当前位置: 仪器信息网 > 行业主题 > >

康布瑞汀磷酸二钠

仪器信息网康布瑞汀磷酸二钠专题为您提供2024年最新康布瑞汀磷酸二钠价格报价、厂家品牌的相关信息, 包括康布瑞汀磷酸二钠参数、型号等,不管是国产,还是进口品牌的康布瑞汀磷酸二钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合康布瑞汀磷酸二钠相关的耗材配件、试剂标物,还有康布瑞汀磷酸二钠相关的最新资讯、资料,以及康布瑞汀磷酸二钠相关的解决方案。

康布瑞汀磷酸二钠相关的资讯

  • 应用分享|近红外二区发射Au纳米团簇的磷酸化用于靶向骨成像和改进类风湿关节炎治疗
    近日,The Lancet Rheumatology发表一项研究预测到2050年全球骨关节炎的患病率情况,研究显示,截止到2020年,全球骨关节炎患者增加到5.95亿,约占全球人口的7.6%,增幅高达132%。由此可见,开发针对骨相关疾病的精准无创诊疗技术迫在眉睫,因为它不仅可以连续监测骨代谢、生长、转移、给药和指导手术,而且可以实现骨疾病的高效治疗。然而,设计精准无创的骨疾病诊疗探针是极具挑战的工作。应 用 报 道今年9月,青岛科技大学袁勋教授团队在《Aggregate WILEY》报道了一种新型的金团簇基骨靶向诊疗探针[1],实现了高时空分辨的体内骨靶向近红外二区(NIR-II)荧光成像和增强的类风湿性关节炎治疗。图1. Au44MBA26-P团簇的体内特异性骨靶向和高分辨率成像该探针的设计关键在于将原子级精确的NIR-II发射Au44团簇的表面进行磷酸化。一方面,Au44团簇的表面磷酸化大大增强了探针的骨靶向能力,使骨主要成分羟基磷灰石对磷酸化前后的Au44团簇探针的理论max吸附量提高了1.36倍,使该团簇探针实现了高对比度和高分辨率的体内骨靶向NIR-II荧光成像(信噪比提升1.4倍,见图1)。图2. Au44MBA26-P团簇对胶原免疫诱导大鼠类风湿性关节炎(CIA)模型的治疗作用另一方面,该团簇探针作为一种新型纳米药物,具有直接的生物效应,可显著抑制脂多糖诱导的小鼠巨噬细胞促炎因子的产生。在II型胶原诱导的大鼠类风湿性关节炎治疗中,该团簇探针表现出优异的抗炎和免疫调节作用,可将破坏的软骨恢复到接近正常状态,比临床治疗药物甲氨蝶呤效果更为显著(图2),且具有良好的肾脏清除率和优良的生物相容性。本研究提出了一种金属纳米团簇基诊疗探针的设计范例,为高分辨率骨靶向荧光成像和类风湿性关节炎治疗提供了新思路。图3.睿光NirVivo-Pro 近红外二区小动物活体荧光成像系统助力科研研究[1]: Phosphorylation of NIR-II emitting Au nanoclusters for targeted bone imaging and improved rheumatoid arthritis therapyhttps://linkinghub.elsevier.com/retrieve/pii/S0142961223001382产 品 推 荐近红外二区小动物活体荧光成像系统NirVivo-Pro 活体荧光成像系统是北京睿光科技自主研发的一款专门用于近红外二区的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点
  • 贝瑞和康借壳连拉八个涨停,已停牌核查
    被称为“小华大”的基因测序公司贝瑞和康成功借壳天兴仪表(000710),受到资本市场热捧,连拉八个涨停版,股价从22.12元/股翻倍至47.41元/股。12月28日晚,天兴仪表公告称,股票交易价格连续两个交易日内收盘价格涨幅偏离值累计超过20%,根据《深圳证券交易所交易规则》的有关规定,属于股票交易异常波动情形,公司正在做必要核查,于12月29日起停牌。  12月5日,天兴仪表在停牌半年后披露重组方案。方案显示,公司将以发行股份购买资产与重大资产出售同步进行的方式,注入贝瑞和康100%股权,作价43亿元。其中,发行股份购买资产的价格为21.14元/股,合计2034.06万股,出售资产作价为29652.10万元。  交易完成后,上市公司控股股东将会由天兴集团变更为贝瑞和康控股股东、实际控制人高扬及其一致行动人侯颖,二人共持有上市公司21.27%股份。而贝瑞和康或将成为天兴仪表的全资子公司,天兴仪表的主营业务将变更为以测序为基础的基因检测服务与设备试剂销售相关业务。  12月19日,天兴仪表股票复牌,并接连录得八个涨停板。  对于“八个涨停板”现象,一位接近贝瑞和康的“华大系”人士对财新记者表示,“完全在预期内,一是贝瑞和康业绩很好,年增长连续在30%以上,是基因测序风口下非常好的标的。二是贝瑞和康为尽快上市大力压低了估值,少了一半,甚至三分之二,现在是合理的‘补涨效应’。”  12月28日,天兴仪表公告,公司股票交易价格连续两个交易日内(12月27日、12月28日)日收盘价格涨幅偏离值累计超过20%,特别是12月19日至12月28日期间股票交易价格累计涨幅异常。根据《深圳证券交易所交易规则》的有关规定,属于股票交易异常波动情形。 公司正在就股票交易异常波动情况进行必要的核查,公司股票将自12月29日开市起停牌,待公司完成相关核查工作并公告后复牌。   2010年,贝瑞和康成立。2011年,获得君联资本A轮融资1780万美元,2013年年中,获得启明创投领投的B轮融资2500万美元。2014年和2015年,贝瑞和康主攻无创产前基因检测商业化,成为与华大基因并驾齐驱的基因检测龙头企业。  据贝瑞和康方面公布的信息,2013年至2015年,贝瑞和康营收分别为2.58亿元、3.34亿元和4.46亿元,年化增长率达到31.4%。  自2014年以来,基因测序行业发展迅速,估值高企,尤其在无创产前筛查与诊断试点全面放开的政策红利之后,达瑞生物、华大基因等都受到资本追捧。相较而言,贝瑞和康是基因测序行业中业务最集中和成熟的公司之一,估值一度高达百亿元,但在此次“借壳”过程中,贝瑞和康调低估值,仅为43.06亿元。  在贝瑞和康管理层媒体说明会上,贝瑞和康实际控制人高扬表示,基因测序行业平均市盈率为226.26倍,市净率17.94倍,而贝瑞和康对应的2015年的市盈率为98.92倍,如按2017年承诺净利润计算,则动态市盈率仅有18.83倍 贝瑞和康市净率4.78倍,均低于行业水平。  调低估值,是为了尽快走上资本市场,布局“赛道”。  贝瑞和康董秘兼财务总监王冬表示,43亿元的估值可以说是贝瑞和康的股东让利上市公司。贝瑞和康和股东们进行磋商并最终达成一致,忍受比较大的估值折扣以及摊薄,是为了尽快登陆资本市场,抓住行业机会把公司做大。  登陆资本市场后,贝瑞和康的未来计划是围绕基因测序的全产业链布局完善产品线,覆盖出生缺陷三级预防体系,推进肿瘤分子检测与诊断领域的医学产品及服务。具体包括构建涵盖上游,例如研发与生产基因测序仪、试剂耗材,研发软件和构建基因数据库 中游中的遗传学、肿瘤学两个应用方向的基因检测项目 下游中面向基因测序应用机构及终端用户的整套产品及服务体系。  按照贝瑞和康的承诺,2017年、2018年、2019年,净利润分别不低于22840万元、30920万元、40450万元,对应交易市盈率分别为18.83倍、13.91倍、10.63倍。
  • FJA-2型自动滴定仪测定食品添加剂磷酸氢二钠
    FJA-2型微机控制自动滴定系统测定食品添加剂磷酸氢二钠 方建安 张振兴 (南京传滴仪器设备有限公司、徐州天嘉食用化工有限公司) 徐州天嘉食用化工有限公司携带样品与有关分析试剂前来我公司,利用FJA-2 型微机控制自动滴定系统对磷酸氢二钠含量的测定,对多个样品的测试结果表明,电位滴定法测定磷酸氢二钠含量,具有较高的灵敏度与好的测定精度,滴定图谱清晰。现将测试结果报告如下,供能考。 (一)磷酸氢二钠测定方法与结果 用天平称取样品溶液零点几克,精确到0.001g(视样品含量不同而不同)于100ml烧杯中,加c1mol/L盐酸10ml,加50 ml蒸馏水,待样品溶解后,以PH复合电极为指示电极,用NaOH[C(NaOH)=0.9795mol/L]为滴定剂,在FJA-2微机控制自动滴定系统上进行自动滴定,叁个样品测量结果如下表。滴定曲线如图所示。 测量次数 样品号 样重(克) 滴定剂体积 终点1 (ml) 滴定剂体积 终点2(ml) 磷酸氢二钠含量 (%) NaN2 0.516 6.265 9.894 97.82 NaN2 0.526 6.047 9.750 97.92 NaN2 0.652 5.405 9.987 97.75 计算 磷酸氢二钠%=[C (V2-V1) 0.1420 100]/m 式中: C&mdash &mdash NaOH滴定剂的摩尔浓度; V&mdash &mdash 滴定剂NaOH的耗用量(ml); m&mdash &mdash 试样重量; 0.1420&mdash &mdash 为磷酸氢二钠的毫摩尔质量。 (二)讨论 1、上述是连续3次测定结果,可以看出,几次测定结果的最大值减最小值的绝对差值都在于0.2% 以内。最后一个图谱为体积对pH滴定曲线。 2、为了保证测定的精度要注意下面几个重要环节: (1)、正确配置NaOH溶液也是控制滴定的精度的一个重要因素。要点是要用饱和NaOH溶液来配制滴定剂,不要固体称重来配制;要用新的去离子水(电导值小于5µ S)来配制滴定剂;滴定剂瓶上要装吸收二氧化碳的过滤器等。 (2)、pH复合电极要靠滴定池边,磁力搅拌要平稳,不要太剧烈,以防样液的损失。 参考文献 【1】 斯维拉。G著,高立译。自动电位滴定。北京。原子能出版社。1985 【2】 方建安,夏 权编著。电化学分析仪器。南京,东南大学出版社,1992 【3】 方建安,影响电位滴定精度的几个问题,分析仪器,(4),1993 【4】 方建安,方 晖等,一种微机控制的自动光度滴定系统,分析化学,(10)24,1233,1996
  • 加拿大拟提出食品添加剂磷酸三钠用于相关食品建议
    近日,加拿大发出通报(G/SPS/N/CAN/636),加拿大卫生部公布关于准许食品添加剂磷酸三钠用于某些标准化肉类、家禽、海产和淡水产品及非标准化食品建议的信息咨询文件。加拿大卫生部收到一项提案,要求凡是已准许使用焦磷酸钠(四元磷酸钠)及/或酸式焦磷酸钠的情况下,合法批准磷酸三钠用于标准化肉类、家禽肉、海产和淡水产品及非标准化食品。磷酸三钠是一种具有不同技术功能的磷酸盐,它能代替其他已允许使用的磷酸盐产品。按磷酸二钠计算,标准化肉类、家禽及海产和淡水类动物产品内磷酸三钠的拟定最高使用标准占磷酸盐添加总量的0.5%。当磷酸三钠单独使用或与其他磷酸盐结合使用时,该最高使用标准适用于磷酸三钠。非标准化食品的使用标准拟作为一种符合良好制造规范(GMP)的使用标准。这些拟定最高使用标准与其他当前已准用于这些食品磷酸盐的法定使用标准相同。  加拿大卫生部完成了支持拟定使用食品添加剂提案所述磷酸三钠相关信息的安全评估,并确定不存在与规定使用相关的卫生或安全问题。卫生部确定申请人符合食品药品法规第B.16.002节概述的食品添加剂提案要求。因此,加拿大卫生部拟准许磷酸三钠按技术咨询文件所述合法使用。  目前该通报正在征求意见中。
  • 药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)
    药物机制解读 | “人民的希望”抗病毒药物瑞德西韦(Remdesivir)病毒变异vs抗病毒药物病毒是一种以DNA或RNA为遗传物质,无独立营养代谢系统,需寄生于宿主内,进行复制和生存的类生物体。病毒在自然界内与宿主共生的过程中,一些病毒可逃脱宿主免疫防御系统,导致宿主发病致死。病毒遗传物质突变几率非常高,可帮助病毒逃脱不断升级的宿主免疫系统。根据病毒进化论学说,病毒发展史要远超过人类进化史,相比之下,人类对病毒知之甚少。随着分子细胞生物学的发展,目前发现病毒种类7000多种,其中可感染人类的病毒有300多种。病毒感染类疾病占传染类疾病的3/4,严重威胁人类健康。从上个世纪60年代开始,已有广谱类的抗病毒药物出现,但由于病毒突变速度非常快,随后陆续产生病毒耐药性和副作用,导致对病毒类感染疾病无特异性有效药物进行临床治疗。瑞德西韦——人民的希望?2020年伊始,COVID-2019肆虐,开发特异性抗新冠病毒药物迫在眉睫。2月1日《新英格兰杂志》发表论文中,报道美国第一例新冠肺炎患者病情恶化后,经瑞德西韦(Remdesivir/GS-5734)静脉注射同情用药后病情好转[1]。2月6日,瑞德西韦“双盲临床实验”在武汉市金银潭医院、市肺科医院和协和医院等入组761例患者进行临床评价[2]。“人民的希望”——瑞德西韦抗新冠肺炎临床疗效,需等至4月底揭晓谜底。瑞德西韦是由一直致力于抗病毒领域的吉利德科学公司研发(抗流感药物奥司他韦,商品名达菲,最早也由吉利德研发,后卖给罗氏进行全球销售)。2013-2016年(西非)和2018-2019年(刚果)埃博拉病毒肆虐期间,全球各大制药公司掷重金进行抗埃博拉病毒药物研发。由美国陆军传染病医学研究所,吉利德科学公司,美国CDC和波士顿大学医学院四家业内顶级实验室联合进行的瑞德西韦抗埃博拉病毒临床前药效学研究,于2016年发表在《自然》杂志[3]。瑞德西韦分子机制——前药(Prodrug)三磷酸代谢物有效制止RdRp酶活性RNA依赖型RNA聚合酶(RNA-dependent RNA-polymerases, RdRp)为广谱的抗病毒药物开发靶点,目前以RdRp为靶点的抗冠状病毒药物多为核苷类似物或RNA干扰类[4]。瑞德西韦以前药(Prodrug)形式进入细胞后,通过三步转化为三磷酸代谢物NTP,NTP和天然ATP竞争结合病毒RdRp,插入RNA合成链中,引起病毒RNA合成终止,并抑制RdRp酶活性(下图a)[3]。瑞德西韦结构上的1‘-氰基,一方面针对RdRp酶提供更好的针对ATP竞争的结合活性,另一方面针对病毒RdRp酶提供了比人源RNA聚合酶II和人源线粒体RNA聚合酶(h-mtRNAP)更好的选择性抑制。在Hela细胞水平,瑞德西韦对两种埃博拉病毒和另外三种病毒都有显著浓度依赖型抑制(下图c);且在分子水平,瑞德西韦活性分子NTP能选择性抑制病毒RdRp酶活性(下图e蓝色),而对人源RNA聚合酶II(下图e黑色)和线粒体RNA聚合酶(下图e红色)无明显抑制作用[3]。瑞德西韦细胞活性——高效选择性抑制病毒在细胞内复制研究人员又通过进一步的细胞学实验,分别在不同的细胞模型上评价了瑞德西韦(GS-5734)对埃博拉病毒和其他RNA病毒的抗病毒活性。数据显示,瑞德西韦可在五种细胞模型,包括原代巨噬细胞上有效抑制埃博拉活性;并对呼吸道感染病毒,如RSV和MERS,以及出血热感染病毒,如JUNV和LASV病毒有一定抑制作用;但对其他病毒如CHIV,VEEV和HIV-1,无明显抑制(下表)[3]。2019年,在《柳叶刀传染病》杂志报道,美国CDC科研人员建立的Zoanthus绿色荧光蛋白(ZsG)标记的埃博拉病毒体外细胞表型快速评价方法(下图左),再次验证了瑞德西韦可在低浓度抑制两个品系(Ituri/Makona)的埃博拉病毒复制,并对细胞活性无明显影响(下图右)。对Ituri品系埃博拉病毒,EC50为12nm,SI(selectivity index,SI)为303倍;对Makona品系埃博拉病毒,EC50为13nm,SI为279倍[5]。 瑞德西韦体内药效——快速扩散至病灶区,提高模式动物存活率在恒河猴(rhesus monkeys)动物模型上,按10mg/kg计量静脉注射给药后,检测健康恒河猴体内瑞德西韦(下图a黑色) 及其代谢物,丙氨酸代谢物(下图a红色), 单磷酸代谢物Nuc(下图a蓝色)和三磷酸代谢物NTP(下图a绿色),在不同时间点的血药浓度。数据显示瑞德西韦前药在体内两个小时内达到峰值,随后很快被清除;而其三磷酸活性代谢物NTP在体内,特别是外周血单核细胞(PBMCs)内,可在更长的时间内维持高血药浓度。通过同位素14C标记瑞德西韦药物后,进一步研究药物在体内分部发现,药物可快速到达睾丸、附睾、眼睛和脑部(下图b)[3]。通过病毒暴露动物模型实验,瑞德西韦通过静脉注射给药后,可显著提高恒河猴实验动物的存活率,特别是在病毒暴露3天后按10mg/kg计量的给药组,其28天后存活率和空白对照组同样可达100%(下图d),且通过核酸定量方法进一步验证,给药组体内的病毒RNA拷贝数与空白对照组相比得到明显抑制(下图e)[3]。瑞德西韦抗病毒药物机制总结瑞德西韦以RdRp酶为药物靶点,在广谱抗病毒核苷类似物抑制剂中脱颖而出,主要归因于以下三点:1) 对其药物靶点RdRp酶,比其天然底物ATP有更高的竞争亲和性;2)在体外细胞水平,可高效选择性的抑制RNA病毒在细胞内复制,并无明显细胞毒性。3)在体内动物水平,有良好的药代学基础,其活性代谢物NTP可快速扩散至病灶,抑制体内RNA复制,提高病毒暴露后模式动物存活率。试验方法珀金埃尔默仪器&试剂方案RNA聚合酶活性检测[a-32P]-GTP 同位素标记细胞内病毒感染评价高内涵细胞成像表型分析平台Opera/Operetta细胞成像专用微孔板抗病毒药物细胞毒性评价多模式读板仪 EnVision药物组织分布[14C]GS-5734 同位素标记同位素液闪计数仪病毒基因组测序分析自动化NGS文库制备工作站 Sciclone G3抗病毒药物实验设计及仪器&试剂摘录列表[3,5]“工欲善其事,必先利其器”。在以上瑞德西韦抗病毒药物研发实验设计及检测过程中,珀金埃尔默在每一个环节都给一线的科学家们提供了高效的“实验武器”:经典的同位素标记技术,准确分析RdRp活性和药物组织分布;业内金标准EnVision多模式读板仪和高内涵成像表型分析平台Opera/Operetta,快速进行细胞内病毒感染和药物毒性评价;自动化NGS文库制备工作站Sciclone G3,加速病毒基因组快速分析。扫描下方二维码,即可查看珀金埃尔默病毒感染疾病研究整体解决方案。参考文献1.First Case of 2019 Novel Coronavirus in the United States. NEJM Jan 2020.2.http://www.wuhan.gov.cn/2019_web/whyw/202002/t20200207_304511.html3.Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.NatureMarch 2016.4.Coronaviruses — drug discovery and therapeutic options. NATURE REVIEWS DRUG DISCOVERY May 20165.Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. The Lancet Infectious Diseases July 2019
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • Nat Metab|上交大童雪梅团队揭示非氧化磷酸戊糖途径调控Treg细胞功能及其分子机制
    点评 | 朱锦芳(NIH)2022年5月23日,上海交通大学基础医学院生化与分子细胞生物学系童雪梅教授课题组及其合作团队,上海市免疫学研究所李斌研究员课题组和复旦大学附属华山医院/脑科学转化研究院杨辉研究员,在Nature Metabolism杂志在线发表题为 Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics 的研究论文,揭示非氧化磷酸戊糖途径(非氧化PPP)对调节性T(Treg)细胞代谢模式及细胞功能的调控机制。Nature Metabolism同期发表伦敦帝国理工学院Margarita Dominguez-Villar博士为该研究撰写的News & Views特评,认为该文章发现非氧化PPP在Treg细胞活化和功能调控中的中心地位(a central regulator)。表达特征转录因子Foxp3的Treg细胞是一类具有免疫抑制功能的CD4+ T细胞亚群,维持机体免疫系统稳态,防止免疫过激诱发自身免疫病。已知葡萄糖酵解、脂肪酸氧化和氨基酸分解代谢等都参与 Treg 细胞功能调控。PPP是一条不产生ATP的葡萄糖分解代谢途径,由生成NADPH的氧化PPP和产生5-磷酸核糖的非氧化PPP组成。非氧化PPP包括4个代谢酶催化的5步可逆反应,可以通过改变代谢物流向来满足细胞的功能需求。非氧化PPP是否参与免疫细胞如Treg细胞的代谢与功能调控尚不清楚。转酮醇酶TKT是非氧化PPP中催化两步可逆反应的代谢酶。童雪梅团队已发现TKT在肝脏、脂肪和肠道中调控糖脂代谢平衡的重要作用(Li M et al, Cancer Research, 2019 Tian N et al, Diabetes, 2020 Tian N et al, Cell Death & Disease, 2021)。在本研究中,研究人员通过构建Treg细胞特异性敲除TKT的小鼠模型,深入探究非氧化PPP是否和如何调控Treg细胞代谢及功能。他们研究发现,Treg细胞特异性敲除TKT的小鼠出生3周后发生严重自身免疫性疾病,并且在断奶之后相继死亡,其表型与缺失Foxp3基因的小鼠相似。进一步研究发现,敲除TKT在不影响Treg数目和转录因子Foxp3 水平的情况下,阻断Treg细胞的免疫抑制功能。为了排除炎症反应的影响,研究者根据Foxp3基因位于X染色体和雌鼠X染色体选择性失活的特点,构建了在同一只鼠中既有TKT缺失又有TKT正常表达的Treg细胞嵌合小鼠模型。该小鼠Treg细胞的转录组和表观遗传组分析表明,TKT缺失导致Treg细胞中87.9%的差异表达基因被下调,染色质可及性降低。这些被下调的基因几乎全部为效应性Treg特征性基因,表明非氧化PPP对调控Treg细胞免疫抑制功能是必需的。研究者进一步发现,TKT缺失导致Treg 细胞NADPH 减少和氧化应激增加,葡萄糖进入线粒体氧化减少,脂肪酸氧化增加,氨基酸分解代谢显著增强,分解代谢重构使线粒体功能受损。同时,被氧化应激和线粒体损伤诱发的还原性TCA循环使α-酮戊二酸/琥珀酸及α-酮戊二酸/富马酸比率降低,DNA甲基化增加,抑制Treg细胞特征性功能基因表达,导致其免疫抑制性功能丧失。文章也发现非氧化PPP中的另外一个代谢酶——转醛醇酶(TAL),对维持效应性Treg特征性功能基因表达也不可或缺。此外,在自身免疫性病人外周血 Treg细胞中,TKT水平显著降低。综上所述,此研究首次揭示非氧化PPP对于调控Treg细胞中糖、脂和蛋白质分解代谢稳态、维持代谢物依赖的表观遗传修饰和功能基因表达有关键作用,即非氧化PPP可以通过整合三大营养物质代谢和表观遗传修饰控制Treg细胞功能。这项研究将为通过调控Treg功能防治自身免疫性疾病和其它免疫相关疾病提供新策略新手段。非氧化 PPP 通过整合代谢组和表观遗传组调控Treg细胞功能上海交通大学医学院博士生刘琪、阿拉巴马大学伯明翰分校博士生朱方明和上海市免疫学研究所博士生刘鑫男是该研究论文的共同第一作者。此项研究得到复旦大学生物医学研究院叶丹研究员、海军军医大学附属长征医院风湿免疫科徐沪济主任、上海交通大学附属仁济医院沈南主任、上海交通大学基础医学院徐天乐教授、清华大学药学院胡泽平研究员、阿拉巴马大学伯明翰分校胡晖教授等合作实验室的大力协助。通讯作者为童雪梅教授、李斌研究员和杨辉研究员。专家点评朱锦芳Jeff Zhu (Chief, Molecular and Cellular Immunoregulation Section, NIH)调节性T细胞(Tregs)在维持免疫耐受和免疫稳态中发挥关键作用,并且参与调节感染和癌症中的各种免疫反应。一方面,Treg功能的丧失通常与自身免疫和过度炎症有关;另一方面,肿瘤微环境中激活的Treg往往会抑制肿瘤免疫。因此,了解Treg的产生、激活及其获得抑制性功能的机制不仅将拓展基础免疫学认知,而且将为各种免疫相关疾病提供新颖有效的临床疗法。不同的代谢途径在控制Treg和效应性辅助型CD4+ T(Th)细胞的发育和分化中作用不同。经典观点认为,Tregs更倾向于脂肪酸氧化,而效应Th细胞主要利用葡萄糖作为能量来源。在本项工作中,童雪梅团队及其合作实验室共同发现,非氧化磷酸戊糖途径(非氧化PPP)在控制Treg细胞激活和抑制功能中起着关键作用。非氧化PPP是葡萄糖分解代谢的一个分支,它在Treg和效应性Th细胞中的功能尚不清楚。令人惊奇的是,在Treg中敲除非氧化性PPP中的重要酶—转酮醇酶(TKT),小鼠会产生致死性自身免疫病。Treg细胞特异性 TKT 缺失导致其失去免疫抑制功能,却不影响其发育和Foxp3蛋白表达。机制上,童雪梅及其合作团队发现TKT缺失诱导线粒体氧化应激和还原性TCA循环,导致α-酮戊二酸(α-KG)水平降低。α-KG作为重要的表观遗传辅助因子,能调控组蛋白和DNA去甲基化酶的功能。TKT缺失时,Treg中众多基因的DNA甲基化增加,染色质可及性下降。并且,α-KG补充能够改善由Treg特异性TKT 缺失引起的自身免疫反应。此外,在临床自身免疫性疾病患者外周血Treg中,TKT水平被下调。Treg获得抑制功能需要被激活,TKT缺失诱发的自身免疫反应是由活化Treg特征性基因表达减少所导致的。由于Treg细胞群体的异质性,单细胞分析可以为TKT如何调节Treg激活和表观修饰提供一个更清晰的解释。然而,该研究发现在大约1000个激活态Treg特征基因中,只有124个受到TKT缺失的影响,却诱发了显著的小鼠自身免疫病表型,表明这个小的基因群体包含对Treg功能至关重要的效应分子,例如IL-10和TIGIT等。因此,本项研究发现令人印象非常深刻。本项工作不仅促进我们全面认识Treg细胞激活和功能的机理,而且在未来治疗人类疾病方面具有潜在重要转化价值。原文和特评链接:https://www.nature.com/articles/s42255-022-00575-z,https://www.nature.com/articles/s42255-022-00574-0
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 瑞士帝肯和东胜创新向四川省公安厅捐赠DNA身份鉴别系统
    瑞士帝肯和东胜创新向四川省公安厅捐赠DNA身份鉴别系统,用于汶川大地震遇难者遗体身份识别,目前已投入使用摘要:通过利用DNA技术,识别汶川大地震遇难者遗体的身份,是灾后重建工作中的一项人文关怀工程。作为生命科学研究高端设备的制造商,瑞士帝肯集团公司和其中国合作伙伴&mdash 东胜创新生物科技有限公司,在大地震发生后,联合向四川省公安厅捐赠了价值两百多万元的DNA身份鉴别系统(其中包括Freedom EVO 150-8型全自动核酸抽提工作站一套,价值约200万元;配套试剂,价值约15万元;以及现金10万元),用于汶川大地震遇难者遗体身份识别工作。目前于四川成都举行了捐赠仪式。仪器已经投入运行,大地震遇难者遗体DNA身份识别工作正在紧张有序中进行。正文: 汶川特大地震造成了巨大的人民生命损失,死亡69197人,失踪18340人。通过利用DNA技术,识别汶川大地震遇难者遗体的身份,是灾后重建工作中一项重要的人文关怀工程。作为生命科学研究高端设备的制造商,瑞士帝肯集团公司和其中国合作伙伴&mdash 东胜创新生物科技有限公司,在大地震后,联合向四川省公安厅捐赠了价值两百多万元的DNA身份鉴别系统(其中包括价值约200万元的Freedom EVO 150-8型全自动工作站一套;价值约15万元的配套试剂;以及现金10万元),用于汶川大地震遇难者遗体DNA身份识别工作。8月28日,捐赠仪式在四川省公安厅举行。四川省公安厅领导向两家公司的无私奉献表示感谢,称赞其行为是对抗震救灾善后工作的雪中送炭。目前仪器已投入运行,大地震遇难者遗体DNA身份识别工作正在紧张有序中进行。瑞士帝肯集团中国区首席代表汪滔说:&ldquo 在这次人道主义救援中,我们一直希望利用自己的专业优势为中国人民做些什么。对一个失去挚爱亲人的家庭而言,对遇难者身份的确认应该能够给予他们很大程度上的心灵慰藉,我们对于自己的设备能够在中国地震灾区重建工作中贡献微薄力量而颇感欣慰。&rdquo 东胜创新总裁申跃华表示:&ldquo 东胜创新自成立以来,就将&ldquo 回报社会&rdquo 作为公司发展的责任。在这次大灾难中,能够利用自己的专业能力做些力所能及的事情帮助到灾区人民,感到非常欣慰。&rdquo Freedom EVO 全自动液体处理工作站具备可靠、精确和高通量的特点,尤其适用于法医领域用于身份鉴别。Freedom EVO操作简单易行,其实验流程和方案已经通过实验验证,随时可投入使用。TECAN的设备全部为开放式设计,支持所有的主流试剂并可根据实验室通量的要求而升级。根据法医学应用特点,特殊配置的Freedom EVO, 正如此次捐赠给中国四川灾区的全自动核酸抽提工作站, 已在世界上许多法医实验室配备,其中包括南非警察局、加拿大皇家骑警法庭科学实验室和一些地方和国家法医系统。此外,该设备还在911事件中为确认遇难者身份发挥了巨大作用。 关于瑞士帝肯(TECAN):瑞士帝肯(TECAN)集团公司是全球领先的自动化设备制造商。公司专业致力于研发、生产和销售生命科学仪器和提供自动化实验解决方案,成立于1980年, 总部设在瑞士Mä nnedorf,分别在瑞士、北美及奥地利共设有四个生产和研发基地。产品分为四大系列:药物研发、基因组学、蛋白质组学和临床诊断 。公司于1987年上市,目前销售服务网络遍布世界52个国家,用户遍布于全球各大科研机构、医疗机构(血站、医院)、公安系统和制药企业等生命科学领域。 了解更多信息请联系:瑞士帝肯集团公司北京代表处电话: +86 10 5869 5936邮件:info@tecan.com网站:www.tecan.com 关于东胜创新:东胜创新生物科技公司是一家专注于生命科学领域的渠道和服务商,成立于2002年,总部位于北京。东胜创新的使命是&ldquo 服务并推动生命科学产业发展&rdquo 。东胜创新的用户遍布科研、临床研究、疾控质检、公安血站等领域。东胜创新一直怀着&ldquo 扎根中国、回报社会&rdquo 的经营理念,在生命科学领域有着良好的声誉。 了解更多信息请联系:东胜创新公司张蔚鸰 品牌市场部经理电话:(010)51663168-6507手机:13922297225邮件:weiling_zhang@eastwin.com.cn网站:www.eastwin.com.cn http://eastwin.instrument.com.cn/
  • 磷酸化蛋白,液体活检全新维度——访北美华人质谱学会主席陶纬国教授
    p  span style="font-family: 楷体,楷体_GB2312, SimKai "回顾2017年,基于质谱的临床研究有一项突破性发现。普渡大学陶纬国教授团队在2017年3月20日的《美国国家科学院院刊》(PNAS)杂志上发表文章称,他们从人体血液中发现2400多种磷酸化蛋白。该发现首次证明了磷酸化蛋白可以作为基于液体活检的疾病标志物,能用于对癌症等重大疾病更早、更精准的非侵入性诊断,为 “液体活检”提供了全新的检测维度。近日,仪器信息网专访了陶纬国。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/a21a903c-0479-4776-9e2a-5b5c719f76fc.jpg"//pp style="text-align: center "strong普渡大学 陶纬国教授/strong/pp  span style="color: rgb(255, 0, 0) "strong磷酸化蛋白突破性发现/strong/span/pp  通过液体活检来诊断肿瘤和癌症等疾病一直是临床科学家关注的焦点,研究对象多集中在循环肿瘤细胞(CTC)和循环肿瘤DNA(ctDNA),但是二者都有局限性:由于CTC在血清中的浓度非常低,取少量血液对其检测难度很大 癌症有很多基因突变,而这些突变不一定会显现出来,因此基于ctDNA进行的液体活检的诊断结果只能预测患病的概率,并不能确诊。/pp  蛋白质磷酸化是调节和控制蛋白质活力和功能的最基本,最普遍,也是最重要的机制,同时,与许多疾病的发生密切相关。在众多肿瘤致病机理中,当前学术界对蛋白质磷酸化机理的研究最为清楚,80%-90%的癌症都跟蛋白质磷酸化有关。因此,许多抗肿瘤药物的研制都着眼于磷酸化蛋白。理论上,磷酸化蛋白作为相关基因突变的表达,在临床上能够帮助医生做出更明确的诊断。但是,有关基于液体活检的磷酸化蛋白研究还很少。此前,有个别报道在血液中发现几十种磷酸化蛋白,均是高丰度蛋白,生物学意义不大。“原因就是磷酸化蛋白一旦从细胞进入血液中就被肝脏分泌的磷酸酶水解了。”陶纬国解释说,“所以虽然磷酸化蛋白跟癌症关系非常密切,但人们无法对其进行检测。”/pp  陶纬国团队是如何从人体血液中检测到大量磷酸化蛋白的呢?这要从三年前的一篇文献报道说起,当时陶纬国从这篇文章中了解到外泌体和微囊的结构,“当我看到类似于纳米微粒的外泌体、微囊结构时,我认为可能会有磷酸化蛋白被包裹在外泌体中,然后进入血液。如果真是这样,被外泌体包裹的磷酸化蛋白可能会避免被血液中的磷酸酶水解。”于是陶纬国团队对血液中的外泌体、微囊进行了超速离心分离、提取,然后用质谱进行检测。一周以后,实验结果让所有人都惊呆了,他们从中发现了几千个磷酸化蛋白。这个突破性的发现使得临床科学家们今后可以在1毫升血浆里找到几千个磷酸化的位点,并从中筛选出不同疾病的生物标志物。之后,陶纬国团队对乳腺癌病人血清中的磷酸化蛋白做了研究,发现乳腺癌病人体内的磷酸化蛋白与其病症密切相关。/pp  那么,磷酸化蛋白液体活检何时能够应用临床呢?陶纬国回答说:“虽然现在还不好断言,但我认为3-5年内都有可能。”他进一步解释,随着质谱技术的显著提升,一些原来检测不到的生物标志物现在能够检测了,后面的工作主要是考察重复性有多好,假阳性有多低。/pp  谈及未来的工作,陶纬国表示,一方面会继续做乳腺癌的磷酸化蛋白生物标志物确认的工作 另一方面也会做其他疾病磷酸化蛋白生物标志物找筛的工作,“还有很多其它疾病,比如阿尔茨海默病、帕金森综合征等,也都是蛋白磷酸化有关。”/pp  span style="color: rgb(255, 0, 0) "strong质谱用于生物大分子检测的思考/strong/span/pp  陶纬国教授做蛋白组学研究至今已有十几年,用到的研究工具主要是质谱。在攻读博士期间,陶纬国师从普渡大学著名质谱专家Graham Cooks教授。博士毕业后,陶纬国加入了西雅图系统生物研究所,在Leroy Hood教授(自动DNA测序仪发明人)和Ruedi Aebersold教授(著名蛋白质组学专家)课题组继续博士后研究。从那时起,陶纬国就开始了他的磷酸化蛋白质组学检测的研究,“重回普渡教书以后,我的工作基本上是围绕着怎么去提高磷酸化蛋白分析手段来开展的。质谱在我的工作扮演着中心角色,包括方法开发,蛋白生物标志物早筛,全靠质谱来做。”首先是早筛,用质谱(Orbitrap)筛选出相关的生物标志物(磷酸化蛋白) 然后对病人的样本进行检测,用统计学的方法对检测结果进行分类 最后,分析统计学上有意义的、跟病人相关的磷酸化蛋白。/pp  在过去二三十年里,质谱在生物大分子检测方面有几个重要的技术突破。首先,80年代末90年代初, ESI和MALDI的出现,使质谱能够用于分析生物样品 第二,近十几年来,高分辨质谱的飞跃发展,大大提升生物大分子的分析效率。“我读博士后时(2002年),很多仪器还是低分辨的,生物样品还是挺难做的,做完一个磷酸化的蛋白,单是数据库检索就要三天,而且,相对来说,得到的数据假阳性高。现在的高分辨质谱解谱很容易,差不多半个小时就够了,假阳性也降低很多。”此外,陶纬国还说到,“UPLC与质谱的结合在技术上是很大的进步,使色谱的分离效率赶上了质谱的速度,现在一个小时能检测到几千个蛋白,非常快。”/pp  同时,陶纬国也指出了目前利用质谱来检测生物大分子的难点。第一,生物样品基体复杂。“像我们实验室做磷酸化蛋白,它本身丰度就很低,假如样本不经过任何分离的话,谱图上将会只能看到高丰度蛋白。”第二,质谱检测假阳性比较高。“其实还是需要统计学算法方面的开发,来解决假阳性率高的问题,这也是现在很多质谱开发者在做的工作。”/pp  现如今质谱产品更新迭代非常快,对于质谱工作者来说,是好,也是坏。“新产品的确扫描速度更快了,精度更高。但是,也给质谱工作者带来了不小的压力。特别是像我们这种使用高分辨大仪器的,没有那么多钱换来换去。可是如果你想要紧跟前沿,这些新仪器又十分必要。”陶纬国说,这是目前质谱工作者普遍面临的两难境地。/pp  span style="color: rgb(255, 0, 0) "strong整合临床大数据/strong/span/pp  2017年,陶纬国作为海外高层次人才被东南大学引进回国。谈及回国的初衷,陶纬国表示,国内拥有更多、更丰富的病人样本,这是他选择回国的原因之一。此外,国内对于高分辨质谱等大型仪器的投入力度也更大,有助于前沿研究的开展。谈到选择东南大学的原因,陶纬国说到:“东南大学的生物医学工程学院有转化医学,有生物,然后又有工程,包括产业化,比较适合我。”/pp  现在国内,整合医学大数据来服务大健康的概念很热,“在全国,包括南京,都已经有相关工作在开展”。从临床检测这个角度来说,陶纬国希望找到办法来整合DNA检测,microRNA检测,磷酸化蛋白检测几个维度的数据,从而获得更为精准的临床诊断结果。“比如检测一个肿瘤,通过对DNA、mRNA、磷酸化蛋白、糖基检测多维度数据的不断积累,数据会越来越多,结合人工智能、计算机算法,检测结果会越来越精准。 我回来能赶上这个机会也是不容易。”陶纬国如是说到。/pp  目前,医学大数据的采集方式主要为第二代、第三代测序。“但是,质谱也是很重要的一块儿。”陶纬国指出,“比如乳腺癌,基因突变仅仅代表一种患病的可能性,但是到底有没有癌症还是要通过蛋白检测来确定,所以用质谱来检测蛋白的存在、活性、功能,比基因层面更可靠。所以,质谱检测肯定会慢慢跟上来。”/pp  陶纬国在东南大学生物医学工程学院的新实验室是电子生物国家重点实验室。对于自己的工作重心,陶纬国表示,现在是过渡时期,未来会逐步将重心转至国内。“国内实验室刚刚开始,看起来前途光明。”/pp span style="color: rgb(255, 0, 0) "strong 热衷学界公益事务 出任CASMS主席/strong/span/pp  作为质谱生物大分子检测方面的专家,陶纬国于2017年6月份当选北美华人质谱学会(CASMS)主席。该学会汇聚了众多顶尖的华人质谱学者,已经成为质谱学界重要的华人力量。在一年一度的“美国质谱年会(ASMS)”期间举行“北美华人质谱学术会议”已经成为CASMS的传统。据陶纬国介绍,CASMS已有二三十年的历史,目前注册人数在800人左右,覆盖了北美地区绝大部分优秀的华人质谱学者。ASMS每年参会人数6000-7000人,相当一部分是华人,中国面孔越来越多。“在美国,有很多华人学者做了非常出色的工作,但他们并没有获得相匹配的影响力和威望。” 陶纬国说,“我们学会的宗旨就是提升华人质谱学者在世界质谱领域的影响力。当然, 中国本身的国际地位的重要性是显而易见的。”/pp  CASMS的另一个宗旨是促进世界华人质谱界的互相交流。每两年召开一次的“世界华人质谱学术研讨会”是全世界华人的质谱盛会,汇聚了中国内地、台湾、香港、新加坡和北美地区的质谱学者,CASMS是该会议4个主办方之一。2016年,CASMS主办了第六届“世界华人质谱学术研讨会”,这是该会议首次在美国召开,恰逢该会议召开十周年。“我认为非常有意义,促进了两岸三地华人质谱学者的交流合作。我的亲身体会是通过这个会议结识了很多优秀学者,而在此前很多同仁相互间是不认识的。”/pp  未来,除了重要的线下会议组织工作,陶纬国希望通过加强线上日常交流,来使学会内部联系更为紧密。/pp  span style="font-family: 楷体,楷体_GB2312, SimKai "strong后记:/strong临床质谱技术被认为是医学诊断的下一个“基因测序”,应用前景被普遍看好。质谱用于临床检验具有灵敏度高、特异性高、重现性好的优点,可在临床多个领域对传统诊断方法学进行替代。陶纬国教授团队的磷酸化蛋白研究进一步提升了临床质谱应用的含金量。基于该研究,临床科学家们将会找到更多可靠的疾病标志物,从而实现癌症等重大疾病的早期发现和精准诊断。/span/pp style="text-align: right "采访编辑:李博/p
  • 瑞士万通持续为人类健康事业献力献策
    2017年11月13-17日,第五届中国药典分析检测技术交流与研讨班如期在北京荣华天地酒店举行,来自中国药典委员会的张伟秘书长和各部药典的负责人就2020版药典的修订思路和进展做了报告。瑞士万通做为制药行业重要的分析仪器供应商也参与了此次会议,并针对制药行业用户普遍关注的问题做了报告。图为瑞士万通离子色谱产品经理做离子色谱在制药行业应用的报告图为瑞士万通卡氏水分仪产品经理做卡尔费休水分测定方法的报告图为瑞士万通光谱产品经理做近红外光谱仪和手持拉曼在制药行业应用的报告 报告受到学员的极大关注,在报告结束后,学员们纷纷来到瑞士万通展位就自己关心的问题与瑞士万通各产品经理进行详细的交流。瑞士万通离子色谱仪具有自动化程度高,智能化程度高,稳健耐用等特点,可搭配电导检测器、安培检测器和紫外检测器三款离子色谱常用检测器,满足各行各业对离子分析的需求。 在制药行业,瑞士万通离子色谱可用于双磷酸盐类药物、盐酸头孢吡肟、肝素钠、厄贝沙坦、硫酸依替米星、二氧化硫残留等检测,搭配的magictm软件具备审计追踪、分级权限、电子签名等功能,完全符合fda cfr part 11的要求,满足制药行业用户的应用需求。 940 系列谱峰思维tm离子色谱系统 940系列谱峰思维tm离子色谱的出现,标志着离子色谱新时代的到来。该系列离子色谱在保障最佳系统可靠性和最简便仪器可操作性的同时,还为客户提供最灵活的系统定制方案。它是迄今最灵活、可信、简便的离子色谱系统。仪器特点:一体式模块化设计的高性能离子色谱系统超强的样品适应性,可分析样品浓度范围覆盖ng/l~%智能化组件保障结果的可靠性全面兼容各种类型的检测系统:电导检测器,安培检测器和紫外/可见检测器全面兼容瑞士万通英蓝样品前处理技术magic net软件全程控制,符合glp和fda规范维护成本低,使用寿命长瑞士制造,瑞士品质抑制系统的客户定制940系列谱峰思维tm离子色谱可兼容化学-二氧化碳串联抑制系统、化学抑制系统和非抑制系统,客户可根据实验分析的具体需求选择合适的抑制系统。同时,瑞士万通可提供三种具有不同抑制容量的化学抑制器转子:《msm-hc》,《msm ii》和《msmlc》。而且只需选择合适型号的适配器,即可实现三种化学抑制器转子的任意替换。实验者可根据实际应用和所选择的色谱柱进行选择,以便达到最佳的分析结果。检测系统的客户定制940系列谱峰思维tm离子色谱完美兼容瑞士万通公司提供的所有检测系统——电导检测器、安培检测器和紫外/可见检测器。可针对分析检测的需要选择最佳的检测系统。同时,对于一些特殊的分析检测项目,该系列离子色谱在配置上述检测系统的同时,也可与ms和icp/ms等第三方检测系统进行联用。色谱动力系统的客户定制940系列谱峰思维tm离子色谱全面兼容各种色谱梯度动力系统。针对不同的分析检测需求,瑞士万通公司可提供高压梯度模块,低压梯度模块和dose-in梯度模块。根据实验分析的不同需求,瑞士万通公司可提供高达五元的梯度动力系统。无限的系统扩展性940系列谱峰思维tm离子色谱具有独特的一体式模块化设计。瑞士万通公司同时提供一系列外置功能模块—942系列扩展模块,为您的离子色谱系统提供近乎无限的系统扩展功能。而且只需不到一个小时的时间,即可完成阴离子分析系统和阳离子分析系统的互相切换。可自由选择的色谱柱940系列谱峰思维tm离子色谱全面兼容各种类型色谱分离柱。根据实验室分析检测项目的不同,可选择合适的色谱分离柱进行试验。瑞士万通公司可提供不同填料,不同选择性,不同容量,不同尺寸的色谱分离柱,满足实验室的分析需求。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 贝瑞和康新品:无创产前检测plus版问世
    p style="text-align: center "img width="450" height="381" title="114.png" style="width: 450px height: 381px " src="http://img1.17img.cn/17img/images/201602/noimg/19079d0a-2d12-4c95-bd2f-159550efbcc8.jpg" border="0" vspace="0" hspace="0"/  /pp  猴年伊始,准妈妈的福利升级了!无创产前检测(NIPT)迎来全新升级版——NIPT-plus,只需抽取孕妈妈一管外周血即可以检测胎儿多种遗传span style="color: rgb(255, 0, 0) "span id="_baidu_bookmark_start_4" style="line-height: 0px display: none "?/spanspan id="_baidu_bookmark_start_6" style="line-height: 0px display: none "?/spanspan id="_baidu_bookmark_start_6" style="line-height: 0px display: none "/span/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "疾病/span/aspan id="_baidu_bookmark_end_7" style="line-height: 0px display: none "?/spanspan id="_baidu_bookmark_end_5" style="line-height: 0px display: none "?/span。/pp  以往被准妈妈追捧的无创产前a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "检测/span/a可以准确判断三种重要遗传疾病:唐氏综合征、帕陶氏综合征、爱德华氏综合征。现在北京贝瑞和康生物技术有限公司(以下简称贝瑞和康)升级版的NIPT-plus可以一次筛查14种常见的染色体遗传病,对于那些极度关切优生优育的家庭来说无疑是新年最大的福利。/pp  常规的无创DNA产前检测(NIPT)能够无创伤、高精度的检测胎儿唐氏综合征、帕陶氏综合征、爱德华氏综合征,但这远远不能满足上千万孕妈妈对优生优育的需求。那些看似发生率较低的染色体微小变化往往不易在产检中被发现,但其综合发病率也不低。患儿常表现为严重的智力低下、身体畸形、寿命缩短、语言和运动障碍等。受制于传统方法的技术局限性,这类疾病的漏检常给家庭和社会带来难以承受之重,我们需要一种精确、简便、安全的方法发现这类患儿,最大程度的降低疾病给家庭带来的伤害。/pp  而NIPT-plus从2013年起,国际上知名的NIPT服务商Natera、Sequenom以及Illumina等公司,开始陆续推出针对染色体微缺失微重复(CNV)的检测服务,每年超百万人接受这项检测并从中受益。中国香港的雅士能基因科技有限公司(贝瑞和康与香港中文大学合作创立)也于2015年推出了类似检测项目,预计2016年将有25%的香港孕妇接受这一检测。而在2015年8月,国际权威的产前诊断组织——国际产前诊断协会,更是对于无创DNA产前检测的临床指导意见做出更新,明确指出可以针对研究清楚的染色体微缺失微重复综合征进行检测。/pp  中国的基因检测技术始终走在世界前列,孕妇外周血中存在胎儿DNA这一发现就来自于香港中文大学。继贝瑞和康与香港中文大学创立的雅士能基因科技有限公司在香港推出NIPT-plus项目后,2015年底,由夏家辉院士一手创立的湖南家辉遗传专科医院与贝瑞和康共同开发的NIPT-plus项目技术备案申请获得湖南省卫计委的批复。2016年1月,湖南省开始了为期一年的“健康宝宝特别行动试点”工作。在全国范围内率先试行针对胎儿NIPT-plus检测。作为NIPT行业内的领军企业,贝瑞和康拥有更先进更创新的无创产前检测技术,能为孕妈妈提供更全面的安心防护。/pp  NIPT-plus适用于所有要求优生优育的夫妻。在社会竞争压力不断加剧的情况下,高龄、高危产妇越来越多,二胎政策的放开进一步扩大了这个群体,准妈妈们越来越需要NIPT-plus这类先进的检测技术,有效辅助医生对胎儿的发育和疾病情况进行判断。我们也始终相信科技的不断进步将为人们带来更多福祉。/p
  • 贝瑞和康借壳后 天兴仪表却被亮“退市”黄灯
    天兴仪表重组贝瑞和康,股票连拉8个涨停  倘若不是因为贝瑞和康的“借壳上市”,很多人是不会知道远在四川从事汽车、摩托车仪表和车用零部件的企业天兴仪表(000710)的。  2016年8月,停牌两个半月的A股上市公司天兴仪表(SZ:000710)发布了《关于筹划重大资产重组的停牌进展暨召开股东大会审议继续停牌相关事项的公告》:重组拟出售的资产为“成都天兴仪表股份有限公司目前拥有的全部资产、负债、业务、人员等”,拟购买的资产为“北京贝瑞和康生物技术股份有限公司100%股权”。正是因为此公告,贝瑞和康点燃了下一代基因测序产业(NGS)第一股。  同年12月,天兴仪表披露贝瑞和康借壳上市重组草案,拟以21.14元/股,发行股份2.03亿股,作价43亿元购买贝瑞和康100%股权。交易完成后,出生于1980年的贝瑞和康董事长高扬将成为上市企业天兴仪表的控股股东及实际控制人。此外,公司承诺未来3年的净利润将超过9亿元(2017年度、2018年度、2019年度的净利润分别不低于22,840万元、30,920万元、40,450万),年化增长率达到31.4%。  而后,被贝瑞和康借壳的天兴仪表,受到资本市场热捧,连拉八个涨停版,股价从2016年12月19日的22.12元/股翻倍至12月28日的47.41元/股。根据《深圳证券交易所交易规则》规定:股票交易价格连续两个交易日内收盘价格涨幅偏离值累计超过20%属于股票交易异常波动情形,于12月29日起自查停牌。而后在2017年1月4日复牌后,公司股票再次收获2个涨停至57.37元/股。  对于“8个涨停板”现象,行业人士表示,这完全在预期内,一是贝瑞和康业绩很好,年增长连续在30%以上,是基因测序风口下非常好的标的 二是贝瑞和康为尽快上市大力压低了估值,少了一半,甚至三分之二,现在是合理的“补涨效应”。  据悉,登陆资本市场后,贝瑞和康的未来计划是围绕基因测序的全产业链布局完善产品线,覆盖出生缺陷三级预防体系,推进肿瘤分子检测与诊断领域的医学产品及服务。具体包括构建涵盖上游,例如研发与生产基因测序仪、试剂耗材,研发软件和构建基因数据库 中游中的遗传学、肿瘤学两个应用方向的基因检测项目 下游中面向基因测序应用机构及终端用户的整套产品及服务体系。  监管趋严,防火防盗防ST  随着测序概念的日益普及,精准医疗进“十三五”规划,基因检测被纳入正式监管,基因+健康管理等消费模式的探索,使得民众接受度持续提高,市场持续发酵升温。  在贝瑞和康的“借壳上市”刚刚点燃资本市场“做多”基因测序产业的热情之际,天兴仪表万万没有想到,它竟悄然遭遇了证监会的“退市”警告黄灯 。  2017年2月27日晚间,天兴仪表发布了《关于公司股票交易被实行退市风险警示暨停牌的公告》。公告特别提示:  1、公司股票于2017年2月28日停牌一天,并于2017年3月1日开市起复牌   2、公司股票自 2017年3月1日起被实行“退市风险警示”处理,股票简称由“天兴仪表”变更为“*ST天仪”   3、实行退市风险警示后公司股票交易的日涨跌幅限制为 5%。  值得一提的是,“退市风险警示”(ST股票)是中国A股市场中的一种制度。为保护投资者合法权益,降低市场风险,对存在股票终止上市风险的公司,对其股票交易实行“警示存在终止上市风险的特别处理”,简称“退市风险警示”。具体措施是在公司股票简称前冠以“*ST”标记,以区别于其它公司股票。  天兴仪表为何被亮“退市”黄灯?  据悉,根据《深圳证券交易所股票上市规则》(第13.2.1条)的相关规定:鉴于成都天兴仪表2015 年度、2016 年度连续两个会计年度经审计的净利润为负值,深圳证券交易所将对其股票交易实行“退市风险警示”。  实行“退市风险警示”后,股票种类仍为“人民币普通股 A 股” 股票简称由“天兴仪表”变更为“*ST 天仪” 股票代码仍为“000710” 股票价格的日涨跌幅限制为5%。如果公司 2017 年度经审计的净利润继续为负值,公司股票将被暂停上市。  *ST多久才可以“摘帽”?  撤销特别处理的股票代码前不再有ST标记,俗称“摘帽”。  一般情况下,如果上市公司最近年度财务状况恢复正常、审计结果表明财务状况异常的情况已消除,公司运转正常,公司净利润扣除非经常性损益后仍为正值,公司可向交易所申请撤销特别处理。  对于此次被亮“退市”黄灯事件,公司董事会表示正在积极采取通过产品结构调整、加强管理改善现有车用零部件业务的业绩亏损现状、积极开展并购重组,实现公司战略转型,从根本上改善公司的经营状况,提升公司资产质量,增强公司持续盈利能力等措施,力争尽快消除退市风险。  如前文所述,目前天兴仪表正处于重大资产重组进程中且已获得中国证券监督管理委员会的受理。若交易成功完成,前者现有资产、负债及业务等将全部被剥离,转而持有贝瑞和康100%的股权。  众所周知,贝瑞和康具有较强的盈利能力,因此,若重组成功上市公司的盈利能力将显著增强。天兴仪表也有望尽快“摘帽”。  冉冉升起的基因产业,需要资本市场的支持  随着测序的的日益普及,个人基因组时代有望来临,大大小小的基因检测公司如同雨后春笋,由原本的无序状态逐渐形成了冉冉升起的基因产业。  除了贝瑞和康的借壳上市,近日又有媒体抛出重磅:华大最早也将于2017年3月于沪市上市 中源协和也宣布将其在美国全资子公司OriGene Technologies, Inc.的基因及医学诊断试剂等业务纳入到上市公司 这或使得资本市场迎来基因概念股的齐飞。  对于一些看好基因行业的人士而言,他们对天兴仪表被ST持积极态度,认为这好比给公司戴上了安全帽,为其“抄底”带来机会。  一位行业资深人士在接受采访时表示:国家应该给予基因产业更多包容和信任,新兴产业没有政府的支持是不能壮大的,中国弯道超车需要破立。为此,我们也期待基因产业早日腾飞。
  • 瑞士万通持续为人类健康事业献力献策
    2017年11月13-17日,第五届中国药典分析检测技术交流与研讨班如期在北京荣华天地酒店举行,来自中国药典委员会的张伟秘书长和各部药典的负责人就2020版药典的修订思路和进展做了报告。瑞士万通做为制药行业重要的分析仪器供应商也参与了此次会议,并针对制药行业用户普遍关注的问题做了报告。图为瑞士万通离子色谱产品经理做离子色谱在制药行业应用的报告图为瑞士万通卡氏水分仪产品经理做卡尔费休水分测定方法的报告图为瑞士万通光谱产品经理做近红外光谱仪和手持拉曼在制药行业应用的报告报告受到学员的极大关注,在报告结束后,学员们纷纷来到瑞士万通展位就自己关心的问题与瑞士万通各产品经理进行详细的交流。 瑞士万通离子色谱仪具有自动化程度高,智能化程度高,稳健耐用等特点,可搭配电导检测器、安培检测器和紫外检测器三款离子色谱常用检测器,满足各行各业对离子分析的需求。在制药行业,瑞士万通离子色谱可用于双磷酸盐类药物、盐酸头孢吡肟、肝素钠、厄贝沙坦、硫酸依替米星、二氧化硫残留等检测,搭配的magictm软件具备审计追踪、分级权限、电子签名等功能,完全符合fda cfr part 11的要求,满足制药行业用户的应用需求。 940 系列谱峰思维tm离子色谱系统940 professional ic vario——可定制的模块化离子色谱系统940系列谱峰思维tm离子色谱的出现,标志着离子色谱新时代的到来。该系列离子色谱在保障最佳系统可靠性和最简便仪器可操作性的同时,还为客户提供最灵活的系统定制方案。它是迄今最灵活、可信、简便的离子色谱系统。仪器特点:? 一体式模块化设计的高性能离子色谱系统? 超强的样品适应性,可分析样品浓度范围覆盖ng/l~%? 智能化组件保障结果的可靠性? 全面兼容各种类型的检测系统:电导检测器,安培检测器和紫外/可见检测器? 全面兼容瑞士万通英蓝样品前处理技术? magic net软件全程控制,符合glp和fda规范? 维护成本低,使用寿命长? 瑞士制造,瑞士品质940系列谱峰思维tm离子色谱——灵活的客户定制服务抑制系统的客户定制940系列谱峰思维tm离子色谱可兼容化学-二氧化碳串联抑制系统、化学抑制系统和非抑制系统,客户可根据实验分析的具体需求选择合适的抑制系统。同时,瑞士万通可提供三种具有不同抑制容量的化学抑制器转子:《msm-hc》,《msm ii》和《msmlc》。而且只需选择合适型号的适配器,即可实现三种化学抑制器转子的任意替换。实验者可根据实际应用和所选择的色谱柱进行选择,以便达到最佳的分析结果。检测系统的客户定制940系列谱峰思维tm离子色谱完美兼容瑞士万通公司提供的所有检测系统——电导检测器、安培检测器和紫外/可见检测器。可针对分析检测的需要选择最佳的检测系统。同时,对于一些特殊的分析检测项目,该系列离子色谱在配置上述检测系统的同时,也可与ms和icp/ms等第三方检测系统进行联用。色谱动力系统的客户定制940系列谱峰思维tm离子色谱全面兼容各种色谱梯度动力系统。针对不同的分析检测需求,瑞士万通公司可提供高压梯度模块,低压梯度模块和dose-in梯度模块。根据实验分析的不同需求,瑞士万通公司可提供高达五元的梯度动力系统。无限的系统扩展性940系列谱峰思维tm离子色谱具有独特的一体式模块化设计。瑞士万通公司同时提供一系列外置功能模块—942系列扩展模块,为您的离子色谱系统提供近乎无限的系统扩展功能。而且只需不到一个小时的时间,即可完成阴离子分析系统和阳离子分析系统的互相切换。可自由选择的色谱柱940系列谱峰思维tm离子色谱全面兼容各种类型色谱分离柱。根据实验室分析检测项目的不同,可选择合适的色谱分离柱进行试验。瑞士万通公司可提供不同填料,不同选择性,不同容量,不同尺寸的色谱分离柱,满足实验室的分析需求。模拟搭建离子色谱:打造实验室专属的离子色谱系统!只需点击鼠标,即可模拟搭建最佳的离子色谱系统。赶快行动吧!
  • CNAS公布2011年度第二批能力验证计划
    关于公布CNAs2011年度第二批能力验证计划的通知  各有关单位:  中国合格评定国家认可委员会(CNAS)2011年度第二批能力验证计划已制定完成,现予以公布,请各有关单位按照CNAS能力验证规则的要求参加。  有关本批能力验证计划的详细信息,请查阅附件1“CNAS 2011年度第二批能力验证计划目录”。从本通知发布之日起,欲参加本批次能力验证计划的实验室可以直接向相关计划的实施机构报名参加,不必把报名信息发送到CNAS。  CNAS-RL02《能力验证规则》规定,只要存在可获得的能力验证活动,实验室和检查机构在获得认可之前每个子领域应至少参加过一次能力验证活动 在获得认可之后,其获得认可的领域的每一个子领域至少在每个认可周期内参加一次能力验证活动。当不同认可领域有特定要求时,执行特定要求(子领域和频次特定要求见CNAS-AL07《CNAS能力验证领域和频次表》,可从CNAS网站“能力验证专栏”下载。)。  CNAS要求申请认可和获准认可的实验室和检查机构必须通过参加能力验证活动证明其技术能力。只有在能力验证活动中表现满意,或对于不满意结果能证明已开展了有效纠正措施的实验室和检查机构,CNAS方予受理或认可 对于未按规定的频次和领域参加能力验证的获准认可实验室和检查机构,CNAS将采取警告、暂停、撤销资格等处理措施。因此,请各单位选择应参加的能力验证计划,以确保能够满足CNAS的要求。  CNAS要求参加单位独立完成能力验证计划项目,凡发现有作弊行为者将直接撤销其认可资质。当参加单位出现不满意结果时,CNAS将要求其自行开展纠正措施,具体要求见CNAS-RL02《能力验证规则》 对于结果不满意的非认可项目,CNAS将建议其调查原因并加以改进。  CNAS还将根据工作需要,陆续在网站上发布能力验证计划,请各单位继续予以关注。  不详之处,请与CNAS能力验证处联系。联系信息如下:  通讯地址:北京市崇文区南花市大街8号304室  邮编:100062  电话/传真: 010-67105292、67105289  E—Mail∶ pt@cnas.org.cn  联系人:韩春旭、王腊梅附件:1、附件1:CNAS 2011年度第二批能力验证计划目录.doc2、附件2:能力验证计划报名表.doc    CNAS 2011年度第二批能力验证计划目录计划编号计划名称测试/测量项目可能涉及的测试/测量方法实施时间实施机构及联络信息预计费用CNAS T0611高效液相色谱法测定药品中卡托普利和氢氯噻嗪含量高效液相色谱法测定药品中卡托普利和氢氯噻嗪的含量《中国药典》2010年版二部附录ⅤD 高效液相色谱法报名截止日期:2011年6月20日具体实施时间:2011.6-2011.12上海市食品药品检验所联系人:杨美成电话:021-50798211传真:021-50790956通讯地址:上海市张衡路1500号邮编:201203Email:yangmeicheng@vip.sina.com 800元CNAS T0612滴定法测定药品中氯化钠含量滴定法测定药品中氯化钠含量《中国药典》2010年版二部 氧氟沙星氯化钠注射液报名截止日期:2011年6月20日具体实施时间:2011.6-2011.8北京市药品检验所联系人:周荔、苏芳电话/传真:010-83228397通讯地址:北京市西城区新街口水车胡同13号邮编:100035Email:zb@bidc.org.cn600元CNAS T0613紫外分光光度法测定阿苯达唑片含量紫外分光光度法测定阿苯达唑片的含量《中国药典》2010年版二部 阿苯达唑片报名截止日期:2011年7月22日具体实施时间:2011.7-2011.11浙江省食品药品检验所联系人:张敏波、陈龙珠电话/传真:0571-86468480通讯地址:杭州市机场路一巷86号邮编:310004Email:zgk@zjyj.org.cn800元CNAS T0614土壤中有机氯农药含量的测定a-BHC、b-BHC、g-BHC、d-BHC、p,p’-DDE、o,p’-DDT、p,p’-DDD、p,p’-DDTGB/T 14550-2003《土壤中六六六和滴滴涕测定的气相色谱法》、《水和废水监测分析方法(第四版)》或其他相关等效方法。报名截止日期:2011年8月16日具体实施时间:2011.8-2011.12环境保护部标准样品研究所联系人:马小爽、房丽萍电话/传真:010-84665741、84665740通讯地址:北京市朝阳区育慧南路一号8信箱邮编:100029Email:ma.xiaoshuang@ierm.com.cn fang.liping@ierm.com.cn 2400元CNAS T0615葡萄酒中总糖、柠檬酸和环己基氨基磺酸钠(甜蜜素)含量的测定总糖、柠檬酸、环己基氨基磺酸钠(甜蜜素)①GB 15037-2006《葡萄酒》②GB 2758-2005《发酵酒卫生标准》③GB/T15038-2006《葡萄酒、果酒通用分析方法》④GB/T 5009.97-2003《食品中环己基氨基磺酸钠的测定》报名截止日期:2011年6月30日具体实施时间:2011.7-2011.9沈阳产品质量监督检验院联系人:王冬妍电话/传真:024-25897449/024-25893246通讯地址:沈阳市铁西区滑翔路26号邮编:110022Email:wangdongyan2000@126.com 400元/项,700元/2项,900元/3项CNAS T0616茶叶中溴氰菊酯、甲基毒死蜱、甲氰菊酯、硫丹农药残留量的测定溴氰菊酯、甲基毒死蜱、甲氰菊酯、硫丹GB/T 23204-2008《茶叶中519种农药及相关化学品残留量的测定 气相色谱-质谱法》GB/T 23205-2008《茶叶中418种农药及相关化学品残留量的测定 液相色谱-质谱法》GB/T 23376-2009《茶叶中农药多残留测定 气相色谱-质谱法》SN/T 1117-2002《进出口茶叶中多种菊酯类农药残留量检验方法》SN/T 1873-2007《进出口食品中硫丹残留量的检测方法 气相色谱-质谱法》SN/T 2324-2009《进出口食品中抑草磷、毒死蜱、甲基毒死蜱等33种有机磷农药的残留量检测方法》报名截止日期:2011年6月24日具体实施时间:2011.6-2011.9中国测试技术研究院联系人:史谢飞 张云嫦电话/传真:028-84403151 84404995通讯地址:成都市玉双路10号邮编:610021Email:shi05xiefei@126.com800元CNAS T0617猪肉中磺胺类药物残留量的测定磺胺间甲氧嘧啶、磺胺二甲嘧啶、磺胺甲噁唑、磺胺二甲氧嘧啶①GB/T 20759-2006《畜禽肉中十六种磺胺类药物残留量的测定 液相色谱-串联质谱法》②农业部1025号公告-23-2008 动物性食品中磺胺类药物的多残留检测 液相色谱-串联质谱法报名截止日期:2011年6月18日具体实施时间:2011.8-2011.10中国兽医药品监察所联系人:孙雷、毕言锋电话/传真:010-62103654/62103659通讯地址:北京市中关村南大街8号邮编:100081Email:sunlei@ivdc.gov.cn, biyanfeng@ivdc.gov.cn1000元CNAS T0618磷酸一铵中总氮、有效磷含量的测定总氮、有效磷①产品标准:GB 10205-2009《磷酸一铵、磷酸二铵》②方法标准:总氮采用GB/T 10209.1-2008《磷酸一铵、磷酸二铵的测定方法 第1部分:总氮含量》;有效磷采用GB/T 10209.2-2010《磷酸一铵、磷酸二铵的测定方法:第2部分:磷含量》。报名截止日期:2011年7月20日具体实施时间:2011.7-2011.12中国农业科学院农业资源与农业区划研究所土壤肥料测试中心(国家化肥质量监督检验中心(北京))联系人:刘红芳、孙蓟锋电话/传真:010-82108670,82106196-603/610通讯地址:北京市海淀区中关村南大街12号邮编:100081Email:hfliu@caas.ac.cn 800元CNAS T0619牙膏中总氟含量的测定总氟GB 8372-2008 5.9《总氟含量的测定》报名截止日期:2011年7月15日具体实施时间:2011.7-2011.11江苏省产品质量监督检验研究院(国家化妆品质量监督检验中心)联系人:王莉、杨洋电话/传真:025-84470311通讯地址:南京市光华东街5号邮编:210007Email:guojiahzp@163.com 750元CNAS T0620聚氯乙烯(PVC)中铅、汞、镉、铬含量的测定铅、汞、镉、铬①SJ/T 11365-2006 电子信息产品中有毒有害物质的检测方法②《电子电气产品六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定》(GB/T26125)③IEC TC111/54/CDV(62321)报名截止日期:2011年7月31日具体实施时间:2011.8-2011.12中国计量科学研究院化学计量与分析科学研究所联系人:高丽媛,冯流星,汪斌电话:010-64228404传真:010-64228404通讯地址:北京市朝阳区北三环东路18号中国计量科学研究院化学所邮编:100013E-Mail:gaoly@nim.ac.cn 1000元CNAS T0621原油中钒含量的测定钒1、 ①GB/T 18608-2001《原油中铁、镍、钠、钒含量的测定 原子吸收光谱法》②SH/T 0715-2002《原油和残渣燃料油中镍、钒、铁含量测定法(电感耦合等离子体发射光谱法)》③IP 501/05《用灰化熔融-电感耦合等离子体发射光谱法测定残渣燃料油中铝、硅、钒、镍、铁、钠、钙、锌、磷的含量》④ISO 14597:1997《石油产品 钒和镍含量的测定 波长色散X-射线荧光光谱法》报名截止日期:2011年7月30日具体实施时间:2011.8-2011.10宁波出入境检验检疫局技术中心联系人:邬蓓蕾、王豪电话/传真:0574-87022678/87116346通讯地址:宁波市马园路9号邮编:315012Email:wubl@nbciq.gov.cn 650元CNAS T0622烟用醋酸纤维滤棒物理指标分析长度、圆周、质量、压降、硬度GB/T 22838.2-2009 《卷烟和滤棒物理性能的测定 第2部分 长度 光电法》;GB/T 22838.3-2009 《卷烟和滤棒物理性能的测定 第3部分 圆周 激光法》;GB/T 22838.4-2009《卷烟和滤棒物理性能的测定 第4部分 卷烟质量》;GB/T 22838.5-2009 《卷烟和滤棒物理性能的测定 第5部分 卷烟吸阻和滤棒压降》;GB/T 22838.6-2009《卷烟和滤棒物理性能的测定 第6部分 硬度》报名截止日期:2011年10月31日具体实施时间:2011.11-2012.6中国烟草总公司郑州烟草研究院(国家烟草质量监督检验中心)联系人:禹舰电话/传真:0371-67672611/0371-67672625通讯地址:河南省郑州市国家高新技术产业开发区枫杨街2号 邮编:450001 E-mail: yujian3578@126.com3000元CNAS T0623烟用香精相对密度、折光指数YC/T145.2─1998《烟用香精 相对密度的测定》YC/T145.3─1998《烟用香精 折光指数的测定》报名截止日期:2011年10月31日具体实施时间:2011.11-2012.6中国烟草总公司郑州烟草研究院(国家烟草质量监督检验中心)联系人:禹舰电话/传真:0371-67672611/0371-67672625通讯地址:河南省郑州市国家高新技术产业开发区枫杨街2号 邮编:450001 E-mail: yujian3578@126.com3000元CNAS T0624卷烟烟气分析焦油、烟碱、一氧化碳ISISO4387-2000《卷烟 用常规分析用吸烟机测定总粒相物和焦油》YC/T30─1996《卷烟 烟气气相中一氧化碳的测定 非散射红外法》YC/T156─2001《卷烟烟气总粒相物中水分的测定——气相色谱法》YC/T157─2001《卷烟烟气总粒相物中烟碱的测定——气相色谱法》报名截止日期:2011年10月31日具体实施时间:2011.11-2012.6中国烟草总公司郑州烟草研究院(国家烟草质量监督检验中心)联系人:禹舰电话/传真:0371-67672611/0371-67672625通讯地址:河南省郑州市国家高新技术产业开发区枫杨街2号 邮编:450001 E-mail: yujian3578@126.com3000元CNAS T0625液体化工产品的密度、折光率和水分的测定密度、折光率、水分1、密度:①GB/T 4472-1984《化工产品密度、相对密度测定通则》②GB/T 22230-2008《工业用液态化学品20℃时的密度测定》2、折光率:①GB/T 6488-2008《液体化工产品折光率的测定(20℃)》②GB/T 614-2006《化学试剂折光率测定通用方法》;3、水分:①GB/T 6283-2008《化工产品中水分含量的测定卡尔费休法(通用方法)②GB/T 606-2003《化学试剂水分测定通用方法 卡尔费休法》报名截止日期:2011年7月31日,具体实施时间:2011.8-2012.1山东非金属材料研究所联系人:刘新,魏振涛电话/传真:0531-85878056,85878106/85062524通讯地址:山东省济南市天桥区田家庄东路3号邮编:250031Email:liuxin830220@163.com/cnaspt0017@126.com900元CNAS T0626LCD显示器能源效率和关闭状态能耗测试显示器能源效率、关闭状态能耗GB21520-2008《计算机显示器能效限定值及能效等级》报名截止日期:2011年7月18日,具体实施时间:2011.7-2012.3浙江科正电子信息产品检验有限公司(国家电子计算机外部设备质量监督检验中心)联系人:陈益云、蔡方明电话/传真:0571-88366801/88366821通讯地址:杭州市马塍路36号邮编:310012Email:cyy@chinacptc.net 1800元CNAS T0627电器产品噪声测试声功率级①GB/T4214.1-2000《声学 家用电器及类似用途器具噪声 测试方法 第一部分 通用要求》②GB/T 4214.2—2008《家用和类似用途电器噪声测试方法 真空吸尘器的特殊要求》③GB/T 4214.3—2008《家用和类似用途电器噪声测试方法 洗碗机的特殊要求》④GB/T 4214.4—2008《家用和类似用途电器噪声测试方法 洗衣机和离心式脱水机的特殊要求》 ⑤GB/T 4214.5—2008《家用和类似用途电器噪声测试方法 电动剃须刀的特殊要求》⑥GB/T 4214.6—2008《家用和类似用途电器噪声测试方法 毛发护理器具的特殊要求》 ⑦QC/T 70-1993《摩托车发动机噪声限值及测量方法》⑧GBT 1859-2000《往复式内燃机 辐射的空气噪声》⑨JB/T 4330-1999《制冷和空调设备噪声的测定》⑩GB/T 9098-2008《电冰箱用全封闭型电动机 压缩机》11GB/T 4980—2003《容积式压缩机噪声的测定》12GB/T 10069.1-2006《旋转电机噪声测定方法及限值 第1部分:旋转电机噪声测定方法》13GB 13380-2007《交流电风扇和调速器》14GB/T 2888—2008 《风机和罗茨鼓风机噪声测量方法》15GB/T 18313-2001 《声学 信息技术设备和通信设备空气噪声的测量》 16GB/T 4583—2007 《电动工具噪声测量方法工程法》 17GB/T 5390—2008 《林业机械便携式动力机械噪声测定规范工程法(2级精度)》18GB/T 5898—2008 《手持式非电类动力工具噪声测量方法 工程法(2级)》报名截止日期:2011年8月31日,具体实施时间:2011.9-2012.5中国家用电器研究院联系人:谢莹、宫赤霄电话/传真:010-63162443通讯地址:北京市宣武区下斜街29号邮编:100053Email:xiey@cheari.com相关文件下载地址:http//www.btihea.com3000元详情请见:http://www.cnas.org.cn/col823/index.htm1?colid=823
  • 水质分析仪器--在线磷酸根分析仪器 新品上市
    水是人类生存之源:工厂停水,生产不能进行;家庭缺少水源,生活处处受到限制;土地干旱,更体现了水的重要性。总之,离开了水,人类的生活会受到限制,但是随着工业水平提高,工厂废水以及日常生活污水等等不同程度的排放,使我国的江,河,湖,海等受到不同程度的污染,要想进行水质的治理,必须要掌握水中各参数的情况。水质监测是指对水中的化学物质,悬浮物,底泥和水生态系统进行统一的定时或不定时的检测工作。水质检测在维护水环境健康方面具有重要作用。古语有句话叫:工欲善其事,必先利其器。同理我们想治理好水质,就必须先检测出水中各参数的含量,如果想达到更好的效果,还需在线实时检测,这样才能保障治理出来的水质达标。我们得利特打造精品工程,专注水质检测技术。最近技术部最近研发了在线磷酸根分析仪。B2050在线磷酸根分析仪是在消化吸收国外技术、总结多年国内实践经验的基础上推出的新一代在线磷表,是的电子技术和可靠磷酸盐分析方法的完美结合。可以广泛地应用于火力发电厂、化工等部门,及时、准确地对水中的磷酸盐含量进行监测,保证机组安全、经济运行,尤其适合国内现场环境。下面是产品的具体介绍:技术参数测量范围: (0~5)mg/L或(0~20)mg/L或(0~50)mg/L(根据定货时的指定)仪器示值误差: ±2%F.S重 复 性:不大于1%测量周期:可编程设置1-99分钟,最短5分钟稳 定 性: 基线漂移:使用空白校准,空白漂移无影响。化学漂移:±1%F.S/24h(视试剂稳定性而异)样品条件: 流量:(150~300)mL/min温度:(5~50)℃压力:14 KPa水样允许固体成分:不大于5微米(不允许有胶状物出现)环境温度: (5~45)℃环境湿度: 不大于90%RH(无冷凝)试剂种类:1种试剂消耗:最多9升/30天(5分钟采样一次),测量周期越长试剂消耗越少。显 示:320×240点阵液晶,中文菜单隔离输出:(4~20)mA(隔离输出,每个通道一个)电 源:交流(85~265)V、频率(45~65)Hz功 率:60W外形尺寸:690×450×300(mm)高×长×深开孔尺寸:645mm×410mm重 量:22kg报 警:断样报警、上限报警、下限报警(各通道独立输出)报 警:断样报警、上限报警产品升级特点:1、先进的嵌入式单片机技术2、精巧结构、盘式安装、全铝框箱体,美观坚固、抗干扰能力强3、大屏幕点阵液晶,显示内容直观、丰富;4、可编程实现1~6通道切换5、可编程修改通道测量周期,有效节省试剂;6、抛弃蠕动泵和精密计量泵,采用恒压式加药原理,结构简单、计量精度高、免维护7、具有温度测量功能,可以根据温度进行测量数据补偿8、采用**光源和光电池,寿命长、漂移小、稳定、可靠9、具体黑匣子功能,可查询历史数据、运行记录、校准记录10、宽电压(85~265VAC)、宽频率(45~65 Hz),能够适应多条件需求
  • 浅谈广谱抗病毒药物研发的普适性策略(二)
    上一期,主要介绍了抗病毒药物研究的共同靶标相关内容,本文将继续从抗病毒药物研究的共性环节、 抗病毒药物研究的通用策略方面进行阐述与探讨。2 抗病毒药物研究的共性环节2.1 靶向病毒膜融合过程 在包膜病毒的复制周期中,需要病毒和细胞膜融合才能进入细胞。病毒通过受体识别以及膜融合或内吞等步骤进入靶细胞是首要环节。 在该过程中, 介导病毒与细胞受体识别的病毒表面蛋白(surface protein,SP)的 受体结合亚基、介导膜融合的病毒 SP 跨膜亚基、细胞上的受体、切割 SP 所需 的宿主细胞蛋白酶等均是常见的抗病毒靶点[30]。CoV 是 I 型包膜病毒,位于包膜表面的 S 蛋白介导病毒入侵宿主细胞过程,包括受体结合及膜融合等步骤。在膜融合的过程中,形成六螺旋束(six-helix bundle,6-HB)是一个非常保守且关键的机制。目前发现感染人的冠状病毒(HCoV) 中,其 HR1 (heptad repeat- 1)三聚体与 HR2 (heptad repeat-2)作用的表面氨基 酸大都为保守的疏水性氨基酸,因此 HR1 是 CoV S 蛋白上非常保守的药物靶点[30]。2018 年,姜世勃与刘克良团队发现靶向病毒融合蛋白的α-螺旋脂肽具有广 谱抗 MERS-CoV(EC50 = 0.11 μmol L-1 ,CC50 100 μmol L- 1 )及甲型流感病 毒(influenza A virus,IAV)活性(H1N1 EC50 = 1.73 μmol L- 1,CC50 100 μmol L-1)[31] 。近日,复旦大学姜世勃/陆路团队与上海科技大学杨贝/Wilson 团队合作, 通过系统地筛选与结构修饰,发现了能够广谱抑制多种 HCoV 感染的多肽类融 合抑制剂 EK1 及脂肽 EK1C4,并揭示了其作用靶点与分子机制[32,33] 。该研究同时证明了 CoV 刺突蛋白的 HR1 区域是一个重要且保守的药物靶点, 为后续广谱抗 HCoVs 药物研发提供了思路。2.2 核酸复制 病毒进入靶细胞后, 病毒基因组 DNA/RNA 被释放到细胞中, 作 为模板指导病毒蛋白的合成。 RNA 病毒的基因组复制需要 RNA 依赖的 RNA 或 DNA 聚合酶(RNA-dependent RNA polymerase ,RdRp ;RNA-dependent DNA polymerase,RdDp),这类酶在人体中不存在且相对保守,成为抗病毒药物研发 的重要靶点。不同病毒聚合酶的结构和功能有许多相似之处,因此针对某一种病 毒聚合酶设计的抑制剂往往对其他病毒也有较好的抑制作用[34,35]。自从 1962 年世界第一个抗病毒药物碘苷被批准上市以来,全球已有众多抗病毒核苷类似物药物获批上市。 在病毒疫情暴发时, 核苷类药物往往成为人们的首选。 早在 2014 年西非暴发的大规模 EBOV 疫情中,部分核苷类似物药物在临床阶段均表现出一定的抗病毒活性——例如日本富山化学的新型抗流感药物法匹拉韦(favipiravir)以及瑞德西韦(remdesivir,图 3),特别是瑞德西韦目前已经完成 EBOV 的试验药物 III 期临床试验。随着研究的深入, 瑞德西韦被发现具有广谱抗病毒活性, 涵盖丝状病毒科病毒(EBOV 和马尔堡病毒等) 、沙粒病毒科病毒(拉沙病毒和胡宁病毒等)、 CoV 科病毒(SARS 、MERS 和猫科冠状病 毒等)和黄病毒科病毒(ZIKV 等) 等,因此也成为了治疗 SARS-CoV-2 的首个 小分子药物[36]。阿兹夫定(azvudine ,FNC,图 3)具有抑制 HIV 、丙型肝炎病毒(hepatitis C virus ,HCV)、肠道病毒 71 型等 RNA 病毒复制的功能,2021 年 7 月, 已在 中国上市用于治疗高病毒载量的成年 HIV- 1 感染者。此外, 阿兹夫定在新冠肺炎 临床研究中也取得显著效果[37]。瑞德西韦进入临床研究后,其抗病毒效果与预期有一定差距,原因可能是: 疾病的病程及动物模型与人体药动学差异、药物之间的相互作用和个体差异。 此 外, CoV 特有的“复制矫正”(proofreading)机制,即将掺入 RNA 产物链的核 苷药物“剔除”,进而逃逸核苷类抗病毒药物的抑制, 可能是此类抗病毒药物效 果不佳的一个重要原因[38]。近日,美国乔治亚州立大学的研究人员报道了一种抑制呼吸道合胞病毒 (respiratory syncytial virus,RSV)、相关 RNA 病毒和 SARS-CoV-2 的广谱抗病 毒核苷分子——4' -氟尿啶(4' -FlU,EIDD-2749,图3),它在细胞和分化良好的 人气道上皮中具有高选择性指数。RSV 和 SARS-CoV-2 体外 RdRp 聚合酶抑制显 示掺入后 i 或 i+3/4 位出现转录暂停。每日一次的口服治疗对 RSV 感染的小鼠或SARS-CoV-2 感染的雪貂非常有效[39]。EIDD- 1931(即NHC,图3),是一种核苷酸类似物。 NHC 上的肟形式模仿 尿苷, 与腺苷匹配, 而另一个互变异构体模仿胞苷, 与鸟苷匹配。它的原理是通 过给病毒 RNA 引入大量的突变,“瘫痪”病毒的基因组,进而导致遗传信 息大量错误使病毒无法存活[40-45]。目前仅有 NHC 及其衍生物能够躲避病毒复制 矫正机制的干扰。 在体外模型中,NHC 对 RSV、流感病毒、CHIKF、EBOV、委内瑞拉马脑炎病毒、东部马脑炎病毒、MERS-CoV、SARS-CoV 以及 SARS-CoV- 2(多数变异毒株)等具有广谱抗病毒活性,无明显细胞毒性[46-48];但在食蟹猕 猴中口服生物利用度较差。 EIDD-2801(molnupiravir,图 3)是 NHC 的异丙 酯前体药物,旨在改善 NHC 体内药代动力学以及在人类和非人类灵长类动物的 口服生物利用度。Molnupiravir 在雪貂和非人类灵长类动物中具有较好的口服 生物利用度。对感染流感病毒的雪貂进行 molnupiravir 口服治疗,可将大流行 流感和季节性甲型流感的病毒载量降低数个数量级, 并可减轻发热、呼吸道上皮 组织病变和炎症[39,49] 。Molnupiravir 使轻 中度新冠肺炎患者的住院率或死亡风险降低了约 50% 。2021 年 11 月 4 日, 英国药品和保健产品监管局(MHRA)已在英国批准 molnupiravir 上市,用于治疗重症和住院风险较高的轻至中度新冠肺炎成人患者( http:// www.21jingji.com/article/20211104/herald/f0b15254b2fcc17b70b26b839e32b1c6.html)。除了 molnupiravir 之外,法匹拉韦也可以掺入到病毒 RNA 链,诱发病毒的基因组突变, 并通过累积这种突变,导致病毒失活或失去感染能力[50]。总之, 靶向病毒最为保守的 RdRp 是一种开发广谱抗病毒药物非常有前景的策略。 目前处于临床研究阶段的多个新冠病毒 RdRp 抑制剂类药物结构差异较大,靶向 RdRp 影响病毒复制的机制也不尽相同,特别需要从结构生物学角度解析抑制剂与 RdRp 复合物结构,明确作用机制,为精准开发高效特异的、以 RdRp 为靶标的广谱抗病毒药物提供理论基础。2.3 核糖体移码 (ribosomal frameshifting) 在正常细胞内,核糖体(ribosome) 以 3 个碱基为单位(即密码子codon)由 5 到 3 端单向、连续地读取 mRNA 中的 遗传信息, 合成蛋白质[51]。由于体积的限制, 病毒的基因组通常较小, 所携带的 遗传信息较少。 包括 SARS-CoV-2 在内的各种 RNA 病毒在复制过程中会利用一 些特殊的机制调控病毒基因表达,扩展其所携带遗传信息的利用率, 其中一种常 用的机制是称为程序性“移码”的蛋白质合成重编码机制(programmed ribosomal frameshifting,PRF)[52-54]。即核糖体不遵循常规读取 3 个字母的步骤, 而是会漏 掉一两个 RNA 字母。核糖体发生的这种错位被称为“移码”,会导致核糖体错误读取遗传密码。例如, SARS-CoV-2 严重依赖其 RNA 折叠引起的“移码”来 合成蛋白[52-54]。理论上, 任何通过靶向 RNA 折叠来抑制“移码”的化合物都可能作为一种 治疗感染的药物。 “移码”现象在人类自身基因的表达中极为罕见, 因此靶向读 码框“移码”是一个可行的抗病毒策略。研究者通过运用荧光蛋白报告基因系统联合高通量筛选技术, 鉴定出了一个可以高效抑制读码框“移码”的小分子化合物美拉沙星(merafloxacin,图 4),它能在细胞水平(Vero E6 细胞)显著抑制 SARS-CoV-2 复制[55] 。美拉沙星抑制读码框“移码”的机制尚不清楚,可能直接作用于核糖体与病毒 RNA 的结合,或者抑制内源性调控蛋白。近期, Ahn 等[56]从9689 个小分子中发现了一种新型的呋喃[2,3-b]喹啉类化合物 KCB261770(图 4),它能够抑制 MERS-CoV 的“移码”和细胞水平 MERS-CoV 的复制。此外,该化合物还能抑制 SARS-CoV 和 SARS-CoV-2 的“移码”,具有广谱抗病毒活性。3 抗病毒药物研究的通用策略3.1 细胞纳米“海绵” SARS-CoV-2 的细胞结合和进入是由其刺突糖蛋白(S 蛋 白)介导的, S 蛋白不仅与人类血管紧张素转换酶 2(angiotensin convertingenzyme II,ACE2)受体结合, 还与肝素等糖胺聚糖结合。 近期研究发现细胞膜包被的纳 米颗粒(细胞纳米“海绵”)模拟宿主细胞,通过自然的细胞受体吸引和中和 SARS-CoV-2 ,可作为一种广谱抗病毒策略,还发现增加细胞纳米海绵表面肝素密度可以提高抗 SARS-CoV-2 作用[57]。3.2 抗体募集/杀死细胞 2009 年, 研究者设计了一种新的小分子 ARM-H,有可 能通过两种机制抑制 HIV:①通过招募抗体到 gp120 表达病毒颗粒和受感染的人 类细胞, 从而增强其吸收和人类免疫系统的破坏; ②通过结合病毒糖蛋白 gp120, 抑制其与人 CD4 结合和防止病毒进入。研究人员通过实验证明了 ARM-H 能够 同时结合 gp120 和抗 2,4-二硝基苯抗体(DNP ,存在于人血液中) [58]。抗体、 ARM-H 和 gp120 之间形成的三元复合物具有免疫活性,导致补体介导的表达 env 细胞的破坏。此外, ARM-H 可以阻止病毒进入人类 T 细胞, 因此应该能够通过两种相互强化的机制(抑制病毒进入和抗体介导的杀伤) 来抑制病毒复制。这些研究表明, 通过抗体招募的小分子具有可行的抗艾滋病毒活性, 并有可能启动 HIV 治疗的新范式。2020 年,Low 团队通过将神经氨酸酶抑制剂扎那米韦与高免疫原性半抗原2,4-二硝基苯(DNP)结合, 设计并合成了一种双功能小分子, DNP 专门针对游离病毒和病毒感染细胞的表面。该类分子抑制病毒释放的同时, 通过免疫介导清除游离病毒和病毒感染的细胞,对感染 100 倍 MLD50 病毒的小鼠进行鼻内或腹腔注射单剂量药物,可以根除 A 型和 B 型流感毒株的晚期感染[59]。近期研究发现, 抗生素分子 concanamycin A 可让免疫系统杀死被 HIV 感染的人体细胞[60]。DDX3 抑制剂可以让 HIV- 1 感染的细胞选择性死亡,进而耗竭病毒潜伏库[61] ,为根治艾滋病提供了新思路。3.3 多价结合——靶向病毒表面的非特异作用 细胞表面的糖链是细菌、病毒、 免疫细胞的接触点。病毒进入宿主细胞的过程涉及与不同细胞表面受体稳定但短 暂的多价相互作用。几种病毒的最初接触始于在细胞表面附着硫酸肝素蛋白聚糖, 最终导致病毒进入。已经开发出的广谱抗病毒药物如肝素或类肝素材料模拟细胞 表面糖负责最初的病毒附着, 如硫酸乙酰肝素(heparan sulfate)。高磺化金纳米 粒子具有广谱杀病毒性能。然而, 由于未知的清除机制和潜在的长期毒性是金纳 米颗粒成药性的不利因素。环糊精(cyclodextrins,CDs)是天然的葡萄糖衍生物, 具有一种刚性的环状结构,由α(1-4)连接的吡喃葡萄糖组成。磺化环糊精对HIV 具有可逆及特异的抑制活性。最近,英国曼彻斯特大学研究小组对天然葡萄糖衍生物环糊精进行磺化修饰 开发出了一种能够破坏病毒的外壳且对耐药性病毒也有效的新的广谱抗病毒分 子,其有望治疗 HSV 、RSV 、HCV 、HIV 和 ZIKV 等多种病毒感染[62]。基于多价相互作用的抗病毒药物,如柔性纳米凝胶,通过干扰病毒颗粒和阻 断与细胞受体的初始相互作用已经成为广谱抗病毒药物研究的有效策略。负电荷多硫酸盐可以结合 SARS-CoV-2 受体结合区域( receptor binding domain,RBD)上的正电荷斑块(patches),阻止病毒与宿主细胞相互作用进而 抑制感染。 与肝素相比, 合成的线型聚甘油硫酸酯(linear polyglycerol sulfate , 图 5)的抗病毒活性更高,且抗凝血活性较低[63]。巨大球状多价糖富勒烯、糖基化碳纳米管能抑制 EBOV、ZIKV 和 DENV 的 感染, 活性可达皮摩尔水平[64-66]。多价唾液化(sialylated)聚甘油对甲型流感毒 株(含耐药株)具有广谱抑制活性[67]。3.4 基于拓扑匹配的药物设计 IAV 颗粒表面均匀分布血凝素和神经氨酸酶。近 期,Nie 等[68]运用拓扑匹配(topology-matching design)的药物设计理念, 设计了 一种纳米颗粒抑制剂(纳米抑制剂, 图 6A), 它与 IAV 病毒粒子的纳米拓扑结 构匹配,对血凝素和神经氨酸酶具有多价抑制作用, 可以在细胞外中和病毒颗粒, 阻断其附着和进入宿主细胞。病毒复制显著减少了 6 个数量级, 即使在感染24 h 后使用, 仍能达到 99.999%以上的抑制作用。 2020 年, 该团队用类似的思路, 发现了与 IAV 表面空间匹配的尖峰纳米抑制剂(spiky nanoinhibitor,图 6B),峰 值在 5~10 nm 之间的纳米结构与病毒粒子的结合明显优于平滑的纳米粒子,获 得的红细胞膜(erythrocytemembrane,EM)包覆的纳米结构可以有效地阻止 IAV 病毒粒子与细胞的结合, 并抑制随后的感染。 EM 包覆的纳米结构在细胞无毒剂 量下降低了99.9%的病毒复制[69]。2021 年,该课题组运用拓扑匹配设计理念,基于宿主红细胞膜设计了与病 毒状球面相匹配的碗状纳米结构(“纳米碗”,heteromultivalent nanobowl,Hetero- MNB,图 6C),可作为广谱病毒进入抑制剂。与传统的同多价抑制剂不同, 该 类异多价抑制剂由于协同多价效应和拓扑匹配的形状,其半最大抑制浓度为 32.4 ± 13.7 μg mL- 1 。在不引起细胞毒性的剂量下,可减少99.99%的病毒传播。由 于在 SARS-CoV-2 的 S 蛋白上也发现了多个结合位点, 因此, 异多价纳米结构有 望为开发一种有效的预防 CoV 感染提供新思路[70]。3.5 靶向病毒核酸 病毒 RNA 会折叠成复杂的 RNA 结构,在病毒的生命过程调 控中起重要作用,为开发抗病毒疗法的靶标提供了新的机会。很多研究已经发现 多种病毒的非编码区 RNA 结构可以调控病毒的翻译、复制以及稳定性,它们通 常在相关病毒中高度保守[71-73] 。例如,黄病毒中 5' UTR 和 3' UTR 之间的分子内 RNA-RNA 相互作用促进基因组环化并帮助协调复制;HCV 5' UTR 内部核糖体 进入位点的结构对于翻译至关重要;并且 ZIKV 和其他黄病毒的 3' UTR 中的多 假性结构已显示出使 RNA 外切核酸酶 Xrn1 失速,从而产生了亚基因组黄病毒 RNA,有助于病毒逃避细胞抗病毒过程[74,75]。需要指出的是,与蛋白质类药物靶标相比, RNA 结构的动态性与复杂性为药物筛选增加了困难, 往往需要借助于高通量筛选。例如, SARS-CoV-2 的 RNA基因组含有 15 个独立的 RNA 调节元件。 研究者通过基于 NMR 的片段筛选, 从含有 768 个小分子的片段库中发现了 SARS-CoV-2 的 RNA 配体[76]。近日,新加坡科学家使用多种 RNA 分子结构探测方法以及 RNA-RNA 相互作用分析技术, 解析了 SARS-CoV-2 基因组 RNA 的二级结构信息和病毒-宿主之间的 RNA 相互作用;同时发现在 SARS-CoV-2 基因组 RNA 上广泛存在 2' -O- 甲基化修饰, 推测可能有助于新冠病毒逃避宿主免疫攻击,揭示病毒逃避宿主免疫的潜在机制[77]。G- 四链体是由 G-quartet 层叠而形成的 DNA 或 RNA 四链构象, 是最重要的非典型核酸二级结构之一, 因其独特的构象、重要的基因功能和生物学意义而备受关注,是很有前途的药物靶点[78]。中国科学院长春应用化学研究所曲晓刚团队使用多种生物物理技术和分子生物学技术,发现 SARS-CoV-2 基因组中存在 G-四链体结构 RNA ,证实 SARS-CoV-2 中的富 G 序列(位于 SARS-CoV-2 核衣壳 磷酸化蛋白 N 编码序列区域)可以在活细胞中折叠成稳定的单分子 RNA G- 四 链体结构。该 G- 四链体 RNA 可以被 G- 四链体特异结合配体 PDP(图 7)等识别 并稳定,进而影响 G- 四链体 RNA 的生物功能。因此,该 G- 四链体可能是抗 SARS- CoV-2 药物新靶点[79]3.6 超分子配位化学 病毒基因组的未翻译区域(the untranslatedregions,UTR) 包含多种保守和动态结构,这些功能性的 RNA 结构对病毒复制至关重要,为广 谱抗病毒研发提供了药物靶点。 然而, 计算机对接筛选对于具有内在柔性特征的 RNA 结构仍存在较大挑战。 研究者将体外 RNA 分析与分子动力学模拟相结合, 构建 SARS-CoV-2 基因组 5' UTR 关键区域结构和动力学的3D 模型,进而确定了 圆柱形金属超分子螺旋([Ni2L3]4+ 、[Fe2L3]4+)对这种 RNA 结构的约束。这些纳 米尺寸的金属超分子螺旋分子可以与核酸结合,并且在细胞水平具有抗 SARS- CoV-2 等病毒复制作用[80,81]。3.7 核糖核酸酶靶向嵌合体 核糖核酸酶靶向嵌合体( ribonuclease targeting chimeras,RIBOTACs)是降解 RNA 的新策略, RIBOTACs 基于小分子选择性结 合 RNA(特别是形成复杂的二级和三级结构的RNA), 进而激活核糖核酸酶 L(ribonuclease L,RNase L)。RNase L 是一种在脊椎动物细胞中广泛表达、具有单链 RNA 内切活性的蛋白质。该技术已被用于靶向 SARS-CoV-2 的 RNA 基因组,抑制 RNA 的移码,并且募集细胞核糖核酸酶彻底杀死 SARS-CoV-2。该策略有望用于抗其他病毒药物研发[82]。3.8 反义核酸技术 反义核酸(antisense oligonucleotides)可以序列特异性地与靶 标 RNA 结合,实现高效的寻靶和抑制活性。近期,北京大学的研究人员构建了 一类靶向 SARS-CoV-2 包膜蛋白 RNA(E-RNA)和刺突蛋白 RNA(S-RNA)的 单链嵌合反义寡聚核苷酸, 通过在 2' 甲氧基修饰的反义核酸序列 5' 端缀合 RNase L 招募基团 2-5A,可实现有效的病毒 RNA 降解并抑制病毒增殖[83]3.9 核酸适配体技术 核酸适配体(nucleic acid aptamers)是一小段经体外筛选 得到的寡核苷酸序列(单链 DNA 或 RNA 分子),能与相应的配体进行高亲和 力和强特异性的结合[84] 。适配体已经在抗病毒药物开发方面 (含 SARS-CoV-2) 展现出巨大的潜力[85-87]。3.10 基于蛋白自组装的配体发现 动态组合化学( dynamic combinatorial chemistry,DCC)融合了组合化学和分子自组装过程两个领域的特点, 开辟了使 用相对较小的库组装很多的物质的途径, 而不必单独合成每一个物质。早在 2003 年,研究者通过基于点击化学的蛋白模板诱导片段组装, 发现了高活性的 HIV 蛋 白酶抑制剂[88]。2008 年,研究者通过动态连接筛选(dynamic link screening,DLS) 开发了一种潜在的抗 SARS 药物,其亲核片段通过与醛抑制剂的可逆反应将亲核 片段指向蛋白质的活性位点。它们的抑制作用可以通过与荧光酶底物的竞争检测 到。有了这一概念, 与活性位点特异性结合的低亲和力片段在功能酶分析中迅速 被识别出来[89]。2021 年,基于 Knoevenagel 反应的蛋白模板诱导片段组装策略用 于 Enterovirus D68 蛋白酶抑制剂的发现[90]。总之,动态组合化学在抗病毒药物 发现领域仍具有广阔的前景。参考文献,点击查看《浅谈广谱抗病毒药物研发的普适性策略(一)》文末。
  • 枣中糖类的测定 | 磷酸-苯肼柱后衍生法
    入秋了,又到了吃枣的季节。枣果不仅是滋补佳品,也是一味传统的中药,并且枣中含有多种糖类。糖类是自然界中广泛分布的一类重要的有机化合物,是一切生命体维持生命活动所需能量的主要来源。在高效液相色谱仪(HPLC)测试中,糖类的分子通常采用通用型检测器检测,如示差折光检测器(RI)进行检测。但采用RI检测器有两个明显的缺点:灵敏度低、不能梯度洗脱。采用磷酸-苯肼柱后衍生法测定糖类,可以克服RI检测器的以上两个缺点。下面我们使用日立Chromaster高效液相色谱仪,利用磷酸-苯肼柱后衍生法进行糖类的分析。色谱柱将糖类分离,再与磷酸-苯肼溶液在高温下反应,使用有选择性,高灵敏度的荧光检测器进行检测,梯度洗脱可以多种糖成分同时分析。此方法克服了示差折光检测器的灵敏度低和不能梯度洗脱的缺点。■ 流路图 仪器配置: Chromaster 5110 泵,5210 自动进样器,5310 柱温箱,5410 UV检测器,5510反应单元■ 标准品测定例■ 系统适用性(100 mg/L 糖标准混合液)聚合物基质色谱柱硅胶基质色谱柱分别对硅胶基质和聚合物基质色谱柱的系统适用性进行评价,理论塔板数按蔗糖峰计算,分离度以葡萄糖和半乳糖的分离度计算,结果得到色谱柱的理论塔板数和分离度如上表所示。聚合物基质色谱柱的测定,理论塔板数较低,但色谱柱的寿命较长;硅胶基质色谱柱的测定,色谱峰的峰形尖锐,分离度改善很多。后续实验均采用硅胶基质色谱柱。■线性以半乳糖和蔗糖为例,各种糖成分在10 ~ 500 mg/L标准混合液的浓度范围内,R2 ≥ 0.9995,线性关系良好。■ 重现性■ 枣样品的分析结果对大枣样品进行了糖成分的分析,结果在枣中检测到果糖、葡萄糖和蔗糖成分,并且均得到很好的分离效果。
  • 我国磷酸化蛋白质组分析技术获得新进展
    在国家自然科学基金的大力支持下(项目资助号:21021004),中国科学院大连化学物理研究所邹汉法研究员在磷酸化蛋白质组分析技术方面获得新进展,相关成果发表在最近一期的Nature Protocols上(2013,8,461-480)。(http://www.nature.com/nprot/journal/v8/n3/abs/ nprot.2013.010.html)。  固定化金属离子亲和色谱(IMAC) 是磷酸化蛋白质组学研究中最常用的磷酸化肽段富集技术之一,常规的IMAC使用的螯合基团有三羧甲基乙二胺、次氨基乙酸、亚氨基二乙酸等,在螯合铁、镓等金属离子后可用于磷酸肽的富集。其缺点是特异性不高,在富集磷酸肽的同时也富集了一些酸性肽。研究人员发现了磷酸酯锆或钛表面与磷酸肽之间的高特异性相互作用,并利用这一相互作用建立了以磷酸基团为螯合配体的新一代固定化金属离子亲和色谱技术。实验表明,该新型IMAC对磷酸肽富集的特异性优异,可以有效避免酸性肽段的非特异性吸附。与传统的IMAC相比较,其对磷酸肽的富集能力提高3-10倍,从而大大提高了蛋白质磷酸化分析的检测灵敏度和鉴定覆盖率。该新型IMAC方法自2006年发表首篇论文以来,已在Mol. Cell. Proteomics, J. Proteome Res., Anal. Chem.等蛋白质组学与分析化学权威期刊发表论文20余篇,其中2007年发表在Mol. Cell. Proteomics的一篇论文已经被引用110余次。采用该方法为核心技术进行了人类肝脏蛋白质磷酸化的规模化分离鉴定,建立了迄今为止国际上人类肝脏蛋白质磷酸化的最大数据集 (Mol. Cell. Proteomics,2012,11,1070-1083)。
  • 国家卫生健康委发布50项新食品安全国家标准
    近日,根据《食品安全法》规定,国家卫生健康委、市场监管总局联合印发2021年第3号公告,发布50项新食品安全国家标准和4项修改单。本次公布的标准主要包括:《婴儿配方食品》(GB10765-2021)等3项营养与特膳食品标准、《干酪》(GB5420-2021)1项食品产品标准、《食品添加剂碳酸钠》(GB1886.1-2021)等38项食品添加剂质量规格标准、《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准、《食品中总酸的测定》(GB12456-2021)等4项检验方法与规程标准,以及《食品中污染物限量》(GB2762-2017)第1号修改单等4项修改单。上述食品安全国家标准的制定、修订符合法律法规规定,充分考虑群众健康权益,兼顾食品产业发展需求,参考国际相关法规和通行做法,为食品安全监管所需,标准制定、修订过程充分征求了社会各方意见并向世贸组织通报。为保障婴幼儿特殊人群健康,本次还修订了《婴儿配方食品》(GB10765-2021)《较大婴儿配方食品》(GB10766-2021)《幼儿配方食品》(GB10767-2021)等3项营养与特膳食品标准。制定修订并实施婴幼儿配方食品系列标准,是保障婴幼儿配方食品安全性、营养充足性的重要手段,是指导和规范食品生产企业科学生产的技术要求,是监管部门开展监管执法的重要依据。为做好标准实施解读,同时发布婴幼儿配方食品标准问答。 为加强食品安全全程控制,我委组织制定了《餐(饮)具集中消毒卫生规范》(GB31651-2021)等4项生产经营规范标准。其中,《餐(饮)具集中消毒卫生规范》(GB31651-2021)制定以规范餐饮具集中消毒服务单位生产经营行为,保证餐饮具卫生满足人民群众健康需求为目的,为加强餐饮具集中消毒的监督执法提供科学的技术依据。《即食鲜切果蔬加工卫生规范》(GB31652-2021)将进一步规范即食鲜切果蔬加工过程,促进行业健康发展,确保此类产品安全卫生,满足消费者对健康、便利生活的追求。《餐饮服务通用卫生规范》(GB31654-2021)是我国首部餐饮服务行业规范类食品安全国家标准,对于提升我国餐饮业安全水平,保障消费者饮食安全、适应人民群众日益增长的餐饮消费需求具有重要意义。《食品中黄曲霉毒素污染控制规范》(GB31653-2021)重点关注食品链中黄曲霉毒素的产生、消除、降低、控制等措施,对于加强黄曲霉毒素的过程控制,确保原料及下游产品食用安全具有重要意义。其编号和名称如下: GB5420-2021食品安全国家标准干酪 GB10765-2021食品安全国家标准婴儿配方食品 GB10766-2021食品安全国家标准较大婴儿配方食品 GB10767-2021食品安全国家标准幼儿配方食品 GB1886.1-2021食品安全国家标准食品添加剂碳酸钠 GB1886.3-2021食品安全国家标准食品添加剂磷酸氢钙 GB1886.302-2021食品安全国家标准食品添加剂聚乙二醇 GB1886.303-2021食品安全国家标准食品添加剂食用单宁 GB1886.315-2021食品安全国家标准食品添加剂胭脂虫红及其铝色淀 GB1886.316-2021食品安全国家标准 食品添加剂 胭脂树橙 GB1886.317-2021食品安全国家标准食品添加剂β- 胡萝卜素(盐藻来源) GB1886.318-2021食品安全国家标准食品添加剂 玉米黄 GB1886.319-2021食品安全国家标准食品添加剂沙棘黄 GB1886.320-2021食品安全国家标准食品添加剂葡萄糖酸钠 GB1886.321-2021食品安全国家标准食品添加剂索马甜 GB1886.322-2021食品安全国家标准食品添加剂可溶性大豆多糖 GB1886.323-2021食品安全国家标准 食品添加剂 花生衣红 GB1886.324-2021食品安全国家标准 食品添加剂 偏酒石酸 GB1886.325-2021食品安全国家标准食品添加剂聚偏磷酸钾 GB1886.326-2021食品安全国家标准食品添加剂酸式焦磷酸钙 GB1886.327-2021食品安全国家标准食品添加剂 磷酸三钾  GB1886.328-2021食品安全国家标准食品添加剂 焦磷酸二氢二钠 GB1886.329-2021食品安全国家标准食品添加剂 磷酸氢二钠 GB 1886.330-2021食品安全国家标准食品添加剂 磷酸二氢铵 GB1886.331-2021食品安全国家标准食品添加剂 磷酸氢二铵 GB1886.332-2021食品安全国家标准食品添加剂 磷酸三钙 GB1886.333-2021食品安全国家标准食品添加剂 磷酸二氢钙 GB1886.334-2021食品安全国家标准食品添加剂 磷酸氢二钾 GB1886.335-2021食品安全国家标准食品添加剂 三聚磷酸钠 GB1886.336-2021食品安全国家标准食品添加剂 磷酸二氢钠 GB1886.337-2021食品安全国家标准食品添加剂 磷酸二氢钾 GB1886.338-2021食品安全国家标准食品添加剂 磷酸三钠 GB1886.339-2021食品安全国家标准食品添加剂 焦磷酸钠 GB1886.340-2021食品安全国家标准食品添加剂 焦磷酸四钾 GB1886.341-2021食品安全国家标准食品添加剂 二氧化钛 GB1886.342-2021食品安全国家标准食品添加剂 硫酸铝铵 GB1886.343-2021食品安全国家标准 食品添加剂 L-苏氨酸 GB1886.344-2021食品安全国家标准食品添加剂DL-丙氨酸 GB1886.345-2021食品安全国家标准食品添加剂桑椹红 GB1886.346-2021食品安全国家标准食品添加剂柑橘黄 GB1886.347-2021食品安全国家标准食品添加剂4-氨基-5,6-二甲基噻吩并[2,3-d]嘧啶-2(1H)-酮盐酸盐 GB1886.348-2021食品安全国家标准食品添加剂焦磷酸一氢三钠 GB31651-2021食品安全国家标准 餐(饮)具集中消毒卫生规范 GB31652-2021食品安全国家标准 即食鲜切果蔬加工卫生规范 GB31653-2021食品安全国家标准 食品中黄曲霉毒素污染控制规范 GB31654-2021食品安全国家标准 餐饮服务通用卫生规范 GB12456-2021食品安全国家标准 食品中总酸的测定 GB31604.51-2021食品安全国家标准 食品接触材料及制品1,4-丁二醇迁移量的测定 GB31604.52-2021食品安全国家标准 食品接触材料及制品芳香族伯胺迁移量的测定 GB31655-2021食品安全国家标准 哺乳动物体内碱性彗星试验 GB1886.47-2016《食品安全国家标准食品添加剂天门冬酰苯丙氨酸甲酯(又名阿斯巴甜)》第1号修改单 GB 1886.103-2015《食品安全国家标准食品添加剂微晶纤维素》第1号修改单 GB1886.169-2016《食品安全国家标准食品添加剂卡拉胶》第1号修改单 GB2762-2017《食品安全国家标准食品中污染物限量》第1号修改单
  • 科技部公布可用于抗震救灾的部分国产检测仪器
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了可用于抗震救灾/恢复重建的部分国产检测仪器一览表。具体信息如下:  可用于抗震救灾/恢复重建的部分国产检测仪器一览表序号仪器名称规格型号主要用途生产单位联系人及联系电话 一、水质安全/土壤安全检测类1CODcr水质在线析仪TW-6000在线监测水中COD北京普析通用仪器有限责任公司北京分公司:王栋:13903611836四川分公司: 任杰:13330965950云南分公司:魏然:13987127935重庆分公司:陈杰:13594612368甘肃分公司:窦尚忠:13893652863陕西分公司:康双权:13991850270 2便携式水质快速测定仪PORS系列用于水中镉、六价铬、总铬 、铅、氰化物、氟化物、 硝酸盐(以N计)、 甲醛、可溶性磷酸盐、总磷、锰、硫酸盐、COD、挥发酚类(以苯酚计)、阴离子合成洗涤剂、镍、氨氮、硫化物、铜、余氯、总氯、浊度、尿素、氯化物、 苯胺、亚铁、可溶性总铁 3紫外可见分光光度计TU系列用于水中六价铬、总铬 、氰化物、氟化物、硝酸盐(以N计,)、甲醛、总磷 、硫酸盐、COD、挥发酚类(以苯酚计)、阴离子合成洗涤剂、硼、氯化氰 (以CN计)、氨氮、硫化物、氯化物、苯胺、亚铁、可溶性总铁 4原子吸收分光光度计TAS系列用于水中金属元素的测定 5多道全自动原子荧光光度计PF系列用于水中砷、镉、汞、硒、铅、锑测定 6多种元素的测定仪GDYS-103可分别测定水中的Cu、Ba、Se、Zn、Mn、K、Na、Br、Hg、As、Pb、Mg、Al、Cd、Ni、Co、Ag、Mo、B、Fe、Ca等长春吉大• 小天鹅仪器有限公司石双红 0431-87010316、87010228、15500029058 7多参数水质分析仪系列GDYS-201M不同仪器可分别检测80、35和15种水的参数 8六合一多参数水质分析仪GDYS-601S可测定水的:亚硝酸盐氮、氨氮、溶解氧、PH、盐度、温度 9五合一多参数水质分析仪GDYS-201S可测定水的:氨氮、溶解氧、PH、盐度、温度 10红外测油仪MAI-50G测定水中油含量 11水质现场快速检测试剂盒系列GDYS-110S系列可测定水中铝、联胺、硫化物、铅、银、砷、锌、铁、锰 12大肠菌群快速检测试剂盒 测定水中大肠菌群 13便携式氨氮现场测定仪GDYS-101SA测定水中氨氮 14二氧化氯测定仪GDYS-101SE测定水中二氧化氯含量 15氟化物测定仪GDYS-101SF测定水中氟化物含量 16六价铬测定仪GDYS-101SG测定水中六价铬 17总磷测定仪GDYS-101SL测定水中总磷 18余氯总氯测定仪GDYS-101SN测定水中余氯和总氯 19手持式PH测定仪 测定水中PH含量 20多功能水质快速测定仪SP-1用于水中COD、氨氮、总磷、铜、锌、氟化物、砷、镉、铬、氰化物、挥发酚、阴离子表面活性剂(、硫化物、硫酸盐、氯化物、硝酸盐、亚硝酸盐、铁、锰、镍、钴、磷酸盐、甲醛、苯胺类、总余氯的测定。北京华夏科创仪器技术有限公司钱丽敏 010-82896091,13601315420 21红外分光测油仪OIL460用于水中的油类的测定 22BOD速测仪B-1用于水中的BOD的测定 23化学需氧量速测仪CI-COD-2用于水中COD的测定 24氨氮测定仪CI-NH-A用于水中氨氮的测定 25高精密浊度仪CI-TURB-2用于水中浊度的测定 26精密酸度计CI-PH-1用于水中酸度的测定 27电导率仪CI-CON-A用于水中电导率的测定 28全自动间歇泵进样氢化物发生双道原子荧光光度计AFS-830水中As、Sb、Bi、Hg、Se、Te、Sn、Ge、Pb、Zn、Cd元素的痕量分析。北京吉天仪器有限公司销售,技术支持及联系人:张立新,010-64379532/13910058992四川省销售,技术支持及联系人:韩彦莉, 13701258738. 29多通道全自动流动注射分析仪FIA-6000水中氰化物、挥发酚、阴离子表面活性剂、总磷、总氮、正磷酸盐、硝酸盐氮/亚硝酸盐氮,氨氮、硫化物、甲醛、硼等化合物的微量、痕量和常量分析。 30形态分析仪SA-10用于水中As、Se、Hg等元素的不同形态的分析。 31大肠杆菌测定仪TOGS 9000用于水中大肠杆菌的测定 32气相色谱仪(带顶空进样器)SP3420A可用于对水中有机物的成分进行分析 33紫外可见光分光光度计UV—2100、VIS—723N可用于水中有机物、重金属等成分的分析北京北分瑞利分析仪器公司李勇,13911395136 34原子吸收分光光度计WFX—210、WFX—120可用于水中金属元素的分析 35原子荧光分光光度计AF—610B、AF—640可用于水中重金属元素如:Cd、Cr、Hg、As等的分析 36水质自动监测系统Sentech可自动监测水中的:温度、PH值、电导、溶解氧、浊度、高锰酸盐指数、总磷、总有机碳八大参数,以及总氮、氨氮、酚、氰、氟、铜、水中油、硬度、氯化物、叶绿素、大肠杆菌等参数 37快速水质分析盒 用于快速测定水中氨氮、亚硝酸盐总量(以氮计)、硝酸盐总量(以氮计)、PH值、总硬度、钙含量、余氯、二氧化氯、臭氧、六价铬、镍、锰、铜、铁、溶解氧、硫化氢、磷酸盐等北京北大明德化学制药有限公司郭新秋 13601381881 38原子荧光分析仪 主要用于对环境有害的重金属铜\铅\锌\铬及其形态分析上海光谱仪器有限公司陈建刚 13701713073 39化学耗氧量测定仪HH-3、HH-5、HH-6用于水中COD测定江苏江分电分析仪器有限公司吴荣坤 13809014585 40在线COD测定仪HH-8在线监测水中COD 41生物耗氧量测定仪870、880、890用于水中BOD测定 42水中油份测定仪OIL-2(非分散红外)用于水中油的测定 43溶氧测定仪JYD-1B用于水中氧的测定 44综合水质分析仪WQ-1、WQ-2快速测定水中的温度、pH、溶氧、电导、浊度五项参数 45各种离子选择电极、玻璃电极、甘汞电极 用于水中各种离子的测定 46气相色谱仪GC-4011A水中有机物及农药残留、消毒副产物北京东西分析仪器有限公司北京 吴兴成 010-88393508,13683688011 四川 孙大成 028-85109377,13808059849 47气相色谱质谱联用仪GC-MS3100水中有机物及农药残留、消毒副产物 48液相色谱仪LC-5510水中有机物及农药残留、消毒副产物 49原子吸收分光光度计AAS-7003主要用于对环境有害的重金属铜\铅\锌\铬及其形态分析 50氢化物发生器HG-01砷、硒、汞、铅等 51原子荧光光度计AF-7500As、Sb、Bi、Se、Sn、Pb、Ge、Te、Zn、Cd、Hg 52便携式光离子化气相色谱仪GC-4400水中有机物及农药残留、消毒副产物 53紫外(UV)吸收水质自动在线监测仪(COD)EW-2100COD在线监测 54COD快速测定仪XH9004C实验室内测定水中COD河北先河科技发展有限公司河北总部 市场部联系人:张永辉,0311-85326333 85323965;技术支持电话:0311-85323933 85323955先河科技驻成都办事处联系人:张燕军,028-85569176 55恒温消解器XH9001C实验室内消解水样 56常规五参数(温度、pH、溶解氧、XHFP-90在线监测水体的温度、pH、溶解氧、电导率、浊度 57电导率、浊度)自动监测仪 58COD在线自动监测仪(铬法)XH9005B在线监测水中COD 59紫外吸收水质在线监测仪XHUV-90A在线监测水中有机污染物 60氨氮自动监测仪XHAN-90在线监测水中氨氮含量 61总有机碳(TOC)自动监测仪XHTOC-90在线监测水中总有机碳(TOC) 62原子荧光光度计系列AFS系列检测饮用水、食品、环境中的砷、汞、硒、铅、锑、铋、锡、碲等重金属的含量。北京科创海光仪器有限公司冀钢扬 010-64357677,13701062913 63在线COD监测仪COD589在线监测水中COD上海精密科学仪器有限公司公司销售科负责人:唐建华 Tel:13701689693四川地区销售负责人:管建光 Tel:13701689691四川地区在线销售负责人:余未然 Tel:13052060360 64离子计PXSJ-226配以各种离子选择电极,测定水中离子 65COD测定仪COD-571测定水中COD 66溶解氧分析仪SJG-9435A可连续监测锅炉补给水中氧 67钠离子监测仪DWG-8025A电厂中可连续监测高纯水中钠含量 68氨氮监测仪DWG-8002A可连续监测水中氨氮的含量 69氯离子监测仪DWG-8004可连续监测水中氯离子的含量 70离子色谱仪IC1010水中阴、阳离子分析,如: F-、 Acetic acid、 Formic acid、 ClO2-、 BrO3-、 Cl-、 NO2-、 Br-、 NO3-、 PO43-、 SO42-、Li(+)、Na(+)、NH4(+)、K(+)、Mg(2+)、Ca(2+)等。上海天美科学仪器有限公司总部电话:总部(上海)服务中心负责人:刘敏:13601714874成都办事处:李宏英:028-85216168,13980430360 71气相色谱仪GC7890Ⅱ、GC7900水中有机物污染分析 72液相色谱仪LC2000水中有机物污染分析,大分子有机物分析,某些霉菌分析。 73紫外可见分光光度计UV1101系列、UV2300、VIS7200水中有机物、无机物分析,部分金属离子分析。 74原子吸收分光光度计AA6000水中金属离子分析 75红外油分析仪OIL4000水中油污染分析 76自动电位滴定仪COM300水中酸碱度测定,水的硬度测定,PH值的测定 77水中有机物快速测定仪OIW-1000型水中有机物含量。可直接读出Abs, SAC(UV254), COD, TOC, BOD, 浊度的检测数据。上海新仪微波化学科技有限公司021-54487840转805 78氨氮COD总磷三参数测定仪5B-6C型水中,化学需氧量,氨氮等测定兰州连华环保科技有限公司0931-7326600/11 79便携式智能COD测定仪5B-2C型水中COD的测定 80便携式多参数水质分析仪MPT-201型高浓度 COD、低浓度COD、正磷酸盐及总磷、氨氮、余氯、六价铬、总铬、浊度共八种参数湖南利德投资股份有限公司0733-8293628 8110通道多参数水质分析仪MPT-2000型高浓度 COD、低浓度COD、正磷酸盐及总磷、氨氮、余氯、六价铬、总铬、浊度共八种参数 82便携式余氯/二氧化氯五参数快速测定仪S-CL501游离氯、化合氯、总氯以及游离二氧化氯、亚氯酸盐等全部5项目检测深圳市清时捷科技有限公司0755-82127869 二、食品安全检测类83农药残毒快速检测仪GDYN系列蔬菜、水果、大米、豆类、麦片、棉花、土壤长春吉大• 小天鹅仪器有限公司石双红 0431-87010316、87010228、15500029058 8436参数食品安全检测箱GDYQ-100M  甲醛、二氧化硫、吊白块、亚硝酸盐、农药残毒、硝酸盐、双氧水、丙二醛、食盐碘、芝麻油、过氧化值、氨基酸态氮、劣质蜂蜜、硼砂、盐度、劣质液体奶、食品中心温度 85五合一食品安全快速分析仪 GDYQ-501MA2甲醛、二氧化硫、亚硝酸盐、蛋白质、双氧水 86食品安全检测仪PR-260  适用于液体样品和固体样品中甲醛、吊白块、亚硝酸盐、硝酸盐、二氧化硫和农药残留等6种有毒物质的检测厦门欧达科仪发展有限公司0592-2518000、2518001、2518002 87高通量农药残毒检测仪PR-202GT除常规检测外,有颜色的蔬菜、水果也能快速检测 88食品安全速测仪 SP-1型食品中农药残留、甲醛、吊白块、二氧化硫、亚硝酸盐和硝酸盐、重金属北京华夏科创仪器技术有限公司82896091 89农药残毒快速检测仪RP-410用于蔬菜瓜果中有机磷等农药残留检测北京瑞利谱创仪器环保技术有限公司李海昌64350109 90十二合一食品安全检测仪LDSJ-12M  农药残留、二氧化硫、甲醛、吊白块、亚硝酸盐、硝酸盐、双氧水、甲醇、胆固醇、丙二醛、氨基酸态氮、重金属(6种)湖南利德投资有限公司0733-8293628 91五合一食品安全速测仪LDSJ-5M农药残留、二氧化硫、甲醛、吊白块、亚硝酸盐 92便携式食品安全检测仪LDSJ系列 亚硝酸盐、硝酸盐、二氧化硫、甲醛、吊白块、双氧水、甲醇、胆固醇、铅、铬、镉、丙二醛、氨基酸态氮、非食用色素 三、疾病控制防疫检测类93便携式/半自动生化分析仪 适用体液中血液\尿液全分析及配套专用生化试剂长春光机医疗仪器有限公司唐玉国13844087127 94生物显微镜 医院临床检验上海舜宇恒平科学仪器有限公司 骆海峰 64956777*1033 95自动菌落计数仪AS系列用于细菌、霉菌和酵母菌的计数 杭州迅数科技有限公司销售部:0571-85124967、85124998、85124865 96多功能一体机MF系列由 MF1 菌落分析仪主机嵌合 130 万像素电子目镜、三目光学显微镜以及专业分析软件等组成 97高分辨率全自动菌落分析仪HR系列微生物专业实验室使用 四、空气污染检测类98防爆气体测试仪 测量氢气,一氧化碳,甲烷等北京北分麦哈克公司史鸣镝64250916 99可燃气体报警仪 用于测定可燃气体一氧化碳浓度报警北京科力新技术发展公司陈利平62656996 100空气应急监测车/水、气、核污染综合应急监测车/应急监测、移动监测综合监测车 水、气、核污染综合应急监测、移动监测综合监测河北先河科技发展有限公司范朝13703392322 101室内空气专用试剂盒 主要用于室内对人体有毒有害气体甲醛\氨气检测北京牛牛基因技术有限公司牛刚13901220714 102硫化氢检测仪 空气中硫化氢气体检测长春吉大• 小天鹅仪器有限公司于爱民13843081595 五、其他检测类103辐射测试仪 低本底α、β,γ及Χ射线剂量中核(北京)核仪器厂高建巍010-67828018,13521141659 104微型色谱仪/热解析仪 有毒有害挥发性气体,毒剂,爆炸物等太极计算机股份公司张西咸13901130196 105便携式γ辐射仪CIT-1000BX用于环境核辐射监测四川先达核测控设备有限公司穆克亮:028-84077936;13880902962 106低本底γ谱仪CIT-1000PY用于现场快速监测,也可用于室内定量分析。 107, 放射性分析仪CIT-2000ABXα、β同时测量;能够进行现场或远程控制测量。 108多路总α、β计数器CIT-2000ABY八个独立的主探测器,可同时测八个样品,分别给出八个样品中的总α、总β活度浓度测量。 109高灵敏度快速测氡仪CIT-2000R可分析空气、土壤、水氡浓度;可同时测量氡及钍射气 110便携式α谱仪CIT-2000PA用于现场土壤等样品的α谱测量,分辨样品中的α核素,从而为辐射环境监测、样品分析、地质调查等领域应用。仪器采用PIPS探测器,便于擦拭,本底低。 111氚表面污染监测仪JE-2用于测量氚表面污染水平的现场核测量仪器。 112半导体10通道剂量仪CIT-3000B用于各种辐射场组成单点、多点(10道)在线和实时监测系统,还可用于核医学领域,对受检患者放疗剂量进行监测和测量,也可作为新一代辐照仿真人模配用的测量系统。 113氚浓度测量仪CIT-3000CH对生产、操作、存储氚或氚化合物和使用氚制品的工厂以及实验场所等的氚的含量进行监测。 114便携式中子辐照剂量计CIT-4000A可以对人员受中子辐照后的剂量进行现场快速测量 115便携式α擦拭样品快速测量仪CIT-4000B采用对鼻腔擦拭物进行α谱线测量,从而能够解决α核素的测定。 116全数字式滑移脉冲信号发生器CIT-6000A作为能谱测量仪的配套设备广泛应用于表面污染测量、核物理和化学实验、原子能工业、石油、矿藏勘测、地质调查、环境检测、放射性测井、战场核辐射环境监测与防护等。 117微弱电流、电压信号源CIT-6000B用于监测前置放大器和主放大器的性能稳定新,并且可以监测多道脉冲幅度分析器的稳定性。 118远程位移监测仪XDWY-Ⅲ可对滑坡、房屋、公路、铁路、隧道、矿井、水库大坝、危险物、桥梁等地的裂缝位移进行实时监测。 119智能位移报警器XDWY-Ⅱ可对建筑设施的裂缝进行实时监测,具有测量距离自动读取,能满足现场需求。 120简易倾度报警器XDQD-I用于测量面倾斜角度的检测,如果角度超过某一定值时发出警报报警。 121远程倾度监测仪XDQD-Ⅱ基于天然磁场变化原理对二维平面(水平、垂直面)的角度(倾度)变化进行快速检测,对异常变化进行报警。   备注:根据相应企业来电,本表中的部分联系人及联系电话做了如下更改:  1.长春吉大• 小天鹅仪器有限公司:由“汤婷姝 0431-87010316、87010276、13578733234”改为“石双红 0431-87010316、87010228、15500029058”。  2.北京北分瑞利分析仪器公司:由“雷安平 010-62456639,13701222790”改为“李勇,13911395136”。  3.上海天美科学仪器有限公司:由“总部电话:卞征宇:021-67687200,13901718885 总部(上海)服务中心负责人:刘敏:13601714874;成都办事处:李宏英:028-85216168,13980430360"改为“总部(上海)服务中心负责人:刘敏:13601714874 成都办事处:李宏英:028-85216168,13980430360"。  4.上海舜宇恒平科学仪器有限公司:由“021-64956777”改为“骆海峰 64956777*1033”。
  • 天瑞仪器参设并购基金 参股中康尚德布局移动医疗
    p /pp  天瑞仪器6月25日晚间公告称,公司拟使用自有资金6000万元与东方睿德(上海)投资管理有限公司(简称& ldquo 东方睿德& rdquo )共同设立东方天瑞并购投资基金(有限合伙)。该并购基金总出资额为3.01亿元,主要投资方向为天瑞仪器业务领域内具有良好增长潜力及战略价值的目标企业,同时关注其它非高风险业务领域内具有良好收益预期且发展阶段已较为成熟的投资机会。公司股票将于6月26日复牌。/pp  据介绍,东方睿德是东方证券下属全资子公司,此次认缴出资100万元,同时担任并购基金的唯一管理人,负责并购基金的日常运营与管理,承担无限责任 天瑞仪器拟作为有限合伙人参与并购基金的设立,但不参与基金事务管理 睿德投资作为有限合伙人认缴出资6000万元,承担有限责任 其余资金1.8亿元向社会特定投资人另行筹集。/pp  天瑞仪器表示,随着互联网行业的快速发展及产业机构调整的经济环境下,公司保持现有业务发展的前提下,拟积极在环境保护、医疗检测以及围绕家庭食品安全、环境检测与治理等方面的新兴产业进行布局。公司未来将借力并购基金实现公司的价值链整合和产业扩张,同时充分利用基金管理人的专业投资团队和风险控制体系,进一步增强公司投资能力,推动公司积极稳健地并购整合及外延式扩张,实现持续、健康、快速成长。/pp  同日天瑞仪器公告称,公司与自然人薛儒山拟共同出资5125万元对中康尚德进行股权投资,其中公司出资4625万元,占投资后中康尚德12.8028%股权。公司称,此次投资有利于公司获得医疗行业的相关信息,旨在为公司产品进入医疗检测领域打下基础。/pp  据介绍,中康尚德主要产品为基于垂直社交的健康服务手机APP管理软件& ldquo 贴心医生& rdquo ,该软件以医生和患者已建立联系、已信任为基础,是医生的随访随诊、收集患者数据、电子病历管理工具。& ldquo 贴心医生& rdquo 由手机客户端APP和大数据管理服务系统所组成,是一种为医生群体提供患者管理、辅助医疗、电子病历、远程就诊等功能的系统产品。/pp  点评:/pp  & ldquo 大健康+互联网& rdquo 战略布局逐渐清晰。(1)天瑞仪器是研发和创新驱动的国内高端分析仪器龙头,自主研发和外延扩张并举向环保、食品安全、生命科学等大健康相关领域拓展是长期发展战略。(2)4月10日公告并购问鼎环保100%股权,助公司从熟悉的本地市场出发,快速而稳健的切入到当前景气向好的环保尤其是水处理领域的治理及营运,开启了外延扩张的序幕。(3)本次参与设立产业投资基金有助于积极稳健实施外延扩张,参股移动医疗初创企业中康尚德有助于切入医疗和互联网相关领域。/pp  自主研发MALDI-TOF质谱在生命科学领域应用前景广阔,内外并举有望打开成长空间。(1)根据据中国分析测试协会6月10日报道,公司自主研发的MALDI-TOF质谱在日前通过专家鉴定,可广泛应用于临床微生物鉴定、药物分析、疾控及检疫等领域,填补了国内同类仪器的空白,具有良好的应用前景和市场前景,实现了国产质谱新突破。(2)随着自主研发MALDI-TOF质谱在取证和销售方面的逐步进展,以及在环保、食品安全、生命科学等& ldquo 大健康+互联网& rdquo 相关领域业务布局的不断完善,我们判断公司资源能力有望实现从量变到质变的提升,并有望从2015年开始进入一个新的快速成长周期。/ppbr//p
  • 整合优势资源 铸造民族精品--访汪尔康院士和西安瑞迈周起设总经理
    前言:长春应化所汪尔康院士与西安瑞迈合作研制的毛细管电泳电化学发光检测仪(MPI-A型),为“十五”国家科技攻关重大项目《科学仪器研制与开发》子项目。MPI-A在国际上首次将毛细管电泳分离和电化学发光检测性能完美结合,比相关领域通常应用的进口“毛细管电泳激光诱导荧光分析仪”大大降低了成本。目前,该仪器已应用于药物、医学等方面的科学分析工作。日前,汪院士在百忙中接受本网的邀请,以文字稿件形式详细阐述了该款产品的技术优势,随后笔者又邀请西安瑞迈公司周起设经理(以下简称“周总”)谈谈该款产品的市场推广和国产仪器行业的发展问题。此篇专访中,专家与厂商联手为国产优秀产品宣传造势,同时也为国内仪器行业的资源整合献计献策,以飨读者。 汪尔康院士 Instrument:您与西安瑞迈合作研制的毛细管电泳电化学发光检测仪将毛细管电泳分离和电化学发光检测性能完美结合,请您具体介绍其具体性能?汪院士:电化学发光检测是近几年发展迅速的毛细管电泳分析中的一种新型检测方法,它将毛细管的分离技术与电化学发光检测相结合,可在临床分析及医药、病毒、免疫等科学试验中大大简化分析的技术难度,提高分析结果的准确性。毛细管电泳电化学发光检测仪系结合毛细管电泳(CE)分离和电化学发光(ECL)检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。这是中国科学院长春应用化学研究所与西安瑞迈公司合作首创的一种现代分离分析仪器。它可同时对被测样品实现毛细管电泳在线分离、电化学发光实时检测,并同步显示化学发光信号、电化学电位扫描信号、电化学电极电流信号及毛细管电泳电流信号并对其进行详细分析。主要包括三个部分:(1)电化学分析仪,提供电化学发光分析所需的恒电位、循环伏安及线性扫描信号发生器及电化学电流检测器;(2)数控毛细管电泳高压电源,提供电泳分离所需高压,可按照程序对电动进样时间及高压、分析过程时间与高压进行独立控制;(3)多功能化学发光分析仪,由CE-ECL多功能检测池和化学发光检测器构成。CE-ECL多功能检测池成功将毛细管电泳、电化学及化学发光三种不同方法的检测组会在一起,实现了三种检测方法的有机结合;化学发光检测器可进行流动注射化学发光、静态注射化学发光、毛细管电泳化学发光、微芯片化学发光等各种发光检测。 Instrument:请问该仪器的关键技术是什么,取得了哪些突破性的成就,获得了哪些专利?汪院士:我们瞄准电化学发光、毛细管电泳电化学发光及电化学检测的前沿研究领域,在检测系统设计、电极化学修饰、电化学发光试剂的固定化、整体仪器的开发和芯片系统制作取得主要成果如下:(1)建立了方便易用的毛细管电泳电化学发光、电化学的检测平台,基于该平台,对药物、环境污染物、生物分子等进行检测,并应用到临床样本等实际体系的分析,推动了该项技术的发展;(2)将化学修饰电极技术引入毛细管电化学检测,极大地提高了检测的灵敏度、选择性及电极的稳定性;(3)建立了多种电化学发光试剂的固定化技术,避免了繁琐的试剂引入操作,提高了信号的稳定性,并首次将该技术用于毛细管电泳分析;制作了腐蚀接头的电化学光检测器,有效抑制了电泳高压对检测的干扰;利用平行催化的电化学发光、电化学双检测技术扩大毛细管电泳电化学发光检测的应用范围;对毛细管电泳-电化学发光检测中的场放大效应进行研究,提高检测的灵敏度;(4)首次研制出商品化的整体毛细管电泳电化学发光检测仪,经中科院组织的鉴定会评价为“国际首创”,该仪器已成功投放市场,为该项研究的推广和相关学科的研究提供了有力的工具;(5)建立了新型的芯片毛细管电泳电化学发光、电化学检测系统,为后续进一步研究提供了有效的平台。已申请专利15项(其中3项已授权):(1)建立电化学发光及电化学检测方法,设计制作了相应的检测池:毛细管电泳柱端喷壁安培检测池(专利号:97214642.3)、分离式电化学发光流动池(专利号:00241245.4)、喷壁式电化学发光流动池(专利号:00241246.2)、毛细管电泳柱端电化学发光检测池(专利号:01133351.0,已授权)、毛细管电泳与流动注射通用型电化学发光流通检测池(专利号:02123900.2,已授权);(2)在电化学检测发光方法中,为提高检测灵敏度、减少干扰,提出多种电化学发光检测器的制备方法:电化学发光传感器的制备方法(专利号:01120534.2)、毛细管电泳固体电化学发光检测器(专利号:02116453.3)、纳米金颗粒修饰的固体电化学发光检测器(专利号:02116460.6)、腐蚀接头毛细管电泳电化学发光检测装置(专利号:200310115835.3)、聚合物/碳纳米管复合物膜电化学发光传感器的制备方法(专利号:200410010765.x)、合成含有三联吡啶钌的微米及纳米粒子的方法(专利号:200510017158.0)、一种在电化学电极表面固定三联吡啶钌的方法(专利号:200510017159.5)(3)建立了芯片毛细管电泳-电化学、电化学发光检测系统:电化学检测-微流控芯片及制作方法和再生方法(专利号:03145053.9,已授权)、集成毛细管电泳电化学发光检测芯片的制备方法(专利号:200310115822.6)、 毛细管电泳电化学发光检测装置(专利号:200510016556.0)。 Instrument:毛细管电泳电化学发光检测仪与相关领域通常应用的进口毛细管电泳激光诱导荧光分析仪及其它同类仪器有哪些优势?汪院士:毛细管电泳分析中应用较普遍的检测方法有紫外可见光谱、激光诱导荧光以及质谱方法。紫外方法灵敏度低,激光诱导荧光以及质谱方法具有较高的检测灵敏度,但是检测时往往需要进行化学衍生,且仪器设备较昂贵。电化学发光检测的优点是灵敏度高、成本低、检测对象广泛,应用潜力巨大。将该方法与高特异性的免疫技术相结合,发展起来的免疫电化学发光技术,则有着选择性好、检测限低的优势,在基础科学研究、临床诊断等多方面有着广泛的应用。免疫电化学发光技术的应用面大、市场广阔,但目前相关的专利技术等一直把持在国外大型公司手中,所生产的专用仪器及相配套的试剂盒价格昂贵(仪器的价值高达18万美元,每检测一个样品实际消耗费用2美元),日常使用及维护成本均很高。 我们在国际上首次研制出商品化的整体毛细管电泳电化学发光检测仪,价格大概只有国外同类产品的十分之一,被中科院组织的的鉴定会评价为“国际首创”, 可实现CE-ECL的在线分离,实时检测,操作灵活,软件功能齐全,为该项研究的推广和相关学科的研究提供了有力的工具。 Instrument:毛细管电泳电化学发光检测仪可用于哪些实际应用领域?能否请您介绍一下国内外此技术发展历程及前景?汪院士:毛细管电泳电化学发光检测仪,可用于药物、氨基酸、多肽、蛋白质及核酸检测分析 可应用于蛋白质分离检测、免疫及DNA分析以及细胞组分测定等。研究蛋白质分子之间或与其他分子如临床药物之间的相互作用以及蛋白质折叠现象、构象转化等,对深入探讨相关疾病的发生机制具有很好的参考价值;而有关DNA的损伤及其修复等科学研究,在一定程度上有助于了解一些基因性疾病的致病原因并寻求可能的治疗手段,此外,利用DNA适配子特异识别生物分子甚至癌细胞等特点,可对特定目标进行专一标记及分析测定;单细胞分析如原位监测细胞受激释放及其代谢凋亡等,有助于我们在细胞层次上深入了解生命现象及其本质,并通过细胞与药物作用研究来初步筛选某些临床药物;利用抗体与抗原或亲和素与生物素的特异作用,可以实现目标物的靶向标记。 在国内外,关于蛋白质、DNA、细胞及免疫分析等方面的基础研究工作如日中天,与此同时,相应的分析仪器的研发和应用也得到了大力发展。Ru(bpy)32+ 电化学发光(ECL)在以上分析领域的基础研究也得到大力发展,建立了相应的活化、标记、分离和检测技术并取得广泛的应用。但国际上仅有少数几家公司在生产电化学发光仪及开发相关试剂,其中,美国IGEN公司率先推出Origen Analyzer系列的电化学发光分析仪,此类仪器是在Origen磁微球免疫标记技术基础上,结合流动注射分析方法,将电化学发光方法应用于免疫分析领域,然而,该仪器无法有效分离样品,只适合研究纯化后的样品,而且价格昂贵,每台18万美元,其备用件及消耗件如电化学发光探针等的总价格也近10万美元;德国宝灵曼公司也推出了Elecsys系列的全自动电化学发光免疫分析仪,该仪器采用了电化学发光免疫技术、链酶亲和素与生物素间接包被及间接性抗体等技术,由于这种仪器同样采用了流动进样装置,因此仍存在样品分离等问题。Roche公司分别于1998年和2003年先后收购了宝灵曼公司和IGEN公司,成为目前世界上最大的电化学发光分析仪器及其配套试剂的生产厂商;最近,Roche公司推出1010型全自动电化学发光免疫分析仪,该仪器的分析特点与前两种仪器基本类似,仍采用流动注射和磁微球技术。以上这些电化学发光仪,均在样品分离纯化方面存在明显不足,分析手段单一,并且无法进一步进行微型化,很难从根本上满足目前我们在基础科学尤其是生命科学分析等研究领域的科研需要。我们研制的毛细管电泳电化学发光检测仪(CE-ECL),是国际上的首台这类仪器。把先进的分离方法与先进的检测技术结合成为整体的智能化分离与分析仪器,在国际上是首创。中科院组织的鉴定会评价为“国际首创”,而且价格较低,可实现CE-ECL的在线分离,实时检测,操作灵活。今后的研究工作将侧重于具有实际生物分析应用前景、功能全面的微型毛细管电泳电化学和电化学发光分析仪器。 Instrument:请介绍您与西安瑞迈的合作过程,您如何将科研成果顺利的推向市场的呢?汪院士:由于在测试方法上我们的科研小组作了大量的前期工作,加之仪器设计较为成功,与西安瑞迈紧密合作,在成果鉴定之后短短一年内就销售了30台/套,销售产值达300万元。但是随着销售数量的增长和使用对象的不同,要商品化质量是关键,产研紧密结合,不断总结经验,不断完善整体系统各项设计,分别从微电极系统、化学发光单元、电化学分析系统以及毛细管电泳高压电源等方面进行了改进,使仪器系统测试效果大大提高。并且在产品产业化和实际销售过程中,根据用户的实际需要,派生出了一系列基于CE-ECL技术的系列产品,如:多参数化学发光联用仪器系列、化学发光及荧光分析检测仪系列、进样器系列、化学发光检测器系列等。到目前为止,MPI-A型毛细管电泳电化学发光检测仪在产业化完成之后,取得了相当良好的经济效益,并初步建立了销售网络。迄今为止,该仪器(包括科研原型样机和商品化仪器)已销往全国各地,受到了用户单位的一致好评,已被清华大学、北京大学、南京大学、中国科技大学、武汉大学、西安交通大学、湖南大学、四川大学等重点院校作为教学仪器和科研仪器购置。据统计数据显示,因是国际首创,该仪器在国内销售市场独据份额,其生产总值已达1000多万,实际完成销售额达900多万,其中仅MPI-A/B型已实际销售66台/套,产值约800万;另有三十多台已被一些用户单位预定。实践证明我们与西安瑞迈公司产研结合是很成功的,我们从一开始研制到样机成功进行转化为商品,不断完善、不断改进,始终紧密结合融为一体,推动这类分析仪器的发展。 Instrument:请问毛细管电泳电化学发光检测仪自推向市场来,已经被哪些国内外科研机构选用,关于该产品近期有哪些好消息(如国家部门和权威机构的肯定)呢?是否有国际化推广的计划?周总:毛细管电泳电化学分析检测仪自2004年正式投产以来,由于其独特的分析功能而受到了众多科研单位和大专院校的欢迎,据不完全统计,国内排名前100名的理工科院校中有近90%的院校已经购买此仪器,有些院校甚至购买了近10台,其中包括清华,北大等著名高校。中科院长春应化所、化学所、电子所、过程研究所等科研机构也相继购买了此仪器。此外,还有国外的一些科研机构也在询问购买事宜。该仪器目前已列为科技部仪器产业化示范项目产品。 Instrument:您认为目前国内科学仪器的研发和生产主要面临哪些困难?您对科研工作者与厂商加强合作及促进国内科技成果产业化有哪些建议?周总:目前国内分析仪器行业发展势头迅猛,有些产品已经占据了国内主要市场,但在高端仪器领域,国外产品仍占有主要地位。尤其是具有自主知识产权的生化分析仪器更是如此。分析仪器由于产品开发存在投入大、周期长、技术要求高和市场风险大的问题,因此仅由企业尤其是中小企业独立开发高水平的分析仪器难度很大。一方面企业不可能建立完全用于基础研究的实验室,另一方面所开发的仪器如果没有相关测试方法的配套很难进入市场。因此,采用院企结合、校企结合研发新型分析仪器是一种将产品尽快进入市场的理想方法。西安瑞迈公司与中科院长春应化所汪尔康院士、董绍俊院士等知名专家的合作很好地证明了这一点。此外,企业应能多与所研制产品的行业顶级专家沟通,听取他们的宝贵经验;西安瑞迈分析仪器公司所研发的毛细管电泳电化学检测仪器中所涉及的许多关键技术都得益于与其相关领域的专家指导。如电化学领域的汪尔康院士,化学发光领域的章竹君教授及弱电流检测领域的陶国安教授等,他们都对仪器的研制提出了很好的建议。 分析仪器研发对技术综合性要求很高,研发人员不但需要有很强的本专业知识,而且需要很宽的知识面和很强的技术贯穿能力,但受目前国内教育体制的限制,很难直接聘到相关人才,大多需要企业对其进行较长时间的培训,因此,如何在此期间使研发队伍相对稳定,是较为困难的事情。 此外,由于分析仪器尤其是创新型仪器研发费用较高,而这部分费用却无法抵扣相应税费,导致纳税额偏高,使企业投入研发的热情受到很大影响。建议相关部门能够针对技术研发比重较大的创新型企业以税收优惠支持。 Instrument:面对国外仪器厂商的强势竞争和并购热潮,请问您认为我们应该如何提高国产仪器研发和生产能力,振兴民族科研能力和民族科研工业?周总:1。国内仪器开发厂商必须加大对具有自主知识产权产品的研发力度,避免互相仿造,竞相降低产品价格,使自己逐渐丧失研发能力。2.要努力打造品牌产品,努力在产品质量上下功夫,避免片面追求不实用的技术指标和表面功能,在中低档产品上占领国内主要市场,进而逐渐缩小高档分析仪器与国外产品的差距,逐步改变国外产品占据国内大部分市场的局面。3.要改变国内分析仪器厂家规模偏小,单一厂家产品种类繁多的问题,鼓励企业做精做强具有自己优势的产品。4.鼓励企业按行业划分进行集团化重组和并购,形成具有较强竞争优势的企业集团。 采访后记:汪院士和周总分别从技术和市场这两方面,阐述了MPI-A的技术优势和推出过程,也给众多的国内同行来自成功案例的启迪:应对激烈的市场竞争,需要整合优势资源,需要专家、厂商、政府部门等多方紧密合作。 MPI-A毛细管电泳电化学发光检测仪相关信息请登陆:http://www.instrument.com.cn/netshow/SH100665/C12035.htm长春应化所相关信息请登陆:http://www.ciac.jl.cn/西安瑞迈公司相关信息请登陆:http://remex.instrument.com.cn 或 http://www.xaremex.com/About.htm 策划编辑:廖庆玲
  • 集成"降噪"功能!德运康瑞自研创新高通量单细胞测序平台发布
    单细胞测序技术以前所未有的分辨率揭示了细胞组成和功能状态的异质性,已广泛应用在肿瘤、免疫、神经和发育生物学等研究领域。但现有的高通量单细胞测序平台还存在一定局限性,基于液滴捕获的方法依赖泊松分布实现细胞-微球配对,存在大量空液滴不可利用,导致试剂浪费和细胞损失;基于微孔捕获策略的平台利用细胞重力沉降随机捕获,存在有限稀释导致的微孔利用率低的问题,且存在微孔交叉污染的可能性;此外组织解离过程中细胞破裂产生游离的mRNA导致背景干扰,掩盖细胞之间真实的异质性。为克服上述问题,德运康瑞自主研发成功打造出一款创新性的高通量单细胞测序平台Well-Paired-Seq。该平台包括自动化单细胞测序文库构建系统DECODER, 芯片试剂盒、反转录与扩增试剂盒、文库构建试剂盒及相关生信分析工具。Well-Paired-Seq基于双孔嵌套式芯片,协同局部准静态流体力学和尺寸排阻原理,实现细胞和编码微球高效精准“配对”,利用准静态流体力学特性有效清洗背景,具有高效的细胞捕获率、细胞/微球配对效率以及游离RNA去除等优势,实现高通量细胞捕获、高灵敏基因检出和单细胞高保真分子解析。Well-Paired-Seq高通量单细胞测序解决方案平台技术优势(1)高通量,单张芯片即可完成1万个细胞捕获和单细胞测序分析;(2)高灵敏,基因检出数量优异,且有效检出稀有细胞类型;(3)高效率, 细胞捕获效率稳定在60%左右,提高样本细胞利用率;(4)高保真,在芯片上直接清洗游离RNA等杂质,降低背景干扰;(5)高质量,专利技术减少微孔交叉污染还原细胞真实分子表达信息。小结Well-Paired-Seq高通量单细胞测序技术基于双孔嵌套式芯片的创新设计,在细胞捕获、细胞/微球配对、游离mRNA去除等方面具有出色的效率,并显著地降低了细胞损失和背景噪音,以较低的双胞率实现了高通量单细胞测序分析,在细胞捕获效率和基因检出数量等多项指标表现稳定并领先行业。德运康瑞始终立足自主创新,此次重磅推出整合硬件设备、捕获芯片、配套试剂盒和生信工具的高通量单细胞测序整体解决方案,为单细胞测序技术推向精准医学应用奉献中国创新智慧。关于德运康瑞苏州德运康瑞生物科技有限公司(http://www.dynamic-biosystems.com/)是一家单细胞与空间多组学技术平台型企业,围绕单细胞富集与检测、单细胞测序、空间多组学技术,满足不同应用场景下的分析需求,公司聚焦挖掘在肿瘤精准医学、优生优育以及药物发现领域的巨大潜力,致力于推动精准医疗向单细胞与空间组学时代迈进,助力生命科学和临床医学,为人类健康事业贡献中国智慧。
  • 新型高性能基因编码的环磷酸腺苷荧光探针
    近日,中国科学院深圳先进技术研究院生物医学与健康工程研究所生物医学光学与分子影像研究中心研究员储军课题组在《自然-通讯》(Nature Communications)上,发表了题为A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging的研究论文,报道了高性能基因编码的环磷酸腺苷(cAMP)荧光探针及其应用。  cAMP是细胞内关键第二信使,可整合来自多种G蛋白偶联受体(GPCR)的信号,在学习与记忆、药物成瘾、运动控制、免疫、肿瘤、代谢等过程中发挥重要作用。活细胞和活体水平的cAMP分子浓度变化的高时空分辨率荧光成像是解析cAMP信号通路及其生物学功能的重要基础。因此,开发高灵敏的cAMP荧光探针成为研究复杂生物过程的关键。与非基因编码探针(染料和材料类)相比,基因编码探针具有低毒性、低背景、可遗传、可定位特定细胞亚结构或特定细胞等优点,在生命科学基础研究中具有优势。然而,现有的50多个基因编码的cAMP荧光探针或灵敏度低(荧光变化最大只有1.5倍),或荧光亮度较暗,较难监测活体中微弱的内源性cAMP变化,限制了生理和病理状态下cAMP分子调控机理和功能的研究。  为了开发适用于活体检测的高灵敏度探针,研究人员将环化重排绿色荧光蛋白(cpGFP)插入细菌MlotiK1通道的cAMP结合结构域(mlCNBD)中。经过插入位点筛选、连接肽优化、荧光蛋白及感应模块优化,研究得到了具有高亮度、高灵敏度、合适亲和力和快响应速度等特征的高性能基因编码cAMP绿色荧光探针(G-Flamp1)。晶体结构显示G-Flamp1探针的连接肽具有独一无二的结构:其中一个连接肽是一个非常刚性的 β-strand 结构,这在其他晶体结构已知的环化重排荧光蛋白探针中是不存在的,为开发其他高性能探针提供了新思路和新方法。  在体外实验中,结合/未结合cAMP的G-Flamp1有不同发色团环境。G-Flamp1在450 nm(单光子)或者900-920 nm(双光子)激发下,动态范围达最大,即ΔF/F0约为13。G-Flamp1与cAMP亲和力适中,其解离常数Kd值为2.17 μM。G-Flamp1可在亚秒时间分辨率上检测cAMP动态变化。在培养细胞中,该探针均匀分布在细胞质和细胞核中,本底荧光亮度介于同类探针cAMPr和Flamindo2之间。G-Flamp1探针在活细胞中的动态范围达到了12倍,是目前少数几个动态范围在10倍以上的荧光蛋白探针之一。同时,该探针具有良好的特异性和可逆性(图1)。  研究人员将G-Flamp1探针应用在果蝇这一模式生物中。果蝇脑部蘑菇体(mushroom body)的Kenyon细胞中cAMP信号通路在气味相关的记忆中发挥关键作用。研究首先获取了Kenyon细胞中表达G-Flamp1探针的转基因果蝇,而后利用双光子成像发现,果蝇受到气味或电击刺激时,蘑菇体不同子区域呈现不一样的cAMP信号时空变化(图2),暗示不同子区域可能在联想性学习中起着相对独立的作用。  为验证G-Flamp1探针在活体动物中检测cAMP 动态变化的实用性,研究人员利用腺相关病毒在小鼠运动皮层中共表达绿色G-Flamp1探针和红色jRGECO1a钙探针。活体双光子成像揭示了跑步运动中细胞特异性的cAMP信号,并与钙信号无明显相关性(图3)。这反映了小鼠运动时大脑皮层M1神经元反应的异质性。  研究人员在小鼠大脑深部的伏隔核(NAc)脑区中表达G-Flamp1探针,并利用光纤记录听觉巴甫洛夫条件反射任务中该脑区cAMP信号的变化。结果表明随着训练的熟练,小鼠得到奖赏时cAMP信号幅度在降低,而听到相应声频信号时cAMP信号幅度在升高(图4);该特性与多巴胺信号类似,暗示多巴胺释放引起了cAMP信号。综上,G-Flamp1探针的高信噪比和高时间分辨率能够高灵敏检测到活体小鼠中内源性cAMP信号的动态变化。  该研究开发了一种适用于活体检测的cAMP荧光探针,并初步揭示了果蝇和小鼠等模式生物在特定行为过程中特定神经元的cAMP信号变化的规律,为进一步阐释cAMP信号的调控和功能奠定了基础。结合高内涵药物筛选平台,该探针将尝试应用于针对GPCR受体的药物筛选,以期发现更多的具有临床价值的GPCR药物。  研究工作得到国家重点研发计划、国家自然科学基金等项目的资助,并获得北京大学、中科院神经科学研究所、中山大学附属第五医院、美国堪萨斯州立大学、华中科技大学等的支持。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 剖析:贝瑞和康在港成立公司之策略
    随着新一代测序技术的发展,其催生的临床基因检测行业得到爆发式增长,尤其以无创产前检测(NIPT)市场的战争最为焦灼。贝瑞和康、华大基因、达安基因、博奥、安诺优达等公司纷纷进入产前检测领域,试图赢得一份市场。贝瑞和康作为最早涉足这一领域的服务商,行事风格一向低调,向来都是&ldquo 不鸣则已,一鸣惊人&rdquo 。今年7月,贝瑞和康宣布与Illumina公司达成战略合作,共同开发适用于中国临床使用的NextSeq CN500测序仪,且拥有该测序仪在中国的生产权和销售权,消息一出,遍地哗然。就在12月1日,贝瑞和康公开宣布与香港中文大学联手,在香港创建Xcelom公司,为港人提供优质的NIPT检测。  深谙NIPT检测领域的人士必定明白这次贝瑞和康手笔之大重。笔者细细品味这篇新闻中的信息,闻到一股硝烟弥漫下无声的火药味。  贝瑞和康在港的合作者是香港中文大学,乃是无创DNA产前检测技术的发源地。最早于1997年发表于《The Lancet》的文章是在香港中文大学任职的卢煜明教授及其研究小组的科研成果。卢教授及其所带领的团队,第一次在母体外周血中扩增得到了胎儿游离DNA(cffDNA),并第一次证明母血外周血浆存在胎儿的全基因组cffDNA序列,使得临床上得以实现利用母体外周血浆进行针对胎儿染色体非整倍体的无创产前检测。随即,这项技术便被世界范围内的产前诊断实验室广泛应用,全球范围内已超过百万人因此受益。在中国,贝瑞和康最早完成了这项技术的临床试验并实现技术推广。此后,华大基因、安诺优达、达安基因、博奥等公司纷纷涌入,一时间NIPT成为新一代测序焦点中的焦点。卢煜明本人也因在此领域的卓越贡献而当选美国科学院院士。他在这一领域所发表的文献高达107篇,多篇论文刊载于世界顶尖期刊,拥有多项国际专利。一言以概之,卢煜明教授堪称NIPT教父。  而贝瑞和康与香港中文大学建立的合作,笔者认为恐怕要追溯到贝瑞和康的创始人之一周代星与卢煜明教授的渊源。2007年,时任Illumina亚太区测序市场销售总监的周代星与香港中文大学卢煜明教授探讨将新一代测序技术应用于NIPT的可行性,并将设想付诸于临床试验,取得100%符合率的惊人结果。随后,周代星在中国大陆成立贝瑞和康生物技术有限公司,开展无创产前检测项目。这期间并未发现他们再有合作的蛛丝马迹,直到2013年4月在由北京协和医院主办的中国母胎医学大会上再次见到两人随行,相谈甚欢。笔者猜测两人也许因共同的领域而私交也不错。随着贝瑞和康在中国大陆市场的不断发展,以及新技术的不断更新,如何寻求更广阔的出口势必成为周代星及其团队不得不提上日程的议题,与卢煜明教授加深合作或许是贝瑞和康商业发展重要的一步。  且听笔者大胆分析:  提到香港中文大学,提到卢煜明教授,就不得不提NIPT的专利。在海外市场上,提供NIPT服务的四大公司Sequenom、Verinata Health (2013年被Illumina收购)、Ariosa Diagnostics 和Natera一直以来为就知识产权打得不可开交。2013年,美国最高法院一锤定音的&ldquo Myriad案&rdquo 给从事基因检测的公司一个明确信号--具备&ldquo 自然产物&rdquo 特性的,如基因或基因组DNA,不应作为专利进行授权。那么问题来了,一向以知识产权为重要竞争手段的技术服务型公司,如何体现技术优势以在市场竞争中博得头筹?卢教授作为主要发明人之一所申请的&ldquo 280&rdquo 专利覆盖以基因组测序技术检测胎儿染色体非整倍体的相关方法、系统和器械。明确指出&ldquo 采用基因组测序方法&rdquo 和&ldquo 测序数据分析方法&rdquo 来更严格的规定NIPT项目中受专利保护的对象。笔者推测,贝瑞和康与香港中文大学合作创建的Xcelom公司,是否也同时共享其专利技术?贝瑞和康是否会通过这些专利在市场上有所动作?目前我们不得而知,但时间很快就会回答我们。  值得注意的是,香港本身地域位置的特殊性及重要性。香港由于具有得天独厚的地缘优势、便捷的跨境贸易优势和面向全球的服务优势,成为亚洲最为活跃的经济体之一。在临床检测领域,香港不受大陆诸多行政政策的限制,无论是在对内(面向香港或大陆)或对外(面向全球),都有着更灵活便捷的操作空间。那么问题又来了,面对同行华大基因海外业务的风生水起,贝瑞和康的下一步策略是什么?仅仅是为8万香港孕妇提供NIPT吗?还是酝酿着一盘更大的棋局?前不久贝瑞和康公布的cSMART技术在无创单基因病领域的最新进展、以及其在癌症检测领域释放出的积极信号,深刻的预示着我们,一场更精彩的市场博弈正在悄然拉开帷幕。  最后,回归到Xcelom公司本身。它的出现无疑为香港孕妇在接受NIPT时提供了更多选择。目前在香港市场有多家NIPT服务商,比如华大基因、Verinata Health等公司。一向以优质服务著称的贝瑞和康与行业开山鼻祖的合作,会给当地孕妇带来全然不同的服务体验。这一动作也会对这些公司在港业务产生深远的、持久的影响。  猜测归猜测,市场格局的走向还要靠事实来验证。自今年2月份卫计委&ldquo 叫停令&rdquo 颁布以来,无创产前检测强劲的增长势头瞬间跌入谷底。但所有人都明白,这其实是NIPT从灰色运营走上光明大道的前奏,是行业健康发展的必经之路。因此,在即将过去的一年里,各家公司都卯足了劲,使出各种解数度过寒冰期,并紧张的进行着资质申请、技术积累和资源布局,向来低调的贝瑞和康在这样紧张时刻释放着如此强有力的信息。有理由相信,2015年将会是无创产前检测领域极不寻常的一年。
  • 吴瑞先生:DNA测序之父
    第一次知道吴瑞先生 (图一) 的名字,是看了饶毅老师写的博文《君子爱&ldquo 生&rdquo 得之有道》,这篇博文后来收录在《饶议科学I》里,过年期间又读过一遍。其中有一句写的很有意思:&ldquo 1971年吴瑞的引物延伸,是测序的一个关键步骤,给奖是可以的&rdquo 。看到这儿我笑晕了:这都哪儿跟哪儿啊?所有课本上讲的都是Sanger测序法,所以显然是Sanger的贡献最大,况且诺奖都发了,还争这个有意思吗?另外,中国的语言历来有内涵,一般来说,&ldquo 可以资助&rdquo 的意思就是&ldquo 不可以资助&rdquo ,所以饶老师写博客为华人挣功劳的心意是挺好的,但显然不符合事实,对吧?咱读这篇文章的时候就是这么想的。  一般来说,大家认为吴先生的贡献主要有三个:第一,搞CUSBEA,这样当年很多中国杰出的学生有机会去国外读研究生,获得成功并成为当代的学术精英 第二,是所谓的&ldquo 植物遗传工程之父&rdquo ,看起来很炫的一个研究方向 第三,培养了个很牛的学生,Jack Szostak,2009年因为端粒方面的研究拿了诺奖。我没讲错?那问题在于,这些评价合适吗?首先咱说搞CUSBEA这事儿,反正我没经历过CUSBEA,并且我大学毕业那会儿,大家一般都是自费申请出国留学,当然现在国内和国外交流的多,公派和自费都有,所以CUSBEA既然是个特殊历史时期的特殊历史事件,这事儿当代年轻人也基本都没有经历过,至于一帮功成名就的大牌们在玩儿中年情怀,挥斥一下方遒,咱有空那就看看景儿得了,反正过去就过去了也没人再关心这事儿。所以,很抱歉,玩儿情怀这事儿除了暂时性的鼓励一下CUSBEA同学们的忆苦思甜之外,基本上是不可能获得年轻人的共鸣。再者来说,吴先生搞CUSBEA,那也与他的学术无关,属于科研和社会服务方面的贡献。其次,吴先生培养了个拿诺奖的学生,最多也只能说明吴先生教学搞的不错,但没准儿人家小伙儿本来就是个聪明人儿,不在吴先生实验室没准儿也照样拿奖,所以学生拿诺奖这事儿不错,但也不能算啥。最后,吴先生一般被称为&ldquo 遗传工程之父之一&rdquo ,或者&ldquo 植物遗传工程之父&rdquo 。抱歉哦,咱基本不做植物,所以毫无任何感觉,而且遗传工程显然是先在动物里做做,吴先生不过是搬到植物学研究里,也没啥贡献是吧?并且,吴先生也没有什么不得了的荣誉,也不是美国科学院院士,所以是不是据此可以判断吴先生在科研方面的没有突出的贡献?  当然你要真这么想,那你就错了,并且本篇也没得写了。之所以写本篇的原因,是因为本学期我要给本科生上《生物信息学》这门课,之前的内容有点儿老了,所以想讲讲第二代测序方面的数据分析。网上查了之后发现基因组所的于军老师等人翻译了一本《第二代测序信息处理》,应该是这方面第一本也是目前唯一一本教科书,于是买了回来看。第一段话我才读一半,就已经暴跳如雷了:翻的啥啊?上来就说1971年吴瑞先生发表过类似Sanger法的测序方法。这有问题啊,地球人都知道Sanger于1975年在Journal of Molecular Biology上发表&ldquo A rapid methodfor determining sequences in DNA by primed synthesis with DNA polymerase.&rdquo ,1977年Gilbert等人在PNAS上发表&ldquo A new method for sequencing DNA&rdquo 建立化学裂解法,同年Sanger在PNAS上发表&ldquo DNA sequencing with chain-terminating inhibitors&rdquo ,改进了之前的方法,从而确立了DNA测序的主流方法Sanger法。所以在DNA测序方面,吴先生有啥贡献?怀疑是不是中文版翻译错了,因此咱专门买了本英文原版(图二)。  看上去老外没有开玩笑,因此咱专门查了一下文献,可以肯定的是:第一,吴先生提出了第一个DNA测序方法 第二,从1968年至1972年这几年的时间里,吴先生在DNA测序方面至少有9篇,花了这么长的时间,发了这么多文章,你不会真的认为吴先生就是做着玩儿的吧?此外,1973年吴先生继续发了3篇,1974年发了7篇,所以在Sanger1975年开始做测序的时候,吴先生已经发表了至少19篇论文!第四,吴先生1968年的第一篇论文只测定了DNA的碱基组成,没有测定顺序,但1970年这篇文章已经是正儿八经测定了DNA的序列。所以老外这本书写的也是有问题,第一个既测定DNA碱基组成又测定出顺序的,是吴先生1970年的论文。  吴瑞先生1968~1972年关于DNA测序的论文列表:  1. Wu R,Kaiser AD. Structure andbase sequence in the cohesive ends of bacteriophage lambda DNA. J Mol Biol.1968 Aug 14 35(3):523-37. (仅测定组成而没有顺序)  2. Wu R. Nucleotide sequence analysisof DNA. I. Partial sequence of the cohesive ends of bacteriophage lambda and186 DNA. J Mol Biol. 1970 Aug 51(3):501-21. (测定DNA序列的第一个方法)  3. Wu R,Taylor E. Nucleotidesequence analysis of DNA. II. Complete nucleotide sequence of the cohesive endsof bacteriophage lambda DNA. J Mol Biol. 1971 May 14 57(3):491-511.  4. PadmanabhanR, Wu R. Nucleotidesequence analysis of DNA. IV. Complete nucleotide sequence of the left-hand cohesiveend of coliphage 186 DNA. J Mol Biol. 1972 Apr 14 65(3):447-67.  5. Wu R.Nucleotide sequenceanalysis of DNA. Nat New Biol. 1972 Apr 19 236(68):198-200.  6. DonelsonJE, Wu R. Nucleotidesequence analysis of deoxyribonucleic acid. VI. Determination of 3' -terminaldnucleotide sequences of several species of duplex deoxyribonucleic acid usingEscherichia coli deoxyribonucleic acid polymerase I. J Biol Chem. 1972 Jul25 247(14):4654-60.  7. DonelsonJE, Wu R. Nucleotidesequence analysis of deoxyribonucleic acid. VII. Characterization ofEscherichia coli exonuclease 3 activity for possible use in terminal nucleotidesequence analysis of duplex deoxyribonucleic acid. J Biol Chem. 1972 Jul25 247(14):4661-8.  8. PadmanabhanR, Wu R, Bode VC. Arrangementof DNA in lambda bacteriophage heads. 3. Location and number of nucleotidescleaved from lambda-DNA by micrococcal nuclease attack on heads. J MolBiol. 1972 Aug 21 69(2):201-7.  9. PadmanabhanR, Wu R. Nucleotidesequence analysis of DNA. IX. Use of oligonucleotides of defined sequence asprimers in DNA sequence analysis. Biochem Biophys Res Commun. 1972 Sep5 48(5):1295-302.  另外,吴瑞先生2008年2月10日去世后,2009年《中国科学》上发表了一篇悼念,节自康奈尔大学的官方讣告,上来就说&ldquo In 1970, Wu developed the first method for sequencing DNA&hellip &rdquo ,肯定了吴先生在DNA测序方面的贡献,因此称吴先生为&ldquo DNA测序之父&rdquo ,并不过分。  这样的话,你肯定有疑问:吴先生在DNA测序方面可能是最先做的,但并不是做的最好的,对吧?所以不肯定吴先生是有道理的?没有道理,这是因为,Sanger测序法,最核心的是测序思想,而不是具体的技术。因为对技术革新有最突出贡献的是Leroy Hood,第一代测序仪也是根据他的方法发明的。并且现在第二代、第三代测序技术也陆续都发展起来或正在发展,要是比谁做的最好,那诺奖发给谁也不可能发给Sanger。况且诺奖一般不关心改进,而是关心原创。讲科学贡献,不讲原创者而是讲改进者,这么胡扯好意思吗?  你肯定要继续问:那吴先生就没意识到自己的贡献?答:他老人家意识到的。2014年新加坡有位搞科学史研究的学者Lisa A. Onaga,写了篇论文&ldquo Ray Wu as Fifth Business: Deconstructing collective memory in the history of DNA sequencing&rdquo ,将吴先生描绘成&ldquo 第五先生&rdquo (Fifth Business),即很重要但是莫名其妙就被忽略掉的关键人物。洋洋洒洒写了十多页,对吴先生的生平和学术讲的非常详尽,并且讲到了吴先生的抗议。  吴先生怎么抗议的呢?事情这样的:2007年5月11日,《科学》杂志出刊的时候有个附带的夹页,描绘了从1865年孟德尔开始一直到2007年DNA测序技术的发展史。吴先生看到了之后很不爽,写信给Science去抗议。文章中写道,虽然吴先生认为Sanger法是DNA测序中的重大突破,&ldquo 然而,这个方法仍然是基于我的在序列分析之前标记DNA的位置特异性引物延伸原理&rdquo ( &lsquo However, the method was still based on my location specific-primer-extension principle in labeling the DNA before sequence analysis&rsquo )。吴先生继续抗议,如果你同意加上我的贡献,你可以写:吴发明了第一个DNA序列分析方法,即引物延伸策略( &lsquo &lsquo Wu introduced the first method for DNA sequence analysisby introducing the primer-extension approach.&rdquo )。  注意哦,作者据称是引用吴先生的原话,如果作者引用有误还请给他发信批评。所以,吴先生很清楚自己的贡献,也非常清楚自己应该有的科学和科学史地位,并且也努力去争取获得认可,虽然没有成功。  基因组测序计划,与原子弹计划和登月计划并称为人类有史以来规模最大、最宏伟、最壮观的三大科研项目。基因组测序对生命科学和医学研究有直接的促进作用,影响深远,并直接促成了基因组、蛋白质组、生物信息学、系统生物学等多个领域的产生和发展,无论怎么突出其重要性都不为过,并且美国于2011年提出的、2015年通过的&ldquo 精准医学计划&rdquo ,其研究基础正是1988年提出的&ldquo 人类基因组计划&rdquo 。吴瑞先生作为第一个提出DNA测序方法,确定了&ldquo 引物延伸&rdquo 的基本原理,理所当然是&ldquo DNA测序之父&rdquo ,也理所当然应该成为大家尊敬并崇拜的顶级学者。吴先生的科学史地位,至少应当与Sanger大致相当,后者因为蛋白质测序和DNA测序两次获颁诺奖,可称为&ldquo 测序之王&rdquo 。因此,未来我们介绍Sanger在DNA测序方面的贡献时,应当加上:基于吴瑞先生提出的&ldquo 引物延伸&rdquo 原理,Sanger做了重要改进。仅此而已。原创的贡献,既然是吴先生做出的,就不应该抹杀。  当然我知道你还要问:吴先生这么大贡献,咋诺奖也没发给他?这个问题其实,你懂的,对吧?Shirley的信是这么写的:  Being a Chinese immigrant in the US in the 50&rsquo s, the social and racial challenges Ray Wu faced at that time must be tremendous. Without social backing and connections, he got where he did purely by his scientific genius and good heart. If he was a Caucasian scientist from UK or US, or even if he was in the current era, his scientific contributions would have been better recognized. Sometimes we don&rsquo t have to pay too much attention to awards (Ray was never elected to the National Academy of Science!) or H-index (my colleague Donna Neuberg just had her H-index cross 3 digits), but objectively evaluate someone by their overall impact to the scientific community.  吴瑞先生,1928年8月14日出生于北京,后来在美国读书的时候,由于语言问题听不懂报告,所以付出了比&ldquo 一般人&rdquo 更多的努力。后来1964年,受到RobertHolley的RNA测序、Sanger的蛋白质测序,噬菌体三主教Max Delbrü ck, AlfredHershey和ArthurKornberg等影响,决心攻克DNA测序的难关,6年后取得成功,并直接的开创了一个波澜壮阔的新时代:基因组时代。  DNA测序之父,实至名归。  作者:薛宇
  • 【瑞士步琦】助您轻松解决RNA的干燥和递送
    RNA 的干燥和递送平台在过去几年中,脂质纳米颗粒(LNPs)已被发现是 RNA 传递的有效载体,有多个传染病和癌症治疗的临床试验可证实。以 mRNA 为载体的疫苗对于治疗严重疾病如严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)的成功一定程度上可归功于开发了包含 mRNA 的 LNPs 以实现有效的细胞内传递。本文探讨了喷雾干燥工艺作为冻干以外的另一种脱水过程,可以提高 LNPs 的稳定性并提供可替代的给药途径。▲图1.聚乙二醇化脂质纳米颗粒和脂质体的示意图RNA 疫苗的挑战疫苗液体配方的稳定性问题可能成为其工业化和分销的障碍。高温可能会影响疫苗的稳定性因此,通常需要冷链系统来保持疫苗的活性。mRNA 储存过程中的化学不稳定性包括 N-糖苷键的水解、磷酸二酯键的水解、胞嘧啶衍生物的脱氨和核碱基或糖部分的氧化。然而,当疫苗转化为干粉时,可获得更强的热稳定性和更长的保质期。利用冻干技术制备 RNA 疫苗冻干或冷冻干燥是干燥疫苗最常用的方法,处理过程由三部分组成:组成部分形成冰晶的冷冻过程通过低温升华除去冷冻水的初级干燥过程通过解析干燥除去残留水的次级干燥过程较高的冷冻温度、较慢的冷冻速率和较长的次级干燥时间都有利于干燥过程的稳定性。然而,在这个复杂的过程中会产生应力源,如冷冻和干燥应力。冰对颗粒产生的机械应力和 PEG 层的结晶会导致颗粒融合,这些都是在冷冻过程中可能发生的情况。冷冻保护剂或冻干保护剂等辅料是在冻干前添加到颗粒悬浮液中的稳定剂,最常用的是糖类(如海藻糖)或糖醇(如甘露醇)。关于使用冷冻保护剂或冻干保护剂来稳定纳米颗粒的几个理论中,非晶玻璃理论最为广泛接受,具体是指在冷冻过程中,冷冻保护剂凝固成颗粒周围的无定形玻璃,保护它们免受融合。2007 年,Jones 等人报道,在冷冻干燥之前,在自扩增 RNA 中加入海藻糖,可以在冷藏条件下保持至少 10 个月的稳定性,并且在转染后,观察到了高水平表达[1]。几年后,mRNA 疫苗对传染病(流感)的有效性首次在动物模型中得到证实。冻干的 mRNA 流感疫苗在小鼠免疫前 37°C 可以稳定保存 3 周[2]。该研究小组在后来的一篇论文中报道,在 70°C 条件下暴露于抗狂犬病感染的非复制 mRNA 疫苗并不影响其保护能力[3]。CureVac 也报道,另一种同样抗狂犬病的 mRNA 疫苗经海藻糖冻干,在 5-25°C 下可以稳定保存3年,在 40°C 可稳定保存 6 个月[4]。最近,发表了一项关于 mRNA 负载 LNPs 的研究,Zhao 等人比较了两种不同的长期储存mRNA纳米颗粒的方法。他们观察到,尽管使用 20% (w/v)的蔗糖或海藻糖稳定了纳米颗粒的大小和 mRNA 的体外递送效率,但相同的颗粒在体内递送效率不高。原因可能是在冻干和重构过程中纳米颗粒结构发生了变化。在添加 5% (w/v)蔗糖或海藻糖的液氮中冷冻装载 mRNA 的 LNPs 可能是长期储存的替代方案[5]。利用喷雾干燥技术制备 RNA 疫苗喷雾干燥提供了一种替代方法来生产干燥疫苗,这种疫苗能耗更低,操作成本更低,并且避免了细胞冷冻和高真空。喷雾干燥是一个连续的干燥过程,它包括四个主要阶段:主要阶段液体进料的雾化热干燥气体与雾化喷雾的接触干燥颗粒的形成颗粒的气固分离一个重要的观点是,喷雾干燥疫苗可用于非传统给药途径,如口服、肺部或鼻内途径。尽管有这些优点,但在喷雾干燥过程中,由于高温和剪切力,系统可能不稳定。热应力和剪应力都增加了动能,加剧了颗粒的碰撞。在此过程中脂质部分熔化也会导致颗粒聚集,因此建议使用熔点高于 70℃ 的脂质。粒径分布、聚合物分散性指数(Pdi)接近1和高变异系数的差异是颗粒聚集的信号。可以通过添加合适的稳定剂或使用酒精来代替水溶液分散介质可以降低热应力。另一方面,可以通过使用低脂质含量或添加稳定剂来最小化剪切应力。糖类是最常用的稳定剂,但也常添加其他辅料,如二价离子、蛋白质、表面活性剂和聚合物。1998 年,医药领域首次对脂质纳米颗粒进行喷雾干燥研究,其作者展示了将固体 LNP 悬浮液成功转化为粉末形式,使用非常低的脂质浓度(1%)和高海藻糖浓度(25%)作为喷雾干燥基质[6]。在喷雾干燥之前,在脂质纳米颗粒上添加生物聚合物,如酪蛋白、果胶或木瓜蛋白酶,可以有效防止 LNP 聚集。Gaspar 等人用木瓜蛋白酶层覆盖固体 LNP,然后用海藻糖或甘露醇喷雾干燥[7]。也有报道将装载姜黄素的固体 LNP 用一层果胶进行喷雾干燥,然后进行化学交联。交联确实可以改善固体 LNP 的物理化学性质[8]。作者也使用了不同的天然多糖,如果胶、卡拉胶、羧甲基纤维素、阿拉伯胶和海藻酸盐作为壁材,但都发生了颗粒聚集。而用果胶或卡拉胶喷雾干燥含有 20-30% 油酸的 LNP 可获得稳定的粉末颗粒[9]。文献中报道了聚合物杂交 LNP,例如用透明质酸与聚丙烯酸交联制备了阿昔洛韦载药聚合物混合脂质纳米颗粒。与常规制剂相比,阿昔洛韦的溶解度可提高 30%,提高了其作为口服给药系统的生物利用度[10]。最近,Dormenval 等人用甘露醇作为稳定赋形剂制备了喷雾干燥负载 siRNA 的聚合物杂化 LNP。该小组还打算使用微流体技术进一步扩大工艺规模[11]。目前为止,还没有商业化的喷雾干燥疫苗。然而,已有药企开展了一些研究,特别是以流感和结核病为重点的研究。关于喷雾干燥的 mRNA 治疗目前报道研究较少,与喷雾干燥的 mRNA 载药 LNPs 也较少。Patel等人首次报道可吸入的 mRNA 递送,在他们的研究中, mRNA 通过雾化方式由超支化聚氨基酯(hPBAEs)传递给小鼠,在小鼠肺上皮中观察到高水平的基因表达[12]。最近香港大学的研究人员首次表明,可以使用喷雾干燥和喷雾冷冻干燥制备可吸入的 mRNA 干粉。这种聚乙二醇化的 KL4/mRNA 复合物在健康小鼠的肺中产生了良好的基因表达,并且没有引起明显的毒性和炎症反应[13]。结论基于临床前和临床研究,使用 LNPs 作为纳米载体的 mRNA 疫苗已显示出治疗多种化学疾病包括传染病和癌症的巨大潜力。LNPs 与其他载体相比具有多种优势: mRNA 保护、更高载荷的递送、靶配体的结合以及与佐剂的共传递。通常情况下,mRNA 疫苗制剂以液态开发并冷冻储存。为了优化其分布和储存能力,人们对开发耐热的 mRNA 配方产生了兴趣。喷雾干燥是传统冻干技术的一个不错替代选择,因为喷雾干燥在颗粒工程和非传统疫苗给药途径有天然优势。关注瑞士步琦,无论是冻干技术还是喷雾干燥,都能为您的 RNA 干粉制备提供完美解决方案。▲L-300 冻干机▲S-300 喷雾干燥仪5参考文献Jones KL, Drane D, Gowans EJ. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques. 2007 43(5):675–681.Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012 30(12):1210–1216.Stitz L, Vogel A, Schnee M, et al. A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis. 2017 11(12):e0006108.Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017 390(10101):1511–1520.Zhao P, Hou X, Yan J, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020 5(2):358–363.Freitas C, Müller RH. Spray-drying of solid lipid nanoparticles (SLNTM). Eur J Pharm Biopharm. 1998 46(2):145–151.Gaspar DP, Serra C, Lino PR, et al. Microencapsulated SLN: an innovative strategy for pulmonary protein delivery. Int J Pharm. 2017 516(1–2):231–246.Wang T, Ma X, Lei Y, et al. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces. 2016 148:1–11.Wang T, Hu Q, Zhou M, et al. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology. Int J Pharm. 2016 511:219–222.Sithole MN, Choonara YE, du Toit LC, et al. Development of a novel polymeric nanocomposite complex for drugs with low bioavailability. AAPS PharmSciTech. 2018 19:303–314.Lokras C, Cano-Garcia A, Wadhwa G, et al. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. Pharm Res. 2019 36:142.Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019 31:e1805116.Qiu Y, Man R, Liao Q, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019 314:102–115.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制