当前位置: 仪器信息网 > 行业主题 > >

戊基丙二酸二乙酯

仪器信息网戊基丙二酸二乙酯专题为您提供2024年最新戊基丙二酸二乙酯价格报价、厂家品牌的相关信息, 包括戊基丙二酸二乙酯参数、型号等,不管是国产,还是进口品牌的戊基丙二酸二乙酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合戊基丙二酸二乙酯相关的耗材配件、试剂标物,还有戊基丙二酸二乙酯相关的最新资讯、资料,以及戊基丙二酸二乙酯相关的解决方案。

戊基丙二酸二乙酯相关的资讯

  • 涨幅超50%!TDI、PX、丙烯酸、新戊二醇等原材料价格上涨
    p style="text-indent: 2em "近日,国内各大化工原材料价格持续上涨,部分原材料价格创下历史新高。中间体H酸、对位酯价格上调幅度达52%。/pp style="text-indent: 2em "H酸、对位酯价格暴涨/pp style="text-indent: 2em "作为活性染料最重要的染料中间体,H酸、对位酯5月10日起正式涨价。H酸从3.3万元/吨涨至5万元/吨,对位酯从2.7万元/吨涨至3.5万元/吨。/pp style="text-indent: 2em "TDI价格上涨4.16%/pp style="text-indent: 2em "TDI价格5月10日上涨4.16% 受厂家涨价的带动,区内TDI市场也积极看涨,但由于市场行情变化频繁,导致部分商家封盘,甚至有商家捂货不出。/pp style="text-indent: 2em "对二甲苯价格上涨/pp style="text-indent: 2em "10日上午亚洲对二甲苯任意6月船货递盘在1030美元/吨CFR中国,报盘在1045美元/吨CFR中国 任意7月船货递盘在1015美元/吨CFR中国,报盘在1030美元/吨CFR中国。受美国推迟伊朗协议引发原油供应担忧利好影响,国际油价上涨至三年半新高,PX成本端支撑强劲。下游PTA期现价因资金涌入且库存压力放缓而窄幅攀升,另亚洲PX市场供应商因盈利空间缩窄而挺价意愿增强。因此综合助力下,PX早盘商谈暴涨。/pp style="text-indent: 2em "正丁醇/pp style="text-indent: 2em "正丁醇工厂检修较为集中,某工厂推迟开车,市场供需缺口持续扩大,下游开工稳定,采购热情高涨,主流工厂积极上调价格,库存低位。万华本周期华北上调200元/吨,华东、华南上调100元/吨。/p
  • 全自动乌氏黏度计在PPC(聚碳酸亚丙酯)材料中的应用
    聚碳酸亚丙酯(PPC),又称为聚甲基乙撑碳酸酯,它是以二氧化碳和环氧丙烷为原料合成的一种无定形聚合物,被广泛应用于弹性体、涂料、合成革等领域,是一种完全可降解的环保型塑料。聚碳酸亚丙酯(PPC)材料性能优异,分子链段柔软、易分解、生物相容性好、气体的透过性低,可很好的应用于包装材料,阻水材料和阻氧材料等领域之中,例如一次性食品包装材料、一次性餐具材料、可降解发泡材料等。同时聚碳酸亚丙酯(PPC)材料以工业废气二氧化碳作为原料,避免了传统塑料行业产品对环境的二次污染,在一定程度上也是对日益枯竭石油资源的一种补充。全自动乌氏黏度计是聚碳酸亚丙酯(PPC)材料质量检测中的常用仪器,常用于检测聚碳酸亚丙酯(PPC)材料的特性粘度值。IV2000系列全自动乌氏黏度计具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚碳酸亚丙酯(PPC)材料等高分子材料化验分析中的常用实验仪器,为聚碳酸亚丙酯(PPC)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV2000系列自动乌氏黏度计、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时最多可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度最高可达180℃。3. 测试过程IV2000系列全自动特性粘度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可精确到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列全自动特性粘度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 五大问题困扰我国碳酸二甲酯行业
    到2010年10月底,全国碳酸二甲酯(DMC)的实际产能已经达到23.6万吨,明年有望达到49万吨。中国石油和化工杂志社副总编辑杨扬在第七届全国有机碳酸酯技术开发与应用研讨会上,披露上述数据。作为一个持续关注、跟踪报道碳酸二甲酯行业将近10年的记者,杨扬对整个行业有着独到的见解和认识。  据杨扬介绍,前些年,由于DMC生产能力较小,产品供不应求。一些企业因此上马几套数万吨级酯交换法碳酸二甲酯装置。这些装置投产后,对国际、国内市场产生较大影响,供应量充足,从金融危机以来价格基本稳定在5000—6000元/吨左右。预计以后的价格只会越来越低。  经过长时间的实地调研、考察与采访,杨扬认为目前我国DMC行业存在着如下制约行业发展的全局性、战略性的问题。缺乏统一的行业管理 缺乏行业性的合作、协作与沟通的机制和渠道 缺乏行业的领军企业和企业家,没有形成一致对外的合力 缺乏DMC新兴应用领域的相关标准和知识产权保护制度 缺乏共同开拓与培养市场的意识与机制。同时全行业长期受制于环氧丙烷等上游原料供应,没有市场和原料供应的话语权。  为推进中国DMC产业健康发展,杨扬建议上项目时选择适合本企业的工艺路线,就近主要原料或产品销售市场选择厂址。建议重新组建全国DMC行业协作组,完善运行机制与管理办法。通过各种渠道向政府主管部门呼吁和反映行业存在的问题,给予政策、税收、科研专项等等方面的支持。  本次研讨会11月4日在北京召开,由中国化工报社、中国碳酸二甲酯行业协作组联合主办。
  • 上海市食品接触材料协会发布《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准征求意见稿
    各有关单位及专家:由上海市食品接触材料协会归口,上海市质量监督检验技术研究院等相关单位共同起草的《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准已完成征求意见稿(附件1-14)的编制,现面向社会公开征求意见。诚请有关单位及行业专家积极提出宝贵意见和建议,并填写《意见反馈表》(附件15),于2023年8月10日之前将书面意见以邮件或寄送方式反馈至上海市食品接触材料协会。联 系 人: 陈宁宁 黄 蔚联系电话: 021-64372216 邮 箱:safcmxh@163.com邮寄地址:上海市徐汇区永嘉路627号301室上海市食品接触材料协会2023年7月10日附件下载附件1《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准征求意见稿.pdf附件2《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》团体标准编制说明.pdf附件3《食品接触材料 着色剂中芳香族伯胺的测定》团体标准征求意见稿.pdf附件4《食品接触材料 着色剂中芳香族伯胺的测定》团体标准编制说明.pdf附件5《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征求意见稿.pdf附件6《食品接触材料 着色剂中多氯联苯含量的测定》团体标准征编制说明.pdf附件8《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准编制说明.pdf附件9《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准征求意见稿.pdf附件7《食品接触材料 着色剂中盐酸可溶物(锑、砷、钡、镉、铬、铅、汞和硒)的测定》团体标准征求意见稿.pdf附件12《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准编制说明.pdf附件10《食品接触材料 着色剂中盐酸可溶物(六价铬)的测定》团体标准编制说明.pdf附件11《食品接触材料及制品 高锰酸钾消耗量的测定 自动滴定仪法》团体标准征求意见稿.pdf附件14《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征编制说明.pdf附件13《食品接触材料及制品 1,4-二氯苯迁移量的测定》团体标准征求意见稿.pdf关于征求《食品接触材料及制品 丙二醇甲醚乙酸酯迁移量的测定》等七项检测方法团体标准意见的通知1.pdf
  • 中国认证认可协会发布《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法(征求意见稿)》
    各有关单位:根据《中国认证认可协会团体标准管理办法》规定,经中国认证认可协会批准立项,广州检验检测认证集团有限公司等单位已完成《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》团体标准的起草工作,形成征求意见稿,现公开征求意见。有关事项通知如下:一、《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》团体标准征求意见稿及编制说明等有关材料可从中国认证认可协会网站下载,网址信息如下:http://www.ccaa.org.cn/ttbzgl/6484.html二、请填写《意见反馈表》(见附件),并于2024 年4 月15日前通过电子邮件反馈至标准起草组。联 系 人:李秀英联系电话:020-84655116电子邮箱:js@cngttc.cn附件:《食品中硫代二丙酸二月桂酯含量测定 气相色谱-质谱法》公开征求意见材料.rar
  • 碳酸二乙酯新工艺研制成功
    中国石油大学(华东)化学化工学院孙兰义教授课题组日前开发出一种生产碳酸二乙酯的工艺方法及设备。  该项技术是将反应精馏过程应用于隔壁塔中,在一个反应精馏隔壁塔内同时完成酯交换反应、碳酸二乙酯产品分离等任务。反应精馏隔壁塔流程与常规反应精馏流程相比,省去了两个精馏塔、一个冷凝器与两个再沸器,因此可有效降低能耗和设备投资。产品碳酸二乙酯质量分数达到99.5%,碳酸二甲酯转化率达到99%,选择性达到99%,而能耗则比常规反应精馏流程减少20%~50%。
  • 解决方案 | 自来水中总硬度-乙二胺四乙酸二钠滴定法的测定
    水中总硬度原系指沉淀肥皂的程度,使肥皂沉淀的原因主要由于水中的钙、镁离子,此外,铁、铝、锰、锶及锌也有同样的作用。长期饮用高硬度水的人会增加肾结石的发病率,硬度越高,发病率越高。《GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标》中规定了饮用水及其水源水的测定方法,睿科根据其方法提供自动化样品整体解决方案,代替人工进行水质总硬度的测定,保证检测的快速高效。仪器、耗材与试剂仪器睿科Auto Titra 08全自动滴定仪分析天平:感量为1mg鼓风干燥箱耗材试剂瓶:50X160mm、60X160mm试剂氯化铵氨水(ρ20=0.88g/mL)硫酸镁(MgSO47H2O)乙二胺四乙酸二钠(Na2EDTA2H2O)铬黑T硫化钠(Na2S9H2O)盐酸羟胺(NH2OHHCl)锌粒、盐酸分析步骤样品测定1吸取50mL自来水样(硬度过高的样品,可取适量水样,用纯水稀释至50mL,硬度过低的样品,可取100mL)置于试剂瓶中。2立即将样品全部放置于睿科Auto Titra 08全自动滴定仪的样品槽中,仪器自动加入1mL缓冲溶液和5滴指示剂,用Na2EDTA标准溶液滴定至溶液从紫红色变成纯蓝色即为终点,仪器自动判定。睿科Auto Titra 08全自动滴定仪空白试验按以上相同步骤以50.0mL试剂水代替水样进行空白试验,记录下空白滴定时消耗Na2EDTA标准溶液的体积V0。实验结果结果计算将标定浓度、空白值输入到软件界面中,仪器内置计算公式,根据每个样品滴定体积自动计算结果。计算参数界面质控样测试选择GSB 07-3163-2014 200748水质 总硬度质控样进行测试。质控样真值为2.81±0.08mmol/L (2.73-2.89)。测定结果及滴定最终颜色见下图。质控样测定结果质控样测试-滴定最终颜色样品测试-人机比对取50ml自来水进行测试并进行人机比对,测试数据及滴定最终颜色见下图。自来水人机比对测试数据注意事项若水样中含有金属干扰离子,使滴定终点延迟或颜色变暗,可另取水样,加入0.5mL盐酸羟胺及1mL硫化钠溶液或0.5mL氰化钾溶液,再次滴定。水样中钙、镁的重碳酸盐含量较大时,需要预先酸化水样,并加热除去二氧化碳,以防碱化后生成碳酸盐沉淀,影响滴定。水样中含悬浮性或胶体有机物可影响终点的观察。可预先将水样蒸干并于550℃灰化,用纯水溶解残渣后再进行滴定。结果与讨论使用睿科Auto Titra08全自动滴定仪可以完成标准物质的测定,滴定结果平行性、准确性良好。也可以达到人工滴定的标准。因此,可以使用Auto Titra08自动滴定仪可以代替人工进行水质总硬度的测定。睿科Auto Titra 08自动滴定仪采用仿生颜色识别,完全模仿滴定时人眼颜色识别动作,内置实验方法,节省时间、操作简单,易于掌握;仪器自动滴定,自动判定终点,节省了实验人员的滴定时间;此外仪器还可自动计算结果,一键生成报告。
  • 【飞诺美色谱】罕见遗传性疾病的救星——寡核苷酸药物
    新冠疫情促使mRNA技术快速发展的同时也使人们开始高度关注核酸药物这一领域。核酸药物包括反义核酸(ASO)、小干扰RNA(siRNA)、微小RNA(miRNA)、小激活RNA(saRNA)、信使RNA(mRNA)、适配体(aptamer)、核酶(ribozyme)、抗体核酸偶联药物(ARC)等,是基因治疗的一种形式。除mRNA药物外,其他几种核酸药物,基本上都是由100个以内的核糖核苷酸或脱氧核糖核苷酸单链或双链组成,所以也称为寡核苷酸药物。与mRNA药物编码产生目的蛋白不同的是,寡核苷酸药物主要是通过碱基互补配对原则与DNA、mRNA或者pre-mRNA配对,通过基因沉默、非编码RNA抑制、基因激活等一系列机制来调节基因表达。已上市寡核苷酸药物化学结构(Nature reviews drug discovery)寡核苷酸药物对比于小分子药物及蛋白药物,具有多方面的优势,首先可根据目标靶点设计碱基序列,靶点明确、特异性强;其次寡核苷酸药物从转录后水平进行治疗,可选择的靶点丰富,特别是能覆盖蛋白质不可成药的靶点以及开发由基因缺陷导致的遗传性疾病的相关靶点;另外寡核苷酸药物由于序列短,可采用化学合成方法,完成目标序列的装配,并结合生物学测试筛选有效序列,能够避免盲目开发,节省研发时间。但是寡核苷酸药物在研发中也面临着诸多挑战。寡核苷酸在细胞外稳定性低,易被核酸酶降解,加上分子量及负电荷的因素,难以进入细胞,因此在研发过程中,使其保持稳定的结构以及能够有效递送的传递载体是主要考虑的两个因素。寡核苷酸核酸分子的改造主要包括磷酸骨架,碱基以及糖环的修饰,在改造中需要考虑多个因素,包括稳定性、药代动力学、碱基配对的亲和力等,最重要的是能够保留被功能酶及功能蛋白所识别的功能。因此,在前期研发过程中,需要对寡核苷酸进行精确的结构表征及定量。丹纳赫生命科学旗下SCIEX 的高分辨质谱ZenoTOF&trade 7600系统具有一系列对寡核苷酸进行分析的方案,可进行寡核苷酸的分子量分析并进行杂质检测,可对寡核苷酸进行碱基序列鉴定。由于Zeno TOF 7600具有EAD和CID两种互补的碰撞模式,不但能产生丰富的离子碎片信息,还会保留完整的核酸低丰度修饰信息。寡核苷酸分子量及碱基序列的检测高分辨质谱ZenoTOF&trade 7600系统另外,高分辨质谱ZenoTOF&trade 7600系统还能实现对寡核苷酸的定量分析,线性范围可达 5 ng/mL – 10000 ng/mL,可以完成寡核苷酸药物在研发阶段的药代及多种代谢产物同时鉴定及定量分析。在研发阶段,对于采用同一种仪器进行鉴定及定量,可避免定量方法转移时造成的方法优化时间浪费,可帮助用户加快研发进度。艾杰尔-飞诺美寡核苷酸定量分析前处理试剂盒高分辨质谱对寡核苷酸进行定量分析在寡核苷酸药物种类中,反义寡核苷酸由于是单链,分子量小,递送较其他寡核苷酸容易,且反义寡核苷酸功能多样,可上调或下调基因表达,成为研发罕见遗传性疾病药物中最关注的种类。为了帮助研究人员开发这类针对罕见遗传性疾病患者的ASO疗法,FDA还发布了指导这类ASO疗法非临床检测的指南。在已上市的寡核苷酸药物中,大部分都是用于治疗罕见遗传性疾病的反义寡核苷酸药物,特别是杜氏型肌营养不良,已经上市了针对不同基因位点的四款产品。药品名治疗疾病药物种类上市时间Fomivirsen巨细胞病毒视网膜炎反义寡核苷酸1998.8(已退市)Pegaptanib年龄相关性黄斑变性核酸适配子2004.12Mipomersen纯合性家族性高胆固醇血症(hoFH)反义寡核苷酸2013.1(已退市)Defibrotide肝静脉闭塞反义寡核苷酸2016.3Eteplirsen杜氏型肌营养不良(DMD基因外显子51)反义寡核苷酸2016.9Nusinersen脊髓性肌萎缩症 (SMN2基因外显子7)反义寡核苷酸2016.12Patisiran遗传性甲状旁腺素淀粉样变性小干扰RNA2018.8Inotersen遗传性甲状旁腺素淀粉样变性反义寡核苷酸2018.10Waylivra家族性乳糜微粒血症综合征反义寡核苷酸2019.5Givosiran急性肝卟啉症小干扰RNA2019.11Golodirsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2019.12Viltolarsen杜氏型肌营养不良(DMD基因外显子53)反义寡核苷酸2020Lumasiran原发性高草酸尿症I型小干扰RNA2020Inclisiran成人高胆固醇血症及混合性血脂异常小干扰RNA2020Casimersen杜氏型肌营养不良(DMD基因外显子45)反义寡核苷酸2021.2.25已上市的寡核苷酸药物(根据网上资料整理)由此可见,对罕见病的诊断也非常重要,很多罕见遗传病是由几十甚至上百种突变引起的,而且不同区域的患者可能存在不同的基因变异位点,NGS是现在进行高通量基因检测的重要手段。丹纳赫生命科学旗下Integrated DNA Technologies(IDT)公司(中文名称:埃德特)是全球领先的NGS试剂供应商,其外显子捕获产品Exome Research Panel V2特别适合进行遗传性疾病的全外显子组测序,助力遗传性疾病的诊断。V2由 415,115 条单独合成且经过质控检验的 xGen Lockdown 探针组成。探针组跨越人基因组的 34 Mb 目标区域(19,433 个基因),并且覆盖 39 Mb 的探针空间(即由探针覆盖的基因组区域)。探针是使用全新的“捕获感知”(capture-aware) 算法进行设计的,并进行了专有的脱靶分析,确保实现完整的设计覆盖度。探针组中的所有探针均严格按照 ISO 13485 标准进行生产。每条探针均经过质谱法和双定量测量检验,确保探针的质量及在探针库中具有适当的代表性。IDT Exome Research Panel试剂盒
  • 色谱检测新标准来啦——HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱
    有机酸极易富集在大气颗粒物上,不仅对城市环境和人体健康造成诸多影响,还关系到全球大气系统能量平衡。有机酸在一定条件下可明显增加酸雨强度,降低城市大气能见度,影响区域和全球的气候。最常见的有机酸为甲酸、乙酸和乙二酸,对其含量的检测不仅是未来环保规范的迫切需要,同时也为大气颗粒物中化合物的示踪及其来源解析提供依据,是大气颗粒物环境治理工作的重要需求。为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,生态环境部组织制定了《HJ 1271-2022 环境空气 颗粒物中甲酸、乙酸、乙二酸的测定 离子色谱法》,规范环境空气颗粒物中甲酸、乙酸和乙二酸的测定方法。本文内容非商业广告,仅供专业人士参考。
  • 6月4日起,全欧盟限制富马酸二甲酯
    5月15日,欧盟发布政府公报,颁布(EU)No 412/2012指令,将富马酸二甲酯加入REACH法规附件17(对某些危险物质、混合物、物品在制造,投放市场和使用过程中的限制)物质清单第61项,法令在自欧盟公报发布之日20天后执行,并要求成员国将其无条件转化为本国法律。这预示着6月4日起,全欧盟限制富马酸二甲酯。   富马酸二甲酯是一种挥发性化合物,通常用作真菌杀灭剂,也可用于干燥剂袋中,以防止皮革、家具、鞋或皮革配件在储存或运输过程中产生霉菌。人体吸入、摄入或与之接触,会对皮肤、眼睛和上呼吸道造成刺激和伤害。  针对富马酸二甲酯对人体的伤害作用,欧盟发布2009/251/EC规定,2009年5月1日后,欧盟市场上流通的产品或产品零件中富马酸二甲酯的含量不应超过0.1ppm,产品及包装内不得使用含有富马酸二甲酯的干燥剂、防霉剂小袋。欧盟又于2012年1月26日发布了该禁令的修订指令2012/48/EU,将2009/251/EC指令的有效期延至2013年3月15日。2012/48/EU指令明确指出,若富马酸二甲酯列入REACH法规附录17中进行强制管控的提案正式通过的时间早于前者,则富马酸二甲酯禁令即时生效。  根据此次修订,用于物品及物品的任一成分中的富马酸二甲酯含量不得超过0.1mg/kg,物品及物品中任一成分富马酸二甲酯含量超过0.1mg/kg不得置于市场销售。在此,检验检疫部门建议广大出口企业:继续严格遵守欧盟富马酸二甲酯指令,确保出口产品符合进口国的相关要求。
  • 环境部征求意见 《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》
    有机酸对水体、大气、土壤、建筑物、人体等都可能产生危害,在环境空气颗粒物中,有机酸的来源有以下几种方式。有机酸颗粒物排放源在有机物含量测定研究中,人们发现甲酸和乙酸的比值与人类污染对大气有机酸的贡献量有一定的联系,因而可以用来判断大气有机酸的主导来源是自然源还是人类污染源。多数已知的有机酸来源可以同时向大气中释放数种低分子有机酸,因此,通过测定多种低分子有机酸,可以在不同来源的有机酸贡献量之间建立多元方程,从而计算出不同来源对大气有机酸的贡献比例。因此,开展关于有机酸在大气化学中的监测研究是非常有必要的,该结果对于了解大气颗粒物中有机物的变化规律与来源解析具有重要的科学意义。目前有机酸含量的测定方法主要有电位滴定法、分光光度法、酶分析法、毛细管电泳法、气相色谱法、液相色谱法、质谱法和离子色谱法等。有机酸分析方法的比较而目前国内标准中,有机酸的分析标准有:国内有机酸测定相关标准综合考虑有机酸含量、对颗粒物源解析支撑作用以及离子色谱的检测能力,本次制定的标准最终确定了甲酸、乙酸、乙二酸三种目标化合物。在方法验证报告中,本标准使用了9家单位的11台离子色谱仪,详情如下:单位序号仪器厂家仪器型号性能状况(计量/校准状态、量程、灵敏度等)备注A赛默飞ICS-5000+良好氢氧根体系B赛默飞AQUION良好氢氧根体系C赛默飞ICS-5000良好氢氧根体系/碳酸盐体系D瑞士万通940Professional良好碳酸盐体系赛默飞Integrion HPIC良好氢氧根体系E赛默飞ICS-2000良好氢氧根体系F赛默飞ICS-5000+良好氢氧根体系瑞士万通925型良好碳酸盐体系G青岛普仁PIC-10良好碳酸盐体系H瑞士万通940良好碳酸盐体系I青岛盛瀚CIC-D100良好碳酸盐体系在颗粒物源解析领域,离子色谱仪以前主要用于颗粒物中水溶性阴阳离子的测定,如果此标准发布,那么离子色谱仪在颗粒物源解析领域将发挥更大作用。不过从参与验证的仪器来看,国产仪器还需要多多努力。除离子色谱仪外,此标准涉及的仪器还包括大气采样器、超声波清洗仪。征求意见稿全文如下:《环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法》(征求意见稿).pdf
  • 快来看啊~氯丙醇及其脂肪酸酯测定的解决方案新出炉了!
    氯丙醇是甘油(丙三醇)中的羟基被氯离子取代后形成的一类物质,共有4种物质,包括3-氯-1,2-丙二醇(3-MCPD)、2-氯-1,3-丙二醇(2-MCPD)、1,3-二氯-2-丙醇(1,3-DCP)和2,3-二氯-1-丙醇(2,3-DCP),具有肾脏毒性、生殖毒性,并可能具有致癌性。氯丙醇在许多食品中都存在,如面包、香肠、焦糖色素、方便面调味料等,但动植物蛋白在盐酸催化水解作用下最容易产生,通常含量也最高。此外,变性淀粉、纸质食品接触材料(袋泡茶的过滤纸、咖啡过滤纸等)、生活饮用水可能由于环氧氯丙烷树脂或者工艺的使用,而带来氯丙醇的污染。2000年初我国酱油出口一度因为氯丙醇问题而受阻,之后污染得到了较好的控制。氯丙醇酯、缩水甘油酯是近10年来国际上备受关注的新型食品污染物,氯丙醇酯是氯丙醇与各类脂肪酸作用后形成的一大类物质的总称,主要分为3-氯-1,2-丙二醇酯(3-MCPD酯)和2-氯-1,3-丙二醇酯(2-MCPD酯),氯丙醇与氯丙醇酯虽然仅一字(酯)之差,但它们的化学性质和形成机理差别很大,氯丙醇容易在脂肪的酸水解中形成,而氯丙醇酯和缩水甘油酯容易在食用油高温精炼或脂肪类食品在煎、炸、烧、烤等烹调过程中产生。Detelogy参考GB 5009.191-2016提供测定食品中氯丙醇及其脂肪酸醋含量的测定推出以下前处理解决方案一、食品中氯丙醇脂肪酸酯含量的测定气相色谱-质谱法1、试样提取植物油、动物油等油脂类试样:称取试样0.1 g,加入氘代氯丙醇脂肪酸酯混合溶液20μL,D5-1,3-DCP和D5-2,3-DCP溶液各20 μL。其他试样:称取试样2 g,加入氘代氯丙醇脂肪酸酯混合标准工作液20 μL。加入4 mL正已烷,充分振摇混匀,超声提取20 min,静置分层后,转移出上层正己烷。再重复提取2次,合并正已烷相(约12 mL),加入D5-1,3-DCP和D5-2,3-DCP溶液各20 μL,置于FV32Plus全自动高通量智能平行浓缩仪中浓缩至约1 mL。注:对于乳粉、咖啡等固体粉末试样,需先加2 mL水溶解后再用正已烷提取。对于香肠等动物性食品试样,可采用经乙睛饱和的正已烷作为提取液。2、酯键断裂反应向试样提取液中加0.5 mL甲基叔丁基醚-乙酸乙酯溶液(8 2)和1 mL甲醇钠-甲醇溶液(0.5 mol/L),盖紧盖子,MultiVortex涡旋振荡30 s。室温反应4 min,加入100 μL冰乙酸终止反应。加入3 mL溴化钠溶液(20%)和3 mL正已烷,MultiVortex涡旋振荡30 s,静置1 min,弃去上层正已烷相,再用3 mL 正已烷萃取一次,弃去上层正已烷相,下层的水相溶液待净化。注:此步骤中如采用氯化钠溶液(20%)萃取,则经后续步骤测定得到的是氯丙醇脂肪酸和缩水甘油醋的总含量。3、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将水相溶液倒入硅藻土小柱中,平衡10 min后,用15 mL乙酸乙酯洗脱,收集洗脱液,在洗脱液中加入4 g无水硫酸钠,放置10 min后过滤,FV32Plus全自动高通量智能平行浓缩仪浓缩至0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。4、衍生化向正已烷复溶液中加入40 μL七氟丁酰基咪唑,立即盖上盖子,MultiVortex涡旋混合30 s,于7℃保温20 min。取出放至室温,加入2 mL氯化钠溶液(20%),MultiVortex涡旋1 min,静置后移出正已烷相,加入约0.3 g无水硫酸钠干燥,将溶液转移至进样小瓶中,供气相色谱-质谱测定。二、食品中氯丙醇多组分含量的测定同位素稀释-气相色谱-质谱法1、样品提取液态试样:称取试样4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20μL,超声混匀5 min,待净化。半固态及固态试样:称取试4 g于15 mL玻璃离心管中,加入氘代氯丙醇混合溶液20 μL,加入4 g氯化钠溶液(20%),超声提取10 min后5 000 r/min离心10 min,移取上清液,再重复提取1次,合并上清液,待净化。2、样品净化硅藻土小柱固定于QSE-12/24固相萃取装置,将上清液全部转移至硅藻土小柱中,平衡10 min。以10 mL正已烷淋洗,弃去流出液,以15 mL乙酸乙酯洗脱氯丙醇,收集洗脱液于玻璃离心管中,使用FV32Plus全自动高通量智能平行浓缩仪浓缩至约0.5 mL切忌浓缩至全干。以2 mL正己烷溶解残渣,并转移具塞透明玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法三、食品中3-氯-1,2-丙二醇含量的测定同位素稀释-气相色谱-质谱法1、样品提取样品类型液体试样称取试样4 g于50 mL烧杯中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)4 g,超声混5 min待净化提取后无明显残渣的半固态及固态试样加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)6 g,超声 10 min提取后有明显残渣的半固态及固态试样称取试样 4 g于15 mL 离心管中加入D5-3-MCPD内标溶液20 μL,加入氯化钠溶液(20%)15 g,超声提取10 min5 000 r/min离心10 min,移取上清液,待净化。2、样品净化取硅藻土5 g,加入提取液,充分混匀,放置 10 min。取5 g硅藻土装入层析柱中(层析柱下端填充少量玻璃棉)。将提取液与硅藻土混合装入层析柱中,上层加1 cm高度的无水硫酸钠。用40 mL正已烷-无水乙醚溶液(9 1)淋洗,弃去流出液。用150 mL无水乙醚洗脱3-MCPD,收集流出液,加入15 g无水硫酸钠,混匀以吸收水分,放置10 min后过滤。滤液于FlexiVap-12/24全自动智能平行浓缩仪35℃下浓缩至近干(约0.5 mL),2 mL正已烷溶解残渣,保存于具塞玻璃管中,待衍生化。3、衍生化同上述食品中氯丙醇脂肪酸酯含量的测定 气相色谱-质谱法Detelogy优选仪器
  • 从“牛奶检出丙二醇”事件,来看看丙二醇检测都用哪些仪器及方法
    近日,麦趣尔纯牛奶检测出丙二醇问题引起社会广泛关注。据了解,浙江省庆元县市场监督管理局公示了2022年第4期食品抽检情况,结果显示,麦趣尔集团生产的2批次纯牛奶抽检不合格,被检出丙二醇,该项目标准值为“不得使用”。序号样品名称被抽样单位名称生产单位名称抽样时间检测结果不合格项目检验结果标准值1纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.318g/kg不得使用2麦趣尔纯牛奶庆元县宸瑾食品商行麦趣尔集团股份有限公司2022-05-26不符合丙二醇0.321g/kg不得使用数据来源于网络那么,丙二醇到底为何物,对人体危害性如何? 丙二醇可分为两种稳定的同分异构体:1,2-丙二醇和1,3-丙二醇。基本特征是无色、无味和无臭,易燃烧,吸水性很强,能够与水、乙醇以及其他多种有机溶剂任意混溶。 根据GB 2760-2014《食品安全国家标准 食品添加剂使用标准》、GB 30616-2020《食品安全国家标准 食品用香精》的规定,丙二醇是批准使用的食品添加剂,也是允许使用的食品用合成香料和食品用香精中允许使用的溶剂。食品添加剂丙二醇在生湿面制品、糕点中的最大使用量分别为1.5g/kg、3.0g/kg。但是,丙二醇不得在纯牛奶中使用。 有专家表示,长期过量食用丙二醇可能引起肾脏障碍。然而,笼统的说“长期大量”是没有意义的。世卫专家给出丙二醇的ADI值是25mg/kg,按一个成年人60公斤计算,每天喝5升检出丙二醇含量为0.32g/kg的奶,才达到这个每日容许摄入量,所以即使喝过含丙二醇牛奶的朋友们也不用太过焦虑。那么,丙二醇为什么会出现在牛奶中? 我们先来介绍下丙二醇的作用,丙二醇常用作稳定剂和凝固剂、抗结剂、增稠剂等,在塑料、服装、合成树脂、化妆品、食品等众多领域有着广泛的应用。 对于麦趣尔牛奶中检测出丙二醇,有专家提出了以下可能性:第一,在挤牛奶时一般会对牛的乳房进行消杀,杀菌剂中会添加丙二醇起到溶解的作用;第二,乳制品生产过程中会清洗管道,管道中会添加大量清洗剂,而清洗剂中会添加丙二醇;第三,该牛奶与其他使用丙二醇的产品共用生产设备,切换产品时没有清洗;第四,有可能是饲料中添加了丙二醇,进而转移到了牛奶中。根据以上内容,丙二醇在日常生活中几乎无处不在,那么丙二醇检测都用什么仪器及方法呢?GB 5009.251-2016《食品安全国家标准 食品中1,2-丙二醇的测定》中规定了,用气相色谱和气相色谱-质谱法测定食品中1,2-丙二醇。此外,小编这儿还为大家整理了几种常见样品中丙二醇的检测方法,一起来学习一下吧~~1、GC/GCMS法测定进出口食用动物、饲料中的丙二醇含量使用仪器:气质联用仪气质联用仪方法简介:本文建立了进出口食用动物、饲料中丙二醇含量的气相色谱分析方法,并采用气相色谱-质谱联用法进行确证,本方法操作简单、灵敏度高,可为进出口食用动物、饲料中丙二醇含量测定提供参考。2、电子雾化液中丙二醇、丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:采用岛津公司气相色谱仪GC-2010 Pro建立了电子雾化液中1,2-丙二醇和丙三醇含量的检测方法。在100-2000 mg/L浓度范围内,1,2-丙二醇和丙三醇标准曲线的线性相关系数均在0.999以上。取浓度100 mg/L标准溶液6次平行测定,峰面积的相对标准偏差(RSD%)小于2%,重复性良好。加标试验中,丙二醇和丙三醇的平均加标回收率分别为100.8%和99.4%,回收率良好。该方法可为电子雾化液中1,2-丙二醇和丙三醇含量的测定提供参考。3、气相色谱酒中风味物质—— 1,2-丙二醇使用仪器:气相色谱仪气相色谱系统方法简介:采用配备自动进样器和FID的8860GC进行分析,系统对醇、醛、有机酸和酯类物质均实现了优异的分离度和峰形,为白酒中风味物质的研究提供了可靠的参考依据。4、烟草中1,2-丙二醇和丙三醇检测方案(气相色谱仪)使用仪器:气相色谱仪气相色谱仪方法简介:本文采用 Thermo Scientific 模块化气相色谱 Trace1310 配置 FID 检测器,以含1,4-丁二醇做内标的甲醇溶剂对烟丝中的 1,2-丙二醇和丙三醇进行震荡提取,并测定。该方法的操作步骤简单,对 1,2-丙二醇和丙三醇的检出限分别为 88.25 ug/g 和 288.25 ug/g,定量限均为1.25mg/g, 体现了其较高的检测灵敏度;同时以3种不同浓度水平对烟丝样品进行加标回收试验,其回收率对1,2-丙二醇为105~110%、对丙三醇为96.0~112%,能够很好地符合对烟丝样品中1,2-丙二醇和丙三醇的日常检测要求。5、牙膏中丙二醇、二甘醇、甘油等二醇类化合物检测方案(毛细管柱)使用仪器:气质联用仪气质联用仪方法简介:通过GC/MSD分析牙膏样品中的二醇类物质,采用超高惰性气相色谱柱,按照US FDA方法进行,样品中的待测物均表现出良好的峰形。以上就是小编为大家整理的部分样品中丙二醇的检测方案,更多内容,请查看【行业应用】栏目。同时,也欢迎广大厂商积极上传相应的解决方案,为更多用户提供参考,更能展示公司技术实力! 【行业应用】是仪器信息网专业行业导购平台,汇聚了行业内国内外主流厂商的优质分析方法及相应的仪器设备。栏目建立了兼顾国家相关规定和用户习惯的专业分类,涉及食品、药品、环境、农/林/牧/渔、石化、汽车、建筑、医疗卫生等二十余个使用仪器相对集中的行业领域,目前,已经收录行业解决方案5万+篇。 选靠谱仪器,就上仪器信息网【仪器优选】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类,收录数十万台优质仪器。
  • 含油脂食品中邻苯二甲酸酯类化合物的检测的样品前处理
    &mdash &mdash 《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之一 经过一段时间,笔者检测了多种实际食品样品中的邻苯二甲酸酯类化合物,发现最为困难的是含有油脂的样品的样品前处理。在之前的系统解决方案的基础上,将最近的心得总结如下: 1、样品提取方法:纯油脂样品:用万分之一天平称取0.1g样品,置于玻璃离心管中,然后加入3mL乙腈,涡旋2min,超声2min,以4000rpm离心2min,将上清液转移至一玻璃管中,在40℃下以氮气吹干,加入1mL正己烷,轻轻振荡摇匀,作为待净化液。其他含油脂样品:考虑到方法的普适性,参考GBT21911-2008,称取0.5g混合均匀的含油脂的样品,加5mL正己烷涡旋2min,(若样品中含有水,可在此时加入适量的无水硫酸钠),超声2min,以4000rpm离心2min,取上清液,作为待净化液。 2、固相萃取方法:若样品中不含色素等杂质,可采用Cleanert PAE柱。具体方法如下:(1)活化:将Cleanert PAE固相萃取柱用5mL正己烷活化;(2)上样:将待净化液全部加到固相萃取柱中;(3)淋洗:用10mL 1%乙酸乙酯的正己烷溶液淋洗固相萃取柱;(4)洗脱:用5mL 50%乙酸乙酯的正己烷溶液洗脱固相萃取柱。收集洗脱液,在40℃下以氮气吹干,加入1mL乙腈,涡旋1min,超声1min,以4000rpm离心2min,取上清液进GC/MS检测。若样品中含有色素等杂质,可采用Cleanert PAE-C柱。具体操作方法同上。 补充说明:Cleanert MAS-PAE管和Cleanert MAS-PAEc管作为一种快速检测方法,被推荐用于不含油脂或含油脂较少的样品中,如牛奶、酸奶等。 本方案中Cleanert PAE和Cleanert PAE-C柱的固相萃取方法,理论上可适用于所有样品。相比之前的方案,增加了淋洗强度,有助于尽可能去除极性比邻苯二甲酸酯类物质小的甘油三酯(在油脂中的含量大于95%),从而提高了净化效果。 附件一:气质联用法检测16种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS色谱条件:色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1&mu L流速:1 mL/min 质谱条件:接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min监测方式:SIM模式,监测离子见下表 序号保留时间/min中文名称英文缩写定量离子辅助定量离子18.351邻苯二甲酸二甲酯DMP1637729.228邻苯二甲酸二乙酯DEP149177311.018邻苯二甲酸二异丁酯DIBP149223411.788邻苯二甲酸二丁酯DBP149223512.135邻苯二甲酸二(2-甲氧基)乙酯DMEP59149、193612.857邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149251713.231邻苯二甲酸二(2-乙氧基)乙酯DEEP4572813.605邻苯二甲酸二戊酯DPP149237915.805邻苯二甲酸二己酯DHXP149104、761015.97邻苯二甲酸丁基苄基酯BBP149911117.436邻苯二甲酸二(2-丁氧基)乙酯DBEP1492231218.108邻苯二甲酸二环己酯DCHP1491671318.345邻苯二甲酸二(2-乙基)己酯DEHP1491671418.511邻苯二甲酸二苯酯&mdash 225771520.785邻苯二甲酸二正辛酯DNOP1492791623.379邻苯二甲酸二壬酯DNP14957、71 在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1、 16种邻苯二甲酸酯类化合物选择离子色谱图 出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP)
  • 氯丙二醇兴风作浪,岛津方案让您一招全搞定
    导读近日有媒体报道,香港婴儿配方奶粉检出致癌物氯丙二醇(3-MCPD)及可致癌的环氧丙醇,其中不乏有惠氏、美赞臣、雅培、meiji等知名品牌。此事牵动着广大宝妈对婴幼儿奶粉质量安全及婴儿身体健康等的担忧。当晚,香港食安中心在专页澄清指出,根据联合国粮农组织及世界卫生组织专家委员会的相关参考值,全部奶粉均无超标,市民可放心按奶粉建议食用分量给婴儿食用。这使得宝妈悬着的心又一次平静下来。但此事也反映了广大民众对食品安全质量的又一次警钟长鸣。 什么是氯丙二醇类物质 氯丙二醇类物质是包括3-MCPD(3-氯丙二醇)、2-MCPD(2-氯丙二醇)、3-MCPDE(3-氯丙二醇脂肪酸酯)、2-MCPDE(2-氯丙二醇脂肪酸酯)以及GE(缩水甘油脂肪酸酯)。其中氯丙醇酯是氯丙醇在食品中与各种脂肪酸形成的一大类物质的总称,主要为3-MCPDE及2-MCPDE。缩水甘油又称环氧丙醇,是一种环氧化合物,在食品中与脂肪酸结合形成较为稳定的缩水甘油酯(GE)。这类物质中3-MCPD毒性最大,对人体的肝、肾、神经系统及血液循环系统会造成毒害,具有潜在致癌性,国际癌症研究机构(IARC)将其定2B级,即“可能的人类致癌物”。 表1 氯丙二醇类物质相关信息 氯丙二醇类物质属于是食品原料中带入的一种污染物,目前还无法完全避免。食品在加工生产过程中,酸水解植物蛋白或者高温油脂精炼过程中,均会产生氯丙二醇及相关污染物。婴幼儿配方奶粉脂肪含量大约为25%,添加的多数为精炼油脂,因此受到了氯丙二醇污染。同时媒体报道的奶粉中可疑致癌物环氧丙醇,在食品中以缩水甘油脂肪酸酯(GE)的形式存在。 因氯丙二醇类物质的致癌性,各国也推出了其建议的限量要求。 FAO/WHO及欧盟建议3-MCPD的最高日允许摄入量为2μg/Kg体重。美国FDA建议食品所含3-MCPD不应超过1mg/kg干物质;欧盟食品污染限量法规(EC)规定:酱油、水解植物蛋白(干物质含量为40%的液体产品)最大限量要求为20μg/Kg;干物质产品为50 μg/Kg。我国GB 2762-2017《食品安全国家标准 食品中污染物限量》中规定了3-MCPD的限量为:添加酸水解蛋白的液态调味品≤0.4 mg/Kg;固态调味品≤1.0 mg/Kg。 氯丙二醇类物质检测方法 目前对氯丙二醇类物质的检测国际上没有统一的标准,采用较多的为AOCS(美国油脂化学协会)官方方法 cd 29a-13;我国国标GB 5009.191-2016、SN/T 5220-2019也对氯丙二醇类物质规定了检测方法。以上标准均采用气相色谱-单四极杆质谱法(GC-MS)进行测定,但会出现复杂样品杂质干扰大的缺点,从而影响结果的准确定性定量;同时为了提高灵敏度需要复杂的样品前处理及净化过程。而采用气相色谱-三重四极杆质谱法(GC-MS/MS)的多反应监测模式(MRM)检测,定量目标物更加准确,是目前复杂基质中微量化合物最有效的检测手段,也是氯丙二醇类物质测定的最佳选择。 岛津整体解决方案 岛津公司秉承以“为了人类及地球的健康”的公司理念,结合自身仪器特点,在氯丙二醇事件发生后,快速应对,为食品中氯丙二醇类物质的检测提供完整的解决方案。在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪 氯丙醇的检测方法 使用岛津公司独有的在线凝胶色谱净化-气相色谱-三重四极杆质谱联用仪(GPC-GCMS-TQ8040),食品样品简单的提取后,经在线GPC净化去除掉样品中的脂肪、蛋白等大分子干扰物,采用GC-MS/MS的MRM方式无需衍生的条件下分析食品中的氯丙醇含量,同时采用氘代同位素内标法进行校正。相关MRM条件及色谱图如下 表2 氯丙醇类化合物MRM参数 图1 氯丙醇及氘代同位素内标溶液色谱图 在0.005~1 mg/L范围内,通过同位素内标法得到的线性其相关系数R均大于0.999,其各物质的检出限及定量限见下表所示: 表3 氯丙醇类化合物线性相关系数、检出限、定量限 注:以上数据来源于易青,苗虹,吴永宁,《在线凝胶渗透色谱-气相色谱-串联质谱非衍生化法测定食品中氯丙醇》,分析化学研究报告,2016,5(44):678~684. 气相色谱-三重四极杆质谱联用仪(GCMS-TQ8040 NX) 氯丙醇酯及缩水甘油酯的检测方法 食品中的脂肪经溴代反应后,其中的缩水甘油酯转变成溴丙醇酯;溴丙醇酯以及样品中的氯丙醇酯在酸性条件下发生酯交换反应,并被水解为相应的氯丙醇,同时经基质分散固相萃取净化后,氮吹并经七氟丁酰基咪唑(HFBI)衍生后,上GC-MS/MS仪器进行分析,采用同位素内标法定量,可一次性同时测定样品中的3-MCPDE、2-MCPDE和GE的含量。相关MRM条件及色谱图如下: 表4 氯丙醇酯类化合物MRM参数 图 2. 氯丙醇酯及缩水甘油酯标准色谱图(100 ng/mL) 在0.01~0.3 mg/L范围内,通过同位素内标法得到的线性相关系数(R2)均大于0.997,其各物质的检出限及定量限见下表所示: 表5 氯丙醇类化合物线性相关系数、检出限、定量限 结论 岛津公司提供全面应对食品中氯丙二醇类致癌物质检测的整体解决方案,结合自身独有技术特点,方便、快捷地让您轻松应对食品污染物分析,在婴儿奶粉氯丙二醇事件中乘风破浪!
  • 欧盟通过禁用富马酸二甲酯草案
    1月29日,欧盟成员国通过了“保证含有富马酸二甲酯的消费品不会投放欧洲市场”的决议草案。目前,该决议仍处于欧洲议会审查阶段,预计将在5月1日前正式生效。  草案明确规定,如果消费品或其部件中富马酸二甲酯的含量超过了0.1毫克/千克,或者产品本身已声明了其富马酸二甲酯的含量,就将被认定为“含有富马酸二甲酯”的产品,其将禁止进入欧盟市场流通和销售。  富马酸二甲酯(简称DMF)通常被用作防腐防霉剂产品,常用于皮革、鞋类、纺织品等的生产、储存、运输中。但从去年10月起,欧盟方面就陆续通报了多起因消费者接触含有富马酸二甲酯的鞋、皮沙发等而产生皮肤过敏、急性湿疹及灼伤的案例,使其受到了广泛关注。欧盟也在此后进行了研究和分析,并最终出台了上述草案及限量标准。  在欧盟草案通过之前,法国、比利时已采取了具体措施,禁止进口和销售含富马酸二甲酯的鞋和座椅。西班牙也出台规定,禁止任何接触到皮肤的产品含有富马酸二甲酯。而且,自去年年底开始,已有多批中国产品因富马酸二甲酯含量超标被法国等国扣留。  富马酸二甲酯在国内产品中的应用十分广泛,相当多的鞋类、皮革家具及家纺等产品都会在包装中放入含该成分的防潮袋,用于防潮防霉。而在我省,温州、海宁等地的皮革类产品是传统的外贸出口产品,仅温州一地,其2008年鞋类产品出口就达到了2.76亿美元。纺织品更是浙江的出口优势产品,每年约有400亿的出口量。上述出口产品占了欧盟市场相当大的份额。更让人担心的是,据资料显示,由于富马酸二甲酯具有毒性低、抑菌能力强、抑菌种类多、不受环境影响等特点,还被广泛用于食品、粮食、饲料、化妆品、烟草等防腐防霉及保鲜,因此,欧盟此次对所有含有富马酸二甲酯的消费品颁布禁令,势必将给我省相关行业带来很大的不利影响。  面对该禁令的巨大挑战,检验检疫部门提醒相关出口企业应及时进行调整,换用更为环保和健康的防潮防霉产品,以符合草案的要求,并积极与国外客户进行沟通,减少草案对产品出口的影响。近期,检验检疫部门也将对辖区内的相关企业加强检验和监管,避免不合格产品运至欧盟后,造成更大的经济和声誉上的损失。
  • 明天实施!详解食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定
    《食品安全国家标准 食品中氯丙醇及其脂肪酸酯、缩水甘油酯的测定》于今年2月发布,将于8月8日正式实施,为市场监管和行业质量提升提供科学依据。何为氯丙醇酯和缩水甘油酯?氯丙醇酯(MCPDE)和缩水甘油酯(GE)是氯丙醇(MCPD)和缩水甘油(Gly)与食品中脂肪酸酯化产物,广泛存在于精炼油脂(油脂精炼可有效去除原油不良气味与颜色)及油脂食品中,绝大部分经加热处理的食物以及油脂含量较高的食物也均能检测到氯丙醇酯,如咖啡、油炸薯条、饼干、食用油、面包、糕点、婴幼儿配方奶粉(“婴配粉”)等。 为何要检测氯丙醇酯和缩水甘油酯?氯丙醇酯以及缩水甘油酯在消化过程中会水解并高效释出游离氯丙醇和缩水甘油。氯丙醇酯水解产物3-MCPD是公认的食品污染物,具有潜在的致癌性、神经毒性、免疫毒性、遗传毒性和生殖毒性;缩水甘油酯降解产物缩水甘油同样具有致癌风险。岛津解决方案仪器方法+耗材匹配,全面应对标准更新!岛津在GB 5009.191标准修订过程中与制标单位福建省疾病预防控制中心深度合作,全程参与了标准的开发与验证工作。第一篇:GCMS法测定氯丙醇步骤:无水解、硅藻土小柱净化萃取(SLE法)、HFBI衍生、GCMS分析适用于:含水解植物蛋白液、酱油、鱼露、蚝油、鸡精、固体汤料、方便面调味包、香肠、婴幼儿配方乳粉中3-MCPD、2-MCPD、1,3-DCP及2,3-DCP含量的测定图1. 第一篇 氯丙醇及内标衍生物总离子流图第二篇第一法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图2. 第二篇第一法 氯丙醇、缩水甘油及内标衍生物总离子流图第二篇第二法:GC-MS/MS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:酸水解、液液萃取、氨基柱净化(SPE)、PBA衍生、GC-MS/MS分析适用于:油脂及其制品、乳粉、油炸食品、膨化食品、焙烤食品、水产制品和肉制品中3-MCPDE、2-MCPDE和GE含量的测定图3. 第二篇第二法 氯丙醇、缩水甘油及内标衍生物质量色谱图第二篇第三法:GCMS法测定氯丙醇脂肪酸酯及缩水甘油酯步骤:碱水解、液液萃取、PBA衍生、GCMS分析适用于:动植物油脂及其制品图4. 第二篇第三法 氯丙醇及内标衍生物总离子流图岛津方案方案亮点亮点1:仪器建议配置PTV进样,可有效减少高沸点杂质对方法稳定性的影响SPL进样模式下进样150针左右时缩水甘油酯MRM色谱图PTV进样模式下进样150针左右时缩水甘油酯MRM色谱图亮点2:加装保护柱,有效避免色谱柱和离子源的污染保护柱为经过惰性化处理的脱活石英毛细空管,不会引起目标物保留时间的偏移,并能有效避免PBA和其他高沸点污染物流入分析柱和离子源,从而保证色谱柱柱效、方法稳定性和灵敏度,也可以有效确保同一根色谱柱在其它项目的分析上仍能保持良好表现(不接保护柱,采用PBA衍生法分析氯丙醇酯后,农残等其他项目的出峰情况可能出现异常)。不接保护柱进行氯丙醇项目测试前后,氧乐果的峰型对比(氯丙醇酯分析方法——碱水解+PBA衍生,农残分析方法——GB 23200.113)亮点3:标准全对应仪器耗材全覆盖岛津在提供GCMS和GC-MS/MS仪器方案的同时,可提供前处理+色谱柱+标准品+通用耗材的消耗品一站式服务,新标准应对全搞定!项目混用时,建议更换进样口隔垫、衬管,并及时清洗进样针。岛津氯丙醇及缩水甘油酯消耗品应对表.pdf
  • 欧盟科学家在非聚碳酸酯婴儿奶瓶中发现BPA
    2012年2月16日消息,欧盟委员会联合研究中心(JRC)公布了一项针对塑料婴儿奶瓶释放化学物质的监测研究的最终结果。研究结果发现,在一个由聚酰胺制成的产品中发现了双酚A(BPA)的存在。  研究人员对277种从欧盟和美国市场购买的婴儿奶瓶的化学品迁移进行了测试。这些奶瓶由替代BPA的非聚碳酸酯材料制成,自2011年3月1日塑料BPA禁令生效后开始使用,材料包括聚酰胺、聚苯醚砜、聚丙烯和硅。  结果表明,总体上来说所有奶瓶都会释放低含量的化学物质,这与11月发布的初步研究结果比较相似。然而,其中一款标签为“无BPA”的聚酰胺奶瓶中检测到了BPA。此外,聚丙烯和硅有机树脂制成的奶瓶中也发现会释放几种未包含在肯定列表中的化学物质,甚至有几种不允许在此类产品中使用,如邻苯二甲酸盐。  研究人员得出的结论为,该结果应在未来关于塑料婴儿奶瓶的风险评估中再次进行考虑,同时建议官方食品控制实验室对目前使用的替代材料进行强化测试,并告知风险管理的结果。
  • Sigma-Aldrich提供塑化剂邻苯二甲酸酯(DEHP等)检测的解决方案
    最近台湾出现的塑化剂污染饮料事件备受关注,一些不法商贩为了节约成本,用塑化剂替代棕榈油添加到&ldquo 起云剂&rdquo 中。塑化剂学名叫邻苯二甲酸酯,过多使用的话将影响生殖功能甚至导致癌症。对于塑化剂(邻苯二甲酸酯)的检测,Sigma-aldrich可以提供固相萃取的方法解决这一问题,采用Supelco玻璃管(无邻苯二甲酸酯类杂质干扰)SPE小柱对饮料中的邻苯二甲酸酯进行固相萃取富集,然后进行液相色谱或者GC/MS分析。此外,我们还可提供SPME(固相微萃取)快速检测邻苯二甲酸酯的检测方法。标准品、色谱溶剂、色谱柱等相关产品清单如下:标准品英文名货号包装单价邻苯二甲酸二甲酯DMPDimethyl phthalate36738-1G1g280.8邻苯二甲酸二乙酯DEPDiethyl phthalate36737-1G1g267.93邻苯二甲酸二异丁酯DIBPDiisobutyl phthalate152641-1L1L533.52邻苯二甲酸二丁酯DBPDibutyl phthalate36736-1G1g267.93邻苯二甲酸二(2-甲氧基)乙酯DMEPBis(2-methoxyethyl) phthalate36934-250MG250mg341.64邻苯二甲酸二戊酯DPPDipentyl phthalate4428671g1932.84邻苯二甲酸丁基苄基酯BBPBenzyl butyl phthalate4425031g238.68邻苯二甲酸二环己酯 DCHPDicyclohexyl phthalate36908-250MG250mg310.05邻苯二甲酸二(2-乙基)己酯DEHPBis(2-ethylhexyl) phthalate36735-1G1g401.31邻苯二甲酸二(2-乙基)己酯DEHPBis(2-ethylhexyl) phthalate485571g527.67邻苯二甲酸二苯酯Diphenyl phthalate36617-1G-R1g267.93邻苯二甲酸二正辛酯DNOPDi-n-octyl phthalate31301-250MG250MG299.52邻苯二甲酸二壬酯DNPDinonyl phthalate80151-25ML25ML849.42邻苯二甲酸二异壬酯DINPDiisononyl phthalate 376663-1L1L417.69邻苯二甲酸异癸酯DIDPDiisodecyl phthalate 80135-10ML10ML506.61邻苯二甲酸二异丙酯DIPrPDiisopropyl phthalate80137-50ML50ML2190.24邻苯二甲酸二烯丙酯DAPDiallyl phthalate36925-250MG250MG341.64邻苯二甲酸二丙酯DPrPDipropyl phthalate45624-250MG250MG267.93邻苯二甲酸二庚酯DHPDiheptyl phthalate454818-10G10G865.80 47643-U11种邻苯二甲酸酯类混标2000&mu g/ml溶于二氯甲烷1ml453.96 BBP双-(2-氯乙氧基)甲烷双(2-氯乙基)醚 DEHP4-溴联苯醚4-氯二苯醚 双(2-氯异丙基)醚DBPDEP DMPDNOP 487416种邻苯二甲酸酯类混标200 &mu g/ml 溶于甲醇1ml424.71 BBPDEHPDBP DEPDMPDNOP 479737种邻苯二甲酸酯类混标500 &mu g/mL 溶于甲醇1ml424.71 BBP己二酸二(2-乙基己)酯DEHP DBPDEPDMP 五氯苯酚 482236种邻苯二甲酸酯类混标500 &mu g/ml溶于甲醇1ml464.49 BBP己二酸二(2-乙基己)酯DEHP DBPDEPDMP 48805-U6种邻苯二甲酸酯类混标2000 &mu g/ml溶于甲醇1ml475.02 DEHPBBPDBP DNOPDEPDMP 482316种邻苯二甲酸酯类混标2000 &mu g/ml溶于己烷1ml475.02 DEHPBBPDBP DNOPDEPDMP 1107种邻苯二甲酸甲酯定制混标1000 ppm 溶于二氯甲烷 1 ml咨询 邻苯二甲酸二异壬酯68515-48-0DINP 邻苯二甲酸二正辛酯117-84-0DNOP 邻苯二甲酸二(2-乙基)己酯117-81-7DEHP 邻苯二甲酸二异癸酯 26761-40-0DIDP 邻苯二甲酸丁基苄基酯85-68-7BBP 邻苯二甲酸二丁酯84-74-2DBP 邻苯二甲酸二异丁酯84-69-5DIBP 11016种邻苯二甲酸酯定制混标1000ug/ml 溶于正己烷1 ml咨询 邻苯二甲酸二甲酯131-11-3DMP 邻苯二甲酸二乙酯84-66-2DEP 邻苯二甲酸二异丁酯84-69-5DIBP 邻苯二甲酸二丁酯84-74-2DBP 邻苯二甲酸二(2-甲氧基)乙酯117-82-8DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯146-50-9BMPP 邻苯二甲酸二(2-乙氧基)乙酯605-54-9DEEP 邻苯二甲酸二戊酯131-18-0DPP 邻苯二甲酸二己酯84-75-3DHXP 邻苯二甲酸丁基苄基酯85-68-7BBP 邻苯二甲酸二(2-丁氧基)乙酯117-83-9DBEP 邻苯二甲酸二环己酯84-61-7DCHP 邻苯二甲酸二(2-乙基)己酯117-81-7DEHP 邻苯二甲酸二苯酯84-62-8 邻苯二甲酸二正辛酯117-84-0DNOP 邻苯二甲酸二壬酯84-76-4DNP 11017种邻苯二甲酸酯定制混标1000ug/ml 溶于正己烷1 ml咨询 邻苯二甲酸二甲酯131-11-3DMP 邻苯二甲酸二乙酯84-66-2DEP 邻苯二甲酸二异丁酯84-69-5DIBP 邻苯二甲酸二丁酯84-74-2DBP 邻苯二甲酸二(2-甲氧基)乙酯117-82-8DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯146-50-9BMPP 邻苯二甲酸二(2-乙氧基)乙酯605-54-9DEEP 邻苯二甲酸二戊酯131-18-0DPP 邻苯二甲酸二己酯84-75-3DHXP 邻苯二甲酸丁基苄基酯85-68-7BBP 邻苯二甲酸二(2-丁氧基)乙酯117-83-9DBEP 邻苯二甲酸二环己酯84-61-7DCHP 邻苯二甲酸二(2-乙基)己酯117-81-7DEHP 邻苯二甲酸二苯酯84-62-8 邻苯二甲酸二正辛酯117-84-0DNOP 邻苯二甲酸二壬酯84-76-4DNP 邻苯二甲酸二异壬酯68515-48-0DINP 色谱溶剂    正已烷农残级34484-2.5L2.5L418.86乙酸乙酯农残级31063-2.5L2.5L418.86环己烷农残级34496-2.5L2.5L528.84石油醚,40-60 ° C农残级34491-2.5L2.5L645.84乙醇色谱级34964-2.5L2.5L1744.47乙酸LC-MS级49199-50ML-F50ML603.72异辛烷农残级34499-2.5L2.5L1690.65甲醇农残级34485-2.5L2.5L279.63 试剂    无水硫酸钠农残级35896-500G500G308.88 气相柱    SLB&trade -5ms Capillary GC30m× 0.25mm× 0.25&mu m 28471-U1根4699.89SLB&trade -5ms Capillary GC30m× 0.25mm× 0.10&mu m 28467-U1根4699.89 液相柱    Ascentis C18液相柱5&mu m,25cm× 4.6mm 581325-U1根3239.73Ascentis C18保护柱5&mu m,2cm× 4.0mm 581373-U1kit1077.57 固相萃取产品    防交叉污染固相萃取装置12位570441套5717.79Supelclean&trade LC-Si 500mg/6ml50537430支/盒741.78Supelclean&trade LC-Si1g/6ml(玻璃管,PTFE筛板54335-U30支/盒3127.41 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-18500mg/6ml(玻璃管,PTFE筛板54331-U30支/盒2190.24 无邻苯二甲酸酯类杂质干扰) Supelclean&trade ENVI-Florisil500mg/3ml(PTFE筛板)5705854支/盒1736.28 装置    Supelco索氏抽提器200mL 648261套4186.26产品适用的国家标准:GB/T 21911-2008 食品中邻苯二甲酸酯的测定GB/T 21928-2008 食品塑料包装材料中邻苯二甲酸酯的测定GB/T 22048-2008 玩具及儿童用品 聚氯乙烯塑料中邻苯二甲酸酯增塑剂的测定GB/T 20388-2006 纺织品 邻苯二甲酸酯的测定SN/T 2037-2007 与食品接触的塑料成型品中邻苯二甲酸酯类增塑剂迁移量的测定 气相色谱质谱联用法SN/T 2249-2009 塑料及其制品中邻苯二甲酸酯类增塑剂的测定 气相色谱-质谱法SN/T 1779-2006 塑料血袋中邻苯二甲酸酯类增塑剂的测定 气相色谱串联质谱法WS/T 149-1999 作业场所空气中邻苯二甲酸二丁酯和邻苯二甲酸二辛酯的高效液相色谱测定方法
  • 辽宁检验检疫局具备富马酸二甲酯检测能力
    近期,为应对欧盟关于禁止含有富马酸二甲酯的产品投放市场或在市场上销售的有关决议,辽宁检验检疫局加强了出口轻纺产品中使用富马酸二甲酯的监测工作,辽宁局技术中心轻纺实验室发挥技术优势开展业务攻关,进行了一系列测试试验,努力改进试行的标准方法,通过确认试验,证实测试结果准确可靠。  目前,辽宁局已具备了轻纺产品中富马酸二甲酯成分检测能力,检测方法已投入应用,为辽宁口岸出口检验监管工作提供了强有力的技术支持
  • SPE-GC/MS法检测纯油脂中邻苯二甲酸酯类化合物
    ——《不同基质食品中邻苯二甲酸酯的检测的系统解决方案》更新之二 一、实验目的以某食用植物油为样品,利用GC/MS和Cleanert PAE固相萃取柱建立对16种邻苯二甲酸酯类化合物的检测方法。 二、仪器及试剂仪器:Agilent7890/5975 GC/MS;离心机;万分之一天平;涡旋混合器;超声仪;氮吹仪;试剂: Cleanert PAE柱为天津博纳艾杰尔科技有限公司产品;16种邻苯二甲酸酯混标(1000ppm);乙腈(色谱纯);正己烷(色谱纯);乙酸乙酯(色谱纯); 三、实验过程3.1 样品处理用万分之一天平取0.1g食用植物油,置于玻璃样品瓶中,加入3mL乙腈,涡旋2min,超声2min,以4000r/m离心2min,将上清液转移至另一干净样品瓶中,于40℃氮气吹干,加入1mL正己烷,摇匀,作为待净化液。SPE过程如下:(1)活化:用5mL正己烷活化Cleanert PAE柱;(2)上样:将待净化液全部上样;(3)淋洗:10mL乙酸乙酯/正己烷(1:99,v/v);(4)洗脱:5mL乙酸乙酯/正己烷(1:1,v/v);将洗脱液于40℃下氮气吹干,加入1mL乙腈,涡旋混合1min,超声1min,4000r/m离心2min,取上清液进GC/MS测定。3.2 标准曲线绘制将16种邻苯二甲酸酯混标用正己烷稀释成20ppb、50ppb、100 ppb、200 ppb、500 ppb、1ppm、2ppm,用GC/MS进行测定,根据定量离子绘制标准曲线。所选定量离子及各个物质的标准曲线见附录1、附录3。3.3 GC/MS条件色谱柱:DA-5MS 30m*0.25mm*0.25μm进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1μL流速:1 mL/min接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min 四、实验结果4.1 谱图在上述色谱条件下,16种邻苯二甲酸酯类化合物的谱图如图1所示。 图1 16种邻苯二甲酸酯类化合物选择离子色谱图(500ppb)出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 4.2 加标回收率及精密度取5份食用油,在食用油中加入一定量的标准品,按照样品处理方法(3.1)做5份平行样品,回收率及方法精密度见表1。所得色谱图见附录2。 表1 食用油中16种邻苯二甲酸酯类化合物的添加回收率及精密度 峰号化合物简称保留时间加标浓度100ppb加标浓度500ppb平均回收率RSD(n=5)平均回收率RSD(n=5)1邻苯二甲酸二甲酯DMP8.315150.35%15.19%165.61%3.72%2邻苯二甲酸二乙酯DEP9.185141.48%15.09%109.62%2.99%3邻苯二甲酸二异丁酯DIBP10.96121.48%8.11%70.87%6.94%4邻苯二甲酸二丁酯DBP11.72380.13%15.75%91.53%25.75%5邻苯二甲酸二(2-甲氧基)乙酯DMEP12.073111.25%10.09%98.52%5.55%6邻苯二甲酸二(4-甲基-2-戊基)酯BMPP12.828102.90%8.50%82.96%3.85%7邻苯二甲酸二(2-乙氧基)乙酯DEEP13.167104.08%7.08%95.11%3.73%8邻苯二甲酸二戊酯DPP13.5492.05%6.62%88.51%4.17%9邻苯二甲酸二己酯DHXP15.71891.04%5.48%89.17%4.95%10邻苯二甲酸丁基苄基酯BBP15.875100.67%5.69%97.01%5.20%11邻苯二甲酸二(2-丁氧基)乙酯DBEP17.34289.50%5.72%96.64%5.34%12邻苯二甲酸二环己酯DCHP18.00684.37%6.96%88.87%5.52%13邻苯二甲酸二(2-乙基)己酯DEHP18.24379.39%5.31%80.02%8.67%14邻苯二甲酸二苯酯—18.39370.02%9.31%66.12%3.96%15邻苯二甲酸二正辛酯DNOP20.66979.56%7.48%82.41%5.88%16邻苯二甲酸二壬酯DNP23.2477.41%13.90%74.98%5.95% 说明:由于邻苯二甲酸二甲酯、邻苯二甲酸二异丁酯、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基)己酯是常见的增塑剂,在溶剂中会有些残留,容易在检测时造成它们的回收率和RSD不理想。建议计算时扣除溶剂空白。 附录1表2 16种邻苯二甲酸酯类化合物定量离子及辅助定量离子 序号保留时间/min中文名称英文缩写定量离子辅助定量离子18.315邻苯二甲酸二甲酯DMP1637729.185邻苯二甲酸二乙酯DEP149177310.96邻苯二甲酸二异丁酯DIBP149223411.723邻苯二甲酸二丁酯DBP149223512.073邻苯二甲酸二(2-甲氧基)乙酯DMEP59149、193612.828邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149251713.167邻苯二甲酸二(2-乙氧基)乙酯DEEP4572813.54邻苯二甲酸二戊酯DPP149237915.718邻苯二甲酸二己酯DHXP149104、761015.875邻苯二甲酸丁基苄基酯BBP149911117.342邻苯二甲酸二(2-丁氧基)乙酯DBEP1492231218.006邻苯二甲酸二环己酯DCHP1491671318.243邻苯二甲酸二(2-乙基)己酯DEHP1491671418.393邻苯二甲酸二苯酯—225771520.669邻苯二甲酸二正辛酯DNOP1492791623.24邻苯二甲酸二壬酯DNP14957、71 附录2 食用油样品加标色谱图图2 食用油中加标色谱图(最后定容浓度为100ppb)图3 食用油中加标色谱图(最后定容浓度为500ppb) 图2、图3中,样品出峰顺序依次为:邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-甲氧基)乙酯(DMEP)、邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP)、邻苯二甲酸二(2-乙氧基)乙酯(DEEP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二己酯(DHXP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二(2-丁氧基)乙酯(DBEP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二(2-乙基)己酯(DEHP)、邻苯二甲酸二苯酯、邻苯二甲酸二正辛酯(DNOP)、邻苯二甲酸二壬酯(DNP) 附录3 16种邻苯二甲酸酯类化合物的标准曲线(20ppb~2ppm)
  • 海能仪器对“毒淀粉”中顺丁烯二酸(酐)推出的检测解决方案
    顺丁烯二酸又称马来酸,是一种重要的化工原料,曾经作为酸处理剂,在牙齿保健方面有广泛的应用,另一个方面,顺丁烯二酸作为淀粉处理剂,能有效的提高淀粉的粘度和稳定性,近年来业界发现有少量技术能力较低的企业,为了提高淀粉的性能,在食用淀粉中加入大量的顺丁烯二酸淀粉酯,但是由于技术条件的限制,造成淀粉中大量的顺丁烯二酸残留,从而留下巨大的安全隐患,台湾所谓的&ldquo 毒淀粉&rdquo 事件就由此而发,目前,我国国家标准中仍未将顺丁烯二酸酐列为食品添加剂。方法简介 由于顺丁烯二酸在水中良好的溶解性(788g/L),其前处理基质组分也不复杂,所以,其前处理提取方式较为简单,另顺丁烯二酸在紫外检测器中具备相应良好响应(其定量限可达250ug/mL),总体说明:此方法前处理操作简单,灵敏度高,稳定性好,适用于淀粉及其制品中顺丁烯二酸(酐)含量的测定。 实验部分主要仪器与试剂:仪器:海能LC7000高效液相色谱仪 配置:LC7011二元高压泵LC7020紫外/可见检测器LC7031 柱温箱7725i手动进样器Hanon-Clarity色谱工作站 试剂:顺丁烯二酸标准品(浓度99.5%以上)、乙腈(色谱纯)、超纯水、磷酸(分析纯)色谱条件色谱柱: C18,250 mm × 4.6 mm,5 &mu m 流动相:乙腈-0.1%磷酸溶液(3∶97)流速:1.0 mL/min柱温:30 ℃进样量:15 &mu L波长: 215 nm标样制备: 称取0.05g顺丁烯二酸标准品(精确到0.1mg),用超纯水定容在25mL容量瓶中,得到2mg/mL的标准液 样品前处理 称取5 g样品(精确到0.01 g)于50 mL比色管中(样品磨碎后称取),加入40 mL的超纯水,超声提取12 min后用超纯水定容至50 mL,放入冰箱至-5摄氏度环境中静置5min,放入离心机离心5 min后,用0.45um水滤膜过滤后进样测试。 图例 以下是使用海能LC7000高效液相色谱系统在淀粉中加入顺丁烯二酸标准品测试的结果,谱图中的主峰为顺丁烯二酸,与其他的杂质分离度良好,响应值高,完全适合在实验室中做批量测试应用。
  • 欧盟公布富马酸二甲酯限令草案
    据chemicalwatch网站消息,近日欧盟修订了REACH法规附录XVII,将富马酸二甲酯限令纳入其中,本次修订草案公布于欧盟相关文件中(comitology register)。  据了解,此项草案有望于11月份在REACH委员会会议上获得通过,它体现了欧洲化学品管理局风险评估委员会与社会经济委员会的观点。
  • 聚焦塑化剂——新型SPE法检测邻苯二甲酸酯
    台湾因塑化剂引起的食品、保健品安全风波持续蔓延。最新调查数字显示,台湾受塑化剂污染的产品已增加到945种,涉及运动饮料、果汁饮料、茶饮料、果酱、果浆或果冻、方便面胶囊锭状粉状食品、保健食品、添加剂等类型。  面对日益严重的塑化剂事件,迪马科技技术中心快速做出反应开发出适合油脂性样品分析的SPE前处理方法以及HPLC分析检测方法。该方法采用ProElut PSA玻璃固相萃取小柱进行样品前处理净化,反相高效液相色谱法分离油脂性样品(食用油、方便面、方便面酱包等)中邻苯二甲酸酯。  惰性的玻璃管体完全消除了来自增塑剂,包括苯二甲酸盐的污染,高质量的ProElut吸附剂和PTFE材质筛板更加保证了结果的稳定型和重复性。SPE方法克服了国标方法使用凝胶色谱柱需要仪器(GPC)配套,消耗溶剂多,操作繁琐等缺点。此方法操作简单,快速,为您检测食品中邻苯二甲酸酯工作带来便利。  欲了解详细检测方法,欢迎来电咨询。迪马科技北京:400-608-7719 上海:021-6126 3966 广州:020-8559 3520 沈阳:024-2294 3513 成都:028-8661 2625 青岛:0532-8372 5230更多办事机构联系方式请见:http://www.dikma.com.cn/Catalog/index/cid/35 以下是检测油脂性样品中邻苯二甲酸酯配的色谱耗材,包括邻苯二甲酸酯标准品、HPLC级溶剂、玻璃SPE小柱、色谱柱等。大部分有现货,欢迎您来电咨询。 相关产品订货信息 货号 名称品牌规格63206GProElut PSA玻璃SPE柱Dikma ProElut1000mg / 6ml,30/pkg99603 Diamonsil C18(2) HPLC柱Dikma 250×4.6mm,5μm5323样品瓶(棕色/螺纹)Dikma2 mL, 100/pk5325 样品瓶盖/含垫(已组装)Dikma 100/pk37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk50115 正己烷HPLC级DikmaPure 4L50106丙酮HPLC级DikmaPure4L50102甲醇HPLC级DikmaPure 4L50101乙腈HPLC级DikmaPure4L 邻苯二甲酸酯标准品 邻苯二甲酸酯混标货号名称品牌 规格12-SP-DC04Z邻苯二甲酸酯混标(17种组份),包括GB/T 21911-2008中1-16组份以及DINP Chemservice1ml,1,000ug/mL在正己烷中12-PT8061-1JM邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 1ml,1,000ug/mL在异辛烷中12-PT8061-1M 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 5ml,1,000ug/mL在异辛烷中12-PT8061-1RPM 邻苯二甲酸酯混标(16种组份),包括GB/T 21911-2008中1-10,12、13、15、16组份Chemservice 5x1mL,1,000ug/mL在异辛烷中 GB/T 21911-2008邻苯二甲酸酯16种组份单标 货号名称品牌规格 12-F71 1.邻苯二甲酸二甲酯(DMP) Chemservice 1g 12-F70 2.邻苯二甲酸二乙酯(DEP) Chemservice 1g 12-F2264 3.邻苯二甲酸二异丁酯(DIBP) Chemservice 5g 12-F68 4.邻苯二甲酸二丁酯(DBP) Chemservice 1g 12-F2268 5.邻苯二甲酸二(2-甲氧基乙基)酯(DMEP) Chemservice 500mg 12-F2309 6.邻苯二甲酸二(4-甲基-2-戊基)酯(BMPP) Chemservice 5g 12-F2312 7.邻苯二甲酸二(2-乙氧基)乙酯(DEEP) Chemservice 500mg 12-F2263 8.邻苯二甲酸二戊酯(DPP) Chemservice 500mg 12-F2314 9.邻苯二甲酸二己酯(DHXP) Chemservice 5g 12-F67 10.邻苯二甲酸丁基苄基酯(BBP) Chemservice 1g 12-F2315 11.邻苯二甲酸二(2-丁氧基)乙酯(DBEP) Chemservice 1g 12-F2262 (DCHP) 12.邻苯二甲酸二环己酯 Chemservice 5g 12-F66 13.邻苯二甲酸二(2-乙基己)酯(DEHP) Chemservice 1g 12-F1091 14.邻苯二甲酸二苯酯 Chemservice 5g 12-F69 15.邻苯二甲酸正二辛酯(DNOP) Chemservice 1g 12-F2317 16.邻苯二甲酸二壬酯(DNP) Chemservice 5g 更多邻苯二甲酸酯单标,请来电咨询。 GB/T 21911-2008方法中相关的耗材:货号 名称品牌规格65584 无水硫酸钠Dikma ProElut 500g8221 毛细管气相色谱柱DM-5MS Dikma 30mm*0.25mm*0.25um 37177 针头式过滤器Nylon Dikma 13mm,0.22μm 100/pk5323 样品瓶(棕色,螺纹) Dikma 2 mL, 100/pk5325 样品瓶盖/含垫(已经组装) Dikma 100/pk 50115 正己烷HPLC级 Dikma Pure 4L 50104 乙酸乙酯HPLC级 Dikma Pure 4L50103 环己烷HPLC级 Dikma Pure 4L 50106丙酮HPLC级 Dikma Pure 4L关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 半导体行业试剂篇——那些不可不提的酸
    半导体行业试剂篇——那些不可不提的酸 关注我们,更多干货和惊喜好礼在上篇文章中,我们主要介绍了半导体行业中关于芯片生产需要严格关注空气与纯水的质量。然而除了环境空气与超纯水,还有一部分是需要关注的就是化学试剂。在电子产品的生产过程中需要用到的试剂是电子级试剂,要求电性杂质含量极低,才可以控制产品最终的质量。而有些半导体材料中甚至会人为加入一些特定的成分,从而其电导性能才具有可控性,因此试剂中杂质离子的含量,就变得尤为重要。 那么涉及到半导体的试剂有哪些呢?他们的作用分别是什么呢?我们大致可以将其分为三类:酸(如氢氟酸、硝酸、硫酸等)、碱(氢氧化钾、氢氧化钠、氢氧化铵等)、溶剂(异丙醇、丙酮等),本篇主要给大家介绍酸。 半导体中常用的酸国际半导体设备与材料产业协会(semi)对这有各种明确的标准规定(见下表,单位为ppm,以最gao级别算)。那么对于这些高纯度的试剂中的杂质离子,我们怎么样去测试呢?测试过程中会遇到什么样的问题呢?今天我们首先针对不同种类的酸,且看赛默飞离子色谱为大家提出的一个个的解决方案!高纯试剂——氢氟酸、磷酸中的杂质利用这两种酸均为弱酸的特点,因此可采用同一方法——柱切换进行分析,相关标准分别为:semi c28 氢氟酸中的阴离子、gbt 31369-2015;semi c36 浓磷酸中的阴离子、gbt 28159-2011。氢氟酸(hf)、磷酸(h3po4)、乙酸(ch3cooh)均为弱酸,利用排斥柱donnan原理,弱酸及有机酸在排斥柱上有保留而无机阴离子没有保留的特点,我们采取柱切换的方式可以将以弱酸为基体的主成分切换掉,同时无机阴离子进入到浓缩柱中进行富集。再经过高容量色谱柱进行分离,可以准确测定氢氟酸与浓磷酸中无机阴离子含量,避免了高浓度基质的干扰,且检出限可达10ppb。 氢氟酸中常见阴离子谱图浓磷酸的离子排斥色谱图(1. 强酸离子;2. 磷酸根)浓磷酸中常见阴离子谱图左右滑动查看更多高纯试剂——浓硝酸中阴离子弱酸的方案我们得到了解决,那么无机强酸中的阴离子怎么去解决呢?这又面临着新的挑战,硝酸是无机强酸,柱切换的方式已然不可用,那么这次挑战得到解决有赖于我们赛默飞特有的高容量色谱柱,高容量色谱柱可以保证即使在出现高基体的情况下,也不会导致色谱柱饱和且不会影响痕量离子的分离度,稀释50倍后,浓度差可达十万倍,进样分析谱图如下,检出限可达1ppm。 75%硝酸稀释50倍进样高纯试剂——浓硫酸中杂质阴离子恭喜飞飞又完成了一项挑战,解决了浓硝酸中痕量阴离子的问题,可是挑战还有哦,浓硫酸的问题又该如何解决呢?浓硫酸是二元强酸,且保留很强,那么赛默飞有那么多款色谱柱,总有一款适合你(浓硫酸),选择合适的高容量色谱柱,使得硫酸根离子既不会饱和色谱柱,也可以与待测离子有较好的分离度,也可以做到直接稀释进样哦。 硫酸稀释后测试后谱图硫酸稀释后加标谱图(分别加标20、30、50ppb)左右滑动查看更多高纯试剂——盐酸中杂质阴离子强酸体系中,还有一员大将——浓盐酸,高容量色谱柱依然是解决该方案的首要因素,可以很好分离高基体中的痕量物质,浓盐酸稀释200倍后可直接进样进行分析,谱图如下: 0.5% hcl及其加标谱图(50ppb) 这么多年以来,赛默飞离子色谱与半导体行业一起成长,为各大半导体企业及其供应链上下游行业提供稳定的技术支持与可靠的数据保证。下面附上可实现上述功能的离子色谱全明星阵容。thermo scientific™ dionex™ ics-6000 离子色谱仪thermo scientific™ dionex™ integrion 离子色谱仪thermo scientific™ dionex™ aquion™ rfic™ 离子色谱仪左右滑动查看更多“码”上下载 填写表单即刻获取【赛默飞dionex离子色谱产品系列】 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 欧盟根据REACH指令起草法规限制富马酸二甲酯
    欧盟委员会近日公布一项法规草案,限制在消费品中使用富马酸二甲酯(DMF)。法规将在草案公布于欧盟《官方公报》的二十天后生效。该限制法规也将被收录进REACH法规附件十七条中。  富马酸二甲酯一直作为防腐剂在欧盟制造业中使用,直至98/8/EC指令颁布。但是该指令并未限制经DMF处理后的商品进口至欧盟。因此,欧盟采取紧急措施,决定采纳2009/251/EC指令以确保含有DMF的商品不会进入或在欧盟范围内生产。  作为临时措施,2009/251/EC指令被扩展为2010/153/EU指令和2011/135/EU指令,在2012年3月15日之前有效。此次,若DMF被添加至REACH法规附件十七中,临时限制将成为永久性限制措施。
  • 征集意见!药典委发布氨基酸分析指导原则第二次公示
    仪器信息网讯 近日,国家药典委员会发布氨基酸分析指导原则公示稿,这是该指导原则的第二次公示,公示为期1个月。复方氨基酸制剂、多肽类药物、蛋白质类药物、含氨基酸/多肽/蛋白质的组织提取物类药物和中药等药品中氨基酸的组成或含量的检测,需通过氨基酸分析方法来实现。现行版欧洲药典、英国药典、美国药典及日本药典中均收载了氨基酸分析指导原则,但中国药典通则中尚未收载。2020年版中国药典收载了5种复方氨基酸注射液、9种多肽类药物及1种中药品种,均需要采用氨基酸分析方法测定药品中氨基酸含量或氨基酸组成,由于氨基酸分析方法种类较多,各品种的质量标准中仅要求按适宜的氨基酸分析方法测定,为了指导药典标准执行过程中如何选择适宜的方法,国家药典委员会委托中检院牵头承担完成了“药品中氨基酸分析法的建立课题”,拟定了中国药典氨基酸分析指导原则。此前,按照国家药典会标准提高课题任务要求,根据对企业和药检机构常用氨基酸分析方法的调研结果,参照国外药典收载的氨基酸分析方法,确定了国内常用的较为成熟的6种药品中氨基酸分析方法及其起草复核单位,分贝问并开展了药检机构的协作研究。氨基酸分析方法起草复核单位方法起草单位复核单位PITC柱前衍生的RP-HPLC法中检院浙江院、天津所、湖北院、辽宁院、河南所AQC柱前衍生的RP-HPLC法江苏院浙江院、湖北院天津所、广东所OPA&FMOC柱前衍生的RP-HPLC法上海所北京所、广州所、中检院DNFB柱前衍生的RP-HPLC法天津所河南所、湖北院、辽宁院氨基酸分析仪法茚三酮柱后衍生法——钠系统河南所浙江所、山东院中检院茚三酮柱后衍生法——锂系统上海所 此前,完成的中国药典“氨基酸分析指导原则(草案)”曾于2020年9月在国家药典委员会网站首次公示,面向社会各界公开征求意见。而针对首次公开征集意见收到的反馈,在本次公示中均给予了反馈,同时根据反馈意见和建议,国家药典委员会组织召开了相关专业委员会进行研讨,按照反馈意见和专委会审核意见,在公示稿的基础上增补了部分内容,并进行了部分文字修改与规范。主要修改的部分为:在前言部分增加了游离氨基酸测定的主要方法;在基本要求部分增加了内标物使用目的的描述,对方法验证的要求细化说明,删去水解管的清洗与要求;在蛋白质和多肽样品的水解部分增加了使用水解管的要求;对氨基酸测定法引言、各测定法及数据处理等部分内容进行了文字修改、调序、精简与规范。更多关于氨基酸分析指导原则草案公示稿(第二次)的详细内容,请点击附件查看。公告原文如下:我委拟制定氨基酸分析指导原则,为确保标准的科学性、合理性和适用性,现将拟制定的氨基酸分析指导原则第二次公示征求社会各界意见(详见附件)。公示期自发布之日起1个月。请认真研核,若有异议,请及时来函提交反馈意见,并附相关说明、实验数据和联系方式。相关单位来函需加盖公章,个人来函需本人签名,同时将电子版发送至指定邮箱。联系人:徐昕怡、尚悦电话:010-67079522、67079578电子邮箱:xuxinyi@chp.org.cn通信地址:北京市东城区法华南里11号楼 国家药典委员会办公室邮编:100061国家药典委员会2022年03月09日氨基酸分析指导原则起草说明氨基酸分析指导原则草案公示稿(第二次)
  • 博纳艾杰尔不同基质食品中邻苯二甲酸酯的检测的系统解决方案
    随着现代食品工业的发展,人们为了增加食品的风味、改善色泽和延长货架期等,采用了多种现代食品加工技术,但是不幸的是,由于种种原因,在某些食品加工过程中使用了危害人们健康的物质,比如最近出现的食品中添加&ldquo 塑化剂&rdquo 邻苯二甲酸酯类物质。以往,由于人们对邻苯二甲酸酯类的安全性认识不足,多种食品都涉嫌&ldquo 被添加&rdquo 。博纳艾杰尔科技根据不同食品基质的具体情况,开发了一系列的检测方案,以供大家参考。相关产品或技术咨询请拨打400-606-8099或E-mail至service@agela.com.cn博纳艾杰尔网站www.agela.com.cn 1.水性样品此类样品包括瓶装纯净水、矿泉水,茶、果汁和功能饮料等;某些可水溶解的固体样品。可以先制成水溶液,然后全部作为待处理液,如无脂糖果。推荐前处理柱为Cleanert DEHP (500mg/6mL)。 样品处理:取10mL样品,进行固相萃取富集处理 固相萃取方法: 活化:5mL甲醇、5mL水 上样:10mL水性样品 淋洗:5mL5%甲醇水,真空抽干20min。 洗脱:5mL甲醇 检测:将洗脱液用氮气吹干后,以1mL甲醇定容,然后用液相色谱法检测。 说明:此法多适用于配套液相色谱检测,当样品中邻苯二甲酸酯类的含量较低时,需要采用固相萃取富集才能检测的情况。 一般来说,对于此类样品,可以采用正己烷液液萃取的办法,用GC/MS(灵敏度较高)直接检测。 2.低脂液体样品 此类样品包含液态奶制品、果酱、糖浆等。推荐前处理产品为Cleanert MAS-PAE管。 样品处理:向玻璃离心管中加入2mL样品,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 3.低脂固体食品 此类样品包括奶粉、饼干、糕点、果冻、奶糖等,推荐产品为Cleanert MAS-PAE管。 样品处理:取1g已制成粉末状的样品,2mL水,加入到Cleanert MAS-PAE离心管中,然后加入4mL乙腈:甲基叔丁基谜(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAE填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。 检测:GC/MS检测。 4.高脂样品此类样品包括植物油脂、动物油脂、奶酪、动物组织性食品等,推荐前处理柱为Cleanert PAE。4.1 动植物油脂样品的处理取0.2g样品,用1mL正己烷溶解,作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:7mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL玻璃样品瓶中,作为待检液。检测:GC/MS检测。4.2其他样品的处理 取样品0.5g,以5mL正己烷于密封玻璃瓶中超声提取,然后以4000rpm转速,离心5min,取上清液作为待净化液。若样品中含有水,视情况加入适量无水硫酸钠后,再进行上述操作。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷(50:50,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。 5.复杂样品此类样品多为油水混合态,同时添加有多种风味物质,成分比较复杂,包括方便面调味包,酱油、醋、用来调味的其它酱汁等。根据样品中的脂肪含量,对于高脂样品推荐前处理柱为Cleanert PAE-C柱,对于低脂样品推荐使用Cleanert MAS-PAEc管。5.1 以Cleanert PAE-C柱进行样品处理,以方便面调味包为例:取0.5g样品,加入5mL正己烷,涡旋振荡3min后,再加入500mg无水硫酸钠,涡旋振荡3min后,以4000rpm转速,离心5min,取全部上清液作为待净化液。固相萃取方法:活化:5mL正己烷上样:全部待净化液淋洗:3mL正己烷洗脱:3mL乙酸乙酯:正己烷:甲苯(50:40:10,v/v),洗脱2次,合并洗脱液。40℃氮吹至近干(目视只剩少许粘稠油状物体),加入1mL乙腈反萃取,涡旋振荡3min,以4000rpm转速,离心5min,轻轻地将上清液倒入2mL样品瓶中,作为待检液。检测:GC/MS检测。5.2 以Cleanert MAS-PAEc管进行样品前处理,以酱油为例样品处理:向Cleanert MAS-PAE离心管中加入2mL样品,然后加入4mL乙腈:甲苯(9:1,V/V),将离心管涡旋2min,最后加入Cleanert MAS-PAEc填料,再将离心管涡旋振荡2min后,以4000rpm的转速离心5min,取上清液,以邻苯二甲酸酯检测专用针式过滤器过滤后,待检。检测:GC/MS检测。 附件一:高效液相色谱法检测15种邻苯二甲酸酯的含量 色谱柱:Agela Venusil XBP C18-L ,4.6× 250mm,5µ m,150Å (订货号:VX952505-L)流动相:A:水,B:甲醇:乙腈=50:50Time/minA/%B/%060402505010406012307020307031010040010040.016040流 速:1.0 mL/min波 长:242 nm进样量:5 µ L(100ppm),50µ L(10ppm)样 品:15种邻苯二甲酸酯浓 度:100 ppm(正己烷),10 ppm(40%流动相A)溶 剂:正己烷 /40%流动相A柱 温:30℃ 图1 邻苯二甲酸酯标准品HPLC色谱图(样品浓度:10ppm)(邻苯二甲酸二甲酯DMP,邻苯二甲酸二乙酯DEP,邻苯二甲酸二正丁酯DBP,邻苯二甲酸二辛酯DEHP,邻苯二甲酸丁苄酯BBP,邻苯二甲酸二(2-乙基己基)酯DEHP,邻苯二甲酸二(2-甲氧基)乙酯DMEP,邻苯二甲酸二丁氧基乙酯DBEP,邻苯二甲酸二戊酯DPP,邻苯二甲酸二(4-甲基-2-戊基)酯BMPP,邻苯二甲酸二乙氧基乙基酯DEEP,邻苯二甲酸二环己酯DCHP,邻苯二甲酸二异丁酯DIBP,邻苯二甲酸二己酯DNP,邻苯二甲酸二壬酯DINP)结论:Agela Venusil XBP C18-L色谱柱能够较好的分离15种邻苯二甲酸酯类物质,分离度较好,完全满足LC检测15种邻苯二甲酸酯类物质的含量。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件二气质联用法检测15种邻苯二甲酸酯 仪器:Agilent 7890/5975 GC/MS色谱条件:色谱柱:DA-5MS 30m*0.25mm*0.25&mu m进样口:250℃,不分流进样程序升温:50℃(1min)20℃/min 220℃(1min)5℃/min 280℃(4min)进样量:1&mu L流速:1 mL/min 质谱条件:接口温度:280℃电离方式:EI电离能量:70eV溶剂延迟:7min监测方式:SIM模式,监测离子见下表 序号保留时间/min中文名称英文缩写SIM离子18.265邻苯二甲酸二甲酯DMP163、7729.135邻苯二甲酸二乙酯DEP149、177310.888邻苯二甲酸二异丁酯DIBP149、223411.637邻苯二甲酸二丁酯DBP149、223511.979邻苯二甲酸二(2-甲氧基)乙酯DMEP59、149、193612.72邻苯二甲酸二(4-甲基-2-戊基)酯BMPP149、251713.044邻苯二甲酸二(2-乙氧基)乙酯DEEP45、72813.41邻苯二甲酸二戊酯DPP149、237915.552邻苯二甲酸二己酯DHXP104、149、761015.694邻苯二甲酸丁基苄基酯BBP149、911117.153邻苯二甲酸二(2-丁氧基)乙酯DBEP149、2231217.81邻苯二甲酸二环己酯DCHP149、1671318.056邻苯二甲酸二(2-乙基)己酯DEHP149、1671420.444邻苯二甲酸二正辛酯DNOP149、2791522.98邻苯二甲酸二壬酯DNP57、149、71 结论:Agela DA-5ms气相色谱柱能够很好的分离15种邻苯二甲酸酯类物质,完全满足15种邻苯二甲酸酯类物质的几十ppb级含量的定量测定。由于条件所限,笔者手头上只有15种邻苯二甲酸酯物质,所做实验,供大家参考。 附件三牛奶中15种邻苯二甲酸酯的添加回收率 按正文第2项方法进行某种牛奶的添加回收率实验,得到的数据如下:表1、某种牛奶中添加15种邻苯二甲酸酯(在样品中的浓度为50&mu g/L)的回收率结果列表 序号保留时间/min中文名称英文缩写回收率18.337邻苯二甲酸二甲酯DMP87.82%29.214邻苯二甲酸二乙酯DEP72.31%310.996邻苯二甲酸二异丁酯DIBP81.97%411.759邻苯二甲酸二丁酯DBP77.33%512.11邻苯二甲酸二(2-甲氧基)乙酯DMEP83.87%612.864邻苯二甲酸二(4-甲基-2-戊基)酯BMPP83.83%713.201邻苯二甲酸二(2-乙氧基)乙酯DEEP109.08%813.576邻苯二甲酸二戊酯DPP86.36%915.757邻苯二甲酸二己酯DHXP84.67%1015.923邻苯二甲酸丁基苄基酯BBP98.33%1117.377邻苯二甲酸二(2-丁氧基)乙酯DBEP101.30%1218.041邻苯二甲酸二环己酯DCHP92.47%1318.28邻苯二甲酸二(2-乙基)己酯DEHP132.32%1420.718邻苯二甲酸二正辛酯DNOP89.73%1523.303邻苯二甲酸二壬酯DNP70.10% 某植物油中15种邻苯二甲酸酯的添加回收率按正文第4.1项方法进行某种牛奶的添加回收率实验,得到的数据如下:表2、某植物油中添加15种邻苯二甲酸酯(在样品中的浓度为500&mu g/L)的回收率结果列表序号保留时间/min中文名称英文缩写回收率18.308邻苯二甲酸二甲酯DMP149.97%29.185邻苯二甲酸二乙酯DEP93.49%310.96邻苯二甲酸二异丁酯DIBP125.70%411.716邻苯二甲酸二丁酯DBP136.89%512.064邻苯二甲酸二(2-甲氧基)乙酯DMEP90.84%612.778邻苯二甲酸二(4-甲基-2-戊基)酯BMPP82.29%713.144邻苯二甲酸二(2-乙氧基)乙酯DEEP106.38%813.518邻苯二甲酸二戊酯DPP88.14%915.686邻苯二甲酸二己酯DHXP75.32%1015.844邻苯二甲酸丁基苄基酯BBP89.56%1117.295邻苯二甲酸二(2-丁氧基)乙酯DBEP105.05%1217.967邻苯二甲酸二环己酯DCHP72.94%1318.206邻苯二甲酸二(2-乙基)己酯DEHP124.27%1420.625邻苯二甲酸二正辛酯DNOP78.19%1523.297邻苯二甲酸二壬酯DNP75.27%
  • 893万!滨州市疾病预防控制中心2022年实验室能力提升仪器设备采购(第二批)项目
    滨州市公共资源交易中心项目编号:BZGP-2022-0496中国山东政府网采购项目编号:SDGP371600000202202000295注:【本项目为政府采购项目,采购计划编号为37160000050701920220041。】项目名称:滨州市疾病预防控制中心2022年实验室能力提升仪器设备采购(第二批)预算金额:893.91万元,其中,A02包:189.77万元;投标人兼投不兼中。最高限价(如有):A02包:189.77万元。其中:全自动氨基酸分析仪综合单价不得高于80万元/台件;样品粉碎机综合单价不得高于7.6万元/台件;医用冰箱(一)综合单价不得高于3.4万元/台件;医用冰箱(二)综合单价不得高于2.9万元/台件;旋光测定仪综合单价不得高于5.5万元/台件;折光仪综合单价不得高于6.2万元/台件;分散度测定仪综合单价不得高于5.9万元/台件;多量程移液器综合单价不得高于1万元/台件;总有机碳测定仪综合单价不得高于14万元/台件;均质器综合单价不得高于6万元/台件;食品、水质、M2.5检测前处理设备综合单价不得高于36.07万元/台件。超出最高限价的按无效报价处理。采购需求:采购2022年第二批实验室能力提升仪器设备,详见采购文件。合同履行期限:国产产品自合同生效之日起45日内交货并安装完毕,进口产品自合同生效之日起60日内交货并安装完毕。保修期自货物交付投入使用经双方验收合格签字之日起至质保期满,具体详见采购文件。采购项目需要落实的政府采购政策:执行节能、环保和中小微型企业有关政策,具体详见采购文件。本项目不接受联合体投标。
  • HJ 1184-2021《土壤和沉积物 6种邻苯二甲酸酯类化合物的测定》
    国标解读邻苯二甲酸酯类化合物是邻苯二甲酸形成的酯的统称,主要用作增塑剂。邻苯二甲酸酯类是环境雌性激素类物质之一,可影响生物体内分泌,具有制畸、致癌和致突变的效应。随着工业生产发展和塑料制品广泛使用,邻苯二甲酸酯类化合物普遍存在于土壤、底泥、生物等环境介质中,并通过饮水、进食、皮肤接触和呼吸等途径进入生物体,危害人体健康和生态安全。因此,高效准确的检测土壤中邻苯二甲酸酯类物质显得尤为重要。生态环境部于2021年6月3日发布了《土壤和沉积物 6种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法》(HJ 1184-2021),并于2021年9月15日正式实施,该标准为首次发布,适用于土壤和沉积物中6种邻苯二甲酸酯类化合物的测定,支撑《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)等实施。本文整理了该方法的检测流程,如下:因邻苯二甲酸酯类广泛存在于各类塑料制品中,样品前处理环节易发生交叉污染。该方法在前处理过程中有几点需要特别注意:1)整个实验过程应避免接触和使用塑料制品(如移液器枪头,橡胶手套等),每个实验环节应进行污染的排除检验。 2)尽量避免使用清洁剂等含有增塑剂的物质。 3)避免具有塑料封口进样针的使用。 4)实验所用试剂使用前必须经过空白检验。 5)在用气相色谱-质谱仪分析邻苯二甲酸酯类物质前,应对仪器进行清洗维护或者更换气相色谱仪的进样隔垫和衬管。对气相色谱仪器性能进行空白试验,通过邻苯二甲酸酯类物质的响应值和方法检出限进行比较,判断仪器性能,确保酞酸酯类物质的响应值低于方法检出限,否则须对气相色谱-质谱仪进行维护清洗。 6)彻底清洗所用的玻璃器皿,以消除干扰物质。非精确定量的玻璃器皿,先用自来水清洗,再用铬酸洗液浸泡1h,再用自来水和蒸馏水淋洗,然后烘箱中130℃下烘烤2 h,在烘箱中自然冷却;精确定量的玻璃器皿,先用自来水清洗,再用铬酸洗液浸泡 2 h,再用自来水和蒸馏水淋洗。清洗干净后,较大玻璃器皿使用相应的瓶塞或铝箔纸封口,较小玻璃器皿贮存于经预处理的不锈钢容器中。临用前用丙酮和乙酸乙酯先后分别进行润洗2~3次。7)尽量少用净化步骤,只有GC-MS受基质干扰才使用净化步骤,否则可能会增加污染的风险。坛墨质检针对该方法开发了配套的标准溶液产品,同时土壤基质标样也即将上架。以满足方法验证、检测实验及扩项需求。产品清单
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制