当前位置: 仪器信息网 > 行业主题 > >

五硼酸钾八水合物

仪器信息网五硼酸钾八水合物专题为您提供2024年最新五硼酸钾八水合物价格报价、厂家品牌的相关信息, 包括五硼酸钾八水合物参数、型号等,不管是国产,还是进口品牌的五硼酸钾八水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五硼酸钾八水合物相关的耗材配件、试剂标物,还有五硼酸钾八水合物相关的最新资讯、资料,以及五硼酸钾八水合物相关的解决方案。

五硼酸钾八水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。  在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。  合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style="text-align: center "strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="text-align: center "国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp  附件:批准建设的企业国家重点实验室名单/pp style="text-align: right "科 技 部/pp  附件/pp style="text-align: center "strong批准建设的企业国家重点实验室名单/strong/pp style="text-align: center "img title="001.png" src="http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg"//pp /p
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    centerimg style="width: 285px height: 300px " title="" alt="" src="http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height="300" hspace="0" border="0" vspace="0" width="285"//centerp  钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。/pcenterimg style="width: 402px height: 300px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height="300" hspace="0" border="0" vspace="0" width="402"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄/pp  5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。/pp  水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。/pp  中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。/pp  “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。/pp  经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。/pp  “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。/pp strong 1.研发显微镜核心部件和方法,达到原子水平观测的极限/strong/pp  这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。”/pp  为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。/pp  第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。/pp  科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。”/pp  为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。”/pp  strong2.离子水合物的幻数效应有什么用/strong/pp  江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。/pp  结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。/pp  江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。”/pp  有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。/pp  江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。”/pp  王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。/pp strong 3.水合离子变得可以操控,能为我们带来什么?/strong/pp  据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/pp  王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。”/pp  比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。”/pp  另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。/pcenterimg style="width: 450px height: 292px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height="292" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄/pcenterimg style="width: 450px height: 338px " title="" alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height="338" hspace="0" border="0" vspace="0" width="450"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄/pcenterimg alt="中国科学家首次揭示水合离子的微观结构" src="http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height="600" width="439"//centerp  5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄/p
  • ECHA发表关于硼酸和硼酸盐化物的使用意见
    欧洲化学品管理署(ECHA)风险评估委员会(RAC)近日通过了一项关于消费者在摄影应用方面硼酸和硼酸化合物的使用意见。  该意见涉及业余摄影师在暗房打印照片时的注意事项。RAC的结论是,当不考虑其他的硼来源时,这种物质的使用不会对消费者构成危险。  其他对消费者有影响的硼暴露方式包括饮食和饮用水。当业余的摄影师使用该物质,如定影剂和液态膜显色剂时,能适当的控制风险。  然而,当合理条件下摄影时发生包括硼或其他硼来源的最坏情况时,对消费者的风险可能无法控制。  RAC已被要求评估消费者在使用摄影应用时,硼酸和硼酸盐化物是否能得到充分控制。此外,硼酸和硼酸盐化物是一种具有生殖毒性的物质,对人体的成长和生育有较大影响。
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • REACH高度关注物质(SVHC)最新候选清单
    2011 年6 月20 日,欧洲化学品管理局(ECHA)将七种致癌和/或对生殖系统有害的化学物质新增到高度关注物质(SVHC)候选清单中。经过四次修订,现有效SVHC 候选物质清单已达53 项。序号物质名称ECCAS可能用途1氯化钴231-589-47646-79-9干燥剂、例如硅胶2重铬酸钠二水合物234-190-37789-12-0金属表面精整、皮革制作、纺织品染色、木材防腐剂3五氧化砷215-116-91303-28-2杀菌剂、除草剂4三氧化二砷215-481-41327-53-3除草剂、杀虫剂5酸式砷酸铅232-064-27784-40-9杀虫剂6三乙基砷酸酯427-700-215606-95-8木材防腐剂7邻苯二甲酸二丁基酯(DBP)201-557-484-74-2增塑剂、粘合剂和印刷油墨的添加剂8邻苯二甲酸二(2-乙基己)204-211-0 117-81-7PVC 增塑剂、液压液体和电容器里的绝缘体酯(DEHP)9邻苯二甲酸丁苄酯(BBP)201-622-7 85-68-7乙烯基泡沫、橡胶、耐火砖和合成皮革的增塑剂10蒽(Anthracene)204-371-1120-12-7染料中间体、杀虫剂、木材防腐剂。高纯蒽用于制取单晶蒽,用在闪烁记数器上。11三丁基氧化锡(TBTO)200-268-056-35-9木材防腐剂12二甲苯麝香201-329-481-15-2香水、化妆品13六溴环十二烷(HBCDD)206-33-9294-62-2阻燃剂14C10-13氯代烃(短链氯化石蜡)(SCCP)287-476-585535-84-8金属加工过程的润滑剂、橡胶和皮革衣料、胶水154,4'-二氨基二苯甲烷(MDA)202-974-4101-77-9偶氮染料、橡胶的环氧树脂固化剂;有机合成的中间体16蒽油292-602-790640-80-5主要用于制造其他物质,如提炼蒽、碳黑,也用于炸药的还原促进剂,以及海洋捕捞、防腐。17蒽油、蒽糊、轻油295-278-591995-17-418蒽油、蒽糊、蒽馏分295-275-991995-15-219蒽油、少蒽292-604-890640-82-720蒽油、蒽糊292-603-290640-81-621高温煤沥青266-028-265996-93-2主要用于制作工业电极,少量用于重度防腐、铺路、黏土制作22硅酸铝耐火陶瓷纤维 工业绝缘隔热材料23氧化锆硅酸铝耐火陶瓷纤维 工业绝缘隔热材料242,4-二硝基甲苯204-450-0121-14-2用于制作甲苯二异氰酸盐(酯)(TDI),进而制造聚亚胺酯泡沫;也用于制造白明胶塑料。25邻苯二甲酸二异丁酯(DIBP)201-553-284-69-5增塑剂26铬酸铅231-846-07758-97-6色素,用于塑料、油漆着色27钼铬酸铅红(CI颜料红104)235-759-912656-85-828铬酸铅黄(CI颜料黄34)215-693-71344-37-229三(2-氯乙基)磷酸盐(TCEP)204-118-5115-96-8阻燃剂30丙烯酰胺201-173-71976-6-1丙烯酰胺主要用于生产聚丙烯酰胺;聚丙烯酰胺应用于各个领域,尤其是在废水处理和纸张加工。丙烯酰胺也有少部分用于包括研究目的制备聚丙烯酰胺凝胶及在土木工程中的灌浆剂。31三氯乙烯201-167-41979-1-6金属部件的清洗剂和去污剂;黏合剂中的溶剂;用于生产氯氟有机化合物的中间体32硼酸233-139-210043-35-3具有众多的用途,例如用于生物杀灭剂,防腐剂,个人护理用品,食品添加剂,玻璃,陶瓷,橡胶,化肥,阻燃剂,涂料,工业液体,刹车液,焊锡产品,胶片显影剂等。33四硼酸钠,无水215-540-41330-43-4具有多种用途,例如用于玻璃及玻璃纤维,陶瓷,洗涤剂剂及清洁剂,个人护理产品,工业液体,冶金,黏合剂,阻燃剂,生物杀灭剂,化肥等34四硼酸钠,水合物235-541-312267-73-135铬酸钠231-889-57775-11-3实验用分析试剂;生产其他含铬化合物36铬酸钾232-140-57789-00-6金属处理及镀层;生产化学品及试剂;生产纺织品;陶瓷着色剂;皮革鞣制剂敷料;生产颜料及油墨;实验室用试剂;烟花制造37重铬酸铵232-143-17789-9-5氧化剂;实验室用试剂;皮革鞣制;生产纺织品;生产感光荧屏;金属处理38重铬酸钾231-906-67778-50-9生产金属铬;金属处理基镀层;生产化学试剂;实验室用试剂;皮革鞣制;生产纺织品;照相平板;木材处理;制冷系统防腐剂39硫酸钴233-334-210124-43-3用于制陶瓷釉料、油漆催干剂和镀钴等。也可用作饲料添加剂,碱性蓄电池添加剂等。40硝酸钴233-402-110141-05-6用于表面处理、电池、陶瓷颜料、催化剂。41碳酸钴208-169-4513-79-1陶瓷、玻璃颜料,饲料微量元素添加剂,微量元素肥料42醋酸钴(乙酸钴)200-755-871-48-7用于表面处理、合金、颜料、染料和饲料添加剂。43乙二醇单甲醚2-203-713-7109-86-4用作涂料溶剂、渗透剂、匀染剂及有机合成中间体,也用作燃料的添加剂44乙二醇单乙醚2-203-804-1110-80-5常用作溶剂,皮革工业用于着色剂,涂料工业用于配制油漆稀释剂、脱漆剂,及制造喷漆的原料,纺织工业用于制造纤维的染色剂,有机化工中用于制造醋酸酯、乳液稳定剂等。45三氧化铬215-607-81333-82-0用于金属处理和木材防腐剂中的稳定剂。46三氧化铬衍生酸,如:铬酸、重铬酸、低聚铬酸等231-801-5236-881-57738-94-513530-68-2用于金属处理和木材防腐剂中的稳定剂。47乙二醇乙醚醋酸酯203-839-2111-15-9用于油漆、粘合剂、胶水、化妆品、皮革、木材染料、半导体、摄影和光刻过程48铬酸锶232-142-67789-6-2用于油漆、清漆和油画颜料;金属表面抗磨剂或铝片涂层49邻苯二甲酸二(C7-11支链与直链)烷基酯(DHNUP)271-084-668515-42-4用于聚氯乙烯(PVC)塑料、电缆的增塑剂及粘合剂50肼206-114-97803-57-8302-01-2防锈剂;用于制药,农药,油漆,油墨,有机染料等的合成原料,及高分子合成材料单体511-甲基-2-吡咯烷酮212-828-1872-50-4用于涂料溶剂、纺织品和树脂的表面处理和金属面塑料521,2,3-三氯丙烷202-486-196-18-4用于脱脂剂溶剂、清洁剂、油漆稀释剂、杀虫剂、树脂和胶水53邻苯二甲酸二(C6-8支链与直链)烷基酯,富C7链(DIHP)276-158-171888-89-6用于聚氯乙烯(PVC)塑料增塑剂、密封剂和印刷油墨
  • 中国海洋大学深海激光拉曼光谱仪亮相国家“十一五”成就展
    仪器信息网讯 2011年3月7日至14日,中国海洋大学携深海激光拉曼光谱仪亮相国家“十一五”重大科技成就展。深海激光拉曼光谱仪  中国海洋大学研制的深海小型、自容式原位激光拉曼光谱系统(DOCARS-532/785)可搭载于各种作业平台,实现了对深海正常和极端环境天然气水合物等目标物的无接触、快速探测。目前,国际上仅美国、法国和中国拥有此项技术。我国研制的双波长拉曼光谱系统成功进行了3次深海试验,是国际上首次在4003米水深同时获得双波长激发的拉曼光谱。
  • 五院士支招破解我国能源困境
    “‘我国石油还能开采40年’的说法不科学,该数据是拿探明的存储量除以每年的消费量简单得出的,而实际上每年都有新的石油、天然气等资源被勘探出来。”  近日,五位中科院院士——地质学家李德生、物理化学家田昭武、无机化学家徐如人、真菌学家庄文颖、电工学家严陆光,与20位青年科学家在天津大学畅谈能源和资源的可持续发展。  李德生等在会上建议,解决我国未来能源安全问题,应在开源节流的基础上,从加强科学研究和人才培养等方面入手。  开源节流 突围困局  李德生介绍说,我国实际石油的存储量为332亿吨,目前已探明84亿吨 天然气资源量为22万亿立方米,2010年年底探明5.71万亿立方米,尚有五分之四未被探明 煤层气资源量为11万亿立方米,目前探明量仅占1%。  研究结果表明,照目前的开采速度,常规矿物能源可以一直持续到22世纪。  尽管如此,李德生表示,我国能源发展仍面临着不小的压力,未来除保证一定的化石能源产量外,我国也应重视发展如页岩气、页岩油等非常规油气资源。  虽然页岩气与页岩油开发存在高成本、高消耗、高污染以及低产出的问题,但李德生表示,“这些非常规资源一定会为我国的能源资源发展作出贡献” 。  田昭武、严陆光也指出,未来能源资源“开源”仍须在太阳能、风能、生物质能等新能源技术领域多做功课。  而要使能源资源实现可持续发展,要“开源”,更须“节流”。  李德生指出,我国已提前10年打破了2020年能源消耗量的红线——去年,国内原油消费量已达4.5亿吨,超过2020年消耗量达4.2亿吨的红线 目前汽车保有量也远超预计,达2亿多辆,远超2020年达到1亿辆的红线。  “这么多的汽车等于是把化工厂搬到城市里,这对于城市环境的损害非常大。因此,解决这个问题是我们降低交通能耗、减少环境污染的重点。”田昭武表示。  技术为基 加强应用  “在能源科学研究方面,产学研一体化是研究的前提。”田昭武表示。  他认为,我国当前在太阳能等能源开发技术方面已掌握较高技术,但科研与应用之间还存在很多隔阂,难以缓解能源紧缺的现状。  以电动汽车为例,由于未能很好地解决电池在能量、成本、寿命等方面的问题,电动车尚不能被广大用户接受。  在可再生能源开发方面,我国的风能、太阳能虽然产能较强,但由于与电网的输电能力不匹配,很多时候,生产出来的电力无法进入电网,被白白浪费。  严陆光指出,除新能源以外,核聚变能、天然气水合物、深层地热能、海洋能等4类能源的未来可利用空间也十分巨大。  然而,按照目前相关研究的进展情况,核聚变能预计下个世纪才能使用 位于海洋深处的天然气水合物,属于新型化石能源,存储量比化石能源还高,但当前面临的最大难题是如何开采。  以人为本 重在创新  “我国生物质能源研究和其他国家处于同一起步阶段,因此,科研人员不应一味地跟风作研究,要结合当前的国家重大需求独立创新。”庄文颖表示,青年科学家应尽力寻找有较大研究潜力和良好应用前景的研究方向。  她同时指出,优秀的人才是关系到实现能源资源开发利用与促进可持续发展的重要因素。她希望青年科学家和高校教师提高对青少年科普教育的重视程度。  徐如人指出,当前的很多基础问题在我国学术界没有得到充分的重视,这将严重制约我国今后的科研创新工作。  他举例说,我国稀土资源虽然很丰富,但主要用于出口,很少被科研单位利用。  他建议相关领域的青年学者要对诸如稀土材料功能与结构关系等基础问题进行更加深入的研究。  “这些问题都是制约能源研究进一步发展的障碍,希望年轻人仔细研究需求与市场,通过技术创新解决我国能源资源发展的困境。”徐如人说。
  • 海洋科技“划重点”:未来五年可燃冰开采、深海探测“大有可为”
    p  时隔两年,参与《“十三五”海洋领域科技创新专项规划》(以下简称《规划》)制定的上海交通大学任平研究员终于盼来了“十三五”海洋科技发展顶层设计正式面世。日前,《规划》由科技部、国土资源部、国家海洋局联合印发。/pp  “海洋科技创新是提高海洋实力的战略支撑,是海洋强国建设的核心任务。”任平告诉科技日报记者,“十三五”是落实建设海洋强国重大部署,实施创新驱动发展战略的关键时期,《规划》在深入分析世界海洋科技发展新趋势的基础上,查找制约我国海洋科技创新的主要因素,在若干领域布局基础研究和应用技术研究,进一步建设完善国家海洋科技创新体系,提升我国海洋科技创新能力。/pp  strong“十三五”有望实现万米下潜/strong/pp  海洋强国战略的实现依赖于深海关键技术与装备能力的提升,而由于高压、低温、高温等极端环境条件的限制,深海技术与装备一直是国际海洋工程技术研究的难点和最前沿,也是制约我国实施深海战略的关键技术瓶颈。/pp  任平告诉记者,深海潜水器是发展深海技术的引擎和集成平台,也是开展深海科学研究、资源开发的重要支撑,相关技术的进步将促进深海装备配套技术和新兴产业发展。/pp  开展潜水器谱系化工程,这是《规划》提出的重要目标。“十三五”,我国将通过《深海技术与装备》专项的实施,形成3—5个国际前沿优势技术方向、10个以上核心装备系列产品,满足我国在深海领域的重大需求、为形成我国自主的深海产业提供技术和人才支撑。/pp  具体来说,包括开展深海空间站研制 全海深(最大工作深度11000米)潜水器研制及深海前沿关键技术研究,争取在“十三五”实现万米下潜 深海通用配套技术及1000—7000米级潜水器作业及应用能力示范 深远海核动力平台关键技术研发。/pp  科技部相关负责人介绍,“十三五”我国将形成深海运载、探测装备谱系化和配套能力,提升深海作业支持能力以及深水油气和矿产资源开发方面的自主技术能力,最终目的是希望通过技术装备研发,带动整个国家装备制造能力的进步。/pp  strong形成可燃冰开采试验能力/strong/pp  “海洋高技术已成为国家竞争力的重要标志。”任平说,本世纪以来,在国家连续3个五年计划的支持下,我国的海洋科学和技术取得了巨大的进步,然而,在日趋激烈的海洋资源的争夺中,我国海洋资源开发能力亟待提高,特别是深海资源开发能力。/pp  比如,在海洋油气开发方面,我国仍以300米以浅的海洋油气开发为主,尚未系统掌握深水油气勘探开发技术,大量深水油气勘探开发核心技术与设备不得不依赖进口,核心技术不足已成为我国进军海外深水油气的重要瓶颈。在南极磷虾资源调查、捕捞、深度加工等诸多技术方面,我国与挪威、日本等国仍有至少20—30年的差距。目前国际海底矿产资源活动重点逐步由资源勘探向开发过渡,而我国尚不具备海底资源规模化开采技术。此外,生物基因资源利用、生物多样性保护、公海保护区建设等与资源有关的热点问题都需要有力的科技支撑。/pp  为此,《规划》提出实施深水能源、矿产资源精细勘探与试采技术工程示范,实现核心技术和装备国产化,全面提升海洋资源自主开发能力,为海洋强国建设提供支撑。/pp  比如,开展海洋油气工程新概念、新技术研究,开发深水油气勘探核心技术和工程装备,结合“大型油气田及煤层气开发”重大专项,形成1500米到3000米深水油气资源自主开发能力 开展海洋天然气水合物成藏、成矿机理以及安全开采等基础问题研究,开发精确勘探和钻采试验技术与装备,形成海底天然气水合物(又称可燃冰)开采试验能力 开展大洋矿产成矿机理与分布规律等科学问题研究,开发高效勘探核心技术研究及深海采矿系统设计,研制集矿与输送装备,完成1000米海深集矿、输送等技术海上试验。/pp  strong实现大型深海探测装备共享/strong/pp  该人士认为,《规划》一大亮点是,提出重点建设国家重大基础设施和海洋技术创新平台,优化海洋科技创新基地布局。/pp  如今我国深海探测与作业技术实现重大进展,在深海耐压舱、深海浮力材料、深海推进器、深海液压控制、深海通信与定位技术、深海机械手等方面均取得了突破,取得了“蛟龙”号载人潜水器、“海马”号4500米级遥控潜水器、“海燕”号深海滑翔机等一批重大成果。预计到“十三五”末,我国将是国际上拥有最多大深度载人潜水器的国家。/pp  在上述人士看来,这给管理者提出的新命题是如何通过共享机制实现资源最优化及高效应用,实现大型深海探测装备共享。/pp  《规划》同时提出,要建立资源共享的机制,建立海洋科学观测数据、海洋微生物菌种/基因等资源的共享制度,推动科学观测、技术研发、产业培育、海洋管理等环节的相互融合,建立强有力海洋科技任务的一体化实施体系,建立与中央财政科技计划管理改革方案相适应、与海洋事业发展的重大工程紧密结合的协同创新机制,提高科研产出效率。/pp  该人士表示,与陆地相比,海洋相关数据获取更难、成本更高,正因为如此,共享才显得更为必要。“比如美国的海洋科技创新之所以领先,其中很重要的一点是建立了有效的共享机制。”/p
  • 科技部批准建设2个企业国家重点实验室
    p style="TEXT-ALIGN: center"strong科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知/strong/pp style="TEXT-ALIGN: center"国科发基〔2017〕386号/pp  国务院国有资产监督管理委员会、安徽省科技厅:/pp  企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。/pp  为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。/pp  请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。/pp  特此通知。/pp style="TEXT-ALIGN: right"  科 技 部/pp style="TEXT-ALIGN: center"img title="QQ截图20171226084811.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/0852b6bc-ba13-45ce-be1b-9e416847900f.jpg"//pp/p
  • 科学家利用高分辨太赫兹光谱方法揭示水溶液中硼酸的氟化反应机理
    氟在化学世界中具有重要地位。氟在所有原子中电负性最高、极化率最低。同时,氟是所有非惰性气体和非氢元素中半径最小的元素。通常,氟的引入使得有机化合物和无机化合物产生独特的物理性能、化学性能和生物性能。地壳中氟元素的丰度排在第13位,是自然界中含量最丰富的卤素。当前,氟已应用于制药、催化、生物、农业和材料等领域。在无机氧化物体系中,氟和氧的离子半径相似,具有较好的可替代性。因此,利用氟替代氧/羟基成为增强氧化物/羟基氧化物物化性质的有效途径之一。尽管氟化策略已在无机氧化物/羟基氧化物结构和性能改性中受到重视,但反应产物的结构分析仍是化学表征的难题。由于氟和氧对X射线和电子束的散射能力相近,致使准确区分和鉴别这两类元素变得困难。更复杂的是,X射线和电子束几乎不和氢原子相互作用,故X射线和电子束方法难以区分氟和羟基。因此,氟化产物中氟和氧/羟基的准确区分是确定取代位点、研究氟化反应规律以及明晰反应路径等课题的研究基础。近日,中国科学院新疆理化技术研究所潘世烈团队与内蒙古医科大学教授额尔敦、台湾大学教授Hayashi Michitoshi、日本静冈大学教授Tetsuo Sasaki、日本神户大学教授Keisuke Tominaga,以水溶液中硼酸的氟化反应为研究对象,发展了基于高分辨率太赫兹光谱的结构解析方法。该团队利用这一方法测定了反应产物中功能基元上氟和羟基的位点。结果表明,该反应体系中氟原子只出现在BO2F2阴离子功能基元上。在结构测定的基础上,该研究推导了水溶液中硼酸的氟化机理,提出了两步氟化历程。第一步是氟离子和硼酸分子B(OH)3形成配位共价键,促使硼的电子轨道经历从sp2到sp3的转变,形成B(OH)3F中间体。第二步是氟化剂产生的酸性环境使该中间体上的一个OH质子化,形成OH2+优势离去基团。进而,氟离子通过亲核取代路径取代OH2+基团,完成第二步氟化。基于高分辨率太赫兹光谱的结构分析方法,适应于含氟/氧、铍/硼、碳/氮等X射线难以识别元素对的结构体系以及用于研究其他羟基氧化物/氧化物氟化反应机理。该方法为无机氟化学晶体结构基元精确解析和反应理论研究提供了新途径。相关研究成果发表在《德国应用化学》上。新疆理化所为第一完成单位。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院和新疆维吾尔自治区等的支持。
  • 中科院海洋所在深海甲烷原位探测系统取得重大突破
    中科院海洋研究所张鑫博士作为第一完成人与美国MBARI (Monterey Bay Aquarium Research Institute) 研究所合作,成功研制出基于深海ROV (Remotely Operated Vehicle) 缆控机器人的深海甲烷原位探测系统。相关研究成果已于近期发表在Geophysical Research Letters 杂志,并在第一时间被《自然》和《科学》杂志同时进行了报道和评述。  利用该项技术,科研人员在世界上首次获得了深海沉积物中甲烷的原位真实浓度,是传统采样测试结果的10-20倍,从而证明甲烷不仅存在于天然气水合物中,而且更广泛地大量赋存于深海沉积物中。在ROV的视频监控下,系统将钛合金探针插入深海沉积物中,抽取沉积物孔隙水,并使用深海激光拉曼光谱仪原位获得孔隙水中的甲烷浓度。同时,该技术还可以原位获取深海沉积物中溶解的硫化氢气体、pH值和硫酸根等多种海洋化学参数。  著名天然气水合物专家Ross Chapman教授认为,该项技术是“昂贵却实用的”。相关研究成果已在2009年AGU秋季会议和2010 Ocean Sciences会议上作了会议报告,还将于今年6月在西班牙召开的OCEANS 2011会议和今年7月在英国召开的第七届国际天然气水合物大会上作邀请报告,已经成为近期国际海洋界的研究热点之一。  深海沉积物中蕴藏着丰富的甲烷气体,其与水分子结合可以形成天然气水合物,在全球甲烷循环和气候变化中具有重要作用,并且是一种潜在的清洁能源,但一直缺乏有效的探测手段。  作为一种先进的海洋化学探测技术,该研究成果对于海洋地质和海洋化学研究中关注的沉积物海洋地球化学、天然气水合物原位探测和深海热液、冷泉生态系统研究具有很好的应用前景。  从海底取样(图片来源:MBARI)  张鑫在科研船上进行研究(图片来源:Nancy Barr/MBARI)使用深海激光拉曼光谱仪原位获得孔隙水中的甲烷浓度(图片来源:张鑫/中科院海洋研究所)
  • 使用Avio ICP-OES对硼酸锂熔融地矿样品进行稳定分析
    地矿样品的分析由于其基体组成以及将样品转换为溶液的制备过程而颇具挑战。最常用的制备技术是锂熔融,熔融过程包括将样品与过量硼酸锂混合并加热,直至硼酸锂熔化并溶解样品形成均质物后,将得到的固体溶解在酸中进行分析。硼酸锂熔融样品因其含有高浓度的IA族元素,如锂 (Li)、钠 (Na) 和钾 (K) ,使得采用电感耦合等离子体发射光谱(ICP-OES)分析时遇到以下难点:雾化器和进样器内出现沉积物,导致信号漂移,测量结果不稳定。石英炬管很快变得不透明,测量结果的精密度受到很大影响。通过选择合适的样品导入组件,上述困难和挑战均可在珀金埃尔默 Avio ICP-OES 上得到圆满解决:采用配有Elegra™ 氩气加湿器的SeaSpray™ 雾化器来避免雾化器阻塞,并减少中心管头处沉积物形成。采用陶瓷炬管,同时使用1.2mm中心管以减少等离子体负载,减轻不透明现象。图1显示了锂熔融样品12.5小时分析过程中内标元素(钇)的回收率稳定在95~105%之间。图2显示了锂熔融样品12.5小时分析过程中Si、Al、Ca、Mg和Mn元素的回收率稳定在95~105%之间。另外,Avio ICP-OES的PlasmaShear™ 技术也有助于提高高盐基体样品分析的稳定性。该技术可产生空气流来切除等离子体尾焰(图3),避免基体沉积接口窗口。上述结果表明,Elegra™ 氩气加湿器与SeaSpray™ 雾化器、旋流雾室、细孔中心管和陶瓷炬管的联合使用,以及PlasmaShear™ 等离子体尾焰切割技术可以减少盐沉积,从而实现ICP-OES对高盐样品进行准确、稳定的分析。欲了解珀金埃尔默《采用 Avio ICP-OES 对偏硼酸锂熔融样品进行稳定分析》及Avio系列ICP-OES的详细内容,请扫描下方二维码即刻获取应用资料。更多详情请联系当地销售。
  • 硼酸盐零膨胀新材料:可用于低温高精度光学仪器
    ZBO晶体的近零膨胀性质、优异的透过性能以及良好的生长习性  热胀冷缩是自然界物体的一种基本热学性质。然而也有少数材料并不遵循这一基本物理规则,存在着反常的热膨胀性质,即其体积随着温度的升高反常缩小(或不变)。其中,有一类材料的体积在一定温区内保持不变,称为零膨胀材料,在很多重要的科学工程领域具有重要的应用价值。目前已有的绝大多数零膨胀材料是通过将具有负热膨胀性质的材料加入到其它不同材料中,通过化学修饰的手段控制其膨胀率,形成零膨胀状态。而纯质无掺杂的零膨胀晶体材料因为能够更好地保持材料固有的功能属性,在各个领域更具应用价值。但由于在完美晶格中实现负热膨胀与正膨胀之间的精巧平衡十分困难,纯质无掺杂晶体材料中的零膨胀现象非常罕见。迄今为止仅在七种晶体中发现了本征的零膨胀性质。同时,在目前已有的零膨胀晶体材料中含有过渡金属或重原子,其透光范围仅仅截止于可见波段,因此探索具有良好透光性能的纯质无掺杂零膨胀晶体材料是热功能材料领域及光学功能材料领域里极具科学价值的研究热点。  中国科学院理化技术研究所人工晶体研究发展中心研究员林哲帅课题组与北京科技大学教授邢献然课题组合作,首次在单相硼酸盐材料体系中发现了新型零膨胀材料。相关研究成果发表在国际材料科学期刊《先进材料》上(Near-zero Thermal Expansion and High Ultraviolet Transparency in a Borate Crystal of Zn4B6O13, Adv. Mater.,DOI:10.1002/adma.201601816)。他们创新性地提出利用电负性较强的金属阳离子限制刚性硼氧基团之间的扭转来实现零膨胀性质,并在立方相硼酸盐Zn4B6O13(ZBO)中实现了各向同性的本征近零膨胀性质。  ZBO晶体具有硼酸盐晶体中罕见的方钠石笼结构:[BO4]基团共顶连接形成方钠石笼,[Zn4O13]基团被束缚在方钠石笼中,[BO4]基团之间的连接处被较强的Zn-O键固定住。通过变温X射线衍射实验,证明了ZBO晶体在13K-270K之间的平均热膨胀系数为1.00(12)/MK,属于近零膨胀性质,其中在13K-110K之间的热膨胀系数仅为0.28(06)/MK,属于零膨胀性质。他们利用第一性原理计算结合粉末XRD数据精修揭示了ZBO的近零膨胀性质主要来源于其特殊的结构所导致的声子振动特性:低温下对热膨胀有贡献的声子模式主要来源于刚性[BO4]基团之间的扭转,刚性 [BO4]基团之间的扭转被较强的Zn-O所限制,使得其在13K-270K之间呈现出非常低的热膨胀系数。  ZBO晶体具有良好的生长习性。林哲帅课题组与中科院福建物质结构研究所吴少凡课题组合作,获得高光学质量的厘米级晶体。经过测试表明,ZBO的透光范围几乎包含了整个紫外、可见以及近红外波段,紫外截止边是所有零膨胀晶体中最短的。同时其还具有良好的热稳定性、高的力学硬度以及优异的导热性能。综合其优良性能,ZBO晶体在应用于低温复杂环境中的高精度光学仪器,例如超低温光扫描仪、空间望远镜和低温光纤温度换能器中具有重要的科学价值。  许多硼酸盐晶体材料在紫外波段具有良好的透过性能。同时,由于硼氧之间强的共价相互作用,硼氧基团内部的键长键角随温度基本保持不变,而硼氧基团之间的扭转能够引起骨架结构硼酸盐的反常热膨胀效应。林哲帅课题组率先在国际上对硼酸盐体系展开了反常热膨胀性质的探索。在前期工作中,他们与理化所低温材料及应用超导研究中心研究员李来风课题组合作,发现了两种具有罕见二维负热膨胀效应的紫外硼酸盐晶体(Adv. Mater. 2015, 27, 4851 Chem. Comm. 2014, 50, 13499),并对其机制进行了阐明(J. Appl. Phys. 2016,119, 055901)。  相关工作得到了理化所所长基金、国家自然科学基金以及国家高技术研究发展计划(“863”计划)的大力支持。
  • 宁波硼酸门认定被推翻 工商称对检测报告无核实义务
    中新网宁波5月28日电 今年1月,浙江宁波市工商局江东分局在超市抽查陆龙兄弟海蜇产品,通过第三方检测机构检测,产品被检测出含有硼酸,3月份,该案件被移交宁波市公安局江东分局。5月24日,中普检测技术服务(宁波)有限公司(简称中普检测)发布一份《致陆龙兄弟的道歉声明》,推翻此前陆蜇不合格的认定,转而认定其合格。对此,宁波市工商局江东分局副局长张建刚表示,工商部门此前所说硼酸“不得检出”的结论是根据检测机构的检测报告做出的,而对检测报告工商部门没有核实的义务。  中普检测是负责此次陆龙海蜇检测的机构。据中普检测官网介绍,该公司成立于2006年5月,是“一家公正、独立、专业的第三方检验、测试、认证公司”。3年前,中普检测开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测质量部经理李伟告诉记者,检测报告是今年1月15日出具的,送检的陆龙兄弟海蜇被检测出硼酸含量为5.9mg/kg,报告第一时间送达企业。  宁波市工商局江东分局工作人员此前接受记者采访时称,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。3月份工商部门将此案移交给公安,等待进一步的调查结果。  5月24日,中普检测在诸媒体发表《致陆龙兄弟的道歉声明》,称陆龙产品检出的5.9mg/kg硼酸系本底含量,推翻了此前送检陆龙海蜇不合格的结论。据李伟介绍,新结论是在陆龙兄弟提供了诸多证据的基础上做出,中普检测并没有进行重新检测。  作为此次检测的委托方,宁波市工商局江东分局副局长张建刚表示,工商部门对检测报告没有核实的义务,检测结果由检测机构来认定,工商部门主要负责三项工作:确认检测机构是否有资质 跟被抽检人有没有利益关系 检测程序是否合法。  宁波市工商局江东分局提供的材料称,依据《食品安全法》第五十九条:“食品检验实行食品检验机构与检验人负责制。食品检验报告应当加盖食品检验机构公章,并有检验人的签名或者盖章。食品检验机构和检验人对出具的食品检验报告负责”。  “在法律上,我们不存在任何责任。”张建刚称,工商部门此前所说,硼酸不得检出的结论是根据检测机构的检测报告得出。  据介绍,宁波市工商局江东分局过去只对海蜇进行一般检测,今年开始才增加了硼酸检测项目。  针对中普检测推翻检测结论公开致歉一事,宁波市工商局江东分局在给记者的书面回复称,“这个事情我们始终是严格依法按程序办理的。根据检测报告,海蜇被检出硼酸,为了消费者的食品安全和国家的相关规定,我们依法移送公安部门,由公安部门对硼酸的来源进行侦查。在公安部门确认非人为添加的情况下,退回工商部门,由工商部门依法按程序作出处理。”
  • 从大国可燃冰的开发博弈到可燃冰的开采技术
    p  strong仪器信息网讯 /strong2017年5月,几个大国都发出了有关可燃冰的消息。中国18日宣布在南海试采可燃冰成功。此前,美国于12日宣布正在墨西哥湾开展可燃冰钻探研究,日本也于4日宣布从近海可燃冰中提取出了甲烷。此前包括俄罗斯、加拿大、印度等国家已经加入了这个开采行列。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/noimg/d7e78e9a-ab48-497d-af9c-7a47147be596.jpg" title="1.jpg" style="width: 606px height: 82px " width="606" vspace="0" hspace="0" border="0" height="82"//pp  span style="color: rgb(0, 176, 240) "strong可燃冰的优点/strong/span/pp  什么是可燃冰?中国科学技术大学合肥微尺度物质科学国家实验室副研究员袁岚峰介绍,可燃冰的结构是甲烷为主的有机分子被包在水分子组成的“笼子”里,由于甲烷是天然气的主要成分,所以其学名是天然气水合物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/d6819cd3-6d4f-44db-b5b5-e27a4d9b3142.jpg" title="1.jpg"//pp style="text-align: center "strong可燃冰的结构/strongbr//pp  它之所以被称作“可燃冰”,一方面是因为既含水又呈固体,看来像冰,另一方面,甲烷与水分子结合很弱,外界稍加扰动就可以让其分离出来,很容易点燃。/pp  甲烷是清洁燃料,燃烧后只生成二氧化碳和水,如果替代煤炭,将有助于解决空气污染问题。/pp  可燃冰储量巨大,广泛分布于全球大洋海底、陆地冻土层和极地之下。有专家估计,其资源量相当于全球已探明传统化石燃料碳总量的两倍。因此,可燃冰是一种有重大战略意义的未来能源。/pp  “目前全球生产模式主要依靠的传统化石能源总会耗尽,而可燃冰可能大大延长这个时间,为人类开发新能源提供缓冲。”袁岚峰说。/pp  strongspan style="color: rgb(0, 176, 240) "大国竞相探索/span/strong/pp  可燃冰的优点吸引了全球大国竞相研究开采手段。/pp  美国能源部下属的国家能源技术实验室12日宣布,正与得克萨斯大学奥斯汀分校等机构合作,于5月在墨西哥湾深水区开展可燃冰开采研究,11日已经开始了一次钻探。/pp  美国十分重视可燃冰研究,2000年曾通过《天然气水合物研究与开发法案》。此后美国能源部多次拨款支持可燃冰研究,最近一次是在2016年9月,宣布投入380万美元支持6个新的可燃冰研究项目。开展本次钻探的得克萨斯大学奥斯汀分校就是受支持的项目方之一。/pp  日本经济产业省资源能源厅4日宣布,日本石油天然气金属矿物资源机构成功从日本近海海底埋藏的可燃冰中提取出甲烷。此次试验开采海域位于爱知县和三重县附近的太平洋近海,估计该海域拥有的可燃冰储量达1.1万亿立方米,是日本天然气年消费量的约10倍。/pp  这是日本第二次开采可燃冰。2013年,日本尝试过开采海底可燃冰并提取了甲烷,但由于海底砂流入开采井,试验仅6天就被迫中断。本次试验持续12天后也因出砂问题中断,未能完成原计划连续三四周稳定生产的目标,12天产气量只有3.5万立方米。/pp  《日本经济新闻》19日说,日本希望在21世纪20年代开始可燃冰商业化项目,但现在看来还需要时间研发相应技术。日本资源能源厅石油天然气课长定光裕树表示,由于日本开采试验没有达到目标,可能不得不调整商业化的时间。/pp  span style="color: rgb(0, 176, 240) "strong特殊国情加大开采难度/strong/span/ppspan style="color: rgb(0, 176, 240) "strong  /strongspan style="color: rgb(0, 0, 0) "我国可燃冰主要分布在南海海域、东海海域、青藏高原冻土带以及被冻土带,根据粗略估算,其资源量分别为64.97*10sup12/supmsup3/sup、3.38*10sup12/supmsup3/sup、12.5*10sup12/supmsup3/sup、2.8*10sup12/supmsup3/sup。其中南海北部陆破的可燃冰资源量达185亿吨油当量,相当于南海深水勘探已探明的油气地质储备的6倍,达到我国陆上石油总量的50%。此外,在西沙海槽已初步圈出可燃冰分布面积5242平方千米,其资源估算达到4.1万亿立方米。而且在我国东海和台湾省海域也存在大量可燃冰。经过海内外专家学者多年探测研究证实中国台湾省西南面积约77000平方千米的海域蕴藏着极为丰富的可燃冰球。据科学家估算,远景资源至少有350亿吨油当量。并且已在南海北部神狐海域和青海省祁连山永久冻土带取得了可燃冰实物样品。/span/span/pp  中国此次试采可燃冰成功,也是世界首次成功实现资源量占全球90%以上、开发难度最大的泥质粉砂型天然气水合物安全可控开采。截至18日,本次试采连续产气超过一周,最日高产量3.5万立方米,累计产气12万立方米。/pp  但是可燃冰要商业化还有许多障碍,比如降低开采成本、降低环境影响等。/pp  span style="color: rgb(0, 176, 240) "strong现阶段的开采技术/strong/span/ppspan style="color: rgb(0, 176, 240) "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/5b267c40-309e-4c34-945f-fd962351f0ab.jpg" title="2.jpg" style="width: 496px height: 433px " width="496" vspace="0" hspace="0" border="0" height="433"//pp style="text-align: center "strong降压法开采原理/strongbr//ppspan style="color: rgb(0, 176, 240) "  span style="color: rgb(0, 0, 0) "降压法是通过降低压力而使天然气水合物稳定的相平衡曲线移动,从而达到促使水合物分解的目的。一般是在水合物层之下的游离气聚集层中降低天然气压力或形成一个天然气空腔(可由热激发或化学试剂作用人为形成),使与天然气接触的水合物变得不稳定并且分解为天然气和水。在该方法中,由于没有额外的热量注人水合物开采层,分解所吸收的热量必须由周围物质提供,但是当水合物分解吸收的热量达到一定程度,水合物周围环境温度降低会抑制水合物的进一步分解研究表明,这种方法在气体全面分解过程中有利于控制开采气体的流量,适合于那些储藏中存在大量自由气体的水合物储层,是现有水合物开采技术中经济前景比较好的开采技术。br//span/span/ppbr//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c1160ce-86a8-4c95-b3eb-4b67c33ba6f1.jpg" title="3.jpg" style="width: 493px height: 330px " width="493" vspace="0" hspace="0" border="0" height="330"//pp style="text-align: center "strong综合法开采原理/strong/pp  综合法是综合利用降压法和热开采技术的优点对天然气水合物进行有效开采。其具体方法是先用热激法分解天然气水合物,后用降压法提取游离气体。目前,这种方法已得到了人们的广泛推祟,已投产的俄罗斯Messoyakha气田和加拿大Mackensie气田均以该法为主要开采技术,其技术在国内具有良好的应用前景。br//pp style="line-height: 16px "img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a href="http://img1.17img.cn/17img/files/201705/ueattachment/af556450-90e6-48f0-93cf-1eeee0ed2983.pdf"新型洁净能源可燃冰的研究发展.pdf/a/p
  • ECHA开展有关环草啶和硼酸的新统一分类和标签公众意见征询
    2013年5月14日消息,欧洲化学品管理局(ECHA)邀请利益相关方提交有关环草啶(lenacil)和硼酸(boric acid)的统一分类和标签(harmonised classification and labelling,CLH)新提案的评论意见。公众咨询为期45天,将于2013年6月28日结束。  有关环草啶的CLH提案由比利时提交。环草啶是一种除草剂,目前并没有统一分类和标签。卷宗提交者计划对该物质的环境危害进行分类。  有关硼酸的CLH提案由波兰提交。硼酸已有统一分类,卷宗提交者拟议修订生殖毒性分类,即移除生育影响分类,降低发育毒性分类。ECHA提醒相关方正在进行的有关其他两种硼酸盐的公众咨询(截至6月14日),卷宗提交者(荷兰)拟议为其发育和生殖毒性制定比硼酸更为严格的分类。  在45天的咨询阶段,收到的评议意见将会定期公布在ECHA网站上。  表格一 拟议的统一分类和标签以及物质使用范例。物质名称EC号CAS号拟议统一分类和标签使用范例环草啶(ISO);3-环己基-1,5,6,7-四氢环戊嘧啶-2,4-(3H)二酮218-499-02164-08-1对水生环境有危害对水生环境的危害未分类作为一种除草剂硼酸233-139-210043-35-3生殖毒性硼酸被用于许多行业和专业应用,被添加在消费品中。硼酸在杀菌剂中被用作活性物质,被添加到化肥中被用作一种植物微量元素。  *请注意使用信息不会影响分类和标签,这完全基于一种物质的内在属性。使用范例是从CLH报告中复制而来。
  • 破解百年之谜,中国科学家首次“看到”水的原子极限
    p style="text-indent: 2em "继2014年获得世界第一张亚分子级分辨率的水分子图像后,中国科学家再次取得突破,将分辨率推向了氢原子极限,首次“看到”水合离子的原子级分辨图像。span style="text-indent: 2em "——这是水合离子的概念提出一百多年来,人类第一次在实空间直接“看到”水合离子的原子级图像。/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/7950ebea-551d-41a8-9ea1-1a6b8088971d.jpg" style="float:none " title="1.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/6255454b-c08b-4a6b-9deb-0723f965cdd6.jpg" style="float:none " title="2.jpg"//pp style="text-indent: 2em "span style="text-indent: 2em "5月14日上午,中国科学院科学传播局在北京举行新闻发布会宣布了这项成果。该工作由北京大学量子材料科学中心江颖课题组、徐莉梅课题组、北京大学化学与分子工程学院高毅勤课题组与中国科学院/北京大学王恩哥课题组合作完成,相关成果已于当天在国际著名学术期刊《自然》杂志(Nature)发表。/span/pp style="text-indent: 2em "中国科学院院士、北京大学讲席教授、中国科学院大学卡维里研究所名誉所长王恩哥说,我们都知道水的结构,但直到这次我们才看清楚水分子中的氢原子在什么位置。氢原子是世界上最轻的原子,我们看到了自然界的原子的极限。/pp style="text-indent: 2em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/cb66b76e-5219-4f43-ab37-e1e914087537.jpg" title="3.jpg"//pp style="text-indent: 2em "水,这个自然界中最丰富、人们最为熟悉的物质,却也是人类最不了解的物质之一。《科学》杂志(Science)在创刊125周年之际,公布了本世纪125个最具挑战性的科学问题,其中就包括:水的结构如何?2015年,《德国应用化学》也将水的相关问题列入未来24个关键化学问题。/pp style="text-indent: 2em "在当天的发布会上,王恩哥说,水之所以如此复杂,其中一个重要原因是氢(H)原子核的量子效应。水的分子结构很简单:H2O,而H是元素周期表中最轻的原子。一般来说,如果原子核较重,可以近似地把它处理为经典粒子,只需把电子量子化,从而对其进行研究——但这种方法套用在H这种“近似电子重量”的原子核身上,就失效了。/pp style="text-align: center "img src="//n.sinaimg.cn/tech/gif_image/625/w400h225/20180515/br9A-hapkuvk9557855.gif" alt=""/span class="img_descr"/span/pp style="text-indent: 2em "span style="text-indent: 2em "此外,水与其他物质的相互作用同样十分非常复杂。北京大学物理学院量子材料科学中心教授江颖说,由于水是强极性分子,它作为溶剂能使很多盐发生溶解,而且能与溶解的离子结合在一起形成团簇,此过程称为离子水合/spanspan style="text-indent: 2em "——这种过程可以说是无处不在,而且在众多物理、化学、生物过程中扮演着重要的角色,比如:盐的溶解、电化学反应、生命体内的离子转移、大气污染、海水淡化、腐蚀等。/spanbr//pp style="text-indent: 2em "事实上,离子水合物的微观结构和动力学一直是学术界争论的焦点。早在19世纪末,人们就意识到离子水合的存在并开始了系统的研究,然而,尽管经过了一百多年的努力,离子的水合壳层数、各个水合层中水分子的数目和构型、水合离子对水氢键结构的影响、决定水合离子输运性质的微观因素等诸多问题,至今仍没有定论。/pp style="text-indent: 2em "究其原因,关键在于缺乏单原子、单分子尺度的表征和调控手段,以及精准可靠的计算模拟方法。近年来,王恩哥、江颖与同事、学生一起合作,发展了原子水平上的高分辨扫描探针技术和针对轻元素体系的全量子化计算方法,在水/冰的结构和动力学研究中得到了成功的应用,通过实验和理论的深度融合,刷新了人们对水和其他氢键体系的认知。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/02d85bde-dc1e-4aaa-95ab-60d08099b480.jpg" style="float:none " title="5.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/140fabcd-902d-49d4-8d0f-783fb547e738.jpg" style="float:none " title="6.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/4e5d260b-9396-4917-ad1c-6222a1e79c1f.jpg" title="9.jpg"//pp style="text-indent: 2em "当天,王恩哥表示,经过中国科学家20多年的持续投入、4个课题组的紧密合作,终于在实验上制备出的单个离子水合物团簇,并通过高分辨成像搞清楚了其几何吸附构型。/pp style="text-indent: 2em "在此基础上,研究人员还发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物,具有异常高的扩散能力——说白了就是比其他水合物“跑得快”。/pp style="text-indent: 2em "江颖说,这项工作对相关应用领域具有重要的潜在意义,比如:离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等等。此外,该工作发展的实验技术也首次将水合相互作用的研究精度推向了原子层次,未来有望应用到更多更广泛的水合物体系,开辟全新的研究领域。/pp style="text-indent: 2em "这项研究得到了《自然》杂志三个不同领域审稿人的好评,认为该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。/p
  • HORIBA地质流体拉曼光谱定量分析技术交流会
    主 题:Quantitative Raman spectroscopic analyses of geological fluids 地质流体的拉曼光谱定量分析培训时间:2012年11月9下午3:00主 讲 人:Prof. I-Ming Chou 报告地点:HORIBA 北京办公室(北京市建国门外大街甲6号SK大厦1801室)网络会议直播地点: 无法抵达北京现场参会的用户可以选择到如下地点通过网络视频参会并进行交流 &bull HORIBA 上海办公室(上海市静安区南京西路1468号中欣大厦1701室) &bull HORIBA 广州办公室(广州市天河区体育东路138号金利来数码网络大厦1612室) 报告摘要Standards were prepared in fused silica capillaries for the calibration of Raman systems for quantitative analyses of geological fluids, such as those found in fluid inclusions in minerals. The standards include fluids in unary (CH4, CO2), binary (CH4-CO2, CH4-H2O, CO2-H2O, CH3COOH-H2O) and ternary systems (CH4-CO2-N2). Three different ways of standards preparation were introduced and compared. After calibrating the Raman spectroscopic system with some of these standards, it is credible to determine, for example, (1) the pressures of CH4 in fluid samples, (2) the diffusion coefficient of CH4 in water at room temperature, and (3) the solubility of methane hydrate in water. Fluid standards prepared in fused silica capillaries are reliable for calibration of Raman systems and small enough that they can be used for inter-laboratory comparisons. 主讲人简介I-Ming Chou教授,美国地质调查局资深科学家,主要从事地质流体性质、二氧化碳捕集储存技术、天然气水合物、海底沉积物、海底热液等流域研究。已在包括Science在内的国际学术刊物上发表学术论文180余篇,发表各类摘要文章130余篇。他曾任North America Chinese Earth Scientists Association主席(1998-1999), Overseas Chinese Environmental Engineers and Scientists Association主席(2000-2001),现任Overseas Chinese Earth Science and Technology Association主席(1998至今)。个人主页: http://profile.usgs.gov/imchou 因场地和席位有限,为方便我们对会议的组织与安排,请您于11月8日(含当天)前确认参加。为保证培训质量,名额有限,如有意者,请尽快报名,额满为止。 (如报名系统出现故障,请您直接发送邮件到如下邮箱,我们会帮助您登记报名) 会议联系人: 联系人:Ms.Yu 电话:010-85679966-212 邮件地址: nasi.yu@horiba.com
  • 中海油两家国家重点实验室入驻未来科学城
    9月25日,中海油研究总院旗下两家国家重点实验室入驻挂牌仪式在中国海油未来科学城园区举行。为深入贯彻落实习近平总书记关于科技创新的重要思想,提升国家重点实验室的管理层级,推动国家重点实验室发展迈上新台阶,中海油研究总院于今年7月以“一个机构两个牌子”的形式,成立海洋石油高效开发研究中心、水合物和海洋资源战略研究中心并陆续搬迁入驻未来科学城。研究总院总经理米立军表示,推进国家重点实验室攻关标志性技术、取得标志性成果、培养标志性人才,既是建设中国特色国际一流能源公司研究院的需要,也是更好地服务集团公司高质量发展的需要,两家国家重点实验室取得了以海上稠油聚合物驱油技术、天然气水合物固态流化开发技术等为代表的一大批具有国际领先和先进水平的技术成果,在服务集团公司增储上产和关键核心技术攻关方面作出了重要贡献,希望两家实验室以此次入驻园区为契机,再接再厉铸就“金字招牌”,为“增储上产”和“关键核心技术攻关”提供更强有力的科技支撑。有限公司副总裁孙福街强调,研究总院要统筹国家重点实验室创新发展,一是加强制度建设,制定修订适合实验室管理特点的办法,调动有关工作人员积极性;二是建立与实验室发展目标相一致的评估考核指标体系和以创新质量和学术贡献为核心的评价机制,引导实验室在学科目标上更加聚焦原始创新;三是建立开放、流动、竞争、协同的用人机制,强化对人才队伍建设的评价,造就一批高水平科技人才;四是深化实验室资源开放共享的广度和深度,持续推动仪器设备、重大科研数据等科技资源开放共享。入驻机构要结合自身特点,面向科研一线,充分发挥国家重点实验室的作用,持续推动实验室高质高效发展。
  • 宁波海产品牌陷“硼酸门” 检测方推翻结论致歉
    中新网宁波5月26日电 5月13日,网友微博爆料称,“宁波知名品牌陆龙海蜇头被江东工商局查出硼酸超标”。5月24日,第三方当事检测机构中普检测技术服务(宁波)有限公司(简称“中普检测”)在当地媒体上发布一份《致陆龙兄弟的道歉声明》,推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。中普检测称:在判定上出现了失误,错误理解了标准。  根据“陆龙兄弟”官方网站的介绍,该公司是产销量、企业规模、纳税额等经济指标均排名业内第一的中国海产领军品牌,1978年由多名陈姓兄弟共同创建成立,现已发展成为中国最大的“海产食品全品类一站式供应商”。  资料显示,硼酸俗称硼砂,可增加食品韧性、脆度以及改善食品保水性、保存性,但毒理学实验表明,硼酸在人体内有积存性,会引起食欲减退、消化不良、抑制营养素的吸收,且硼酸具有较高毒性,摄入1~3克可致中毒,成人20克、小儿5克可致死亡。  2008年以来,全国打击违法添加非食用物质和滥用食品添加剂专项整治领导小组陆续发布了5批《食品中可能违法添加的非食用物质和易滥用的食品添加剂名单》,硼酸与硼砂名列其中。  宁波江东工商分局工作人员此前接受记者采访时称,当时共抽取了15个品牌的87个批次产品,其中,江东欧尚超市抽选的样本陆龙海蜇头被检出含有硼酸。该工作人员表示,硼酸属于不得检出,一旦检出就判定是不合格,至于是添加还是自带留待公安部门调查,工商不予评论。  中普检测是负责此次陆龙海蜇检测的机构。据“中普检测”官网介绍,该公司成立于2006年5月,是"一家公正、独立、专业的第三方检验、测试、认证公司"。3年前,“中普检测”开始涉足食品检测。  “我们是受江东工商委托对产品进行检测。”中普检测负责人李伟告诉记者,检测报告是今年1月15日出具的。根据该公司工作流程,报告会在第一时间送达企业。此后一段时间,“陆龙兄弟”并没就报告提出疑义。李伟称,4月份“陆龙兄弟”与他们进行了沟通,称检测报告的结果认定有问题。  5月14日,陆龙兄弟官方微博针对此事发文《陆龙海产致社会各界的一封信》中解释,检出硼酸系原料本身自带,属不可抗的客观因素。  李伟介绍,后来工商部门也督促他们作出解释,而“陆龙兄弟”在多次沟通中也要求作出解释,“双方沟通得挺好”。  5月24日,中普检测在当地媒体上推翻自己4个多月前做出的陆龙海蜇检测不合格的结论,重新认定陆龙产品检出的5.9mg/kg硼酸系本底含量。  李伟接受记者采访时表示,公司做了3年的食品检测,以前从来没有出现过误判。他认为,这份检测报告是“中普检测”在判定上出现了失误,错误理解了标准,报告的判断依据为:SC/T3210-2001中实际表述为:“不允许使用硼酸或硼砂作防腐剂”,并非“不得检出”。  在“中普检测”发出《致陆龙兄弟的道歉声明》后,记者来到“陆龙兄弟”采访。公司前台称领导都不在公司,边上一位被其称为陈副主任的办公室工作人员称,企业现在没有什么好回复的,这件事很明显,各方面舆论、微博都讲得很清楚。陈副主任让记者有事找戴总,称对方可以代表“陆龙兄弟”发言。  此后,记者拨通了戴总的电话。不过,对方却表示自己并非“陆龙兄弟”的工作人员,也是媒体人,只是对这个事情比较了解,并不能代表“陆龙兄弟”作出回应。
  • 赛默飞发布食品样品中硼砂(硼酸)的检测方案
    2015年2月3日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布食品样品中硼砂(硼酸)的检测方案。一些不良商贩在食品中非法添加硼砂或硼酸,以起到增筋、保水、改良口感和防腐等作用。硼摄入量过高会表现毒性,可致脑组织氧消耗受抑制,酶活力丧失活性。国家食品整治办于2008年将硼酸、硼砂列为禁用添加剂第一批,明令严格监查食品中硼违法添加等行为。 目前食品中硼的检测的方法主要有比色法、ICP-OES法和ICP-MS(www.thermo.com.cn/Category226.html)法等,其中比色法操作非常繁琐,而ICP-OES法和ICP-MS则是总硼测试的良好解决方案。动植物体中的硼往往存在多种形态(主要有水溶游离态、半束缚态和束缚态),而外源性添加硼酸则主要以游离态存在,因此对于游离态的硼酸准确则更有意义。离子色谱柱的分离机理使其容易保留游离态的硼,因此在ICP-OES或ICP-MS前端增加分离单元可以准确样品中的游离硼。赛默飞发布食品样品中硼酸的检测方法,采用ICS-900基础型离子色谱仪配备IonPac ICE-Borate排斥色谱柱,在等度淋洗条件下即可良好保留游离态硼酸,而络合态硼酸不干扰测定。利用电感耦合等离子光谱仪作为检测手段则可大大增强检测的选择性,排除了食品中常见有机酸对于硼酸的干扰,具有较好的检测效果。ICS-900 基础型离子色谱系统产品详情:http://www.thermo.com.cn/Product6477.html iCAP 7000系列电感耦合等离子体光谱仪产品详情:http://www.thermo.com.cn/Product6694.html 下载应用纪要:离子色谱-电感耦合等离子体光谱联用检测食品样品中硼砂(硼酸)http://www.thermo.com.cn/Resources/201501/1616106789.pdf ----------------------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站 www.thermofisher.cn
  • 如海光电┠拉曼光谱法为药物晶型的鉴别“添柴”助力
    了解固体药物的晶型有多重要?简单回答,合适的药物晶型能够提高药物的生物活性、API的热力学稳定性、制剂的稳定性,且利于制剂成型,故其重要性,不言而喻。近年来,固体药物晶型专利授权门槛的提高,也能看出国家知识产权局对于药物晶型领域新颖性、创新性研发越来越重视,所以如何才能搞明白在研药物的晶型呢?下面小编列出了目前检测固体药物晶型的常用方法,一起来看看吧。检测方法原理优点缺点XRD通过X射线衍射分析晶体结构能精确计算晶体间距无定型结构难以用XRD进行评估DSC通过晶体的吸热/放热反应分析晶体的稳定性和熔点能观察晶体的属性无法定义晶体的结构红外吸收光谱利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析。能提供丰富的结构信息研磨可能会导致药物晶型的改变Raman通过分析受激光辐射产生的散射光来分析化学结构样品制备简单,没有特殊要求难以通过Raman分析晶体的jue对结构近几年,由于拉曼光谱指纹图谱的特性,利用拉曼光谱法来识别固体药物不同晶型的研究和应用层出不穷。近日,我们利用如海光电的高性能便携式拉曼光谱仪Raman11510成功地区分了包括谷氨酸、氯霉素、阿立哌唑在内的固体药物的不同晶型,充分展示了拉曼光谱法在鉴别不同药物晶型应用场景中的发展前景。Raman11510Raman11510是一款具备专业水平的便携式拉曼光谱检测系统,内置高性能红外增强型光纤光谱仪,提高了800nm的近红外波段的信号灵敏度,使得785 nm拉曼光谱的信号得到显著增强。在面对需要高灵敏度的研究场景,如晶型鉴别、蛋白质研究时,能够捕获到细微的拉曼信号。不同晶型的固体药物仅仅有晶型上的区别,而物质组成没有区别,其差异非常小,但我们使用Raman11510便携式拉曼光谱仪的检测结果表明,这种细微的差异在拉曼光谱的“火眼金睛”下还是无可遁形。不同晶型固体药物的拉曼谱图如下图所示,在谱图中我们标出了较为显著的光谱差异部分。图1:谷氨酸α晶型和β晶型的拉曼光谱图图2:氯霉素A、B两种晶型的拉曼光谱图图 3:阿立哌唑A、B、D三种晶型的拉曼光谱图2019年11月至2019年12月期间我们进行了多次药物晶型拉曼光谱的测定的实验。实验数据表明,谷氨酸、氯霉素、阿立哌唑不同晶型的单晶在每次测定所得拉曼光谱图中的主要散射峰的形状、位置、强度及其差别均明显可辨。由此也说明了拉曼光谱法具有良好的准确性、重现性和耐用性,从而可以为原料药成品的晶型分析,结晶过程中离线与在线原位监测控制等过程分析技术的建模提供依据。随着拉曼光谱法在药物分析研究中的不断深入,可以说目前在药物分析领域,拉曼光谱技术是一项未来极具发展潜力的药物分析方法。拉曼光谱法最早被美国药典(USP)收载为通用分析方法,随后又被《欧洲药典》和《英国药典》等收载为药物晶型检测方法。值得关注的是,2010年版的《中国药典》将拉曼光谱法作为指导原则收载,2015年版修订为理化分析通则方法,2020版又再次对拉曼光谱法部分进行修订,这无疑会大大推动拉曼光谱法在药品全生命过程中的应用发展。国家药典委员会官网截图:药典摘文:现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便(可以使用单变量和多变量方法以及校准)。拉曼光谱既适合于化学鉴别和固体性质如晶型转变的快速和非破坏性检测,也能够用于假药检测和质量控制,例如:化学分析:原料药活性成分,辅料的鉴别和定量;物理分析:固态(如多晶和水合物)和晶型的鉴别和量;过程分析:生物和化学反应,合成、结晶、制粒、混合、干燥、冻干、压片、装填胶囊和包衣。在《中国药典》2020修订版中介绍了拉曼光谱的很多优势,而手持式拉曼光谱仪能更好的诠释这些优势:如海光电的蓝牙手持式拉曼光谱仪将光谱仪器、采集分析软件、光谱数据管控三个核心功能有机结合,实现了设备管理、用户管理以及数据管理分层级管理,为现场检测提供了方便、有效的工具。《中国药典》zui新修订版中还增加了低波数包括太赫兹光区的拉曼光谱对于鉴定、表征药品有重要意义的表述,如海光电的低波数拉曼光谱仪EVA3000-LW能够检测到66—200cm-1波数范围内显著的拉曼光谱,在药物分析和晶型鉴别领域有巨大的应用潜力。相信未来拉曼光谱定能成为制药行业中药物研发与生产过程中最有力的工具之一!
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • “深海关键技术与装备”重点专项2017年度拟立项项目公示
    根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)、《科技部、财政部关于改革过渡期国家重点研发计划组织管理有关事项的通知》(国科发资[2015]423号)等文件要求,现对“大气污染成因与控制技术研究”等8个重点专项2017年度拟立项的项目信息进行公示(详见附件)。  公示时间为2017年6月1日至2017年6月6日。对于公示内容有异议者,请于公示期内以传真、电子邮件等方式提交书面材料,逾期不予受理。个人提交的材料请署明真实姓名和联系方式,单位提交的材料请加盖所在单位公章。联系人和联系方式如下:  “深海关键技术与装备”重点专项  联系人:钱洪宝  联系电话:010-58884877  传真:010-58884870  电子邮件:qhb@acca21.org.cn国家重点研发计划“深海关键技术与装备”重点专项2017年度拟立项项目公示清单序号项目编号项目名称项目牵头承担单位项目负责人中央财政经费(万元)项目实施周期(年)12017YFC0305500深海装备耐压结构体、材料耐压特性及评估技术研究中国船舶重工集团公司第七○二研究所万正权19243.522017YFC0305600全海深ROV非金属铠装脐带缆关键技术研究和试验中天科技海缆有限公司张建民15003.532017YFC0305700全海深无人潜水器AUV关键技术研究哈尔滨工程大学李晔14763.542017YFC0305800长航程智能化自治式潜水器研制中国科学院沈阳自动化研究所刘健19813.552017YFC0305900无人无缆潜水器组网作业技术与应用示范清华大学深圳研究生院徐文68293.562017YFC0306000可延展艇体新概念海底目标搜寻潜航器哈尔滨工程大学李海森8003.572017YFC0306100水下直升机浙江大学陈鹰7803.582017YFC0306200面向深海区域混合结构探测的多关节潜器研发天津大学孟庆浩7593.592017YFC0306300可变翼形双功能深海无人潜航器中国船舶重工集团公司第七○二研究所张华7533.5102017YFC0306400深海多位点着陆器与漫游者潜水器系统研究三亚深海科学与工程研究所张艾群7853.5112017YFC0306500深海仪器装备规范化海上试验广州海洋地质调查局张汉泉27743.5122017YFC0306600蛟龙号载人潜水器科学应用与性能优化国家深海基地管理中心丁忠军28963.5132017YFC0306700“海马”号深海遥控潜水器科学应用及其性能优化广州海洋地质调查局陶军19043.5142017YFC03068004500米自主潜水器(潜龙二号)技术升级及科学应用中国大洋矿产资源研究开发协会朱磊14493.5152017YFC0306900水下目标搜寻探测声纳设备研制及应用哈尔滨工程大学梁国龙14583.5162017YFC0307000深水协同应急处置技术及专用工具系统研究交通运输部上海打捞局蒋岩28963.5172017YFC0307100大直径旋转导向钻井系统研制与应用示范中海油田服务股份有限公司郭云24833.5182017YFC0307200超深水强电复合脐带缆系统研制与示范作业宁波东方电缆股份有限公司叶信红14553.5192017YFC0307300南海多类型天然气水合物成藏原理与开采基础研究大连理工大学宋永臣19813.5202017YFC0307400天然气水合物高分辨率三维地震探测技术广州海洋地质调查局赵庆献20003.5212017YFC0307500天然气水合物海底钻探及船载检测技术研究与应用广州海洋地质调查局万步炎33173.5222017YFC0307600水合物试采、环境监测及综合评价应用示范青岛海洋地质研究所吴能友19343.5232017YFC0307700水合物开发环境原位监测与探测技术广州海洋地质调查局盛堰15003.5  附件:国家重点研发计划“深海关键技术与装备”重点专项2017年度拟立项项目公示清单.doc
  • 明天播!赠书|新能源之储能、清洁能源检测技术专场预告
    2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。明天(11月30日),将为大家直播储能材料检测技术专场、清洁能源检测技术专场。直播间还将设置分享赠书、发红包等活动,欢迎报名参会!一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 分享赠书活动将会议直播间分享朋友圈集赞10个,即可获得由袁志刚编著的《碳达峰碳中和:国家战略行动路线图》书籍一本,具体兑换方式见直播间管理员通知,欢迎参与活动。五、 “清洁能源检测技术”专场预告时间报告题目演讲嘉宾清洁能源检测技术(11月30日上午)09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员六、“储能材料检测技术”专场预告时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员七、 嘉宾简介及报告摘要(按分享顺序)张郁 中国科学院广州能源研究所 研究员【个人简介】张郁研究员主要从事天然气水合物领域的相关工作,包括复杂沉积物体系天然气水合物实验与理论、天然气水合物高效开采技术、天然气水合物钻采安全等方面,获2018年国家技术发明二等奖,2019年广东省自然科学一等奖,2013年广东省科学技术一等奖,入选2019年“广东特支计划”本团创新团队。主持国家自然科学基金,广东省促进经济发展专项资金项目课题等项目11项。共发表SCI论文85篇,获授权国家发明专利36件,美国专利7件,参与编制标准2项。担任可再生能源学会天然气水合物专业委员会与中国计量测试学会热物性专业委员会委员。【摘要】与传统油气藏不同,天然气水合物以固体的形式赋存于沉积物的孔隙或者裂隙,因此其不能像天然气或者原油直接依赖于自身的流动性而实现流动,必须吸收由储层、外界环境、或者人工提供的能量,将其分解成甲烷和水,方可能在沉积物中流动。沉积物的渗流能力决定了气水在储层中的流动,对水合物开采效果具有重要的影响,是天然气水合物开采模拟与方案制定中必须的关键基础物性。水合物存在时沉积物的渗流规律与孔隙空间的微观几何结构密切相关,水合物样品的合成以及在孔隙结构中复杂的赋存形式造成了含水合物沉积物渗流实验相对困难。本报告介绍了天然气水合物体系渗流特性测定的相关技术方法以及取得的部分研究进展与结果。张玮 捷欧路(北京)科贸有限公司 应用工程师【个人简介】现任日本电子应用工程师,主要负责FIB-SEM双束系统及氩离子截面抛光仪的样品测试、技术应用以及培训工作,具有丰富的聚焦离子束、双束系统、扫描电镜等理论基础和应用经历。硕士毕业于新南威尔士大学材料科学专业,主研方向为天然生物材料的压电性质和实际应用,积累了丰富的测试样品制备、超微切片、扫描电镜、原子力显微镜等测试研究经验。本科毕业于河北科技大学金属材料工程学系,主要学习方向为合金钢的热处理方案设计和力学性能优化。【摘要】本报告将从TEM设备联用、STEM快速检测、硬件更新,三个方面介绍JEOL年初发布的新一代高性能FIB-SEM双束系统。同时将介绍JEOL专门针对新能源汽车电池制造业开发的PCI颗粒物监测软件系统。肖立新 北京大学 教授【个人简介】肖立新,日本东京大学博士毕业,现为北京大学物理学院教授,博士生导师。英国皇家化学学会会士,中国材料学会太阳能分会秘书长、国际信息显示学会(SID) 中国北区执委会学术副主席、中国光学工程学会光显示专业委员会常务委员。 长期从事光电功能材料及器件方面的研究,如有机发光材料及其器件,光伏材料及其器件物理等。主持过多次国家自然科学基金,承担973项目子课题。发表国际学术论文160余篇及申请专利共30余件,入选2020全球前2%顶尖科学家“年度影响力”榜单。编著《钙钛矿太阳能电池》(第一、二版),译著《有机电致发光-从材料到器件》,参与编著《锂离子电池》。2015年度教育部自然科学一等奖(第一完成人)。【摘要】从介绍钙钛矿太阳能电池的关键问题出发,阐述非铅钙钛矿材料的重要性,继而介绍非铅钙钛矿材料的研究进展,通过分析目前存在的问题,进一步阐述非铅钙钛矿太阳能电池的瓶颈所在,从而阐述如何突破瓶颈。魏静 北京理工大学 特别副研究员【个人简介】北京理工大学材料学院,特聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一或通讯作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文20余篇,其中ESI高被引论文3篇,热点论文3篇,总被引次数超过2000。研究领域:新型能源材料与器件;钙钛矿光电材料与器件。【摘要】钙钛矿太阳能电池(PSCs)的光电转换效率已经超过26%,但寿命远低于工业所需的25年,严重限制了其商业应用。目前报道的多数钙钛矿电池在水分、光照、热或其他因素的干扰下都会严重失效。对此,我们通过设计新型电子传输材料和结构来提高钙钛矿器件的稳定性。本工作首先研究了钙钛矿薄膜的退化机理,之后通过优化电子传输层(ETL),特别是开发新型紫外惰性电子传输材料及基于聚合物矩阵网络的低温介孔结构,来提高PSCs在潮湿环境或光照下的工作稳定性。我们制备了ITO/UV惰性ETL/ Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio-MeOTAD/Au结构的太阳能电池,其功率转换效率达到21%,光稳定性得到明显改善。优化后的器件在一个太阳光强下持续光照,最大功率点电压下工作600小时后,保持99%以上的初始性能。在进一步的工作中,需要深入研究PSCs的复杂降解机理,在此基础上开发更具针对性的薄膜改性方法和新型器件结构。张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。八、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
  • 自然资源部公布土地矿产海洋资源“家底”
    p style="text-indent: 2em "自然资源部近日发布了2017中国土地矿产海洋资源统计公报。公报从土地资源、矿产资源、海洋资源、地质调查、地质环境、测绘和地理信息、行政执法等方面,对我国自然资源领域大数据进行了初步统计,勾勒出自然资源最新“家底”。专家指出,将主要自然资源最新情况整合发布,有利于社会各界更加清晰地掌握我国自然资源变化,为经济发展提供参考。/pp style="text-indent: 2em "br/ strong 去年净减少耕地6.09万公顷/strong/pp style="text-indent: 2em "此份公报是自然资源部成立后首次对外公布土地、矿产、海洋、地质等方面数据信息。/pp style="text-indent: 2em "公报显示,土地资源方面,2017年末全国耕地面积13486.32万公顷,全国因建设占用、灾毁、生态退耕、农业结构调整等减少耕地面积32.04万公顷,通过土地整治、农业结构调整等增加耕地面积25.95万公顷,年内净减少耕地面积6.09万公顷。矿产资源方面,2017年全国地质勘查投入资金775.68亿元,新发现矿产地124个,其中大中型油气矿产15处,非油气矿产109处。海洋资源方面,2017年全国海洋生产总值77611亿元,同比增长6.9%,海洋生产总值占国内生产总值的9.4%。地质环境方面,2017年调查新增省级以上重要地质遗迹6228处,新增国家地质公园8处,新增世界地质公园2处,新增地质公园面积7.28万公顷。br/ 国家信息中心经济预测部宏观经济研究室主任牛犁在接受本报记者采访时表示,自然资源部发布的这份2017中国土地矿产海洋资源统计公报,综合了我国不同类型自然资源的最新数据,更清晰、更集中、更全面地反映了我国资源领域的“家底”,为各级政府、各类企业和社会组织利用好、保护好自然资源提供了更有价值的参考。/pp style="text-indent: 2em "br/ strong 海洋保护区生态环境基本稳定/strong/pp style="text-indent: 2em "绿水青山就是金山银山,珍惜资源才能更好发展。/pp style="text-indent: 2em "此次发布的公报介绍了自然资源最新的保护情况。其中,在海洋保护方面,2017年推进海岛生态保护,共开展了119个海岛整治修复与保护项目监督检查和实施效果评估,发布40个海岛生态和发展指数,海洋保护区生态环境状况基本稳定,海水增养殖区环境质量基本满足增养殖活动要求,旅游休闲娱乐区环境状况总体良好。在行政执法方面,2017年全国共发现土地违法案件7.52万件,涉及土地面积2.98万公顷 立案查处违法用地案件4.81万件,涉及土地面积2.36万公顷。全年立案查处矿产违法案件5407件,同比增长22.2% 结案4905件,同比增长13.1%。但同时,公报也指出,我国近岸局部海域污染严重,春季、夏季、秋季和冬季劣于第四类海水水质标准的海域面积分别达到4.11万、3.35万、4.68万和4.81万平方千米,形势不容乐观。/pp style="text-indent: 2em "专家指出,中国转入高质量发展,要更加注重内涵式发展,提高土地、矿产、能源资源的集约利用程度,增强发展的可持续性。就自然资源而言,首先要做好保护,“在保护中利用、在利用中保护”。如今,云计算、大数据、物联网等技术的发展为国土空间基础信息平台提供了技术支撑,可以更加精准地掌握自然资源的“家底”。今后,要把更大的力气放在保护上,利用好新技术及时发现各类资源的变化情况,以更好地进行保护。/pp style="text-indent: 2em "br//pp style="text-indent: 2em "strong加强科技创新提高资源利用率/strong/pp style="text-indent: 2em "自然资源有哪些新发现?/pp style="text-indent: 2em "公报显示,2017年全国地质调查项目预算投入76.80亿元,完成经费68.45亿元。全年完成1∶5万区域地质调查16.2万平方千米,完成矿产地质调查12.7万平方千米,完成1∶5万区域水文地质调查3.8万平方千米。加强地质矿产调查,圈定找矿靶区450余处,新发现矿产地60余处。推进海洋地质调查,完成1∶25万营口等7幅海洋区域地质调查。“海洋地质八号”“海洋地质九号”“海洋地质十号”三艘调查船相继入列。开展油气地质调查,长江中游湖北宜昌鄂宜页1井、鄂阳页1井、贵州六盘水杨煤参1井、四川宜宾高参1井获高产工业气流,新疆温宿新温地1井钻获高产工业油流。特别是2017年南海神狐海域天然气水合物试采成功,更给人惊喜,天然气水合物列为我国第173个矿种。/pp style="text-indent: 2em "牛犁表示,土地、淡水、矿产、森林、海洋等自然资源对经济发展起着重要的支撑作用,在做好保护的同时,也要加大勘探投入力度,鼓励科技创新,一方面提高现有资源的利用率,另一方面力争发现新的资源。未来自然资源信息发布与自然资源规划、分配、利用还可以更加紧密地结合,从而发挥出最大效果。/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制