当前位置: 仪器信息网 > 行业主题 > >

邻苷合成的活化剂

仪器信息网邻苷合成的活化剂专题为您提供2024年最新邻苷合成的活化剂价格报价、厂家品牌的相关信息, 包括邻苷合成的活化剂参数、型号等,不管是国产,还是进口品牌的邻苷合成的活化剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合邻苷合成的活化剂相关的耗材配件、试剂标物,还有邻苷合成的活化剂相关的最新资讯、资料,以及邻苷合成的活化剂相关的解决方案。

邻苷合成的活化剂相关的资讯

  • 浅谈小核酸的固相合成
    近年来由于核酸修饰和递送载体的突破,带来了变革性疗法的创新浪潮,其中被认为是继小分子药物、抗体药物之后第三代创新药物核酸药物迎来了爆发式增长,其优势在于广泛的可成药靶点、特异性强、安全性高、效果持久、开发成功率高和制造成本低等。寡核苷酸药物,即小核酸药物,是由十几个到几十个核苷酸串联组成的短链核酸,目前小核酸药物主要包括 RNAi 药物和 ASO 药物,作用于pre-mRNA或mRNA,通过干预靶标基因表达实现疾病治疗目的。目前小核酸药物大多通过亚磷酰胺三酯合成法进行合成。化学合成按照3'-5'的方向进行。常用的固相载体为可控微孔玻璃珠(CPG)或者聚苯乙烯微珠(PS beads),固相载体通过linker与初始核苷酸核糖的3'-OH共价结合,而核糖的2'-OH用诸如叔丁基二甲基硅基(TBDMS)的保护试剂进行保护,或是核糖的2端有甲氧基、F代、甲氧乙基等修饰,5'-OH则用双甲氧基三苯甲基(DMT)保护。此外,由于腺嘌呤、鸟嘌呤和胞嘧啶存在伯氨基团,也需要用酰基试剂(例如苯甲酰基)进行保护。固相合成每个循环主要包括四个步骤:脱保护、偶联、氧化和加帽。第一步 脱保护(Detritylation)使用溶解在二氯甲烷/甲苯中的二氯乙酸(DCA)或三氯乙酸(TCA)移除核糖5端的DMT基团,暴露5'-OH,以供下一步偶联。脱保护时间取决于流速和柱子尺寸,反应时间不够/脱保护剂酸性太弱会产生n-1杂质(与完整长度为n的寡核苷酸相比仅相差一个核苷酸);反应时间太长/脱保护剂酸性太强则导致序列中脱嘌呤的产生。反应完成后,用乙腈洗涤去除残留的脱保护剂,此步骤中乙腈含水量一般小于20ppm,乙腈需要使用较高流速去冲洗合成柱,脱保护试剂冲洗不干净导致n+杂质的产生。第二步 偶联(Coupling)合成目标的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3端被活化,5端羟基仍然被DMT保护,与溶液中游离的5端羟基发生偶联反应。为了保证较高的总产率,每个循环中都需要有较高的偶联效率。n-1杂质是偶联中最常见的杂质,它们是偶联效率低于100%的结果。与FLP相比,更高分子量的杂质(例如n+1)也存在于偶联步骤中,n+杂质的形成归因于活化剂四氮唑的弱酸性能移除一部分亚磷酰胺溶液中的DMT基团。第三步 氧化(Oxidation)偶联反应后新加上的核苷酸通过亚磷酯键(三价磷)与固相载体上的寡核苷酸链相连。亚磷酯键不稳定,易被酸、碱水解,在下一个循环的脱保护酸性环境中不稳定,因此需要被氧化成稳定的五价的磷。磷酸二酯键中的2-氰乙基保护基团可以使其在后续合成中更稳定。常用碘溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。此外通过将一个硫原子转移到P(三价)上也可以将其转化为P(五价),从而形成硫代磷酸酯键。氧化剂与固相载体的接触时间通常为1-4分钟。第四步 加帽(Capping)由于不可能达到100%的偶联效率,仍存在脱保护后没有反应的5'-OH活性基团(一般少于2%),如果不加处理,那这些基团在下一个循环中仍能发生偶联,产生n-1杂质。通常使用两种试剂(通常使用醋酸酐和N-甲基咪唑的混合液作为加帽试剂)来酰化5'-OH。经过以上四个步骤,一个核苷酸碱基被连接到固相载体的核苷酸上,再以酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。核酸合成系统就是将上述一系列化学合成过程进行自动化,精准化可控制的设备。仪器主要由柱塞系统泵、试剂阀、单体阀、试剂循环阀、紫外检测器、电导率、惰性气体控制盒、压力监测器、合成柱及软件控制系统等多个部分组成。大规模寡核苷酸合成系统采用流穿合成技术,泵精度高,规模广泛,滞留体积低,适用于不同规模和类型的寡核苷酸。其以灵活简便的方式创建和转移方法,为工艺开发和优化提供支持,同时系统先进的数据处理能力和分析工具可高效监测和控制合成。英赛斯大规模核酸合成系统
  • CEM Liberty PRO横空出世,多肽合成生产技术的重大突破
    CEM Liberty PRO横空出世,多肽合成生产技术的重大突破CEM是微波多肽合成领域的发明者和领导者,是最早开发采用微波能量用于全过程多肽反应专利技术的公司,利用其独特的环形电磁场技术和多项化学辅助技术方案,创多肽合成的多项世界纪录。Liberty能够在分子层面上直接促进极性离子的脱保护、偶联以及裂解反应,提高了多肽合成的速度、纯度和产率,而且大大降低了成本。CEM研发级多肽合成Liberty Blue 0.005-5mmol性能优异,一直在全球占据垄断地位,而生产级Liberty PRO 1000mmol的推出预示着大规模多肽合成的重大突破。目前,传统大规模多肽合成的研究和生产都面临着严峻挑战——反应釜体积大,工作流程缓慢且浪费严重,亟需优化。传统固相合成偶联时间需要几小时,约占了单次循环80%以上的时间,一条30个氨基酸的多肽合成可能需要一到两个月,而且长时间的偶联必然带来更多的副反应,降低产率和纯度。CEM全自动大规模多肽合成仪Liberty PRO&trade ,突破了传统多肽合成制造的局限,利用其独特的全过程微波电磁技术,保证反应边界条件高定量性和重复性。在特殊环形电磁场中,氨基酸构成的卷曲肽链充分展开,进行彻底的脱保护、偶联和裂解,达到神奇的反应效果和速度。CEM的HE-SPPS专利技术是唯一可以将微波能量用于整个多肽反应的全过程。从而帮助化学家进行前沿性多肽R&D 研究和工业生产的技术。Liberty PRO&trade 使用创新硬件与精确控制微波能量相结合的方式,有助于优化化学条件从而获得纯度更高,产率更大的药物相关肽。借助CEM多项技术专利的基础,如一锅法偶联和脱保护技术、CarboMAX增强型偶联方法、以及No Wash免洗工艺,实现了多肽合成速度和成果的重大突破,能够完成传统方法难以达成的复杂多肽合成。把偶联时间缩短为几分钟,快速完成更多更长的氨基酸偶联,防止长链多肽聚合,消除双重偶联和差向异构化现象,同时降低树脂的要求,并且减少95% 的DMF试剂的使用,30个氨基酸的合成如今仅需一两天便可完成生产。一线工作人员可以前所未有速度的进行多肽合成高效安全的生产。1. 1000mmol自动化合成 2. 15-45min循环时间3. 反应速度快、纯度高4. 减少85-90%碱基使用量5. 免清洗减少 95% DMF 用量6. 15 AA配置,3个活化剂位置7. 减少废液量,降低处理成本8. 研发到生产,可直接转换9. cGMP设备单元化设计10. 体积小节省厂房面积Liberty PRO&trade 工业级微波多肽自动合成设备,符合cGMP规范,满足不同规模的全自动生产需求。Liberty PRO&trade 仅需15-45分钟即可完成氨基酸的偶联循环,使得多肽合成技术速度比传统提高了10-20倍,每批次可生产出1000mmol的多肽,可以在一天内生产相当于传统100-300升反应器产量的肽。标准的10肽 ACP 序列合成纯度竟达到 98%,使后续的纯化更容易。Liberty PRO&trade 技术相较于传统多肽合成方法,提供了卓越的产品纯度和极快的周转时间,同时降低了多达90%的整体循环成本。自动化的Liberty PRO&trade 在一天之内可实现多批次多肽生产,以前所未有的速度、纯度完成多肽合成自动工业生产。1) One-Pot Coupling/Deprotection一锅法偶联和脱保护全过程微波多肽合成,这项技术的核心在于将脱保护试剂直接加入到未经排液处理的后偶联反应混合物中。从而快速完成脱保护与偶联步骤,省略升温时间提高反应效率;在液相中,更快的反应动力学加速了活泼酯的水解或自发偶联反应,从而避免树脂结合的氨基官能团处的潜在副反应。保持较高温度下不间断地进行Fmoc去除反应,通过优化脱保护试剂的使用量,确保了在脱保护步骤完成时,反应体系基本保持中性状态。2) CarboMAXTM 增强型偶联方法:碳二亚胺偶联反应的优势在于降低半胱氨酸和精氨酸中的γ-内酰胺的差向异构化作用,然而其活化速度相对较慢。CEM开发了增强型偶联工艺,通过在微波下提高碳二亚胺的当量,可以更快地形成关键的O -酰基脲中间体。从而更快更多的形成活化氨基酸,使得随后的偶联反应更快发生。另外,许多重要的侧链修饰对Oxyma Pure和HOBt酸性活化剂敏感。传统碳二亚胺化学反应可导致敏感基团的裂解,例如磷酸和O-连接的糖类化合物。CEM的专利工艺,在微波下使用碳二亚胺类活化剂并且通过碱平衡技术以稳定敏感的化学键,从而获得无与伦比的速度和纯度。总之,CarboMAXTM技术减少了氨基酸的活化时间,减少差向异构化,提高了产率和纯度。提高合成困难肽和长序列肽分子结构的稳定性。 3)No Wash 全过程免洗技术:CEM采用蒸馏法取代和去除了偶联和脱保护步骤后的洗涤过程。这一发明不仅提高了反应速度,而且减少了95% DMF溶剂的使用量。同时,所需的碱基使用量也显著减少,仅为标准用量的10-15%。而且保持了多肽合成的高纯度。这不仅降低合成成本,省去清洗时间,还节约了企业对后期处理有毒废液而产生的巨大费用。如此大幅度的节约试剂,前所未有的降低企业成本、降低安全风险、提高生产效益。Liberty PRO&trade 是一套完整的、符合cGMP标准的全自动大规模多肽合成模块化解决方案。它采用符合医药领域cGMP要求的惰性材料,并设计了满足可追溯性法律法规要求的硬件和软件系统,确保了反应边界条件的高精确度和优异的重复性。采用全新的流体输送技术,配备NIST可追溯性的内置温控模块,以及整合了优化的机械搅拌和氮气鼓泡的双重搅拌系统,确保了批次间的高度稳定性。CEM提供全系列的多肽合成装置,研究人员可基于Liberty Blue&trade 小规模0.005-5mmol级自动合成系统,在实验室中轻松开发和优化多肽合成方法。随后,可迅速在大规模cGMP工业级的Liberty PRO&trade 上无缝再现反应结果,保证从毫克级到千克级多肽生产的重复性和一致性。 Liberty PRO&trade 多肽合成技术代表了速度、纯度和可扩展性的完美结合,设备具备高性能、高可靠性、高灵活性,在遵循cGMP管理准则的同时,能够轻松调整合成序列大规模生产具有生物活性的API多肽原料药。不仅大幅削减了成本,还显著提升了交货速度,非常适合CDMO多肽合成服务。Liberty PRO&trade 彻底改变了传统的多肽合成思想观念,其高机动性的生产方式和管理方式,实现了灵活性、经济性,化整为零,降低了生产风险。其小型化、标准化和模块化,使得任何一个单元出现故障,都不会影响整个生产管理。Liberty PRO&trade 单元化组合的合成模块,彻底颠覆了传统多合成生产线生产方式,使得合成生产更经济、更灵活。而且,CDMO企业可以随时根据订单多肽序列和产量的不同,随时改变生产流程和重新配置。这标志着现代CDMO企业可采用前沿的多肽合成技术,构建全新的cGMP生产管理模式。
  • 大连化物所在碳氢键活化合成复杂多环体系研究中取得新进展
    p  从简单易得的分子尤其是几乎无处不在的烃类化合物出发,简便高效地合成复杂的多环化物是有机合成工作中的一大挑战。近十年来,由于茂基三价钴、铑催化剂对碳氢键活化有着独特的活性、选择性以及官能团兼容性而被广泛研究。近期,中科院大连化物所金属络合物与分子活化研究组(209组)在这一领域取得了一系列进展,相关工作在《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 15351)和(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上先后发表。/pp  硝酮化合物通常作为经典的1,3-偶极子参与各类环加成反应。该团队在2013年首次实现了硝酮定位碳氢键的活化。但是将其作为芳烃底物实现碳氢键活化和偶极加成相结合之前尚无报道。最近,该团队利用硝酮作为偶极子定位基,首先经碳氢键活化和环丙烯酮实现酰基化,在原位条件下,活化的C=C双键和硝酮发生分子内的1,3-偶极加成,得到桥环化合物。反应对于邻位含有较大位阻的N-叔丁基以及N-芳基硝酮均可适用,对于N-叔丁基硝酮,碳氢活化发生在唯一的苯环邻位 而对于N-芳基硝酮,反应则发生在N-芳环上,因此得到的产物的结构有所不同。值得一提的是,对于N-叔丁基硝酮,反应呈现出硝酮底物位阻控制的选择性。当N-叔丁基硝酮的邻位取代基位阻较小时,反应虽然也经历C-H活化和对三元环的插入开环,但是产生的烯基铑碳键并没有被质子解,而是发生了对亲电的亚胺片段的插入,之后经历了β-碳原子消除和质子解,得到最终的1-萘酚产物。反应中硝酮起到了亲电性无痕导向基的作用。此部分工作发表在Angew. Chem. Int. Ed. 2016, 55, 15351上。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/471915f3-bd4d-4007-9bab-375252f8942e.jpg" title="W020170525567525355764.jpg"//pp  含炔烃片段的环己二烯酮由于同时具有活泼的末端炔烃和α,β-不饱和酮结构,所以有多种的反应可能性,一直以来是研究的热点之一,但是大部分研究都是围绕着底物的亲核性展开。将其与天然产物中广泛存在的吲哚结合,发生分子内的狄尔斯-阿尔德(Diels-Alder)反应尚属首次报道。该反应首先经过碳氢键活化形成金属碳键, 之后发生炔烃的插入原位形成二烯中间体,随后与亲二烯体(环己二烯酮)发生分子内的Diel-Alder反应,反应过程中金属始终参与。反应能得到结构截然不同的桥环和并环化合物。当利用铑作为催化剂时,铑碳键对炔烃发生常见的2,1-插入随后和第一类D-A环化串联得到并环,用半径更小的三价钴催化剂时发生罕见的1,2-插入并和第二类D-A环化串联得到结构罕见的桥环。这一工作近期发表在《德国应用化学》(Angew. Chem. Int. Ed. DOI:10.1002/anie.201704036)上。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/6e10e342-1381-4c91-9df1-b6b7ebb774f1.jpg" title="W020170525567525358639.jpg"//pp  该系列工作得到了国家杰出青年基金和中科院先导专项的支持。/p
  • 霍尼韦尔推出 Burdick & Jackson DNA/RNA高纯试剂
    中国北京2011年 4月27日讯 &mdash 在第九届中国国际科学仪器及实验室装备展览会上,霍尼韦尔特殊材料集团举办了Burdick & Jackson高纯溶剂技术交流会,并和业务伙伴合作向中国客户介绍其B&J BioSynTM DNA/RNA合成试剂。B&J BioSynTM DNA/RNA合成试剂产品线包括不同配方的脱保护剂、活化剂、盖帽剂、氧化剂以及超低水含量乙腈。B&J DNA/RNA试剂采用特殊的加工及纯化工艺,满足B&J 严格的技术指标,保证了优异的合成效率,是寡核苷酸合成的理想之选。所有溶剂和试剂都经过微滤,可以最大程度地减少微粒污染。该产品线的另一特色是其灵活便利的包装,拥有从450毫升到1250升的不同包装规格,可满足从实验室研究到批量生产等不同规模应用的要求;其包装设计便于与常用的DNA合成仪管线直接连接。&ldquo DNA/RNA合成的方法在不断发展和进步,通过与客户的紧 密沟通,B&J不断拓展DNA/RNA合成试剂产品线来满足各种化学和配方创新的要求。&rdquo 霍尼韦尔实验室化学品产品经理刘士姮博士介绍, &ldquo 凭借强大的全球研发能力,我们可以为客户提供定制试剂配方,并满足客户的特殊包装需求。&rdquo 作为美国DNA/RNA合成试剂的领先制造商, Burdick & Jackson拥有多年的专业生产经验,通过先进的分析检测手段和有效的纯化技术,对试剂中对DNA/RNA合成有影响的杂质进行了鉴定和去除。先进的纯 化及生产工艺,结合严格的质量控制体系(如精益生产和六西格玛+质量控制方针),使得Burdick & Jackson产品具有卓越的品质和批次稳定性。此外,Burdick & Jackson与多家领先的DNA合成仪制造商和DNA/RNA公司保持着长期的紧密而深入的合作,因此更能有效地了解DNA/RNA合成的化学和创新配 方方面的要求,从而更好地为客户提供完善服务。
  • 赛默飞多款质谱新品闪耀2012美国质谱大会
    中国上海,2012年6月12日 &ndash 5月20-24日,第60届美国质谱会(ASMS 2012)在加拿大温哥华举行,来自全世界各地的从事与质谱领域相关的科研人员、专家学者以及业内人士参加了此次盛会。作为全球服务科学的领导者,赛默飞世尔科技(以下简称:赛默飞)在此次大会上展示了出众的质谱系列产品。除了在业内久负盛名的仪器及耗材外,赛默飞此次还展示了有助于大大提高仪器性能以及实验室效率的系列软件系统。&ldquo 我们领先的质谱技术不仅帮助客户在医学研究方面不断取得重要发现,还能够满足环境和消费者安全测试领域不断增长的需求,&rdquo 赛默飞总裁及首席执行官Marc N. Casper说道,&ldquo 正如我们的客户一样,我们从未停止创新,质谱大会上新软件的发布将会把赛默飞Orbitrap平台带入新的水平,尤其是Elite和Q Exactive系统。在如今的经济环境下,许多实验室面临资金压力,但是更需要优质的实验结果。赛默飞将利用我们业内领先的仪器及软件系统,致力于帮助客户解决分析结果及成本控制的双重挑战!&rdquo 赛默飞在2012美国质谱大会(ASMS)上发布的产品、技术、软件及解决方案包括: TargetQuan 3数据处理软件:该软件专为实验室对持久性有机污染物(POPs)的数据分析和报告设计。TargetQuan 3数据处理软件只需进行样品批处理的简单操作,并整合至日常POPs的实验室流程中,省时并减少得到报告的时间。除了应用于传统的高分辨率技术,该软件还可用于分析三重四极杆仪器得出的数据,对同位素稀释进行定量。 Thermo Scientific HiPPR 去污剂去除树脂:这是一款可高效去除蛋白质和多肽中去污剂的工具,特别适用于处理浓度介于10-150微克之间的蛋白样品。这款高性能 HiPPR 树脂的去污剂去除率高达95%,可去除浓度范围在0.5%到1%的离子型、非离子型或两性离子型去污剂。 Thermo Scientific 一步法重标蛋白体外表达试剂盒:该试剂盒可快速实现蛋白的无细胞表达,并在新合成的蛋白中掺入带有稳定同位素标记(如重同位素)的氨基酸。用此试剂盒表达出的重标蛋白可用作质谱分析中的对照,以确定蛋白水解效率、样品制备过程的差异和蛋白富集程度,8 小时内便能完成同位素掺入率达90-95%的蛋白质的合成。 Thermo Scientific SILAC蛋白定量产品线扩充产品:此次,赛默飞推出了新款氨基酸和培养基产品,进一步扩充了Thermo Scientific SILAC蛋白定量产品线。在细胞培养中, SILAC是一种对复杂蛋白样品进行差异定量的有力工具。SILAC方法通过体内代谢将&ldquo 重同位素&rdquo (13C-或15N-)标记的氨基酸整合到蛋白中,再通过质谱(MS)分析以加快对蛋白的鉴定、分析和定量。 Thermo Scientific EASY-Spray 解决方案:该方案实现了对EASY-SprayTM 柱与EASY-Spray 离子源的整合,可轻松获得&ldquo 即插即喷&rdquo 纳升级液相色谱-质谱联用(LC-MS)的出色性能。不同于其他类型的整合纳升级 LC-MS 解决方案,易于使用且高度可靠的 EASY-Spray在柱装载方面没有限制,能够在高达1000巴的情况下展现最佳性能。 新款 Accucore&trade C8 HPLC色谱柱:采用最先进的Core Enhanced Technology&trade 技术制作,新款 Accucore&trade C8 HPLC色谱柱不仅提供了比同等C18反相柱更低的疏水保留功能,还以更短的烷基键合相产品丰富了Accucore HPLC色谱柱家族。新反相柱提升了色谱表现,并可避免产生过多操作压力,提升了实验室的生产量及产品质量。 Acclaim&trade Surfactant Plus色谱柱:该产品专为使各种表面活化剂进行高分辨,高效能,高通量的单程分离而设计,上述非离子、活性阴离子、阳离子和两性氧化物等表面活化剂在杀虫剂、洗涤剂、石油产品、化妆品和医药品中得到了广泛应用。依靠新颖的混合型色谱技术,Acclaim&trade Surfactant Plus光谱柱实现了更多选择性。其先进的表面改性工艺使其在Corona电雾式检测器(Corona CAD)、质谱仪(MS)或蒸发光散射检测器(ELSD)协同工作时表现出优异的兼容性。 Thermo Scientific MAbPac&trade SCX-10小径粒度色谱柱:该产品粒径大小为3µ m和5µ m,可用于分离极相近单克隆抗体的变种,甚至能够分辨单个带电残基的微小不同。新色谱柱不但具有可比拟10µ m粒度色谱柱和Thermo Scientific ProPacWCX-10 4 x 250mm色谱柱的分离高效性,还实现了更快速的分析和更短的分离时间,以及柱与柱之间和批次之间出色的重现性。 Thermo Scientific SOLA固相萃取(SPE)小柱和提取板:SOLA&trade 小柱和提取板实现了更高重复性、更低洗脱体积,提高了灵敏度,并且减少了污染物和洗出液样本萃取物中的杂质。SOLA&trade 小柱和提取板的设计是针对传统SPE样式的一次重大革新,它消除了排空、通道和填压不一致的问题,使得实验结果具有高度的可重复性。这还意味着更少的故障,避免昂贵的重新分析,满足了的高产量的实验室环境,解决了关键性的需求。 Thermo Scientific Titan3和Target2针头过滤器:Titan3 和Target2系列的针头过滤器采用一种新型稳固设计,提供更强大的爆破压力和优异的流动特性,这极大地提升了样品制备的工作流程。此外,新设计中恰当定位的薄膜和优化后的表面积实现了更高效的过滤能力。Titan3系列的新增设计,提供了更好的爆破压力,使30mm模式下可承受120psi的压力。 Thermo Scientific TRACE 1300系列气相色谱产品:该系统拥有独特的插拔式进样口及检测器,方便用户快速更换,直观的界面,可生成可靠的结果和最高灵敏度。TRACE 1300系列气相色谱有两种型号,分别为TRACE 1300气相色谱和 TRACE 1310气相色谱。TRACE 1300 气相色谱是预算受限实验室进行常规分析时的最佳选择;系统简化的界面无需过多用户参与,可在极少工作人员照看的情况下全天候连续运行。TRACE 1310 气相色谱专为常规 QA/ QC或侧重方法开发的实验室设计,特别配有带图标的触摸屏,可实现更精确的控制。如果您想了解赛默飞世尔科技在全美质谱会推出新品的更多信息,请浏览专题页面: www.thermo.com.cn/ASMS2012 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 5+级硝化、釜式反应有火花,如何进行连续流工艺开发?
    研究背景硝氧乙基硝胺族化合物(NENAs)兼有硝胺和硝酸酯的双重结构,是一类含能化合物。该类化合物具有良好的热化学特性,对硝化棉(NC)有优良的增塑能力,目前比较热门的是将其应用于发展高能和低易损性危化物。NENA的合成具有以下特点:NENA的合成反应放热量巨大,属于高风险硝化反应,间歇釜式工艺如下图1;该反应在反应釜中甚至可以看到有火花产生;由于釜式设备散热的局限性,该反应目前只能选用比较小的反应釜来进行,放大量产有很大的挑战;而连续流微通道反应器具有持液量小、高效传质、传热,是应对这类反应的有效方案。美国NALAS工程服务公司是康宁反应器认证实验室,该实验室具有较强的反应过程安全风险分析和危险化合物工艺开发的能力。今天我们就来看看Nalas的化学家,是如何对NENA合成这一类高危工艺进行安全风险评估和本质安全工艺开发的。图1.NENAs的釜式合成反应热研究:研究者首先对该反应做了反应热的研究(如下图2)经过RC1反应量热仪的研究可以看到,该反应的放热量大于500KJ/KG,绝热温升200°C以上。该反应是一个5+级风险反应,在反应釜中有明显的火花。在使用康宁G1反应器的初步实验时,同样也看到了火花(右下图)。这说明如果直接使用微通道反应器仍然存在安全风险,所以必须要对反应过程进行分析和优化!图2. 对第一步反应放热研究反应物反应过程分析为了更好的探索反应过程,研究者应用Flow NMR和Raman Spectroscopy – ConcIRT(原位拉曼光谱)(连续核磁)监测胺盐和硝酸酯的盐及整个反应体系的变化。经过研究发现,反应中间产物为两种物质:硝酸酯和硝胺盐,后者的放热相对较低。整个反应体系到了2000秒后反应趋于平稳,加入硝酸后也基本不再反应,此时反应并未完全。通过分析发现,反应混合液中的水能够抑制硝酸酯的产生。所以,可以通过后期在反应体系中加入醋酐脱除过程中的水使反应完全。图3.胺盐和硝酸酯的盐及整个反应体系的变化连续流工艺开发连续流工艺研究:1. 滴加底物到稀硝酸中避免第一步硝酸酯产生:避免局部放热、闪爆2. 第二步再加醋酐(脱水)形成硝酸酯3. 继续第二步生成目标产物针对连续化工艺条件的确立,经过量热仪的测试采用稀硝酸控制第一步水的含量,可以减少40%的热量.最终采用“双温区、稀硝酸、底物分步加料”,实现了微通道反应器上的连续稳定操作。图4:应用康宁反应器合成含能材料硝氧乙基硝胺族化合物结果与讨论01该反应的实现很重要的一点是对整个反应过程机理的充分研究和理解。对反应过程的研究需要关注:观察反应现象,康宁G1玻璃反应器独特的材质和设计使整个反应过程都可以用人眼观测到;连续化、实时分析:应用在线分析手段(在线核磁、反应热分析仪器、在线红外、在线拉曼光谱等)对反应整个反应过程进行实时连续化的监测与分析;弱化反应条件,用稀硝酸代替浓硝酸消除热点,根据过程分析,用醋酐调节反应体系的水分,有针对性地优化反应,保证整个工艺的安全性。02康宁反应器技术开放的系统可以与多项在线分析技术联用实现速度与精准的结合;该项目目前应用的是康宁G1反应器,康宁反应器无缝放大的技术优势为后续实现更大量产的工业化生产提供了技术可能。参考文献:D. am Ende, J Salan, M. Jorgensen, A. Pearsall Presented at AIChE National Meeting, Orlando,FL, Nov 13,2019
  • 红酒中八种合成着色剂检测
    一、样品信息样品组分结构式柠檬黄新红 苋菜红靛蓝胭脂红 日落黄诱惑红 亮蓝二.实验目的参照《食品中合成着色剂的测定》(GB/T5009.35-2003),建立红酒中的合成着色剂的SPE-HPLC检测方法。三.实验方法3.1实验试剂l 乙酸;l 甲醇;l 乙酸铵溶液(0.02mol/L):称取1.54g乙酸铵,加水溶解并稀释至1000mL;l 氨水溶液:量取氨水2ml,加水至100mL,混匀;l 甲醇/甲酸(6+4)溶液:量取甲醇60mL,甲酸40mL,混匀;l 柠檬酸溶液:称取20g柠檬酸,加水至100mL溶解,混匀;l 无水乙醇-氨水溶液-水:量取无水乙醇70mL,氨水溶液20mL、水10mL,混匀;l 水(PH=6.0):水加柠檬酸溶液调节PH=6.0;l 水(PH=4.0):水加柠檬酸溶液调节PH=4.0;l 水:超纯水l 合成着色剂储备液:每1.0mL中含柠檬黄、新红、苋菜红、靛蓝、胭脂红、日落黄、亮蓝各0.5mg,诱惑红0.1mg的水溶液;l 合成着色剂使用液:上述合成着色剂储备液逐级稀释成每1.0mL中含柠檬黄、新红、苋菜红、靛蓝、胭脂红、日落黄、亮蓝各5&mu g,诱惑红1&mu g的水溶液;Cleanert JXA SPE小柱:规格为1g/6mL,使用前经5mL甲醇和5mL pH=6.0的水活化。3.2.实验耗材名称规格订货号Venusil XBP C185&mu m,100A,4.6*150mm VX951505-0保护柱芯4.6*10mm,4/pkVX950105-0保护柱套适用于4.6*10mm的保护柱芯CH-100Cleanert JXA1g/6ml,30/盒JXA0006Hydrophilic PTFE0.45um,13mm,100/包AS0813453.3.试样处理取试样(某品牌红酒)20ml,加入合成着色剂混标溶液1.0mL,混匀,用10%氨水调节PH约6.0,将全部试样经过Cleanert JXA柱,分别用水(PH=4.0)、甲醇/加酸(6+4)溶液6mL淋洗,再用10mL水淋洗,用乙醇-氨水溶液-水(7+2+1)6ml洗脱,收集洗脱液于50℃水浴蒸发至干,加水定容至1.0mL,经0.45&mu m滤膜过滤,待测。3.4液相色谱条件色谱柱:Venusil XBP C18,5&mu m;4.6*150mm;流动相:A:0.02mol/L的乙酸铵溶液(乙酸调节pH=4); B:甲醇流 速:1.0mL/min;进样量:20&mu L;波 长:254nm;梯 度:时间A%B%095510802018406025406025.0195540955四.实验结果表1.添加5ppm混标峰面积数据样品组分标品标样过柱1标样过柱2红酒样品1红酒样品2柠檬黄318320315294324新红471474461482473苋菜红266269262277279靛蓝314282279273275胭脂红266267263246240日落黄234238234210212诱惑红3333333534亮蓝3940393737表2.添加5ppm混标回收率数据样品组分标样过柱1(%)标样过柱2(%)红酒样品1(%)红酒样品2(%)柠檬黄100.69992.5102新红100.697.8102100苋菜红10198.5104105靛蓝89.888.886.987.5胭脂红100.398.892.590.2日落黄1011009090.6诱惑红100100106103亮蓝1021009595五、实验结论实验结果表明,Cleanert JXA小柱和Venusil XBP C18液相色谱柱可以用于红酒中的合成着色剂的检测,该方法快速、准确。六、注意事项l 红酒样品呈弱酸性,在上样之前要将其pH值调节至6左右,保证小柱可对合成着色剂有良好地吸附;l 若样品酒精度过高,建议在上样前对样品进行除醇处理;l SPE小柱净化过程中,要注意对流速的控制,建议控制在1mL/min左右;l 洗脱液氮吹复溶后,应选用水系滤膜过滤,防止因滤膜吸附造成样品的损失,建议选用Agela Hydrophilic PTFE滤头。附录:图1 5ppm混标溶液图2 5ppm混标过柱1图3 5ppm混标过柱2图4 红酒空白图谱图5 5ppm基质加标1图6 5ppm基质加标2
  • 机械力调控B淋巴细胞免疫活化研究获新进展
    p  2017年7月31日,清华大学生命学院刘万里研究组在《eLife》期刊在线发表了名为《蛋白激酶Cβ(PKCβ)和黏着斑激酶协同调控B淋巴细胞的免疫活化对呈递抗原的基质硬度的敏感性》(Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase)的研究论文,报道了机械力感知能力调控B淋巴细胞免疫活化的精细分子机制。清华大学生命学院巴基斯坦籍博士生萨明娜(Samina Shaheen),北京大学、清华大学和北京生命科学研究所联合培养博士研究生项目博士生万政鹏和生命科学学院本科生李宗昱是本文的共同第一作者,刘万里研究员为本文的通讯作者。br//pp  本研究需要大力整合分子免疫学、细胞生物学、生物化学、新型材料科学、高精度活细胞成像和生物物理学等不同学科的交叉优势,涉及基因修饰小鼠脾脏B细胞和自身免疫疾病病人外周血B细胞等实验材料的广泛使用,在研究过程中得到了国内外同行的大力支持。/pp  B淋巴细胞作为抗体免疫应答过程中的重要参与者,维系着人类的健康,B淋巴细胞的免疫活化进程在其质膜表面的B细胞受体(BCR)识别外来病原体抗原后启动。该课题组之前的工作揭示B淋巴细胞具有灵敏的机械力感知功能,利用B细胞受体(BCR)来精确地识别抗原的理化性状。该论文结合不同刚性抗原呈递基质系统和基于全内反射、共聚焦荧光显微镜的高速高分辨率成像系统,对机械力感知调控B淋巴细胞免疫活化的分子机制进行系统而全面的研究。该论文发现B淋巴细胞感受机械力调控其活化依赖于B细胞受体(BCR)下游信号分子。由佛波酯(PMA)诱导的蛋白激酶Cβ(PKCβ)激活可以绕过B细胞通常需要的酪氨酸激酶(Btk)和磷脂酶Cγ2(PLCγ2)信号分子来区分底物刚度。然而,这一过程依赖于由蛋白激酶Cβ(PKCβ)介导的黏着斑激酶(FAK)激活,进而表现出黏着斑激酶(FAK)介导的B细胞扩散和粘附反应的增强。黏着斑激酶(FAK)失活或缺陷将导致B细胞丧失鉴别基底刚性的能力,而粘附分子可以大大增强B细胞的这种能力。最后,该研究利用类风湿性关节炎患者的样品进行研究,发现与健康人相比,类风湿性关节炎患者的B细胞对基底刚度表现出不同的活化反应。这些发现更系统的提供了B细胞如何通过蛋白激酶Cβ(PKCβ)介导黏着斑激酶(FAK)激活的方式区分底物刚度并作出不同活化反应的分子解释。这些研究成果为B淋巴细胞的免疫识别、免疫活化和免疫调节研究提供了新的研究思路,帮助人们进一步理解自身免疫疾病,从而对探索相关疾病的致病机理、以及药物疫苗研发等重要工作提供新的理论依据。/pp  刘万里研究员课题组一直致力于使用新型的高速高分辨率的活细胞单分子荧光成像技术结合传统的分子免疫学、生物化学和生物物理学研究手段,对B淋巴细胞的免疫活化及相关疾病的分子机制进行研究。继2013年在《免疫学杂志》(Journal of Immunology),2015年在《欧洲免疫学杂志》(European Journal of Immunology)和《eLife》上发表B淋巴细胞的免疫活化受到机械力调控的相关论文后,这一新成果是他对该领域的又一贡献。该研究由国家自然科学基金委、科技部和青年千人计划提供经费支持。萨明娜(Samina Shaheen)受到中国政府奖学金项目的支持。(来源:清华大学生命科学学院)/pp  论文链接:a href="https://elifesciences.org/articles/23060" _src="https://elifesciences.org/articles/23060"https://elifesciences.org/articles/23060/a /pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201708/noimg/e71fa001-dac6-4706-bca7-5f946b9f1f18.jpg" title="1.jpg"//pp  蛋白激酶Cβ(PKCβ)和黏着斑激酶(FAK)协同调控B淋巴细胞的免疫活化对呈递抗原基质硬度的敏感性/ppbr//p
  • 贝克曼库尔特推出全新流式干粉试剂:淋巴瘤筛选试剂,多色补偿试剂盒,细胞活化检测试剂及RE管
    上海,中国——贝克曼库尔特商贸(中国)有限公司——作为一家成立百年的专门从事诊断和生命科学相关产品生产和服务的技术型公司,在流式细胞产品有着完备的流程和系统,除了有流式细胞仪的生产工厂之外,还在在全球有3家配套流式试剂生产工厂:美国迈阿密、法国马赛、印度班加罗尔,为全球临床和科研用户提供高质量的流式试剂来满足当今流式细胞实验室的需求。试剂类型除了有传统的液体试剂也有最新型的干粉试剂。适应不同实验室、不同环境对于检测试剂的要求。ClearLab LS(淋巴瘤筛选方案) P/N B74074试剂用于各种血液淋巴样细胞异常样本的筛选研究。该试剂可以帮助鉴别诊断血液淋巴恶性肿瘤。该检测主要针对T,B及NK淋系细胞进行定性,其结果可以与其他实验结果进行综合解读。*一管即用型淋巴瘤筛选方案*采用贝克曼库尔特独家干粉专利技术,常温存储*预混10色共计12个抗体*用于Navios等3L10C高端流式*简化样本制备流程*可检测外周血,骨髓及淋巴结样本,适用于EDTA,肝素及ACD等多种抗凝样本*25人份包装更适合临床研究*CE注册*WHO 2008修订分类指导方案该方案的克隆及染料搭配基于能更契合临床研究的需要,鉴别样本中所有主要淋巴瘤型别,以及在正常和肿瘤阶段中主要造血细胞系别。ClearLab Compensation Kit 多色补偿试剂盒 P/N B74074 提供即用型干粉十色补偿管,可用外周血或补偿微球进行多色的流式补偿条件设置。*每盒5套*CE注册DURACLONE IF T细胞活化检测方案如今单细胞水平的细胞因子检测可以通过更为简单、灵敏的实验流程实现。即用型干粉试剂DuraClone§ IF T活化方案消除了由于抗体移液带来的误差,并采用简单快速的PerFix-nc通透方案,为您的细胞功能分析提供一套标准化工作流程! 细胞免疫功能测定的往往操作方法繁琐,重复性差。DuraClone IF T活化试剂无需重复的抗体移液和避免不同抗体间效期问题,并且在紫光、蓝光和红光三个激光都提供了开放的检测的通道,为检测方案增添灵活性。红激光开放通道选取串色程度最低的灵敏度最高的APC染料,确保了在该检测通道的优先用于检测弱表达标记。DuraClone RE管贝克曼库尔特联合该领域的权威专家,对血液疾病(比如B淋巴细胞性白血病、多发性骨髓瘤)临床研究中用于稀有细胞流式检测的灵敏抗体进行优化,推出了现在的DuraClone RE§管。该方案一共包含三个独立panel,可以对B细胞发育分化的不同阶段中含量极少的异常细胞进行检测,B80393针对成熟B淋巴异常细胞,含有ROR-1抗体,被认为是区分慢淋和正常B细胞以及套白MCL的一个全新标志物。B80394针对浆细胞中异常细胞。C00163针对未成熟B细胞中的异常细胞。三个方案均留有开放通道允许外加抗体或染料如核染色SYTO41,满足研究灵活便利的需要。DuraClone RE CLB管826,000个CD45+细胞数据分析示例。异常B细胞群以红点表示(568个,0.069% CD45+),正常B细胞群以蓝点表示(16,003个)。Kaluza§雷达图通过ROR-1、CD5、CD43、CD81、CD79b和CD20的多元视角确定了布尔设门策略。数据由Navios流式细胞仪分析全血样品获得。DuraClone RE PC管2,660,000个CD45+细胞数据分析示例。异常浆细胞群以红点表示(52个,0.003% CD45+),正常浆细胞群以绿点表示(30个)。Kaluza§雷达图通过全部8个参数CD45、CD38、CD138、CD19、CD56、CD200、CD81和CD27的多元视角确定了布尔设门策略。数据由Navios流式细胞仪分析全血样品获得。DuraClone RE ALB管1,228,000个CD45+细胞数据分析示例。异常浆细胞群以红点表示(132个,0.011% CD45+),正常B细胞群以绿点表示(39,898个)。结合采用CD58、CD34、CD10、CD38、CD20分析异常细胞。数据由Navios流式细胞仪分析全血样品获得。*以上产品仅用于科研,不用于临床诊断。
  • 团簇质谱+光谱 大连化物所为合成氨催化剂提供新思路
    p  近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍团队和分子反应动力学国家重点实验室团簇光谱与动力学研究组研究员江凌团队合作在合成氨反应机理研究中取得新进展,相关结果发表在《德国应用化学》(Angew. Chem. Int. Ed.,DOI:10.1002/ange.201703864)上,并被选为“热点文章”。/pp  实现温和条件下氨的高效合成一直是催化领域的重要研究课题。陈萍团队首次报道了具有优异低温活性的LiH-3d过渡金属这一复合催化剂体系,并提出了“氮转移”催化机理:LiH作为第二催化中心,可以转移过渡金属表面的氮物种形成Li2NH/LiNH2,继而加氢放氨。这种双中心的催化机制打破了单一过渡金属上反应物种的活化能垒和吸附能之间的限制关系,使得氨的低温低压合成成为可能(Nature Chemistry,2017,9,64)。而该催化剂上氮的活化和转移转化的微观机制尚有待深入研究。/pp  在该工作中,大连化物所研究团队以LiH-Fe复合催化剂为研究对象,发现Fe与LiH在界面处存在强的相互作用。利用自主研制的团簇质谱与光谱联用实验装置,并与密度泛函理论计算紧密结合,成功探测到该催化剂表(界)面存在Li-Fe-H三元氢化物物种(如Li4FeH6,Li5FeH6等)。更为有趣的是这些氢化物物种可与N2反应直接转化为含有Fe-(NH2)-Li和LiNH2的物质,实现了N2的解离、向Li的转移和加氢 同时,三元氢化物中与Fe结合带负电荷的氢则转化为与N结合带正电荷的氢,完成了两电子转移。这些基于团簇反应的研究结果暗示了在Fe-LiH表(界)面形成的Li4FeH6很可能是催化活性中心,而N2的活化则有可能从传统Fe基催化剂C7位上的均裂过程转变为“氢助解离”机制。这项研究加深了对LiH-3d过渡金属催化剂上合成氨反应机理的认识,为新型高效合成氨催化剂的设计开发提供了思路。/pp  上述工作得到国家杰出青年基金、基金委重点项目、教育部能源材料化学协同创新中心(iChEM)和大连化物所甲醇转化与煤代油新技术基础研究专项(DICPDMTO)的资助。/p
  • 霍尼韦尔推广B&J高纯溶剂及试剂在DNA/RNA合成中的应用
    霍尼韦尔推广Burdick&Jackson高纯溶剂及试剂在DNA/RNA合成中的应用满足中国新药开发、诊断及测序等应用领域快速增长的需求 作为进军中国DNA/RNA试剂市场的重要举措之一,霍尼韦尔于2011年10月14日在北京举办了“Burdick & Jackson高纯溶剂及试剂在DNA/RNA合成中的应用”技术研讨会。40余名来自高校、科研单位及DNA/RNA专业合成公司的技术人员参加了本次会议。 交流会由霍尼韦尔Burdick & Jackson 生物医药部技术经理Venkatraman Mohan博士主讲。他在研讨会上作了“高纯溶剂在寡核苷酸合成中的作用: 纯度来源于设计”的精彩报告。报告议题包括:DNA/RNA合成试剂的发展趋势;寡核苷酸表征的分析手段进展;B&J DNA/RNA试剂的独特优势;B&J活化试剂及氧化试剂新产品介绍。 Mohan博士还强调了Burdick & Jackson为客户提供的强大的技术支持。参会听众与Mohan博士就DNA/RNA合成及相关应用领域进行了广泛而深入的交流,并对B&J新推出的 rBMI 活化试剂及高性价比的氧化试剂新配方反响热烈,这些新试剂配方可有效提高寡核苷酸的纯度及产率,并减少总体生产成本。 近年来,随着新药开发、诊断及测序等应用领域的迅速发展,DNA/RNA自动合成产业在中国呈爆炸式增长。“霍尼韦尔将DNA/RNA高纯溶剂及试剂产品线引入到中国恰逢其时。” 刘士姮博士介绍, “Burdick & Jackson的专业生产经验、强大的技术支持团队、以及可靠的产品品质可为我们的用户创造更多的价值。” 霍尼韦尔研究用化学品产品经理刘士姮博士在对Burdick & Jackson在高纯溶剂及DNA/RNA合成试剂工业领域的领导地位、产品品质和试剂包装方面的优势作了介绍。 作为全球DNA/RNA合成溶剂及试剂的领导者,霍尼韦尔Burdick & Jackson一直致力于为全球DNA/RNA用户提供高品质试剂产品及包装方案。 霍尼韦尔 Burdick & Jackson 已经为化学和制药行业提供优质研究化学品长达 50 多年。它在美国密歇根州马斯基根建有实验室和生产工厂。要了解有关 Burdick & Jackson 产品的更多信息和进入在线产品销售网点。
  • 德祥:Vapourtec辅助抗疟疾药青蒿素高效合成
    青蒿素作为全球治疗疟疾的一种决定性药物,现在可能以一种更简便、更经济的方式获得。 青蒿素是由一种名为青蒿(Artemisia annua)的植物自然产生的,并且几个世纪以来在传统中药中都有使用。1972年,药物学家屠呦呦等中国研究人员成功从中草药青蒿中提取抗疟药物青蒿素,拯救了数以百万计患者的生命,并因此于2011年获得美国拉斯克临床医学研究奖。根据世界卫生组织(WHO)提供的数据,2010年有65.5万人死于疟疾,&ldquo 然而尽管青蒿素能够治疗这种传染病,但它的供应链却是一个大问题&rdquo 。 但是一直以来,青蒿素的获得都是一件很不容易的事情。早期是从中草药青蒿找那个提取,但植物所含青蒿素只占很小的比例&mdash &mdash 介于0.001%到0.8%之间。同时由于全球仅有中国、越南等少数国家种植青蒿,这种一年生草本植物产量又不固定,药品青蒿素的价格波动较为明显。而合成青蒿素价格昂贵且工序复杂。结果导致ACTs每个疗程的费用仍然在1美元到2美元之间,这样也就产生了一个问题:那些贫穷的病人往往都会选择价钱便宜但疗效甚微的药物。 然而青蒿还能够产生青蒿酸&mdash &mdash 提取1千克青蒿素会产生10千克青蒿酸。目前由于将其转化为青蒿素成本过高,因此这些青蒿酸往往都被处理掉了。如今,德国波茨坦市马普学会胶体与界面研究所的化学家Peter Seeberger及其博士后Francois Lé vesque表示,他们已经攻克了这一难题。 Seeberger和Lé vesque使用Vapourtec流动合成仪作为合成反应平台,外加紫外照射这样的光化学反应的方式来解决这一问题。整个反应过程中先是通过Vapourtec流动合成仪进行前一步反应,所得到的产物再通过绕在紫外灯上的反应线圈,他们戏剧性地增加了活性氧的产量。首先,青蒿酸被还原为左旋二氢青蒿酸。随后这种产物与氧一道被泵入管道,并在那里混合;光照会活化其中的氧,进而产生青蒿酸前体。*,研究人员向化合物中添加三氟乙酸,并*产生青蒿素。经提纯后,其产量可达40%。研究人员在本周的《应用化学》杂志上报告了这一研究成果。 Seeberger在1月17日于柏林市举行的发布会上表示:&ldquo 整个过程仅需时4.5分钟。&rdquo 他展示了一个手提箱大小的反应系统原型,&ldquo 利用这种小装置,我们现在每天能够生产800克青蒿素&rdquo 。他补充说:&ldquo 3个月后,我们希望能够日产2千克青蒿素。&rdquo Seeberger已为这项技术申请了*。&ldquo 这只是一个开始。&rdquo 他希望这一发现有助于从植物中提取更多的青蒿素。有关使用Vapourtec流动合成仪进行该反应的视频:http://www.3sat.de/mediathek/?display=1&mode=play&obj=28901有关该反应过程的更多实验细节介绍:http://www.mpg.de/4984709/artemisinin_malaria?filter_order=L更多产品请登陆德祥官网:www.tegent.com.cn德祥热线:4008 822 822联系我们(直接用户)联系我们(经销商)邮箱:info@tegent.com.cn
  • 抛却传统检测器,ELSD充分简化HPLC药物分析!
    在药品质控、研究、临床应用及生产中,药物的质量分析评估是尤为重要的一步。 HPLC 法是常用的分析方法之一。HPLC分析检测仪器仪器特点光学检测器鉴于有些药物缺少适宜的光化学结构,因此不能用常用的光学检测器如紫外、荧光等检测;红外检测器灵敏度较低,不适用于梯度洗脱时应用;质谱检测器价格过高,又限制了它的应用;蒸发光散射检测器( ELSD )价格适中,功能相对全面,是较为理想的选择。ELSD应用领域ELSD能分析任何挥发性低于流动相化合物。因此,ELSD可被应用在以下领域:碳水化合物 / 药物 / 脂类 / 甘油三脂 / 未衍生的脂肪酸和氨基酸 / 聚合物 / 表面活化剂 / 营养滋补品 / 组合分子库… … ELSD优势1通用性2响应因子只与物性有关3与梯度洗脱相容… … 因而,ELSD被广泛应用于药物的分析测定中。尤其是利用结构相似、含量已知的物质作对照标定新的药品基准,是药物分析的一大发展。案例分享 案例主要介绍了Waters2424ELSD 在中药材中皂苷类成分检测中所展示的优越性。2424蒸发光散射( ELS )检测器色谱条件色谱柱:ODS 5um(4.6mm*200mm);流动相:甲醇:水=50:50;柱温:30°C;流速:1.0ml/min 。Waters2424蒸发光检测器(ELSD)的增益为100;喷雾器加热级别为90%;气体压力为20psi;漂移管温度为80°C。RESULT外标法 使用外标法绘制标准曲线,获得5~ 500mg/L的宽线性范围。三个浓度(10、50和200 mg/L)准品的保留时间和峰面积的RSD(n=5)分别在0.04~0.11 %和0.69~7.14 %之间,仪器精密度良好。2424蒸发光散射检测器结构紧凑,在雾化阶段和蒸发阶段均可控制温度,保低扩散性能以获得可靠 HPLC / ELSD 结果。每次运行时用户能够获得更多的峰信息以及 LC 的可靠性和重现性结果。2424蒸发光散射检测器可以作为 Breeze 系统的一部分在 Breeze 或者 Empower 或软件的直接控制下使用,或者作为独立的 ELS 单元使用。随着医药工业的发展及竞争加剧,对药物成分、代谢产生、降解物与杂质的定性、定量提出了更高的要求。在符合标准要求的前提下,Waters2424蒸发光散射检测器(ELSD)能够使复杂的药物分析变得简单化,并提供更灵敏、更稳定、更可靠的数据结果,为药物分析保驾护航。参考文献:[1] 黄永焯,王宁生,HPLC_ELSD在天然药物分析中的应用,广州中医药大学临床药理研究所;[2] 田洁,蒸发光散射检测器简化了药物HPLC分析的应用;[3] 刘超,蒸发光散射法与紫外法用于中药材中皂苷类及糖类成分检测的比较研究,山东中医药大学。
  • 七大新兴产业看化工发展新机会之五:生物产业与化工科技相互借力升级
    目前全球所有的顶级化工www.ccin.com.cn企业都在投资生物技术研究,生物产业将成为增长最快的经济领域。在中国,以分子生物学、细胞生物学、发酵工程和酶工程为代表的生物技术在医疗、农业、能源、环保、食品、材料、纺织、建筑等领域起到重大促进作用。发展生物产业既依赖化工科技的突破,同时也将推进传统化工产业升级。  工业生物技术:  掀起绿色制造革命  生物能源、生物环保、生物制造等工业生物技术产业将是生物产业中的快速发展领域,也是我国应加强技术开发力度、及时跟进的新兴行业。提升现代发酵、生物催化等技术,打造工业生物技术产业,对于促进传统化工产业的升级改造、推进绿色制造业发展意义重大,是缓解化石能源紧张、保障国家能源安全、实施循环经济的迫切要求。到2020年,生物质能源占世界能源消费的比重将达到5%左右,生物基材料将替代10%~20%的化学材料,精细化学品的生物法制造将替代化学法的30%~60%。  发展生物产业,需要加强重大技术的基础研究和产业化应用,提高酶工程、发酵工程等生物技术水平,加快传统化学制造业的改造。重点包括开发生物燃料、溶剂、氨基酸与有机酸、功能性食品添加剂、生物材料、生化产品等,利用可再生的生物质原料生产乙醇、乳酸、1,3-丙二醇、1,4-丁二醇、琥珀酸等平台化合物,扩大乙烯、聚乳酸、纤维素等大宗原料化工品和生物材料生产规模,支持生物可降解溶剂、润滑剂、绿色表面活性剂、环氧树脂固化剂、聚酯(醚)多元醇等绿色精细化学品的产业化技术开发,注重赖氨酸、谷氨酸、苹果酸、木糖醇、柠檬酸等功能性食品与保健品生物合成开发规模。在生物环保领域,应加快推广应用发展生物漂白、生物制浆、生物制革和生物脱硫等绿色生产工艺新工艺、新设备,重点发展高性能的水处理絮凝剂、混凝剂等生物技术产品,鼓励废水处理、垃圾处理、生态修复生物技术产品的研究和产业化。  农用生物制品:  变革传统农化产业  农业是国计民生的基础,也是生物技术大展身手的舞台,特别是农药和化肥领域,发展以生物农药、生物化肥等农用生物制品,对于农业发展关系重大。  利用生物技术开发生物农药,具有资源来源广、低污染、低残留等优点。推广生物农药是实现现代农林业可持续发展、保护生态环境安全、发展绿色农业的重要途径。目前我国生物农药在诊断、制剂工艺、环境监测等环节上还缺乏配套技术,产业体系不健全,应重点利用生物技术进行病理、药理、代谢研发,制订生物农药标准规程等,加强生物农药企业创新能力和产业竞争力,提升微生物农药、植物源农药、生物化学农药、转基因生物农药和天敌生物农药开发技术,开展病毒制剂、真菌制剂、蛋白制剂、壳寡糖制剂等新型生物农药的产业化。  在化肥领域,针对传统化肥肥效快、利用率低的现状,利用生物技术可以有效提升化肥产品的使用效果,推进节能减排,实现产业更新升级。采用生物酶活化剂加入磷肥生成生物酶活化磷肥,可以减少土壤对磷的固定和氮的损失,提高磷的利用率和延长肥效,而将金属蛋白酶加入尿素中开发的多肽尿素,也可以有效提高氮肥利用率。  生物原药:  扩大规模问鼎高端  作为生物产业的重点和高端领域的生物原料药产业,我国暴露出产业规模小、自主创新能力弱、成果转化率低的问题。目前生化类原料药主要产品为抗生素、维生素、氨基酸、有机酸类等,很多产品科技含量低、附加值低、能耗高、污染高。特别是在生物技术原料药等高端领域,由于产业研发投入高、成果转化难度大,国内产品还主要以仿制为主。我国生物医药的技术专利明显偏少,上市的专利产品更是少之又少。目前全球生物技术专利中,美、欧、日分别占59%、19%和17%,包括中国在内的发展中国家仅占5%。  我国生物原药行业必须着力发展以现代前沿科技为依托的高新技术产品,转变现有生物原药企业产业生产方式,进一步加强自主创新能力,构建比较完善的产业链,尽快培育有核心竞争力的龙头企业和大批成长性良好的中小企业 形成一批有自主技术的大型生物企业,重点突破以促红细胞生成素、重组人胰岛素和粒细胞集落刺激因子为主要产品的重组白蛋白,以及单克隆抗体和疫苗等生物技术原料药产业。
  • CEM公司发布TRT-DCA SpheriTide新型固相多肽合成树脂
    CEM公司,一个全球领先的微波多肽合成仪和试剂生产商,很高兴给大家介绍一种新的专为碳端为羧酸的多肽进行固相多肽合成设计的所需通用树脂。通过使用三苯甲二氯乙酸类连接基(TRT-DCA),这种新型的树脂免除了第一个氨基酸在多肽合成中的预装载。相比与传统连接基做这类合成,TRT-DCA允许任何氨基酸的简单连接,避免了需要存储全部20种预装的树脂,同时对水解仍保持较高的稳定性。曾经,往羧基端连接基上连接第一个氨基酸是非常困难的,因为需要羟基作为亲核试剂(比如Wang树脂,HMPA树脂)。需要特定的条件,同时会产生副反应,包括差向异构化,二肽的形成,和不完全的偶联。因此,使用酸性连接基的树脂通常已经连接了第一个氨基酸。作为超高酸敏感的连接基(2-Cl-trityl, trityl)的一个优势,提供了一个更容易偶联的氯化物结构,然而这种结构对于水解非常敏感,对于长期使用来说,稳定性有限。 TRT-DCA连接基类似于酸敏感树脂,但提供一个对水解更稳定的结构。在连接第一个氨基酸之后,多肽合成过程中一直保留一个三苯甲基连接基。相比较Wang/HMPA连接基,三苯甲基庞大的空间结构有利于最小化二酮哌嗪和3-(1-哌啶基)丙氨酸构型的形成。 此外,三苯甲基的高酸敏感特性使得可以用适当的切割液,切割得到一个全保护的多肽序列。 高酸敏感树脂的使用通常仅限于温和的温度,以防过早的从树脂上解离。最近,CEM出台了一个新的基于碳二亚胺缩合剂的方法,可以在90° C下,基于高效固相多肽合成技术(HE-SPPS)使用三苯甲基树脂得到更高的多肽产率。这个方法被发现可以增加多肽的纯度,超越现有的任何活化方法,在高温下也能提供诸如磷酸化多肽的敏感序列。总之,新的TRT-DCA SpheriTide?树脂和新的碳二亚胺耦合方法使得多肽化学家充分利用该酸敏树脂对羧基肽进行高效固相多肽合成。 CEM商务开发主任Jonathan M. Collins说:“TRT-DCA SpheriTide树脂和新开发的碳二亚胺耦合方法的结合对于高温下简化和改善多肽合成是非常有用的,这不仅免除了购买预装树脂的需要,而且通过树脂自保护防止副反应的发生,提高了多肽的纯度。”CEM的Liberty Blue? Peptide Synthesizer 现在包括一个连接TRT-DCA SpheriTide树脂的自动化标准方法。Trityl-DCA SpheriTide树脂现在可以在线购买。 CEM公司,一家坐落在美国北卡罗莱纳马修斯的公司,是一个为世界顶级实验室提供科学解决方案的世界级领先供应商。公司在英国,德国,意大利,法国,和日本均拥有子公司并有全球分销商网络。CEM为生命科学、分析实验室和过程控制领等域设计和制造先进仪器。公司的产品广泛应用与许多行业,包括制药、生物技术、化学和食品加工、以及科研。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 聚焦有毒有害化学品废物处置与场地修复——POPs论坛2021分会报告集锦(二)
    仪器信息网讯 2021年5月17 - 18日 ,第十六届持久性有机污染物论坛暨化学品环境安全大会 (简称“POPs论坛2021”)在夏都西宁召开。本次会议主题为“聚焦新污染物环境风险与控制”,除大会报告之外,会议共设立9个分分论坛,其中包含“有毒有害化学品废物处置与场地修复技术”分论坛,该分论坛部分精彩报告整理如下。分论坛主持人:中国矿业大学教授 冯秀娟分论坛主持人:北京师范大学教授/中国环境科学学会POPs专委会委员 刘希涛报告人:武汉理工大学教授 张其武报告题目:机械力化学与POPs的降解——回顾与展望报告重点介绍机械力化学反应理论研究、无机材料合成机理以及其在环境领域中的实际应用。方解石是最常见的天然碳酸钙矿物,可考虑用方解石来沉淀净化大部分金属盐废液,但其化学性质稳定,在自然状态下,只能对金属离子产生表面化学吸附的作用,单位处理量很低,因此需要活化手段提高其反应活性,使之与金属离子之间发生类似Ca(OH)2的摩尔当量的化学反应。张其武教授课题组利用行星式球磨机对方解石进行研磨活化,研究了在研磨过程中方解石与不同的重金属硫酸盐之间的化学反应,具体包括铁(Fe)、锌(Zn)、铜(Cu)、镍(Ni)和镉(Cd)的二价硫酸盐。根据反应特征和机理,在持久性有机污染物(POPs)无害化处理、生物质制氢、废料中贵重金属回收利用等方面做了较为深入的研究。报告人:浙江大学教授 闫克平报告题目:低温等离子体基础及其在环境方面的应用 报告从近年来电厂超低排放过程中面临的挑战出发介绍了低温等离子体(NTP)在除尘、脱硫、脱硝过程中的应用。具体的应用实例包括垃圾焚烧尾气净化机灰资源化、半干法脱硫灰土壤POPs修复添加剂、焦化厂焦化污染物处置等。除此之外,低温等离子体还将在灭菌消毒和肿瘤消融,超宽带震源和海洋勘探方面发挥重要作用。报告人:北京航空航天大学教授 孙轶斐报告题目:基于过渡金属活化过硫酸盐的PAHs降解机制报告介绍了我国PAHs土壤污染的来源及现状、PAHs污染土壤修复面临的挑战、以及PAHs污染土壤修复的技术发展方向。从修复类型上来看,化学修复由于修复周期短、成本低等特点是目前我国土壤修复的主流技术,利用活化过硫酸盐技术进行PAHs降解可能会生产稳定PAHs加氧衍生物,且存在PAHs开环较难,降解不彻底等问题。孙轶斐课题组通过研发多活性组分金属活化剂研发了多种环境友好型、低成本、高活性双金属活化过硫酸盐,可有效用于修复多种PAHs污染土壤。报告人:中南民族大学讲师 雷鸣报告题目:高效活性氢体系还原降解卤代有机污染物 报告中介绍了多种高效还原降解卤代有机污染物的活性氢体系。譬如,建立了Cu/TiO2-N2H4H2O高效还原BDE47的催化转移加氢体系,BDE47能再3秒内去除率达到100%,该体系无需加能量辅助,无需惰性气体保护,处理容量大且脱溴彻底。报告人:中国矿业大学教授 冯秀娟报告题目:高浓度复杂重金属冶炼渣无害化处置技术及应用 有色金属矿冶炼产生的含砷废渣,由于却缺乏合适的处理方法,硫化砷渣和中和渣大量囤积贮存或简单填埋处理,占据厂房空间大,且对环境造成污染,对人体健康存在威胁。因此,砷渣的处置已成为亟待解决的问题。报告中介绍了一种用于高浓度多金属的硫化砷渣的处理工艺。该工艺通过调浆、氧化剂、亚铁盐、生石灰和嗜铁还原菌各步骤及顺序相互配合,最终能对高浓度多金属的硫化砷渣进行有效的处理。报告人:清华大学教授 王慧报告题目:POPs污染场地生物修复策略与过程监控 多环芳烃(PAHs)是土壤环境中常见的一类持久性有机污染物,可通过挥发、光解、微生物降解等方式而去除。PAHs微生物降解的影响因子主要为降解菌的数量和活性。准确评估污染环境中PAHs的降解潜能,对于PAHs污染治理具有重要的理论意义和技术指导意义。王慧教授课题组通过对PAH降解功能标记基因的筛选及特异性评估,得出pahE比pahAC更适合作为功能标记基因以研究PAH降解菌的生态功能的结论,并通过对PAH降解菌代谢机理的研究,筛选出PAHs厌氧降解核心菌群——PheM1,该菌群对多种PAHs物质都具有卓越降解能力,可通过特殊处理用于PAHs污染场地强化生物修复。报告人:中科院广州地球化学研究所教授 冉勇报告题目:沉积物有机质结构和成分对Na2S2O8氧化降解苯并(a)芘的作用 本研究选择珠江口和南海海域中的五个沉积物,研究14C标记苯并(a)芘(BaP)在不同沉积物中被过硫酸钠氧化效率的作用,同时采用固态13CP/MAS NMR和CO2吸附技术,表征氧化前后样品有机质的结构和微孔特性的变化。结果表明,海源沉积物有机质比陆源沉积物有机质更难被降解,且稳定有机质结构中的脂类化合物、微孔对于保护其中的BaP免于被化学降解起到重要的作用。 以下为研究生报告:报告人:南京大学 胡建华报告题目:Fe@PDA对三氯生的还原-氧化耦合降解报告人:北京师范大学 崔晓玲报告题目:水热处理铁铝泥活化过一硫酸氢盐降解水中的吡虫啉报告人:深圳大学 李泓波报告题目:单原子镍催化剂的制备及其水相电化学还原三溴乙酸报告人:中科院广州地球化学研究所 张永利报告题目:H2O2氧化法修复壬基酚污染的沉积物报告人:北京师范大学 黄小凯报告题目:铜镁铁层状金属氧化物活化过硫酸盐降解水中吡虫啉报告人:东莞理工大学 卢金成报告题目:电絮凝和电氧化技术联合处理胶黏剂废水报告人:北京师范大学 任文博报告题目:热活化过二硫酸盐降解水中西玛津的研究报告人:中科院广州地球化学研究所 孔祥兰报告题目:对蓝藻中难降解有机质的结构表征以及热演化研究报告人:北京师范大学 赖玲报告题目:生物炭吸附氧化去除水中三价锑的机制研究
  • Nature子刊:北大叶新山团队液相糖自动合成仪获重大突破
    2022年9月29日,北京大学天然药物及仿生药物国家重点实验室叶新山研究团队在《自然-合成》(Nature Synthesis)上在线发表了题为《自动液相乘法合成复杂聚糖到1080糖》(Automated solution-phase multiplicative synthesis of complex glycans up to a 1,080-mer)的研究论文,报道了关于糖类化合物合成领域的突破性进展。其团队基于“预活化”一釜多组分糖基化反应和液相乘法合成的原理,自主研发了新型双模式液相糖自动合成仪;并利用该自动合成仪合成了各种复杂结构的寡糖和多糖,其中合成多糖的分子尺寸达到了惊人的1080糖(1080-mer),将结构均一的多糖分子的合成提升到了一个新的高度,远超核酸(到200-mer)和蛋白质(到472-mer)的合成水平。鉴于该成果在大分子合成及其应用方面的重要意义,《自然》(Nature)杂志专门配发了对这一工作的亮点评述。在自然界中糖类物质无处不在,几乎参与了多细胞生物的全部生命过程,如受精、着床、分化、发育、免疫、感染、癌变、衰老等等。由于糖类化合物结构固有的复杂性,想要获得结构明确、均一的聚糖类化合物,合成难度大,往往需要具有高度专业技能的人员通过手工合成来完成,耗时费力,这严重制约着糖科学的发展;而对于分子尺寸更大、结构更为复杂的多糖类化合物的合成,更是一项极具挑战性的工作。目前国际上糖类化合物的自动合成技术的发展仍处于初级阶段,尤其是液相糖自动合成仪的研制在国内外基本上还是空白,因此糖类化合物的合成范式亟待变革。叶新山团队在前期发展了基于糖基供体“预活化”的一釜连续寡糖合成策略,从而奠定了糖自动合成仪研制的基础。合成仪的硬件包括自动合成系统(包含自动进样系统和合成辅助系统)、在线监测系统和可编程逻辑控制系统,通过可编程逻辑控制系统将自动合成系统和在线监测系统进行耦合,成功设计了新型双模式液相糖自动合成仪的整机框架,实现了第一代原型机的顺利组装。软件方面,可编程逻辑控制系统受上位机控制,基于Labview语言程序设计研发了实用的特色上位机软件控制系统(Ye Glycosoft),完成对合成仪的整机控制和调试,实现了合成仪的稳定运行。为了验证所研制的合成仪的功能,他们利用该合成仪进行了如下工作:(1)在普通活化模式或者光介导活化模式下,快速自动合成了具有重要生物活性、包含各种糖型和糖苷键连接方式的寡糖化合物库;(2)以克级规模高收率地自动合成了带有保护基的抗凝血糖药物磺达肝葵钠五糖;(3)以单糖为原料,成功实现了一釜十组分自动偶联反应得到聚阿拉伯十糖;在此基础上利用自动乘法合成策略,自动合成了结构均一的由1080个单糖单元所组成的多糖阿拉伯聚糖,而阿拉伯聚糖是植物和病原菌细胞壁的重要成分。这是目前人工合成的最大最长的多糖分子,使得代表着人工合成均一结构生物大分子复杂度的单体组成数目首次达到了四位数水平,在多糖合成领域具有重要的里程碑式意义。该合成仪为非专业人员提供了一个组装目标聚糖的平台,填补了国内外在液相糖合成仪研制方面的空白,将为糖科学及其在医药和材料领域的应用提供新的有效的工具。北京大学药学院博士后姚文龙为该研究论文的第一作者,叶新山为论文的通讯作者;熊德彩研究员和叶新山团队的部分研究生同学参加了该研究工作。该研究工作得到了国家重点研发计划、国家自然科学基金、国家重点实验室仪器研制等项目的资助。作者简介:姚文龙,北京大学药学院2016级博士、2020级博雅博士后。研究兴趣为糖化学、糖药物和化学合成自动化与智能化,已在Nat. Synth、J. Am. Chem. Soc.等杂志发表学术论文5篇;申请专利7项,获授权专利4项;主持国自然青年基金1项。叶新山,北京大学药学院教授、博士生导师,北京大学药学院副院长,国家杰出青年科学基金获得者。从事糖化学、糖药物化学和糖化学生物学研究,发表论文180余篇,获授权发明专利17件。部分成果获国家自然科学二等奖、中国药学会科学技术一等奖、第十三届吴阶平-保罗杨森医学药学奖、张树政糖科学杰出成就奖等奖励。目前担任Chinese Chemical Letters杂志副主编、Journal of Chinese Pharmaceutical Sciences杂志执行主编,兼任中国疫苗行业协会糖疫苗专业委员会主任委员、中国化学会糖化学专业委员会副主任委员等职务。
  • 2秒! 一种有机膦类杀菌剂的绿色连续合成!
    背景介绍三乙膦酸铝是一种有机磷类高效、广谱、内吸性低毒杀菌剂,可防治由单轴霉属、霜霉属、疫霉属引起各种病害的果树、蔬菜、花卉及经济作物。该药市场需求量较大。据文献及专利报道,合成三乙膦酸铝原药的方法是以三氯化磷、乙醇为原料,经酯化反应制得亚磷酸二乙酯(简称DEP)。DEP和氨水通过胺化反应生成亚磷酸二乙基铵盐,然后与硫酸铝进行复分解反应得到。目前市场报道产品总收率最高为95%,含量为98%。传统釜式工艺,具有诸多问题:【危险】由于酯化反应放热剧烈,易造成局部过热或系统飞温现象,存在反应失控风险;【杂质】在有水、强酸性及温度高的条件下,随着反应时间的延长,DEP极易分解,副产物多;【耗时】胺化反应工艺目前多采用滴加过量的氨水或DEP的间歇式生产方式,其造成原料的浪费且反应时间长达9h以上;【三废】原料的不充分反应造成三废排放量大,给环保处理造成困难,亦不利于绿色清洁化生产。以康宁反应器为代表的连续流微通道反应器,通过对传质与传热过程进行强化,大幅缩短了反应时间,提高了反应效率。同时显著提高了体系温度和浓度的均一性及可控性,极大缓解了局部过热或反应物浓度过大的问题,降低了副反应的发生,提升反应的本质安全性。本篇文章将为您介绍研究者重点利用康宁反应器技术在传质和传热方面的优势,开发出的条件温和、反应高效、转化率高、适宜工业化生产的绿色合成3步新工艺。研究过程一. 三乙膦酸铝的3步合成工艺图1.三乙膦酸铝合成路线连续流微通道反应器中合成中间体1图2. 中间体1的合成过程图【编者语】康宁反应器较釜式反应器具有百倍的传质提升和千倍的传热提升,反应物反应完全,并且可以快速将反应生成中间体1移出反应体系,极大降低其分解产生副产物的可能性。 2. 连续流微通道反应器中合成中间体2图3. 中间体2的合成过程图【编者语】康宁反应器可以实现对物料的精准控制,结合高效传质和传热特性,反应物可按照最佳反应比例实现高效反应,大大提高反应转化率的同时减少物料的浪费及三废的产生。 3. 三乙膦酸铝产品的合成向中间体2中滴加浓硫酸调节pH至5.5,加入0.17mol硫酸铝,于80℃保温反应1 h,降温至20℃以下抽滤,滤饼淋洗、干燥后得三乙膦酸铝为117.6g,纯度为98.8%,产品总收率为98.5%,较釜式提高3.5个百分点。二. 连续流工艺优化1. 反应停留时间的优化1.1 中间体1反应停留时间的优化A、B泵流速比设置为1:2,分别泵入微通道反应器进行反应,反应温度设为20℃,停留时间分别设为2、4、6、8、10 s,研究停留时间对中间体1含量的影响。图4. 停留时间对中间体1含量的影响从图4可以看出,在微通道反应器中,三氯化磷和无水乙醇的反应速率大幅提高,数秒内即可完成反应。随着反应停留时间的延长,中间体1的含量逐渐降低。优选反应停留时间为2s。1.2中间体2反应停留时间的优化C、D泵流速比设置为1:1.06,分别泵入微通道反应器进行反应,反应温度设为50℃,停留时间分别设为2、5、10、15、20 s,研究停留时间对中间体2转化率的影响。图5. 停留时间对中间体2含量的影响从图5可以看出,在微通道反应器中,中间体2在10s时转化率即可达到100%,合成时间从6~9 h缩短至秒级单位内,从生产效率和能耗角度考虑,中间体2的合成优选反应停留时间为10s。2. 反应温度的优化分别采用的1.1和1.2微通道反应系统和优化的反应停留时间,研究了反应温度对中间体1含量和中间体2转化率的影响。最终中间体1优选反应温度为20℃,中间体2选择反应温度为35℃。研究结果采用连续流微反应技术,在反应温度为20℃,反应停留时间2s时合成中间体1;反应温度为35℃,反应停留时间10s时合成中间体2,经复分解反应得到三乙膦酸铝,产品纯度和收率均达到98%以上。该连续流工艺与传统釜式工艺相比,速度更快,转化率更高,显著降低了副反应的发生,同时提升了安全性,符合绿色化工的发展方向。康宁反应器无缝放大的技术优势,有助于帮助企业快速实现工业化生产,减少中试的时间和资金成本。欢迎您关注“康宁反应器技术”公众号,了解连续流工艺开发及工业化实施详情!参考文献:现代农药 2021年第20卷第5期,17-18页
  • 前沿 | 安捷伦质谱助力七叶树药效成分研究,揭示七叶皂苷和七叶素生物合成进化机制
    2023 年 10 月,陈士林团队在《自然-通讯》(Nature Communications) 发表“Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis”的文章,作者采用多组学研究策略和质谱技术揭示了天然药物七叶皂苷和七叶素特异性合成的分子机制,并在大肠杆菌中实现了七叶素的绿色生物合成。研究背景现代植物化学和药理学的研究证明,草药中特异性积累的有效成分是其发挥药效的物质基础,七叶树属植物是一种温带北半球的多年生树木,该属植物由于分别含有药用活性成分七叶皂苷和七叶素被广泛应用于临床。七叶皂苷(玉蕊醇型三萜皂苷)制剂已经在临床中以口服、静脉注射和局部涂抹的方式广泛使用,用于治疗慢性静脉功能不全、水肿和痔疮等疾病。七叶素(香豆素类成分),也被称为 6,7- 二羟基香豆素 -6-O- 葡萄糖苷,与地高辛一起被广泛用作常见的眼药水七叶洋地黄双苷滴眼液的原料,以缓解眼疲劳、眼痛和干眼等症状。然而,目前对于这两种有效成分的合成、调控和转运机制的分子遗传学研究还相对薄弱。研究结果此次发表的研究通过空间代谢组揭示七叶皂苷在七叶树属植物娑罗子的子叶中特异性积累,解析了中华七叶树高质量基因组,并通过代谢组学、转录组学以及合成生物学技术等方法,成功解析七叶皂苷生物合成途径中关键的环化、氧化、酰基化和葡萄糖醛酸化等催化步骤。同时,课题组通过全被子植物基因组层面共线性研究发现该类三萜代谢基因簇的招募和进化模式,更好地理解了玉蕊醇型三萜类化合物在无患子目植物中的形成机制。针对七叶素的合成途径,研究团队根据关键基因在基因组中存在的拷贝数目及表达模式,筛选和验证了合成过程中关键基因的功能,在大肠杆菌中重建了七叶素的生物合成途径并完成了七叶素的绿色合成。研究结论本文以具有重要药用价值的七叶树为研究对象,综合运用基因组、转录组、代谢组、空间代谢组以及合成生物学等多种技术手段,揭示了七叶树中高价值代谢物七叶皂苷和七叶素的生物合成及进化过程。其意义在于,一方面为推动这些活性化合物的生物合成研究进展以促进其生产应用提供了良好的基础,另一方面为其他药用树木代谢物相关研究提供了良好的研究范式。专家团队此次发表的论文的共同第一作者为中国中医科学院中药研究所孙伟、尹青岗、万会花、高冉冉,共同通讯作者是中国中医科学院/成都中医药大学陈士林、北京化工大学孙新晓、东北林业大学徐志超。本草基因组学团队负责人陈士林院士 2022 年组织发布了千种本草基因组研究计划,在《创新》(The Innovation)、《自然-植物》(Nature Plants)、《分子植物》(Molecular Plant)、《自然-通讯》(Nature Communications) 等国际著名刊物发表了一系列的草药基因组学研究成果,极大地推动了学术界从分子遗传学层面理解中草药中有效成分的合成、转运、积累和调控,助力天然产物药物的绿色生物合成以及高含量药效成分品种的精准选育。参考文献:[1] Sun W, Yin Q, Wan H, et al. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis[J]. Nature communications, 2023, 14(1): 6470.
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 大连化物所等发展出碱(土)金属钌基配位氢化物合成氨催化剂新体系
    近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍、郭建平团队,与丹麦技术大学教授Tejs Vegge团队、大连化物所研究员李海洋团队/江凌团队合作,在催化合成氨研究方面取得进展。该研究首次将配位氢化物材料应用于催化合成氨反应中,开发出一类新型碱(土)金属钌基三元氢化物催化剂,实现了温和条件下氨的催化合成。  氨是重要的化工原料和颇具前景的能源载体,实现温和条件下氨的高效合成具有重要科学意义和实用价值。以化石能源驱动的现有合成氨工业是高能耗、高碳排放的过程。因此,在以可再生能源驱动的“绿色”合成氨过程中,低温低压高效合成氨催化剂的开发是核心技术,也是科研工作者追求的目标。  本工作中,科研团队开发的碱(土)金属钌基三元氢化物(Li4RuH6和Ba2RuH6)催化剂材料可实现温和条件下氨的催化合成。该催化剂材料是一种离子化合物,由Ru的配位阴离子[RuH6]4-和碱(土)金属阳离子Li+或Ba2+构成,在低温(573K)、低压(10bar)下具有优异的催化合成氨性能。当反应温度低至100oC时,Ba2RuH6催化剂仍有可检测的催化活性。研究发现,该类三元氢化物催化剂材料的合成氨反应遵循氢助解离式机制,其所有组分均参与合成氨反应,即富电子的[RuH6]4-是N2活化位点,H-是电子和质子传递载体,Li+或Ba2+通过稳定NxHy物种降低反应能垒,通过多组分协同催化,使N2和H2以能量较优的反应路径转化为NH3。  该类三元氢化物催化剂作为独特的化合物催化剂,在组成、结构、反应动力学性质、活性中心作用机制等方面显著不同于常规多相合成氨催化剂,而与均相合成氨催化剂存在一定关联,这为多相固氮和均相固氮研究架起了桥梁。该研究丰富了合成氨催化剂体系,并提出了“富电子、多组分活性位点”合成氨催化剂设计策略,为进一步探寻低温低压高效合成氨催化剂提供了新思路。  相关研究成果以Ternary Ruthenium Complex Hydrides for Ammonia Synthesis via the Associative Mechanism为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家自然科学基金委员会基础科学中心项目“空气主份转化化学”、中科院青年创新促进会等的支持。  论文链接
  • 流动合成仪搭配反应器合成“肽”Easy了!
    近日(1月26日),中国国家药监局(NMPA)官网公示,诺和诺德(Novo Nordisk)司美格鲁肽片的新药上市申请已获得批准,用于成人2型糖尿病治疗。司美格鲁肽片是一款口服GLP-1受体激动剂药物(GLP-1RA),它的出现打破了2型糖尿病患者每天或每周需要接受GLP-1RA注射的格局,为他们控制血糖提供了侵入性更小的便捷治疗选择。 图片来源:中国国家药监局官网多肽药物的发展现状与合成什么是多肽药物?多肽药物作为一种特殊的蛋白质,由多个氨基酸通过肽键连接而成,通常由10~100个氨基酸组成,具有独特的空间结构。相对于小分子和蛋白质药物,多肽药物具有更强的生物活性和特异性,广泛应用于抗肿瘤、内分泌和代谢领域。多肽药物备受医药行业关注全球已有80多种多肽药物上市。GLP-1目前在医药行业可谓备受瞩目,犹如当下备受欢迎的“炸子鸡”。一方面,GLP-1受体激动剂已经取得了显著的市场认可,甚至在2023年超越了胰岛素,成为全球范围内广泛应用于2型糖尿病治疗的主流药物;另一方面,GLP-1受体激动剂在减肥市场上展现出巨大的潜力,使其成为全球范围内备受瞩目的焦点。多肽药物的合成方法尽管技术进步推动了多肽药物的发展,但人工合成的复杂性逐年增加。多肽合成主要采用生物合成法和化学合成法。● 生物合成法包括天然提取法、酶解法、发酵法和基因重组法。然而,工艺开发大多周期长,粗产品收率低;● 肽还可以通过不同的化学途径合成,液相和固相均可,可以批量生产也可以流动合成。流动合成相对于批量方法的优势在于在线光谱监测、高效混合以及对物理参数的精确控制,从而限制副反应的发生。 资料来源:Chemical Reviews,平安证券研究所Vapourtec固相肽合成方案自2017年以来,Vapourtec一直致力于开发受控可变床流动反应器(VBFR),可容纳树脂生长,减少机械损伤,提高偶联和去保护效率。该反应器实时生成内联数据,支持即时调整合成过程,如通过双重偶联提升肽质量和产量。实时监测密度并自动调整填充床,0.5ul分辨率监测体积变化。目前,VBFR反应器在肽和寡糖合成研究中已取得成功! Vapourtec R系列流动合成仪搭配VBFR[1]本文展示了Vapourtec R系列流动合成仪的能力,该系统配备了一种新型流动反应器——可变床流动反应器,用于进行连续流动的固相肽合成。通过选择治疗糖尿病的30氨基酸的类胰高血糖素样肽(GLP-1)作为研究对象,我们通过优化树脂活性位点与泵送的试剂之间的接触表面,保持固体介质的持续填充,实现了更高效的合成。可变床流动反应器的应用不仅减少了溶剂用量,还确保了更高的合成效率。整体方案下,GLP-1 30氨基酸的粗品纯度在不到5小时内达到了82%。方案详情与结论GLP-1是一种30个氨基酸的激素,对糖尿病治疗具有重要意义。在合成中,ChemMatrix树脂被广泛用于保持肽溶解,有助于试剂扩散。该树脂适用于复杂肽合成,因仅由聚乙二醇(PEG)链组成。其相对两亲性使其在化学和机械上稳定,提供比聚苯乙烯树脂更好的性能。SPPS协议已适应两种树脂,确保合成挑战性肽(如GLP-1)具有高粗品纯度和产量。 用于GLP-1的R-Series示意图主要的R2C+泵用于自动加载样品环的自动进样器,传递偶联试剂。次要的R2C+泵传递去保护溶液。VBFR在R4加热模块中设置。双核反应器将去保护和偶联反应器放在一个反应器芯片中。氨基酸在1.6ml反应器体积中活化,哌嗪在0.8ml反应器体积中预热。两个输出连接到VBFR反应器底部。使用SF-10泵作为主动BPR,系统压力保持不变。聚四氟乙烯过滤器确保树脂在VBFR中保持。Vapourtec的扩散板确保试剂均匀流过过滤器。Vapourtec 采用CF-SPPS反应协议,适用于0.08-0.11 mmol规模。VBFR-SPPS使用Dual-CoreTM PFA管反应器和VBFR反应器,装载200 mg树脂。通过流动DMF,使树脂膨胀到1.4ml/min,加热至80℃。系统压力为2.5bar。CF-SPPS方案A和B包括去保护和偶联步骤,采用不同参数。最后,通过DMF、DCM、MeOH洗涤,TFA裂解,分离肽,使用HPLC和质谱分析。典型循环中,VBFR体积在去保护和偶联过程中相应调整。结论流动化学在手工操作、反应速率和转化率方面相对于传统的批量SPPS(固相合成)路径具有多重优势。使用流动化学,GLP-1已经成功在不到5小时的时间内合成,只需少于1升的DMF(二甲基甲酰胺),通过HOBt和DIC激活。最终产物的原始纯度超过82%,产率为71%。总结在整个合成过程中,控制树脂的填充密度至关重要。可见,VBFR在合成困难序列时非常有优势,获得的宝贵数据将为工艺科学家提供指导,对于合成工艺的改进和优化提供了有益的数据。VBFR反应器特点玻璃、聚四氟乙烯(PTFE)、氟聚合物(PFA)和卡尔莱兹(Kalrez)材质与强酸碱有抗腐蚀性;全自动体积变化;可加热和冷却,温度范围:-20℃~150℃;工作体积范围从0.3ml到20ml;有三种规格可选:6.6mm、10mm和15mm孔径的反应器;体积变化测量分辨率为0.5微升(6.6mm孔径反应器);最大工作压力为20bar(6.6mm孔径反应器);VBFR可以与Vapourtec的R-Series软件接口,体积变化可被记录和图表化。Vapourtec VBFR应用领域 在连续流中使用异质试剂(例如有机金属试剂的形成);在易于膨胀的支持体上使用固定的异质催化剂(例如聚苯乙烯树脂);固相合成;捕获和释放的纯化;肽合成(本文中已展示);寡核苷酸合成;糖基组装。如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技,可拨打热线400-006-9696或点击在线咨询。[1]SLETTEN E T, NUNO M, GUTHRIE D, et al. Real-time monitoring of solid-phase peptide synthesis using a variable bed flow reactor [J]. Chemical Communications, 2019, 55(97): 14598-601.Vapourtec英国Vapourtec是德祥集团资深合作伙伴之一。Vapourtec成立于 2003年,已有20年生产经验。Vapourtec 作为专业生产流动化学系统的厂家,一直致力生产实验室级别的流动化学系统的研发生产。Vapourtec设计和生产流动化学合成系统持续领先于市场,提供了新的连续化学合成能力,并且始终保持着技术兼容性,从而使得即使最早期的用户仍可利用最新技术发展提供的优势。目前已经Vapourtec流动合成仪证明有效的反应包括:硝化、氧化、还原、偶合、重排、酰胺化、溴化、加氢等。广泛适用于医药,农药,染料,香料,有机光电材料,有机磁性材料,纳米材料,表面活性剂等精细化工中间体和其它特种助剂。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 吉林大学第一医院1100.00万元采购化学合成仪
    详细信息 吉林大学第一医院PET-CT\MR选配件采购项目公开招标公告 吉林省-长春市 状态:公告 更新时间: 2022-10-28 吉林大学第一医院PET-CT\MR选配件采购项目公开招标公告 2022年10月28日 15:41 公告信息: 采购项目名称 吉林大学第一医院PET-CT\MR选配件采购项目 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 吉林大学第一医院 行政区域 市辖区 公告时间 2022年10月28日 15:41 获取招标文件时间 2022年10月31日至2022年11月04日每日上午:8:30 至 11:30 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥1000 获取招标文件的地点 长春市国际金融中心C座10层 1013室(人民大街3518号) 开标时间 2022年11月21日 09:00 开标地点 长春市国际金融中心C座10层 1013室(人民大街3518号) 预算金额 ¥1100.000000万元(人民币) 联系人及联系方式: 项目联系人 咸婷婷 项目联系电话 0431-80543872 采购单位 吉林大学第一医院 采购单位地址 长春市新民大街1号 采购单位联系方式 付老师、0431-88782235 代理机构名称 中咨环球(北京)工程咨询有限公司 代理机构地址 长春市国际金融中心C座10层 1013室(人民大街3518号) 代理机构联系方式 咸婷婷、0431-80543872 项目概况 吉林大学第一医院PET-CT\MR选配件采购项目 招标项目的潜在投标人应在长春市国际金融中心C座10层 1013室(人民大街3518号)获取招标文件,并于2022年11月21日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZZCC2022-42 项目名称:吉林大学第一医院PET-CT\MR选配件采购项目 预算金额:1100.0000000 万元(人民币) 最高限价(如有):1100.0000000 万元(人民币) 采购需求: 包号 品目名称及数量 是否接受进口产品 本包预算金额 (人民币万元) 简要技术参数 备注 01 PET-CT\MR选配件 1批 是 1100 Asir-V console超低剂量迭代处理工作站、附加GPU处理引擎、核医学专用工作站、Fastlab2化学合成仪、碳标-化学合成仪、合成热室1、合成热室2、专用稳压电源、专用防磁监控系统、专用防磁语音系统,详见招标文件第五章采购需求 备注:本项目采购标的对应的《中小企业划型标准规定》所属行业为:制造业 合同履行期限:进口产品为合同签订生效之日起90天内完成供货及安装;国内产品为合同签订生效之日起60天内完成供货及安装。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目非专门面向中小企业采购项目 3.本项目的特定资格要求:3.1投标人须是中华人民共和国境内注册,具有独立法人资格或其他组织,具备有效的营业执照。投标人须有投标产品的供应能力、能满足采购内容的技术要求和服务要求;3.2投标人须具有良好的商业信誉和健全的财务会计制度;3.3投标人须具有依法缴纳税收和社会保障资金的良好记录;3.4参加采购活动前三年内,在经营活动中没有重大违法记录;3.5被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法失信主体的、被 “中国政府采购网 ”网 站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的投标人,不得参与本项目的政府采购活动;3.6与采购人存在利害关系可能影响采购公正性的法人、其它组织或者个人,不得参加投标;单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一包的投标或者未划分包的同一招标项目的投标;3.7为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的投标人及其附属机构,不得再参加本采购项目的投标活动;3.8投标人如为制造商须具备《医疗器械生产许可证》或《医疗器械生产备案凭证》;3.9投标人如为代理商须具备《医疗器械经营许可证》或《医疗器械经营备案凭证》; 3.10投标产品应具备有效的《中华人民共和国医疗器械注册证》或《医疗器械备案凭证》; 3.11符合法律、行政法规规定的其它要求。 三、获取招标文件 时间:2022年10月31日 至 2022年11月04日,每天上午8:30至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:长春市国际金融中心C座10层 1013室(人民大街3518号) 方式:投标人按获取招标公告第六条 第1项 要求现场获取招标文件,长春市国际金融中心C座10层 1013室(人民大街3518号)。 售价:¥1000.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年11月21日 09点00分(北京时间) 开标时间:2022年11月21日 09点00分(北京时间) 地点:长春市国际金融中心C座10层 1013室(人民大街3518号) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.满足资格条件要求的潜在申请人领购招标文件时应持以下资料: 1.1《营业执照》(三证合一); 1.2针对本项目及对应编号的法人代表授权书并加盖公章(附法人及被授权人身份证明); 1.3提供国家企业信用信息公示系统网站的基础信息截图(包含 营业执照信息 、 股东及出资信息 、 主要人员信息 及 变更信息 ); 1.4提供近三年内(本项目投标截止期前)①未被 信用中国 网站列入失信被执行人和重大税收违法失信主体的;②未被 中国政府采购网 网站列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的证明; 1.5投标人需提供《医疗器械生产企业许可证》或《医疗器械生产备案凭证》或《医疗器械经营企业许可证》或《医疗器械经营备案凭证》; 2.采购项目需要落实的政府采购政策: 2.1按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据投标截止时间 信用中国 网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的信息,对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝参与政府采购活动; 2.2鼓励节能、环保政策:依据《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能 产品、环境标志产品政府采购执行机制的通知(财库(2019)9 号)》执行; 2.3根据《政府采购促进中小企业发展管理办法》(财库[2020]46号)规定、《关于进一步加大政府采购支持中小企业力度的通知》(财库[2022]19号),本项目对符合规定的小微企业报价给予10%的扣除,用扣除后的价格参加评审。 2.4根据《关于政府采购支持监狱企业发展有关问题的通知》规定,在政府采购活动中,监狱企业视同小型、微型企业,享受预留份额、评审中价格扣除等政府采购促进中小企业发展的政府采购政策。 2.5根据《关于促进残疾人就业政府采购政策的通知》规定,在政府采购活动中,残疾人福利性单位视同小型、微型企业,享受预留份额、评审中价格扣除等促进中小企业发展的政府采购政策。 注:中小企业参加政府采购活动,应当出具本办法规定的《中小企业声明函》,否则不得享受相关中小企业扶持政策。监狱企业参加政府采购活动时,应当提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件。残疾人福利性单位在参加政府采购活动时,应当按规定提供《残疾人福利性单位声明函》,并对声明的真实性负责。未按要求提供相应材料的,不享受相应的优惠政策;以上政策不重复享受。 3.发布公告的媒介:本项目招标公告在《中国政府采购网》上发布。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:吉林大学第一医院 地址:长春市新民大街1号 联系方式:付老师、0431-88782235 2.采购代理机构信息 名 称:中咨环球(北京)工程咨询有限公司 地 址:长春市国际金融中心C座10层 1013室(人民大街3518号) 联系方式:咸婷婷、0431-80543872 3.项目联系方式 项目联系人:咸婷婷 电 话: 0431-80543872 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:化学合成仪 开标时间:2022-11-21 09:00 预算金额:1100.00万元 采购单位:吉林大学第一医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:中咨环球(北京)工程咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 吉林大学第一医院PET-CT\MR选配件采购项目公开招标公告 吉林省-长春市 状态:公告 更新时间: 2022-10-28 吉林大学第一医院PET-CT\MR选配件采购项目公开招标公告 2022年10月28日 15:41 公告信息: 采购项目名称 吉林大学第一医院PET-CT\MR选配件采购项目 品目 货物/专用设备/医疗设备/其他医疗设备 采购单位 吉林大学第一医院 行政区域 市辖区 公告时间 2022年10月28日 15:41 获取招标文件时间 2022年10月31日至2022年11月04日每日上午:8:30 至 11:30 下午:13:00 至 16:00(北京时间,法定节假日除外) 招标文件售价 ¥1000 获取招标文件的地点 长春市国际金融中心C座10层 1013室(人民大街3518号) 开标时间 2022年11月21日 09:00 开标地点 长春市国际金融中心C座10层 1013室(人民大街3518号) 预算金额 ¥1100.000000万元(人民币) 联系人及联系方式: 项目联系人 咸婷婷 项目联系电话 0431-80543872 采购单位 吉林大学第一医院 采购单位地址 长春市新民大街1号 采购单位联系方式 付老师、0431-88782235 代理机构名称 中咨环球(北京)工程咨询有限公司 代理机构地址 长春市国际金融中心C座10层 1013室(人民大街3518号) 代理机构联系方式 咸婷婷、0431-80543872 项目概况 吉林大学第一医院PET-CT\MR选配件采购项目 招标项目的潜在投标人应在长春市国际金融中心C座10层 1013室(人民大街3518号)获取招标文件,并于2022年11月21日 09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:ZZCC2022-42 项目名称:吉林大学第一医院PET-CT\MR选配件采购项目 预算金额:1100.0000000 万元(人民币) 最高限价(如有):1100.0000000 万元(人民币) 采购需求: 包号 品目名称及数量 是否接受进口产品 本包预算金额 (人民币万元) 简要技术参数 备注 01 PET-CT\MR选配件 1批 是 1100 Asir-V console超低剂量迭代处理工作站、附加GPU处理引擎、核医学专用工作站、Fastlab2化学合成仪、碳标-化学合成仪、合成热室1、合成热室2、专用稳压电源、专用防磁监控系统、专用防磁语音系统,详见招标文件第五章采购需求 备注:本项目采购标的对应的《中小企业划型标准规定》所属行业为:制造业 合同履行期限:进口产品为合同签订生效之日起90天内完成供货及安装;国内产品为合同签订生效之日起60天内完成供货及安装。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目非专门面向中小企业采购项目 3.本项目的特定资格要求:3.1投标人须是中华人民共和国境内注册,具有独立法人资格或其他组织,具备有效的营业执照。投标人须有投标产品的供应能力、能满足采购内容的技术要求和服务要求;3.2投标人须具有良好的商业信誉和健全的财务会计制度;3.3投标人须具有依法缴纳税收和社会保障资金的良好记录;3.4参加采购活动前三年内,在经营活动中没有重大违法记录;3.5被“信用中国”网站(www.creditchina.gov.cn)列入失信被执行人和重大税收违法失信主体的、被 “中国政府采购网 ”网 站(www.ccgp.gov.cn)列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的投标人,不得参与本项目的政府采购活动;3.6与采购人存在利害关系可能影响采购公正性的法人、其它组织或者个人,不得参加投标;单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一包的投标或者未划分包的同一招标项目的投标;3.7为本采购项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的投标人及其附属机构,不得再参加本采购项目的投标活动;3.8投标人如为制造商须具备《医疗器械生产许可证》或《医疗器械生产备案凭证》;3.9投标人如为代理商须具备《医疗器械经营许可证》或《医疗器械经营备案凭证》; 3.10投标产品应具备有效的《中华人民共和国医疗器械注册证》或《医疗器械备案凭证》; 3.11符合法律、行政法规规定的其它要求。 三、获取招标文件 时间:2022年10月31日 至 2022年11月04日,每天上午8:30至11:30,下午13:00至16:00。(北京时间,法定节假日除外) 地点:长春市国际金融中心C座10层 1013室(人民大街3518号) 方式:投标人按获取招标公告第六条 第1项 要求现场获取招标文件,长春市国际金融中心C座10层 1013室(人民大街3518号)。 售价:¥1000.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年11月21日 09点00分(北京时间) 开标时间:2022年11月21日 09点00分(北京时间) 地点:长春市国际金融中心C座10层 1013室(人民大街3518号) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.满足资格条件要求的潜在申请人领购招标文件时应持以下资料: 1.1《营业执照》(三证合一); 1.2针对本项目及对应编号的法人代表授权书并加盖公章(附法人及被授权人身份证明); 1.3提供国家企业信用信息公示系统网站的基础信息截图(包含 营业执照信息 、 股东及出资信息 、 主要人员信息 及 变更信息 ); 1.4提供近三年内(本项目投标截止期前)①未被 信用中国 网站列入失信被执行人和重大税收违法失信主体的;②未被 中国政府采购网 网站列入政府采购严重违法失信行为记录名单(处罚期限尚未届满的)的证明; 1.5投标人需提供《医疗器械生产企业许可证》或《医疗器械生产备案凭证》或《医疗器械经营企业许可证》或《医疗器械经营备案凭证》; 2.采购项目需要落实的政府采购政策: 2.1按照《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的要求,根据投标截止时间 信用中国 网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)的信息,对列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的投标人,拒绝参与政府采购活动; 2.2鼓励节能、环保政策:依据《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能 产品、环境标志产品政府采购执行机制的通知(财库(2019)9 号)》执行; 2.3根据《政府采购促进中小企业发展管理办法》(财库[2020]46号)规定、《关于进一步加大政府采购支持中小企业力度的通知》(财库[2022]19号),本项目对符合规定的小微企业报价给予10%的扣除,用扣除后的价格参加评审。 2.4根据《关于政府采购支持监狱企业发展有关问题的通知》规定,在政府采购活动中,监狱企业视同小型、微型企业,享受预留份额、评审中价格扣除等政府采购促进中小企业发展的政府采购政策。 2.5根据《关于促进残疾人就业政府采购政策的通知》规定,在政府采购活动中,残疾人福利性单位视同小型、微型企业,享受预留份额、评审中价格扣除等促进中小企业发展的政府采购政策。 注:中小企业参加政府采购活动,应当出具本办法规定的《中小企业声明函》,否则不得享受相关中小企业扶持政策。监狱企业参加政府采购活动时,应当提供由省级以上监狱管理局、戒毒管理局(含新疆生产建设兵团)出具的属于监狱企业的证明文件。残疾人福利性单位在参加政府采购活动时,应当按规定提供《残疾人福利性单位声明函》,并对声明的真实性负责。未按要求提供相应材料的,不享受相应的优惠政策;以上政策不重复享受。 3.发布公告的媒介:本项目招标公告在《中国政府采购网》上发布。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:吉林大学第一医院 地址:长春市新民大街1号 联系方式:付老师、0431-88782235 2.采购代理机构信息 名 称:中咨环球(北京)工程咨询有限公司 地 址:长春市国际金融中心C座10层 1013室(人民大街3518号) 联系方式:咸婷婷、0431-80543872 3.项目联系方式 项目联系人:咸婷婷 电 话: 0431-80543872
  • 韩贤林团队最新成果:脂质与阿尔兹海默症!中枢神经系统中成年后髓鞘的硫苷脂缺少可导致AD样神经炎症和认知障碍
    阿尔茨海默病(AD)是老年人痴呆症的最常见原因, 然而依旧缺乏有效的治疗方法,需要对疾病机制有更多的了解。人类全基因组关联研究指出,除了β-淀粉样蛋白(Aβ)和tau蛋白之外,免疫反应和脂质代谢也是AD病因的主要途径。越来越多的证据表明,主要由小胶质细胞和星形胶质细胞介导的慢性神经炎症是AD神经退化中的原因之一。同时,大脑是脂质含量和多样性最丰富的器官,主要是由于富含脂质的髓鞘,但脂质与AD疾病的相关性和相关机制研究却非常缺乏。作者和其他人报告了脑硫苷脂(sulfatide)在AD 病人和AD相关动物模型中病症早期就开始的显著下降,并且,此脑硫苷脂下降是由AD最高风险基因ApoE亚型依赖的方式介导的。但迄今为止,特定脑脂质的变化是否足以驱动 AD 相关病程仍不清楚。  2021年9月份,来自美国德州大学医学中心圣安东尼奥分校的邱淑兰和韩贤林等作者在Molecular Neurodegeneration上发表了题为“Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment”的文章,发现中枢神经系统(CNS)中髓鞘的硫苷脂在成年后的丢失足以激活疾病相关的小胶质细胞和星形胶质细胞,增加了多个AD风险基因以及已确认的AD相关的免疫/小胶质细胞调控的关键调节因子的表达,最终导致AD 样慢性神经炎症和轻度认知障碍。同时神经炎症和轻度认知障碍表现出性别差异,雌性鼠比雄性鼠更明显。随后的机制研究揭示了CNS髓鞘硫苷脂丢失、大脑慢性炎症、星形胶质细胞和小胶质细胞的活化以及AD最高风险基因ApoE之间的关系和胶质细胞活化相关转录因子通路。  脑苷脂磺基转移酶(CST,又名 Gal3st1)催化硫苷脂生物合成的最后一步。脂蛋白基因(Plp1)在CNS髓鞘形成细胞,即少突胶质细胞中大量表达,但在外周神经系统(PNS)的髓鞘形成细胞中的表达程度较低。  在此,为了研究在AD病人和动物模型发病早期硫苷脂下降对脑稳态和认知功能的影响和相关分子机制,作者建立了CST基因Flox小鼠,简称CSTfl/fl小鼠。CSTfl/fl小鼠与Plp1-CreERT小鼠杂交后建立了CST条件敲除(简称CST cKO)小鼠,通过他莫昔芬(tamoxifen,TX)诱导敲除成年小鼠髓鞘形成细胞中的CST基因,从而模拟AD病人早期的硫苷脂下降(图1A)。  作者通过Nanostring高通量mRNA检测方法,脂质组学和蛋白质水平检测确定了此小鼠在3月龄注射TX 4.5个月和9个月后均呈现CNS中CST基因表达(图1B)以及脑苷脂水平(图1C)的显著下调,但在PNS中脑苷脂下降不显著(图1C)。同时作者明确了不同于胚胎期就敲除脑苷脂的CST完全敲除(CST KO)小鼠, 在成年CST cKO小鼠12月龄时的CNS脑苷脂丢失并没有引起其他髓鞘脂质的丢失 同时少突胶质细胞的基因表达(图1D,E)或髓鞘结构蛋白水平(图1F)也没有改变。说明成年后开始的小鼠CNS髓鞘脑苷脂的下调并不破坏髓鞘稳态。同时脑苷脂丢失也未引起CNS中神经细胞或其他细胞的死亡。  图1 一种新型的可诱导髓鞘形成的胶质细胞特异性条件敲除CST (CST cKO) 的小鼠模型,在不影响少突胶质细胞稳态的情况下模拟了CNS中成年后开始的AD 样髓鞘硫苷脂丢失(CRM:大脑,SC:脊髓,SN:坐骨神经)。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  接着,作者对通过神经功能相关行为初筛(图2A)的13月龄的CST cKO小鼠进行了莫里斯水迷宫(Morris water maze,MWM) 和新物体识别(novel object recognition,NOR)实验,结果表明,虽然CST cKO小鼠可能存在与肌肉功能无关(图2B)的游泳时间增加(图2C)、游泳速度下降(图2D)、漂浮时间增加(图2E)等跟认知或运动相关功能障碍,但与运动功能无关的MWM的第六天目标探索(probe)结果(图2F-I)以及NOR结果(图2J)均证明,CNS中成年开始的髓鞘硫苷脂丢失虽然没有引起髓鞘稳态的改变,却足以引起认知功能的损害,以及空间和非空间记忆相关功能的破坏。  图2 成年后开始的硫苷脂丢失足以导致认知损害  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  进一步地,作者研究了CNS中成年开始的硫苷脂丢失导致认知损害的具体细胞、分子机制。首先利用Nanostring小鼠AD相关试剂盒检测了TX注射后4.5个月和9个月后的大脑和脊髓样本的770个基因,发现CST cKO小鼠的硫苷脂丢失诱发了CNS中的免疫、炎症反应(图3A, B)。接着利用Nanostring小鼠神经炎症相关试剂盒进一步发现:在CST cKO小鼠CNS样本中mRNA水平发生显著上调变化的76个基因富集于小胶质细胞/星形胶质细胞/免疫激活功能。比较CST cKO和CST KO小鼠的Nanostring小鼠神经炎症相关基因表达变化的结果表明:虽然CST KO小鼠中硫苷脂缺失引起了CNS髓鞘损伤,而CST cKO小鼠中成年后硫苷脂丢失并未引起了明显的CNS髓鞘稳态变化(图1D, E),但CNS硫苷脂的缺失都引起了类似的小胶质细胞和星形胶质细胞的激活,并导致了慢性免疫、炎症反应(图3C-E)。通过基因富集分析发现:髓鞘硫苷脂缺失引起的基因表达变化指向最显著的相关疾病是AD(图4A)。被上调的基因中包括四个AD风险基因Apoe、Trem2、Cd33和Mmp12(图4B-E),以及已被报导的AD关键调节基因Tyrobp、Dock 和Fcerg1(图4F-H)。结合已有的文献报道和作者的结果,进一步明确了硫苷脂缺陷激活的小胶质细胞和星形胶质细胞的基因表达也类似于AD疾病相关的小胶质细胞和星形胶质细胞(图4 I, J)。  图3 CNS 硫苷脂丢失或缺失均诱导渐进的小胶质细胞和星形胶质细胞激活造成的神经慢性免疫、炎症。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  图4 CNS 硫脂缺乏导致 AD 样神经炎症,导致疾病相关的小胶质细胞和星形胶质细胞的特征。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  然后,作者通过硫苷脂在大脑中的质谱成像(图5A)、硫苷脂缺失引起的激活的星形胶质细胞和小胶质细胞的分布的比较(图5B-E)、激活的星形胶质细胞和髓鞘的共定位(图5F)、以及CST cKO小鼠脊髓中激活的星形胶质细胞与髓鞘的电镜观察(图5H)实验,明确了CST cKO 和CST KO小鼠中硫苷脂和胶质细胞激活存在空间上的关联:硫苷脂缺失引起的胶质细胞激活分布在富含髓鞘的区域。  图5 髓鞘上的硫苷脂缺失导致富含髓鞘的大脑区域内显著的星形胶质细胞和小胶质细胞激活。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  ApoE是CNS中主要的细胞外脂质载体,运输多种脂质,包括硫苷脂。同时Apoe4是AD的最高风险基因,并且ApoE4 是降低脑硫苷脂水平所必需的。作者发现ApoE在 CST cKO 和KO的CNS中上调(图4B),从而表明CNS髓鞘上硫苷脂缺失和ApoE上调形成正向反馈。接着作者使用ApoE 和CST双敲除(ApoE-/-/CST-/-)小鼠结合免疫荧光染色(图6A,B)和Nanostring神经炎症试剂盒(图6C-F)发现,ApoE的敲除并不能阻止和影响CST敲除引起的胶质细胞激活和相关的免疫、炎症激活,从而阐明了ApoE 虽然参与硫苷脂转运但并不直接影响髓鞘硫苷脂缺失诱导的胶质细胞激活和神经炎症,ApoE可能通过参与硫苷脂丢失从而引起AD相关慢性神经炎症。  图6 髓鞘硫苷脂缺乏诱导的AD样神经炎症并不直接依赖于ApoE。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  已有研究结果表明星形胶质细胞和小胶质细胞的激活相互影响,并且ApoE主要由星形胶质细胞产生。接着作者利用一种集落刺激因子1受体(CSF1R)抑制剂,即PLX3397,消除全脑大部分小胶质细胞从而研究星形胶质细胞、小胶质细胞和ApoE的相互调节关系。有趣的是,虽然PLX3397消除了CST+/+小鼠大脑中的绝大多数以及CST-/- 小鼠大脑中的大部分小胶质细胞,但是免疫染色(图7A, E)和Nanostring神经炎症试剂盒(图7B-D)结果显示,小胶质细胞的消除完全不能影响硫苷脂缺失相关的星形胶质细胞的激活以及ApoE的表达上调。从而证明了硫苷脂缺失相关的星形胶质细胞和小胶质细胞的激活通过独立的途径存在,并且证明了硫苷脂缺失引起的ApoE上调存在于星形胶质细胞中。  图7 CNS硫脂缺失引起的星形胶质细胞增生和ApoE上调不是继发于小胶质细胞活化。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  为了再进一步地研究CNS中髓鞘上的硫苷脂缺乏引起的神经炎症的分子机制,作者分析了转录因子评分, 主要目标包括 IRF8、STAT3、SPI1和C/EBPβ(图 8A),已有的研究报道也显示它们参与小胶质细胞或星形胶质细胞的激活,同时Spi1 是一个富集于小胶质细胞的AD 风险基因。免疫印迹结果也验证了在CST cKO小鼠大脑和脊髓样本中STAT3和PU.1/Spi1的显著上调、以及其他转录因子C/EBPβ、IRF8的部分上调(图 8B, C)。此外,在PLX3397消除小胶质细胞的样本中,CST敲除鼠的大脑中的STAT3的磷酸化和蛋白水平上调并不受小胶质细胞丢失的影响,说明STAT3也许是星形胶质细胞活化特异的转录调控途径(图8D)。  图8 髓鞘的硫苷脂缺失导致中枢神经系统中SPI1、STAT3 和 C/EBP转录因子的上调。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  这项研究的结论与讨论,启发与展望:  1)首次建立了在成年后诱导的髓鞘上硫苷脂丢失的小鼠模型,并成功模拟AD病人脑中的硫苷脂下调,而且证明成年后诱导的髓鞘上硫苷脂丢失在检测的时间点并不影响髓鞘稳态   2)第一次阐明了一种脂质,即CNS髓鞘的硫苷脂,其在成年后的丢失足以激活小胶质细胞和星形胶质细胞,增加了多个AD风险基因以及已确认的AD相关的免疫/小胶质细胞调控的关键调节因子的表达,最终导致AD 样慢性神经炎症和轻度认知障碍   3)阐述了AD风险基因ApoE 虽然参与硫苷脂转运,但并不直接影响髓鞘上硫苷脂缺失诱导的胶质细胞激活和神经炎症,ApoE可能通过参与硫苷脂丢失从而引起AD相关慢性神经炎症   4)证明了硫苷脂缺失相关的星形胶质细胞和小胶质细胞的激活通过独立的途径存在,并且证明硫苷脂缺失引起的ApoE上调存在于星形胶质细胞中   5)阐明了髓鞘的硫苷脂缺失导致的小胶质细胞和星形胶质细胞激活主要分别由PU1/SPI1、STAT3转录因子调控。  本文的结果强烈表明大脑中的特异性的脂质异常,例如髓鞘上的硫苷脂缺失也许也是AD 病理学中神经炎症和轻度认知障碍的重要驱动和促进因素,并且与 tau 蛋白病无关。但需要后续的研究继续阐明髓鞘的硫苷脂缺失如何分别激活了小胶质细胞和星形胶质细胞。  原文链接:https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-021-00488-7  邱淑兰(左,第一作者),韩贤林(右,通讯作者)关于韩贤林教授课题组:  美国德州大学圣安东尼奥医学研究中心 韩贤林教授  韩贤林教授先后获浙江大学和美国华盛顿大学(圣路易斯)硕士和博士学位。现任美国德州大学圣安东尼奥医学研究中心杰出教授。浙江省千人,浙江中医药大学兼职教授。主要从事老年痴呆病、糖尿病诱发的综合症、和免疫性疾病等脂类代谢混乱的机制研究。韩教授是脂质组学的创始人之一,2003年他首次提出了“脂质组学”概念。他是该领域公认的杰出科学家,以发明多维质谱“鸟枪法”脂质组学分析技术而在该领域闻名全球。韩教授已在各种杂志上发表论文280多篇, H指数79, 总引用数达24,500次以上。2010年与英国爱丁堡皇家学会委员W.W. Christie合撰《Lipid Analysis: Isolation, Separation, Identification, and Lipidomic Analysis》论著。2016年他撰写了一部系统地阐述脂质组学的论著 -《Lipidomics: Comprehensive Mass Spectrometry of Lipids》。韩教授在国际上享有很高的学术威望,被聘为多种与脂类研究有关杂志的副主编或编委。韩教授现任美国卫生研究院、美国糖尿病协会、及香港研究资助局的基金会常任评审专家。曾任美国华人质谱学会主席,现为该学会终身理事。
  • 大连化物所二氧化碳加氢合成甲酸研究取得进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylestyle type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近日,中国科学院大连化学物理研究所航天与新材料研究室研究员黄延强、副研究员杨小峰,与大连理工大学副教授王新葵合作,在二氧化碳加氢合成甲酸研究中取得新进展,相关研究成果在线发表在emNature Communications/em上。/pp  COsub2/sub加氢合成甲酸是一个原子经济性反应,生成的甲酸是重要的化工原料,并可作为理想的液态储氢材料。COsub2/sub分子中的碳原子处于最高价态且化学性质相对惰性,对其进行有效活化是实现COsub2/sub高效转化的关键。该团队设计了一种席夫碱修饰的纳米金催化剂,利用席夫碱基团中的氮中心与COsub2/sub发生弱相互作用生成氨基甲酸盐两性离子,并进一步在纳米金催化剂上发生加氢反应生成甲酸。实验结果表明,不同于传统多相催化剂的碳酸氢盐加氢路径,气相COsub2/sub能够直接在席夫碱修饰的金催化剂上加氢转化为甲酸,在90supo/supC、8.0MPa反应条件下,生成甲酸的转化数可达14,470(12h)。席夫碱与COsub2/sub这种弱的相互作用模式为COsub2/sub的低温活化提供了新途径。/pp  研究工作得到了国家重点研发计划,中国科学院先导计划以及国家自然科学基金的资助。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171113589131027563.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/27f7ca75-2c98-4012-86e7-cd4ab63123e4.jpg" uploadpic="W020171113589131027563.jpg"//pp style="text-align: center "大连化物所二氧化碳加氢合成甲酸研究取得新进展/p
  • 实验猿的福音——清洗神器助你一臂之力
    提到实验室的那些瓶瓶罐罐,想必圈内人都不陌生吧,什么广口瓶、细口瓶,什么培养皿、烧杯......用起来,那叫一个得心应手,洗起来,呃......叫一个捶胸顿足。人工手洗,太慢了说到这些玻璃器皿,实验室主任最近头发都愁白了,没啥事儿的时候还好,这业务量一大,那些被使用过的瓶瓶罐罐们,扎堆,使出洪荒之力来洗瓶子,居然还是追不上使用的消耗量,每天实验室都在上演这样的场景:实验猿:“主任,锥形瓶不够用了!”主任:“什么,不是刚洗好的一批吗?怎么又不够了?”实验猿:“刚刚在做滴定实验中用掉一部分,还有一部分作为反应容器在使用。”主任:“......”。毛刷清洗,不干净对于负责清洗玻璃器皿的实验猿有话要说:洗刷刷到手抽筋还不落好,有些试管是怎么也刷不净,有的都动用毛刷沾洗衣粉或去污粉擦洗了,还是洗的不够干净,简直难洗到怀疑人生,尤其是那些细口肚大的容量瓶,角角落落老洗不到;还有一些对清洁度要求高的仪器一般用重铬酸钾洗液浸泡后用水冲洗,但重铬酸钾洗液容易失效变绿,污染环境,真的难办。清洗实验室器皿最重要的方面是最终玻璃器皿完全没有任何残余物,不正确合理的清洗方式会对质量、安全造成很大影响,例如,清洗剂的残余物导致不正确的分析结果;高度敏感的分析方法要求彻底清洁实验室玻璃器皿;来自清洗过程的表面活化剂的残余物影响;产生交叉污染等。福音驾到,看我的睿科仪器AW-180系列全自动实验室玻璃器皿清洗机,可用于各种实验器皿的清洗、消毒和干燥,主要通过水温控制、清洗剂乳化剥离作用、强大水流冲刷力的共同作用,对试管、移液管、培养皿、锥形瓶、容量瓶、烧杯和其他试验器皿等进行标准的清洗和消毒,为实验提供可靠高效的清洗保证,具有清洗均一性好、清洗结果可控、清洗自动化等优点。镜面316L不锈钢的工作内腔,且腔体压模设计(保证不变形),一体成型,保证仪器内腔的洁净度,确保无细菌的产生;隔热、阻燃、降噪的设计,保证了仪器使用的安全性,降低仪器运行时产生的噪声对实验人员的影响,及降低仪器运行的能耗,环保节能;至少带有三层过滤系统,过滤系统包含316L不锈钢集水杯,清洗残渣会自动收集。清洗神器,有你才完美一个月后的实验室:实验猿A:“今天下班后,我们去吃烧烤吧。”实验猿B:“咦,你今天居然不用洗完瓶子再下班嘛?”实验猿A:“有了睿科牌清洗机,以后再也不用洗瓶子啦啦啦啦”。睿科仪器AW-180系列全自动实验室玻璃器皿清洗机,你值得拥有~
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey, C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 默克有机合成级试剂给力大促销,最低5折起!
    德国默克Merck Group品牌旗下Schuchardt系列有机合成级试剂囊括了5000多种产品,除了可应用于有机合成领域,还可用于生产表面活性剂、清洁剂和添加剂等。 我们的优势:· 150年有机化合物生产经验,一如既往的行业质量标杆,至今仍然是合成级试剂的实际质量标准。· 产品范围广,除了基础有机化工原料,还有应用于制药,光电等各种领域的高端有机化合物。· 包装齐全,除了您在产品目录中看到的各种规格,我们还能根据客户的具体参数和包装要求定制生产。 促销时间:即日起至2011年12月31日货号中文品名目录价促销价8017911000合成级氯苯4363058017912500合成级氯苯9156408083520100合成级三乙胺3571708083520500合成级三乙胺4463128222871000合成级过氧化氢2412178221840500合成级吐温204393108221870500合成级吐温807505818221871000合成级吐温809738308016630100合成级三氟化硼甲醇溶液4493148016630500合成级三氟化硼甲醇溶液12685308036460100合成级二异丙胺2261908036461000合成级二异丙胺4624008074851000合成级PEG4003802668003800100合成级顺丁烯二酸(马来酸)2261908003800500合成级顺丁烯二酸(马来酸)5112568003801000合成级顺丁烯二酸(马来酸)4494448030101000合成级二乙基胺2721908030102500合成级二乙基胺5204208032351000合成级N,N-二甲基乙酰胺7866708032352500合成级N,N-二甲基乙酰胺160313708082600025合成级三氟醋酸2171528082600100合成级三氟醋酸4943718082600500合成级三氟醋酸192116408082601000合成级三氟醋酸426136408209310100合成级1-辛醇2261908209311000合成级1-辛醇7886008220500100合成级十二烷基硫酸钠盐4003008220501000合成级十二烷基硫酸钠盐14009708086971000合成级邻二甲苯9094908086972500合成级邻二甲苯195111808006580250合成级正硅酸乙酯3892728006581000合成级正硅酸乙酯6325408016410250合成级过氧化苯甲酰3382368016411000合成级过氧化苯甲酰10657458063730100合成级硼氢化钠9666768063730500合成级硼氢化钠27081895促销热线:021-38521857 13585814054产品专员:Ruby Cai关于默克默克集团是一家全球化的医药和化学企业,2009年总销售额达77亿欧元。它的历史可以追溯到1668年。目前在全球64个国家拥有近40,000名员工(包括默克密理博),共同打造默克集团的未来。企业的成功来自于具有默克员工不断地创新。公司的业务都在德国默克集团(Merck KGaA) 名下开展。目前默克家族持有德国默克集团约70%股份,自由股东持有约30%的股份。1917年,默克设在美国子公司Merck & Co. 从集团公司剥离,并从此成为独立的企业。
  • 过程所在单原子界面活化臭氧机理研究中获进展
    催化臭氧氧化是深度去除废水中有机污染物的有效方法,但其界面催化机理尚不明确。近日,中科院过程工程研究所研究员曹宏斌团队开发了一系列石墨相氮化碳负载钴、锰、镍过渡金属的单原子催化剂,加速臭氧(O3)分解并产生高活性的羟基自由基(OH)。基于密度泛函理论模拟和原位X射线吸收光谱,提出了单原子界面活化臭氧过程中中间产物吸附构型对OH与污染物反应区间的影响。相关研究于近日发表在Environmental Science & Technology 上。有机废水污染严重威胁人类健康和生态平衡,高效削减外排废水中难降解有机物成为当前水污染治理面临的重大技术需求。基于原位生成的强氧化性OH,催化臭氧氧化可去除工业废水中难降解有机污染物,催化活性位点的性质决定了O3活化的效率、产生OH和其它活性氧的机理和动力学。但目前活性位点如何与O3作用以及OH生成路径仍存在争议,限制了高效催化剂的开发与设计。此外,在水处理应用中,调控催化剂表面或本体溶液中的OH反应区间可减少自由基无效猝灭,但决定OH攻击污染物反应区间的催化剂确切性质仍然未知。研究团队深入研究了一系列氮化碳负载单原子催化剂M1-C3N4(M=Co、Mn、Ni)活化臭氧的机理。实验结果发现,MN4位点上OH生成的主要路径是O3→ Oads→ *OO→ O3- → OH,而M1-C3N4降解草酸的催化活性为Co1-C3N4Mn1-C3N4Ni1-C3N4。其中Ni1-C3N4活性最低,与活性位点上后续中间产物的低活性有关。Mn1-C3N4上氧结合能更高,因此中间产物*OO在金属原子上以Griffiths构型吸附,这种双Mn-O键导致Mn位点形成饱和配位,因此OH主要在水溶液中攻击有机物。对CoN4位点而言,*OO在金属Co上的吸附以Pauling构型(单Co-O键),不饱和配位的Co位点允许污染物的进一步吸附,因此OH对草酸攻击可同时发生在Co1-C3N4表面和主体水溶液中,这是其催化臭氧氧化性能优于Mn1-C3N4的原因。不同MN4位点上O3活化中间产物吸附构型及相应的OH氧化区间 图源自论文博士生王静为论文第一作者,曹宏斌研究员为通讯作者。以上研究工作得到国家自然基金(51934006)和钒钛资源综合利用国家重点实验室(2021P4FZG04A)的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制