GCMS法检测涂料中16种多环芳烃含量 1、萘 2、苊烯 3、苊 4、芴 5、菲 6、蒽 7、荧蒽 8、芘 9、苯并[a]蒽 10、屈 11、苯并[b]荧蒽12、苯并[k]荧蒽 13、苯并[a]芘 14、茚并[1,2,3-cd]芘 15、二苯并[a,h]蒽 16、苯并[g,h,i]苝 重金属分析 涂料中重金属的来源主要是其采用的颜料,颜料起着色与遮盖作用。目前岛津用于涂料中重金属分析的仪器主要有AA-6880/7000、ICPE-9820、ICPMS-2030等。 ICPE-9820ICPMS-2030 典型案例:ICP-AES法测定涂料中17种重金属元素含量 小结 2020年是我国打赢蓝天保卫战三年行动计划的收官之年,严格控制VOCs,把好涂料质量关,岛津已经为您做好了准备,您准备好了吗?让我们为了未来持续的蓝天白云一起努力!想了解更多涂料中有毒有害物质的检测,请关注岛津《涂料中有毒有害物质检测解决方案》。 识别二维码下载解决方案
  • 标准委对1537项拟立项国标征求意见 多项与分析测试相关
    2019年1月3日,国家标准委员会发布通知,对1537项拟立项国家标准项目公开征求意见,征求意见的时间从2019年1月3日开始,截止到2019年1月18日结束。本次公开征求意见的国家标准项目包含多项与分析仪器、分析测试相关标准。有关单位和相关人员可登陆国家标准委网站的计划公示页面,查询项目具体信息和反馈意见建议。仪器信息网摘录部分与分析仪器和分析测试相关的标准如下:项目名称制修订中间馏分油及液体石油产品中脂肪酸甲酯含量的测定红外光谱法修订真空计四极质谱仪的定义与规范制订月球与行星原位光谱探测仪器通用规范制订硬质合金钴粉中硅量的测定分光光度法制订婴幼儿湿巾中5种异噻唑啉酮防腐剂的测定高效液相色谱法制订页岩气组分快速分析激光拉曼光谱法制订微波等离子体原子发射光谱方法通则制订铁矿石碳和硫含量的测定高频燃烧红外吸收法修订铁矿石镍含量的测定火焰原子吸收光谱法修订铁矿石铋含量的测定二硫代二安替吡啉甲烷分光光度法修订天然气在一定不确定度下用气相色谱法测定组成第1部分:分析导则修订天然气气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算修订天然气加臭剂四氢噻吩含量的现场快速测定气相色谱法制订天然气含硫化合物的测定第8部分:用紫外荧光光度法测定总硫含量修订天然气含硫化合物的测定第10部分:用气相色谱法测定硫化合物修订碳化硅单晶中硼、铝、氮杂质含量的测定二次离子质谱法制订松针中聚戊烯醇含量的测定高效液相色谱法制订山楂叶提取物中金丝桃苷的检测高效液相色谱法制订三聚甲醛中杂质含量的测定气相色谱法制订染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测液相色谱质谱法制订铅精矿化学分析方法第16部分:铜、锌、铁、砷、镉、锑、铋、镁、铝含量的测定电感耦合等离子体原子发射光谱法制订铅精矿化学分析方法第15部分:氧化钙含量的测定原子吸收光谱法制订纳米技术水相中无机纳米颗粒的尺寸分布和浓度测量单颗粒电感耦合等离子体质谱法制订纳米技术石墨烯材料的化学性质表征电感耦合等离子体质谱法(ICP-MS)制订纳米技术硫族化镉胶体量子点的紫外-可见吸收光谱表征修订锰铁、锰硅合金、氮化锰铁和金属锰磷含量的测定钼蓝分光光度法和铋磷钼蓝分光光度法修订锰铁、锰硅合金、氮化锰铁和金属锰硅含量的测定钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法修订锰矿石铜、铅和锌含量的测定火焰原子吸收光谱法修订锰矿石钛含量的测定二安替吡啉甲烷分光光度法修订近红外光谱仪的性能与检验制订化妆品中新铃兰醛的测定气相色谱-质谱法制订化妆品中烷基(C12~C22)三甲基铵盐含量的测定高效液相色谱串联质谱法制订化妆品中壬二酸的检测气相色谱法制订化妆品中人工合成麝香的测定气相色谱-质谱法制订化妆品中林可霉素和克林霉素的测定液相色谱-串联质谱法制订化妆品中二乙二醇单乙醚的测定气相色谱-质谱法制订化妆品中地索奈德等十一种糖皮质激素的测定液相色谱/串联质谱法制订化妆品中八甲基环四硅氧烷(D4)和十甲基环五硅氧烷(D5)的测定气相色谱法制订化妆品中2,4-二氯苯甲醇的测定高效液相色谱法制订锅炉用水和冷却水分析方法痕量铜、铁、钠、钙、镁含量的测定电感耦合等离子体质谱(ICP-MS)法制订硅铁钙含量的测定火焰原子吸收光谱法修订硅单晶中III、V族杂质含量的测定低温傅立叶变换红外光谱法修订工业用乙二醇试验方法第4部分:紫外透光率的测定紫外分光光度法修订工业用乙二醇试验方法第3部分:总醛含量的测定分光光度法修订锆化合物化学分析方法钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定电感耦合等离子体原子发射光谱法制订高效液相色谱-原子荧光光谱仪联用分析方法通则制订高效液相色谱电感耦合等离子体质谱联用法通则制订纺织品某些动物毛纤维混合物的定性和定量蛋白质组分析液相色谱质谱(LC-ESI-MS)法制订钒铁钒、硅、磷、锰、铝、铁含量的测定波长色散X射线荧光光谱法制订二氧化铀粉末和芯块中碳的测定高频感应炉燃烧-红外检测法(修订GB/T13697-1992)修订杜仲叶提取物中京尼平苷酸的检测高效液相色谱法制订电子电气产品中某些物质的测定第8部分:使用气相色谱质谱联用仪(GC-MS),配有热裂解热脱附的气相色谱质谱联用仪(Py-TD-GC-MS)测定聚合物中的邻苯二甲酸酯制订电子电气产品中某些物质的测定第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚制订电子电气产品中某些物质的测定第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴制订氮化硅粉体中氟离子和氯离子含量的测定离子色谱法制订畜禽肉品质检测水分、蛋白质、挥发性盐基氮含量的测定近红外法制订畜禽肉品质检测近红外法通则制订常见毒品的气相色谱、气相色谱-质谱检验方法第9部分:艾司唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第8部分:三唑仑制订常见毒品的气相色谱、气相色谱-质谱检验方法第7部分:安眠酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第6部分:美沙酮制订常见毒品的气相色谱、气相色谱-质谱检验方法第5部分:二亚甲基双氧安非他明制订常见毒品的气相色谱、气相色谱-质谱检验方法第4部分:可卡因制订常见毒品的气相色谱、气相色谱-质谱检验方法第3部分:大麻中三种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第2部分:吗啡制订常见毒品的气相色谱、气相色谱-质谱检验方法第1部分:鸦片中五种成分制订常见毒品的气相色谱、气相色谱-质谱检验方法第12部分:氯氮卓制订常见毒品的气相色谱、气相色谱-质谱检验方法第11部分:溴西泮制订常见毒品的气相色谱、气相色谱-质谱检验方法第10部分:地西泮制订餐具洗涤剂中三氯生和三氯卡班的测定液相色谱法制订餐具洗涤剂中氯乙酸的测定液相色谱法制订餐具洗涤剂中合成着色剂的测定液相色谱法制订材料表面积的测量 高光谱成像三维面积测量法制订变性淀粉中羟丙基含量的测定——分光光度法制订X射线荧光光谱法测定钠钙硅玻璃中SiO2、Al2O3、Fe2O3、K20、Na20、CaO、MgO含量制订[60]和[70]富勒烯的纯度测定高效液相色谱法制订
  • SPE-GC/MS法检测纯油脂中邻苯二甲酸酯类化合物
    ——《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之二 一、实验目的以某食用植物油为样品,利用GC/MS和Cleanert PAE固相萃取柱建立对16种邻苯二甲酸酯类化合物的检测方法。 二、仪器及试剂仪器:Agilent7890/5975 GC/MS;离心机;万分之一天平;涡旋混合器;超声仪;氮吹仪;试剂: Cleanert PAE柱为天津博纳艾杰尔科技有限公司产品;16种邻苯二甲酸酯混标(1000ppm);乙腈(色谱纯);正己烷(色谱纯);乙酸乙酯(色谱纯); 三、实验过程3.1 样品处理用万分之一天平取0.1g食用植物油,置于玻璃样品瓶中,加入3mL乙腈,涡旋2min,超声2min,以4000r/m离心2min,将上清液转移至另一干净样品瓶中,于40℃氮气吹干,加入1mL正己烷,摇匀,作为待净化液。SPE过程如下:(1)活化:用5mL正己烷活化Cleanert PAE柱;(2)上样:将待净化液全部上样;(3)淋洗:10mL乙酸乙酯/正己烷(1:99,v/v);(4)洗脱:5mL乙酸乙酯/正己烷(1:1,v/v);将洗脱液于40℃下氮气吹干,加入1mL乙腈,涡旋混合1min,超声1min,4000r/m离心2min,取上清液进GC/MS测定。3.2 标准曲线绘制将16种邻苯二甲酸酯混标用正己烷稀释成20ppb、50ppb、100 ppb、200 ppb、500 ppb、1ppm、2ppm,用GC/MS进行测定,根据定量离子绘制标准曲线。所选定量离子及各个物质的标准曲线见附录1、附录3。3.3 GC/MS条件色谱柱:DA-5MS 30m*0.25mm*0.25μm进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1μL流速:1 mL/min接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min 四、实验结果4.1 谱图在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1 16种邻苯二甲酸酯类化合物选择离子色谱图(500ppb)出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 4.2 加标回收率及精密度取5份食用油,在食用油中加入一定量的标准品,按照样品处理方法(3.1)做5份平行样品,回收率及方法精密度见表1。所得色谱图见附录2。 表1 食用油中16种邻苯二甲酸酯类化合物的添加回收率及精密度 峰号化合物简称保留时间加标浓度100ppb加标浓度500ppb平均回收率RSD(n=5)平均回收率RSD(n=5)1邻苯二甲酸二甲酯DMP8.315150.35%15.19%165.61%3.72%2邻苯二甲酸二乙酯DEP9.185141.48%15.09%109.62%2.99%3邻苯二甲酸二异丁酯DIBP10.96121.48%8.11%70.87%6.94%4邻苯二甲酸二丁酯DBP11.72380.13%15.75%91.53%25.75%5邻苯二甲酸二(2-甲氧基)乙酯DMEP12.073111.25%10.09%98.52%5.55%6邻苯二甲酸二(4-甲基-2-戊基)酯BMPP12.828102.90%8.50%82.96%3.85%7邻苯二甲酸二(2-乙氧基)乙酯DEEP13.167104.08%7.08%95.11%3.73%8邻苯二甲酸二戊酯DPP13.5492.05%6.62%88.51%4.17%9邻苯二甲酸二己酯DHXP15.71891.04%5.48%89.17%4.95%10邻苯二甲酸丁基苄基酯BBP15.875100.67%5.69%97.01%5.20%11邻苯二甲酸二(2-丁氧基)乙酯DBEP17.34289.50%5.72%96.64%5.34%12邻苯二甲酸二环己酯DCHP18.00684.37%6.96%88.87%5.52%13邻苯二甲酸二(2-乙基)己酯DEHP18.24379.39%5.31%80.02%8.67%14邻苯二甲酸二苯酯—18.39370.02%9.31%66.12%3.96%15邻苯二甲酸二正辛酯DNOP20.66979.56%7.48%82.41%5.88%16邻苯二甲酸二壬酯DNP23.2477.41%13.90%74.98%5.95% 说明:由于邻苯二甲酸二甲酯、邻苯二甲酸二异丁酯、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基)己酯是常见的增塑剂,在溶剂中会有些残留,容易在检测时造成它们的回收率和RSD不理想。建议计算时扣除溶剂空白。 附录1表2 16种邻苯二甲酸酯类化合物定量离子及辅助定量离子 序号保留时间/min中文名称英文缩写定量离子辅助定量离子18.315邻苯二甲酸二甲酯DMP1637729.185邻苯二甲酸二乙酯DEP149177310.96邻苯二甲酸二异丁酯DIBP149223411.723邻苯二甲酸二丁酯DBP149223512.073邻苯二甲酸二(2-甲氧基)乙酯DMEP59149、193612.828邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149251713.167邻苯二甲酸二(2-乙氧基)乙酯DEEP4572813.54邻苯二甲酸二戊酯DPP149237915.718邻苯二甲酸二己酯DHXP149104、761015.875邻苯二甲酸丁基苄基酯BBP149911117.342邻苯二甲酸二(2-丁氧基)乙酯DBEP1492231218.006邻苯二甲酸二环己酯DCHP1491671318.243邻苯二甲酸二(2-乙基)己酯DEHP1491671418.393邻苯二甲酸二苯酯—225771520.669邻苯二甲酸二正辛酯DNOP1492791623.24邻苯二甲酸二壬酯DNP14957、71 附录2 食用油样品加标色谱图图2 食用油中加标色谱图(最后定容浓度为100ppb)图3 食用油中加标色谱图(最后定容浓度为500ppb) 图2、图3中,样品出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 附录3 16种邻苯二甲酸酯类化合物的标准曲线(20ppb~2ppm)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制