当前位置: 仪器信息网 > 行业主题 > >

二水合连二硫酸钠

仪器信息网二水合连二硫酸钠专题为您提供2024年最新二水合连二硫酸钠价格报价、厂家品牌的相关信息, 包括二水合连二硫酸钠参数、型号等,不管是国产,还是进口品牌的二水合连二硫酸钠您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二水合连二硫酸钠相关的耗材配件、试剂标物,还有二水合连二硫酸钠相关的最新资讯、资料,以及二水合连二硫酸钠相关的解决方案。

二水合连二硫酸钠相关的资讯

  • 味精里掺杂盐和硫酸镁 谷氨酸钠严重不达标
    味精颗粒  杂味的味精  小王是个挺较真的人。最近他和朋友到一家饭馆吃饭,觉得菜比往常咸了很多。服务员解释说可能是味精放多了。服务员的这番解释让小王感到非常奇怪,菜炒咸了,跟味精有什么关系呢?较真的小王回到家就上网查了起来。  小王:在网上了解会往里边掺加一些盐、糖或者是淀粉其它一些东西。  小王在网上查询后了解到,味精,学名“谷氨酸钠”,成品为白色柱状晶体,可以增加食物的鲜度,不应该有咸味。同时,小王还发现,有很多网友爆料说,味精里其实并不全是“谷氨酸钠”。真得是这样吗?为了了解更多,小王又到市场走了一圈,发现了一些他以前不知道的事。  小王:我到市场以后,通过跟商户交谈,商户就跟我说这味精里边,它的谷氨酸钠的含量都不够,里边它本身就是,往里边掺很多东西。  “炒菜不用放盐了”  小王打听到,这些大包装的袋装味精虽然都标注了谷氨酸钠大于等于99%,但是里面却并非都是纯粹的谷氨酸钠,那都加了什么呢?按照小王提供的信息,记者走访了青岛市的两个批发市场。  在青岛市抚顺路蔬菜副食品批发市场里有数十个批发调味料的摊位,每家都有几种牌子的味精在卖。记者在市场里看到,这里销售的味精有三种,无盐味精、加盐味精和增鲜味精,三种味精当中的谷氨酸钠含量也各不相同。摊主告诉记者,这种2.5公斤装的“无盐味精”,谷氨酸钠含量能达到99%以上,销量最好。  记者:这种一般你一个月能走多少?(好了能走200袋,不好能走150袋。)  商户:这一个月我光在这个地方就十几吨吧。  商户告诉记者,这种2.5公斤装的味精,普通家庭并不常用,主要供应酒店、饭馆等一些餐饮机构。  商户:这个货就可以呀,一般酒店用都用这种。  商户:基本都是川菜馆。  商户:饭店都吃。  商户:反正就是周边这几个饭店,还有学校,那些大学,大学那一要就一大包。  记者在市场上发现,虽然都是2.5公斤装的无盐味精,可是价格却不同,从十八九元到二十八九元不等,一袋味精的价格竟然能相差近十元钱,这是为什么呢?  商户:你去检验去吧,里边全是盐,你不用看,都是一个厂家的,你不信拿着上工商吧,你这两袋都拿着,你去检验去吧,我给你出钱不要紧。  味精里加盐?这不是无盐味精吗?怎么会加盐呢?怕记者不信,商铺老板还认真地指给记者看,袋子里一粒粒的细碎的小颗粒,老板说那就是盐了。  商户:看见没有?这都是盐,你看盐的晶体,炒菜不用放盐了呗,这个绝对不用放盐。  果然,这种售价为22元标称为谷氨酸钠含量99%以上的无盐味精里除了针状的结晶外,还有一些圆形的小颗粒,跟味精的的形状完全不同,尝起来咸咸的。  这位经营者说,加盐是为了降低生产成本,盐掺得越多,自然厂家赚得也就越多。  商户:这个五斤味精里边掺上半斤盐,(半斤盐差多少钱?)它那五元多钱一斤一下子成了多少?一下减了三四元,你掺上一斤呢,好味精的话五斤掺上一斤盐没问题的,绝对没问题。  包装是一回事实际含量是另一回事  记者走访发现,其实,往无盐味精里掺盐在市场上已经是个公开的秘密了。在青岛市城阳蔬菜调味品交易批发市场,一些经营者告诉记者,因为味精里掺了大量的盐,所以,一些饭馆里的厨师炒菜根本不再放盐,只放味精就行了。而且,很多杂牌味精都是买了别家的纯谷氨酸钠味精自己再勾兑包装后出售的。  商户:等于就是说这些味精,全是买它家的味精作原料,然后勾兑的,再做成的味精,就它家是原料。  商户:(一般都加啥呀?)加盐加糖和淀粉,(那不能看出来吗?)你要是亮度不好的话,发黑的话里边就加了,盐它根本就不像味精那么亮,加上盐它没那么亮。  虽然在外包装上标注的,都是谷氨酸钠含量达99%以上的无盐味精,但商户们心里很清楚,包装上标的是一回事,里面实际含量又是另一回事。关键还要看价格。  商户:我说要是便宜的你就算呗,肯定是加盐加的就多,越便宜加盐越多,没听懂啊?盐便宜,盐才一元来钱一斤。  商户:6.5元一斤,盐才几角钱一斤,这不就钱出来了。  记者在市场上还了解到,由于近一段时间市场加强了管理,工商部门要求产品都要由厂家提供检验合格证书才能销售,所以许多味精厂把过去的产品包装换掉了,本来是标称99%的谷氨酸钠味精,现在都标成了80%。  发苦的味精  其实味精掺假,不仅仅局限在加盐上,还有其它的东西!因为味精颗粒有大小之分,而盐和淀粉的颗粒比较细,所以厂家一般会掺到小颗粒的味精里。那么大颗粒的味精里又会掺些什么东西呢?  记者购买了一些元味苑牌的无盐味精,它标称谷氨酸钠达到99%以上。但记者打开包装后发现,里有一些形状与味精相似的结晶体,个头要比味精的颗粒大些,尝起来有一点苦涩的味道。随后,记者在青岛建航牌的无盐味精中也发现了这种味道发苦的大个晶体。  小王:有的味精颗粒比较小,里边会掺加一些盐、糖,这都能看出来,还有一些颗粒比较大的,长粒的跟味精很相似的一种味精,但是颜色上不一样,用嘴一尝呢,它略微有种发苦的味道,跟味精的味道是不一样的,所以我就怀疑我说这种是什么东西。  这个形状跟味精相似,味道却大不一样的晶体到底是什么呢?除了盐、糖以外,味精里还加了其它的东西吗?  这袋名为元味苑的味精,是由青岛知味居味精有限公司生产的,记者按照包装上的厂址找了过去。但到了村口打听了很久,也没人听说过有家味精厂,几经周折,记者终于在一个深深的胡同当中,发现了一栋有厂房的大院,但院门口却没有挂任何的名牌和标志。村民们告诉记者,这里就是知味居味精厂。  村民:它家一直就是味精厂。  这个神秘的知味居味精厂位置并不显眼,也不挂任何厂牌,工作人员也很是神秘,不知道它们生产的东西到底加了什么。  添加物不止是盐、淀粉、石膏  记者又来到了一家生产“六合香”味精的厂家,这里的销售人员给记者讲述了一些业内的秘密。  销售人员:因为假的比较多,以次充好的比较多,非常乱,(味精能假到哪去?)加东西嘛,主要是盐,也有加其它的东西,包括最厉害的是在市场上出现的,加乱七八糟不能吃的东西,包括食品添加剂里边的东西。  这位销售员对味精里添加的不能吃的东西欲言又止,接着,他又给我们拿出了一盒他们自己从市场上搜集来的其它厂的掺假味精,并告诉我们,这些产品不论标称谷氨酸钠含量是99%,还是80%,基本上都没有达标。  销售员:(谷氨酸钠百分之八十这个能达到多少?)达到七十四点几吧,百分之七十五吧。  销售员说,别看只比标准低几个点,利润就是这样省出来的。  销售员:它的含量低五个点,每低一个点的味精,它加上盐之后,就得省八十元钱一吨,一个点,你说它差这五个点,它说八十的,给你的是七十五的,那五个点就等于说是四百元钱,这个它还是合算的,一样的钱它多赚四百元钱。  这位销售人员告诉我们,除非他们这些专业人士,不然一般人是看不出来味精里到底有没有掺假。  销售人员:这个里边道道很多,小商贩它越小,猫腻越多,往里边加了很多东西,(都加什么呀?)不好说,有一些业内的一些东西呀,不太想透露,就是对这个行业不好。  在记者的一再追问下,销售员打开了电脑,给记者查起了网页。我们看到了盐、淀粉、石膏等这些添加物。  销售人员:还有厉害的。  除了盐、淀粉、石膏外,还有更厉害的添加物,到底是什么呢?销售人员给记者打开了一个名为味精状硫酸镁的图片。  销售人员:这个就是味精状硫酸镁,一模一样啊,所以说你刚才看那个晶体或怎么样,你根本看不出来是吧,(你发现过有人加了吗?)我发现过。  据这位销售员说,某些小企业,会往味精中添加一种名为味精状硫酸镁的东西。那么,记者和小王在味精中发现的这些针状晶体就是味精状硫酸镁吗?  打破砂锅问到底,小王把自己买到的这种元味苑味精,拿到了当地的通标标准技术服务有限公司进行了检测。国家标准中,没有关于“硫酸镁“的检验方法。因此,检测单位对硫酸根和镁分别进行了检测,结果是,样品中谷氨酸钠的含量只有69.2%,与标称的99%相差30%,每100克味精中,镁的含量达到了2.3毫克。  五、六百元的硫酸镁不可能是食品级的  这些镁是怎么进入味精的呢,记者在网上搜索了一些生产味精状硫酸镁的厂家,它们大都宣称这是味精专用添加剂,记者给其中一些厂打了电话。  记者:味精状的,(你要要,最便宜495一吨),有没有味精厂用过你这个东西?(有,有用过的,他们回去还得掺别的东西。)  记者:你那有硫酸镁吗?(有,550元每吨),供没供过味精厂?(味精厂,多,差不多味精厂都用这个,有的味精厂大点的,一个月差不多七八十吨。)  记者共打了近十个厂家的电话,其中有五六家说自己给味精厂提供过硫酸镁,但一位生产食品级硫酸镁的厂家销售员却说,五、六百元的硫酸镁不可能是食品级的,是不能食用的。  销售员:我觉得500元不可能是食品级的,一到食品级它就不一样了,就比较差的食品级,也得一两千元了,应该就差在,它的卫生各个方面不达标,就是重金属,还有各个细菌,大肠杆菌之类的,还有重金属类的都会超标。  味精的国家标准中要求,谷氨酸钠味精中,谷氨酸钠的含量要达到99%,那么,记者发现的那两种有杂质的味精是否能达到这个标准呢?它里面到底添加了什么呢?  记者在批发市场上购买了两个品牌的无盐味精,分别是青岛市知味居有限公司生产的元味苑牌味精,和青岛建航味精有限公司生产的建航牌味精。两袋味精都标称自己的谷氨酸钠含量为99%,记者把这两袋味精送到了北京市理化分析测试中心进行了检测。  结果显示,元味苑牌味精的谷氨酸钠含量只有70.9%,与99%的要求相差近30%,味精中硫酸盐的含量超出了国家标准,大于0.05%,而且,镁的含量达到了每公斤102毫克。  建航牌味精的谷氨酸钠含量只有63.8%与标准要求相差35%左右,同样,它的硫酸盐含量也大于0.05%,镁含量甚至达到了每公斤143毫克。
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 北京市沃尔玛姜粉检出二氧化硫
    今日,沃尔玛又被检出一批不合格产品,沃尔玛一分店销售的姜粉检出二氧化硫残留。而二氧化硫因其对人体有一定的危害,在我国禁止用于姜粉这类食物。二氧化硫 二氧化硫通常由燃烧硫黄或黄铁矿而得。二氧化硫可以作为食品添加剂,在葡萄酒中很常见,在其它产品中也有使用。这些产品中二氧化硫的使用量都有严格的限制。为保证消费者健康,我国在食品添加剂标准中规定了二氧化硫类物质在食品中的使用范围、使用量及允许最大残留量。硫磺只限于熏蒸蜜饯、干果、干菜、粉丝和食糖;低亚硫酸钠可用于蜜饯、干果、干菜、粉丝、葡萄糖、食糖、冰糖、饴糖、糖果、液体葡萄糖、竹笋、蘑菇及蘑菇罐头,最大使用量为0.40g/kg;二氧化硫可用于葡萄酒、果酒等的最大使用量不应超过0.25g/kg。竹笋、蜜饯、蘑菇及蘑菇罐头、葡萄、葡萄酒和果酒等二氧化硫残留量均不得超过0.05g/kg。饼干、食糖和粉丝残留量不得超过0.1g/kg。二氧化硫的危害 消费者可能会出现恶心、呕吐、头昏、腹痛和全身乏力等不良症状。此外,二氧化硫会破坏酶的活力,影响碳水化合物及蛋白质的代谢,影响人体对钙的吸收。在硫磺熏蒸食品中产生的二氧化硫是强还原剂,能起漂白、保鲜食品的作用,可使食品表面颜色显得白亮、鲜艳。熏制过程中残留的硫遇高温会生成亚硫酸盐、焦亚硫酸盐、低亚硫酸盐等,这些盐类亦具有很好的漂白、抗氧化、防腐等作用。但是二氧化硫及亚硫酸盐等会破坏维生素 B1,影响生长发育,易患多发性神经炎,出现骨髓萎缩等症状,具有慢性毒性。长期食用会造成肠道功能紊乱,损害肝脏,严重危害人体的消化系统。亚硫酸盐还会引发支气管痉挛,引发哮喘。因此,严格控制食品中的二氧化硫及亚硫酸盐等含量,是治理餐桌污染,保障消费者的健康权益的重要工作。二氧化硫测定 (1)亚硫酸盐漂白法:亚硫酸盐是一种无毒无气味的白色结晶粉末,能安全、高效地清除食品中SO2的残留,有效地控制食品中SO2残留量,使之达到国家有关卫生标准,提高食品的质量,并且不会产生二次污染。应用于年糕、米粉、食用菌、蔬菜、水果、果脯、蜜饯、米粉、面制品等食品的加工以及药材、木筷等的加工。同时,它适用于焦亚硫酸钠、亚硫酸钠、硫代硫酸钠等硫化物作为漂白剂的残留物的清除。在使用亚硫酸盐进行颜色处理后,用清水冲洗,使用前先将亚硫酸盐用10-50倍清水稀释,然后将处理的物品在亚硫酸盐稀释液中浸泡15-30分钟 或用水稀释100-200倍,浸泡1-2小时。然后捞起,用清水清洗即可,亚硫酸盐的稀释倍数应视被处理的物品中SO2的残留量而定。亚硫酸盐浓度高,其去除SO2的能力就强。能把处理物品中SO2的残留量1000mg/Kg降到20mg/Kg以下,甚至为0。亚硫酸盐1Kg可处理至少500Kg含硫物料。 (2)气相色谱法:将食品中的游离亚硫酸和总亚硫酸分别用酒石酸提取液提取后,取出一定量在密封容器中使之成为酸性挥发亚硫酸,取顶空气体,注入附有火焰光度检测器(FPD)的气相色谱仪中进行定量。通过将膨化大枣中的结合态二氧化硫在酸性条件下转化为二氧化硫气体,取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量,间接测定样品中的二氧化硫含量,实验结果的相对标准偏差为1.65%。本方法具有操作简便、快速、准确、灵敏度高等优点。 (3) 二氧化硫测定法:北京智云达科技有限公司研发生产的二氧化硫速测盒就可以准确进行二氧化硫测定是否超标。操作也很简单,只要将在 1.5ml 离心管中先滴加 2 滴检测液 A,1 滴检测液 B,上下摇动,混匀;然后加入 1ml 样品液,搅拌或振摇混匀。放置5分钟观察颜色变化,并与色卡对照,就可以得出样中二氧化硫或亚硫酸盐是否超标的信息。
  • 台湾地区修订食品添加剂柠檬酸钠的规格标准
    2013年9月12日,台湾地区“卫生福利部”发布部授食字第1021301699号令,修正“食品添加物使用范围及限量暨规格标准”第三条之附表二,修订了调味剂柠檬酸钠的规格标准。  修正对照表如下:修正规定现行规定§ 11009柠檬酸钠Sodium Citrate别名:Trisodium citrate; INS No.331(iii)化学名称:trisodium salt of 2-hydroxy-1,2,3- propanetricarboxylic acid, trisodium salt of ß -hydroxy-tricarballylic acid分子式:Anhydrous: C6H5Na3O7Hydrated:C6H5Na3O7‧ nH2O (n=2或5) 分子量:258.07(无水)1.含量:本品含C6H5O7Na3 不得低于99%(180 ℃干燥2小时后定量)。2.外观:无色结晶或白色结晶性粉末,无臭。3.性状:1.可溶于水,不溶于乙醇。2.本品应呈柠檬酸盐及钠盐之反应。4.干燥减重:无水柠檬酸钠:1%以下(180 ℃至恒重)。 二水柠檬酸钠:13%以下(180 ℃至恒重)。 五水柠檬酸钠:30.3%以下(180 ℃至恒重)。5.碱度:本样品1:20之溶液以石蕊测试为碱性。并于10 ml之此溶液中加入0.2 ml之0.1N硫酸及1滴酚酞后不呈粉红色。6.草酸盐:10 ml之样品溶液(1:10)加入5滴稀释醋酸试液及2 ml氯化钙试液,于1小时内未产生混浊。7.铅:2 mg/kg以下。8.分类:食品添加物第(十一)类。9.用途:调味剂。§ 11009柠檬酸钠Sodium Citrate 分子式:C6H5O7Na3‧ 2H2O 分子量:294.111.含量:本品含C6H5O7Na3 99~101 %(180 ℃干燥2小时后定量)。2.外观:无色结晶或白色结晶性粉末,无臭,具清凉碱味。3.溶状:本品1 g溶于水20 mL,其溶液应无色且浊度在「殆澄明」以下。4.液性:本品水溶液(1→20)之pH值应为7.6~8.6。5.氯化物:0.014 %以下(以Cl计)。6.硫酸盐:0.024 %以下(以SO4计)。7.砷:3 ppm以下(以As2O3计)。8.重金属:10 ppm以下(以Pb计)。9.易碳化物:本品0.5 g加硫酸5 mL,于约90 ℃加热1小时溶解后,其液色不得较比合液K为浓。10.干燥减重:10~13 %(180 ℃,2小时)。11.分类:食品添加物第(十一)类。12.用途:调味剂。
  • 最近要做多溴二苯醚的要看过来了!
    多溴二苯醚(PBDES)是一类环境中广泛存在的全球性有机污染物,由于其具有环境持久性,远距离传输,生物可累积性及对生物和人体具有毒害效应等特性,对其环境问题的研究已成为当前环境科学的一大热点。2009年5月,联合国环境规划署正式将四溴联苯醚和五溴联苯醚、六溴联苯醚和七溴联苯醚列入《斯德哥尔摩公约》。多溴二苯醚的最大用途是作为阻燃剂,在产品制造过程中添加到复合材料中去,以提高产品的防火性能。其中十溴二苯醚(PBDE-209),由于它价格低廉,性能优越,急性毒性在所有溴二苯醚中最低,所以在全球范围内使用最广,如用于各种电子电器和自动控制设备、建材、纺织品、家具等产品中。据统计,十溴二苯醚占阻燃剂总量的75%以上。那么这种污染物对人体有没有伤害呢?急性中毒的话基本毒性很低,多数为慢性中毒,长期接触对人体造成的损伤主要表现为组织损伤、发育畸形、干扰内分泌、影响生殖功能、致癌等。且具有生物累积性,可通过食物链富集。空气中多溴二苯醚的污染引入有多方面的原因,主要为工业排放,家庭电器的排放,电子垃圾拆解(特别是无序焚烧),会向空气中释放大量的多溴二苯醚。参考HJ 1270-2022 《环境空气26种多溴二苯醚的测定高分辨气相色谱-高分辨质谱法》Detelogy提供环境空气中测定多溴二苯醚的测定方案。该标准将于2023年6月15日实施。实验步骤Step1 采集用镊子将滤膜放入洁净滤膜夹内,滤膜毛面朝向进气方向,压紧。采样结束后,取出滤膜,滤膜尘面向内对折放入保存盒中。Step2 提取将采集的样品放入萃取池中,加入提取内标,避光平衡1h后,利用iQSE-06智能快速溶剂萃取仪对其进行提取。注: 提取完毕后,若提取液中含有水分,加入无水硫酸钠至无水硫酸钠颗粒可自由流动,充分除水。Step3 预浓缩用FlexiVap-12全自动智能平行浓缩仪浓缩至1-2mL,待净化。Step4 净化安装好复合硅胶柱后净化,70 mL 正己烷进行活化,上样后,打开阀门,控制流速在每秒1滴~2 滴,收集全部样品流出液。加入 100mL 正己烷进行洗脱,收集。Step5 浓缩用FlexiVap-12全自动智能平行浓缩仪浓缩至1-2mL。Step6 上机样品制备向进样瓶中加入 20μL壬烷,将浓缩后的样品液转移至其中,用MFV-24智能氮吹仪浓缩至约20μL后,向进样瓶中添加进样内标,混匀,待分析。Detelogy仪器亮点亮点中的亮点:FlexiVap-12/24与iQSE-02/06智能快速溶剂萃取仪能实现无缝衔接!!!
  • 生物学中的化学专家——百灵威!
    您看到的是神奇的生命现象,我们看到的是参与其中的化学反应;您看到的是鲜活的组织、细胞,我们看到的是珍藏在里面的化学元素;您看到的是美妙的蛋白电泳条带,我们看到的是错落有致的化合物;您看到的是氨基酸连接成多肽的奇妙历程,我们看到的是多个化学基团的催化重组。和您y样热爱生命科学,伴您勇闯科学难关,与您y起为生物学研究做出贡献!为您的工作提供更为专业的产品服务!十八年的创新发展铸就了有机化学行业的l导者,十八年的资源整合精细制造成就了业界金字招p,十八年的真诚沟通用心服务赢得了科研精英们的y致口碑!贴心的不只是产品,还有我们的价格&mdash &mdash 低至八折,持续两个月真诚回馈。(活动时间:2010年11月20日&mdash &mdash 2011年01月20日)产品编号英文名称中文名称CAS规格目录价折后价160975SDS, 99%十二烷基硫酸钠151-21-3100g500g¥261¥383 ¥209¥30620765SDS in pellets, 99%十二烷基硫酸钠151-21-3250g1kg¥362¥1013 ¥290¥810 166974Acrylamide, 99%丙烯酰胺79-06-1100g500g ¥192¥466 ¥154¥373 402847Bis-Acrylamide, 98% N,N-亚甲基双丙稀酰胺110-26-9100g¥260 ¥208 19148Brilliant Blue G 250考马斯亮蓝G-2506104-58-125g ¥405 ¥324 19149Brilliant Blue R 250考马斯亮蓝R-2506104-59-25g ¥263 ¥210 17096Ethidiumbromide, pure95%溴化乙啶1239-45-81g5g¥238¥958 ¥190¥766 149443Imidazole, 99%咪唑288-32-4500g¥589 ¥471 42145TCA, 99+%三氯乙酸76-03-9100g ¥337 ¥270 32687DMF, 99.8%N,N-二甲基甲酰胺68-12-2100mL¥394 ¥315 149332Glycine, 98%甘氨酸56-40-6250g1kg¥200¥528¥160¥422256725Tricine, 99%三(羟甲基)甲基甘氨酸5704-04-125g100g ¥300¥720 ¥240¥576 255989TEMED, 99%N,N,N' ,N' -四甲基乙二胺110-18-9100mL500mL ¥213¥520 ¥170¥416 288975CHAPS, 98%3-[3-(胆酰胺丙基)二甲氨基]丙磺酸内盐75621-03-31g5g ¥329¥1277 ¥263¥1020 415951DTT, 99% [for molecularbiology]二硫苏糖醇3483-12-31g5g ¥276¥679 ¥221¥543 168802EDTA-2Na, 99%乙二胺四乙酸二钠盐水合物6381-92-6250g1kg ¥302¥906 ¥242¥725 226162Tris, 99.5%三(羟基甲基)氨基甲烷77-86-1100g500g ¥247¥925 ¥198¥740S0596Sodium CholateC24H39NaO5361-09-15g ¥208 ¥166 23336Tween 20吐温209005-64-5250mL¥290 ¥232 27863Tween 80吐温809005-65-6250mL ¥254 ¥203 21568Triton X-100曲拉通X-1009002-93-1250mL1L¥278¥739¥222¥591 16379&beta -Alanine, 99%&beta -氨基丙酸107-95-9500g¥520 ¥416 B3473PMSF苯甲磺酰氟化物329-98-65g¥779 ¥701 20587Ammonium sulfate, for analysis, 99.5%硫酸铵7783-20-2250g ¥420 ¥336 19228PEG 6000聚乙二醇25322-68-31kg ¥792 ¥633 331686Iminodiacetic acid, 98% IDA(亚氨基二乙酸)142-73-4100g ¥240 ¥192 41574Nitrilotriacetic acid, 99%次氮基三乙酸139-13-9250g¥426¥340 13891Thiourea, extra pure, 99%硫脲62-56-6500g ¥368 ¥294 167691-Butanol, 99+%正丁醇71-36-3100mL ¥206 ¥164 14849Benzenesulfonamide, 98%苯磺酰胺98-10-2500g ¥901 ¥720
  • SPE应用文集003:饮用水中邻苯二甲酸酯类的提取方法
    J.T.Baker做为SPE(固相萃取)技术的发源地,拥有庞大的应用文献库,为了使得广大客户更好的使用SPE这项越来越被广泛应用的样品前处理技术,自2011年5月开始,J.T.Baker将定期翻译这些应用文献,陆续上传,敬请广大客户点击阅读,如有任何疏忽错漏,恳切的希望可以得到您的指正,一经核实,有精美礼品赠送。《饮用水中邻苯二甲酸酯类的提取方法》(Extraction of Phthalate and Adipate Esters from Drinking Water EPA Method 506) 应用领域:环境目标分析物:邻苯二甲酸酯类样品基质:饮用水,地表水萃取柱:Bakerbond Speedisk C18固相萃取盘,B8055-06安全防护设备:护目镜和防护面罩,手套,实验服,B型灭火器,通风橱样品制备:1L水样中,加入2-5mL甲醇小柱活化:将Speedisk C18固相萃取盘安装在盘式固相萃取装置上,加入5mL二氯甲烷浸润1分钟后抽出,真空干燥1分钟;加入5mL甲醇,抽出少量甲醇后浸润1分钟,抽至萃取盘上保留3-5mm液面;用10mL水重复甲醇步骤,保持3-5mm液面湿润。上样与清洗:将水样加入,并抽出,并用真空干燥5分钟洗脱:用5mL乙腈,润洗样品瓶,倒入萃取盘浸润1分钟后洗脱,用5mL二氯甲烷重复上述步骤,合并洗脱液干燥与浓缩洗脱液:将洗脱液通过过量无水硫酸钠干燥,并用2*5mL二氯甲烷清洗样品瓶及无水硫酸钠,合并上述溶液,氮吹至0.5mL(不能低于0.5mL)分析方法:GC/PID(参考EPA方法506)以上即为固相萃取步骤,相关产品信息如下:B8055-06 BAKERBOND&trade Speedisk&trade C18 Extraction DiskB9264-03 二氯甲烷,ULTRA RESI-ANALYZED&trade B9255-02 乙腈,ULTRA RESI-ANALYZED&trade B4219-03 水,ULTRA RESI-ANALYZED&trade B9263-02 甲醇,ULTRA RESI-ANALYZED&trade B3375-01 无水硫酸钠, ULTRA RESI-ANALYZED&trade 您也可以点击下载英文原版应用文献:http://jtbaker.instrument.com.cn/down_170306.htm关于J.T.Baker :  杰帝贝柯化工产品贸易(上海)有限公司(JTBs)于2009年正式成立,是美国Avantor&trade Performance Materials的全资子公司。Avantor&trade Performance Materials拥有的J.T.Baker和Macron&trade 两大品牌有140多年的历史,其化学品领域的高品质产品,最优化的应用方案和功能性检测可以满足客户的高端应用需求,并确保高精度和高重现性的结果。
  • 吉天仪器为您配齐流动注射土壤检测方案
    概述:流动注射(FIA)技术已被广泛应用于很多分析领域,使用流动注射分析仪不仅可以大大提高检测分析的效率,并且具有检测精度高、可靠性好、稳定性强等特点,所以在土壤检测方面同样具有广泛的应用。本文采用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)土壤样品经过批量处理后使用流动注射分析仪进行检测,根据检测项目的不同对土壤样品进行不同方法的样品处理,本文介绍了使用流动注射分析仪检测土壤中“氮”和“磷”含量的样品前处理方法。一、土壤中全氮的测定(HJ 717-2014):  1.1方法原理:  该方法基于改进的贝特洛反应,氨氯化生成一氯胺,一氯胺与水杨酸盐反应生成5-氨基水杨酸盐,接下来的氧化和氧化偶合反应生成了绿色的络合物,该络合物在660nm有最大吸收峰。  1.2试样的制备:  将土壤样品置于风干盘中,平摊成2~3cm厚的薄层,先剔除植物、昆虫、石块等残体,用铁锤或瓷质研磨棒压碎土块,每天翻动几次,自然风干。  充分混匀风干土壤,采用四分法,一份留存,一份用研磨机研磨至全部通过2mm(10目)土壤筛。取10g~20g过筛后的土壤样品,研磨至全部通过0.25mm(60目)土壤筛,装于样品袋或样品瓶中。  1.3还原剂的制备:  将五水合硫代硫酸钠(Na2S2O35H2O)研磨后过0.25mm(60目)筛,临用现配。  1.4催化剂的配置:  将200g 硫酸钾(K2SO4)、6 g 五水合硫酸铜(CuSO4?5H2O)和 6 g 二氧化钛(TiO2)于玻璃研钵中充分混匀,研细,贮于试剂瓶中保存。  1.5样品处理(HJ717-2014):  称取适量上述土壤样品(3.2)0.2000g~1.0000g(含氮约 1mg),精确到0.1mg,放入凯氏氮消解瓶(容积50ml或100ml)中,用少量水(约 0.5ml~1ml)润湿,再加入4ml 浓硫酸(H2SO4),瓶口上盖小漏斗,转动凯氏氮消解瓶使其混合均匀,浸泡8小时以上。使用干燥的长颈漏斗将0.5g 还原剂(3.3)加到凯氏氮消解瓶底部,置于消解器(或电热板)上加热,待冒烟后停止加热。冷却后,加入1.1g 催化剂 (3.4),摇匀,继续在消解器(或电热板)上消煮。消煮时保持微沸状态,使白烟到达瓶颈 1/3 处回旋,待消煮液和土样全部变成灰白色稍带绿色后,表明消解完全,再继续消煮1h,冷却。在土壤样品消煮过程如果不能完全消解,可以冷却后加几滴高氯酸后再消煮。  注 1:消解时温度不能超过400℃,以防瓶壁温度过高而使铵盐受热分解,导致氮的损失。  1.6样品处理(非标准方法):  称取上述土壤样品1.5g(精确至0.1mg)于50ml的消化管中(每个样品3次重复),每支消化管中加入2.0g加速剂(m硫酸钾:m五水合硫酸铜=10:1)和5ml浓硫酸(H2SO4),然后将样品和空白试剂置于远红外消解炉消解,直至土壤样品为蓝绿色或灰白色(颜色较浅)。待溶液冷却后,定容至50ml,摇匀过滤,滤液用于样品氮含量的测定。  1.7应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中全氮含量测定。图1 iFIA7全自动流动注射分析仪-全氮分析通道  1.7.1:标准曲线的测定:表1 土壤中全氮标准曲线标准样品浓度(mg/L)吸光度峰高吸光度峰面积回算浓度(mg/L)00.00020.03340.07520.10.00340.74590.15250.250.00911.99040.28760.50.01914.2120.528610.03928.62791.007720.078917.30181.948850.201744.17124.8642100.414890.69.9017200.8449184.449920.0844图2土壤中全氮标准曲线分析图图3 土壤中全氮方法工作曲线  1.7.2土壤有效态成分分析标准物质全氮的测定:  采用中国计量科学研究院的土壤有效态成分分析标准物质(GBW07414,标准值0.094%,不确定度0.005%, GBW07417,标准值0.076%,不确定度0.004%),对方法及仪器进行检验,测定结果如下。表2 土壤有效态成分分析标准物质全氮含量测定结果样品名称已知含量(%)回算含量(%)GBW074140.094±0.0050.095GBW074170.076±0.0040.078 二、土壤中氨氮的测定(HJ 634-2012):  2.1方法原理:  氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在630?nm波长具有最大吸收峰。在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。  2.2试样的制备:  将采集后的土壤样品去除杂物,手工或仪器混匀,过样品筛。在进行手工混合时应戴橡胶手套。过筛后样品分成两份,一份用于测定干物质含量,测定方法参见HJ613;另一份用于测定待测组分含量。  2.3样品处理:?  称取40.0g试样(1.2),放入500ml聚乙烯瓶中,加入200ml氯化钾溶液(1mol/L),在20±2℃的恒温水浴振荡器震荡提取1h。转移约60ml提取液于100ml聚乙烯离心管中,在3000r/min的条件下离心分离10min。然后将约10ml上清液转移至10ml样品管中。三、土壤中硝酸盐氮/亚硝酸盐氮的测定(HJ 634-2012):  3.1硝酸盐氮方法原理:  氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原成亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰,测定硝酸盐氮和亚硝酸盐氮总量。硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。  3.2亚硝酸盐氮方法原理:  氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸N-(1萘基)乙二胺偶联生成红色染料,在波长543nm处具有最大吸收峰。在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。  3.3试样的制备:同2.2  3.4样品处理:同2.3四、土壤中全磷的测定(GB 9837-88):  4.1方法原理:  土壤样品与氢氧化钠熔融,使土壤中含磷矿物及有机磷化合物全部转化为可溶性的正磷酸盐,用水和稀硫酸溶液熔块,在规定条件下样品溶液与钼锑抗显色剂反应,生成磷钼蓝。  4.2样品的制备:  取通过1mm孔径筛的风干土样在牛皮纸上铺上薄层,划分成许多小方格。用小勺在每个方格中提取出等量土样(总量不少于20g)与玛瑙研钵中进一步研磨,是全部通过0.149mm孔径筛。混匀后装入磨口瓶中备用。  4.3溶样(样品处理):  准确称取风干样品0.25g(精确到0.1mg)小心放入镍(或银)坩埚,切勿粘在壁上。加入无水乙醇3~4,滴润湿样品,在样品上平铺2g氢氧化钠(NaOH)。将坩埚(处理大批样品时暂放入大干燥器中以防潮吸潮)放入高温电路,升温。当温度升至400℃左右时,切断电源,暂停15min。然后继续升温720℃,并保持15min,取出冷却。加入80℃的水10ml,待熔块溶解后,将溶液无损失地转入100ml容量瓶内,同时用3mol/L的硫酸溶液和10ml水多次洗坩埚,洗涤液也一并移入该容量瓶。冷却,定容。用无磷定性滤纸过滤或离心澄清。同时做空白式样。五、土壤中有效磷的测定(HJ 704-2014):  5.1方法原理:  用0.5mol/L碳酸氢钠溶液(pH=8.5)浸提土壤中的有效磷。浸提液中的磷与钼锑抗显色剂反应生成磷钼蓝,在波长880nm处测量吸光度。在一定浓度范围内,磷的含量与吸光度值符合朗伯-比尔定律。  5.2干扰和消除:  砷(V )、铌、钽、锆、钛和钼酸铵产生同主反应类似的杂多酸,砷大于2mg/L干扰测定,1μg砷同0. 35 μg磷相当,当水样中砷含量超过磷时,应采用硫代硫酸钠掩蔽。对铌、钽、锆、钛的影响可通过萃取或加氟化物来避免。硅和钼酸铵产生同主反应类似的杂多酸,干扰测定,使结果偏高,在微酸性(pH4-6)的条件下,加入酒石酸可消除干扰。铁含量为20mg/L,使结果偏低5%,在大于30mg/L以上会使钼蓝退色, 可加入过量抗坏血酸抑制。亚硝酸影响钼兰显色,显色液中亚硝酸盐达数毫克会使显色液褪色,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。六价铬大于50mg/L有干扰,可用亚硫酸钠去除。硫化物含量大于2mg/L有干扰,在酸性条件下通氮气可去除。强氯化剂及铬酸盐使生成钼蓝褪色,高亚硝酸盐也有褪色作用,可在加入钼酸铵前加入0.05g氨基磺酸(NH2SO3H)以防干扰。  5.3浸提剂的制备c(NaHCO3)=0.5mol/L:  称取42.0g碳酸氢钠溶于约800ml水中,加水稀释至约990ml,用氢氧化钠溶液(10%)调节至pH=8.5(用pH计测定),加水定容至1L,温度控制在25±1℃。贮存于聚乙烯瓶中,该溶液应在4h内使用。  注1:浸提剂温度需控制在25±1℃。具体控制时,最好有1小间恒温室,冬季除室温要维持25℃外,还需将去离子水事先加热至26~27℃后再进行配制。  5.4样品采集与保存:  按HJ/T 166的相关规定进行采集和保存土壤样品。  5.5试样的制备:  试样的制备按NY/T 395-2012《农田土壤环境质量监测技术规范》进行土壤处理和制备。  5.6干物质含量的测定:  准确称取适量试样(5.5),参照HJ 613测定样品干物质的含量。  5.7样品处理:  称取2.50g试样(5.5),置于干燥的150ml具塞锥形瓶中,加入50.0ml浸提剂(5.3),塞紧,置于恒温往复振荡器上,在25±1℃下以180~200r/min的振荡频率振荡30±1min,立即用无磷滤纸过滤,滤液应当天分析。  注2:浸提时最好有1小间恒温室,冬季应先开启空调,待室温达到25℃,且恒温往复振荡器内温度达到25℃后,再打开振荡器进行振荡计时。  5.8应用案例:  使用吉天仪器最新全自动流动注射分析仪iFIA7进行土壤中有效磷含量测定:  5.8.1标准曲线的测定:表3土壤中有效磷工作曲线标准样品浓度(μg/L)吸光度峰高吸光度峰面积回算浓度(μg/L)00.00010.01236.0100.00170.315212.6200.00340.639619.6500.01041.942747.91000.02284.141195.72000.04938.7410195.65000.137022.8786502.6图4土壤中有效磷标准样品分析图图5土壤中有效磷方法工作曲线  5.8.2土壤中有效态成分分析标准物质有效磷的测定:表4 土壤中有效态成分分析标准物质有效磷含量测定结果样品名称已知浓度mg/kg回算浓度mg/kgGBW0741413.8±2.314.2GBW0741413.8±2.313.6GBW0741413.8±2.313.6GBW0741614.8±3.114.9GBW0741614.8±3.115.0GBW0741614.8±3.115.0GBW0741748±348.0GBW0741748±347.8GBW0741748±347.6  5.8.3 土壤中有效态成分分析标准物质土壤有效磷加标测定:表5 土壤中有效磷加标回收率实验样品名称样品浓度(mg/kg)加标前浓度(mg/kg)加标浓度(mg/kg)加标后浓度(mg/kg)回收率(%)GBW0741413.8±2.313.9 20.0 32.392.0GBW0741614.8±3.1 15.0 10.0 24.9 99.0GBW0741748±3 47.8 20.0 67.799.5
  • 茶叶中农药残留检测解决方案-Cleanert TPT及相关检测产品
    茶叶是大众喜欢的一种饮品,近期市场上某知名品牌在其被抽检的四款“立顿”牌袋泡茶中检出农药残留,其中包括国家禁止在茶树上使用的高毒农药灭多威及欧盟尚未批准使用的硫丹等农药,而“这些农药被证明可能影响男性生育能力和胎儿健康”。引起了相关检测机构对茶叶中农残检测的关注! 茶叶的成分非常复杂,农药残留检测前处理难度大,要求高。博纳艾杰尔科技作为色谱材料生产商,于2008年配合国家标准《GB/T23204-2008茶叶中519种农药及相关化学品残留量的测定气相色谱-质谱法》和《GB/T23205-2008茶叶中448种农药及相关化学品残留量的测定液相色谱-串联质谱法》的制定工作,研制开发了Cleanert TPT固相萃取柱,是一款专门用于茶叶农药多残留检测的SPE柱。Cleanert TPT SPE柱填料由三种材料按照一定比例分层填装而成。主要作用是去除茶叶中色素、挥发性有机酸、茶多酚及其它杂质而同时不会吸附目标农药。从而同时保证了样品的净化效果和目标物的回收率。经多年的客户使用验证,反馈良好。同时我们提供检测相应的液相及气相色谱柱及适用于批量茶叶样品处理的6位大体积样品前处理装置,置(固相萃取真空装置,可以外接真空泵提供负压,下方连接鸡形瓶),操作简单,可同时处理6个样品,配以大体积上样管,套装组合灵活使用,可以实现大体积上样和大体积收集。 订货信息 产品规格订货号包装价格(元)Cleanert TPT SPE柱2g/12mLTPT20001020支/包19801g/6mLTPT000630支/包19806位大体积负压SPE装置 VM061台1500大体积上样管60mLA820606支/包300Venusil ASB C18液相色谱柱3 μm,2.1 mm×100 mmVS931002-01支3100DA-1701气相色谱柱30m×0.25mm×0.25µ m6125-30021支4200DA-1 气相色谱柱30m×0.25mm×0.25µ m0125-30021支3625Qdura卓睿 全自动固相仪4通道,24位;流速范围0-30ml/min 1台39,8000 附:茶叶中农药多残留检测方法气相色谱-质谱测定液相色谱串联质谱法1.材料:Cleanert TPT柱,2g/12mL2.提取 称取5g试样(精确至0.01 g),于80mL离心管中,加入15mL乙腈,用均质器在15 000r/min均质提取1min,将离心管放入离心机,在4 200r/min离心5min,取上清液,置于100mL鸡心瓶中。残渣用15mL乙腈重复提取一次,离心,合并二次提取液,将提取液于40℃水浴用旋转蒸发器旋转蒸发至约1mL,待净化。3.净化GC/MS净化方法:在Cleanert TPT(P/N: TPT200010)柱中加入约2cm高无水硫酸钠,用10mL乙腈+甲苯(3+1)预洗Cleanet TPT柱,置于大体积负压装置上(P/N:VM06),下接梨形瓶。将上述样品浓缩液转移至Cleanet TPT柱中,用3×2mL乙腈+甲苯(3+1)洗涤样液瓶,并将洗涤液移入柱中,在柱上加上60mL大体积上样管(P/N:A82060),再用25mL乙腈+甲苯(3+1)洗涤小柱,收集上述所有流出物于梨形瓶中,并在40℃水浴中旋转浓缩至约0.5mL。加入2×5mL正己烷进行溶剂交换两次,最后使样液体积约为1mL,加入40μL内标溶液,混匀,用于气相色谱-质谱测定。LC-MS/MS净化方法:取样量为2g,提取方法同上。收集的洗脱液需在40℃水浴中旋转浓缩至约0.5mL,于35℃下氮气吹干,用1mL乙腈+水(3+2)溶解残渣,经0.2μm微孔滤膜过滤后,供液相色谱-串联质谱测定。 详细方法请参考GB/T 23204-2008及GB/T 23205-2008
  • 隆重推出:Cleanert TPT测定茶叶中519种农药及化学残留
    茶叶是我国一项大宗出口的农产品,而茶叶的成分非常复杂,农药残留检测前处理难度大,要求高。博纳艾杰尔科技为了配合国家标准《GB/T23204-2008茶叶中519种农药及相关化学品残留量的测定 气相色谱-质谱法》和《GB/T23205-2008茶叶中448种农药及相关化学品残留量的测定 液相色谱-串联质谱法》的制定工作,研发的茶叶柱Cleanert TPT SPE柱,是一款专门用于茶叶农药残留检测的固相萃取柱。  Cleanert TPT SPE柱填料由三种材料按照一定比例分层填装而成。主要作用是去除茶叶中色素、挥发性有机酸、茶多酚及其它杂质而同时不会吸附目标农药。从而同时保证了样品的净化效果和目标物的回收率。  同时我们提供适合大批量处理茶叶样品的6位大体积装置,可以外接真空泵提供负压,下方连接鸡形瓶,操作简单,可同时处理6个样品,配以大体积上样管,套装组合灵活使用,可以实现大体积上样和大体积收集。该装置经济实惠,仅售1500元。订货信息 产品订货号规格价格Cleanert TPT SPE柱TPT20001020支/包19806位大体积负压SPE装置VM061台1500大体积上样管(60mL)A820606支/包300活动期间随装置赠送 为庆祝茶叶柱隆重上市,于2011年5月30日前可享受双重大礼:15%折扣;买五包即可免费获赠6位大体积装置一套!详细情况请致电400-606-8099 或E-mail:service@agela.com.cn   附:茶叶中农药多残留检测方法 气相色谱-质谱测定  1.材料:Cleanert TPT柱,2g/12mL  2.提取  称取5g试样(精确至0.01 g),于80mL离心管中,加入15mL乙腈,用均质器在15 000r/min均质提取1min,将离心管放入离心机,在4 200r/min离心5min,取上清液,置于100mL鸡心瓶中。残渣用15mL乙腈重复提取一次,离心,合并二次提取液,将提取液于40℃水浴用旋转蒸发器旋转蒸发至约1mL,待净化。  3.净化  GC/MS净化方法: 在Cleanet TPT(P/N: TPT200010)柱中加入约2cm高无水硫酸钠,用10mL乙腈+甲苯(3+1)预洗Cleanet TPT柱,置于大体积负压装置上(P/N:VM06),下接梨形瓶。将上述样品浓缩液转移至Cleanet TPT柱中,用3×2mL乙腈+甲苯(3+1)洗涤样液瓶,并将洗涤液移入柱中,在柱上加上60mL大体积上样管(P/N:A82060),再用25mL乙腈+甲苯(3+1)洗涤小柱,收集上述所有流出物于梨形瓶中,并在40℃水浴中旋转浓缩至约0.5mL。加入2×5mL正己烷进行溶剂交换两次,最后使样液体积约为1mL,加入40μL内标溶液,混匀,用于气相色谱-质谱测定。  LC-MS/MS净化方法: 取样量为2g,提取方法同上。收集的洗脱液需在40℃水浴中旋转浓缩至约0.5mL,于35℃下氮气吹干,用1mL乙腈+水(3+2)溶解残渣,经0.2μm微孔滤膜过滤后,供液相色谱-串联质谱测定。
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。序号物质名称ECCAS可能用途1氯化钴231-589-47646-79-9干燥剂、例如硅胶2重铬酸钠二水合物234-190-37789-12-0金属表面精整、皮革制作、纺织品染色、木材防腐剂3五氧化砷215-116-91303-28-2杀菌剂、除草剂4三氧化二砷215-481-41327-53-3除草剂、杀虫剂5酸式砷酸铅232-064-27784-40-9杀虫剂6三乙基砷酸酯427-700-215606-95-8木材防腐剂7邻苯二甲酸二丁基酯(DBP)201-557-484-74-2增塑剂、粘合剂和印刷油墨的添加剂8邻苯二甲酸二(2-乙基己)204-211-0 117-81-7PVC 增塑剂、液压液体和电容器里的绝缘体酯(DEHP)9邻苯二甲酸丁苄酯(BBP)201-622-7 85-68-7乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂10蒽(Anthracene)204-371-1120-12-7染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。11三丁基氧化锡(TBTO)200-268-056-35-9木材防腐剂12二甲苯麝香201-329-481-15-2香水、化妆品13六溴环十二烷(HBCDD)206-33-9294-62-2阻燃剂14C10-13氯代烃(短链氯化石蜡)(SCCP)287-476-585535-84-8金属加工过程的润滑剂、橡胶和皮革衣料、胶水154,4'-二氨基二苯甲烷(MDA)202-974-4101-77-9偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体16蒽油292-602-790640-80-5主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。17蒽油、蒽糊、轻油295-278-591995-17-418蒽油、蒽糊、蒽馏分295-275-991995-15-219蒽油、少蒽292-604-890640-82-720蒽油、蒽糊292-603-290640-81-621高温煤沥青266-028-265996-93-2主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作22硅酸铝耐火陶瓷纤维 工业绝缘隔热材料23氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料242,4-二硝基甲苯204-450-0121-14-2用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。25邻苯二甲酸二异丁酯(DIBP)201-553-284-69-5增塑剂26铬酸铅231-846-07758-97-6色素,用于塑料、油漆着色27钼铬酸铅红(CI颜料红104)235-759-912656-85-828铬酸铅黄(CI颜料黄34)215-693-71344-37-229三(2-氯乙基)磷酸盐(TCEP)204-118-5115-96-8阻燃剂30丙烯酰胺201-173-71976-6-1丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。31三氯乙烯201-167-41979-1-6金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体32硼酸233-139-210043-35-3具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。33四硼酸钠,无水215-540-41330-43-4具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等34四硼酸钠,水合物235-541-312267-73-135铬酸钠231-889-57775-11-3实验用分析试剂;生产其他含铬化合物36铬酸钾232-140-57789-00-6金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造37重铬酸铵232-143-17789-9-5氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理38重铬酸钾231-906-67778-50-9生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂39硫酸钴233-334-210124-43-3用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。40硝酸钴233-402-110141-05-6用于表面处理、电池、陶瓷颜料、催化剂。41碳酸钴208-169-4513-79-1陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料42醋酸钴(乙酸钴)200-755-871-48-7用于表面处理、合金、颜料、染料和饲料添加剂。43乙二醇单甲醚2-203-713-7109-86-4用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂44乙二醇单乙醚2-203-804-1110-80-5常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。45三氧化铬215-607-81333-82-0用于金属处理和木材防腐剂中的稳定剂。46三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等231-801-5236-881-57738-94-513530-68-2用于金属处理和木材防腐剂中的稳定剂。47乙二醇乙醚醋酸酯203-839-2111-15-9用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程48铬酸锶232-142-67789-6-2用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层49邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP)271-084-668515-42-4用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂50肼206-114-97803-57-8302-01-2防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体511-甲基-2-吡咯烷酮212-828-1872-50-4用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料521,2,3-三氯丙烷202-486-196-18-4用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水53邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP)276-158-171888-89-6用于聚氯乙烯(PVC)塑料增塑剂、密封剂和印刷油墨
  • 屹尧新品:固相萃取,请用更CLEVER的方式
    屹尧科技2018年5月,全新改版推出CLEVER全自动固相萃取仪,意味着地表水、饮用水、自来水、地下水等液体样品中痕量有机物萃取和浓缩的客户有了一个全新的选择。尤其当您需要萃取大体积液体样品中的痕量污染物质,那么我们郑重推荐CLEVER,它几乎是为您量身定做的。CLEVER全自动固相萃取仪可实现从活化、上样、淋洗、吹干、洗脱、浓缩、定容整个固相萃取过程的自动化和智能化。优异的性能,来源于诸多创新设计:模块化设计(单模块/多模块可选):多,或者更多可实现三通道直到十二通道的单独或并行工作模式,配置灵活多样,工作效率更高。叠机功能:快,效率才是王道在浓缩前一批样品时,可自动进行下一批样品的SPE处理,缩短样品处理时间,提高工作效率。两种除水模式:在线氮气吹扫和无水硫酸钠除水,效果更好无水硫酸钠除水适用范围广,尤其适合易挥发有机物的除水,除水效果更好,回收更稳定。自动红外定容功能:为所欲为,一切刚好0.5mL, 1mL可选。氮吹和定容模块透明可视,定容管整体可视,浓缩时自动启动照明功能。在线浸润SPE柱功能:做好本分,可靠才好溶剂加载到萃取柱后,可确保填料被溶剂浸润一定时间,使其充分活化或洗脱,结果更可靠。SPE和氮吹浓缩一体化设计:原位浓缩,简单就好洗脱完成后无需转移到其他浓缩设备,即可实现主机原位在线氮吹加热浓缩,过程实时可视。8.4吋大屏彩色液晶屏:省,不需要另配电脑可直接进行方法编辑、保存、修改以及运行,简单易用,便于操作。性价比这东西,首先还是看性能,然后才比价格。固相萃取,屹尧为您推荐更CLEVER的选择。我们确信,它将重新定义固相萃取仪性价比。
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • 《硫酸工业污染物排放标准》正式实行
    公开征求意见已超过一年的《硫酸工业污染物排放标准》(以下简称《标准》)近日将正式发布并实行。记者11月12日了解到,《标准》的实施进一步限制了硫酸企业尾气中二氧化硫的排放量:从标准实施之日起,新建的硫酸企业二氧化硫污染物排放浓度限值为400毫克/立方米 2013年1月1日,现有硫酸企业二氧化硫污染物排放浓度全部达到这一限值。目前,部分硫酸企业已经开始抓紧改造以适应新标准,硫酸行业将借助新标准推动产业结构调整、设备改造和技术升级。  标准主要起草人之一、青岛科技大学环境保护研究所所长杨波教授告诉记者,硫酸行业的二氧化硫排放量在化工行业中占有较大比例,引起了社会各界和环保部门的高度重视。在即将出台的《标准》中,对于硫酸工业二氧化硫排放有了更严格的规定,对于已经建成的硫酸企业,自2011年1月1日起至2012年12月31日止,二氧化硫污染物排放浓度限值为860毫克/立方米 自2013年1月1日起,二氧化硫污染物排放浓度限值为400毫克/立方米。  杨波表示,目前我国多个行业都对二氧化硫排放有严格的规定,现行的《大气污染物综合排放标准》(GB16297-1996)中规定的二氧化硫排放浓度限值96毫克/立方米已经难以满足硫酸工业二氧化硫限排要求。从2008年起,环保部委托青岛科技大学、中国硫酸工业协会等单位,就硫酸工业污染防治技术政策和污染物排放标准等,展开深入的研究,并于2009年9月公布《硫酸工业污染物排放标准》并公开征求意见。征求意见稿综合考虑了当前我国硫酸工业技术水平和污染控制技术水平,使污染物排放限值全面与国际接轨,这要求我国现有的硫酸企业不仅二氧化硫排放浓度要满足目前的国家标准,而且还要为2013年后更加苛刻的排放限值作准备。  据了解,我国硫酸生产主要采用两转两吸工艺,由于受到装置转化率的限制,传统两转两吸硫酸生产装置,难以满足二氧化硫排放浓度限制400毫克/立方米的要求,目前我国大多数硫酸装置都达不到这一要求,尤其是中小企业,为了降低装置二氧化硫排放浓度,必然进行设备改造升级,增加生产成本。对此中国硫酸工业协会理事长齐焉表示,国家新出台的“三废”排放、综合能耗等硬性指标规定,将加速淘汰一批中小产能,实现行业产品的结构调整。  齐焉指出,新标准的实施将促进硫酸行业进一步优胜劣汰、转型升级,提高整体环保水平。企业应着力寻求减排的有效方法,以科技推动环保升级。针对硫酸行业新的“三废”排放标准,应通过两个途径解决达标问题:一是改进国产钒催化剂,国内、国外催化剂并用,改造转化系统,加强管理控制 二是增加尾气处理装置,以氨水、胺液、柠檬酸钠等碱性溶液处理。在“十二五”期间,要加快高品质国产催化剂的研制,同时推进超重力场机替代高塔提高脱吸率等措施,以保证硫酸企业尾气排放等指标达标。  有业内人士认为,由于传统两转两吸工艺难以适应新的排放标准,企业将根据自身的情况选择合适的工艺,改造传统装置和上马新装置,选择关键在于操作成本,未来我国硫酸生产工艺可能会趋于多元化,例如采用一转一吸联用尾气脱硫工艺装置。未来二氧化硫排放标准日趋严格,将推动相关设备、脱硫技术、催化剂开发等行业的发展。  据了解,目前已经有不少硫酸企业,尽管尾气排放指标控制在860毫克/立方米标准之内,也开始为400毫克/立方米新标准进行改造。中石化南京化学工业有限公司磷肥厂采用氨―酸法回收尾气,生产液体二氧化硫 开封化肥厂、太原化工总厂等均改用三级氨法尾气回收生产固体亚硫酸铵和高浓度亚硫酸氢铵溶液,降低废气中二氧化硫排放量 浙江巨化硫酸厂采用超重力吸收技术进行硫酸尾气脱硫改造,采用空塔和超重力设备进行硫酸尾气氨法脱硫工艺处理,项目预计今年底完成,届时巨化硫酸厂的二氧化硫排放水平将达到国家即将推行的新标准。
  • 博纳艾杰尔为您提供“毒衣”检测方案
    背景 : 北京市工商局昨天在官方网站通报了65批次不合格服装产品,消费者熟悉的真维斯、七匹狼、艾格周末等多个知名品牌服装均“榜上有名”,“满福鑫”和“创今威”两款服装查出了可致癌的芳香胺染料,目前这些服装均已被责令退市。 如何才能从源头切断这些危害消费者健康的“毒衣”? 博纳艾杰尔科技为您提供偶氮染料专用柱,助您轻松生产、购买健康产品。 活动期间,购买硅藻提取柱2盒,即附赠电子体温计一支! 博纳艾杰尔科技研制的偶氮染料专用柱,采用特殊工艺处理的硅藻土,具有最大的比表面积和最低的表面活性,能够提供一个理想的液液分配的支撑表面,使得芳香胺类物质有最大程度的回收率。另外,独特的柱管设计能够保证稳定的柱床和极佳的流速。偶氮染料(偶氮基两端连接芳基的一类有机化合物)是纺织品服装在印染工艺中应用最广泛的一类合成染料。偶氮是染料中形成基础颜色的物质,如果摈弃了偶氮结构,那么大部分染料基础颜色将无法生成。但是有少数偶氮结构的染料品种在化学反应分解中可能产生致癌芳香胺物质,属于禁用的偶氮染料品种。检测原理(适用于GB/T 17592-2006《纺织品禁用偶氮染料的测定》 ) 纺织样品在柠檬酸盐缓冲溶液介质中用连二亚硫酸钠还原分解以产生可能存在的禁用芳香胺,用适当的液-液分配柱提取溶液中的芳香胺,浓缩后,用合适的有机溶剂定容,用配有质量选择检测器的气相色谱仪(GC/MSD)进行测定。必要时,选用另外一种或多种方法对异构体进行确认。用高压液相色谱/二极管阵列检测器(HPLC/DAD)或气相色谱/质谱仪进行定量。按GB/T17592-2006进行操作,得到空白样品的提取液,添加1mL的20ppm芳香胺的标准品后,使用Cleanert 硅藻土提取柱进行处理,检测结果如下:芳香胺类物质GC/MS总离子流图纺织品中各种芳香胺的回收率
  • 补铁要补三价铁还是二价铁?赛默飞带您细探究竟
    补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb120g/L,成年女性(非妊娠)Hb110g/L,孕妇Hb100g/L),身体可能无法获得充足的氧供应。而血红蛋白是一种含铁蛋白质,需要铁进行合成。当铁不足以满足需求时,血红蛋白、红细胞的生成就会受到影响,从而引发一系列病症,如头痛、发力和呼吸困难等等。补铁剂中的二价铁和三价铁目前针对缺铁性贫血的主要治疗办法就是补铁。那么问题来了,补铁是补二价铁好还是三价铁好呢?在人体中,铁元素以Fe2+形式吸收,以Fe3+形式运输和贮存,最后以Fe2+的形式利用。可以说二价铁和三价铁都可以作为补铁的来源,目前市面上补铁制剂分为三类:第一类是以硫酸亚铁为代表的无机亚铁盐类;第二类是是以乳酸亚铁为代表的有机酸盐类;第三类是螯合铁剂以及铁的多肽复合物类,前两类以二价铁为主,后者以三价铁为主。给药方式主要分为口服和静脉注射两种,其中口服占绝大部分。具体应该合适哪种类型的补铁剂需要根据病情和医生详细诊断确定。无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。补铁要补三价铁还是二价铁?赛默飞带您细探究竟原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘莉 王艳萍缺铁性贫血,相信大家都不陌生,多见于婴幼儿、青少年、妊娠和哺乳期妇女,以及肿瘤性疾病和慢性出血性疾病人群,是最常见的贫血类型。据世界卫生组织(WHO)调查报告,全世界约有10%~30%的人群有不同程度的缺铁。缺铁与贫血的相关性为什么缺铁会贫血呢?血液中有红细胞、白细胞、血小板三系血细胞,其中红细胞通过血红蛋白完成运输氧的工作。血红蛋白低的时候(中国贫血标准:在我国海平面地区,成年男性Hb120g/L,成年女性(非妊娠)Hb110g/L,孕妇Hb100g/L),身体可能无法获得充足的氧供应。而血红蛋白是一种含铁蛋白质,需要铁进行合成。当铁不足以满足需求时,血红蛋白、红细胞的生成就会受到影响,从而引发一系列病症,如头痛、发力和呼吸困难等等。补铁剂中的二价铁和三价铁目前针对缺铁性贫血的主要治疗办法就是补铁。那么问题来了,补铁是补二价铁好还是三价铁好呢?在人体中,铁元素以Fe2+形式吸收,以Fe3+形式运输和贮存,最后以Fe2+的形式利用。可以说二价铁和三价铁都可以作为补铁的来源,目前市面上补铁制剂分为三类:第一类是以硫酸亚铁为代表的无机亚铁盐类;第二类是是以乳酸亚铁为代表的有机酸盐类;第三类是螯合铁剂以及铁的多肽复合物类,前两类以二价铁为主,后者以三价铁为主。给药方式主要分为口服和静脉注射两种,其中口服占绝大部分。具体应该合适哪种类型的补铁剂需要根据病情和医生详细诊断确定。无论是补铁制剂是二价铁还是三价铁,其中的二价铁和三价铁含量均需准确测定,GB1902.38-2018中规定琥珀酸亚铁中三价铁要在2%以内,USP规定蔗糖铁中二价铁不超过0.4%。(点击查看大图)补铁剂中的二价铁和三价铁检测方法三价铁二价铁的传统测试方法一般采用滴定方法:用硫代硫酸钠标准溶液滴定测定三价铁含量,用硫酸铈标准溶液滴定测定二价铁,但是滴定方法步骤较为复杂,二价铁转化难以控制,重复性较差。为了简化样品前处理和测试流程,提高测试准确度与重复性,赛默飞推出联合创新方案:采用Easion离子色谱和iCAP RQplus ICP-MS联用方法测试补铁制剂中的三价铁和二价铁。该方案可简单、快速同时分析补铁剂中的三价铁和二价铁,并且有效降低二价铁氧化率,灵敏度高、重复性好。(点击查看大图)实际应用案例一IC-ICP-MS测定琥珀酸亚铁中的三价铁和二价铁琥珀酸亚铁是典型的有机酸盐类,主要为亚铁形式存在,需要严格控制三价铁含量,IC-ICP-MS对琥珀酸亚铁分离色谱图如下所示。(点击查看大图)琥珀酸亚铁片样品测试结果与加标回收结果如下表所示,同时与滴定法结果进行比较,结果一致。(点击查看大图)实际应用案例二IC-ICP-MS测定新型补铁剂蔗糖铁注射液中二价铁含量蔗糖铁是最常用的静脉铁剂疗法之一,其活性成分是氢氧化铁(Ⅲ)-蔗糖复合物,结构与生理状态下的血清铁蛋白结构相似,在生理条件下不会释放出铁离子,且吸收率极高,药物不良反应较少。需要对其中的二价铁含量进行严格控制,IC-ICP-MS对蔗糖铁中三价铁与二价铁分离色谱图如下图所示。(点击查看大图)蔗糖铁注射液测试结果及平行性结果如下表所示,三个平行样RSD均在3%以内,重复性良好。(点击查看大图) 结论 综上所述,三价铁和二价铁均可以作为补铁制剂,只是铁存在形式与作用机理不同。而这些不同价态的补铁剂均需要对另外一种价态的铁含量进行严格控制,赛默飞推出的特色创新IC-ICP-MS联用铁形态分析方案能够方便准确高效地进行各类补铁剂中的三价铁和二价铁含量测定。如需合作转载本文,请文末留言。
  • 综述|相变蓄冷材料及系统应用研究进展
    摘要:相变蓄冷技术利用相变材料在相变时伴随着的吸热或放热过程对能量进行储存和应用,起到控制温度、降低能耗和转移用能负荷的作用。本文综述了相变温度在 25℃以下的相变蓄冷材料及其在不同应用场景的筛选依据。其次,介绍了相变蓄冷材料在食品医疗冷链物流、建筑节能控温与数据中心应急冷却、人体热管理和医疗保健的相变纺织品等领域的应用。从调节相变蓄冷材料相变温度、过冷度、热导率和循环稳定性等方面总结了材料热物性的调控策略,分析了不同调控策略存在的优缺点。指出相变蓄冷系统可通过增强蓄冷系统热导率和强化传热结构来改善普通材料传热性能差的问题。最后从复合相变材料制备到系统设计优化和应用场景拓展等方面对相变蓄冷技术研究方向进行了展望。关键词:相变蓄冷材料;相变蓄冷系统;复合相变材料;热物性;应用随着全球变暖和人们生活质量的提升,制冷需求快速增长,制冷空调系统带来的碳排放量与日俱增,预计到2050年,全球制冷能源消耗仍将增加十倍。面对制冷能耗急剧增长的发展趋势,大力开发太阳能、风能等新能源电力是解决未来制冷能耗缺口的技术关键。然而,新能源电力存在间歇性、波动大的缺点,易出现发电量与用电量不匹配的问题。因此发展高效储能技术,对新能源消纳与利用是适应可再生能源网络的有效途径。发展先进的蓄冷技术,调节制冷和用冷负荷使之匹配,是制冷系统技术发展的重要方向。蓄冷技术可以在峰谷电价时段或能量盈余的时候进行储能,实现能源移峰填谷,降低电网峰值用电负荷和成本。相对于电化学储能,蓄冷技术可以直接存储冷能,具有安全性高、循环稳定性好、成本低的优点。因此,将蓄冷技术与制冷系统耦合的储能技术一直是研究热点,在工商业及民用场景应用广泛。在冷链运输领域,我国每年因运输过程中低温环境不合格导致水产品腐烂损失率达25%,果蔬类损失率达25%~35%,全球有超过50%的疫苗被浪费。因而蓄冷技术在冷链运输领域能够通过减少运输过程中的温度波动来降低产品变质几率,有效减少产品损耗,实现食品和医疗用品的长距离运输。蓄冷技术也可应用于建筑节能,将蓄冷材料与建筑基体复合制得储能墙体,在白天吸收室外进入室内的热量,夜晚则释放热量给室内供暖,实现辅助控制室内温度,减小建筑采暖、制冷能耗,有助于提高室内环境舒适度。此外,通过蓄冷空调将晚上低谷电转化为冷能储存起来,在白天电网高负荷时释放,转移用电负荷,结合分时阶梯电价策略能降低建筑制冷成本与能耗。此外,蓄冷技术与纺织品结合制作成智能纺织品、应用于人体热管理,也是重要的应用领域之一。蓄冷材料是蓄冷技术的核心,开发适宜温度及高蓄冷密度的蓄冷材料是满足不同蓄冷需求的关键。目前常见的蓄冷材料主要有∶显热蓄能材料和潜热蓄能材料。显热蓄能材料包括水等,利用自身升降温过程中热能的变化进行能量储存和释放,技术成熟且成本便宜,适合大规模生产。但其蓄冷密度小,只适用于分钟、小时级的短时蓄冷场景。潜热蓄能材料利用相变材料固-液-气相态变化来储蓄或释放能量,其中应用最为广泛的固-液相变能在相变过程中吸收大量热能,同时温度保持不变(如图1)。潜热蓄能材料蓄冷密度远高于显热蓄能,适用于数小时至数周的蓄能场景,且成本适中,具备大规模应用的潜力。图 1 固液相变过程本文主要对应用于蓄冷领域的相变材料进行综述,探讨相变蓄冷材料物性调控和优化、相变蓄冷系统传热技术强化,总结当前相变蓄冷材料和蓄冷系统不足,展望相变蓄冷技术研究方向和应用前景。01常见相变蓄冷材料常见相变蓄冷材料主要指相变温度在25℃及以下的相变材料。其中,按材料成分可分为有机、无机和共晶相变材料。1.1 有机相变蓄冷材料有机相变材料主要包括石蜡、脂肪酸、酯和醇等,以碳链长度小于17的烷烃为主。有机相变材料相变焓优异、腐蚀性小,而且热稳定性好、经多次相变后物理和化学性质基本不变,可靠性好。但有机相变材料热导率低,如石蜡、酸或醇类有机物的热导率为0.3 W/(mK)、部分材料易燃、生产成本较高等。表1列举了一些相变温度在25℃及以下的常用有机相变材料热物性。其中十四烷相变温度为5~8℃,在冷库、冷链运输保温箱、空调蓄冷等多个场景中应用最为广泛。表 1 有机相变材料的热物性参数1.2 无机相变蓄冷材料无机相变材料主要有冰、水合盐类、熔融盐类、金属或合金类等,其中冰和水合盐因相变温度较低主要用于低温领域,如在空调和建筑蓄冷等领域应用广泛。无机相变材料相变焓大、热导率较高,常见水合盐热导率为0.5 W/(mK) ,而且来源广、成本低、商用化前景好。然而无机相变材料可靠性差,存在过冷度高和相分离严重的缺点,多次使用后性能衰减严重,而且腐蚀性强。表2列举了一些相变温度在25℃及以下的常用无机相变材料热物性。表 2 无机相变材料的热物性参数无机相变材料中冰的研究最多,因为冰相变焓为334 kJ/kg,为常见相变材料的2~3倍,而且成本低廉。冰与水混合所得冰浆具有良好流动性和高相变潜热,可通过离心泵和管道输送,在极高含冰量下不堵塞,且所需输送管道和储罐尺寸小,以其为基础的冰蓄冷技术是实际工程项目中使用最广泛的蓄冷技术。1.3 共晶相变蓄冷材料共晶相变材料是将两种或两种以上相变材料混合制备得到的共晶产物,其熔点低于任一组分。共晶相变材料按材料可分为有机-有机共晶、无机-无机共晶和有机-无机共晶相变材料。无机-无机共晶相变材料包括金属合金相变材料、水合盐及熔融盐共晶相变材料,有机-有机共晶相变材料包括有机酸共晶和石蜡,无机-有机共晶相变材料主要是有机酸和水合盐的共晶相变材料。其中无机-有机共晶相变材料能实现有机、无机材料优势互补,可获得兼具过冷度低、潜热较高、性能稳定的相变蓄冷材料,但目前应用研究较少,潜力巨大。共晶相变材料能通过调整各组分比例来控制相变温度,而且能一定程度上改善材料过冷度和相分离等问题,是调节相变材料热物性的一种重要方法,但共晶相变材料的制备工艺较为复杂,需要围绕共晶点按比例形成共晶物,且组分比例与相变温度不呈线性规律,应用前需要进行大量预实验,过程繁琐复杂。表3列举了一些相变温度在25及以下的常用共晶相变材料热物性。表 3 共晶相变材料的热物性参数1.4 相变蓄冷材料的选择研究并筛选出适用于蓄冷系统的相变蓄冷材料,是相变蓄冷技术的关键之一。一般来说,用于蓄冷领域的相变材料应具有以下特性∶①相变温度合适;②相变潜热大;③热导率高;④冻结和熔化率高;⑤热稳定性好;⑥固液相变体积变化小;⑦过冷度低;⑧循环稳定性好;⑨无毒和无腐蚀性;⑩成本低。目前相变蓄冷材料中有机相变材料和无机相变材料应用最为广泛,二者关键物性对比如图2所示,可作为实际选材的参考依据。无机相变材料具有低成本、毒性低和高热导率的优点,适合大规模生产,在蓄能水罐、冷库等大型建筑设备中应用较广,但其过冷度高、相分离严重和腐蚀性强的缺陷限制其在蓄冷领域的应用。有机相变材料具有过冷度低、循环稳定性好和腐蚀性小优点,主要适用于冷链运输和智能纺织品,但其低热导率、有毒、易燃和高成本的缺点阻碍其进一步应用。相比有机、无机相变材料,共晶相变材料可根据组分比例调控相变温度,实现精准控温,适用于要求温度变化范围小的场景,但目前研究较少,适用环境较少。图 2 无机相变材料与有机相变材料关键物性对比图在实际应用中,很难筛选出满足所有条件的相变蓄冷材料,因此要优先选择相变温度适宜且相变潜热高的蓄冷材料,最后采用合适的方法对其性能进行调控。02相变蓄冷技术的应用2.1 冷链运输冷链运输过程中环境温度波动易造成产品损耗,如果引入相变材料,发挥其相变控温功能,减少环境温度波动,能有效提高冷链运输产品质量。冷链运输根据保温方式分为被动式和主动式。被动式冷藏主要应用于冷藏箱,如图3所示,在箱体内加入相变蓄冷材料,吸收进入到箱体内部的热量、减缓温度上升速率,为冷藏物体长时间提供低温储存环境。Li等复合了膨胀石墨与辛酸-月桂酸共晶相变材料,二者质量比为71∶29,制得复合相变材料的相变温度和潜热分别为3.8℃和141.7 J/g,热导率提升了2.8倍,使材料释冷速率提高636.7%。Huang等基于石蜡OP5E开发了一种蓄冷保温箱,高低温测试表明,相变材料可以在至少80 h使保温箱内部温度保持在2~8℃。Liu等将KCl-NH4Cl共晶盐吸附于高吸水性聚合物SAP上,制得一种相变温度为-21℃和相变潜热为230.62 J/g的蓄冷材料。该材料在-15℃下冷藏生物样品时,冷藏时间能达到16.37 h,能有效保证生物样品质量。图 3 被动式冷藏箱及内部构造主动式冷藏是如图4所示在车内安装含相变材料的制冷机组,主动将车内温度控制在适合食品冷藏的低温状态。在主动冷藏系统内,加入相变材料可以辅助控温,减少车厢内的温度波动,降低主动制冷系统能耗。刘广海等设计了一款集隔热、相变蓄冷、制冷送风为一体的冷藏车,相比传统冷藏车,相变材料加入使车内平均温度波动下降48.7%,温度不均匀度系数下降50%。Zhang等考察了集成相变材料对制冷系统能耗影响情况,含相变材料的集装箱制冷能源成本和运营成本分别降低71.3%和85.6%。Michele等提出了一种结合相变材料并用于冷藏车的新型隔热墙,当相变材料厚度为1 cm时,能在10 h内使车内温度波动范围不超出相变温度2℃。图 4 主动式冷藏车及系统组成将相变材料与冷链运输相结合,能出色发挥相变材料高潜热和相变控温的特点,不仅大幅延长有效冷藏时间,还减少冷藏空间的温度波动,提升其温度均匀性,有效减少冷藏产品的损耗率。与传统制冷相比,将制冷系统与相变材料结合,能大大降低能源成本和运营成本,起到减少碳排放的作用。2.2 纺织品人体热管理与出汗散热类似,将相变材料如图5所示应用于纺织品中,通过引入温度调节作用以提升人体舒适度。这种纺织品被称为智能调温纺织品,能响应人体或环境的变化,实现保暖和降温双向温度调节功能,适应多变的环境。目前相变材料与纺织品结合方式主要有三种∶填充法、涂层法和纤维中空填充法。图 5 纺织品集成相变材料用于温度调节填充法是将相变材料填充于纤维或密封袋中,再集中放置在服装内部,特别是胸部和背部等发热量较大的部位,通过相变材料直接吸热或放热的方式控制体表温度。如图6所示,Saeid等将相变温度在24~35℃的石蜡用于降温背心,穿着降温背心在轻度活动和中度活动期间,温度仍维持在人体舒适温度范围内,出汗率分别降低了42%和52%,减少了脱水几率。Hou等开发了一种基于相变材料的液体冷却背心,背心重量为1.8 kg,能在炎热环境中为穿戴者提供至少2 h温度舒适环境。图 6 石蜡降温背心及其包装涂层法将相变微胶囊加入涂层液中,并用刮板将液体均匀涂抹在织物表面,使纤维表面粘附上相变微胶囊来改变纺织品的热性能。Xu等将相变微胶囊固定在棉质衣物上,所制衣物相变温度为16.5℃~36.8℃,符合人体热舒适温度,而且保温系数与不含相变材料的衣物相比从1.05%提高到32.2%。Yin等将相变温度为25.7℃的相变微胶囊嵌在纤维表面,使面料保温率达23.9%,控温能力良好。纤维中空填充法是如图7所示对含有中空结构的纤维进行加工,在内部填充相变材料来赋予纤维蓄能特性。Ke等制备了一种聚丙烯腈/月桂酸-硬脂酸/二氧化钛的复合纳米纤维,相变温度约为25℃,经30个循环后性质相对稳定,具有良好的控温性和稳定性。Song等采用真空浸渍法将月桂酸封装到木棉纤维微管中,制得样品中月桂酸质量分数达86.5%,焓值达153.5 J/g,经2000次循环后性能基本不变。图 7 纤维中空填充法相变材料对热能的吸收会延缓身体温度升高,并减少皮肤中水分散失,从而提高舒适度。同时相变材料具有相变控温特性,可以减缓穿着者的热失衡症状,如感冒、中暑和晕厥等,在医疗保健领域有着广阔的发展空间。Olson等制备了由NaCl、Na2SO4和水组成的复合相变材料,如图8所示,应用于婴儿出生后降温问题上,通过简单方式抑制了环境温度的变化。Prashantha等将相变材料制成冰袋用于低温治疗,不仅降低成本,而且延长了使用时间,提供更好的冷疗功能。图 8 相变床垫(蓝色)上为婴儿降温,床垫由相变材料和软垫组成Zhang等用浸渍法将OP10E和SEBS混合制备了可在10℃下保持1800 s的弹性相变油凝胶,并设计如图9所示的冷却帽用于发烧儿童的冷敷治疗,模拟了人体热调节过程,建立发烧儿童所需凝胶量的数据库,为相变头套设计提供参考标准。图 9 相变油凝胶冷却帽建模及数据库将相变材料与人体热管理相结合,可以实现个性化体温调节。这类智能被动体温调节纺织品体积小、使用便利,在高温作业和户外运动等场景中提升人体舒适度。将相变纺织品制备调节体温的医疗保健产品,能帮助婴儿或患有温度敏感性疾病的人群缓解热失衡和常见并发症,加快病情治愈速率。创新性的相变智能体温调节纺织品在技术上已有了较深积累,其商业化值得期待。2.3 建筑节能及数据中心应急冷却将相变材料用于建筑节能领域,能使室内温度维持在舒适范围内,提高人们居住和办公舒适度,实现节能和减少碳排放的目标。建筑节能领域所用蓄冷技术可根据蓄冷方式分为被动式蓄冷和主动式蓄冷。被动式蓄冷主要通过将相变材料与建筑墙体复合制得如图10所示的相变储能墙体,白天吸收热量给室内降温,夜晚释放热量维持室内温度,起到辅助调节室温、减小建筑采暖和制冷能耗的作用。聂瑞等将硅藻土、十八烷和过硫酸铵混合制备一种相变微胶囊/硅藻土复合材料,具有调节室温以及维持室内湿度平衡的功能。Wang等将石蜡、膨胀石墨和高密度聚乙烯掺入水泥砂浆中制备复合相变砖块,在15~30℃和18~24℃时,120 mm厚的相变墙体比240 mm厚普通墙体的蓄能能力分别提高了12.7%和61%,有效降低了室内温度波动。Fu等将膨胀珍珠岩和六水氯化钙复合制得相变温度在27.38℃的相变砖块,用其代替泡沫保温砖作为屋顶,使得室内峰值温度降低5℃,达到室内峰值温度的时间滞后约900 s。图 10 相变材料在建筑节能中的应用主动式蓄冷主要通过制冷装置将电能和太阳能等转化并储存到如图11、图12所示蓄冷装置中,常见于冷库、家用空调和数据中心应急冷却系统等,能在需要时将冷能释放出来,有助于缓解能源供需不匹配的问题。图 11 集成相变材料冷却系统的空调系统图 12 集成相变材料冷却系统的太阳能空调系统Solaimalai等将1-葵醇用于冰基蓄冷系统中,使制冷系统工作时间减少了81.85%,平均充冷放冷速率是原来的5倍以上。Dogan等研究了蓄冰系统对大型超市空调用电成本的影响,相变材料的引入使制冷系统性能提升4.4%,目前运营成本已降低60%。Zheng等基于相变温度为5℃的相变微胶囊材料构建了一种相变冷库空调系统,其蓄冷量为常见冷库的1.5倍,当冷藏容量为3000 kJ时,冰和相变微胶囊悬浮液分别需要3980 s和2200 s完全凝固,使用相变微胶囊悬浮液可节省1780 s。王芳等选择主要成分为甘氨酸的相变蓄冷材料用于小型移动保鲜库中,使冷藏区域温度保持在1.6℃~2.6℃间,在不同供冷方式下内部温度波动均小于1.5℃。周晓棠等将冰蓄冷技术运用到家用空调中,运行10 h后,蓄冰空调的制冷量平均增加34%,达到15.6 kW,性能系数COP平均提升0.7,起到降低能耗的作用。Batlles等在太阳能制冷系统中引入相变储能罐,结果表明每天可节约40%制冷能耗。Peter等将储能罐、太阳能板和热泵组合成蓄冷系统,经1616 h测试,相比常规系统,该系统的季节性性能系数为4.4,总效率提高了46.6%。随着数据中心服务器集成程度的提升,热负荷也在不断升高,为了防止服务器故障,需要配置空调系统以满足数据中心降温需求。而当空调系统因故障停止工作时,需要应急冷却系统及时为服务器提供合适的环境温度,降低故障率。将相变材料与数据中心应急冷却系统结合,发挥相变材料高相变焓和相变控温优势,起到减少运营成本和短时间大量释冷的作用。Huang等基于相变蓄冷装置设计了一种如图13所示的风冷紧急冷却系统,可以将温度保持在27℃以下至少300 s,在低运营成本的同时保证较长的冷却时间。Ma等将相变蓄冷装置和循环热虹吸管集成了一种新型冷却系统,可以维持服务器运行6 min,并且随着相变材料热导率的提升,能将有效紧急冷却时间延长到15 min。图 13 紧急冷却系统综上,在建筑节能领域中引入相变蓄冷材料,可减少室内温度波动并维持在舒适范围内。且相比传统制冷装置,相变材料具有的高相变焓优势能减少制冷机组装机容量,实现制冷、蓄冷装置的轻量化,降低安装、运行成本,提高能源利用效率。03蓄冷技术的发展现状及方向蓄冷材料的固有缺陷及其蓄冷系统的传热性能不足会影响系统整体传热效率。我们需要针对性改善这些不足,提升实际使用性能。蓄冷技术的提升主要包括∶①蓄冷相变材料物性调控和优化;②相变蓄冷系统传热技术强化。3.1 相变蓄冷材料性能的调控3.1.1 相变温度调控相变温度是筛选相变材料的重要参数。为了同时满足对潜热、相变温度等方面的要求。可以结合两种及以上组分开发共晶相变材料来扩大相变温度的选择范围,通过改变组分比例来调控相变温度,克服单一相变材料的缺点,使相变材料更贴合应用需求。Lin等以磷酸二氢钠二水合物、磷酸氢二钾三水合物和五水合硫代硫酸钠配置得三元共晶水合盐相变材料,相变温度从-14.8℃到-10.6℃,可根据需要更改相变温度。李夔宁等将相变温度分别为58℃、18.2℃和-1℃的乙酸钠、丙三醇和水,混合制得相变温度为-14℃的三元共晶相变材料,获得更低的相变温度。Vennapusa等将相变温度为23.01℃的脂肪酸共混物OM-21和相变温度为22.7℃的十二烷醇配置成共晶相变材料,其相变温度从8.6℃到17.5℃,实现调控相变温度的目标。共晶相变材料能根据需求调整相变温度,但材料配比与相变温度间的规律仍不清晰,需要对共晶盐相变机理和规律进一步研究,为大规模应用共晶相变材料提供科学依据。3.1.2 热导率调控不同应用场景对相变材料热导率要求不同。例如在换热器中要求高热导率,更快将近热源部位的热量传递给低温部位,强化系统整体换热效率。而在保温冷藏系统中要求低热导率,减少冷藏空间和外界环境热交换,延缓温度变化趋势,创造合适且长效的低温环境,实现保障产品质量的目标。不同相变材料传热机理不同,金属相变材料主要由电子进行热传递,非金属相变材料主要由声子传递热量。不相容材料之间的声子散射会增大界面热阻,而内部具有完整三维互联网络的材料可以为声子传播提供通道,进而提升材料热导率。因此调控相变材料热导率的方法主要是添加多孔载体材料或纳米粒子等制备复合相变材料,进而改变材料整体的热导率。常用的高热导率多孔载体有泡沫金属和膨胀石墨等,低热导率的载体有二氧化硅、膨胀珍珠岩等。高热导率的纳米粒子有碳基纳米粒子,如碳纤维、碳纳米管和石墨烯等,以及金属纳米粒子如纳米二氧化钛、纳米氧化铝等。Lin等制备了相变温度为5.92℃的膨胀石墨基复合相变材料,将热导率提高到0.43 W/(mK),为原来的1.75倍,显著改善材料的传热性能。Soroush等考察泡沫铜对不同石蜡热导率的改善效果,在质量流量为0.02 kg/s和使用石蜡C22的前提下,系统最高热效率高达83%。He等将二氧化钛纳米颗粒悬浮于氯化钡水溶液中,制得相变温度为-5℃、热导率为0.565 W/(mK)的悬浊液,二氧化钛的加入使热导率提高12.76%。Chen等将相变温度为-9.6℃的十二烷吸附到疏水气相二氧化硅中,与纯十二烷相比热导率降低45%,低热导率有利于抑制内外环境之间热传递,使十二烷更好用于保温领域。这两种调控热导率的方法仍有不足,纳米粒子存在分散不均匀和团聚的问题,在循环使用中性能衰减严重,热导率提升幅度小,性价比低。加入多孔载体会减少相变材料含量,影响整体蓄能量。目前对纳米粒子和多孔载体孔隙的尺寸对热导率的影响规律仍有空缺,以及降低界面热阻和提高相变材料相容性的机理还需进一步探究。3.1.3 过冷度调控过冷是指相变材料在一定压力条件下,温度低于理论凝固温度时仍不发生凝固或结晶,需要冷却到凝固点以下才开始凝固的现象。过冷度被定义为熔化起始温度和结晶开始温度之间的差值,过冷度越大越难结晶。无机相变材料的过冷度普遍偏高,其中水合盐相变材料成核性能较差,容易发生过冷,使相变材料无法在要求温度范围内工作。而且过冷度越大,意味着制冷温度越低,对制冷机负荷要求更高。影响过冷度的因素主要包括∶冷却速率、壁面效应和尺寸效应。一般冷却速率越大,过冷度也越大。过冷度也受封装容器材料种类、表面粗糙度和壁面晶体结构影响,粗糙壁面能提供更多成核位点,粗糙度越大,过冷度越低。储存相变材料的容器体积越小,过冷度越大,因为相变材料中存在灰尘或其他杂质颗粒,能在结晶过程中作为成核位点,促进结晶。但随着容器尺寸减少,缺少足够杂质颗粒提供成核位点,只能以均匀成核的方式结晶,增大相变材料结晶难度。目前解决相变材料过冷的方法主要有添加成核剂和壁面改性。添加成核剂主要是选择晶格参数接近目标材料的成核剂,当成核剂结构与无机盐类结晶物相似时,能起到诱导结晶作用,实现减小过冷度的目的。这种方法经济成本低、适用范围广且制备过程无需特定设备,在调控过冷度方法中应用最广泛。Wu等在氯化镁溶液中加入氯化钙和氢氧化钙作为成核剂,相变材料的过冷度由16.56℃降低到7.73℃,有效抑制过冷。Tang等在相变材料中加入成核剂九水偏硅酸钠将过冷度降低至1.9℃。Zou等以相变温度为11.81℃的四正丁基溴化铵溶液作为蓄冷材料,加入成核剂十二水合磷酸氢二钠使材料的过冷度由4.5℃降低到2.01℃,成核剂的加入有助于降低过冷度。壁面改性法通过增加壁面粗糙度或加入多孔材料和纳米粒子,为相变材料结晶提供更多成核位点,降低材料过冷度。Matthieu等考察金属表面粗糙度对乙醇水溶液过冷度的影响,当铝管表面粗糙度从0.63 μm变13.3 μm时,乙醇水溶液过冷度从4.20℃降低到3.97℃。Zhang等制备了一种以泡沫铜为骨架的水基复合相变材料,过冷度从20.6℃抑制到6.8℃,有效降低了材料过冷度。Liu等将去离子水和氧化石墨烯纳米片超声混合,使水过冷度至少降低74%。成核剂用量需要合理配比,少量成核剂就能有效降低过冷度,过多成核剂反而会降低抑制过冷的能力,性价比不高。后续应使用分子模型对成核机理进行研究,加大对复合型成核剂的开发和机理解释,构建成核剂数据库为大规模商业化提供参考依据。目前对于壁面改性降低过冷度的机理研究不够深入,仅为定性分析,后续应建立多维模型来模拟真实场景,从成核能角度解释机理,用普适性规律指导过冷度的调控。3.1.4 循环稳定性调控固-液相变材料在吸热后,相态会从固态熔化为易于流动的液态,容易出现泄漏,在长期使用中性能衰减严重。对于水合盐类相变材料,在循环使用中可能会发生部分水合盐晶体因沉底而无法重新结晶的情况,即发生相分离,降低相变材料蓄冷能力。在实际使用中相变材料需要具有良好的循环稳定性,能够克服泄漏和相分离的缺点。提升循环稳定性主要途径包括∶制备定形复合相变材料法、微胶囊法和添加增稠剂法。制备定形复合相变材料法主要采用熔融吸附法,在膨胀石墨、泡沫金属等多孔基材内吸收液态相变材料,借助毛细作用和范德华力将液态相变材料吸附在内部孔隙中,减轻相变材料的泄漏。多孔基材内部孔径决定对相变材料的限制能力,根据孔径大小可分为微孔(2 nm)、中孔(2~50 nm)和大孔(50 nm)。较小的微孔可能会限制相变材料的相变,而较大的大孔不足以将相变材料吸附住。因此中孔和较小的大孔更适合制备防泄漏的复合相变材料。Fei等基于癸酸、棕榈酸和膨胀石墨制备了一种相变温度为23.05℃的复合相变材料,经1000次熔化和凝固循环,几乎没有液态相变材料泄漏,可靠性优秀。Shahbaz等采用气相二氧化硅吸附相变温度为20.65℃的六水氯化钙,经100次相变循环后,相变潜热仅变化了7.8%,性能较纯相变材料更为稳定。Zhang等将六水氯化镁和六水氯化钙混合制得相变温度为23.9℃的低温共晶物,经熔融吸附到膨胀珍珠岩中,经500次相变循环后,材料性质未出现明显变化,未出现相分离现象。微胶囊法常用高分子材料包覆相变材料,在其表面形成一层外壳,将液态相变材料锁在壳中,从而减少相变材料泄漏。Charles等使用相变温度为6.2℃的相变材料与外壳材料聚甲基丙烯酸甲酯进行交联制备微胶囊,使用30天后,质量损失仅为0.6%,而无外壳的纯相变材料质量损失高达6.6%,微胶囊壳使泄漏情况较轻。Zheng等以石蜡和三聚氰胺树脂分别为核材和壳材,制备了一种相变温度为5℃的相变微胶囊,经72 h后未出现分层,稳定时间长。Eszter等用海藻酸钙包裹月桂酸辛酯,经过250次高低温循环后,相变焓从128.27 J/g降至127.67 J/g,没有明显变化,循环稳定性良好。添加增稠剂法通过增加溶液粘度,使相变材料稳定保持悬浮态或乳液态,减少相分离。常见的增稠剂有羧甲基纤维素、琼胶、聚丙烯酰胺、聚乙烯醇、海藻酸钠和活性白土等,添加增稠剂法已广泛用于食品、涂料、化妆品、洗涤剂和医药等领域。He等在六水氯化钙与六水氯化镁二元共晶水合盐中加入增稠剂羧甲基纤维素,在100次循环内保持优异的循环稳定性,焓值从123.13 J/g降至117.88 J/g,为原来的95.7%。杨超等选取羧甲基纤维素作为增稠剂对六水氯化钙进行改性,获得的改性六水氯化钙在300次循环中实现了相分离的控制。杨晋等考察聚丙烯酸钠、聚丙烯酰胺、羧甲基纤维素、聚阴离子纤维素、黄原胶等增稠剂对十水硫酸钠相分离的调控规律,其中加入聚丙烯酸钠和聚丙烯酰胺后静置72 h后未出现明显相分离。目前多孔基材吸附机理解释不足,针对不同材料间相容性问题提出改善方法和相应机理解释。微胶囊使用时容易出现团聚问题,多次使用后因团聚前后密度差出现分层,不利于循环稳定。后续应探究使用表面活性剂来改善团聚问题,考察与不同添加剂的作用规律。增稠剂的使用会增加成本和降低焓值,需开发复配型增稠剂,降低生产成本。而且当相变材料作为浆料使用时,材料粘度的增大会加大传质阻力,增加泵功耗,应通过流体力学仿真来优化增稠剂配比。3.2 相变蓄冷系统性能的调控根据应用需求不同,可将相变蓄能系统分为相变蓄热系统和相变蓄冷系统,其中相变蓄冷系统如图14所示。而相变蓄能系统性能主要受两个因素影响∶相变材料和系统传热结构。相变材料可通过选材和改性等方法将性能调整至预期所需,系统传热结构可以通过改变换热器内外部形状和排布,获得具有换热面积大、结构稳定、操作简单、抗压性好、抗腐蚀性好和热稳定性好等优点的换热器。根据相变蓄冷系统换热方式的不同,可以分为间壁换热式相变蓄冷系统和直接接触式相变蓄冷系统。图 14 相变蓄冷系统示意图3.2.1 间壁换热式相变蓄冷系统蓄冷技术中间壁换热式相变蓄冷系统主要包括∶內融盘管式、堆积床式和管翅式,通过将制冷剂与传热流体隔开来防止二者直接接触,在一定程度上维持二者性质不变,目前应用最为广泛。內融盘管式蓄冷系统属于静态制冰,装置如图15所示,以冰作为相变材料,由浸没在水槽中的盘管构成结冰载体。蓄冷时,制冷剂在管内流动,将管外的水冻结成冰;释冷时,传热流体在管内流动,管外的冰熔化吸收管内流体的热量。盘管式蓄冰系统形状多变,应用范围广泛,使用简单,可靠性好,价格较低,本身既可制冰又可蓄冰。而且间壁换热的方式能隔开冷源和外界,提升系统的循环稳定性。但冰与传热流体间存在较大的接触热阻,对传热性能不利。且盘管式内部管路长、多弯折,制冷剂流动阻力大,泵功耗大,运营成本较高。图 15 内融式盘管式冰蓄冷系统的蓄冷和放冷过程堆积床式蓄冷系统通过将水、低温石蜡和水合盐等相变材料封装在如图16所示的球形或板形容器内,并将这种蓄冷单元如图17所示放置在水罐内。蓄冷时,制冷剂在蓄冰单元外流动,其中相变材料通过凝固来实现蓄冷。放冷时,传热流体流过蓄冷单元间隙实现热交换。这种蓄冷装置运行可靠,但存在蓄冷量不易计量、传质阻力大等缺点。图 16 封装式蓄冷单位图 17 堆积床式蓄冷系统管翅式蓄冷装置如图18所示,在列管上增加翅片来增大传热面积,常在翅片空隙中填充水合盐和石蜡等相变材料用于蓄冷。蓄冷时,制冷剂在管内流动,管外相变材料凝固蓄冷。放冷时,管外相变材料熔化释冷,降低管内传热流体温度。这种装置结构紧凑、传热面积大,但制备工艺复杂而且难检修保养,运行成本较高。图 18 管翅式换热器3.2.2 直接接触式相变蓄冷系统直接接触式相变蓄冷系统方法包括外融盘管式和直接接触式,通过制冷剂与传热流体直接接触换热,减少换热器热损失并提高热交换效率。外融盘管式蓄冷装置如图19所示,与內融盘管式蓄冷装置结构相似,同以冰作为相变材料。蓄冷时,制冷剂在管内流动,将管外水冻结成冰;但在释冷时,传热流体在管外流动,直接与冰接触换热。这种直接接触式传热能有效减低接触热阻,提升换热速率。但相变材料会直接接触传热流体,存在物性被影响的可能,可靠性有待提高。图 19 外融式盘管式冰蓄冷系统的蓄冷和放冷过程直接接触式冰浆制备装置如图20所示,制冷剂和水溶液直接接触,水溶液降温结晶形成冰晶颗粒,这种方法在动态制备冰浆过程中具有较高的换热效率,改进静态冰蓄冷中冰层厚度增长和热阻增加的缺点。但是制冷剂喷嘴处易发生冰堵,难连续制冰,传统低温冷媒难与水分离,消耗量大,且容易腐蚀管壁,实际应用成本高。图 20 直接接触式冰浆制备装置3.2.3 相变蓄冷系统的性能优化相变蓄冷材料的低热导率意味着相变蓄冷系统蓄冷和放冷时间长,增加制冷系统功耗,提高运行成本,因此需要对材料和换热器的热性能进行优化。相变蓄冷系统传热主要有两种强化方向∶添加高导热填料和增大换热器表面积,实际应用中常将这两种方法结合起来,共同优化相变蓄冷系统性能。添加高导热填料的方法是通过添加具有高热导率、大比表面积的纳米颗粒或多孔基材来提升整体热导率,提升系统释冷、蓄冷速率,提高整体融冰率。Lou等研究了泡沫金属对蓄冰球的传热强化,分析金属泡沫和金属泡沫复合翅片下温度场、冰锋演化、凝固分数、总凝固时间和蓄冷能力的变化,最后对泡沫金属蓄冰球的无量纲参数进行分析,为泡沫金属在蓄冷系统中的应用提供参考。Rajan等将活性生物炭纳米粉末分散在水中,将材料热导率从0.62 W/(mK)提升至1.05 W/(mK)。连续运行337 h,相比不含相变材料的冷库,含相变材料的冷库消耗电量从304.58 kWh降至278.03 kWh,相变材料降低了冷库9%的能耗。Refat等为提高水的热导率,将水封装在高热导率石墨球中并用于堆积床系统,石墨的加入使水的热导率从0.6 W/(mK)提升至7.2 W/(mK),系统完全蓄冷时间减少了53.7%。增大换热器表面积,进而增大系统传热面积来提升热导率。常见方法是在换热器内引入翅片和增加槽口,管翅式换热器由此而来,翅片和槽口越多,热导率提升幅度越大。Shao等研究了相变乳液PCE-10在管翅式换热器中的热性能,其相变温度在4~11℃间,热导率为0.4 W/(mK),翅片的存在强化了传热,使整体传热速率提升了1.1~1.3倍。Vahid等研究了管壳几何形状和传热管向下偏心对管壳式换热器中石蜡熔化行为的综合影响,得出增加偏心系数可以延长以对流为主的熔化时间,缩短以传导为主的熔化时间结论,为容器设计提供思路。Merve等为改善板式换热器的性能,在板表面上增设鱼鳃槽,传热速率提高了17.5%,鱼鳃槽起到增大传热面积作用。结合高导热填料及增大换热器表面积可进一步提高蓄冷系统传热性能,已广泛用于蓄冷系统中。黄江常使用膨胀石墨与水复合制备出相变焓值280.6 kJ/kg、相变温度0℃、过冷度为2.6℃和热导率为4.72W/(mK)的水/改性膨胀石墨复合相变材料。Feng等将这种水/膨胀石墨复合相变材料与管翅式换热器通过如图21所示方式耦合,将复合相变材料填充入换热器翅片间。图 21 水/改性膨胀石墨复合相变材料填充管翅式换热器相比纯水蓄冷器,该蓄冷器的蓄冷功率提升了15.9%,而且完成蓄冷时间仅为纯水蓄冷器的69.7%,成功搭建了一个具有较高蓄冷功率和较快蓄冷速率的蓄冷装置。Nóbrega等在水中加入纳米氧化铝颗粒,当纳米氧化铝质量分数为5 wt%时,相变焓为275.9 kJ/kg,结冰前热导率为0.67 W/(mK),结冰后热导率为2.65 W/(mK)。再将其和图22所示四翅片管耦合,氧化铝和翅片管的加入分别使水完全凝固时间减少了25%和9.1%,成功缩短了系统蓄冷时间。图 22 相变材料与四翅片管耦合模型Ahmed等采用十四烷为相变材料,膨胀石墨作为高导热封装基材,制得相变温度为4.5℃、相变焓为168 kJ/kg、热导率为10 W/(mK)的复合相变材料。并如图23所示在空调系统中设计双流体回路,通过结构上的优化空调组成,空调压缩机在高峰时期的功耗从2.18 kW降至1.82 kW,降低约16%。图 23 使用膨胀石墨/十四烷复合相变材料的蓄热式集成空调加入纳米颗粒和多孔材料虽能提升系统热导率,但会对相变材料的相变潜热、相变温度和循环稳定性等性质有影响。增大蓄冷器传热面积,会因内部结构的复杂化提高成本和压降,对生产和应用提出更高要求。目前相变蓄冷材料和蓄冷器的量产工艺尚不成熟,大规模应用难度高,后续应继续开发新型蓄冷材料和蓄冷容器,寻找相变材料与蓄冷器之间更多种耦合方式,提出与工况相匹配的释冷、蓄冷控制策略,降低运行成本,实现相变蓄冷技术的大规模应用。而且要探究材料与容器间相容性,部分材料有金属腐蚀性,会减少系统使用寿命和增加维护成本,如何对装置进行防腐蚀处理也是未来的研究重点。04总结与展望本文回顾了面向低温相变蓄能领域的相变材料和相变蓄冷系统,并介绍了目前相变蓄冷系统的主要应用场景,最后针对相变蓄冷系统的关键性能介绍了调控方法和方向。尽管相变蓄冷材料和系统的研究已经取得了较大进展,但由于相变材料自身缺陷和使用条件限制,目前应用范围较窄,离大规模商业化还有一定距离。根据国内外现有研究,本综述认为可以从以下三个方面继续发展∶(1)进一步研究相变材料的性能调控方法和规律,单一相变材料通常存在如热导率低、过冷度高、循环稳定性差和腐蚀性强等缺陷,这可以通过制备复合相变材料和加入添加剂来调控相变材料性能。后续需要建立和完善相变材料的物性数据库,提供一种有利于解决多数问题的方案,同时开发兼具低成本和低制造难度的工业化路线,为相变材料大规模商业化提供技术支撑。(2)开发和研究新型相变蓄冷系统,使用数值模拟指导设备开发,设计结构简单和制造难度低的蓄冷系统,特别是对于冷链运输、纺织品和数据中心冷却等领域,要求有限的体积和重量,需要提高相变蓄冷系统的集成程度。应结合实验来验证模拟设备的实际使用性能,最后对相变蓄冷系统进行经济评估和环境评估,开发低能耗、低碳排放的相变蓄冷系统。(3)拓宽相变蓄冷系统在各领域中的应用,目前已在数据中心应急冷却和医疗保健等新领域有了较深的技术积累。后续还要完善在冷链运输、纺织品和建筑节能等领域的应用,寻找高蓄冷需求的行业,实现在各行各业的大规模商业化。总之,相变蓄冷技术作为储能技术中的技术分支,具有高安全性、性能稳定、充放寿命长、成本低、结构系统简单等优点,是未来实现分布式储能和清洁能源利用的重要方向。
  • 安谱实验申报第二批国家二级标准物质顺利取得制造计量器具许可证
    我们的发展产品货号产品名称价格/元酸碱滴定cfaa-gbw(e)082913氢氧化钠标准滴定溶液,c(naoh)=0.1mol/l(0.1n) 60cfaa-gbw(e)082914氢氧化钠标准滴定溶液,c(naoh)=0.2mol/l(0.2n) 60cfaa-gbw(e)082915氢氧化钠标准滴定溶液,c(naoh)=0.5mol/l(0.5n) 60cfaa-gbw(e)082916氢氧化钠标准滴定溶液,c(naoh)=1.0mol/l(1.0n) 60cfaa-gbw(e)082547盐酸标准滴定溶液,c(hcl)=0.1mol/l(0.1n) 60cfaa-gbw(e)082548盐酸标准滴定溶液,c(hcl)=0.2mol/l(0.2n) 60cfaa-gbw(e)082549盐酸标准滴定溶液,c(hcl)=0.5mol/l(0.5n) 60cfaa-gbw(e)082550盐酸标准滴定溶液,c(hcl)=1.0mol/l(1.0n) 60cfaa-gbw(e)082551硫酸标准滴定溶液,c(1/2h2so4)=0.1mol/l(0.1n) 60cfaa-gbw(e)082552硫酸标准滴定溶液,c(1/2h2so4)=0.25mol/l(0.25n) 60cfaa-gbw(e)082553硫酸标准滴定溶液,c(1/2h2so4)=0.5mol/l(0.5n) 60cfaa-gbw(e)082554硫酸标准滴定溶液,c(1/2h2so4)=1.0mol/l(1.0n) 60cfaa-gbw(e)082555 edta二钠标准滴定溶液,c(edta)=0.05mol/l(0.05n) 100cfaa-gbw(e)082556 edta二钠标准滴定溶液,c(edta)=0.1mol/l(0.1n) 100沉淀滴定cfaa-gbw(e)082923氯化钠标准滴定溶液,c(nacl)=0.05mol/l(0.05n) 120cfaa-gbw(e)082924氯化钠标准滴定溶液,c(nacl)=0.1mol/l(0.1n) 120cfaa-gbw(e)082921硝酸银标准滴定溶液,c(agno3)=0.05mol/l(0.05n) 220cfaa-gbw(e)082922硝酸银标准滴定溶液,c(agno3)=0.1mol/l(0.1n) 220氧化还原滴定cfaa-gbw(e)082928重铬酸钾标准滴定溶液,c(1/6k2cr2o7)=0.05mol/l(0.05n) 100cfaa-gbw(e)082927重铬酸钾标准滴定溶液,c(1/6k2cr2o7)=0.1mol/l(0.1n) 100cfaa-gbw(e)082919高锰酸钾标准滴定溶液,c(1/5kmno4)=0.1mol/l(0.1n) 120cfaa-gbw(e)082929草酸钠标准滴定溶液,c(1/2na2c2o4)=0.1mol/l(0.1n) 100cfaa-gbw(e)082925碘酸钾标准滴定溶液,c(1/6kio3)=0.1mol/l(0.1n) 180cfaa-gbw(e)082926碘酸钾标准滴定溶液,c(1/6kio3)=0.3mol/l(0.3n) 180cfaa-gbw(e)082920硫代硫酸钠标准滴定溶液,c(na2s2o3)=0.1mol/l(0.1n) 116络合滴定cfaa-gbw(e)082917氯化锌标准滴定溶液,c(zncl2)=0.05mol/l(0.05n) 100cfaa-gbw(e)082918氯化锌标准滴定溶液,c(zncl2)=0.1mol/l(0.1n) 100我们的愿景※ 满足滴定分析实验室的需求, 提高实验人员的工作效率,让客户更专注于核心业务 ※ 为客户节约采购和时间成本,为客户创造价值;※ 为客户提供更全的产品、技术和服务,打造“一站式实验室耗材平台”我们的服务※ 提供品种齐全的产品,让您从繁琐的配置工作中解放出来;※ 提供精度准确、批次稳定的标准滴定溶液,确保实验准确性 ※ 提供定制服务,让您游刃于各项检测和研究;※ 提供技术支持,为您答惑解疑
  • 十三种污水处理基础指标的分析方法汇总
    p  span style="color: rgb(0, 112, 192) "strong一、化学需氧量(CODcr)的测定/strong/span/pp  化学需氧量:指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,单位为mg/L。而我国一般采用重铬酸钾法作为依据。/pp  1、方法原理/pp  在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵溶液回滴。根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量。/pp  2、仪器/pp  (1)回流装置:带250ml锥形瓶的全玻璃回流装置(如取样量在30ml以上,采用500ml锥形瓶的全玻璃回流装置)。/pp  (2)加热装置:电热板或变组电炉。/pp  (3)50ml酸式滴定剂。/pp  3、试剂/pp  (1)重铬酸钾标准溶液(1/6 =0.2500mol/L:)称取预先在120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移入1000ml容量瓶,稀释至标线,摇匀。/pp  (2)试亚铁灵指示液:称取1.485g邻菲啰啉,0.695g硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。/pp  (3)硫酸亚铁铵标准溶液:称取39.5g硫酸亚铁铵溶于水,边搅拌便缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。/pp  标定方法:准确吸收10.00ml重铬酸钾标准溶液与500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀。冷却后,加入三滴试亚铁灵指示液(约0.15ml)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色及为终点。/pp  C[(NH4)2Fe(SO4)2]=0.2500× 10.00/V/pp  式中,c—硫酸亚铁铵标准溶液的浓度(mol/L) V—硫酸亚铁铵标准滴定溶液的用量(ml)。/pp  (4)硫酸-硫酸银溶液:与2500ml浓硫酸中加入25g硫酸银。放置1-2d,不时摇动使其溶解(如无2500ml容器,可在500ml浓硫酸中加入5g硫酸银)。/pp  (5)硫酸汞:结晶或粉末。/pp  4、注意事项/pp  (1)使用0.4g硫酸汞络合氯离子的最高量可达40mL,如取用20.00mL水样,即最高可络合2000mg/L氯离子浓度的水样。若氯离子浓度较低,亦可少加硫酸汞,是保持硫酸汞:氯离子=10:1(W/W)。如出现少量氯化汞沉淀,并不影响测定。/pp  (2)水样去用体积可在10.00-50.00mL范围之间,但试剂用量及浓度按相应调整,也可得到满意结果。/pp  (3)对于化学需氧量小于50mol/L的水样,应该为0.0250mol/L重铬酸钾标准溶液。回滴时用0.01/L硫酸亚铁铵标准溶液。/pp  (4)水样加热回流后,溶液中重铬酸钾剩余量应为加入少量的1/5-4/5为宜。/pp  (5)用邻笨二甲酸氢钾标准溶液检测试剂的质量和操作技术时,由于每克邻笨二甲酸氢钾的理论CODCr为1.167g,所以溶解0.4251L邻笨二甲酸氢钾与重蒸馏水中,转入1000mL容量瓶,用重蒸馏水稀释至标线,使之成为500mg/L的CODCr标准溶液。用时新配。/pp  (6)CODCr的测定结果应保留三位有效数字。/pp  (7)每次实验时,应对硫酸亚铁铵标准滴定溶液进行标定,室温较高时尤其注意其浓度的变化。/pp  5、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取3个磨口锥形瓶,编号0、1、2 向3个锥形瓶中分别加入6粒玻璃珠。/pp  (3)向0号锥形瓶中加20mL蒸馏水(用胖度移液管) 向1号锥形瓶中加5mL进水样(用5mL的移液管,要用进水润洗移液管3次),然后再加入15mL蒸馏水(用胖度移液管) 向2号锥形瓶中加20mL出水样(用胖度移液管,要用进水润洗移液管3次)。/pp  (4)向3个锥形瓶中分别加入10mL重铬酸钾非标液(用10mL的重铬酸钾非标液移液管,要用重铬酸钾非标液润洗移液管3次)。/pp  (5)将锥形瓶分别放到电子万用炉上,然后打开自来水管将水充满冷凝管(自来不要开的过大,凭经验)。/pp  (6)从冷凝管上部向3个锥形瓶中分别加30mL硫酸银(用25mL的小量筒),然后分别摇匀3个锥形瓶。/pp  (7)插上电子万用炉插头,从沸腾开始计时,加热2小时。/pp  (8)加热完毕后,拔下电子万用炉插头,冷却一段时间后(多长时间凭经验)。/pp  (9)从冷凝管上部向3个锥形瓶中分别加90mL蒸馏水(加蒸馏水原因:1.从冷凝管上加水,使加热过程中冷凝管内壁的残留水样流入锥形瓶,减小误差。2.加定量的蒸馏水,使滴定过程中的显色反应更加明显)。/pp  (10)加入蒸馏水后会放热,取下锥形瓶冷却。/pp  (11)彻底冷却后,向3个锥形瓶中分别加3滴试亚铁灵指示剂,然后分别摇匀3个锥形瓶。/pp  (12)用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。(注意全自动滴定管的使用方法。滴定完一个要记得读数,并将自动滴定管液位升至最高处,进行下一个滴定)。/pp  (13)记录读数,计算结果。/pp span style="color: rgb(0, 112, 192) "strong 二、生化需氧量(BOD5)的测定/strong/span/pp  生活污水与工业废水中含有大量各类有机物。当其污染水域后,这些有机物在水体中分解时要消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化。水体因缺氧造成鱼类及其他水生生物的死亡。/pp  水体中所含的有机物成分复杂,难以一一测定其成分。人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量,生化需氧量即属于这类的一个重要指标。/pp  生化需氧量的经典测定方法,是稀释接种法。/pp  测定生化需氧量的水样,采集时应充满并密封于瓶中。在0——4摄氏度下进行保存。一般应在6h内进行分析。若需要远距离转运。在任何情况下,贮存时间不应超过24h。/pp  1、方法原理/pp  生化需氧量是指在规定条件下,微生物分解存在水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量。此生物氧化全过程进行的时间很长,如在20摄氏度下培养时,完成次过程需要100多天。目前国内外普遍规定于20加减1摄氏度培养5d,分别测定样品培养前后的溶解氧,二者之差即为BOD5值,以氧的毫克/升表示。/pp  对某些地面水及大多数工业废水,因含较多的有机物,需要稀释后再培养测定,以降低其浓度和保证有充足的溶解氧。稀释的程度应使培养中所消耗的溶解氧大于2mg/L,而剩余溶解氧在1mg/L以上。/pp  为了保证水样稀释后有足够的溶解氧,稀释水通常要通入空气进行曝气,便稀释水中溶解氧接近饱和。稀释水中还应加入一定量的无机营养盐和缓冲物质,以保证微生物生长的需要。/pp  对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD5时应进行接种,以引入能分解废水中有机物的微生物。当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引入水样中进行接种。 本方法适用于测定BOD5大于或等于2mg/L,最大不超过6000mg/L的水样。当水样BOD5大于6000mg/L,会因稀释带来一定的误差。/pp  2、仪器/pp  (1)恒温培养箱/pp  (2)5——20L细口玻璃瓶。/pp  (3)1000——2000ml量筒/pp  (4)玻璃搅棒:棒的长度应比所用量筒高度长200mm。在棒的底端固定一个直径比量筒底小、并带有几个小孔的硬橡胶板。/pp  (5)溶解氧瓶:250ml到300ml之间,带有磨口玻璃塞并具有供水封用的钟型口。/pp  (6)虹吸管,供分取水样和添加稀释水用。/pp  3、试剂/pp  (1)磷酸盐缓冲溶液:将8.5磷酸二氢钾,21.75g磷酸氢二钾,33.4七水合磷酸氢二钠和1.7g氯化铵溶于水中,稀释至1000ml。此溶液的PH应为7.2/pp  (2)硫酸镁溶液:将22.5g七水合硫酸镁溶于水中,稀释至1000ml。/pp  (3)氯化钙溶液:将27.5无水氯化钙溶于水,稀释至1000ml。/pp  (4)氯化铁溶液:将0.25g六水合氯化铁溶于水,稀释至1000ml。/pp  (5)盐酸溶液 :将40ml盐酸溶于水,稀释至1000ml。/pp  (6)氢氧化钠溶液 :将20g氢氧化钠溶于水,稀释至1000ml/pp  (7)亚硫酸钠溶液:将1.575g亚硫酸钠溶于水,稀释至1000ml。此溶液不稳定,需每天配制。/pp  (8)葡萄糖—谷氨酸标准溶液:将葡萄糖和谷氨酸在103摄氏度干燥1h后,各称取150ml溶于水中,转入1000ml容量瓶内并稀释至标线,混合均匀。此标准溶液临用前配制。/pp  (9)稀释水:稀释水的PH值应为7.2,其BOD5应小于0.2ml/L。/pp  (10)接种液:一般采用生活污水,在室温下放置一昼夜,取上清液使用。/pp  (11)接种稀释水:分取适量接种液,加入稀释水中,混匀。每升稀释水中接种液加入量为生活污水1——10ml 或表层土壤侵出液20——30ml 接种稀释水的PH值应为7.2。BOD值以在0.3——1.0mg/L之间为宜。接种稀释水配制后应立即使用。/pp  4、计算/pp  1、不经稀释直接培养的水样/pp  BOD5(mg/L)=C1-C2/pp  式中:C1——水样在培养前的溶解氧浓度(mg/L) /pp  C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L)。/pp  2、经稀释后培养的水样/pp  BOD5(mg/L)=[(C1-C2)—(B1-B2)f1]∕f2/pp  式中:C1——水样在培养前的溶解氧浓度(mg/L) /pp  C2——水样经 5 天培养后,剩余溶解氧浓度(mg/L) /pp  B1——稀释水(或接种稀释水) 在培养前的溶解氧浓度 (mg/L) /pp  B2——稀释水(或接种稀释水) 在培养后的溶解氧浓度 (mg/L) /pp  f1 —— 稀释水(或接种稀释水)在培养液中所占比例 /pp  f2 —— 水样在培养液中所占比例。/pp  B1——稀释水在培养前的溶解氧 /pp  B2——稀释水在培养后的溶解氧 /pp  f1——稀释水在培养液中所占比例 /pp  f2——水样在培养液中所占比例。/pp  注:f1,f2的计算:例如培养液的稀释比为3%,即3份水样,97份稀释水,则f1=0.97,f2=0.03。/pp  5、注意事项/pp  (1)水中有机物的生物氧化过程,可分为二个阶段。第一阶段为有机物中的碳和氢、氧化生成二氧化碳和水,此阶段称为碳化阶段。完成碳化阶段在20摄氏度大约需20天左右。第二阶段为含氮物质及部分氮,氧化为亚硝酸盐及硝酸盐,称为硝化阶段。完成硝化阶段在20摄氏度时需要约100天。因此,一般测定水样BOD5时,硝化作用很不现著或根本不发生硝化作用。但对于生物处理池的出水,因其中含有大量的硝化细菌。因此在测BOD5时也包括了部分含氮化物的需氧量。对于这样的水样,,可以加入硝化抑制剂,抑制硝化过程。为此目的,可在每升稀释水样中加入1ml浓度为500mg/L的丙烯基硫脲或一定量固定在氯化钠上的2-氯带-6-三氯甲基啶,使TCMP在稀释样品中的浓度大约为0。5 mg/L。/pp  (2) 玻璃器皿应彻底清洗干净。先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水,蒸馏水洗净。/pp  (3) 为检查稀释水和接种液的质量,以及化验人员的操作水平,可将20ml葡萄糖-谷氨酸标准溶液用接种稀释水稀释至1000ml,按测定BOD5的操作步骤。测得BOD5的值应在180—230mg/L之间。否则应检查接种液、稀释水的质量或操作技术是否存在问题。/pp  (4) 水样稀释倍数超过100倍时,应预先在容量瓶中用水初步稀释后,再取适量进行最后稀释培养。/pp  span style="color: rgb(0, 112, 192) "strong三、悬浮性固体物质(SS)的测定/strong/span/pp  悬浮固体表示水中不溶解的固体物质的量。/pp  1、方法原理/pp  测定曲线内置,通过测定样品对特定波长的吸光度 转换为待测参数的浓度值,并通过液晶显示屏显示。/pp  2、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取1支比色管加入25mL进水样,然后用蒸馏水加至刻度线(因进水SS较大,若不稀释可能会超过悬浮物测试仪的最大限度,使结果不准。当然进水取样量不固定,若进水太脏就取10mL,用蒸馏水加至刻度线)。/pp  (3)开启悬浮物测试仪,向类似于比色皿的小盒内加入蒸馏水至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,若不为零则按清零键,将仪器清零(测一次即可)。/pp  (4)测进水SS:将比色管内的进水样倒入小盒内润洗3次,然后将进水样加至2/3处,擦干外壁,边摇动边按下选择键,然后快速放入悬浮物测试仪,之后按下读数键,测三次,求取平均值。/pp  (5)测出水SS:将出水样摇匀,润洗三次小盒?(方法同上)/pp  3、计算/pp  进水SS的结果为:稀释倍数*测进水样读数 出水SS的结果直接为测出水样仪器读数/pp  span style="color: rgb(0, 112, 192) "strong四、总磷(TP)的测定/strong/span/pp  1、方法原理/pp  在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常集成磷钼蓝。/pp  本方法最低检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度) 测定上限为0.6mg/L。可适用于测定地面水、生活污水及日化、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析。/pp  2、仪器/pp  分光光度计/pp  3、试剂/pp  (1)1+1 硫酸。/pp  (2)10%(m/V)抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml。该溶液储存在棕色玻璃瓶中,在冷处可稳定几周。如颜色变黄,则弃去重配。/pp  (3)钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24· 4H2O]于100ml水中。溶解0。35g酒石酸锑氧钾[K(SbO)C4H4O6· 1/2H2O]于100ml水中。在不断的搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑钾溶液并且混合均匀。试剂贮存在棕色的玻璃瓶中于冷处保存。至少稳定2个月。/pp  (4)浊度-色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%(m/V)抗坏血酸溶液。此溶液当天配制。/pp  (5)磷酸盐贮备溶液:将磷酸二氢钾(KH2PO4)于110° C干燥2h,在干燥器中放冷。称取0.217g溶于水,移入1000ml容量瓶中。加(1+1)硫酸5ml,用水稀释至标线。此溶液每毫升50.0ug磷。/pp  (6)磷酸盐标准溶液:吸取10.00ml磷酸盐贮备液于250ml容量瓶中,用水稀释至标线。此溶液每毫升含2.00ug磷。临用时现配。/pp  4、测定步骤(仅以测进、出水样为例)/pp  (1)将取回的进水样、出水样摇匀(生化池上点的水样要摇匀放置一段时间取上清液)。/pp  (2)取3支具塞刻度管,第一支具塞刻度管加蒸馏水加至上部刻度线 第二支具塞刻度管加5mL进水样,然后用蒸馏水加至上部刻度线 第三支具塞刻度管/pp  的盐酸浸泡2h,或用不含磷酸盐的洗涤剂刷洗。/pp  (3)比色皿用后应可以稀硝酸或铬酸洗液浸泡片刻,以除去吸附的钼蓝呈色物。/pp span style="color: rgb(0, 112, 192) "strong 五、总氮(TN)的测定/strong/span/pp  1、方法原理/pp  在60℃以上的水溶液中过硫酸钾按如下反应式分解,生成氢离子和氧。 K2S2O8+H2O??KHSO4+1/2O2 KHSO4& #8594K++HSO4_ HSO4& #8594H++SO42-/pp  加入氢氧化钠用以中和氢离子,使过硫酸钾分解完全。在120℃-124℃的碱性介质条件下,用过硫酸钾作氧化剂,不仅可将水样中的氨氮和亚硝酸盐氮氧化为硝酸盐,同时将水样中大部分有机氮化合物氧化为硝酸盐。而后用紫外分光光度法分别于波长220nm与275nm处测定其吸光度,按下式计算硝酸盐氮的吸光度: A=A220-2A275 从而计算总氮的含量。其摩尔吸光系数为1.47× 103/pp  2、干扰及消除/pp  (1)水样中含有六价铬离子及三价铁离子时,可加入5%盐酸羟胺溶液1-2ml,以消除其对测定的影响。/pp  (2)碘离子及溴离子对测定有干扰。碘离子含量相对于总氮含量的0.2倍时无干扰。溴离子含量相对于总氮含量的3.4倍时无干扰。/pp  (3)碳酸盐及碳酸氢盐对测定的影响,在加入一定量的盐酸后可消除。/pp  (4)硫酸盐及氯化物对测定无影响。/pp  3、方法的适用范围/pp  该方法主要适用于湖泊,水库,江河水中总氮的测定。方法检测下限为0.05mg/L 测定上限为4mg/L。/pp  4、仪器/pp  (1)紫外分光光度计。/pp  (2)压力蒸汽消毒器或家用压力锅。/pp  (3)具塞玻璃磨口比色管。/pp  5、试剂/pp  (1)无氨水,每升水中加入0.1ml浓硫酸,蒸馏。收集流出液于玻璃容器中。/pp  (2)20%(m/V)氢氧化钠:称取20g氢氧化钠,溶于无氨水中,稀释至100ml。/pp  (3)碱性过硫酸钾溶液:称取40g过硫酸钾,15g氢氧化钠,溶于无氨水中,稀释至1000ml,溶液存放在聚乙烯瓶内,可储存一周。/pp  (4)1+9盐酸。/pp  (5)硝酸钾标准溶液:a、标准贮备液:称取0.7218g经105-110℃烘干4h的硝酸钾溶于无氨水中,移至1000ml容量瓶中定容。此溶液每毫升含100毫克硝酸盐氮。加入2ml三氯甲烷为保护剂,至少可稳定6个月。b、硝酸钾标准使用液:将贮备液用无氨水稀释10倍而得。此溶液每毫升含10毫克硝酸盐氮。/pp  6、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)取3个25mL的比色管(注意不是大的比色管)。第一支比色管加蒸馏水加至下部刻度线 第二支比色管加1mL进水样,然后用蒸馏水加至下部刻度线 第三支比色管加2mL出水样,然后用蒸馏水加至下部刻度线。/pp  (3)分别向3个比色管加5mL碱式过硫酸钾/pp  (4)将3个比色管放入到塑料烧杯内,然后放到高压锅内加热。进行消解。/pp  (5)加热完毕,拆开纱布,自然冷却。/pp  (6)冷却后,再向3个比色管分别加1mL1+9的盐酸。/pp  (7)向3个比色管分别加蒸馏水至上部刻度线,摇匀。/pp  (8)使用两种波长,用分光光度计测。首先用波长275nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数 再用波长220nm,10mm的石英比色皿(稍旧的),测空白、进水、出水样并记数。/pp  (9)计算结果。/pp  span style="color: rgb(0, 112, 192) "strong六、氨氮(NH3-N)的测定/strong/span/pp  1、方法原理/pp  典化汞和典化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在教宽的波长范围不内具强烈吸收。通常测量用波长在410—425nm范围。/pp  2、水样的保存/pp  水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时加硫酸水样酸化至PH 2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氨而遭致污染。/pp  3、干扰及消除/pp  脂肪胺、芳香胺、醛类、丙酮、醇类和有机氮胺类等有机化合物,以及铁,锰,镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可以酸性条件下加热以除去对金属离子的干扰,还可以加入适量的掩蔽剂加以消除。/pp  4、方法的适用范围/pp  本法最低检出浓度为0.025mg/l(光度法),测定上限为2mg/l.采用目视比色法,最低检出浓度为0.02mg/l。水样作适当、预处理后,本法可适用于地面水,地下水、工业废水和生活污水。/pp  5、仪器/pp  (1)分光光度计。/pp  (2)PH计/pp  6、试剂/pp  配制试剂用水均应为无氨水。/pp  (1)纳氏试剂/pp  可选择下列一种方法制备/pp  1、称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,该为滴加饱和的二氧化汞溶液,并充分搅拌,出现朱红色沉淀不在溶解时,停止加氯化汞溶液。/pp  另称取60g氢氧化钾溶于水中,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静至过夜,将上清液移入聚乙烯瓶中,密塞保存。/pp  2、称取16 g氢氧化钠,溶于50ml水中,充分冷却至室温。/pp  另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。/pp  (2)酸钾钠溶液/pp  称取50g酒石酸钾钠(KNaC4H4O6.4H2O)溶于100ml水中,加热蒸沸以除去氨,冷却,定溶至100ml。/pp  (3)铵标准贮备溶液/pp  称取3.819g经100摄氏度干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。/pp  (4)铵标准使用溶液/pp  移取5.00ml胺标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。/pp  7、计算/pp  从校准曲线上查得氨氮含量(mg)/pp  氨氮(N,mg/l)=m/v*1000/pp  式中,m——由校准查得氨氮量(mg),V——水样体积(ml)。/pp  8、注意事项/pp  (1)钠氏试剂碘化汞与碘化钾的比例,对显色反映的灵敏度有较大影响。静止后生成的沉淀应除去。/pp  (2)滤纸中长含痕量铵盐,使用时注意用无氨水洗涤。所有玻璃器皿应避免实验室空气中氨的沾污。/pp  9、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)将进水样、出水样分别倒入到100mL的烧杯内。/pp  (3)向两个烧杯内分别加入1mL 10%的硫酸锌和5滴氢氧化钠,用2个玻璃棒分别搅拌。/pp  (4)静置3分钟后开始过滤。/pp  (5)将静置后的水样倒入到滤斗内,过滤部分后将底下烧杯内的滤液倒掉,然后再用此烧杯接漏斗内剩余的水样,直到过滤完毕再次将底下烧杯内的滤液倒掉。(换言之用一漏斗的滤液洗两次烧杯)/pp  (6)分别过滤完烧杯内的剩余水样。/pp  (7) 取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3--5mL进水样滤液,然后用蒸馏水加至刻度线 第三支比色管加2mL出水样滤液,然后用蒸馏水加至刻度线。(所取进、出水样滤液的量不固定)/pp  (8)分别向3个比色管分别加1mL酒石酸钾钠和1.5mL纳氏试剂。/pp  (9)分别摇匀,计时10分钟。用分光光度计测,用波长420nm,20mm的比色皿。记数。/pp  (10)计算结果。/pp  span style="color: rgb(0, 112, 192) "strong七、硝酸盐氮(NO3-N)的测定/strong/span/pp  1、方法原理/pp  水样在碱性介质中,硝酸盐可被还原剂(戴氏合金)在加热情况下定量被还原为氨,经蒸馏后被吸收于硼酸溶液中,用纳氏试剂光度法或酸滴定法测定。/pp  2、干扰及消除/pp  亚硝酸盐在此条件下,亦被还原为氨,需预先除去。水样中的氨及氨盐亦可在加入戴氏合金以前,预蒸馏使除去。/pp  本法尤适用于严重污染的水样中硝酸盐氮的测定,同时,亦可作为水样中亚硝酸盐氮的测定(由水样在碱性预蒸馏去除氨和铵盐后,测定亚硝酸盐总量,减去单独测定的硝酸盐量后,即为亚硝酸盐量)。/pp  3、仪器/pp  带氮球的定氮蒸馏装置。/pp  4、试剂/pp  (1)氨基磺酸溶液:称取1g氨基磺酸(HOSO2NH2)溶于水,稀释至100ml。/pp  (2)1+1盐酸/pp  (3)氢氧化纳溶液:称取300g氢氧化纳溶解于水,稀释至1000ml。/pp  (4)戴氏合金(Cu50:Zn5:Al45)粉剂。/pp  (5)硼酸溶液:称取20g硼酸(H3BO3)溶于水,稀释至1000ml.。/pp  5、测定步骤/pp  (1)将取回的3号点和回流点的样摇匀后放置澄清一段时间。/pp  (2)取3个比色管。第一支比色管加蒸馏水加至刻度线 第二支比色管加3mL3号点样上清液,然后用蒸馏水加至刻度线 第三支比色管加5mL回流点么上清液,然后用蒸馏水加至刻度线。/pp  (3)取3个蒸发皿,降3个比色管中的液体对应倒入蒸发皿中。/pp  (4)向3个蒸发皿中分别加入0.1mol/L的氢氧化钠调节PH至8。(使用精密PH试纸,范围为5.5—9.0之间的。每个约需氢氧化钠20滴左右)/pp  (5)开启水浴锅,将蒸发皿放到水浴锅上,温度设定为90℃,直至蒸干为止。(约需2小时)/pp  (6)蒸干后,取下蒸发皿冷却。/pp  (7)冷却后分别向3个蒸发皿中加1mL酚二磺酸,用玻璃棒研磨,使试剂与蒸发皿中的残渣充分接触,静置片刻后,再研磨一次。放置10分钟后,分别加入约10mL的蒸馏水。/pp  (8)分别向蒸发皿中边搅拌边加入3--4mL氨水,然后将其移到对应的比色管中。分别加蒸馏水至刻度线。/pp  (9)分别摇匀,用分光光度计测,用波长410nm,10mm的比色皿(普通玻璃的、稍新的)。并记数。/pp  (10)计算结果。/pp span style="color: rgb(0, 112, 192) "strong 八、溶解氧(DO)的测定/strong/span/pp  溶解在水中的分子态氧称为溶解氧。天然水中的溶解氧含量取决于水中与大气中氧的平衡。/pp  一般采用采用碘量法测溶解氧/pp  1、方法原理/pp  水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,氢氧化物沉淀溶解并与碘离子反应释放出游离碘。以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,可计算溶解氧的含量。/pp  2、测定步骤/pp  (1)用广口瓶取回的9号点的样,静置十几分钟。(注意用的是广口瓶,并注意取样方法)/pp  (2)用玻璃弯管插入广口瓶样内,用虹吸法向溶解氧瓶中吸入上清液,先少吸一些,润洗溶解氧瓶3次,最后再吸入上清液注满溶解氧瓶。/pp  (3)向满的溶解氧瓶中加入1mL硫酸锰和2mL碱性碘化钾。(注意加的时候的注意事项,从中部加入)/pp  (4)盖上溶解氧瓶的瓶盖,上下摇匀,隔几分钟再摇,摇匀三次。/pp  (5)再向溶解氧瓶中加入2mL浓硫酸,摇匀。放在暗处静置五分钟。/pp  (6)向碱式滴定管(带橡胶管、玻璃珠的。注意酸式、碱式滴定管的区别)倒入硫代硫酸钠至刻度线,准备滴定。/pp  (7)静置5分钟后,取出放在暗处的溶解氧瓶,将溶解氧瓶中的液体倒入到100mL的塑料量筒内,润洗3次。最后倒至量筒的100mL刻度线。/pp  (8)将量筒内的液体倒入到锥形瓶中。/pp  (9)用硫代硫酸钠向锥形瓶中滴定至无色,然后加入一滴管淀粉指示剂,再用硫代硫酸钠滴定,直至褪色,记录读数。/pp  (10)计算结果。/pp  溶解氧(mg/L)=M*V*8*1000/100/pp  M为硫代硫酸钠溶液浓度(mol/L)/pp  V为滴定时消耗硫代硫酸钠溶液的体积(mL)/pp span style="color: rgb(0, 112, 192) "strong 九、总碱度/strong/span/pp  1、测定步骤/pp  (1)将取回的进水样、出水样摇匀。/pp  (2)将进水样过滤(若进水较干净,则不需过滤),用100mL的量筒取滤液100mL到500mL的三角烧瓶中。用100mL的量筒取摇匀后的出水样100mL到另一个500mL的三角烧瓶中。/pp  (3)分别向两个三角烧瓶中加3滴甲基红-亚甲基兰指示剂,呈浅绿色。/pp  (4)向碱式滴定管(带橡胶管、玻璃珠的,50mL的。而溶解氧测定中用到的碱式滴定管是25mL的,注意区分)倒入0.01mol/L的氢离子标液至刻度线。/pp  (5)分别向两个三角烧瓶中用氢离子标液滴定呈现淡紫色,记录所用的体积读数。(切记滴定完一个之后读数,并加满滴定另一个。进水样约需四十多毫升,出水样约需一十多毫升)/pp  (6)计算结果。用氢离子标液的用量*5即为体积。/pp  span style="color: rgb(0, 112, 192) "strong十、污泥沉降比(SV30)的测定/strong/span/pp  1、测定步骤/pp  (1)取一个100mL的量筒。/pp  (2)将取回的氧化沟9号点的样摇匀,倒入量筒至上部刻度线处。/pp  (3)开始计时30分钟后,读出分界面的刻度读数并记录。/ppspan style="color: rgb(0, 112, 192) "strong  十一、污泥体积指数(SVI)的测定/strong/span/pp  SVI的测定是用污泥沉降比(SV30)除以污泥浓度(MLSS)即为结果。但要注意换算单位。SVI的单位为mL/g。/pp  span style="color: rgb(0, 112, 192) "strong十二、污泥浓度(MLSS)的测定/strong/span/pp  1、 测定步骤/pp  (1)将取回的9号点的样和回流点的样摇匀。/pp  (2)将9号点的样和回流点的样各取100mL到量筒中。(9号点的样用测污泥沉降比所取得即可)/pp  (3)用旋片式真空泵分别过滤量筒内9号点的样和回流点的样。(注意滤纸的选用,所用的滤纸是提前称好的滤纸。若当天9号点的样要测MLVSS,过滤9号点样就要选用定量滤纸,反正选用定性滤纸。另外注意定量滤纸与定性滤纸的的区别)/pp  (4)取出过滤的滤纸泥样放到电热鼓风干燥箱,干燥箱温度升至105℃开始计时干燥2小时。/pp  (5)取出干燥后的滤纸泥样放到玻璃干燥器内冷却半小时。/pp  (6)冷却后用精密电子天平称量并记数。/pp  (7)计算结果。污泥浓度(mg/L)=(天平读数-滤纸重量)*10000/pp  span style="color: rgb(0, 112, 192) "strong十三、挥发性有机物质(MLVSS)的测定/strong/span/pp  1、测定步骤/pp  (1)将9号点的滤纸泥样用精密电子天平称量后,将滤纸泥样放入到小的瓷坩埚内。/pp  (2)开启箱式电阻炉,温度调至620℃,将小瓷坩埚放入到箱式电阻炉内约2小时。/pp  (3)两小时后,关闭箱式电阻炉,冷却3小时后将箱式电阻炉的门开一点小缝,再次冷却半小时左右,确保瓷坩埚温度不超过100℃。/pp  (4)取出瓷坩埚放到玻璃干燥器内再次冷却半小时左右,放到精密电子天平上进行称量,并记录读数。/pp  (5)计算结果。/pp  挥发性有机物质(mg/L)=(滤纸泥样重+小坩埚重-天平读数)*10000。/ppbr//p
  • 赫冠仪器全自动二氧化硫检测仪获上海市食品药品检验研究院验证
    日前,上海市食品药品检验研究院对上海赫冠仪器有限公司的全自动二氧化硫检测仪进行了现场实验测试和指标考察,并发布相关验证报告。报告中表示,经上海市食品药品检验研究院验证,赫冠仪器全自动二氧化硫检测仪(型号HGK-86)是解决实验室二氧化硫残留量检测难题的有益尝试,基本可用于食品、药品中二氧化硫残留量的检测与高效率筛查。报告对赫冠仪器首次推出能检测食品、药品中二氧化硫残留量的全自动化产品的工作做出了肯定。相比食品安全国家标准GB9005.34-2022与《中国药典》方法,该仪器具有检测效率高、数据准确、二氧化硫检测过程可实时监控的特点,自动化程度较高,可将实验人员从样品蒸馏、人工滴定等繁杂的实验室操作中有效解放,同时可减少检测过程中的人工误差。上海市食品药品检验研究院也对仪器的后续工作提出了合理建议,报告指出国家标准GB9005.34-2022系采用微沸回流法将样本中的二氧化硫馏出检测,而本仪器是采用水蒸气蒸馏法,希望进一步设计开发原理一致的全自动化产品。同时希望进一步检测不同类型样品和邀请国内食品药品领域的权威检测机构和科研单位开展该设备的验证工作,不断优化仪器检测方法与操作流程,为该设备今后的产业化推广打好坚实的基础。全自动二氧化硫检测仪验证报告HGK-86全自动(食药)二氧化硫检测仪附赫冠仪器HGK-86全自动(食药)二氧化硫检测仪相关数据产品特点和功能:1.自动加盐酸、自动加双氧水、自动蒸馏、自动滴定、自动计算、打印、自动数据显示和储存、质控图(整个过程无需人为干预)2.显示提醒:二氧化硫被蒸馏出的状态、能辨别熏蒸态还是样品本身挥发的酸碱物质、滴定终点是否在酸碱平衡点。3.标准碱最小滴定体积10ul,蒸馏时间滴定5-90分钟/样品,建议蒸馏时间10-15分钟/样品。4.具有自动检测盐酸、双氧水、蒸馏水液位,遇到缺液时会有提示并停止检测5.蒸馏功率可以设定,0-1000W,确保二氧化硫zui大化的蒸馏。6.自动调整预热和蒸馏的加热功率,无需人为干预。7.蒸馏-滴定同时进行,蒸馏结束后20秒内检测完成。8.标准碱液位检测,缺液提示。9.自动更换标准液、自动清洗。10.添加试剂、蒸馏水采用独立的抽液泵,以ml为单位,并具有液位检测,缺液提示。11.天平自动输入,(选配件,在同个局域网络内)12.采用650ml蒸馏管13.需要连接1.5-2升/分钟氮气发生器(选配)14.通过相同wifi网络连接平台和主机,实现天平数据自动输入(选配)15.采用触摸屏,人机对话,方便操作。HGK-86全自动(食药)二氧化硫检测仪-参数指标:测量范围0-50mg蒸馏-滴定时间5-90分钟回收率亚硫酸钠溶液(扣除水分)≧85%(消耗标准碱5ml)滴定标准碱0.01mol/L重复性RSD≤,5%平行差≤10%(消耗标准碱消耗5ml)样品量液体≤150ml固体≤150克
  • 普洱中农药多残留检测的固相萃取方法
    普洱中农药多残留检测的固相萃取方法一、实验目的(superclean gcb/nh2)本研究利用固相萃取作为样品前处理方法,gc-ecd 和 lc-ms/ms 作为分析方法,检测普洱中的农药残留水平。该方法操作简便,可简化样品前处理过程,减少有机溶剂的使用。二、应用范围本方法适用于茶叶中有机磷类、有机氯类、拟除虫菊酯类和氨基甲酸酯类农药多残留的测定。三、实验材料nuanalytical superclean gcb/nh2 固相萃取柱 500 mg/500 mg/6 ml。四、实验方法1、样品提取称取粉碎好的普洱 2 g(精确到 0.001 g),加入 50 ml 离心管中,加入 10 ml 乙腈,剧烈振荡 1 min,静置 30min,4000 r/min 离心 5 min。上清液待净化。2、spe 柱活化gcb/nh2 固相萃取柱中加入约 2 cm 高无水硫酸钠,使用前使用 10 ml 乙腈-甲苯(3:1,v/v)活化。3、上样和洗脱当溶液液面到达柱吸附层表面时,立即倒入上述待净化溶液 4 ml, 用鸡心瓶接收流出液,逐步加入 25 ml 乙腈-甲苯(3:1,v/v)洗涤小柱,收集上述所有流出液于鸡心瓶中。4、重新溶解流出液于 40 ℃水浴中旋蒸至 1 ml 左右,加入 2 ml 乙腈转移至 10 ml 试管中,于40 ℃下氮气吹干,加入 1 ml 乙腈溶解残渣,0.22 μm 微孔滤膜过滤,分别供 gc-ecd 和lc-ms/ms 上机测试。5、仪器条件(1)、 gc-ecd 条件气相仪器:agilent 7890a 色谱柱:fb-5, 30 m×0.32 mm, 0.25 μm进样口温度:220 ℃ 检测器温度:300 ℃升温程序:180 ℃(保持 2 min);以 10 ℃/min 升温到 230 ℃(保持 2 min);以 2 ℃/min升温到 260 ℃(保持 2 min);以 25 ℃/min 升温到 270 ℃(保持 1.6 min)载气:氦气 流速:1.6 ml/min 进样方式:分流进样(分流比 10:1)(2)、lc-ms/ms 条件质谱仪:api 4000 色谱柱:superlu c18(2.0 mm×150 mm, 5 μm)流动相:a: 0.1%甲酸+10 mm 乙酸铵(1 ml 甲酸+0.77 g 乙酸铵溶于 1 l 水中);b: 甲醇洗脱方式:梯度洗脱,洗脱程序如下: 时间/mina(%)b(%)0.09551.509556.059511.059511.0195515955流速:0.35 ml/min 柱温: 40 ℃ 进样体积:5 μl离子源:电喷雾(esi) 扫描模式:正离子模式 检测方式:多反应监测(mrm) 质谱仪离子源参数如下: source/gascollision gas (cad)6curtain gas (cur)12ion source gas 1 (gs1)50ion source gas 2 (gs2)50ion spray voltage (is)5500temperature (tem)550interface heater (ihe)on氨基甲酸酯类农药各组分名称、保留时间及母离子和子离子检测离子对如下: 物质名称保留时间/min检测离子对dpepcecxp涕灭威7.06208.1>89.1208.1>1163030101022101212克百威7.13222.3>123.1222.3>165.24848101016311212涕灭威砜6.25223.1>86.2223.1>148.46969101021131212涕灭威亚砜6.10207.1>132.2207.1>89.16060101013221212啶虫脒6.83223.4>126.1223.4>907070101029461212五、实验结果1、普洱中农药多残留的添加回收结果表 1 0.25 mg/kg 普洱中有机氯和拟除虫菊酯类农药多残留的添加回收结果 回收率(%)名称平均回收率(%)rsd (%)123乙烯菌核利84.576.080.080.25.30腐霉利110.5102.0105.0105.84.07异菌脲112.0107.5119.0112.85.14联苯菊酯94.587.590.590.83.87甲氰菊酯109.5100.0106.5105.34.61高效氟氯氰菊酯84.079.582.582.02.79氟氯氰菊酯86.586.894.189.14.83氟氰戊菊酯120.5114.0120119.23.06氰戊菊酯95.585.092.991.16.00氟胺氰菊酯70.472.7581.074.77.45表 1 0.05 mg/kg 普洱中氨基甲酸酯类农药多残留的添加回收结果 回收率(%)名称平均回收率(%)rsd (%)123涕灭威95.687.290.090.94.70克百威84.478.082.281.53.99涕灭威砜77.483.081.480.63.58涕灭威亚砜70.074.475.273.13.73啶虫脒82.494.088.488.36.572、普洱中农药多残留检测色谱图图 1 添加水平为 0.25 mg/kg 普洱中有机氯和拟除虫菊酯类农药多残留检测色谱图 图 2 添加水平为 0.0625 mg/kg 普洱中氨基甲酸酯类农药多残留检测色谱图
  • 锌、铅精矿化学分析方法新标准解读
    锌、铅精矿中的目标金属元素主要以硫化物的形式存在,还有可能以可溶性状态存在,如可溶性锌和可溶性铅。可溶性锌、铅的存在会直接影响烧结块的温度,脱硫率,及结块性。因此在今年已经实施和即将实施的GB/T 8151.24-2021和GB/T 8152.15-2021分别规定了锌、铅精矿中可溶性锌、铅的测定方法。 GB/T 8151.24-2021锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法于11月1日正式实施,此标准重点补充了锌精矿中可溶性锌含量的测定,测定范围:0.1%~10.5%。原理:利用可溶性锌(硫酸锌、碳酸锌、氧化锌等)易溶解于氨水-氯化铵溶剂的特点,选择氨水-氯化铵为溶剂,加入适量抗血酸与二水合二氧化亚锡作为抑制剂,使样品中可溶性锌与硫化锌及难溶性锌实现有效分离。然后用火焰原子吸收法测定可溶性锌的含量。 GB/T 8152.15-2021铅精矿化学分析方法 第15部分:可溶性铅含量的测定 火焰原子吸收光谱法也将于12月1日实施,此标准重点补充了铅精矿中可溶性铅含量的测定,测定范围:0.3%~10.5%。原理:利用可溶性铅(硫酸铅、碳酸铅、氧化铅等)易溶解于乙酸-乙酸铵溶剂的特点,选择乙酸-乙酸铵为溶剂,加少量二水合二氧化亚锡消除Fe3+的干扰,使样品中可溶性铅与硫化铅及难溶性铅盐实现有效分离。然后用火焰原子吸收法测定可溶性铅的含量。 AA-7000系列AA-6800系列 这两个标准都涉及火焰原子吸收光谱法,岛津原子吸收分光光度计AA-6880系列和AA-7000系列,拥有优异的性能和灵活的配置,可满足GB/T 8151.24-2021和GB/T 8152.15-2021中可溶性锌、铅的测试要求。 火焰法工作条件 本文内容非商业广告,仅供专业人士参考。
  • 北京黑作坊用工业化学物漂白豆芽 日售数千斤
    一车漂白豆芽被运往农贸市场销售。   记者在作坊中找到“连二亚硫酸钠”。  豆芽,老百姓经常食用的一种食品。  本报记者多日暗访调查发现,北京房山区良乡大南关村一处废弃的院落内,有商贩使用一种名为“连二亚硫酸钠”(俗称“保险粉”)的化学物漂洗豆芽,出来的豆芽色泽亮白,卖相大增。  该加工点每日两三千斤的“亮白”豆芽,在华龙农贸市场批发出售,流入餐馆、食堂、百姓餐桌。  南京工业大学化学专家顾大伟表示,“连二亚硫酸钠”是一种强氧化剂,主要在纺织业、造纸业用作漂白剂,其与水接触后会释放大量的热和二氧化氢、硫化氢等有毒气体。  ■ 暗访  “保险粉”美容豆芽 “卖相好”却增毒性  国庆前夕,有市民向本报报料,房山区良乡大南关村一处废弃的院落内,有商贩使用化学物质加工漂白豆芽。  夫妻俩深夜卖力洗豆芽  这个废弃的场院内,几排破旧的房屋,散落着几家住户。  记者蹲守数日观察,从东面数第一排最北侧的两间房屋就是加工豆芽的作坊,里屋存放着数个袋子,看着像是装满豆子。  外屋约100多平方米,是培育豆芽的场地。大量桶、筐等容器装着正在发育的豆芽,槽子共有六七排,每排四五个,上面盖着军绿色的被子。外屋的东北角,有一个大型水池和锅炉设备,保证提供充足热量和水分。  房屋外是一个长约2米,宽约1.5米,深1米多的水槽。  作坊的主人是一对40多岁的夫妇,每天不到凌晨2点就开始工作。  凌晨近2点,这对夫妇先把桶里、筐里的大量豆芽取出,倒入水槽中。  随后,男子会将家门口的大型农用三轮车开到水槽旁,站在三轮车上,用铁叉搅拌水槽里的豆芽。  搅拌均匀后,男子会把水槽内豆芽铲起,抛入农用三轮车内。  约两个小时内,夫妇俩将所有发育好的豆芽,全部倒入水槽“冲洗”一遍,然后再装入三轮车中。  记者看到,快装完时,女子会把一种白色粉末倒入水槽内侧一个水桶内搅拌,制成一种溶液。随后,男子用这种溶液,将装在三轮车上的豆芽仔细喷洒一遍。  喷洒时,隐藏在三四米外的记者能闻到所散发出的刺鼻气味,而远望喷洒过后的车上豆芽,色泽白亮,个体饱满。  凌晨4点10分左右,该男子驾驶这辆挂着河北牌照的农用三轮车驶出大院,留下三行车辙的同时,还洒下了一行行散发刺鼻气息的水滴。  多名从事豆芽加工销售的人士分析,这种水洗豆芽和喷洒溶液的行为很可疑,“不可能是简单的清洗,两个多小时,没人干费力不讨好的事”。  搅拌神秘溶液喷洒豆芽  为弄清这种可疑溶液,记者决定再探该作坊。  9月25日凌晨,作坊夫妇俩开车运送豆芽离开后,记者进入该作坊内,发现有至少3个蓝色大桶,均用一块布遮盖着。  掀开遮布,桶身上印有“sodium hydrosulfite”的字样。  记者查询得知,这是“连二亚硫酸钠”(也称“保险粉”)的英文标示,是一种工业漂白剂,多用于清洗塑料、丝织物等。  记者发现,其中一个蓝桶的盖子已被打开,里面用塑料袋包裹的“连二亚硫酸钠”为白色粉末状,伴有呛鼻的异味,用手抓取后会有烧灼感。该桶内“连二亚硫酸钠”并不足量,显然已有人取用过。  9月30日凌晨,记者进入与该作坊相邻的一间废弃棚屋蹲守,该棚屋与作坊外屋只隔着一块表面有多个裂口的棚布,透过裂口基本可观察到作坊内的操作。  当日凌晨3点20分左右,作坊的女主人提着便携式台灯,从作坊外屋快步走出。  借着灯光,记者看到,她从小屋内那个已打开的蓝桶里取出一些“连二亚硫酸钠”,分两次倒入一个装有水的桶内,反复搅拌均匀。这个1米多高的水桶的一端则连接着一根水管。  随后,作坊男主人将这个水桶里的水,洒向已装上农用三轮车的豆芽,反复持续约10分钟。  刺鼻的气息扑面而来,经过喷洒后的豆芽色泽亮白,在夜间颇为醒目。  知情人透露,这个作坊用来浸泡豆芽的水槽,里面的水同样含有“连二亚硫酸钠”。  记者曾用塑料瓶取了部分样本,搁置多日后,仍散发着刺鼻气味。9月29日,良乡大南关村一制作漂白豆芽的黑作坊。   作坊男主人用水管向豆芽上喷洒“保险粉”溶剂。  长吃漂白豆芽或诱发癌变  多名从事豆芽加工销售的人士透露,用“保险粉”漂洗豆芽是近几年出现的事情,漂白过的豆芽,“白白胖胖、水灵灵的,卖相特好”。  长年加工销售豆芽的李先生称,普通豆芽短小,而且颜色发黄,这种漂洗过的亮白豆芽,“相比之下卖相好,购买的顾客会多。”  事实上,消费者是被“卖相”蒙蔽了眼睛。  南京工业大学化学专家顾大伟表示,“保险粉”并不保险,它的主要成分“连二亚硫酸钠”是一种强氧化剂。 这种物质主要用在纺织业、造纸业用作漂白剂,其与水接触后会释放大量的热和二氧化氢、硫化氢等有毒气体。  据了解,长期食用连二亚硫酸钠漂白的豆芽,会损害人的眼睛、呼吸道黏膜和肝脏,引起头痛、恶心、呕吐,并诱发癌变。  《食品安全法》也规定,严禁用非食品原料生产的食品或者添加食品添加剂以外的化学物质。  【贴士】  如何挑选豆芽  常年加工销售豆芽的李先生介绍,消费者挑选豆芽时不要被“卖相”欺骗。普通豆芽会有一种清新的香味,而漂白过的豆芽香味不明显,会有刺鼻的感觉。从外观上看,普通豆芽个头较小,颜色略有泛黄,不易缩水。而漂白过的豆芽颜色艳丽,放置半天就会有水分流出,味道甚至更加呛鼻。  ■ 调查  漂白豆芽流向何处  每日漂洗出来的一车车豆芽都销往何处?据记者目测和多名知情人证实,从大南关村加工作坊驶出的这辆大型农用三轮车,能装2000多斤豆芽。记者跟踪调查,距离作坊六七公里的安庄华龙农贸市场,是这对夫妇销售豆芽的地方。  小作坊日售数千斤豆芽  9月底的多个凌晨,作坊男主人驾驶满载漂白豆芽的农用三轮车,几乎准时4点半驶入华龙农贸市场,停靠在蔬菜区南侧第二排。  停车后,夫妇俩用铁叉把豆芽盛装进塑料袋中。随后驾驶小电动车,在市场来回穿梭,给四处赶来的批发商家送豆芽。  农用三轮车上,漂白后的豆芽个头饱满,七八厘米长,通体亮白。记者凑过去蹲下身闻了几根豆芽,发现仍有刺鼻气味,但起身后就问不到类似气味。  9月25日清晨4点半,华龙市场内,记者曾询问作坊女主人,为何她家出售的豆芽为何如此白亮。对方显得十分警觉,称可能在蔬菜区市场强光照射下,“看错了”。女主人称,自己的摊位一天可以出售两三千斤的豆芽。  事后,知情人士称,当日记者离开后,作坊女主人还抱怨,“来了一个男的,好像是来查豆芽的”。  华龙农贸市场多名人员证实,作为批发市场,这里豆芽基本上销往房山各个小市场。同时,不少饭店也来批发,购买豆芽多是给水煮牛肉等菜肴配料。  豆芽缩水味道呛人  范文(化名)承包了一家公司食堂,公司给每个工人一天三餐的伙食标准为10元,“只能专挑便宜实惠的菜。”范文说。  今年年初,范文常到华龙市场,从一辆河北牌照农用三轮车处购买豆芽,每次就要买上近百斤。有时中午没能及时给工人们炒豆芽,就把豆芽留到晚上吃。  “缩水得有一半,还淌出白水,闻着呛人。”范文发现,这些原本饱满豆芽到晚上都“蔫了”。后来,范文在该市场换了两家买豆芽,但问题还是存在,只有一家的豆芽质量还行。  对此,常年加工销售豆芽的李先生解释,普通豆芽个头虽小,但不易缩水,漂白过的豆芽放置半天就会有水分流出,味道还呛鼻。  华龙农贸市场人员称,市场有四五家批发豆芽的,每天不到8点就会出售一空。  漂白豆芽上市民餐桌  10月8日4点半,华龙农贸市场,作坊男主人将两三袋大约一百斤的豆芽装上一辆小型蓝色轻卡,批发价约为8毛钱一斤。  记者随即驱车跟随蓝色轻卡,约半个小时后,蓝色轻卡驶入丰台王佐镇南宫早市,摆摊售卖。  当日8点多,南宫早市,一名遛弯的老人,以1块5一斤的价格购买了2斤豆芽。  而此时,华龙农贸市场,卖漂白豆芽的作坊男主人正在收拾塑料袋,身后一车2000余斤的豆芽已经售罄,只剩车后一片水珠嘀嗒。  除了自己批发外,该夫妇的豆芽部分也由市场配菜中心负责销售。  配菜中心人员称,买主通常都提前一晚致电配菜中心,告知需要多少豆芽。第二天清晨,配菜中心会从菜摊拿豆芽,买家便可开车或由配菜中心配车领取豆芽。  市场配菜中心负责人透露,有房山本地机关食堂向其订购豆芽。  ■ 背景  漂白的并非只有豆芽  事实上,用化学物违法加工豆芽并非首次被曝光,而且用化学物违法加工的也并非豆芽一种。  据新华网报道,今年4月17日,沈阳市警方在沈阳近郊端掉6个黄豆芽黑加工厂,查获掺入有害物质豆芽25吨。这些豆芽每根都有10多厘米长,个头均匀,颜色白净,“长相”漂亮。  沈阳市农委专家介绍,生产豆芽过程中是不允许使用任何添加剂的。而这个黑加工点使用了至少4种添加剂,经检测豆芽中含有的亚硝酸钠、尿素、恩诺沙星等,是国家明令不能掺入食品中的。其中人食用含亚硝酸钠的食品会致癌 恩诺沙星是动物专用药,禁止在食品中添加。  而早在2007年2月,卫生部公布的2006年查处的10个食品卫生典型案件中,就包括用“保险粉”漂白藕片的事件。  河北省查处元氏县兴华食品厂涉嫌使用工业用保险粉漂白藕片。现场查封工业用保险粉18袋、焦二亚硫酸钠8袋以及成品天然鲜藕片2000余箱。石家庄市卫生局依法责令元氏县兴华食品厂停止生产经营并公告收回已售出的产品,销毁1989箱非法加工的鲜藕片,并罚款5万元。  A12-A13版采写/本报记者 许路阳 王瑞锋  A12-A13版摄影/本报记者 周岗峰
  • 市场监管总局发布一项食品补充检测方法
    p style="text-indent: 2em "2019年6月19日,市场监管总局按照《食品补充检验方法工作规定》相关要求,发布了《食品中匹可硫酸钠的测定》食品补充检验方法的公告。公告中明确规定了采用液相色谱-三重四极杆串联质谱仪检测果冻、蜜饯、糖果、饮料等食品(含与上述基质相同的保健食品及片剂、硬胶囊剂保健食品)中匹可硫酸钠的方法。/pp style="text-indent: 2em "具体通知如下:/pp style="line-height: 16px text-indent: 2em "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201906/attachment/ca51c324-1d69-4ec3-b682-0f8a43fcd4e2.doc" title="食品中匹可硫酸钠的测定.doc"食品中匹可硫酸钠的测定.doc/a/ppbr//p
  • 深圳某单位批量采购94类试剂、标物
    深圳某终端单位,批量采购以下试剂、标物,共计94类,能做的厂商请联系,清单如下:试剂名称要求数量硫酸痕量金属级3硝酸痕量金属级3过氧化氢痕量金属级1氢氟酸痕量金属级3硼酸优级纯3氢溴酸优级纯3高氯酸优级纯3硼氢化钾优级纯1高锰酸钾痕量金属级3硼氢化钠痕量金属级1氢氧化钠痕量金属级1氯化钠优级纯1盐酸羟胺优级纯3二苯碳酰二肼优级纯1重铬酸钾标准物质优级纯3丙酮优级纯1正磷酸优级纯3铁氰化钾优级纯1氢溴钾优级纯1四氟硼酸痕量金属级3硫脲优级纯1草酸优级纯3邻菲罗啉优级纯1抗坏血酸优级纯3四氢硼酸钾痕量金属级3四氢硼酸钠痕量金属级3四氢氯金四水化合物痕量金属级1多孔颗粒状硅藻土优级纯1N-甲基吡咯烷酮(NMP)优级纯1碳酸钠优级纯3无水氯化镁优级纯1PH标准缓冲液(4.00,6.86,9.18)优级纯1铬酸铅优级纯3甲苯优级纯1二苯卡巴肼溶液优级纯1叔丁基甲醚(CAS:1634-04-04)优级纯1乙腈优级纯1连二亚硫酸钠(纯度≧87%)优级纯34-氨基偶氮苯标准溶液(1000mg/L)优级纯1蒽-d10(CAS:1719-06-8)优级纯1乙醚优级纯1硫酸亚铁溶液优级纯3正己烷(色谱纯或更高)优级纯1乙酸酐优级纯3无水碳酸钾优级纯3无水硫酸钠优级纯3硝酸钾优级纯3硫酸钠优级纯3乙酰丙酮溶液优级纯1乙酸铵优级纯3冰乙酸溶液优级纯3双甲酮(二甲基-二羟基-间苯二酚或5,5-二甲基环己烷-1,3-二酮)优级纯1乙醇优级纯1四氢呋喃(109-99-9)(色谱纯或更高)优级纯1氯化钾优级纯1酸性汗液优级纯3乙酸钠优级纯3无水硫酸钠优级纯3四乙基硼化钠(NaBEt4)优级纯1醋酸铵优级纯3冰醋酸优级纯3碘液0.05M(12.68g碘/L)优级纯1硫代硫酸钠优级纯3淀粉优级纯1十二烷基磺酸钠优级纯3柠檬酸盐缓冲液0.06M优级纯3甲醇优级纯1尿素优级纯1DL-乳酸:质量分数大于0.88,p=1.21g/mL优级纯3氨水:质量分数为0.25,p=0.91g/mL优级纯1正庚烷优级纯1二氯甲烷(分析纯或色谱纯)优级纯1环己烷(色谱纯或更高)优级纯1硼氰化钾痕量金属级1标物详情数量18 PAHs 混标1000mg/L0-1000mg/L①扩展不确定度0.1%2AZO混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PBB,PBDE混标1000mg/L0-1000mg/L①扩展不确定度0.1%2PH标准缓冲溶液套装5g0-14①扩展不确定度0.1%2钡标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2单丁基锡500mg0-1000ppm①扩展不确定度0.1%2二丁基锡500mg0-1000ppm①扩展不确定度0.1%2镉标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2汞标准溶液1000ppm0-1000ppm①扩展不确定度0.7%2甲醛标准溶液1000mg/L0-1000mg/L①扩展不确定度3%2邻苯6p混标1000ppm0-1000ppm①扩展不确定度0.2%2六价铬标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2镍标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2铅标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2三丁基锡500mg0-1000ppm①扩展不确定度0.1%2砷标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2四,五氯苯酚1000mg/L0-1000mg/L①扩展不确定度0.1%2锑标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2硒标准溶液1000mg/L0-1000mg/L①扩展不确定度0.7%2联系方式:为避免过度打扰,请添加仪器信息网工作人员微信获取采购方联系方式:
  • 硫氰酸钠与牛奶安全
    p  近来,一桩牛奶被检出硫氰酸钠超过“最高限量值”的乌龙事件,成为社会、乳品企业、消费者、政府相关部门、媒体关注的热点,被称是“第二个三聚氰胺事件”。因为,硫氰酸钠这个化学名词不像氯化钠为人们所熟知,特别是又有一个“氰”字,一些人把它误认为是剧毒氰化物,立即引起社会的震动,“毒奶”再次被提起,极大地影响了乳品消费市场。/pp  硫氰酸钠到底是一种什么化学物质,在自然界是如何存在的,它的毒性有多大,如何跑到了牛奶里去,会不会对人体造成伤害?如有,有多大?这些问题,广大消费者和社会各界都急于想知道。本文以作者工作中所了解的知识,来回答这些问题,以期消除公众的疑虑。/pp  strong硫氰酸钠及其毒性/strong/pp  硫氰酸钠是一种用于医药、印染等多种行业的化工原料,为白色结晶或粉末状,易溶于水。/pp  硫氰酸钠属于有毒有害物质,大量摄入有急性致毒作用。硫氰酸钠的急性毒性,主要是由于其在体内释放的氰根离子引起。氰根离子在体内能很快与细胞色素氧化酶中的三价铁离子结合,抑制酶的活性,使组织不能利用氧,引起恶心、呕吐、腹痛、腹泻等肠道功能紊乱,血压波动,心率减慢,重度中毒可致肾功能明显损害。/pp  在医疗临床中,硝普钠用于治疗高血压急症和严重心率衰竭。硝普钠可在体内迅速代谢为氰化物,进一步代谢为硫氰酸盐,血浆中硫氰酸盐的浓度可达100mg/L,急性毒性常常发生在120mg/L浓度以上。在报道的死亡事件中,血浆浓度约在200mg/L。对小白鼠的口服半数致死量为764mg/kg.b.w。/pp  硫氰酸盐的慢性毒性,主要是抑制碘的运转和甲状腺激素合成,恶化碘缺乏症。因此,硫氰酸盐是影响甲状腺疾病发生的一个重要的化合物。/pp  strong自然界中的硫氰酸钠/strong/pp  硫氰酸钠作为硫代糖苷和生氰糖苷的代谢物,而天然存在于各种食品中(包括乳),并在人类的肝脏中合成,是氰化物的解毒代谢产物。/pp  许多植物,尤其是十字花科类植物富含硫代糖苷和生氰糖苷。其中:芸苔属植物(油菜花)可达100mg/kg,甘蓝属(包括油菜、卷心菜、花椰菜)的植物可达250mg/kg,生扁豆100~3100mg/kg,生木薯块10~462mg/kg,生木薯叶68~468mg/kg,干木薯根皮2450mg/kg,杏仁62mg/kg,竹笋尖8000mg/kg,高粱2500mg/kg。/pp  硫氰酸盐被认为是哺乳动物血液中一种常见的电解质,在动物、人类组织和分泌物中都能检测到,它属于防御系统的一部分,例如在初乳和患乳房炎奶牛的乳中浓度高,是对硫代糖苷(葡糖异硫氰酸盐)和生氰糖苷脱毒处理的一种产物。正常人体血浆中硫氰酸钠的浓度在2~3mg/L,吸烟与不吸烟浓度不一样,吸烟者为9~12mg/L。研究表明,乳腺不浓缩硫氰酸盐,但人体的其他分泌液可浓缩硫氰酸盐,特别是唾液和胃液,含量一般高达10~300mg/L。/pp  strong乳中的硫氰酸钠/strong/pp  动物乳腺可以分泌硫氰酸钠,所以牛乳本底含有硫氰酸钠。/pp  奶牛饲养中,十字花科类植物作为青饲料是必不可少的,芸苔属的油菜花籽实榨油后的菜籽饼也常用作奶牛的蛋白补充饲料。十字花科类的植物,因为富含硫代糖苷而成为非人为添加的生鲜乳中硫氰酸钠的主要来源之一。 乳中的硫氰酸钠含量主要取决于饲料中硫氰酸盐及其前体的含量,包括硫代糖苷(葡糖异硫氰酸钠)和生氰糖苷。然而,实验还表明,当十字花科类植物饲喂量达到一定水平后,再提高饲喂量对生鲜乳中的硫氰酸钠含量的提高帮助不大,推测可能是奶牛本身对硫代糖苷和生氰糖苷的吸收转化率有一定的极限。/pp  国际乳联(IDF)公报234号指出,牛乳中的硫氰酸钠含量是不稳定的,可以达到10~15mg/kg,但通常的浓度范围是2~7mg/kg。国内外科学界做的一些研究,认为硫氰酸钠在原料乳的正常浓度:牛乳为6~12mg/L,平均值8.5mg/L 山羊乳为6.6~8mg/L,平均值7mg/L 个体牛之间,乳中的硫氰酸钠浓度在2.3~35mg/L。有的研究则是,牛奶中平均含硫氰酸根离子范围0.4~22mg/kg之间。/pp strong 硫氰酸钠与牛乳保鲜/strong/pp  硫氰酸盐可以激活生鲜乳中过氧化物酶体系,而过氧化物酶体系可以对生鲜乳起到保鲜作用。因此,在上世纪九十年代被用做没有冷却条件的生鲜乳保鲜。1991年,WHO和FAO的食品法典委员会公布了CAC/GL13—1991《乳过氧化物酶体系用于原料乳的保鲜指南》,利用天然存在于牛乳中的过氧化物酶、硫氰酸盐、过氧化氢抗菌体系,再添加一定量的硫氰酸钠和过氧化氢,阻断细菌代谢繁殖,从而对生鲜乳起到保鲜作用。该指南严格规定了此方法的适用范围和使用方法,规定在原料乳收集和运输至加工厂期间,仅在缺乏必要的冷却设施时才可以应用。在发展中国家,由于奶牛场缺乏冷却设施,为防止生鲜乳腐败,此方法提供了一种费用低廉而实用的方法。因而在一些第三世界国家普遍使用。按照CAC使用指南的要求,使用过氧化物酶体系处理原料乳时,补充的硫氰酸钠的浓度为10~15mg/L,因此在散装活化乳中硫氰酸钠总含量约为20mg/L左右,比报道中对碘代谢有影响的浓度低10~20倍。同时,食品法典委员会一致强调,预期用于国际贸易的产品,不使用乳过氧化物酶体系进行处理。/pp  1995年,我国发布了GB/T 15550—1995《活化乳中过氧化物酶体系保存生鲜乳实施规范》,添加15mg/kg硫氰酸钠,利用乳中的过氧化物酶体系保存生鲜乳,防止牛奶腐败变质。1996年,颁布的GB2760—1996《食品添加剂使用卫生标准》,规定使用0.3%的过氧化氢2.0ml/L和15.0mg/L硫氰酸钠,用于原料乳保鲜。GB/T 15550——1995《活化乳中过氧化物酶体系保存生鲜乳实施规范》属于推荐性标准,规定适用范围仅限于交通不便,没有冷却设施的边远地区生鲜乳保鲜。这种方法一开始就受到了乳品行业的普遍抵制,因为对添加物的浓度、数量要求很严,而偏远地可能无法满足这样精准的要求,容易滥用。当时行业统一实施的有效方法是,定时挤奶,限时将奶送到收奶站,奶站配备降温冷却设施,有效保持原奶的新鲜。后来,由于担心硫氰酸钠被滥用,以及其带来的不利影响,2005年GB/T 15550—1995废止,GB2760—2007《食品添加剂卫生标准》也取消了硫氰酸钠的使用。2008年12月12日,卫生部公布了《食品中可能违法添加的非食用物质和易滥用的食品添加剂品种名单(第一批)》,明确规定乳及乳制品中硫氰酸钠属于违法添加物质。/pp  我国乳制品行业对生鲜乳保鲜一直是采取低温冷链保鲜技术。在上个世纪,硫氰酸钠被允许当做保鲜剂使用的时候,乳品行业没有一家企业允许奶户使用此法。在今天,现代化的规模奶牛场已超过45%,全部实现机械挤奶,冷却设备、保温储罐齐全 全国基本上没有了散户饲养,饲养小区全部实现机械挤奶,冷却储奶。全国没有企业会使用硫氰酸钠来保鲜原奶。特别是辉山乳业集团,是全产业链模式的企业,所有原料乳均来自本公司办的现代化牛场,牛奶挤下来后马上冷却进入冷藏储罐,在很短的时间内即可到达工厂进行加工,整个过程都在冷链控制之下,加工的产品又属于灭菌乳,根本就用不着加防腐剂来保鲜。/ppstrong  乳中的硫氰酸钠对人类/strong/ppstrong  健康的风险评估/strong/pp  早在1990年,国际食品添加剂专家联合委员会(JECFA)第35次会议的评估得出结论,认为按照CAC指南使用,乳过氧化物酶体系不存在毒理风险。且在乳过氧化物酶体系活化乳的消费人群中,十多年来未发现有不良影响的证据。/pp  国外对乳中硫氰酸钠的临床研究中,仅在200~400mg/L浓度时发现碘代谢的副作用。而且,在对甲状腺功能正常的个体研究中,每天摄入含硫氰酸钠8mg/L的牛奶连续12周,虽然血清和尿中硫氰酸钠浓度提高了,但对甲状腺功能(甲状腺素、三碘甲腺原氨酸和促甲状腺素)无明显影响。/pp  硫氰酸钠乌龙事件,把本底含有硫氰酸钠的牛奶认为是“毒害品”,“少量食入就会对人体造成极大伤害”是没有科学依据的。以乌龙事件中超最高限量值含硫氰酸钠15.2mg/kg的牛奶为例,1人1天喝500g计算,每天摄入的硫氰酸钠为7.6mg,仅相当于30g卷心菜、3g扁豆、20g生木薯块的含量。/pp  综上所述,硫氰酸钠含量在正常范围内的牛奶是安全的,不存在任何风险。/pp/p
  • 多品牌牙膏被曝含亚硫酸盐 国标无相关检测
    亚硫酸盐已禁用 国产牙膏不含  “中华、高露洁、黑妹、佳洁士、黑人、立白6个品牌美白牙膏掺有漂白物亚硫酸盐及其类似物质”的消息让网友高呼中枪,美白牙膏真的会损伤牙齿吗?  口腔专家说,能美白牙齿的还有氧化剂,氧化剂并不等于漂白剂。希望权威机构予以检测,让大家都知道“美白成分”到底是否健康。  昨天,一则“中华、高露洁、黑妹、佳洁士、黑人、立白6种品牌美白牙膏掺有漂白物亚硫酸盐及其类似的物质,长期使用有健康隐患”的消息在网络上传播。  记者了解到,该消息来源于一广西媒体做的生活实验,用碘溶液、稀硫酸和淀粉调制出来的溶液作测试剂,6种牙膏使测试剂褪色,得出上述结论。  昨晚8点30分,中国口腔清洁护理用品工业协会为此发表声明,称该媒体采用的测试方法准确性有待考究,而且亚硫酸盐是国标中的禁用物质,“我国的牙膏产品是符合国家标准要求的。”  美白牙膏热销质监部门:未测过美白成分  昨天,华西都市报记者走访多家超市发现,目前正在销售的牙膏品牌功能繁多,销售人员称,能美白的牙膏已经持续热销几年。  销售人员称,在美白牙膏选择上,市民多会选择知名品牌,通常价格也更高。记者关注到各种美白牙膏都号称自己采用了“动态热能美白系统”“内层蓝光炫白科技配方”等,但在成分上并无标注。销售人员称,具体成分属于商业机密,厂家担心竞争对手剽窃,不会轻易透露。  记者通过电话采访了省质检院石化中心的专家,该专家直言:“日常对牙膏的检测只有针对一些微生物、含氟量等的标准,国家标准里也没有关于漂白物质的检测指标。”记者从省质监局多个部门也了解到,目前对于牙膏中的美白成分暂未实行针对性的检测。  口腔专家分析氧化剂也能美白牙齿  成都中医药大学附属医院口腔科副主任医师左渝陵介绍,牙膏能美白是因为其中含少量具有漂白功能的氧化剂,氧化剂并不等于漂白剂。  左渝陵说,国外长期的临床试验显示,短期使用含有低剂量氧化剂的牙膏,不会对牙齿造成损害。“从报道上看,媒体记者测试的是6种美白牙膏,其实用碘溶液、稀硫酸和淀粉调制出来的测试剂溶液褪色很正常,因为含有氧化剂的美白牙膏都可以让它褪色。”  而且,他声称,这样的测试方法他从未见过,无法确认这个检测方法是否科学。  涉事一企业回应不含亚硫酸盐物理美白  针对这些牙膏是否真的添加了漂白剂,记者昨日也电话或邮件采访了涉事的中华、高露洁、黑妹、佳洁士、黑人、立白6大品牌企业。其中,立白集团的新闻发言人徐晓东称:“确保立白旗下所有牙膏均符合国标,绝对不含亚硫酸盐”,他还称研发部门正在对美白牙膏进行检测,并且将寻求有资质的权威机构予以检测,预计一个星期会出结果。  黑人牙膏所在的好来化工(中山)有限公司,用邮件回复记者称,亚硫酸盐属于牙膏禁用物质,黑人牙膏不含亚硫酸盐,也不含过氧化物等漂白剂。好来化工(中山)有限公司还称,黑人美白牙膏是通过物理作用去除牙齿表面的外源性色斑,达到清洁和美白牙齿的效果。  口腔协会发声明亚硫酸盐属于禁用物  昨晚8点30分,牙膏行业唯一的国家级协会中国口腔清洁护理用品工业协会对此发声明称,“按照有关报道描述的实验细节,使用碘溶液、稀硫酸和淀粉做测试剂,测试美白牙膏中美白成分的方法,从科学原理上讲存在较大的不确定性,很多因素和物质都可以改变该溶液的颜色,如pH值的改变,以及原料维生素C等。”  记者也注意到,该报道有“本次实验非权威部门检测,仅对实验样品负责,结果仅供参考”的提醒。  同时,协会声明称“亚硫酸盐”是强制性国标GB22115-2008《牙膏用原料规范》中明确的禁用物质,根据目前国家轻工业牙膏蜡制品质量监督检测中心对牙膏产品的检测结果,“我国的牙膏产品均是符合国家标准要求的。目前牙膏常用美白成分有二氧化硅、碳酸钙、过氧化氢、焦磷酸钠、珍珠粉等。上述美白成分,都必须符合国标的具体规定。”  相关报道  美白牙膏含亚硫酸盐  5月1日,记者到南宁市聚福隆超市随意采购了中华、高露洁、黑妹、佳洁士、黑人、立白共6个品牌的美白牙膏,走进广西民族大学绿色化学与技术实验室做生活实验,看看结果如何。  实验用碘溶液、稀硫酸和淀粉调制出来的溶液做测试剂,如果牙膏中有漂白剂的存在,它会使这个溶液褪色。  “通过实验,我们可以看出,6种牙膏都或多或少有漂白剂成分。”实验人员黄普惠说,“根据实验推断,这种漂白物质是一种亚硫酸盐及其类似的物质。亚硫酸盐及其类似的物质在通常情况下,一般用在工业领域,如造纸以及类似的行业。
  • 聚焦有毒有害化学品废物处置与场地修复——POPs论坛2021分会报告集锦(二)
    仪器信息网讯 2021年5月17 - 18日 ,第十六届持久性有机污染物论坛暨化学品环境安全大会 (简称“POPs论坛2021”)在夏都西宁召开。本次会议主题为“聚焦新污染物环境风险与控制”,除大会报告之外,会议共设立9个分分论坛,其中包含“有毒有害化学品废物处置与场地修复技术”分论坛,该分论坛部分精彩报告整理如下。分论坛主持人:中国矿业大学教授 冯秀娟分论坛主持人:北京师范大学教授/中国环境科学学会POPs专委会委员 刘希涛报告人:武汉理工大学教授 张其武报告题目:机械力化学与POPs的降解——回顾与展望报告重点介绍机械力化学反应理论研究、无机材料合成机理以及其在环境领域中的实际应用。方解石是最常见的天然碳酸钙矿物,可考虑用方解石来沉淀净化大部分金属盐废液,但其化学性质稳定,在自然状态下,只能对金属离子产生表面化学吸附的作用,单位处理量很低,因此需要活化手段提高其反应活性,使之与金属离子之间发生类似Ca(OH)2的摩尔当量的化学反应。张其武教授课题组利用行星式球磨机对方解石进行研磨活化,研究了在研磨过程中方解石与不同的重金属硫酸盐之间的化学反应,具体包括铁(Fe)、锌(Zn)、铜(Cu)、镍(Ni)和镉(Cd)的二价硫酸盐。根据反应特征和机理,在持久性有机污染物(POPs)无害化处理、生物质制氢、废料中贵重金属回收利用等方面做了较为深入的研究。报告人:浙江大学教授 闫克平报告题目:低温等离子体基础及其在环境方面的应用 报告从近年来电厂超低排放过程中面临的挑战出发介绍了低温等离子体(NTP)在除尘、脱硫、脱硝过程中的应用。具体的应用实例包括垃圾焚烧尾气净化机灰资源化、半干法脱硫灰土壤POPs修复添加剂、焦化厂焦化污染物处置等。除此之外,低温等离子体还将在灭菌消毒和肿瘤消融,超宽带震源和海洋勘探方面发挥重要作用。报告人:北京航空航天大学教授 孙轶斐报告题目:基于过渡金属活化过硫酸盐的PAHs降解机制报告介绍了我国PAHs土壤污染的来源及现状、PAHs污染土壤修复面临的挑战、以及PAHs污染土壤修复的技术发展方向。从修复类型上来看,化学修复由于修复周期短、成本低等特点是目前我国土壤修复的主流技术,利用活化过硫酸盐技术进行PAHs降解可能会生产稳定PAHs加氧衍生物,且存在PAHs开环较难,降解不彻底等问题。孙轶斐课题组通过研发多活性组分金属活化剂研发了多种环境友好型、低成本、高活性双金属活化过硫酸盐,可有效用于修复多种PAHs污染土壤。报告人:中南民族大学讲师 雷鸣报告题目:高效活性氢体系还原降解卤代有机污染物 报告中介绍了多种高效还原降解卤代有机污染物的活性氢体系。譬如,建立了Cu/TiO2-N2H4H2O高效还原BDE47的催化转移加氢体系,BDE47能再3秒内去除率达到100%,该体系无需加能量辅助,无需惰性气体保护,处理容量大且脱溴彻底。报告人:中国矿业大学教授 冯秀娟报告题目:高浓度复杂重金属冶炼渣无害化处置技术及应用 有色金属矿冶炼产生的含砷废渣,由于却缺乏合适的处理方法,硫化砷渣和中和渣大量囤积贮存或简单填埋处理,占据厂房空间大,且对环境造成污染,对人体健康存在威胁。因此,砷渣的处置已成为亟待解决的问题。报告中介绍了一种用于高浓度多金属的硫化砷渣的处理工艺。该工艺通过调浆、氧化剂、亚铁盐、生石灰和嗜铁还原菌各步骤及顺序相互配合,最终能对高浓度多金属的硫化砷渣进行有效的处理。报告人:清华大学教授 王慧报告题目:POPs污染场地生物修复策略与过程监控 多环芳烃(PAHs)是土壤环境中常见的一类持久性有机污染物,可通过挥发、光解、微生物降解等方式而去除。PAHs微生物降解的影响因子主要为降解菌的数量和活性。准确评估污染环境中PAHs的降解潜能,对于PAHs污染治理具有重要的理论意义和技术指导意义。王慧教授课题组通过对PAH降解功能标记基因的筛选及特异性评估,得出pahE比pahAC更适合作为功能标记基因以研究PAH降解菌的生态功能的结论,并通过对PAH降解菌代谢机理的研究,筛选出PAHs厌氧降解核心菌群——PheM1,该菌群对多种PAHs物质都具有卓越降解能力,可通过特殊处理用于PAHs污染场地强化生物修复。报告人:中科院广州地球化学研究所教授 冉勇报告题目:沉积物有机质结构和成分对Na2S2O8氧化降解苯并(a)芘的作用 本研究选择珠江口和南海海域中的五个沉积物,研究14C标记苯并(a)芘(BaP)在不同沉积物中被过硫酸钠氧化效率的作用,同时采用固态13CP/MAS NMR和CO2吸附技术,表征氧化前后样品有机质的结构和微孔特性的变化。结果表明,海源沉积物有机质比陆源沉积物有机质更难被降解,且稳定有机质结构中的脂类化合物、微孔对于保护其中的BaP免于被化学降解起到重要的作用。 以下为研究生报告:报告人:南京大学 胡建华报告题目:Fe@PDA对三氯生的还原-氧化耦合降解报告人:北京师范大学 崔晓玲报告题目:水热处理铁铝泥活化过一硫酸氢盐降解水中的吡虫啉报告人:深圳大学 李泓波报告题目:单原子镍催化剂的制备及其水相电化学还原三溴乙酸报告人:中科院广州地球化学研究所 张永利报告题目:H2O2氧化法修复壬基酚污染的沉积物报告人:北京师范大学 黄小凯报告题目:铜镁铁层状金属氧化物活化过硫酸盐降解水中吡虫啉报告人:东莞理工大学 卢金成报告题目:电絮凝和电氧化技术联合处理胶黏剂废水报告人:北京师范大学 任文博报告题目:热活化过二硫酸盐降解水中西玛津的研究报告人:中科院广州地球化学研究所 孔祥兰报告题目:对蓝藻中难降解有机质的结构表征以及热演化研究报告人:北京师范大学 赖玲报告题目:生物炭吸附氧化去除水中三价锑的机制研究
  • “防治碘缺乏病日”—食盐中碘含量的测定
    一、众志成城战疫情,科学补碘保健康2020年5月15日是我国第27个“防治碘缺乏病日” ,主题是“众志成城战疫情,科学补碘保健康”。旨在通过普及碘缺乏病防治相关知识,使公众在防控新冠肺炎疫情的同时做好科学补碘工作,进一步增强全社会对食盐加碘防治碘缺乏病工作的认同和支持。碘是新陈代谢和生长发育必需的微量营养素,食用碘盐是预防碘缺乏病最简便、安全、有效的方式。那我们如何确认食盐的碘含量是符合安全标准的呢? 二、食盐中碘含量的测定测试样品:中盐加碘精制岩盐参考标准:GB/T 5461-2016 食用盐 GB/T 13025.7-2012 制盐工业通用试验方法 碘的测定推荐仪器:ZDJ-5B自动滴定仪配套电极:213-01铂电极 217-01参比电极试剂准备:硫代硫酸钠标准溶液(0.1mol/L) 硫代硫酸钠标准滴定溶液(0.002mol/L) 磷酸溶液(1mol/L) 碘化钾溶液(50g/L) 硫酸溶液(20%)测试过程:称取10g试样,精密称定,置于滴定杯中,加50mL水溶解后,加2mL磷酸溶液、5mL碘化钾溶液。充分混匀,用硫代硫酸钠标准滴定溶液(0.002mol/L)在自动滴定仪上滴定至终点。样品滴定曲线 三、测定仪器及配套电极ZDJ-5B型自动滴定仪7寸彩色触摸电容屏,导航式操作;实时显示测试方法、滴定曲线和测量结果;可定义计算公式,直接显示计算结果; 支持滴定剂管理功能;支持pH的标定、测量功能;支持USB、RS232连接PC,双向通讯;可直接连接自动进样器实现批量样品的自动测量。213-01铂电极 温度范围:0-50℃工作电极材料:铂外壳材料:玻璃外形尺寸:12×120mm接插件:BNC(Q9型) 217-01 参比电极温度范围:温度范围:5-55℃参比类型:饱和甘汞双盐桥式外壳材料:玻璃外形尺寸:12×120mm接插件:U型插片
  • 药典8001试药修订草案二次公示 常用试剂增加质控指标
    近日,药典委发布关于8001 试药标准草案的公示(第二次),对此前公示过的草案进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿由广东省药品检验所起草,中国食品药品检定研究院、黑龙江省药品检验研究院、广州市药品检验所、无锡市药品安全检验检测中心、北京大学等单位进行复核。主要起草人包括洪建文、彭洁、肖慧、武建卓、王婷婷。试药指在本版药典中供各项试验用的试剂,但不包括各种色谱用的吸附剂、载体与填充剂。药品检验检测中使用试药的质量直接影响药品分析检验检测结果的质量。《中国药典》8001 试药通则在指导药品检验检测过程以及试药的使用与管理中发挥着重要的作用。但随着《中国药典》收载品种的不断丰富,检验检测所需化学试剂门类和品种的不断增加,《中国药典》收载的试药在品种和数量上,关键质量指标的要求上已经不能满足目前药品检验检测对所使用试剂试药的需求,同时还缺乏相应的安全和储存指引。为促进药品科学监管、切实发挥《中国药典》对药品检验用试剂试药的技术指导作用,本次对8001试药通则进行了修订。第一版草案,主要在试药的通用技术要求、常用试药的关键质量指标以及试药品种的补充与更新三方面进行完善。1、在试药的通用技术要求方面,针对8001试药通则存在的分级分类与现行版化学试剂国家标准不一致、缺乏安全和储存指引、有效性提示等问题,结合试药的生产、销售以及在药品检验检测的使用情况,参考《GB/T 37885-2019 化学试剂分类》更新细化了药典试药的分类,进一步促进了药典试药通则与现行版化学试剂国家标准的协调。此次公示稿中针对此方面进行了协调,由传统的四个等级分类,修订为十个大类,而且提到试药管理“一般应符合其化学品安全标签及化学品安全技术说明书的要求,应关注并保持其有效性,必要或可行时,可通过制定有效期或采用灵敏度试验等方式予以保证”,为试药的正确选用提供了更好的指导。2、对常用试药增加了相应的质控指标,结合国内外药典及试药产品目前的质量情况,对甲醇等 21 种常用的试药,根据其用途,通过实验研究考察其关键质量属性,结合该试药的质量标准及不同品牌产品的实际质量情况,增加了相应的质控指标。而本次草案,根据 2024 年2月8001试药第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:1. 将“供高效液相色谱使用时需满足要求”明确为“供高效液相色谱流动相使用时需满足要求”。 2. 修订辛烷磺酸钠、辛烷磺酸钠一水合物、溴化钾、氯化钾、硫酸钙的相关表述,详见附件公示稿。 3. 增加 8001 试药各品种的 CAS 号,详见附件 EXCEL 表格。8001 试药CAS编号表.xlsx附件1 8001 试药公示稿(第一次).pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制