当前位置: 仪器信息网 > 行业主题 > >

神经节苷酯二钠盐

仪器信息网神经节苷酯二钠盐专题为您提供2024年最新神经节苷酯二钠盐价格报价、厂家品牌的相关信息, 包括神经节苷酯二钠盐参数、型号等,不管是国产,还是进口品牌的神经节苷酯二钠盐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经节苷酯二钠盐相关的耗材配件、试剂标物,还有神经节苷酯二钠盐相关的最新资讯、资料,以及神经节苷酯二钠盐相关的解决方案。

神经节苷酯二钠盐相关的资讯

  • Nature突破! | 马秋富团队揭示针灸驱动迷走神经—肾上腺抗炎通路的神经解剖学基础
    针灸治疗疾病的核心机理之一是通过刺激身体特定的部位(穴位)来远程调节机体功能,而经络被认为是达到这种远程效应的重要传输载体。尽管现代解剖学研究尚未明确经络特异性结构基础的存在,但揭示了针刺刺激的远程效应可以通过躯体感觉神经-自主神经反射来实现。这种反射首先是激活来自位于背根神经节 (DRG) 或三叉神经节中的外周感觉神经纤维,随后将感觉信息传到脊髓和大脑,进而激活外周自主神经,最终实现对各种机能的调节。从上世纪70年代开始,就陆续发现此类反射存在躯体区域特异性。2020年哈佛大学医学院马秋富教授团队发表在Neuron的研究结果,揭示了低强度针刺刺激小鼠后肢穴位(如足三里ST36)可以激活迷走神经-肾上腺抗炎通路,而针刺刺激腹部穴位 (如天枢ST25) 却不能诱导出此抗炎通路(详见BioArt报道:Neuron | 马秋富团队报道针刺激活不同自主神经通路调节全身性炎症)。这种躯体区域特异性(或者说穴位部位的相对专一特异性)背后的神经解剖学基础至今尚不清楚。2021年10月13日,马秋富教授团队与复旦大学王彦青教授,中国中医科学院针灸研究所景向红教授团队合作(第一作者为柳申滨博士和王志福博士)在Nature又发表文章A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis,实现了针灸研究的历史性突破,揭示了一类PROKR2-Cre标记的DRG感觉神经元,是低强度针刺刺激激活迷走神经-肾上腺抗炎通路所必不可少的。尤为值得关注的是,根据此类神经的躯体分布特点,可以预测在不同部位低强度电针刺激抗炎的效果,从而为穴位相对特异性的存在提供了现代神经解剖学基础。首先,PROKR2-Cre标记的有髓鞘的神经元主要富集表达于支配四肢节段的DRG中,并且此类神经元特异性支配四肢的深层筋膜组织(如骨膜、关节韧带和肌筋膜等),而不支配皮肤的表皮组织和腹部的主要筋膜组织(如腹膜)。其次,为了研究PROKR2-Cre标记的神经元在针刺诱导迷走神经-肾上腺抗炎通路中的作用,研究团队运用交叉遗传等方法特异性地敲除此类DRG感觉神经元。当敲除这类神经元后,低强度针刺刺激后肢穴位ST36不能激活迷走神经-肾上腺通路,也无法抑制LPS(细菌脂多糖)所诱发的炎症风暴;而敲除此类神经元并未影响高强度刺激后肢穴位ST36和腹部穴位ST25所诱导的交感神经抗炎通路。研究团队进一步运用交叉遗传的方法特异性诱导光敏蛋白CatCh表达于PROKR2-Cre标记的神经元,并用473nm蓝光特异性地激活支配后肢穴位ST36的此类感觉神经纤维。研究发现,激活此类神经纤维能显著诱发迷走传出神经的放电,并且能以迷走神经依赖的方式诱导肾上腺释放儿茶酚胺类神经递质,抑制LPS诱导的促炎细胞因子释放,进而显著提高动物的存活率。这一部分研究结果,几乎模拟了低强度电针刺激后肢穴位ST36的抗炎效果。最后,研究人员根据PROKR2-Cre标记的 感觉神经纤维的组织支配模式准确验证了对低强度电针刺激诱导的抗炎效应结构基础。而与下肢胫骨附近筋膜组织中的密集投射相反,下肢后部的肌肉组织中,包括小腿的腓肠肌和大腿区域的半腱肌,PROKR2-Cre感觉神经纤维支配很少。低强度针刺刺激这些部位未能显著抑制 LPS诱导的炎症反应。奇妙的是,PROKR2-Cre神经纤维很少投射的腓肠肌和半腱肌等部位,正好很少分布传统穴位。进一步研究发现, PROKR2-Cre标记的感觉神经元也密集支配到前肢的深层筋膜组织(如桡骨骨膜),此处为手三里穴区(LI10),进一步通过针尖靠近含有这类神经纤维的桡神经深支,对其进行了双侧低强度刺激,发现针刺刺激此穴位也可通过此类神经元和迷走神经依赖方式,显著抑制LPS诱导的炎症反应。以上研究表明,对于针刺刺激诱导迷走神经-肾上腺抗炎通路,存在躯体部位的选择性(如有效的 ST36 、LI10 和无效的 ST25穴位)、穴位特异性(如ST36 与无效的后肢肌肉中的传统非穴位)。这种穴位的相对特异性与PROKR2神经纤维的部位特异性分布有关。此外,针刺强度、深度、检测结果指标都是影响穴位特异性发挥作用的重要要素。这些发现充实了针灸等体表刺激疗法的现代科学内涵,为临床优化针刺刺激参数,诱发不同自主神经反射,从而治疗特定的疾病(如炎症风暴等)提供了重要的科学依据。据悉,该研究获得了复旦大学王彦青教授、中国中医科学院针灸研究所景向红研究员的支持帮助,福建中医药大学王志福副教授、中国中医科学院针灸研究所宿杨帅博士, 还有杨维、祁鲁、傅鸣洲参与了本研究的工作。
  • 中国科大揭示光感知调控血糖代谢的神经机制
    对栖息于这颗蓝色星球上的生命而言,光是一切生命产生的源动力,也是生命体最重要的感知觉输入之一。同时生命体根据外界环境条件控制体内营养物质的代谢平衡是生存的必须,而代谢紊乱会产生严重疾病,哺乳动物已经进化出了精确和复杂的调控网络用于持续动态调控血糖代谢。大量公共卫生调查显示夜间过多光源暴露显著增加肥胖和糖尿病等代谢疾病风险,那么光作为最重要的外部环境因素,其是否直接调控血糖代谢?其中涉及哪类感光的细胞、何种神经环路以及外周靶器官,这些方面的问题一直没有得到解答。   1月20日,中国科学技术大学生命科学与医学部教授薛天研究团队在《细胞》(Cell)上,在线发表了题为Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis的研究成果。该工作发现了光直接通过激活视网膜上特殊的感光细胞,经视神经至下丘脑和延髓的系列神经核团传递信号,最终通过交感神经作用于外周的棕色脂肪组织,直接压抑了机体的血糖代谢能力。值得指出的是,这项工作不但在小鼠动物模型上系统回答了光调节血糖代谢的生物学机理,在人体试验上也发现了同样的现象,显示光调节血糖代谢可能广泛存在于哺乳动物界。   研究人员首先对小鼠和人执行葡萄糖耐受性检测(GTT),发现数个小时的光暴露显著降低了人和鼠的血糖耐受性。哺乳动物光感受主要依赖于视网膜上的各类感光细胞。除了经典的视锥(Cones)视杆(Rods)细胞介导图像视觉感知之外,光也能直接激活视网膜上的第三类感光细胞视网膜自感光神经节细胞(ipRGC),它依靠自身表达的视黑素(Melanopsin)对波长靠近480nm的短波长蓝光敏感。ipRGC支配诸多下游脑区进而调控如瞳孔对光反射、昼夜节律、睡眠和情绪认知功能。光降低血糖耐受性通过何种感光细胞介导?通过基因工程手段,研究人员逐一使视网膜各类感光细胞丧失感光能力,发现光诱发血糖不耐受由ipRGC感光独立介导(图1)。   接着研究人员进一步探究视网膜至脑内的哪些核团参与光调节糖代谢。下丘脑是调控机体代谢的重要区域,其中与ipRGC有较密集连接的是下丘脑视交叉上核SCN和视上核SON核团。已知数周异常光照模式能够通过影响节律中枢SCN,造成生物钟节律失调,进而间接影响到血糖代谢功能。研究人员分别损毁或利用化学遗传手段操控ipRGC投射的SCN和SON核团,发现了光急性降低血糖耐受性这一过程独立于生物钟节律系统,而由ipRGC-SON的神经环路直接介导(图1)。   结合大量神经环路示踪和操控手段,研究人员进一步发现ipRGC→SONOXT(视上核内催产素(Oxytocin)能神经元)→SONAVP(SON内抗利尿激素(Vasopressin)能神经元)→PVN(下丘脑室旁核)→NTSVgat(孤束核的GABA能抑制性神经元)→RPa(中缝苍白核)这样一条脑内六级长程神经环路介导光降低血糖耐受性(图1)。   光影响血糖代谢必然通过外周血糖代谢的器官来执行,考虑到在环路水平上光降低血糖耐受通过中缝苍白核RPa,该核团是调节棕色脂肪组织(BAT)活性的交感前运动神经的主要部位。因此研究人员将研究锁定在棕色脂肪组织,而棕色脂肪组织的重要作用之一是代谢葡萄糖或脂肪,直接产热以维持体温稳态。研究人员发现光能显著压抑棕色脂肪组织的温度,进一步通过阻断交感神经对棕色脂肪组织的投射、以及利用热中性环境温度压抑棕色脂肪组织活性的手段,确定了光降低血糖耐受性是通过压抑脂肪组织消耗血糖的产热所导致(图1)。   夜行性的小鼠和昼行性的人类在诸多光调控的生理过程中表现既有相反也有相同的效应。光是否同样降低人的血糖耐受?研究人员分别使用ipRGC敏感的蓝光与ipRGC不敏感的红光,测试人在不同波长光线照射下的血糖耐受性。结果显示在蓝光照射下人的血糖耐受性显著下降。进一步研究人员将被试者处于热中性温度环境中(热中性温度下棕色脂肪组织活性被压抑)进行了血糖耐受性测试,结果显示光不再压抑血糖耐受。上述实验提示光降低人的血糖耐受性可能也是由ipRGC感知光线且通过影响棕色脂肪组织的活性所介导(图2)。   对这项工作的几点启示:   Nothing in biology makes sense except in the light of evolution,光压抑血糖代谢这一神经生理功能可能用于动物快速响应不同太阳辐照条件,以维持体温稳态。在户外环境中太阳光可以为动物提供大量的热辐射,这可以满足部分的体温维持需求,而在动物进入洞穴或树荫等诸多太阳光辐照显著降低的环境中时,机体就需要迅速响应这种辐照减少带来的热量输入损失。光通过这条“眼-脑-棕色脂肪”通路快速减低脂肪对葡萄糖的利用以降低产热,在光辐照减少的时候,棕色脂肪不再被光压抑,快速代谢血糖来维持体温稳态。   冷暖光也许并非单纯心理作用,可能存在生理基础。日常生活中短波光环境(蓝)让人感觉到凉爽,而长波光环境(红)让人觉得温暖,因此它们才被赋予了冷暖光的定义。冷暖色一直被定义为心理上的冷热感受。这项研究发现对短波长光敏感的ipRGC在蓝光下压抑脂肪组织产热,而在红光下脂肪组织处于活跃状态。因此我们在进入蓝光环境下产生的那种“冷”的感觉,有可能是由于脂肪产热被压抑而产生的真实感受。 这条光调控脂肪组织活性的环路可能是心理上冷暖光的生理结构基础。   工业化时代的代谢疾病—人造光源增加机体代谢负担。该项工作在人体的研究结果显示,昼夜节律会造成夜间人体的糖代谢能力相较白天更低,而光压抑血糖代谢是直接叠加在节律造成的夜间血糖代谢能力下降之上的(图2)。因此在夜间同时有光暴露的条件下,人体血糖代谢能力最差。工业化社会中,人类长时间的在夜间暴露于人造光源之下,加上现代人夜间饮食习惯给机体带来双重代谢负担进而可能诱发代谢疾病。大量公卫卫生学证据已经证实了这一点,最近瑞金医院宁光院士团队涉及近10万人的研究显示,夜间长期暴露于人造光下会增加血糖紊乱及糖尿病的患病风险。   这项光调节血糖代谢的机制研究,提示现代人健康生活应关注光线环境的健康,针对夜间光污染造成的罹患代谢疾病风险提高,应考虑生活环境中夜间人造光线的波长、强度和暴露时长。这项工作发现的感光细胞、神经环路和外周靶器官可为将来干预此过程提供潜在靶点。   研究工作得到国家自然科学基金、科技部、科学探索奖、中科院稳定支持基础研究领域青年团队项目、中国科大等的支持。合肥学院科研人员参与研究。图1.在小鼠上,光激活ipRGC-SONOXT-SONAVP-PVN-NTSVgat,压抑RPa和支配脂肪的交感神经,进而压抑棕色脂肪产热降低血糖耐受性。图2.在人上,光可能通过同样的神经环路机制压抑棕色脂肪产热降低血糖耐受性。相较于白天,夜晚人的血糖耐受性更低。
  • 科学家揭示神经损伤后的自发性疼痛产生的新机制
    自发性疼痛是指在没有外界刺激的情况下发生的疼痛。它是慢性疼痛的主要症状。发生机制仍不清楚,仍然难以治疗。近期,来自约翰霍普金斯大学和辛辛那提大学的研究团队利用在体成像技术研究了同步聚集放电引起神经损伤后的自发性疼痛发生机制,证实交感神经-肾上腺素受体通路介导了同步聚集放电和自发性疼痛的产生。该研究成果发表在《Neuron》上,题为:Synchronized cluster firing, a distinct form of sensory neuron activation, drives spontaneous pain。  研究人员对背根神经节(DRG)神经元进行了在体成像,发现周围神经损伤后异常自发活动的一种独特形式:相邻的DRG神经元聚集同步、偶尔性放电。聚集放电水平与神经损伤诱发的自发性疼痛行为直接相关。研究人员进一步证明了聚集放电由交感神经的活动触发。交感神经在损伤后会传导到DRG,去甲肾上腺素是介导这种独特放电的关键神经递质。交感神经活性和去甲肾上腺素受体对于DRG神经元同步聚集放电和自发疼痛行为至关重要。  这项研究提出了阻断交感神经介导的同步聚集放电可能是治疗自发性疼痛的新手段,为在临床上靶向该通路治疗神经损伤引起的自发性疼痛提供了理论支持和研发方向。   论文链接:  https://www.sciencedirect.com/science/article/abs/pii/S0896627321008345?via%3Dihub
  • 韩贤林团队最新成果:脂质与阿尔兹海默症!中枢神经系统中成年后髓鞘的硫苷脂缺少可导致AD样神经炎症和认知障碍
    阿尔茨海默病(AD)是老年人痴呆症的最常见原因, 然而依旧缺乏有效的治疗方法,需要对疾病机制有更多的了解。人类全基因组关联研究指出,除了β-淀粉样蛋白(Aβ)和tau蛋白之外,免疫反应和脂质代谢也是AD病因的主要途径。越来越多的证据表明,主要由小胶质细胞和星形胶质细胞介导的慢性神经炎症是AD神经退化中的原因之一。同时,大脑是脂质含量和多样性最丰富的器官,主要是由于富含脂质的髓鞘,但脂质与AD疾病的相关性和相关机制研究却非常缺乏。作者和其他人报告了脑硫苷脂(sulfatide)在AD 病人和AD相关动物模型中病症早期就开始的显著下降,并且,此脑硫苷脂下降是由AD最高风险基因ApoE亚型依赖的方式介导的。但迄今为止,特定脑脂质的变化是否足以驱动 AD 相关病程仍不清楚。  2021年9月份,来自美国德州大学医学中心圣安东尼奥分校的邱淑兰和韩贤林等作者在Molecular Neurodegeneration上发表了题为“Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment”的文章,发现中枢神经系统(CNS)中髓鞘的硫苷脂在成年后的丢失足以激活疾病相关的小胶质细胞和星形胶质细胞,增加了多个AD风险基因以及已确认的AD相关的免疫/小胶质细胞调控的关键调节因子的表达,最终导致AD 样慢性神经炎症和轻度认知障碍。同时神经炎症和轻度认知障碍表现出性别差异,雌性鼠比雄性鼠更明显。随后的机制研究揭示了CNS髓鞘硫苷脂丢失、大脑慢性炎症、星形胶质细胞和小胶质细胞的活化以及AD最高风险基因ApoE之间的关系和胶质细胞活化相关转录因子通路。  脑苷脂磺基转移酶(CST,又名 Gal3st1)催化硫苷脂生物合成的最后一步。脂蛋白基因(Plp1)在CNS髓鞘形成细胞,即少突胶质细胞中大量表达,但在外周神经系统(PNS)的髓鞘形成细胞中的表达程度较低。  在此,为了研究在AD病人和动物模型发病早期硫苷脂下降对脑稳态和认知功能的影响和相关分子机制,作者建立了CST基因Flox小鼠,简称CSTfl/fl小鼠。CSTfl/fl小鼠与Plp1-CreERT小鼠杂交后建立了CST条件敲除(简称CST cKO)小鼠,通过他莫昔芬(tamoxifen,TX)诱导敲除成年小鼠髓鞘形成细胞中的CST基因,从而模拟AD病人早期的硫苷脂下降(图1A)。  作者通过Nanostring高通量mRNA检测方法,脂质组学和蛋白质水平检测确定了此小鼠在3月龄注射TX 4.5个月和9个月后均呈现CNS中CST基因表达(图1B)以及脑苷脂水平(图1C)的显著下调,但在PNS中脑苷脂下降不显著(图1C)。同时作者明确了不同于胚胎期就敲除脑苷脂的CST完全敲除(CST KO)小鼠, 在成年CST cKO小鼠12月龄时的CNS脑苷脂丢失并没有引起其他髓鞘脂质的丢失 同时少突胶质细胞的基因表达(图1D,E)或髓鞘结构蛋白水平(图1F)也没有改变。说明成年后开始的小鼠CNS髓鞘脑苷脂的下调并不破坏髓鞘稳态。同时脑苷脂丢失也未引起CNS中神经细胞或其他细胞的死亡。  图1 一种新型的可诱导髓鞘形成的胶质细胞特异性条件敲除CST (CST cKO) 的小鼠模型,在不影响少突胶质细胞稳态的情况下模拟了CNS中成年后开始的AD 样髓鞘硫苷脂丢失(CRM:大脑,SC:脊髓,SN:坐骨神经)。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  接着,作者对通过神经功能相关行为初筛(图2A)的13月龄的CST cKO小鼠进行了莫里斯水迷宫(Morris water maze,MWM) 和新物体识别(novel object recognition,NOR)实验,结果表明,虽然CST cKO小鼠可能存在与肌肉功能无关(图2B)的游泳时间增加(图2C)、游泳速度下降(图2D)、漂浮时间增加(图2E)等跟认知或运动相关功能障碍,但与运动功能无关的MWM的第六天目标探索(probe)结果(图2F-I)以及NOR结果(图2J)均证明,CNS中成年开始的髓鞘硫苷脂丢失虽然没有引起髓鞘稳态的改变,却足以引起认知功能的损害,以及空间和非空间记忆相关功能的破坏。  图2 成年后开始的硫苷脂丢失足以导致认知损害  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  进一步地,作者研究了CNS中成年开始的硫苷脂丢失导致认知损害的具体细胞、分子机制。首先利用Nanostring小鼠AD相关试剂盒检测了TX注射后4.5个月和9个月后的大脑和脊髓样本的770个基因,发现CST cKO小鼠的硫苷脂丢失诱发了CNS中的免疫、炎症反应(图3A, B)。接着利用Nanostring小鼠神经炎症相关试剂盒进一步发现:在CST cKO小鼠CNS样本中mRNA水平发生显著上调变化的76个基因富集于小胶质细胞/星形胶质细胞/免疫激活功能。比较CST cKO和CST KO小鼠的Nanostring小鼠神经炎症相关基因表达变化的结果表明:虽然CST KO小鼠中硫苷脂缺失引起了CNS髓鞘损伤,而CST cKO小鼠中成年后硫苷脂丢失并未引起了明显的CNS髓鞘稳态变化(图1D, E),但CNS硫苷脂的缺失都引起了类似的小胶质细胞和星形胶质细胞的激活,并导致了慢性免疫、炎症反应(图3C-E)。通过基因富集分析发现:髓鞘硫苷脂缺失引起的基因表达变化指向最显著的相关疾病是AD(图4A)。被上调的基因中包括四个AD风险基因Apoe、Trem2、Cd33和Mmp12(图4B-E),以及已被报导的AD关键调节基因Tyrobp、Dock 和Fcerg1(图4F-H)。结合已有的文献报道和作者的结果,进一步明确了硫苷脂缺陷激活的小胶质细胞和星形胶质细胞的基因表达也类似于AD疾病相关的小胶质细胞和星形胶质细胞(图4 I, J)。  图3 CNS 硫苷脂丢失或缺失均诱导渐进的小胶质细胞和星形胶质细胞激活造成的神经慢性免疫、炎症。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  图4 CNS 硫脂缺乏导致 AD 样神经炎症,导致疾病相关的小胶质细胞和星形胶质细胞的特征。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  然后,作者通过硫苷脂在大脑中的质谱成像(图5A)、硫苷脂缺失引起的激活的星形胶质细胞和小胶质细胞的分布的比较(图5B-E)、激活的星形胶质细胞和髓鞘的共定位(图5F)、以及CST cKO小鼠脊髓中激活的星形胶质细胞与髓鞘的电镜观察(图5H)实验,明确了CST cKO 和CST KO小鼠中硫苷脂和胶质细胞激活存在空间上的关联:硫苷脂缺失引起的胶质细胞激活分布在富含髓鞘的区域。  图5 髓鞘上的硫苷脂缺失导致富含髓鞘的大脑区域内显著的星形胶质细胞和小胶质细胞激活。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  ApoE是CNS中主要的细胞外脂质载体,运输多种脂质,包括硫苷脂。同时Apoe4是AD的最高风险基因,并且ApoE4 是降低脑硫苷脂水平所必需的。作者发现ApoE在 CST cKO 和KO的CNS中上调(图4B),从而表明CNS髓鞘上硫苷脂缺失和ApoE上调形成正向反馈。接着作者使用ApoE 和CST双敲除(ApoE-/-/CST-/-)小鼠结合免疫荧光染色(图6A,B)和Nanostring神经炎症试剂盒(图6C-F)发现,ApoE的敲除并不能阻止和影响CST敲除引起的胶质细胞激活和相关的免疫、炎症激活,从而阐明了ApoE 虽然参与硫苷脂转运但并不直接影响髓鞘硫苷脂缺失诱导的胶质细胞激活和神经炎症,ApoE可能通过参与硫苷脂丢失从而引起AD相关慢性神经炎症。  图6 髓鞘硫苷脂缺乏诱导的AD样神经炎症并不直接依赖于ApoE。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  已有研究结果表明星形胶质细胞和小胶质细胞的激活相互影响,并且ApoE主要由星形胶质细胞产生。接着作者利用一种集落刺激因子1受体(CSF1R)抑制剂,即PLX3397,消除全脑大部分小胶质细胞从而研究星形胶质细胞、小胶质细胞和ApoE的相互调节关系。有趣的是,虽然PLX3397消除了CST+/+小鼠大脑中的绝大多数以及CST-/- 小鼠大脑中的大部分小胶质细胞,但是免疫染色(图7A, E)和Nanostring神经炎症试剂盒(图7B-D)结果显示,小胶质细胞的消除完全不能影响硫苷脂缺失相关的星形胶质细胞的激活以及ApoE的表达上调。从而证明了硫苷脂缺失相关的星形胶质细胞和小胶质细胞的激活通过独立的途径存在,并且证明了硫苷脂缺失引起的ApoE上调存在于星形胶质细胞中。  图7 CNS硫脂缺失引起的星形胶质细胞增生和ApoE上调不是继发于小胶质细胞活化。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  为了再进一步地研究CNS中髓鞘上的硫苷脂缺乏引起的神经炎症的分子机制,作者分析了转录因子评分, 主要目标包括 IRF8、STAT3、SPI1和C/EBPβ(图 8A),已有的研究报道也显示它们参与小胶质细胞或星形胶质细胞的激活,同时Spi1 是一个富集于小胶质细胞的AD 风险基因。免疫印迹结果也验证了在CST cKO小鼠大脑和脊髓样本中STAT3和PU.1/Spi1的显著上调、以及其他转录因子C/EBPβ、IRF8的部分上调(图 8B, C)。此外,在PLX3397消除小胶质细胞的样本中,CST敲除鼠的大脑中的STAT3的磷酸化和蛋白水平上调并不受小胶质细胞丢失的影响,说明STAT3也许是星形胶质细胞活化特异的转录调控途径(图8D)。  图8 髓鞘的硫苷脂缺失导致中枢神经系统中SPI1、STAT3 和 C/EBP转录因子的上调。  (图引自:Qiu, S., et al., Mol Neurodegener, 2021 16: 64)  这项研究的结论与讨论,启发与展望:  1)首次建立了在成年后诱导的髓鞘上硫苷脂丢失的小鼠模型,并成功模拟AD病人脑中的硫苷脂下调,而且证明成年后诱导的髓鞘上硫苷脂丢失在检测的时间点并不影响髓鞘稳态   2)第一次阐明了一种脂质,即CNS髓鞘的硫苷脂,其在成年后的丢失足以激活小胶质细胞和星形胶质细胞,增加了多个AD风险基因以及已确认的AD相关的免疫/小胶质细胞调控的关键调节因子的表达,最终导致AD 样慢性神经炎症和轻度认知障碍   3)阐述了AD风险基因ApoE 虽然参与硫苷脂转运,但并不直接影响髓鞘上硫苷脂缺失诱导的胶质细胞激活和神经炎症,ApoE可能通过参与硫苷脂丢失从而引起AD相关慢性神经炎症   4)证明了硫苷脂缺失相关的星形胶质细胞和小胶质细胞的激活通过独立的途径存在,并且证明硫苷脂缺失引起的ApoE上调存在于星形胶质细胞中   5)阐明了髓鞘的硫苷脂缺失导致的小胶质细胞和星形胶质细胞激活主要分别由PU1/SPI1、STAT3转录因子调控。  本文的结果强烈表明大脑中的特异性的脂质异常,例如髓鞘上的硫苷脂缺失也许也是AD 病理学中神经炎症和轻度认知障碍的重要驱动和促进因素,并且与 tau 蛋白病无关。但需要后续的研究继续阐明髓鞘的硫苷脂缺失如何分别激活了小胶质细胞和星形胶质细胞。  原文链接:https://molecularneurodegeneration.biomedcentral.com/articles/10.1186/s13024-021-00488-7  邱淑兰(左,第一作者),韩贤林(右,通讯作者)关于韩贤林教授课题组:  美国德州大学圣安东尼奥医学研究中心 韩贤林教授  韩贤林教授先后获浙江大学和美国华盛顿大学(圣路易斯)硕士和博士学位。现任美国德州大学圣安东尼奥医学研究中心杰出教授。浙江省千人,浙江中医药大学兼职教授。主要从事老年痴呆病、糖尿病诱发的综合症、和免疫性疾病等脂类代谢混乱的机制研究。韩教授是脂质组学的创始人之一,2003年他首次提出了“脂质组学”概念。他是该领域公认的杰出科学家,以发明多维质谱“鸟枪法”脂质组学分析技术而在该领域闻名全球。韩教授已在各种杂志上发表论文280多篇, H指数79, 总引用数达24,500次以上。2010年与英国爱丁堡皇家学会委员W.W. Christie合撰《Lipid Analysis: Isolation, Separation, Identification, and Lipidomic Analysis》论著。2016年他撰写了一部系统地阐述脂质组学的论著 -《Lipidomics: Comprehensive Mass Spectrometry of Lipids》。韩教授在国际上享有很高的学术威望,被聘为多种与脂类研究有关杂志的副主编或编委。韩教授现任美国卫生研究院、美国糖尿病协会、及香港研究资助局的基金会常任评审专家。曾任美国华人质谱学会主席,现为该学会终身理事。
  • 清华大学开发出具有自发电场的可降解神经再生电子药物
    p style="text-indent: 2em "目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。/ppbr//pp style="text-indent: 2em "周围神经损伤是周围神经干或其分支意外受到外界直接或间接创伤而发生损伤导致躯干和肢体的运动、感觉及自主神经功能障碍的一种临床病症。大量报道表明2.8%的创伤患者受到周围神经损伤的影响,且每年全世界约超过1百万人会遭受周围神经损伤疾病损害,严重影响患者的生活质量,部分患者甚至会因此而终身残疾。随着再生医学和组织工程的进步,组织工程化的人工神经导管得到了迅速发展,但自体神经移植仍是外周神经损伤修复的“金标准” ,而自体神经移植方法存在供体神经支配区永久性失神经功能丧失、供移植来源有限、供体部位的神经和缺损部位神经不匹配以及需要进行二次手术等问题。目前大量研究表明电刺激疗法在体外和体内均具有促进轴突快速定向再生,实现功能恢复的效果,但是目前提出的植入式电刺激器件新方案中还存在体积相对较大、不可降解需二次手术取出或者外部无线供能装置制备流程较复杂等一系列限制其临床转化的潜在问题。/ppbr//pp style="text-indent: 2em "近日,清华大学材料学院尹斓课题组开发了一种新型电刺激人工神经导管一体化的微型可降解电子器件,此类器件兼具人工神经导管的引导与长时间连续电刺激的双重作用,且其组成材料全部生物相容并在特定时间内发生降解且被人体所吸收或代谢,不需要进行二次手术取出。该研究成果以“A fully biodegradable and self-electrified device for neuroregenerative medicine”为题在国际著名学术期刊Science Advances上发表。/ppbr//pp style="text-indent: 2em "该研究采用Mg作为电池的负极,FeMn作为正极,体液为电解质溶液。此外,根据神经导管的力学性能与微观结构需求,对可降解电池的复合一体化神经导管的结构进行了设计,其中神经导管的最外层支架为多孔PCL,其主要作用为力学支撑,第二层为与神经组织力学性能相匹配的柔性PLLA-PTMC材料;最内层为PCL纤维薄膜,其主要作用为引导缺损神经再生。/ppbr//pp style="text-indent: 2em "此电刺激器件可在大鼠体内连续放电3天,且有限元计算得到电场强度分布范围为25?200 mV/mm,与促进DRG轴突生长、血旺细胞定向生长和PC12细胞增殖的电场强度范围区间相吻合。此外,此器件可在60℃的PBS溶液(pH为7.4)中约于56天内发生全部降解。/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 544px height: 496px " src="https://img1.17img.cn/17img/images/202012/uepic/d7f5fe83-8c96-4562-a2dd-3b0f41c38e28.jpg" title="75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" alt="75173778d9f84ca2a67cb180b41a5a03from=pc.jpg" width="544" height="496"//pp style="text-align: center text-indent: 2em "图1. 可降解电刺激器件的结构、放电性能与降解性能/ppbr//pp style="text-align: center text-indent: 2em "在此基础上开展了此电刺激器件在体外对背根神经节细胞和血旺细胞的影响研究,分析了电刺激对胞内钙信号传导和所分泌神经营养因子的影响,发现此器件具有引导和促进轴突定向生长的作用,且能显著促进胞内钙离子的活性。此外,该器件还能促进血旺细胞的增值,且能显著促进其对BDNF, CNTF, NGF和VEGF的分泌。img src="https://img1.17img.cn/17img/images/202012/uepic/8c4e66b2-73a9-4ae2-85fd-6aa6c20b4eb5.jpg" title="d201c3dc776c4ef4beae25fa610fe190from=pc.jpg" width="552" height="346" style="width: 552px height: 346px "//pp style="text-align: center text-indent: 2em "图2. 可降解电刺激器件对背根神经节细胞的影响结果/pp style="text-align: center text-indent: 2em "img src="https://img1.17img.cn/17img/images/202012/uepic/1632f9ed-642f-45ee-bd59-6e6eca61240d.jpg" title="5e8d1450f79e45e79d695f13892abd57from=pc.jpg" width="568" height="273" style="width: 568px height: 273px "//pp style="text-align: center text-indent: 2em "图3. 可降解电刺激器件对血旺细胞的影响结果/ppbr//pp style="text-indent: 2em "此外,研究了此神经导管一体化电刺激器件对Sprague-Dawley大鼠坐骨神经10 mm缺损的修复效果,发现3周和9周后电刺激组的再生神经面积较空管组有显著增加,且可与自体神经移植组的再生神经面积相比拟,验证了此器件对神经的早期和中期神经再生的促进作用。通过对12周后再生神经组织和运动功能的研究,验证了电刺激对再生神经中轴突髓鞘化、靶肌肉的神经再支配和运动功能恢复的促进作用。/pp style="text-align: center "/pp style="text-align: center text-indent: 2em "img style="width: 436px height: 295px " src="https://img1.17img.cn/17img/images/202012/uepic/a93960e8-99df-431a-bd30-4d83b582b532.jpg" title="3192d1b688de492cbdd66b2d2e363c0cfrom=pc.jpg" width="436" height="295"//pp style="text-align: center text-indent: 2em "图4. 手术过程和3周后再生神经荧光染色结果/pp style="text-align: center text-indent: 2em "img style="max-width: 100% max-height: 100% width: 469px height: 524px " src="https://img1.17img.cn/17img/images/202012/uepic/15dc160f-479d-4532-b7aa-4b388fe9bd02.jpg" title="5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" alt="5ad3aabe9e87409180595df362d27b0bfrom=pc.jpg" width="469" height="524"//pp style="text-align: center text-indent: 2em "图5. 12周的再生神经髓鞘化、电生理、靶肌肉和运动功能结果/ppbr//pp style="text-indent: 2em "清华大学材料学院副教授尹斓为本文通讯作者,中国人民解放军总医院骨研所副主任彭江和副研究员王玉为共同通讯;清华大学材料学院博士后王柳为本文第一作者,中国人民解放军总医院硕士鲁长风、清华大学材料学院博士生杨淑慧和孙鹏程为共同一作;合作者包括清华大学材料学院王秀梅教授、清华大学生命学院熊巍研究员、清华大学电子系盛兴副教授、北京理工大学汪世溶副研究员和清华大学材料学院陈浩副教授。本工作得到了国家自然科学基金、博士后科学基金、北京市自然科学基金和国家重点研发计划等项目的共同资助。/ppbr//p
  • Nature Medicine:武阳丰团队证实,低钠盐可安全降血压、减少心血管事件
    2023年4月13日,北京大学武阳丰教授团队在 国际顶尖医学期刊Nature Medicine上发表了题为: Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial 的研究论文。 该研究发现, 将养老院厨房中的普通盐更换为富钾低钠盐,在2年干预期间,入住老人的收缩压平均下降7.1mmHg,舒张压平均下降1.9mmHg,主要心血管事件减少40%。 与此同时,逐步减少厨房供盐的措施未能取得成功,24小时尿钠、血压及主要心血管病事件均未见显著下降。 高血压是中国居民发生心血管病的最主要危险因素。减少人群钠摄入是全球公认的高血压及慢性病防治重要策略。然而,世界卫生组织的最新报告表明:实现“到2025年将钠摄入量减少30%”的全球目标仍面临巨大的困难和挑战。 集体养老人群中低钠盐和逐步减少厨房供盐的干预效果和安全性评价 (DECIDE-Salt) 研究,正是为了探索适合全人群推广的有效减钠策略。它试图通过一项严格设计的整群随机对照试验,同时评价两种减盐策略的有效性和安全性:一是用富钾低钠盐替换普通食盐,二是逐步减少厨房供盐量。 食用富钾低钠盐作为一种减盐策略,在降低钠摄入的同时,增加钾的摄入,能够实现“双重降压”。阶梯式逐步减少厨房供盐是研究团队开发的一项创新干预策略,以每3个月为一个阶梯,每次减少5%-10%的厨房供盐,试图使养老人群在不知不觉中实现减少钠摄入。 DECIDE-Salt研究于2017年至2020年期间,在山西省长治县和阳城县、陕西省西安市和内蒙古自治区呼和浩特市四地共48所养老机构中开展,纳入1612名符合入组条件 (55岁以上且测量了基线血压) 的入住老人作为评价干预效果的研究对象。研究采用2×2析因、整群随机对照设计,将养老机构按所在地区分层,随机分组。分别于第6、12、18和24月进行随访,测量血压并了解主要心血管病事件发生情况。 研究结果显示:在有效性方面:与24家仍食用普通盐的养老院老人相比,24家更换为富钾低钠盐的养老院老人收缩压、舒张压分别平均降低-7.1mmHg、-1.9mmHg;主要心血管病事件显著减少40%;全因死亡减少16%,但未达到统计学显著性;24小时尿钾显著升高,尿钠下降但未达统计学显著性水平。 在安全性方面:与食用普通盐的养老院老人相比,更换为富钾低钠盐的养老院老人,化验检出高血钾增加、低血钾减少;两年间仅发生3例持续高血钾 (血钾5.5mg/dL) ,低钠盐组2例,普通盐组1例,但均未发生不适症状或其他不良反应;化验检出高血钾的51人中,发生2例死亡,低钠盐组与普通盐组各1例,分别死于髋骨骨折后并发症和肺癌。“阶梯式逐步减少厨房供盐”策略未能取得成功,所有观察指标,包括24小时尿钠、收缩压、舒张压及主要心血管病事件等在逐步减供组和常规供应组间均未见到显著性差异。低钠盐组和普通盐组在基线和干预期间收缩压的变化低钠盐组和普通盐组干预期间心血管事件累计发生风险 2021年武阳丰教授团队发表于《新英格兰医学杂志》 (NEJM) 的SSaSS研究显示, 在患有脑卒中或未控制的高血压人群中使用低钠盐替换普通盐,可显著降低脑卒中、心血管事件和全因死亡风险。与SSaSS研究相比,DECIDE-Salt的研究人群更加宽泛,有一半的养老院在城市,有脑卒中或冠心病的老人仅占1/3,近40%血压正常,近1/4的人基本健康。即使如此,DECIDE-Salt仍取得了远较SSaSS研究更好的降压效果和更好的减少主要心血管病事件的效果。这说明只要能够较好地解决依从性,确保长期坚持食用低钠盐,就会取得良好的心血管病防控效果。 与既往所有的低钠盐临床试验不同,DECIDE-Salt没有将患有慢性肾病或正在服用保钾药物的老人排除在外,而是采取了较为严格的高钾血症高危人群监测计划来及时发现和处理研究期间可能发生高钾血症的情况。研究中,有5.5%的老人患有慢性肾病、5.3%长期卧床、8.3%正在服用有保钾作用的药物。尽管如此,研究结果表明,低钠盐组未增加临床高钾血症和其他严重不良事件。这些结果说明养老人群中推广应用低钠盐是较为安全的,也间接说明将低钠盐向其他发生高钾血症风险较低的人群(如年轻人)推广将更加安全。 DECIDE-Salt研究课题负责人、我国著名心血管病防治专家武阳丰教授指出: DECIDE-Salt的研究结果,为中国减盐行动选择合适的减盐策略提供了重要的循证决策依据。低钠盐简单、易行、安全、有效,具有很大的公共卫生价值,值得政府、企业和社会各界大力推广。消费者应尽可能采用低钠盐替代普通食盐,进行烹饪、调味和腌制食物。论文链接:https://www.nature.com/articles/s41591-023-02286-8
  • 标准解读|食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量
    5月11日,GB 2763.1-2022《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》正式实施,本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021配套使用。最新发布的《食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量》(GB 2763.1—2022)在广泛征求社会意见、有关部门意见和向世界贸易组织(WTO)成员通报的基础上,经国家农药残留标准审评委员会、食品安全国家标准审评委员会技术总师会议及秘书长会议审查通过,由国家卫生健康委、农业农村部和市场监管总局于2022年11月11日发布,将于2023年5月11日起实施。本文件是 GB2763—2021《食品安全国家标准 食品中农药最大残留限量》的增补版,相关检测方法可以与GB2763—2021食品安全国家标准 食品中农药最大残留限量》配套使用。GB 2763.1-2022除前言外,主体部分依然由范围、规范性引用文件、术语与定义、技术要求、索引五大部分组成。一、范围GB 2763.1-2022规定了食品中112种农药共290项最大残留限量。二、规范性引用文件GB 2763.1-2022规范性引用文件共涉及GB/T5009.174花生大豆中异丙甲草胺的残留量的测定等37个检测方法三、技术要求该部分是GB 2763.1-2022的重点部分。其中每种农药的技术要求均由主要用途、ADI值、残留物、最大残留限量表、检测方法构成,主要新增和修订内容如下:1. GB 2763.1-2022规定了112种农药290项最大残留限量。2. 其中22种为新农药项目,新标准规定了22种农药中51 项最大残留量限量。3. 具体新增和修订的农药项目及残留限量可下载标准查看。GB2763.1-2022食品安全国家标准 食品中2,4-滴丁酸钠盐等112种农药最大残留限量.pdf
  • 气相色谱-三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯
    建立了气相色谱-三重四极杆串联质谱法测定乳粉中22种邻苯二甲酸酯含量的方法。乳粉样品以水溶解,通过乙腈提取,以氯化钠盐析后,采用气相色谱-三重四极杆串联质谱的多反应监测模式( MRM) 进行定量分析。结果表明,采用基质匹配标准曲线,在5 ng/mL~500n g/mL范围内,22种邻苯二甲酸酯线性关系良好,相关系数(r)均大于0.99,方法检出限在1.0 μg/kg~5.0 μg/kg范围,定量限在3.0 μg/kg~15.0 μg/kg范围。在奶粉基质中3个加标水平下邻苯二甲酸酯的平均回收率在82.4%~111.4%之间,平行测定6次相对标准偏差(RSD)2.4%~9.5%。该方法高效便捷、灵敏度高、稳定性好,适用于乳粉中22种邻苯二甲酸酯检测。 气相色谱_三重四极杆串联质谱法同时测定乳粉中22种邻苯二甲酸酯_王金翠.pdf
  • 代谢组学进展|多团队成果揭示肠道调控中枢神经自身免疫性疾病易感新机制
    中枢神经系统的自身免疫性疾病,如多发性硬化、视神经脊髓炎谱系障碍,以慢性、进行性神经炎症、脱髓鞘和神经变性为特征。这些疾病在发病率和临床特征上都表现出强烈的女性倾向,其患者多为中青年女性。随着疾病的进展逐渐失去自主活动能力。已有的治疗药物多为对症治疗,选择品种有限且价格昂贵,无法得到根治,给家庭和社会带来巨大的负担。因此,迫切需要开发能够有效延缓这类疾病进展的药物,而目前对这类疾病认识有待更新,拓展研究思路是建立新的治疗方法的重要基础。  2023年11月21日,中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、神经科学国家重点实验室周嘉伟研究组、中国科学院分子细胞科学卓越创新中心宋昕阳研究组、中国科学院上海有机化学研究所生物与化学交叉研究中心朱正江研究组与上海交通大学医学院附属瑞金医院神经内科陈晟团队合作在Immunity上发表了文章Intestinal epithelial dopamine receptor signaling drives sex-specific disease exacerbation in a mouse model of multiple sclerosis(肠道上皮细胞多巴胺受体信号驱动雌性多发性硬化小鼠疾病进展),利用基因修饰小鼠和药理学实验方法以及多组学联合分析,他们发现,肠道上皮细胞多巴胺D2受体(IEC DRD2)过度激活可以选择性地在雌性小鼠中改变肠道菌群的组成及其代谢物水平,从而促进多发性硬化的发病。此研究聚焦中枢神经系统自身免疫性疾病研究前沿,独辟蹊径,通过跨系统研究,揭示了肠道远程调控中枢神经系统自身免疫性疾病易感性的新机制,为建立具有性别选择性的中枢神经系统自身免疫性疾病干预手段开辟了一条新途径。    已知,肠道微生物群失调促进多发性硬化的发展。在多发性硬化动物模型中,肠道微生物群在疾病的起始阶段、效应阶段和调节阶段以及个体对药物治疗的反应中都起着关键作用。然而,由于个体之间,肠道微生物群组成的差异很大,迄今,国内外医学界未能建立起具有广泛代表性的“核心微生物群表型”。肠道上皮细胞为胃肠道构筑了一条防线,不仅可以隔绝肠腔及其内容物,还可以整合肠腔内的多种菌群信号,以维持胃肠道正常生理功能。据报道,有多种与多发性硬化相关的肠道细菌可以产生多巴胺受体激动剂,因此,作者设想,肠道上皮细胞多巴胺受体介导了菌群和宿主相互联系,并且这种联系在多发性硬化发病过程中发挥重要作用。  为对上述设想予以验证,作者分别构建了在肠道上皮细胞分别特异性敲除多巴胺D2、D3、D4受体的小鼠,同时根据文献提供的肠道细菌产生大量的多巴胺受体激动剂苯乙胺这一线索,利用实验性自身免疫性脑脊髓炎作为多发性硬化动物模型,观察在上述基因缺失的情况下,小鼠行为学、病理学的变化,并作多组学分析,之后,使用小胶质细胞系和野生型小鼠对所发现的差异代谢物进行筛选,寻找和鉴定可以减轻动物模型发病严重程度的代谢物。同时收集多发性硬化患者和健康对照的粪便样品用于靶向代谢物检测,验证苯乙胺含量与多发性硬化发病之间的相关性及性别差异。  首先,通过代谢组学检测,作者发现,多发性硬化患者粪便中苯乙胺含量显著高于健康对照,且存在性别差异。通过条件性基因敲除等实验方法,观察到只有肠道上皮细胞多巴胺受体D2,而不是D3和D4基因缺失,可显著缓解多发性硬化小鼠模型发病的严重程度。通过与野生型对照组转录组的对比,发现DRD2敲除的多发性硬化小鼠模型中,肠道溶菌酶等抗菌肽表达量显著减少 同时通过16s rRNA测序,发现在造模前和发病高峰期肠道菌群组成出现显著差异 通过同笼饲养和抗生素处理,发现DRD2在多发性硬化小鼠模型的作用是肠道菌群依赖的 通过非靶向代谢学检测和代谢精准分析术 MetDNA,鉴定了47种只在雌性小鼠脊髓中存在差异的代谢物。之后,利用小胶质细胞细胞系BV2细胞和野生型小鼠对这些差异代谢物进行筛选,确定了N-乙酰赖氨酸可以在整体动物和体外培养细胞水平显著抑制炎症反应,从而缓解自身免疫性脑脊髓炎的发病。  为了进一步探究N-乙酰赖氨酸抑制炎症的分子机制,利用磁珠分选、流式细胞分选等方法,将脊髓中的小胶质细胞分离并进行转录组测序及单细胞测序。发现N-乙酰赖氨酸显著降低了多发性硬化相关小胶质细胞的比例,提高了增殖性小胶质细胞和稳态小胶质细胞的比例。表明N-乙酰赖氨酸有利于恢复多发性硬化小鼠模型失衡的中枢神经系统免疫稳态。  传统观点认为,性激素等在中枢神经系统自身免疫性疾病发病过程中发挥重要作用。本研究显示,肠道的苯乙胺-多巴胺D2受体-溶菌酶信号轴是决定雌性动物或中青年女性群体对多发性硬化发病易感性的重要因素,这是对传统观点的新的延伸和拓展。作者还揭示了肠道—微生物群——脑的相互作用是如何调控中枢神经系统免疫稳态,这一调控方式突出了宿主肠道细胞本身对肠道菌群的核心作用,为发展基于肠道上皮细胞活动调控的脑疾病干预方法提供了新的分子和细胞基础。N-乙酰赖氨酸的抑炎作用的发现为研发适用于女性多发性硬化患者的神经炎症治疗方法提供了新的机会。  该项工作由彭海蓉博士、邱佳倩、周勤明博士和博士研究生张彧锴在周嘉伟研究员、宋昕阳研究员、朱正江研究员和陈晟教授的指导下完成,课题组的其他成员积极参与,并得到了中国科学院上海营养与健康研究所肖意传、邱菊研究员的大力协助,因此,是众多课题组通力合作的结果。  在雌性小鼠中,粪便中较高的苯乙胺浓度会引起肠道上皮细胞中的DRD2过度激活,促进溶菌酶和防御素表达量增加。这些过量的抗菌肽,对细菌的杀伤力增强,因此,乳酸杆菌等对溶菌酶敏感的菌种在雌性小鼠体内减少。而乳酸杆菌产生的N-乙酰赖氨酸对小胶质细胞介导的炎症具有很强的抑制作用,是缓解中枢神经系统自身免疫性疾病,如多发性硬化的物质基础之一。  原文链接:https://doi.org/10.1016/j.immuni.2023.10.016
  • 就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(下)
    David Schaffer是加州大学伯克利分校(University of California, Berkeley)的化学和生物分子工程、生物工程和神经科学教授,在那里他还担任伯克利干细胞中心(Berkeley Stem Cell Center)主任和QB3-Berkeley主任。David实验室致力于了解生物学和探索干细胞的治疗潜力,尝试用组织工程学控制干细胞的能力并用于疾病治疗。他们致力于发现新的信号通路,并解释和实现这些信号的生物网络的计算和实验分析,最终将这些信号整合到生物材料微环境中以实现最优的干细胞控制。多能干细胞的可扩展和分化可以极大地受益于许多生物学应用,包括细胞替代治疗、疾病建模、体外器官形成和药物筛选。David实验室是PerkinElmer高内涵的老用户,自2018年开始,陆续基于PerkinElmer的高内涵系统发表了5篇文章,包括一篇Cell Report,一篇Science Advances。在6月份的推送《就发了5篇SCI!老凡尔赛如何用高内涵阐明神经细胞分化机制(上)》中,我们已经分享了David实验室建立的2D神经分化体系,此次,我们来分享3D神经干细胞研究体系。《High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates》于2020年8月发表于Science Advanced杂志,该工作系统性的构建了3D神经分化研究方法,建立高通量3D培养平台,用于系统地筛选1200种不同剂量、持续时间、动力学和信号组合的培养条件,寻找能从人多能干细胞(hPSCs)分化出少突胶质细胞祖细胞和中脑多巴胺能神经元的条件并确定关键因子。该研究揭示了以前未被发现的, Wnt、维甲酸和sonic hedgehog信号对细胞分化的复杂作用,这可能揭示了人类中枢神经系统发育中新的关键机制。该研究的发现有助于一些神经类疾病的细胞替代疗法(cell replacement therapies (CRTs))的优化。首先,少突胶质前体细胞OPC的体外分化过程见上图,在3D培养条件下,要经过复杂的诱导过程,PSC细胞才能够分化成为OPC细胞,而这一过程如何规范化如何可控,正是神经系统类基本细胞替代疗法最关心的问题,作者就针对这一过程展开了筛选。上图为作者筛选体系示意图,该体系将细胞悬浮在3D水凝胶中的微柱芯片压印到含有隔离介质条件的互补微孔芯片上,然后芯片被悬空培养在800nl培养介质的微孔中,经过一段时间的培养,该微流控板直接用PerkinElmer高内涵系统进行成像和分析。这样,在培养基中加入不同成分,就能够筛选不同剂量和时间的组合。作者共筛选了1200个组合培养条件,共计4800个独立样本,同时消耗的试剂体积不到相应96孔板格式的0.2%。这是一个非常高效的筛选体系。接下来,作者进行了各个关键因素多维度的筛选,筛选的表型为各个分化时期OPC的不同标记物,如Olig2、Tuj1、Nkx2.2等,这些标记物的成像和定量都是通过PerkinElmer高内涵系统完成的。这些多维度筛选的关键因素包括:接种细胞密度对早期分化过程的影响RA,SHH和 Wnt三个信号通路的组合效应3种信号通路抑制剂和拮抗剂的组合效应,IWP-2(Wnt通路抑制剂)、GANTT61 (SHH通路拮抗剂)、DAPT(Notch通路拮抗剂)RA和SAG处理不同时间的影响之后,作者拟合了广义线性模型,将Olig2、Nxk2.2和Tuj1的表达和共表达与本研究涉及的12个培养参数中的单个输入参数以及它们之间的132个成对相互作用关联起来。并发现,RA是对Olig2和Nkx2.2表达影响最大的参数之一,特别是第0天和第1天和第4天和第10天剂量控制至关重要。此外,该分析确定了两种培养参数(第0-2天高剂量的RA+第4-10天高剂量的SAG,GANT剂量的增加+CHIR持续时间的延长)以协同方式相互作用以促进OPC分化的情况。最后,作者还用该模型筛选了hPSC细胞分化成tyrosine hydroxylase+mDA神经细胞的过程,也找到了该过程的重要调控因素,描述了该过程的可控性操作方法。这部分内容由于篇幅不再展开,感兴趣的同学请阅读原文。综上本文建立了一个很好的3D神经细胞分化研究体系,该体系基于高内涵成像与分析系统,能够在作者设计的微芯片上,同时分析神经细胞分化过程中诸多因子的作用。作者也借助该体系,详细的分析了两种神经细胞分化过程中关键因子是如何作用的,这些发现对于神经系统疾病的细胞替代疗法的过程设计尤其重要。在本文中,PerkinElmer高内涵系统包揽了所有的成像和分析工作,在作者自行设计的微芯片上灵活自如,对各种芯片和孔板有极强的包容性,实在是不可缺少的筛选小助手啊!参考文献Riya Muckom , Xiaoping Bao, et al, High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. Sci Adv. 2020 Aug 7 6(32): eaaz1457.
  • 山东新药重大科技成果层出不穷 制药技术全国领先
    被誉为医药行业“黑马”的济宁辰欣药业,近10年来保持着年均销售收入和利润40%的增长率,这要远高于全国医药行业平均增长率 力诺宏济堂制药已经建设成为亚洲最大、中国唯一的麝香酮生产基地 齐鲁制药的生物制品重组人粒细胞集落刺激因子(rhG-CSF)、重组人白细胞介素-11分别占国内30%、60%的市场份额……一个个医药巨头,在齐鲁15万平方公里的版图上矗立起来,而与之呼应的,则是山东省医药产品销售收入连续六年全国排名第一的傲人姿态。  “从2006至2009年,我省医药工业销售收入保持了年均22.2%的增幅,医药行业占全省GDP的比重由2006年的3.2%升至3.88%,对全省经济增长的贡献度稳步提升。”4月,在山东省有关部门向国家“重大新药创制”科技重大专项领导小组的有关汇报中,山东省科技厅厅长翟鲁宁表示。  据了解,2009年山东省医药工业销售额达到1310.14亿元、利润128.07亿元、缴税185.87亿元,分别比上年增长26.43%、22.2%和24.13%。其中销售收入连续六年保持国内领先,税收和利润额提前一年超额完成“十一五”规划指标。  大块头有大智慧,山东省医药产值六连冠背后,是该省扎扎实实的研发和推进产业化努力的结果。  —— 新药大平台 ——  鲁药产业迎来机遇  刚开始时,“国家重大新药创制专项”并没有规划在山东建设“国家新药大平台”。前者是《国家中长期科学和技术发展规划纲要(2006-2020年)》确定的16个科技重大专项之一。其中建设“国家新药大平台”是专项的重点内容,其目标是依托环渤海、长三角、珠三角等区域技术、产业优势,组建若干国家新药技术创新的核心平台,为我国新药研究开发的持续创新提供有力的技术支撑。作为我国制药产业发展最具活力的区域,山东省医药产业亦面临着缺乏高端创新团队、重大新药创制能力低等问题,建设“新药大平台”正可谓对症下药,但在现实中,这个医药大省却险些成了旁观者。  面对困难,按照山东省省委、省政府的有关部署,山东省科技厅牵头整合了山东大学、中国海洋大学、省药科院、省医学科学院、山东中医药大学、省中医药研究院等6家山东省医药领域的优势科技资源,组建了山东省重大新药创制中心。其建设目标是:以济南高新区为重点,建成以“一区、六基地、二十个示范企业”为主要内容的现代新药研究与成果转化体系 同时,不断加强与科技部等有关部门的衔接,“省重大新药创制平台建设”成功通过了国家“重大新药创制”科技重大专项总体专家组的答辩,最终成功争取“国家新药大平台”落户山东。  点评:好事多磨,经过近一年的努力,山东省最终如愿争取到“新药大平台”的落户。平台对山东医药产业的意义自然不用赘言,在此值得一提的是山东省上上下下对此事的重视。首先在省委、省政府的层面上,不但将其作为山东省与科技部第二次省部会商内容之一,省委、省政府的主要领导还分别做出批示,对进一步做好跟进、落实做出要求,并责成省科技厅牵头做好这项工作。分管科技的李兆前副省长亲自调度,确定每月调度一次大平台建设进展。  《2010年山东省政府工作报告》将大平台建设列为2010年全省重点建设的三大科技创新平台之一。从山东省到济南市再到济南高新区,建立了“三级政府联动”机制,以从组织上保障平台运行。前前后后的忙碌,平台取之不易,政府部门的良苦用心可见一斑——对直接收益者山东省医药产业和众多药企来说,这是他们的机遇。  —— 新药 ——  重大科技成果层出不穷  山东省医药产业快速发展的标志之一就是,新药研发重大科技成果的层出不穷。  据了解,历年山东省最高科学技术奖获奖者中有三分之一是医药专家,大平台专家管华诗、谢立信、张运、凌沛学和赵志全等5名医药专家分获山东省最高科学技术奖。近三年,共有7项重大新药科技成果获得国家科技奖励二等奖以上,10项重大新药科技成果获得省一等科技类奖励。其中,2009年度管华诗院士领衔完成的“海洋特征寡糖的制备技术(糖库构建)与应用开发”项目获得国家技术发明一等奖,该成果在海洋特征寡糖关键制备技术与方法及海洋药物开发方面,取得了众多重要突破,是海洋药物研究领域的标志性成果。  据统计,自实施重大新药创制科技专项以来,山东省共获得国家支持项目39项(含第三批),国拨经费2.6亿元。通过积极承担国家任务,山东生物医药的自主创新能力显著提高,在培育医药新的增长点上实现了新跨越。三年多,共获得国家批准新药证书226件,临床研究批件483个。其中,一类新药证书9个、一类新药临床研究批件12个,还有7个一类新药临床研究申请获得国家受理,今年预计有10个一类新药将要完成临床前研究,还有20个以上的一类新药处于临床前研究阶段。  点评:山东医药产值实现六连冠,背后的支撑何在?企业的推动。那谁又在推动企业呢?人才和成果。山东省医药专家频频摘取省科技最高奖桂冠和科研成果屡次获得国家科技大奖,便能说明近年来人才和成果对医药产业的推动有多么强劲。  长期以来,鲁药“重大新药自主创新能力不强”屡屡为外界诟病。但新药大平台在山东的布局,却恰好是这一问题解决之道。获得的一类新药证书,一类新药临床研究批件无不说明了这一点。  —— 研发 ——  新药孵化能力走在全国前列  制药企业的技术开发中心是孵化新药的摇篮。  目前大平台产业化示范企业建成省级以上企业技术中心15家,其中国家级企业技术中心6家。齐鲁制药、鲁南制药、东阿集团、烟台绿叶等10余家企业设立了博士后流动站,齐鲁制药、鲁南制药建有国家工程实验室2个,在鲁南制药、烟台绿叶制药建有国家企业重点实验室。企业研发投入大幅增加,以企业为主体的自主创新能力进一步提高,新药孵化能力走在全国前列。如齐鲁制药有限公司近五年来共申请发明专利43项,承担和参与各级科技计划近50项,获得各级科技进步奖数十项,目前建立了包括136项课题的在研产品线,其中化学药物105项,生物技术药物15项,欧美注册药物16项。其中化药1类或生物制品1/2类:13项 化学1类雷诺嗪缓释片和卢比替康胶囊正在进行临床研究。绿叶制药公司共获得授权发明专利79项,含国际发明专利11项。目前在研新药项目40余个,其中化学2类“注射用石杉碱甲长效缓释微球”和“注射用罗替可丁长效缓释微球”均属国际首创,目前正在申请临床研究。  点评:众所周知,新药研发具有“高投入、高风险、高产出”的特点,动辄几亿、几十亿、上百亿元的投入,以及里面蕴含的高风险,可令任何一家药企望而却步。商人逐利而居,可依靠现有的仿制药生存 只有企业家才能从长计议,敢于真金白银地投入,从而换得事业的长久发展。  我们欣喜地看到,山东的制药企业在建研发中心,在投入上的踊跃积极,在新药孵化方面亦走到了全国前列。这实在是企业家们的长远眼光,必将换来企业发展的长久回报。  —— 产品 ——  大企业大品牌星光灿烂  按照翟鲁宁的介绍,一幅描绘山东大型药企成长规模的“群象图”跃然纸上。  2009年,山东省销售收入过亿元的企业达到86家,过10亿元的12家。其中10余家企业销售收入进入全国百强。科技重大专项重点培育的骨干医药企业发展较快。例如,大平台产业化示范企业:齐鲁制药集团的销售收入突破50亿元,在中国医院用药销售排行中列第4位 瑞阳制药有限公司销售收入达34.7亿元,拥有全国最大的单车间粉针和冻干粉针生产线,是全国最大的头孢类原料药生产基地之一 新华制药实现销售收入23.25亿元,出口创汇1.34亿美元,是亚洲最大的解热镇痛类药物生产与出口基地。富康制药2009年实现销售收入20亿元,实现利税2.5亿元。据不完全统计,山东省产值3000万元以上的国家基本药物和国内市场占有率第一的大品种64个,其中吡哌酸、阿司匹林等16个品种国内市场占有率第一,1个国际第一。  点评:这是一串产值过亿、过十亿元的医药大品种清单:菏泽步长制药的丹红注射液(销售额17亿元)、寿光富康制药的甲氧苄啶(TMP,13亿元)、东阿阿胶的阿胶系列产品(12亿元)、山东鲁维制药的维生素C(9亿元)、鲁南制药的单硝酸异山梨酯系列制剂(6.7亿元),迪沙药业的格列吡嗪片(5亿元),齐鲁制药的神经节苷脂钠盐(6亿元)。  山东不缺乏大企业,但像医药行业这种单品种就能实现数十亿产值的企业尚不多见。翟鲁宁厅长曾经对制约山东省迈向医药科技强省的主要问题有着清醒的认识,其中之一便是:“‘小、散、弱’的问题比较突出,企业个头小、企业数量不少但分散全省各地。”在国家已在山东布局建设新药大平台的有利背景下,相信这串清单会越来越长。  —— 基地 ——  医药企业“摇篮”扎堆发展  在山东,一批医药企业和成果已在“母胎”中蠢蠢欲动。“母胎”便是渐成规模的企业孵化基地。眼下,山东省已整合济南、烟台、潍坊医药产业园申报国家“重大新药创制专项第三批——创新药物孵化基地建设”课题,并顺利通过答辩。  济南高新区医药科技园是山东省第一家国家级科技企业孵化器,也是国家生物工程与新医药产业基地。现有在孵医药企业120余家,从业人员2万余人,目前已形成技术研发、产品生产、专业服务、教育培训等医药产业服务价值链条 潍坊高新区生物医药科技产业园已完成2亿元投资,设立了“院士工作站”、“博士后科研工作站”,2010年被科技部认定为国家高新技术创业服务中心,是“国家级生物医药专业孵化器”,目前入园孵化企业已经达到54家,孵化基地中建有规模以上创新药物企业研发中心15个,园区企业与全国47所高校建立了长期稳定的合作开发关系 烟台国际生物科技园区由烟台市高新区与绿叶制药集团共同建设,辖有山东绿叶制药有限公司、烟台荣昌制药有限公司、烟台同和医药科技有限公司等15家创新药物研发、生产企业。  点评:一方面,制药企业的特殊性决定了它对自然环境和智力环境的高要求。另一方面,各地市还要考虑创新资源的厚薄,主抓产业与生物医药的契合度。两者双向选择的解决便出现了济南、烟台、潍坊三地的医药产业园。  前面已经说过,山东省的医药企业个头小、企业数量不少但分散全省各地,这是影响本省医药产业做大做强的障碍所在。如何培养好的药企苗子,如何聚拢中小药企攒紧力量,医药产业园任重而道远。
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 文献解读丨低浓度脑暴露不会阻碍三七总皂苷的神经保护作用
    本文由中国药科大学药物代谢与药代动力学重点实验室天然药物国家重点实验室所作,发表于DRUG METABOLISM AND DISPOSITION (2018)46:53–65。 胃肠道和中枢神经系统之间的双向沟通途径,称为“肠-脑轴”,其与脑损伤的治疗越来越相关。尽管血浆和大脑暴露浓度水平极低,三七总皂苷提取物(PNE)仍是预防和治疗心脑血管缺血性疾病的常用药物。迄今为止,PNE神经保护作用的潜在机制在很大程度上仍然未知。本文通过研究PNE对胃肠微生物群落和γ-氨基丁酸(GABA)受体的调节,系统地探明了PNE的神经保护作用。 结果表明,PNE预处理对大鼠局灶性脑缺血/再灌注(I/R)损伤有显著的神经保护作用,但对无菌大鼠的保护作用减弱。PNE预处理可显著防止I/R手术引起的长双歧杆菌(Bifidobacterium longum, B.L.)下调,B.L.定植也可发挥神经保护作用。更重要的是,PNE和B.L.均可上调I/R大鼠海马GABA受体的表达,同时给予GABA-B受体拮抗剂可显著减弱PNE和B.L.的神经保护作用。上述研究表明,PNE的神经保护作用可能主要归因于其对肠道菌群的调节,口服PNE也可通过上调GABA-B受体用于I/R损伤的治疗。使用仪器:岛津LCMS-8050 图1 正常、I/R模型和I/R + PNE大鼠(n = 6/组)的TTC染色脑冠状切片(A)、梗死体积(B)和神经功能缺损评分(C)。PGF、PGF + I/R模型和PGF + I/R + PNE大鼠(n = 6/组)的TTC染色脑冠状切片(D)、梗死体积(E)和神经功能缺损评分(F)。大鼠海马中IL-1b水平(*P,0.05,**P,0.01 vs对照组,#P,0.05 vs I/R组,# P,0.01 vs I/R组) (G),大鼠海马中IL-6水平(**P,0.01 vs对照组,#P,0.05 vs PGF+I/R组,# P,0.01 vs I/R组) (H)和大鼠海马中BDNF水平(*P,0.05 vs对照组,# P,0.05 vs I/R组) (I) (n = 6/组) 图2 B.L.的神经保护作用(n = 6/组)。(A) TTC染色的脑冠状切片、(B)梗死体积、(C) 神经功能缺损评分、(D) IL-1b、(E) IL-6、 (F) TNF-a、 (G) BDNF (*P,与对照组比较0.05,# P,与I/R组比较0.05) 图3 Western blotting检测PNE和B.L对GABA-B受体(R1、R2)表达的影响(n = 6/组)。(A) GABA-B R1、GABA-B R2、GAPDH对应的蛋白带 (B) GABA-B R1蛋白表达的灰度分析 (C) GABA-B R2蛋白表达的灰度分析。(*P, 0.05 vs对照组,#P, 0.05 vs I/R组,##P, 0.01 vs I/R组) 图4 GABA-B受体拮抗剂对PNE疗效的影响(n = 6/组)。(A) TTC染色的大脑冠状面、(B)大鼠大脑梗死体积、(C)大鼠神经功能缺损评分、(D) IL-1b水平、(E) IL-6水平、(F) TNF-α水平(* P, 0.05) 因此,本研究结果表明,I/R手术改变了肠道菌群,下调了B.L的数量,B.L水平的下降导致GABA受体表达的下调。PNE预处理后可在一定程度上预防肠道菌群I/R相关的变化,显著提高B.L的相对丰度。B.L水平的升高可上调大鼠海马GABA-A和GABA-B受体的表达,而GABA-B受体的上调在缺血性脑损伤中起保护作用。据我们所知,这是首篇阐明PNE涉及肠道微生物群的大脑保护作用的报告。值得注意的是,B.L在PNE通过上调GABA-B受体治疗脑I/R中起着关键作用。 文献题目《Low Cerebral Exposure Cannot Hinder the Neuroprotective Effects of Panax Notoginsenosides》 使用仪器岛津LCMS-8050 作者Haofeng Li, Jingcheng Xiao, Xinuo Li, Huimin Chen, Dian Kang, Yuhao Shao, Boyu Shen,Zhangpei Zhu, Xiaoxi Yin, Lin Xie, Guangji Wang, and Yan Liang Key Laboratory of Drug Metabolism and Pharmacokinetics, tate Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
  • 测序揭示独一无二的神经系统
    2013 年,佛罗里达大学的研究团队曾经在《科学》(Science)杂志上发表文章,通过一种栉水母(Mnemiopsis leidyi)的基因组撼动了进化树的根基,那篇文章一经发表就引起了热议。现在,他们又在《自然》(Nature)杂志上发布了另一种栉水母的基因组草图,再次验证了自己的观点。论文资深作者、佛罗里达大学的神经科学家 Leonid Moroz 表示:“栉水母(ctenophore)就像是来到地球的外星人。”它们通过特殊的纤毛在海洋中游动,看起来就像是迪厅的球形灯。它们通过粘乎乎的触手捕获食物。Moroz 和他的团队对太平洋侧腕水母(Pleurobrachia bachei)进行了基因组测序,他们发现栉水母拥有独一无二的神经系统。其他动物共用许多与免疫、发育和神经功能有关的基因家族,但栉水母完全不具备这些基因。这不仅令栉水母更加神秘,也再次证实栉水母是独立演化出自己的神经系统。栉水母一直令分类学家们头疼不已。它们和水母看起来很相似,曾经被视为刺胞动物(包括水母)的姐妹群(Sister group)。也有人将栉水母放在缺乏神经系统的扁盘动物和海绵之后,因为栉水母具有能够检测光、感知猎物和移动肌肉组织的神经系统。Moroz 认为,栉水母与所有动物的共同祖先是近亲。他在 2013 年的《Science》论文中提出,神经系统出现了两次各自独立的演化,栉水母的神经系统演化与其他动物完全不同。现在,P. bachei 基因组分析为这一观点提供了有力的支持。研究显示,P. bachei 基因组不仅缺乏其他动物的共有基因,而且不具备调控基因表达的 microRNA。此外,栉水母的神经系统还缺乏普通神经系统中的标准组分。 其他动物的神经系统都使用同样的十种主要神经递质,而太平洋侧腕水母则只用了其中的一两个。 Moroz 推测,这种生物可能使用了其他未知分子来完善神经系统,例如特殊的蛋白激素等。栉水母的上述独特性质,让研究团队确信它的神经系统演化独立于其他动物,大约在五亿年前从进化树上分支开。Moroz 表示:“人们总认为复杂的神经系统不可能进化两次,但这一事件的确发生了。”神经系统在不同动物分支中演化两次的观点,一直令慕尼黑大学的进化生物学家 Gert W?rheide 着迷。不过他并不认同 Moroz 等人给栉水母安排的进化位置,他认为所有动物的共同祖先可能与栉水母没什么关系。P. bachei 的神经系统也可能是后来发生的某种适应性改变,他说。“我认为现在断言栉水母在进化树中的地位还为时过早。”
  • 兰大二院神经内科获批国家神经免疫与感染疾病研究分中心
    p  近日,在北京举办的“国家神经系统疾病临床医学研究中心建设推进与战略研讨会”上,兰州大学第二医院神经内科成为全国首批29家“国家神经免疫与感染疾病研究分中心”之一,成为甘肃省唯一一家分中心单位。/pp  兰大二院神经内科成为全国首批“国家神经免疫与感染疾病研究分中心”,标志着兰大二院神经免疫感染性疾病的诊治及科研与国内高水平和国际水平接轨。中心将致力于建设并完善我国神经免疫与感染疾病医疗与临床科研体系,在全国范围内整合神经免疫专科力量,通过高层次对话与合作搭建专家与政府、医院之间以及医患之间的沟通桥梁,为甘肃省神经内科事业的发展做出新的贡献。/p
  • JCP“期刊亮点”:MALDI-TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析
    p style="text-indent: 2em "最新一期的细胞生理学杂志(Journalof Cellular Physiology)期刊登载“期刊亮点”文章,介绍了研究者结合薄层色谱和MALDI TOF用于帕金森突变人类皮肤成纤维细胞的脂质分析的成果。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201711/insimg/039a6bcf-8a77-418d-b5c3-a60306d87ad8.jpg"//pp  Parkin蛋白突变是早发性帕金森病(PD)的主要病因。蛋白质质量控制系统的损害以及线粒体和自噬过程的缺陷是导致神经退行性变的Parkin蛋白缺乏的结果。关于脂质在这些细胞功能改变中的作用知之甚少。在本研究中,parkin突变人皮肤原代成纤维细胞已被认为是PD的细胞模型,以研究与缺乏parkin蛋白相关的可能的脂质改变。皮肤成纤维细胞来自两个不同帕金酶突变的无关帕金森病患者,并将其脂质组成与两个对照成纤维细胞的脂质组成进行比较。通过组合基质辅助激光解吸/电离飞行时间质谱(MALDI-TOF / MS)和薄层色谱(TLC)分析成纤维细胞的脂质提取物。同时,研究者通过跳过脂质提取步骤对完整的成纤维细胞进行了直接的MALDI-TOF / MS脂质分析。结果表明,帕金森突变体成纤维细胞脂质谱中一些磷脂和糖鞘脂的比例发生了改变。检测到的较高水平的神经节苷脂,磷脂酰肌醇和磷脂酰丝氨酸可能与自噬和线粒体转换功能障碍有关 此外,溶血症的增加可能是神经炎症状态的标志,这是PD的一个众所周知的组成部分。/p
  • 2017年“搞笑诺贝尔奖”揭晓了!
    p  据国外媒体报道,在今年的“搞笑诺贝尔奖”颁奖典礼上,又有多位科学家凭借出人意料的研究成果获得了不同奖项。/pp  今年是第27个第一届“搞笑诺贝尔奖”——每年的颁奖典礼都是“第一届”。作为对诺贝尔奖的有趣模仿,搞笑诺贝尔奖由科学幽默杂志《不可思议研究年报》(Annals of Improbable Research)主办,于每年九月在哈佛大学桑德斯剧场举行颁奖仪式,授予“乍一看好笑,后又引人深思”的十项科学领域成就。/pp  今年获奖情况如下:/pp  strongspan style="color: rgb(0, 112, 192) "物理学奖——一只猫能否同时处于固体和液体状态?/span/strong/pp  今年的物理学奖就颁给了法国研究人员马克-安托万 法尔丹2014年关于“一只猫可否同时处于固体状态和液体状态”的研究。据悉,其灵感来自互联网上猫咪们塞进玻璃杯、水桶和水槽中的照片。/pp  span style="color: rgb(0, 112, 192) "strong和平奖——定期演奏迪吉里杜管可以帮助治疗睡眠呼吸暂停及打鼾。/strong/span/pp  对于那些与打鼾者共同生活的人来说,米洛· 普汉的搞笑诺贝尔奖成果可谓一大福音。这位瑞士科学家发现,演奏迪吉里杜管——澳大利亚原住民的一种管状乐器——能够发出一种深沉的、富有节奏感的嗡嗡声,能够帮助缓解睡眠呼吸暂停。/pp  米洛· 普汉是苏黎世大学流行病学、生物统计与预防系的主任,他在观察了一位中度睡眠呼吸暂停患者演奏迪吉里杜管之后确信,这种乐器能对病情缓解有所帮助。他招募了一些会演奏塑料迪吉里杜管——长度大约为130厘米——的志愿者,对此展开研究。“定期演奏迪吉里杜管能够减少中度阻塞性睡眠呼吸暂停患者在白天的睡意,并缓解打鼾现象,同时改善他们伴侣的睡眠质量,”普汉在论文中总结道。/pp  为什么这种方法能够奏效?普汉认为,演奏迪吉里杜管可以帮助人们学会有规律地呼吸(演奏技巧在于从嘴里吹气的同时通过鼻子吸气),并增强呼吸时所用咽喉肌肉的力量。/pp  span style="color: rgb(0, 112, 192) "strong经济学奖——触摸活鳄鱼如何影响一个人的赌博意愿?/strong/span/pp  本次搞笑诺贝尔奖的经济学奖归属两位澳大利亚人,他们发现,如果你想要控制自己的赌博损失,那就不要在走进赌场之前与鳄鱼近距离接触。马修· 洛克罗夫(Matthew Rockloff)是澳大利亚中央昆士兰大学人口研究实验室的负责人,他和研究助理南希· 格里尔(Nancy Greer)用一条体长约为1米的湾鳄——嘴巴用胶带绑着——猛戳准备去赌博的人的手臂,然后观察接下来会发生什么。/pp  与危险爬行动物“亲密”接触所产生的兴奋感,会促使赌博者“赌上更多的赌注,而这又意味着更长的赌博时间,导致更大的损失,”洛克罗夫说道。与许多获得搞笑诺贝尔奖的研究一样,洛克罗夫的发现乍看之下有些愚蠢,但实际却有着充足的应用依据。/pp  “这是第一个关于情绪刺激对赌博选择影响的研究,很显然,这将有助于解决一个非常严肃的行为和精神健康问题,”洛克罗夫说道。在得知获得搞笑诺贝尔奖之后,洛克罗夫感到非常幸运,他这样来描述自己的好运:“我必须努力克制自己,一定不能把这种运气用在一台老虎机上。”/pp  span style="color: rgb(0, 112, 192) "strong解剖学奖——为什么老人的耳朵大?/strong/span/pp  “这是个奇怪的荣誉,但我感到非常激动,” 解剖学奖得主、英国医师詹姆斯· 希思科特说道。他的研究成果是关于耳朵的大小,于1995年发表在久负盛名的《英国医学期刊》(British Medical Journal)上。/pp  该研究的灵感来自希思科特和其他几位全科医师的讨论。当希思科特提问道“老人的耳朵为什么那么大”时,同事中有半数同意他的观察,另一半则觉得非常可笑。在研究中,希思科特测量了超过200名患者的耳朵长度,发现老年男性不仅长着大耳朵,而且耳朵在30岁之后每十年就能生长大约2毫米。女性的耳朵也会随着年龄增长而变大,但她们的耳朵一开始较小,跟男性的耳朵比起来不那么显眼。而且,可能男性衰老时通常有头发变少的趋势,因而大耳朵更容易被人注意到。“耳朵的测量真的有些神奇,”希思科特说道。/pp  span style="color: rgb(0, 112, 192) "strong生物学奖——在一种洞穴昆虫身上发现雌性长着雄性生殖器官,而雄性长着雌性生殖器官的现象。/strong/span/pp  搞笑诺贝尔生物学奖授予Kazunori等四人。在一种洞穴昆虫身上,研究者发现雌性长丁丁雄性长妹妹的现象。研究者在洞穴中持续偷窥虫类性生活,惊奇地发现母虫子长着小弟弟。他们的这项研究可以说颠覆了常识,这个敬业的团队无法到场,于是在洞穴里录了获奖感言。 /pp  span style="color: rgb(0, 112, 192) "strong营养学奖——吸血蝙蝠食谱中的人血研究。/strong/span/pp  搞笑诺贝尔营养学奖授予Enrico Bernard等三人。这个团队在毛腿吸血蝙蝠的粪便里发现了与人血有关的基因片段。主办方本打算在现场放两只蝙蝠助助兴,但是蝙蝠突然就失踪了了,因此他们大力呼吁捡到的观众要物归原主。获奖团队也通过视频表达了他们的喜悦。/pp  span style="color: rgb(0, 112, 192) "strong医学奖——通过脑部扫描技术评估人对某种芝士的厌恶程度。/strong/span/pp  搞笑诺贝尔医学奖授予Jean-Pierre Royet等五人。这是第一项有关讨厌奶酪的脑部研究。在这项研究中,研究团队利用脑部成像技术观察人们在闻到不同种类的奶酪时大脑的变化,发现基底神经节才是人们恨意的源泉。/pp  除此之外,还包括流体力学奖——人手里拿着咖啡倒着走时,咖啡具有什么样的流体力学特性?认知学奖——许多同卵双胞胎其实分不清自己和自己的双胞胎兄弟或姐妹。产科学奖——发育中的人类胎儿对母亲阴道里播放的音乐更加敏感等有趣的研究!/p
  • 【青岛盛瀚】新国标登场,草甘膦盐检测将有据可循
    呼吁了多年的新草甘膦国家标准将于今年12月1日正式施行,面对长期以来市面上草甘膦不同盐型混淆的现象,“新国标”此番登场将如何接招?正文近日,国家质检总局国家标准委公布《中华人民共和国国家标准公告2017年第13号》,公告显示,本次国标的修订包括草甘膦水剂和可溶粉(粒)剂。2017版草甘膦新国标较2006版最大的变化主要在草甘膦盐型方面进行了修订,明确增加了一项对特定盐型成分的测定(如下表所示)。从12月1日即将实施的两项新国标《GBT 20684-2017 草甘膦水剂》和《GBT 20686-2017 草甘膦可溶粉(粒)剂》来看,草甘膦鉴别方法用到的是高效液相色谱法,而钠离子、钾离子、异丙胺离子等阳离子用到的是离子色谱法。采用离子色谱法可同时检测草甘膦制剂中的钾盐、铵盐、钠盐、异丙胺盐,以及铵盐和异丙胺盐等的混合物。该方法简便快速重现性好,准确度、精密度均能达到对制剂定量分析的要求,可以作为农药草甘膦盐的检测方法,适用于大批样品的定性及定量分析。青岛盛瀚色谱技术有限公司自主开发了分析草甘膦盐及其制剂的方法,CIC-D120型离子色谱仪搭配相关配件耗材,可实现对各类草甘膦制剂的产品性能及其含量判定。各类型产品样品图如下:1.草甘膦钾盐样品谱图:2.草甘膦异丙胺盐样品谱图:3.草甘膦异丙胺盐和草甘膦钾盐混合样品谱图:4.草甘膦异丙胺盐 铵盐 钾盐 钠盐混合样品谱图:结语:青岛盛瀚CIC-D120型离子色谱仪采用离子色谱法测定各种草甘膦制剂中的阳离子方法简单、快速、准确度高,完全符合《GBT 20684-2017 草甘膦水剂》和《GBT 20686-2017 草甘膦可溶粉(粒)剂》的要求。
  • 同样用液质,妙手何来? | 这款试剂盒,破局大健康科研
    液质妙手来自何方?妙手来自于安捷伦出色的用户们。安捷伦推出液质妙手系列第一集——博莱克科技(武汉)有限公司(简称博莱克)的科研试剂盒。  关于代谢组学这盘棋…她这么说:  “目前对于分析化学的硕士研究生来说,能开发出一套基于UHPLC-MS的代谢物小分子的检测方法,其实已经满足毕业要求了。但是这个方法在应用于大样本检测中的稳定性、普适性、便利性,很难得到保证。大家都知道,毕业后这个方法就像武功秘籍一样,面临失传的风险,而在这个方法基础上做进一步的优化和提升,就难上加难。”  “我们起初的想法,就是把研发好的新方法进一步锤炼,变成一个稳定可靠的商业化检测服务,不管测几个还是几千个样本,不管什么类型的样本,不管哪个批次的样本,都能得到一致的结果。让科研用户能够像使用计算机一样的便利,只用简单输入(明确测什么),我们来做标准化的输出(定量检测结果),而不是让每个科研用户自己从零开始造一台计算机(开发检测方法)。”  “我们服务过很多科研用户,有研究阿尔兹海默症的,有研究颅内动脉瘤的,有研究乙肝治疗效果的,还有研究抗结核药物新靶点的。科学家们有不同的研究方向,而我们要做的就是提供代谢组学通用化的检测服务,帮助他们在病理生理、药物研发、营养学、环境科学等诸多领域中,加速新Biomark、新功能、新机制的发现过程。”博莱克副总经理 喻门  疾病的发生机理和相关代谢物变化,一直是生命科学科研领域的热点。代谢组学通过检测技术,研究和发现人类某些标志物或代谢物的表型和规律,提前实现疾病的预防甚至治疗。而精准、快速、方便的检测设备和方案,也因此成为了疾病研究和治疗,以及整个代谢组学发展的关键。  一直以来,安捷伦践行“在中国、为中国”,通过提供安捷伦尖端、稳定、高性能的产品平台,以及专业的知识和技术团队,帮助更多的本土的合作伙伴企业实现创新,针对不同的细分市场和需求,开发极具竞争力的新产品和解决方案。博莱克科技研发团队与安捷伦的超高效液相色谱-串联质谱(UHPLC- MS/MS)平台  近日,正是基于安捷伦的超高效液相色谱-串联质谱(UHPLC- MS/MS)平台,代谢组学科研服务公司——博莱克科技(武汉)有限公司,研发了一系列代谢物小分子定量检测方式,推出3套定量检测试剂盒产品,可针对实验动物和人体血样、尿样中的20种蛋白质氨基酸、12种神经递质和6种儿茶酚胺进行精准定量检测,让医疗健康和代谢组学领域的科研和检测人员,都能便捷、快速地完成多种指标的检测。试剂盒检测指标  通常情况下,想要准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律,需要昂贵的检测设备和复杂的检测方法。在没有试剂盒的情况下,根据检测目标物的种类、个数、方法、设备情况和人员熟练度情况的不同,开发一个稳定的检测方法可能会需要数月时间。而代谢物定量检测试剂盒具备试剂集成化、方法标准化、操作便捷等优点,可以大幅提高科研人员的实验效率及实验室管理效率,免去了冗长繁杂的检测方法开发和测试的时间,让研究者更加关注数据分析本身而非仪器方法的开发。  无论是高校、研究所的老师和学生,还是医疗机构临床科研部门的研究人员,均可采用成熟的商品化试剂盒加速科研进度,同时提升检测结果的可靠性和重现性。放眼未来,随着人类对疾病发生、发展、预防、治疗不断深入的研究,该类试剂盒亦有可能拓展到临床检测维度,打开IVD检测领域的新世界。  安捷伦液相色谱系统的可靠性和稳定性极佳,系统耐压上限1300 bar,动态流速范围可高达 5 mL/min,适合快速精确分离多种代谢物组分。而三重四极杆质谱具有出色的灵敏度、精密度和扫描速度,既使样品量极少也能精准定量。这些优越的性能,是博莱克开发快速定量检测方法的硬件基础。在大量检测不同类型样本完善检测方法后,进一步衍生出商业化的试剂盒产品。  从应用出发,满足科研工作者的实际需求是博莱克公司的一贯目标。试剂盒所覆盖的靶标经过了精心筛选,除了功能丰富的20种蛋白质氨基酸以外,还选择了近年来的明星分子神经递质和儿茶酚胺。这两类代谢物在生物体内含量极低,检测难度极大,据研究表明,可能与多种疾病具有一定相关性。神经递质对心血管、神经、内分泌等组织系统有着广泛的调节作用,并对如睡眠觉醒、情感、情绪、应激行为等生理活动产生重要影响。  例如上文提到的,在抑郁症相关的研究中,有研究者发现,在抑郁症患者的血浆中GABA通路(神经递质类)和儿茶酚胺通路相关代谢物的浓度与健康人有显著性区别,可能是潜在的诊断抑郁症的标志物。嗜铬细胞瘤和副神经节瘤(PPGL)会合成、分泌和释放大量儿茶酚胺,引起患者血压升高和代谢性改变等一系列临床症候群,并造成心、脑、肾、血管等严重并发症甚至死亡。 “嗜铬细胞瘤和副神经节瘤诊断治疗专家共识(2020版)”中推荐使用LC-MS/MS检测血、尿中的儿茶酚胺用于辅助诊断。  除了应用上的多元性外,博莱克全新研发的试剂盒产品,还具有以下技术优势:   串联质谱:定量检测小分子的金标准,特异性强,一次同时检测多个靶标   增敏探针:授权专利(专利号:ZL 201610424377.9,专利类型:发明专利),特异性结合并自带电荷,灵敏度提高至少两个数量级   用样量少:仅需20~150 μL血样或20 μL尿样,针对痕量物质表现依旧优异   保护巯基:对于易被氧化的-SH有特殊保护,能准确检测半胱氨酸的正确浓度试剂盒功能和应用  博莱克科技(武汉)有限公司(简称博莱克)创立于2015年,专注于代谢组学在科研服务领域的技术开发与应用。在正式推出代谢组学试剂盒之前,博莱克为北京阜外医院等多家科研机构提供了能覆盖数万种代谢物的检测服务,总结发现了众多科研客户对于部分重点检测目标的高频需求,并基于此着手开发通用试剂盒。  在2021年安捷伦与博莱克达成战略合作后,双方一直共同致力于液相质谱适配检测试剂盒技术合作开发,推动检测技术在代谢组学方面的实地应用。在此次试剂盒研发过程中,安捷伦不仅提供了先进、稳定的检测技术平台,而且相关产品专家不断跟进和交流,为产品研发提供了重要指导和帮助。博莱克科技 技术团队  代谢组学应用前景广阔,潜力可期,为科学家未来进一步解析复杂生命系统的机理与奥秘指明新的方向、提供有价值的线索,有望引领新一轮健康科技与生物产业变革。而代谢组学超灵敏、超高通量的测量技术需求必将挑战当今最优秀仪器的性能极限,对仪器提出全新要求并倒逼仪器硬件能力的提升,进而使仪器技术与分析方法再出现“质的飞跃”。  因此,未来双方将继续研发和转化更为丰富的代谢物定量检测试剂盒,满足科研用户的实际需求,并期待产品能在健康、医疗领域有进一步的应用和发展。同时共同发力代谢组学成果转化领域,探索新靶标、新产品、新应用,打造更多新型的科研乃至临检试剂盒,服务于“中国人健康”。  安捷伦也将继续与行业合作伙伴通力协作,通过提供安捷伦尖端、稳定、高性能的产品平台,以及专业的服务和支持,助力更多本土企业实现创新和发展。接下来,通过“液质妙手系列”,我们也将分享更多基于安捷伦液相质谱平台实现创新的案例和故事,敬请期待!  附录:从1999年诞生以来,代谢组学这门学科经历了20多年快速发展阶段,从基础研究到应用均取得了诸多成果,在中国的发展更是有两个标志性的事件:一是2017年启动的“国际人类表型组计划”,该项目由复旦大学联合中科院上海生命科学研究院、上海交通大学、上海市计量测试技术研究院等共同承担,是上海首批市级科技重大专项之一,由中国科学家发起,细致描绘代表人群的全表型谱,系统解析表型组与基因组的关联,发现人类健康和疾病等表型特征形成的内在规律和生物标志物,代谢组学是其中重要一环。二是2018年中国生物物理学会代谢组学分会的成立,标志着我国代谢组学领域研究人员进入集体共发展的阶段,重点关注行业的人才培养、研究水平提高、规范化、标准化等问题,通过定期举办学术会议、讲习培训班、陆续推出行业标准等一系列举措,促进我国代谢组学领域的进一步深入发展。
  • (第二轮通知)2019-第四届动物实验技术讲习班(神经专场)
    p style="text-align: center "img src="https://img1.17img.cn/17img/images/201911/uepic/bae679ae-1963-40fc-b9ff-23fb8fb98762.jpg" title="动物实验技术班 微信图片_20191101180617.jpg" alt="动物实验技术班 微信图片_20191101180617.jpg" style="text-align: center max-width: 100% max-height: 100% width: 600px height: 256px " width="600" height="256" border="0" vspace="0"//pp style="text-indent: 2em "strong“中国脑计划”/strong已经开始发力,国家脑科学计划将立足世界脑科学与类脑研究前沿,聚焦国家在脑科学与类脑研究领域的战略需求,加快推动我国在该领域的重大突破和跨越,为神经系统的诸多理论认识与临床问题的解决,贡献出中国智慧,拿出中国方案。br//pp  本培训班由strong中国实验动物学会神经科学技术专业委员会(筹)/strong和strong上海市实验动物学会教育培训科普专业委员会/strong共同主办。希望针对就神经系统开展动物实验研究的年轻科研人员,尤其是研究生、技术员开展培训,以提高对神经科学问题的深入理解与认识、强化从事神经系统动物实验研究的技术能力、掌握最新的神经系统疾病动物模型的制作方法。 /pp  strongspan style="color: rgb(0, 112, 192) "一、培训对象/span/strong/pp  本次培训主要面向全国从事神经系统动物实验研究的年轻科研和神经系统新药研发人员,尤其是研究生、技术员、医生、以及管理人员。/ppbr//pp strongspan style="color: rgb(0, 112, 192) " 二、培训安排/span/strong/pp  培训地点:/pp  同济大学附属东方医院(上海市东方医院)南院/pp  培训时间:/pp  2019年11月29日-12月2日(周五至周一)/pp  具体安排:/pp  11月29日16:00-20:00或30日7:00-8:00注册/pp  11月30日、12月1日 培训/pp  12月2日 离会/pp  参加本次培训可获得中国实验动物学会继续教育学分4分。/ppbr//pp  strongspan style="color: rgb(0, 112, 192) "三、培训内容/span/strong/pp  /ptable border="0" cellpadding="0" cellspacing="0" width="576" style="max-width: 100% box-sizing: border-box widows: 1 word-wrap: break-word !important "colgroupcol width="134" style=" width:135px"/col width="163" style=" width:163px"/col width="152" style=" width:152px"/col width="126" style=" width:127px"//colgrouptbodytr height="21" style="height:21px max-width: 100% box-sizing: border-box word-wrap: break-word !important" powered-by="xiumi.us" class="firstRow"td height="21" width="135" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "日期/tdtd width="163" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "时间/tdtd width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "培训内容/tdtd width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "培训内容/td/trtr height="20" style=" height:20px max-width: 100% box-sizing: border-box word-wrap: break-word !important" powered-by="xiumi.us"td rowspan="9" height="307" width="135" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "11span style=""月/spanspan style=""30/spanspan style=""日/span span style=""上午/span/tdtd rowspan="2" width="163" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "8:00-8:10/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "开幕致辞/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "秦川 教授/td/trtr height="18" style="height:18px"/trtr height="40" style="height:40px"td rowspan="4" height="118" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "8:10-10:00/tdtd width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "神经专委会成立仪式/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "全体/td/trtr height="21" style="height:21px"td height="21" width="152" style="border: 1px solid rgb(0, 0, 0) padding: 5px "选票统计期间讲座/td/trtr height="39" style=" height:39px"td rowspan="2" height="57" width="152" style="border: 1px solid rgb(0, 0, 0) padding: 5px "周围神经损伤与修复/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "吴武田 教授/td/trtr height="18" style=" height:18px"/trtr height="21" style="height:21px"td height="21" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "10:00-10:30/tdtd colspan="2" width="279" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "茶歇、合影/td/trtr height="112" style=" height:112px"td rowspan="2" height="130" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "10:30-12:00/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style="max-width: 100% box-sizing: border-box word-wrap: break-word !important"在体基因编辑与非人灵长类自闭症模型构建/span/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "仇子龙 教授/td/trtr height="18" style="height:18px"/trtr height="199" style=" height:199px max-width: 100% box-sizing: border-box word-wrap: break-word !important" powered-by="xiumi.us"td rowspan="5" height="396" width="135" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "11span style=""月/spanspan style=""30/spanspan style=""日/span span style=""下午/span/tdtd rowspan="2" width="163" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "13:30-15:20/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "趋化因子及其受体在阿尔兹海默病和多发性硬化症中的作用与机理研究/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style=""范国煌/span span style=""教授/span/td/trtr height="18" style="height:18px"/trtr height="21" style="height:21px"td height="21" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "15:20-15:40/tdtd colspan="2" width="279" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "茶歇/td/trtr height="140" style=" height:140px"td rowspan="2" height="158" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "15:40-17:30/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "利用工具病毒载体进行动物神经环路示踪和功能解析/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style="max-width: 100% box-sizing: border-box !important word-wrap: break-word !important"span style=""王耀/span span style=""博士/span/span/td/trtr height="18" style="height:18px"/trtr height="79" style=" height:79px max-width: 100% box-sizing: border-box word-wrap: break-word !important" powered-by="xiumi.us"td rowspan="5" height="215" width="135" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "12span style=""月/spanspan style=""1/spanspan style=""日上午/span/tdtd rowspan="2" width="163" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "8:00-10:00/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "氧化代谢紊乱与阿尔茨海默病/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style=""柯尊记/span span style=""教授/span/td/trtr height="18" style="height:18px"/trtr height="21" style="height:21px"td height="21" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "10:00-10:20/tdtd colspan="2" width="279" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "茶歇/td/trtr height="79" style=" height:79px"td rowspan="2" height="97" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "10:20-12:00/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "小鼠DRG和脊髓注射技术的进展/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style=""张志军/span span style=""教授/span/td/trtr height="18" style="height:18px"/trtr height="119" style=" height:119px max-width: 100% box-sizing: border-box word-wrap: break-word !important" powered-by="xiumi.us"td rowspan="4" height="294" width="135" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "12span style=""月/spanspan style=""1/spanspan style=""日下午/span/tdtd rowspan="2" width="163" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "13:30-15:20/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "动物脑卒中模型干细胞植入技术及生物效应研究/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style=""汤耀辉/span span style=""教授/span/td/trtr height="18" style="height:18px"/trtr height="139" style=" height:139px"td rowspan="2" height="157" width="163" style="border: 1px solid rgb(0, 0, 0) padding: 5px "15:20-17:00/tdtd rowspan="2" width="152" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "靶向离子通道的抗癫痫新药研发及药物安全性评价/tdtd rowspan="2" width="127" style="max-width: 100% box-sizing: border-box border-radius: 0px border: 1px solid rgb(0, 0, 0) padding: 5px word-wrap: break-word !important "span style=""高召兵/span span style=""教授/span/td/trtr/tr/tbody/tablepbr/  strongspan style="color: rgb(0, 112, 192) "四、培训费用/span/strong/pp  本次培训费用2200元/人,中国实验动物学会会员2000元/人。/pp  本次培训开具增值税普通发票,开票项目为“培训费”。/ppbr//pp  strongspan style="color: rgb(0, 112, 192) "五、缴费方式/span/strong/pp  (见附件1)/pp  /pp strongspan style="color: rgb(0, 112, 192) " 六、住宿安排/span/strong/pp  格林豪泰快捷酒店(华夏西路地铁站店)(上海市浦东新区联明路500号),协议价186元/间(单间/标间),食宿自理,2019年11月22日前报名,可由组委会协助预定酒店。/pp  /pp  strongspan style="color: rgb(0, 112, 192) "七、报名及联系方式/span/strong/pp  请您于2019年11月22日前,将填好的报名表(见附件2)按照“姓名-单位名称-缴费方式”命名发送至邮箱mingxia_yan@126.com/pp  联系人:闫明霞 13501997658/pp  郑旭 17612119729/pp  /pp strongspan style="color: rgb(0, 112, 192) " 八、会员入会流程/span/strong/pp  请登录“中国实验动物学会”官网,点击右上角“会员中心”,进行个人信息填写,确认后进入信息审核阶段。通过审核并缴纳会员会费后,即可注册成为个人会员。(普通会员50元/年 一次交纳800元可成为终身会员。)/pp  /pp  strongspan style="color: rgb(0, 112, 192) "九、乘车路线/span/strong/pp  路线(上海地铁6号线→格林豪泰快捷酒店):乘坐地铁6号线,到华夏西路地铁站下车,出1口,右转至云台路----右转步行200米,右转至联明路,步行400米即到格林豪泰快捷酒店(华夏西路地铁站店,联明路500号)---左转步行200米,上海市东方医院(云台路1800号)/ppbr//pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "附件下载/span/strong:/pp  /pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201911/attachment/8de0e6d5-acea-4968-8171-286190b81e2f.pdf" title="2019-第四届动物实验技术讲习班(神经专场)缴费方式.pdf"2019-第四届动物实验技术讲习班(神经专场)缴费方式.pdf/a/pp  /pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201911/attachment/8de49590-bc88-4762-b1a4-28b14f2837ad.xls" title="报名信息表.xls"报名信息表.xls/a/pp  /pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/201911/attachment/4d8bda85-956c-40d6-ac9d-c0052c3775aa.pdf" title="通知原文件.pdf"通知原文件.pdf/a/p
  • BCEIA 新品奖,原位电离助力前沿质谱分析!
    在 BCEIA 盛会上,华质泰科以“原位检测”为主题,携 7 款产品亮相,并有 5 款产品获得“BCEIA2017 新品奖”。先来感受下展会盛况:展出产品现场交流BCEIA 分析测试仪器与 技术评议注重应用开发,搭建原位检测应用平台“我们引进国外先进的质谱技术,通过和国内不同市场的整合,刺激客户的需求。在与客户的不断交流中发现新的问题,从而开发具有中国特色的新部件和下一代产品,迎合一带一路的策略,走向全球各地。”—— 华质泰科总裁兼首席技术官刘博士“我们不只是担任仪器的销售代理,更希望能够从仪器的技术应用到生产制造,都发挥特殊的价值和作用。国家的发展带来了对分析仪器、分析技术的强烈需求,因此我认为新应用平台的搭建大有可为。”—— 华质泰科运营总监汤总前沿原位质谱部件,荣获五项“BCEIA2017 新产品奖”在 BCEIA 的颁奖晚会上,华质泰科有五款产品喜获“BCEIA2017 新产品奖”。这是华质泰科第二次荣获中国分析仪器行业新品奖,原位电离质谱技术能够再次得到专家和同行的肯定,令产品厂商及相关研究人员备受鼓舞。传播前沿质谱理念,共谋实时科学发展,是华质泰科一直坚持不懈的追求。我们致力于引领行业领域中先进的原位质谱技术潮流,为国内质谱行业的发展做出贡献。相关产品信息:HM4 或 Pearl 为第四代“超”高分子量 MALDI 质谱检测系统,基于独特的转换打拿极技术,扩展 MALDI 质谱检测质量上限到 250 万 Da 以上,实现 nM 浓度的超痕量、大分子抗体药物和蛋白质复合物的高灵敏度分析。在诸如蛋白质复合物测定、蛋白质相互作用、抗原抗体相互作用、蛋白质聚集分析、高分子量 MALDI 质谱成像、临床转化医学、生物制药,等领域的应用卓有成效。实时直接分析离子源(DART),兼容各主流质谱厂家的液质(LC-MS)质谱仪,用于快速、无损、原位分析固体、液体、气体、及异型样品中的极性、弱极性甚至非极性有机分子。适于食品、材料、体液、商品、农副产品、水产品、药品、理化、物证、化纤、玩具、临床、环境等等活性成分、功能组分或有毒有害化合物的快速定性、定量分析及快筛和确认。该技术不需要(像 ESI 那样)引入其他溶剂来影响离子的形成过程,真正实现直接、快速或无损、无接触分析。由于溶剂、基质(如蛋白质)、盐类对 DART 离子化过程不产生抑制效应,因而该技术对样品基质不需要进行特殊的前处理。DART 能充分实现几秒钟内的快速、高通量的样品分析,大大提高大批量样品的瞬时定量和定性分析能力。如某地商检用 6545 飞行时间质谱接 DART 源快速筛查并定量鸡蛋中氟虫腈,每个样本检测时间 6 秒(内)。而常规分析接色谱柱至少要 5 分钟才能完成每次检测,该(DART-QTOF)方法极大地提高了效率,真正意义上实现高通量。DESI (解析电喷雾电离) 为常压离子化技术,可直接原位分析固相或凝固相样品,用于药物代谢物分布、肽、脂质、和蛋白质分析,实现分子成像而不需(像 MALDI 那样)采用基质,保持样品的形态和特征无损,快捷获取器官、材料、和组织切片中的关键物质信息及分布信息。其独特的高分辨率成像功能可实现器官组织等基体中关键物质的快速分析,并能在多个质谱厂家(如 Bruker、SCIEX、Thermo、Agilent 和 Waters)的各型质谱仪上使用。flowprobe 流动微萃取探针离子源, 是一种实时的原位动态微萃取技术,是美国橡树岭国家实验室的 Gary Van Berkel 博士发明了静态液滴萃取表面分析(LESA)之后的又一创新发明。该技术基于液相微临界表面取样探针 (LMJ-SSP) 原理,其萃取效率在商品化的原位电离技术中首屈一指,适用于细胞、组织、聚合物等平面类样品的药物分布研究、癌症分析、微生物聚类分析等方面,并与主流质谱兼容(如 Thermo、Bruker 和 SCIEX 等)。多通道纳喷离子源 (TriVersa NanoMate,简称 TVNM) ,是基于芯片的多通道纳升电喷雾离子化 (Chip-based nanoESI) 技术,集液相色谱 (LC)、质谱 (MS)、芯片纳升注射 (Chip-based Infusion)、馏分收集 (Fraction Collection) 和液滴萃取表面分析 (LESA) 等众多优异功能于一身的新型高端质谱产品。LESA 能够实现极小量样品的多次重复测量,准确度高,重复性好,实现生物样品如组织切片、食品、材料表面等的原位、灵敏、直接、和高通量分析,可帮助解决围绕食品中的蛋白质、脂质、抗体、代谢物、药物残留、小分子质谱成像、药物在组织中的分布等生命科学中的问题。LESAPlus 添加了第五种功能 -- 用于液滴萃取表面分析后的进一步分离,对复杂体系、抗体分析、蛋白分析等等添加了新的第四维度的分离。AP-MALDI (常压基质辅助激光解析电离源)基于独特的脉冲动态聚焦技术,采用高效的固态 Nd:YAG 激光器,离子化更加连续稳定。调谐优化简便,可质谱成像,最高成像分辨率达10 μm。与各种质谱分析器相联,适于多肽、蛋白质、核酸、唾液酸神经节苷酯、低聚木糖、表面活性剂、聚合物等大分子以及氨基酸、寡肽、中性寡糖、植物皂苷等小分子化合物的原位、直接分析。
  • 科研攻坚不停歇!华东师大袁小兵/潘逸萱课题组揭示先天恐高反应神经机制
    沃的研究所这是一档关注“生命科学行业变化”的专题栏目。我们将从合作伙伴入手,每一期研究和解读一家科研机构或科研课题组、实验室的背后故事、相关方法论、使用的工具等等,帮助科研从业者获得启发和思考。本期【沃的研究所】对话主人公:尚蔚,博士研究生,华东师范大学生命科学学院袁小兵/潘逸萱课题组重要成员,本篇论文第一作者。恐高,其实跟我们每个人都息息相关。恐高反应会发生在每一个人身上,而恐高症患者会表现出对高度的非理性恐惧,即使暴露在很低的高处或者仅联想到高处时都会表现出对高度的非理性恐惧,这可能会对日常工作及生活带来一定的影响。那恐高反应究竟是如何产生的?科学界是如何解释这一现象?又该如何克服呢?2024年5月3日,华东师范大学生命科学学院袁小兵/潘逸萱团队在国际权威学术期刊Nature Communications 发表题为 A non-image-forming visual circuit mediates the innate fear of heights in male mice 的研究论文,他们对先天恐高反应开展研究,意外发现小鼠大脑中的非成像视觉系统诱发了恐高反应。 本期【沃的研究所】,我们将对话文章的第一作者尚蔚博士,一起深入了解小鼠先天恐高反应背后的神经机制。 逐层攻破技术瓶颈为探索恐高神经机理寻找靶点 尚蔚博士所在的课题组选择了广泛存在的生理视觉高度失衡的恐高来开展,他们首先建立行为学范式,细致观察小鼠在高台上的表现。曾有心理物理学家提出过这样一个假说,认为当人在高处时,随着人体与最近的静止物体之间的距离不断地增加,此时视觉提供的平衡信息会与前庭和躯体感觉系统提供的信息发生冲突,个体就容易出现晕眩的感觉,同时此时身体摆动幅度的增大,个体也会更容易感受到坠落,而这种对坠落的害怕会诱发个体的恐高情绪。根据心理物理学家的假说,尚博所在的课题组对视觉前庭和躯体感觉系统的作用进行了探究,发现视觉在恐高反应中发挥了主导作用。小鼠在高台上会出现类似于人类的恐高反应 课题组又参考了与视觉相关的先天恐惧行为学范式,通过视觉刺激(Looming Visual Stimuli )来寻找可能参与调控恐高的核团。最后通过光纤记录和化学遗传等手段来调控目标核团和神经环路连接,观察小鼠在行为学实验中的表现是否会有所不同,进一步发现小鼠大脑中存在两条神经环路,在调控先天恐高反应中发挥相反的作用。这项研究成果的发表有利于帮助人们理解人类的恐高现象,并为后续恐高反应的神经机制研究提供了思路,也为后续药物开发提供了一些帮助。但由于目前神经科学领域对“恐高”的研究还十分有限,已有的研究主要集中在流行病学调查和影像学方面。尚博介绍道:“刚开始的时候我们完全不知道到底要怎么来研究恐高,以及如何建立一个比较可靠的行为学范式,而且提出评估恐高程度的指标也是经历了不断的修改,基本一切都是未知的;另一方面,我们组确实不是做行为和神经环路机制的,所以对技术和思路也不熟,包括研究过程中有一部分是需要去做前庭系统,我对前庭系统非常陌生。”为了观察小鼠的恐高表现,他们需要多次制作高台,尚博笑着说:“那段时间我们不是在买亚克力,就是在买亚克力的路上,淘宝的订单截图可以拉很长。”为了了解前庭系统,尚博甚至鼓起勇气联系了交大六院耳鼻喉科的师兄,后又经过导师的介绍,到上海交大交流学习了一段时间,才慢慢克服了这些技术难题。“在我看来,合作真的是非常重要,这项研究也是大家共同努力的结果!”尚博说。截至目前,这项研究还在继续。 无心插柳,顺应偶然性机遇蕴含在变化之中 谈及当时是怎么想到要研究这个课题,尚博笑言:“这还真的挺有趣的,确实是无心插柳柳成荫的故事。”说起来,尚博所在的课题组主要的研究方向其实是孤独症谱系障碍以及神经发育。尚博最开始加入团队的时候,主要对孤独症谱系障碍风险基因的神经机制展开研究。可是当时的课题进展并不顺利,实验结果也不稳定。但也正是在这一次次的挫败中,课题组偶然间发现,实验小鼠在旷场实验中的自发运动量和焦虑水平都没什么变化,在高架O迷宫中却表现得特别焦虑,对高度的刺激非常敏感。他们又开始查阅文献、探究基因突变小鼠异常恐高的原因……“确实没想到当初那个课题能发展到现在这样。”尚博说。一次偶然,课题组开始了对恐高症的研究;又一次机缘巧合,课题组开始了与瑞沃德的合作。“其实在第一轮投稿的时候,我们已经通过化学遗传的方法发现了腹侧外侧膝状核(vLGN),特别是其中的抑制性 GABA 能神经元,还有 vLGN 到下游中央导水管周围灰质(Periaqueductal gray, PAG)参与调控恐高。但因为化学遗传没能实时观察到神经元对高度刺激的响应,所以审稿人明确提出希望我们可以补充光纤记录的实验。”说来也巧,刚好在补实验阶段,实验室就有一台瑞沃德的光纤记录系统。尚博所在实验室里的瑞沃德光纤记录系统 “我们用瑞沃德光纤记录系统做了对照实验,发现确实取得了很好的结果。而且我们原来第一轮投出的内容,它使用到的技术其实比较单一,在后面补实验增加了光纤记录这样在神经环路领域比较常用的技术,得到了导师的认可,这也对于我们这一项成果的发表有很大的帮助。”尚博在交谈中也对瑞沃德光纤记录系统表达了认可:“瑞沃德的光纤系统操作简单,使用方法也比较容易学习,分析软件也十分方便,可以快速给出想要的图,同时还可以计算线下面积、叠加不同个体的数据,对我们的实验有很大的帮助。”“在我看来瑞沃德是国内做得很好的品牌了,我也很开心看到国产的仪器近年来做得越来越好了,大家就有更多的选择。”该研究使用光纤记录检测了腹侧外侧膝状核(vLGN)脑区GABA能神经元和外侧/腹外侧导水管周围灰质(l/vlPAG)脑区谷氨酸能神经元的钙信号变化 “其实我们还挺幸运的,文章只返修了一轮。”尚博感慨道。采访过程中,尚博不止一次说起:“我认为自己一直都是一个比较幸运的人。”在尚博的自述中,她说到,高考、考研都比较顺利,父母愿意支持自己的选择,师兄会手把手带着她做实验、交流科研思路,师妹们会鼎力支持课题的进展,导师们也会在大家做实验情绪爆炸的时候给予足够的鼓励……“所以我真的觉得自己是很幸运的人。”尚博课题组合照(从左到右依次为尚蔚、袁小兵教授、谢双翼、潘逸萱副研究员、冯文博) 发现了吗?伟大的成就,其实并没有所谓的可复制的成功脚本,它们往往没有经过周密的计划便诞生。不管是做实验,还是生活,我们不时地顺应偶然性,也不见得是坏事。就像尚博所说的:“意外真的常有发生,一切都在你的计划之内,是非常小概率的事件,所以你要时刻地根据实际情况来灵活调整自己的方案或者计划,多一些Plan B。”不管是“无心插柳”,还是“有心栽树”,幸运会不断出现在你努力的路上!我们也祝福尚蔚博士及团队在自己热爱的领域里勤耕不辍! 如果您想了解尚蔚博士课题组同款瑞沃德多通道光纤记录系统长按识别下方二维码进行预约我们将会有专业人员与您联系▽
  • 借助双光子显微成像技术 北京大学陈良怡团队合作揭示小鼠社交行为神经编码机制
    陈良怡团队合作揭示小鼠偏好“喜新厌旧”的神经元集合和孤独症小鼠的缺陷社交行为是个人和人类社会生存和发展的基础。有关大脑通过何种方式编码社交行为信息这一科学问题,目前尚无确切答案。此外,孤独症、抑郁症、精神分裂症、社交恐惧症或创伤后应激障碍(PTSD)等患者,均存在显著社交识别或互动障碍,给家庭、社会和国家带来诸多问题和负担,当前仍缺乏行之有效的干预手段或治疗方法,原因之一在于对大脑处理和编码社交行为信息的神经机制知之甚少。既往研究表明,大脑内侧前额叶皮层(mPFC)在社交探索、社交恐惧和社会竞争等方面均发挥重要调控功能[1-4]。当小鼠进行社交探索行为时,mPFC脑区前边缘皮质(PrL)内部分兴奋性锥体神经元活动会显著增强[5, 6],mPFC神经元集群在处理不同社交对象信息时,其活动表现出较强的异质性[7, 8],而且mPFC脑区内抑制性GABA能中间神经元也同社交行为密切相关[1, 4, 9],然而,由于缺乏在体单细胞分辨率水平、实时动态可视化的神经编码研究方法,这些不同亚型神经元集群是如何编码特定社交对象信息的尚不明了。北京大学未来技术学院分子医学研究所、IDG麦戈文脑科学研究所、北大-清华生命科学联合中心、生物膜国家重点实验室陈良怡实验室,联合军事医学研究院吴海涛实验室以及北京大学工学院张珏实验室,在Science Advances杂志发表了题为“Encoding of social novelty by sparse GABAergic neural ensembles in the prelimbic cortex”的研究论文,解析了孤独症小鼠“喜新不厌旧”社交缺陷下的神经编码机制。在陈良怡实验室和程和平院士团队联合开发两代高时空分辨率的微型化双光子显微成像系统基础上[10, 11],通过建立改进型小鼠两箱社交行为学研究范式,利用MeCP2转基因孤独症小鼠模型和细胞亚型特异性Cre小鼠,借助微型化双光子显微镜钙成像技术,结合基于Tet-off系统的细胞特异性化学遗传学操控技术、CRISPR-Cas9介导的基因编辑和功能挽救等前沿技术,系统探讨了正常和孤独症小鼠模型不同社交行为过程中,PrL脑区内不同亚型神经元集群编码特定社交信息的模式差异。首先,借助微型化双光子钙成像技术,研究人员发现在小鼠自由社交活动过程中,PrL脑区内抑制性中间神经元较之于兴奋性锥体神经元具有更强的相关性。数学分析揭示其中存在稀疏分布的“社交特异”神经元,与之前研究的“社交相关”神经元不同,它们特异性地参与了同“陌生”或“熟悉”老鼠的社交行为。通过化学遗传学技术,特异性抑制社交行为过程中被激活的这些抑制性中间神经元亚群,能够显著破坏小鼠社交偏好及社交新颖性行为。提示PrL脑区内这群稀疏分布的中间神经元集群在调控小鼠社交偏好性以及“喜新厌旧”行为模式中,扮演着极为关键的角色。进一步,研究人员在进行小鼠两箱社交行为学观察时发现,MeCP2转基因孤独症小鼠社交偏好性并无显著缺陷,但会丧失典型的“喜新厌旧”样社交新颖性行为。利用CRISPR-Cas9基因编辑技术,在MeCP2转基因孤独症小鼠PrL脑区中间神经元内特异性剔除外源性MeCP2转基因后,可显著挽救孤独症小鼠“喜新厌旧”样社交缺陷表型。表明PrL脑区抑制性中间神经元内过表达MeCP2转基因可能是诱发孤独症小鼠产生社交新颖性行为缺陷的罪魁祸首。最后,通过系统分析野生型和MeCP2转基因孤独症小鼠模型PrL皮层内编码“陌生”和“熟悉”社交对象信息、且稀疏分布的抑制性中间神经元钙信号动力学特征,研究人员发现,当野生型小鼠分别与“陌生”或“熟悉“小鼠发生社交时,其PrL皮层中编码相关社交对象特异性神经元的发放概率、钙信号变化幅度以及达峰时间均存在显著差别。这两群细胞通过“跷跷板”式的协同增强效应,帮助小鼠确定面对不同类型对象采取不同的社交策略。而孤独症小鼠PrL脑区内相关神经元集群均明显异常,总体表现为“陌生”或“熟悉”社交对象引起社交特异神经元间反应差异消失,从而无法区分“陌生”和“熟悉”不同社交对象之间的差别,最终导致社交新颖性行为缺陷。综上,该研究工作发现在小鼠前额叶皮层内存在一群稀疏分布的中间神经元集群,分别负责编码社交行为中的“熟悉”和“陌生”社交对象信息,这些稀疏分布的神经集群在调控小鼠社交行为,尤其是社交新颖性行为中发挥着重要作用,揭示了个体在面对不同类型对象进行社交行为时的神经编码机制。该研究为深入理解孤独症等神经精神疾病患者社交行为缺陷的神经机制,探索精准靶向诊疗新策略提供了新的证据和线索。PI简历陈良怡北京大学未来技术学院学院教授北大-清华生命科学联合中心PI邮箱:lychen@pku.edu.cn实验室主页:http://www.cls.edu.cn/PrincipalInvestigator/pi/index5489.shtml研究领域:我们发展自驱动的活细胞智能超分辨率成像技术,并应用这些技术来研究生物医学重要问题。目前一方面的工作主要集中在引入物理光学中新成像原理、数学和信息学科中的图像重建新方法等,致力于发展可以在活细胞中实现两种以上模态光学信号探测的三维超分辨率成像的通用工具,实现同一活细胞样本上长时间、超分辨率、三维成像特定生物分子(荧光)和主要细胞器(无标记)。建立基于深度学习等手段Petabyte级的图像数据的高速处理以及分割手段,自动化、定量化描述活细胞内不同蛋白等分子以及细胞器的形状、位置以及相互作用等参数,找到新的细胞器并定义它们生化特性,最终目标是建立单细胞细胞器互作组学以及活细胞超分辨率病理学的概念,利用成像来揭示细胞内的异质性动态变化以及如代谢类疾病的发生发展机制。另一方面,我们也应用发展的高时空分辨率生物医学成像的可视化手段,系统研究血糖调控紊乱激素分泌在活体组织、细胞水平以及分子代谢水平的关系。参考文献:1.Xu, H., et al., A Disinhibitory Microcircuit Mediates Conditioned Social Fear in the Prefrontal Cortex. Neuron, 2019. 102(3): p. 668-682 e5.2.Kingsbury, L., et al., Cortical Representations of Conspecific Sex Shape Social Behavior. Neuron, 2020.3.Báez-Mendoza, R., et al., Social agent identity cells in the prefrontal cortex of interacting groups of primates. Science, 2021. 374(6566): p. eabb4149.4.Zhang, C., et al., Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition. Neuron, 2021.5.Murugan, M., et al., Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell, 2017. 171(7): p. 1663-1677 e16.6.Liang, B., et al., Distinct and Dynamic ON and OFF Neural Ensembles in the Prefrontal Cortex Code Social Exploration. Neuron, 2018. 100(3): p. 700-714 e9.7.Pinto, L. and Y. Dan, Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron, 2015. 87(2): p. 437-50.8.Rigotti, M., et al., The importance of mixed selectivity in complex cognitive tasks. Nature, 2013. 497(7451): p. 585-90.9.Cao, W., et al., Gamma Oscillation Dysfunction in mPFC Leads to Social Deficits in Neuroligin 3 R451C Knockin Mice. Neuron, 2018. 97(6): p. 1253-1260.e7.10.Zong, W., et al., Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods, 2021. 18(1): p. 46-49.11.Zong, W., et al., Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods, 2017. 14(7): p. 713-719.
  • 【Science】单细胞蛋白分析技术揭示肠脑神经回路新机制
    为什么我们会感觉到饥饿?为什么进食之后会出现饱腹感?我们能感知到大脑与肠道的紧密联系,以往的研究认为这种感知与触觉、视觉、声音、气味和味觉通过受神经支配的上皮传感器细胞传递到大脑不同,肠道刺激的感知被认为涉及消化系统和中枢神经系统之间信号传递的肠道-大脑连接(gut-brain connection)是以激素转运为基础的,这种基于激素的信号传递大约需要10分钟。在肠道中,有一层上皮细胞将腔与下面的组织分开。分散在该层内的是称为肠内分泌细胞的可电兴奋细胞,它们感知摄入的营养物质和微生物代谢物。与味觉或嗅觉受体细胞一样,肠内分泌细胞在存在刺激时会激发动作电位。然而,与其他感觉上皮细胞不同,肠内分泌细胞和脑神经之间没有突触联系的描述。人们认为这些细胞仅通过激素(如胆囊收缩素)的缓慢内分泌作用间接作用于神经。尽管它在饱腹感中起作用,但胆囊收缩素的循环浓度仅在摄入食物后几分钟达到峰值,并且通常在用餐结束后。这种差异表明大脑通过更快的神经元信号感知肠道感觉线索。来自美国杜克大学医学院的科学家们,利用Milo,揭示迷走神经(vagus nerve)可直接连接着肠道与中枢神经系统。相关研究结果发表在Science期刊上,标题为“A gut-brain neural circuit for nutrient sensory transduction”。Milo单细胞Western Blot 验证肠分泌细胞存在神经突触相关蛋白本文使用与小肠类器官或纯化的肠内分泌细胞共培养的结节神经元,在体外重现了神经回路。并结合单细胞定量实时聚合酶链反应和单细胞Western Blot(Milo)共同对突触蛋白进行检测和评估。利用Milo在蛋白水平进行了进一步的验证:单细胞蛋白质印记结果显示83%肠内分泌细胞含有synapsin-1(分析的198 CckGFP细胞中的164个),与其他肠上皮细胞相比,纯化的CCK-肠内分泌细胞表达突触粘附基因Efnb2、Lrrtm2、Lrrc4 和 Nrxn2,表明这些上皮传感器具有形成突触的机制。为了确定与肠内分泌细胞接触的突触的神经元的来源,本文使用了一种改良后的狂犬病毒(DG-rabies-GFP,能感染神经元,但缺少跨突触传播所需的G糖蛋白),发现在肠道类器官中,狂犬病比其他上皮细胞更喜欢感染肠内分泌细胞。并且肠内分泌细胞与迷走神经元突触,通过使用谷氨酸作为神经递质,在几毫秒内转导肠腔信号。这些突触连接的肠内分泌细胞(神经足细胞)形成的神经上皮回路通过一个突触将肠腔与脑干连接起来,为大脑打开一条物理管道,以突触的时间精度和空间分辨率感知肠道刺激。也正是这些突触信号神经足细胞告诉大脑肠道中发生的事情,对我们吃的食物做出一定的反馈。
  • 遗传发育所揭示成体神经干细胞促进其子代新生神经元发育的调控机制
    p  1978年,Schofield首次提出干细胞的微环境定义,并发现局部微环境对造血干细胞干性的维持是必要的。从此,越来越多的研究定义了各种组织的干细胞微环境。然而,干细胞本身是否能作为微环境因素进而影响其子代细胞的发育尚未完全被揭示。在成体神经发生微环境中,成体神经干/前体细胞能够终生产生功能性神经元,参与学习记忆等。成体神经发生过程中,新生神经元能够释放反馈抑制信号来调控神经干细胞的增殖分化以及命运决定。然而,神经干细胞是否能够调控新生神经元的发育尚不清楚。/pp  中国科学院遗传与发育生物学研究所郭伟翔研究组,通过细胞清除,反转录病毒介导的单细胞标记以及信号通路调节等实验手段,发现神经干细胞可以持续提供Pleiotrophin (PTN) 配体促进其子代新生神经元发育。若没有此前馈作用,新生神经元树突会发育异常。进一步研究发现,PTN主要通过作用新生神经元上的ALK受体,从而激活AKT信号通路来促进海马新生神经元的发育。/pp  随着年龄的衰老,神经干细胞的数量逐渐减少,并且新生神经元也随之呈现出发育的异常。更为重要的是,该研究发现PTN的表达水平以及其介导的AKT信号通路的活性都随着年龄的增加而下降。然而,通过外援供给PTN或者激活AKT信号能够改善衰老所导致的新生神经元发育的缺陷。这一结果提示在成体神经发生微环境中,缺乏神经干细胞源性PTN因子可能是导致认知能力随着衰老的增长而衰退的原因之一。/pp  该成果于11月27日在线发表于神经科学期刊Neuron上。郭伟翔组博士研究生汤常永为该论文第一作者,郭伟翔为通讯作者。该研究得到遗传发育所研究员吴青峰在生物信息学分析以及实验设计上的帮助,军事医学科学院崔亚雄在脑组织切片染色上给予了很大帮助。该研究得到中科院先导、国家自然科学基金委和中组部青年千人计划的资助。/pp原文链接:/ppa title="https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" href="https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub" target="_blank"https://www.sciencedirect.com/science/article/pii/S0896627318309590?via%3Dihub/a/pp style="text-align: center "img title="W020181127437669067284.jpg" alt="W020181127437669067284.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/3fff90be-98cf-4b57-8cc3-b274f31e0e42.jpg"//pp style="text-align: center "  神经干细胞分泌PTN促进其子代新生神经元发育/pp /p
  • 技术漫谈|超高分辨率显微成像技术在神经科学中的应用(二)
    荧光显微成像技术对人们理解神经科学起了非常关键的作用。而最近一些年出现的各种超分辨显微成像技术和专门的荧光探针能够以超过以往普通光学显微镜的分辨率直接观察神经元亚细胞结构和蛋白质排列。并以直观可视方式揭示了神经细胞骨架组成、分布、运动和膜蛋白信号传导、突触下结构和功能,以及神经元−胶质细胞相互作用。同时超高分辨显微成像技术(Super Resolution,SR,下文中出现SR均指超高分辨率显微成像技术)对于许多自身免疫和神经退行性疾病模型中的分子靶点研究也提供了全新的强大工具。今年春,Werner等科学家在美国化学学会会刊(ACS)上最新发表了一篇综述,比较详实系统介绍了超高分辨率显微技术在神经科学上的最新应用进展。我们在此文基础上进行了编译整理。因文章较长,我们将分三期陆续介绍。本期接着上期的第一部分超高分辨率显微技术在神经科学中的应用(一) ,为第二部分内容。4.荧光标记与样品制备4.1. 荧光标记神经元和脑片的超分辨率成像是用适当的荧光团标记感兴趣的生物分子,理想情况下是以定量和化学计量的方式。虽然SIM和其他超分辨方法的成像质量取决于信号背景(S/B)比,但SIM对荧光团没有特殊要求。另一方面,STED显微镜可达到的分辨率在很大程度上取决于所用荧光团的光稳定性。RESOLFT显微镜使用可逆光开关FPs,具有两个稳定状态,因此可以使用较低的激光照射强度。所有SMLM方法的定位精度取决于每个事件检测到的光子数。dSTORM需要光开关有机荧光团,包括菁、罗丹明和恶嗪染;而PALM则需要使用光开关、光转换和光激活FPs。与此相反,DNA-PAINT理论上适用于所有荧光团,因为开/关速率由对接链和成像链序列和缓冲条件决定,而其中 Cy3B和ATTO 643效果最好。、为了获得一张好的超分辨率图像,除了成像方法以外,样品制备也非常关键。使用荧光探针进行高效和特异的标记,并且使标记误差(荧光团和目标之间的距离)达到最小。为了通过荧光成像进行结构解析,标记密度(即荧光探针之间的距离)必须显著高于所需的分辨率。另一方面,特别是对于接近几乎分子分辨率的超分辨率成像方法,标记误差必须尽可能小,以达到高精度成像。对于活细胞标记而言,在合适的表达载体中融合感兴趣的蛋白质的基因编码FPs无疑成为首选。然而,FPs的亮度较低,与有机染料相比,其图像分辨率较低。理想的标记方法是使用荧光染料标记基因编码的蛋白质、肽标签或单一氨基酸。在模式生物如果蝇或秀丽隐杆线虫的应用得益于基因编码工具,通过转座子、操纵二分体Gal4/UAS表达系统或Crispr/Cas9方法引入或去除突触蛋白和荧光蛋白。由于瞬时转染的细胞表现出不同的蛋白质表达水平,蛋白质的分布和功能不一定反映野生型的情况。图5 通过单体链霉亲和素结合AP标记的突触蛋白成像结果显示Nlg1和LRRTM2的差异分布(dSTORM成像)。上排:Homer 1c GFP作为突触后室的参考。第二排:Nlg1和LRRTM2(dSTORM成像)。左下:频率分布直方图,用于显示相对于Homer 1位置中心的信号分散情况。右下:列出比较两种蛋白质的突触结构域数量的直方图。然而,通过构建优化表达,稳定表达的细胞或CRISPR基因敲入等方法可以产生从内源性到强过表达的蛋白质表达水平。根据不同的转染策略,可以采用不同的方法转染神经元。传统的磷酸钙共沉淀法和脂质体法在大多数实验室都可实施,但这两种技术的转染效率很低。而病毒转染的效率比较高,允许注射到大脑区域,但需要实验者具备病毒生产方面的专业知识,并需要考虑生物安全问题。此外,还必须考虑病毒类型、插入片段大小、毒性和差异表达等因素。要达到高转染效率,可以使用高压脉冲将核酸直接输送到细胞核,进行核转染。然而其缺点是,当这种方法应用于小鼠原代神经元时,会导致细胞存活率较低,并且实验设备昂贵,还需要根据神经元密度和物种对脉冲参数进行多次测试。另外,也可以使用细胞附着式高电阻管,在完整神经元网络(如器官型切片)中进行单细胞电穿孔。利用这种方式,结合CRISPR基因敲入获得了接近内源性的蛋白质表达水平。基于CRISPR基因敲入,在神经元发育的不同时间点通过脂质感染、核感染或病毒转染在神经元中实现。如前所述,FPs光稳定性和荧光光子输出较低,这降低了图像质量。另外,连接大小为2−5nm的FP后,蛋白质功能可能会受到影响。因此,首先必须清楚感兴趣的蛋白质在野生型的功能表现。而有机染料比FPs小得多,有更高的光子产率和光稳定性,但需要与其它能与感兴趣分子结合的分子进行连接耦合。对于固定细胞,使用一抗和二抗进行免疫染色仍然是标记内源性蛋白质的首选方法。缺点是由两个大小17.5 nm左右的IG抗体间接免疫标记有可能导致标记误差。使用直接法免疫荧光或Fab片段可以减少标记误差。另外针对GFP或转基因短肽标签的更小(1.5×2.5 nm)的骆驼“纳米抗体”已应用于dSTORM成像。此外,耦合了链霉亲和素的荧光染料可用于神经元和器官型组织中靶蛋白的特异性标记。使用这种标记方法,研究了神经氨酸酶-1ß、神经肽原-1和富含亮氨酸的重复跨膜蛋白2的动力学和纳米级结构,并揭示了跨突触粘附结构的形成(图5)。另外可以使用生物正交肽或自标记蛋白质标签,例如FlAsH tags, SNAP-tags, and Halo-tags。这些标签蛋白与目标蛋白共表达,并以共价和特异性结合其各自的荧光标记试剂或配体。对于肌动蛋白和微管的标记,可以使用小肽药物,如双环七肽-鬼笔环肽和紫杉烷类药物,如紫杉醇。膜和细胞器的标记可以通过荧光脂质和细胞器的追踪试剂来实现。此外,小肽或配体可以直接用荧光团标记,并特异性结合生物分子,例如,显示抑制性突触后位点的超结合肽。要达到最小的标记误差,可以通过单个非天然氨基酸的特定位点标记实现。通过基因编码导入设计的非天然氨基酸,并用四嗪染料进行生物正交点击化学标记。显然,神经元和组织切片必须根据要成像的结构进行透膜和固定。与所使用的标记方法无关,特别注意所用的试剂必须能保留自然细胞环境中生物分子的超微结构。通过化学试剂固定交联蛋白质,可能会影响结合亲和力,也可能削弱分子间的相互作用。在大多数情况下,多聚甲醛(PFA)和戊二醛已成功用于神经科学的超分辨率成像。此外,还引入了乙二醛等新型固定剂。膜分子应始终使用4%的PFA和0.2%戊二醛固定,以尽量减少残余流动性并避免伪影,例如抗体结合诱导的簇形成。4.2. 神经元的多色遗传标记荧光蛋白彻底改变了神经元的活细胞成像方式,因为荧光蛋白可以与感兴趣的蛋白质融合,并且在假定不影响野生型功能的前提下,用于双色和三色成像。神经系统具有非常高密度的轴突和树突相互作用结构,需要使用更多不同颜色的标记来区分不同的神经元连接。2007年,随着一种名为Brainbow的转基因方案的开发,这一问题得到了解决,该策略能够对神经元进行多色标记。结合单细胞分辨率成像技术,Brainbow技术可以用来创建大脑图谱,详细描述神经元如何形成回路,其连接体以及它们投射到何处。Brainbow利用了三原色,即可见光谱的所有颜色都可以由三种原色的不同混合物生成,即红色、绿色、蓝色(RGB)或转化为荧光蛋白,例如RFP、YFP和CFP。为了实现这一想法,应用了Cre/lox重组系统,该系统可以通过DNA切除、反转或染色体重组启动基因表达,使三个荧光蛋白基因中的一个在转基因中随机表达。转基因盒的多个拷贝的引入导致三个不同拷贝数的基因在每个细胞中组合表达,从而产生几十种颜色,使相邻神经元分化并观察其相互作用。Brainbow技术非常适合绘制不同神经元类型之间的连接模式,追踪轴突,并识别大脑中远距离的神经元连接。此外,已经证明Brainbow表达可以成功地用于研究周围神经损伤后的轴突再生,并检测大脑发育过程中的重要阶段。为了进一步改进Brainbow在包括突触蛋白在内的大脑和连接图谱中的应用,SRM的应用是显而易见的。最近通过结合Brainbow、顺序免疫染色和ExM同时研究同一脑切片上的形态、分子标记和连接,成功地证明了这一点(图6)。将这项技术应用到全脑研究一直是一个挑战,直到最近才成功应用。图6 结合Brainbow和ExM的多轮免疫染色和ExM(miriEx)成像。(A) 实验方案:在Parvalbumin cre/+ 小鼠的脑切片中,Parvalbumin蛋白阳性中间神经元通过Brainbow进行观察,并在下一轮应用4倍ExM成像。使用EYFP信号对Homer1和Gephyrin进行免疫染色来观察突触。(B) Brainbow 信号的免疫染色。(C) 分别通过突触后标记homer1和Gephyrin的免疫染色来区分抑制性和兴奋性突触。插图(D)−(F)和(G)−(I) 显示图像的更多细节图。(J)和(K)神经元的形态重建(使用ImageJ软件插件nTracer),包括其各自传入的特征。虚线框表示(B)和(C)中所示的区域。重建的神经元按顺序编号。标尺(膨胀前的):10μm(B/C)、2.5μm(I)、20μm(J/K)。4.3. 神经科学中的光电联合显微镜电子显微镜(EM)和电子断层扫描具有光学显微镜无法达到的空间分辨率,可以获得细胞和细胞器的超微结构信息。然而,EM和电子断层扫描不能标记特定的分子,因此难以识别未知的细胞结构或具有相似形态特征的结构。用胶体金标记结合抗体可以实现蛋白质的纳米级定位,但抗原的标记效率低下,这意味着胶体金颗粒的数量仅占抗原总数量的1%到20%。而另一方面,荧光显微镜虽然分辨率较低,但可以进行大视场成像和对活细胞中蛋白质进行定位。对固定样本细胞中的各种分子进行高效和特异的分子标记后,结合超分辨率荧光显微镜方法,达到的空间分辨率可以远低于衍射极限。因此,光电联合显微镜(CLEM)作为一种通用的方法,在电子显微镜提供的细胞超微结构背景下,通过超分辨率成像来可视化蛋白质的定位和相互作用。然而,将超分辨率成像与EM结合起来更为困难,因为乍一看,这主要是由于两种方法的样品制备流程不同且不兼容。例如,EM中保存超微结构所需的固定和染色会引入很强的自发荧光。而且荧光蛋白还会在固定和聚合物包埋所需的脱水和氧化条件下淬灭。此外,这两幅图像必须在纳米精度下精确叠加,首先需要使用在荧光成像和EM中都表现出极好的对比度的固定对准标记物,如裸金微球。 另外,样品脱水引起的结构变形会严重破坏两幅图像的正确叠加。所以必须在超微结构和荧光保存之间找到折衷方案。例如,已经证明,对于某些周期性分子结构,如核孔复合体,无需使用对准标记,dSTORM和EM扫描图像可以以20 nm的精度叠加。光电联合显微镜的流程是先对轴突和树突进行荧光实时成像后,再使用透射电镜观察。例如,表达GFP的脑组织在荧光成像后进行化学固定,再使用电子密度标记进行免疫标记,例如EM金。或者采用更成熟的方法,如过氧化物酶或胶体金标记。最后,可以通过光转化在荧光团处局部生成二氨基联苯胺(DAB)聚合物。为了克服标记问题并确保超微结构的保存,已经开发了用于EM (NATIVE)的纳米体辅助组织免疫染色。NATIVE能够高效标记蛋白质,无需苛刻的渗透步骤、特殊树脂、锇替代物或透明化试剂。随着方法的改进和技术的发展,光电联合显微镜已被证明是研究不同种类突触和定位突触蛋白的理想选择。5.超分辨显微镜观察神经元隔室/突触以及神经元−胶质细胞相互作用下面我们将展示通过超高技术获得的有关细胞骨架组成和动力学、突触前室和突触后室对神经传递准确性至关重要的分子组装,以及形成神经元功能的星形细胞结构的调节和构建的最新数据。5.1. 细胞骨架神经元的极化性质以及树突和轴突的长度都需要结构和功能性支架来支持它们的稳定性、适应可塑性和物质运输,这些特性对神经元的存活和信号传递是必不可少的。因此,神经细胞骨架的结构在过去几十年中引起了神经科学家的注意,并在其它文献中进行了详细的回顾。20世纪70年代的电镜研究表明,神经细胞骨架由三种主要类型的神经纤维组成:大小约为20−30 nm的微管,直径为10 nm的神经纤维和5−10 nm大小的肌动蛋白丝。微管是由异二聚体在GTP依赖性组装过程中结合α和β微管蛋白单体组装而成的圆柱体,称为原丝,再由13个这样的原丝形成一个微管单元。轴突的微管成束状组织,并根据其相对于神经元胞体的位置显示不同的方向。它们的极化通过快速增长的正端和缓慢增长的负端体现。STED显微镜揭示了快速生长极依赖钙锚定在肌动蛋白皮质上。使用dSTORM对发育中的神经元进行活细胞成像证明了神经元极性和轴突具有方向一致的、平行的由TRIM46驱动的微管束,而树突微管的特征是混合极性。用Motor-PAINT方法进行纳米跟踪发现稳定和乙酰化的微管显示负端向外的方向,而动态和酪氨酸酶化的微管则显示相反的方向(图7)。例如轴突起始节中微管密集地聚集在束簇中,由于密集的重叠定位,使用SMLM方法具有挑战性。这个问题可以通过两种实验方法来解决:第一,设计更小的标记探针,如微管蛋白纳米抗体,这不需对神经元微管更详细的观察。第二,一种降低群聚密度的超分辨率方法,如ExM,可用于胞体和树突中微管亚群的可视化。神经纤维是在轴突中形成的广泛平行网络的异质聚合物,它为轴突提供稳定性并调节轴突直径和传导速度,其组成包括低、中、高分子量神经纤维、中间蛋白和外周蛋白的三联体。它们的自组装首先形成平行的异二聚体,然后半交错地结合成反平行的四聚体。最后,八个四聚体横向聚集成单位长度的神经纤维,进一步拉长并径向压缩至最终的神经纤维外观。用电镜观察到在神经纤维之间的交界面,形成3−5 nm大小的交叉桥,但对其功能及其与神经纤维的分子相互作用仍不清楚。在这里,ExM与SMLM的结合或DNA-PAINT的应用可能有助于研究密集神经纤维中的这种相互作用。神经纤维动力学已经通过光转换和光活化SRM实验进行了研究,显示了端到端蛋白合成中的退火和切断过程。肌动蛋白最初被认为与一组更集中的短肌动蛋白丝结合在一起,在轴浆中形成斑点状的膜下层。在原代神经元和脑切片中使用phalloidin Alexa Fluor 647进行STORM成像,揭示了轴突肌动蛋白的新的组成原理。这些实验揭示了轴突中存在圆周式肌动蛋白环,每190 nm固定重复间隔绕一圈,并进一步表征了轴突中具有类似尺寸的ßII血影蛋白和钠通道的周期性条带,而树突状腔室内显示出更细长的肌动蛋白组织。此外,通过STORM成像发现,并通过STED显微镜的研究得到证实,这种肌动蛋白组织模式的普遍性也存在于树突中。进一步的报告发现,尽管树突中也存在基于肌动蛋白血影蛋白的周期性膜骨架,树突中这种结构的形成倾向和发育速度低于轴突。此外,本文还显示了肌动蛋白和血影蛋白在胞体和部分树突中的二维多边形晶格结构,类似于红细胞中的膜骨架结构。此外,使用SiR-actin,可通过STED显微镜在活的原代神经元中观察到这种周期性结构。最后,最近的CLEM方法结合铂金复原电镜(PREM)和STORM研究了无顶轴突中的肌动蛋白组织,并提供了轴突编织状肌动蛋白结构与周期性肌动蛋白超微结构相关的证据(图8)。图8。原代神经元无顶轴突(unroofed axons)的CLEM成像(结合铂复型电子显微镜和STORM的光电联合成像)。用铂复型电镜(PREM)(灰色)显示的轴突辫状条带(箭头)被叠加到大鼠原代神经元的超分辨肌动蛋白环(伪彩)上,比例尺=2, 1, 0.2μm(从左到右)。中间:轴突辫状条带间距测量后显示出与周期肌动蛋白间距相似的尺寸。右图:在铂复型电镜(PREM)中记录的神经纤维厚度,未分裂(交织在一起)和分裂(分裂开)的轴突肌动蛋白辫状条带为蓝色,树突中的单个肌动蛋白神经纤维为紫色,微管为灰色参考。采用平均值和标准误显示数据。Copyright 2019 Springer Nature.ßII 血影蛋白基因敲除导致周期性肌动蛋白环结构破坏,同时细胞器的双向轴突运输受损。SMLM结果显示,与轴突相比,轴突起始节中的分子组织其特征是轴突起始节(AIS)蛋白ankyrin-G和ßIV-血影蛋白,这种基于肌动蛋白-血影蛋白的细胞骨架与远端轴突相似。此外,在AIS中存在ßIV-血影蛋白和Ankyrin G,而在远端轴突中存在ßi--血影蛋白和Ankyrin B。SMLM显示与肌动蛋白环相连的纵向头对头ßIV血影蛋白和Ankyrin的二价取向有助于建立紧凑的AIS超微结构,该超微结构甚至对针对肌动蛋白和微管的药物治疗具有抵抗力。进一步显示Ankyrin-G会聚集到亚结构域,增强神经元活性,而成为精神疾病的主要风险基因。随后的SMLM研究还阐明了αII血影蛋白与ßIV血影蛋白共同在AIS提供强健的周期性细胞骨架组织以及防止AIS装配不完全和神经变性的重要性。一份相关报告显示,αII 血影蛋白丰度随有髓鞘轴突直径的增加而增加,表明大直径轴突更容易发生神经退行性病变。在免疫标记II血影蛋白后,将其连接到一种可膨胀的聚合物,并在水中膨胀后,通过ExM研究ßII spectrin沿轴突的周期性模式。这一新方法证实了如前所述的细胞骨架内部的组织原理。不幸的是,在ExM过程中,phalloidin探针在膨胀过程中被冲掉。有两种策略解决这一问题:一方面,携带甲基丙烯酸基团的phalloidin三功能抗体被设计用于与凝胶的有效标记;另一方面,最近的一份报告使用荧光团结合抗体,类似于常规免疫染色,将荧光团靶向phalloidin探针与凝胶连接。在中枢神经系统的几种神经细胞类型和动物物种中,肌动蛋白和附属蛋白的强大超微结构组织也得到了证实。外周神经系统(PNS)中,STED显微镜也显示在梳理的神经纤维样本上有重复的细胞骨架成分。最后,SMLM揭示了肌动蛋白-血影蛋白骨架的一个重要生物学功能:它可以作为一个信号平台,通过组织跨膜信号蛋白,包括G蛋白偶联受体(GPCR)、细胞粘附分子(CAM)和受体酪氨酸激酶(RTK),在神经元中进行信号转导从而实现GPCR-和CAM介导的RTK信号。5.2. 突触前室为了确保有效的神经化学传递,突触前膨大参与突触囊泡循环、神经递质填充以及与突触前膜在活性区(特殊蛋白质密集分布的纳米隔室)的融合,以最终释放神经递质。在这里,我们关注SRM如何扩展我们对突触前功能的理解。早期只能使用EM对化学固定神经元里的小直径突触小泡进行研究,但随着SRM的出现,应用快速STED显微镜,通过免疫标记位于突触前室突触小泡上的钙传感器突触标记蛋白1(SYT1)来观察突触小泡的活动。STED显微镜进一步显示,突触小泡融合后Syt1分子似乎驻留在突触膜上,也支持胞吐后突触小泡蛋白的清除过程。此外,在突触小泡融合过程中,当暴露于细胞外空间时,靶向Synaptobevin 2 pHluorin的荧光团结合纳米体后,亚衍射追踪显示了突触小泡的异质性迁移。一种类似的方法使用vGlut1 pHluorin在原代神经元中的表达来观察单个神经元突触小泡,定位精度为27 nm,并揭示了突触小泡的多个不同释放位点。作为一项方法学的进步,为了对主动循环的小泡成像,设计了一种名为mCLING的亲脂膜探针,该探针可对突触膜进行染色,通过内吞作用和固定,可以进行免疫标记,且和SRM相结合。突触小泡的胞吐过程需要一组属于突触前细胞基质的突触前蛋白质的高度可靠的相互作用,使突触小泡接近和暂时驻留在所谓活动区的膜上,并最终释放突触小泡。黑腹果蝇易于遗传,有助于精确定位果蝇幼虫神经肌肉接头(NMJ)活动区的第一个重要蛋白质。Bruchpilot(Brp)是一种必不可少的活性区成分,是一种大的、卷曲的螺旋蛋白,对于钙通道聚集和突触囊泡定位到突触释放位点至关重要。除了通过Brp研究钙通道聚集外,STED显微镜还证明了该蛋白细长的组织结构,并揭示了与Brp相互作用的蛋白(如syd-1α、liprin和rim结合蛋白(RBP))的定位。定量dSTORM方法研究了果蝇活动区Brp丝的数量,并显示了Brp的结构组织与其功能之间的强相关性。接下来的研究通过dSTORM评估Syt1敲除后的活动区(CAZ)电生理学和细胞基质参数。这项研究表明,在果蝇NMJs 1b型突触膨胀中,Syt1基因的敲除导致更高的Brp计数和簇内Brp图谱的改变。在哺乳动物突触中,突触前支架蛋白bassoon 和 piccolo参与突触囊泡释放的调节。据报道,bassoon蛋白通过与RBP的相互作用来控制CaV2.1型钙通道的定位。此外bassoon蛋白能加速囊泡释放,因为其丢失导致小脑苔藓纤维到颗粒细胞突触中的突触囊泡数量显著减少和突触抑制。STED显微镜显示bassoon 和 piccolo蛋白是一个夹心三明治结构,两侧为piccolo蛋白,bassoon蛋白居中。STORM成像通过距离测量显示bassoon蛋白相对于突触前和突触后室中其他相关突触蛋白质的方向。囊泡胞吐过程由一组可溶性ethylmaleimide敏感因子附着受体(SNARE)蛋白质进一步协调。位于突触膜上的囊泡SNAREs (v-SNAREs) 蛋白和 t-SNARES蛋白的复杂形成导致突触囊泡成功融合。在质膜上的突触体相关蛋白25(SNAP-25)和突触融合蛋白聚集首先通过STED显微镜进行研究。这项研究表明,大约75个突触融合蛋白分子被堆积成50- 60 nm大小的纳米团簇。在之后的研究中,SMLM以更高的精度对SNAP-25和突触融合蛋白的分布进行成像。在这里,描述了Syntaxin簇内的分子密度梯度。dSTORM成像显示,未聚集的分子紧密地定位于聚集区域。最近的一项研究显示了一种以syntaxin或SNAP-25为靶点的纳米抗体。这使密集的突触前区域更好的标记,并显示突触外突触融合蛋白可在增强突触活动后进入突触室。SNARE结合蛋白tomosyn被证明定位于突触融合蛋白簇,据报道,其ß-螺旋结构域的突变是SNAP-25复合物形成的关键。此外,tomosyn与v-SNARE突触结合蛋白竞争,与突触融合蛋白和SNAP-25形成复合物,因此被认为下调了胞吐过程。 相反,rim结合蛋白2(RBP2)可根据所研究的突触类型在调节突触可塑性方面发挥多种作用。SRM显示RBP2通过调节CaV2.1钙通道相对于释放位点的纳米定位来调节释放概率。此外,STED显微镜显示海马脑片中RBP2对锥体CA3-CA1突触的神经传递只有轻微的影响,它通过控制munc-13-1的定位,在苔藓纤维突触中强烈调节囊泡启动和释放概率。图9。与突触释放位点相关的Munc-13-1纳米组装体。上排:应用高钙溶液和钾通道阻滞剂(A1)以及相应的munc-13-1信号(A2)激活突触后eEOS(增强型谷氨酸光学传感器)的荧光反应图像。注意主动释放条件下的紧密空间相关性。比例尺:5μm。第二行:常规显微镜图像(B1)与munc-13-1(B2)的3D STORM成像。比例尺:500nm。(C) 释放位点数量与munc-13-1纳米团数量的相关性。(D) munc-13-1(黄色)和syntaxin-1A(蓝色)的超分辨双色图像。比例尺:2μm。侧面(顶部)和正面(底部)视图。比例尺:200nm。Copyright 2017 Springer Nature.Munc-13是unc-13的哺乳动物直系同源物,是引发突触小泡释放的另一个不可或缺的成分。Munc-13-3被证明能够将钙通道募集到活动区,3D-STORM成像提供了证据,证明Munc-13-1聚集在突触释放位点,并与突触融合蛋白分子相关(图9)。通过活体成像和STED显微镜对果蝇中显示不同突触前钙通道距离的两种munc-13亚型进行研究,发现unc-13亚型由CAST/ELK同源物Brp和RIM结合蛋白定位,导致释放部位相对于钙通道的不同超微结构。在神经元发育过程中改变不同Unc-13亚型的比率,通过改变其与钙通道的纳米结构域耦合,导致神经传递增强。Unc-13 A定位通过突变分析表明C末端部分调控释放位点的产生,而蛋白质的N末端部分参与活性区靶向调节。 在活性区内,钙通道的纳米定位和潜在的动力学对于有效调节神经传递至关重要。钙通道和突触小泡之间的纳米域耦合可以是紧密的,也可以是松散的,并以这种方式决定神经传递的精确性。小脑突触中的免疫金电镜定量显示,强突触的耦合距离约为10nm,但其钙通道数量是弱突触的三倍,弱突触的特征是耦合距离较长且低效。一项结合电生理学的免疫金冷冻断裂EM研究提供了证据,证明释放部位随突触前钙通道数量的增加而增加。为了研究电压门控钙通道的活动性,应用单粒子跟踪PALM(sptPALM)对原代神经元成像。研究表明,集中在突触前部位的60%的通道是可变的。此外,通过应用BAPTA钙缓冲降低了钙通道的扩散。结果表明,突触小泡和钙通道之间的纳米域偶联保证了神经传递的精确度,并可根据需要通过突触前钙通道的扩散进行精细调节。 在融合和递质释放后,内吞机制诱导循环产生新的囊泡,从而重建可释放的囊泡池并为持续的神经传递提供基础。囊泡循环的主要机制由网格蛋白介导的内吞作用组成。使用光遗传学和”闪光冷冻”电镜的研究也报道了比超快的内吞快200倍的过程。如双色iso-STED显微镜所示,通过摄取针对囊泡内膜结合位点的Syt 1抗体,将内吞位点定位到活性区外周。此外,在神经内分泌细胞中,STED显微镜也揭示了囊泡只能部分与突触前膜融合释放递质,形成一个“Ω”形状的结构,而没有完全融入膜中,因此有利于“接触后即脱离”(kiss and run)的模式。与网格蛋白介导的内吞作用相比,它会产生更快囊泡再循环率的递质释放模型。依赖于活性的大量内吞作用进一步增加了可能涉及的机制的复杂性,有人提出,根据突触类型和活动,多种内吞模式可能并行运作。本文由超高显微技术应用工程师郭连峰、黄梓彤编译
  • 融智生物质谱——让MALDI质谱成像惠及更广泛的用户
    p  质谱成像是一种前沿质谱技术,由于其技术的新颖性与应用的广泛性,近期受到了很高关注。该技术应用潜力巨大,它是将质谱检测与影像技术相结合的新型分子影像研究手段。特点是无需标记、所需时间短、耗费低、不局限于单分子,同时还可以提供组织切片中多化合物空间分布和分子结构信息。/pp  作为质谱领域最具前景的技术之一,质谱成像技术现已经成为仪器厂商、科研院所的重要关注焦点,预测未来市场争夺也将日益激烈。融智公司是MALDI质谱成像技术方面的后起之秀,目前新推出了其质谱成像系统QuanIMAGE。为提升用户对质谱成像技术、应用的了解,促进质谱成像技术的推广应用,仪器信息网特别邀请融智公司对其质谱成像技术、应用等方面进行了讲解。/ppspan style="color: rgb(0, 112, 192) "strong1、请介绍一下贵公司的质谱成像仪器研发过程,这些仪器有哪些特点?/strong/span/pp  MALDI-TOF MS应用于质谱成像,是近年来的科研热点。高灵敏度的分子水平成像,在生命科学研究中有着重要意义。但目前,掌握这一核心技术的只是少数几家国外企业,适用于质谱成像的设备销售价格也居高不下,因而国内即使是“不差钱”的科研领域,也少有从质谱分子成像角度展开的科研,在临床、生物分析、药物分析等应用领域,则更难以使用到质谱分子成像技术。/pp  融智生物推出的新一代全谱可定量飞行时间质谱仪,是时间长达8年之久的一系列研发成果的结晶,在解决了一系列传统MALDI缺陷的基础上,也使得新一代全谱可定量飞行时间质谱平台QuanTOF在质谱成像方面有了质的飞跃。生产的工程样机经美国国家质谱成像研究资源中心主任Richard M. Caprioli使用,发表了多篇论文,并得到了Caprioli的肯定和赞赏。/pp  QuanTOF在光、电、机、软等多方面进行了革命性突破,既满足质谱定性分析的要求,同时也提高了质谱定量分析的能力,对需要在二维空间进行扫描的质谱成像应用具有极其重要的意义。/pp  高发射频率,高寿命的半导体激光器,解决了上一代MALDI-TOF激光器发射频率低、易损耗的问题,从此激光器不再是易损耗材;/pp  靶板和离子探测器同时接地专利技术(专利号:ZL 2014 8 0014634.0),解决了上一代MALDI-TOF靶板电场分布不均的缺陷,保证了在全靶板范围内的质量检测精度;/pp  创新的同轴激光照射与离子光路设计,提高成像分辨率及的宽谱质量分辨率;/pp  MCP微通道板光电混合离子探测器,实现无饱和高信噪比离子检测,提高定量能力;/pp  全新高精度、快速、低容积二维控制平台、全新高速数字转换器,实现极高频率激光器产生的超量质谱数据实时采集;/pp  配备专用二维质谱成像软件,使分析人员的工作极简化。/pp  QuanIMAGE–亲民的质谱成像系统/pp style="text-align: center "img width="450" height="333" title="001.jpg" style="width: 450px height: 333px " src="http://img1.17img.cn/17img/images/201712/insimg/1b166fe2-3310-4f2d-b601-0d5e58eda554.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongQuanIMAGE I型/strong/pp  基于对MALDI-TOF MS全面升级的QuanTOF质谱平台,融智生物推出了质谱成像系统QuanIMAGE,被誉为“质谱成像新的里程碑”:/pp  革命性的影像学检测手段;/pp  发射频率5,000 Hz以上的高频率半导体激光器,极大地提高了质谱成像扫描速度;/pp  快速精准二维移动控制平台(纳米级移动精度),极大地提高了空间分辨率(可达微米);/pp  靶板电场接地专利技术解决了传统MALDI-TOF靶板边缘电场分布不均的缺陷,使成像质量精度及重现性更高;/pp  同轴激光照射及离子提取确保了解吸离子羽流对称性 离子初始速度及空间双聚焦设计,使线性模式在宽谱间达到高质量分辨率;/pp  光电混合离子探测器结合超高频数据采集技术,使数据采集速率可达50像素/秒;/pp  可通过重构质谱影像,在宽质量范围内对特定分子进行可视化位置确定;/pp  样本前处理简单,无需任何标记物即可完成分子成像;/pp  所有仪器组件皆置于仪器内,无需外接泵。/pp  值得一提的是QuanIMAGE采用了靶板接地的专利技术,靶板电场接地专利技术解决了传统MALDI-TOF靶板边缘电场分布不均的缺陷,使成像质量精度及重现性更高。同轴激光照射及离子提取光路设计、离子速度及空间双聚焦等一系列新技术,使线性模式飞行时间在宽谱间达到高质量分辨率。QuanIMAGE使用的最新半导体激光器技术和与之相配合的超高频混合离子探测及数据采集技术,使得质谱采集频率大幅提升,对质谱成像应用有极大的帮助,使得成像精度、重现性、速度等方面都比前一代MALDI-TOF有了数量级的提升。与现有技术采用的经修补完善的固体激光器技术相比,半导体激光器在扫描频率、光斑面积以及激光发射能量等性能上完胜固体激光器。/ppspan style="color: rgb(0, 112, 192) "strong2、目前,贵公司质谱成像仪器主要应用在哪些方面?应用情况如何?请举例说明。/strong/span/pp  QuanIMAGE产品应用:/pp  1. 医学研究/pp  MSI技术在疾病机理的研究中也已有着广泛的应用,目前研究涉及的疾病包括帕金森病、阿尔茨海默氏症、法布里病、肌肉萎缩症、肾脏疾病、非酒精性脂肪肝、心血管疾病和神经节苷脂沉积病等。该技术可在无标记条件下研究蛋白质或代谢物在组织中的分布,有助于了解疾病产生、转移和预后的机制。该技术还可用来划分肿瘤组织与周围正常组织的界限,可作为染色得到的组织学信息的补充。/pp  研究细胞的代谢物和多肽的分布及含量,有助于了解细胞的状态和周围环境对其的影响,以及正常与疾病细胞间的差异。/pp style="text-align: center "img title="002.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/44c45f4d-129e-4fa5-9bb7-4b3cfebcbff2.jpg"//pp  2. 生物学研究/pp  利用MALDI-MSI 技术,研究人员已对小鼠大脑中的卵磷脂、神经节糖苷、硫酸脂和脑苷脂类等脂类分子的分布进行了研究。由MALDI-MSI技术获得的人额叶皮质、海马和纹状体等区域中脂类分子的分布结果,对了解神经脂类的合成途径及其在中枢神经系统中的功能具有重要作用。也有人利用MALDI-MSI技术研究了卵磷脂在小鼠视网膜和营养不良肌肉中的分布、鞘磷脂在人晶状体中的分布,以及脂类在小鼠肝脏、肺部和人体皮肤上的分布等。/pp style="text-align: center "img title="003.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/f2de31bd-a510-4a31-92cd-7debd247440e.jpg"//pp  蛋白研究中,当MSI与Bottom-up策略相结合进行蛋白质鉴定时,首先要将组织切片上的蛋白质进行原位酶解,再利用MSI鉴定切片表面的蛋白质,进而获得切片表面蛋白质的分布信息。有学者将MALDI-MSI与Top-down策略相结合,确定了冈比亚按蚊触角中与嗅觉相关的蛋白质。/pp  3. 药物研究/pp  MSI技术已被用于监测小鼠体内药物及其代谢物的分布,如利用MALDI-MSI技术检测奥氮平和长春碱等药物在完整小鼠体内的分布,获得了相关药物在整个动物体内的分布信息。以术中加热化疗处理后的小鼠肾脏为模型,利用MSI 可检测到肾脏中抗癌药物奥沙利铂的代谢物,获得了该药物浓度在肾脏皮质区明显高于髓质区的信息。有学者以9-氨吖啶为基质,在小鼠大脑内鉴定了13种代谢物(如AMP、ADP、ATP 和UDP-GlcNAc等),并获得了它们的分布信息。还有学者研究了Mono Mac 6细胞中的HIV蛋白酶抑制剂沙奎那韦和奈非那韦的变化规律。/pp style="text-align: center "img title="004.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/d40c2742-702f-4e11-92e9-dcec343750f1.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong药物代谢检测/strong/span/pp  4. 融合性新技术/pp  MALDI-MSI还可与一些其他新技术融合,形成崭新的技术,形成突破性新技术。如MALDI-TOF质谱成像与磁珠芯片技术结合的质谱免疫检测(MSIA)。/ppimg title="005.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/d4134e1b-266c-4022-b39e-d642b7850e21.jpg"//ppspan style="color: rgb(0, 112, 192) "strong3、贵公司如何看待质谱成像仪器的技术及市场发展现状?目前有哪些问题亟待解决?/strong/span/pp  融智生物认为,质谱成像市场正呈上升态势,随着科研领域逐渐意识到质谱成像的重要性,开展一系列的科研,尤其在生命科学领域,质谱成像也将在多层次中有力地帮助科学家们获得更多的分子分布原位分析信息,而这些科研成果亦将逐渐转化为实际需求,惠及更广泛的应用。/pp  但当前处于少数企业垄断的市场,使得质谱成像设备价格居高不下,一台高端成像质谱的价格动辄近千万元。融智生物希望通过更亲民的价格,使这一技术能惠及广泛的应用层面。目前,QuanIMAGE产品已经上市,融智生物将从科研领域开始,把它推向中国以及海外市场。/pp /p
  • 国家标准化管理委员会下达2024年第二批国家标准样品研复制计划项目
    全国标准样品技术委员会:现将2024年度第二批国家标准样品研复制计划项目下达给你单位。本批项目共48项,其中研制计划42项、复制计划6项。请组织相关分技术委员会和主要研制单位,抓紧落实各项计划,加强与有关方面的协调,广泛征求意见,确保国家标准样品研复制质量,按时完成国家标准样品研复制任务。国家标准化管理委员会2024年7月2日附件下载国标委发(2024)27号_2.pdf相关标准样品如下:序号计划号项目名称研/ 复制项目周期 (月)研制单位被复制标样号1S2024084甲酸根溶液标准样品( 1000 mg/L)研制24国标(北京)检验认证有限公司2S2024085乙酸根溶液标准样品( 1000 mg/L)研制24国标(北京)检验认证有限公司3S2024086河蟹腿肉蛋白碳稳定同位素 ( δ13CVPDB = - 18.0‰ )标准样品研制24中国农业科学院农业质量标准与检测技术研究所4S2024087鱼肉蛋白碳稳定同位素 ( δ13CVPDB = - 22.0‰ )标准样品研制24中国农业科学院农业质量标准与检测技术研究所5S2024088鱼耳石碳稳定同位素 ( δ13CVPDB = - 11.0‰ )标准样品研制24中国农业科学院农业质量标准与检测技术研究所、中国水产科学研究院淡水渔业研究中心6S2024089鱼鳞碳稳定同位素 ( δ13CVPDB = -25.0‰ ) 标准样品研制24中国农业科学院农业质量标准与检测技术研究所、中国水产科学研究院淡水渔业研究中心7S2024090新茄病镰刀菌烯醇纯度标准样品研制24国家粮食和物资储备局科学研究院8S2024091T-2 毒素纯度标准样品研制24国家粮食和物资储备局科学研究院9S2024092玉米赤霉烯酮-14-硫酸铵盐纯度标准样品研制24国家粮食和物资储备局科学研究院10S2024093石斛碱纯度标准样品研制24成都市食品检验研究院、湖南农业大学11S2024094去氢木香内酯纯度标准样品研制24成都市食品检验研究院、中国科学院成都生物研究所12S2024095木香烃内酯纯度标准样品研制24成都市食品检验研究院、中国科学院成都生物研究所13S2024096新蔗果四糖纯度标准样品研制24量子高科(广东)生物有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)14S2024097新蔗果三糖纯度标准样品研制24量子高科(广东)生物有限公司、北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)15S2024098不饱和透明质酸二糖钠盐纯度标准样品研制24青岛和海生物科技有限公司、山东省分析测试中心、中国海洋大学16S2024099N,N'-二乙酰基壳二糖纯度标准样品研制24青岛和海生物科技有限公司、山东省分析测试中心、中国海洋大学17S2024100新琼二糖纯度标准样品研制24青岛和海生物科技有限公司、山东省分析测试中心、中国海洋大学18S2024101三氯蔗糖纯度标准样品研制24自然资源部第三海洋研究所、福建科宏生物工程股份有限公司19S2024102重楼皂苷Ⅱ纯度标准样品研制24云南云科特色植物提取实验室有限公司20S2024103人参皂苷 CK 纯度标准样品研制24云南云科特色植物提取实验室有限公司21S2024104重楼皂苷 Ⅰ纯度标准样品研制24云南云科特色植物提取实验室有限公司22S2024105乌金苷纯度标准样品研制24云南云科特色植物提取实验室有限公司23S2024106金线莲苷纯度标准样品研制24福建中医药大学、自然资源部第三海洋研究所24S2024107组胺盐酸盐纯度标准样品研制24安井食品集团股份有限公司、自然资源部第三海洋研究所25S2024108一级绵白糖标准样品研制24广东省科学院生物与医学工程研究所
  • 英国谢菲尔德大学神经转化研究所(SITraN)高内涵筛选成像大赛投票结果揭晓
    11月9日,由英国谢菲尔德大学神经转化研究所(SiTraN)组织的高内涵筛选成像大赛结果火热出炉。来自Mohammed Karami的Transformers从一系列优秀的参选图片中脱颖而出。获奖图片据悉,在多个研究小组及个人的捐赠与支持下,SiTraN中心一年多前引进了PerkinElmer Opera PhenixTM高内涵成像系统,并使用该成像系统上进行了大量聚焦神经科学及转化方向的科研项目,通过此次成像大赛SiTraN各研究组展示多项相关工作成果。据SiTraN中心介绍,这台自动化的成像设备一天可以完成普通共聚焦显微镜需要耗费100天才能完成的工作,这极大的提高了药物筛选的实验效率。此次高内涵成像大赛吸引了该研究中心7个研究小组及个人的参与,其中两个小组在这台系统上进行了多方向的研究项目。SiTraN中心在Opera Phenix高内涵成像系统上运行了各种细胞及动物实验模型,从简单的单细胞培养成像观察,如标记线粒体到更复杂的两种或多种类型的亚细胞结构的检测,通过成像以及设备高内涵数据分析软件,对混合培养的细胞进行计数或者进行类神经结构的定量分析。值得注意的是,该中心还使用Opera Phenix成像系统进行了针对治疗运动神经元病以及帕金森病的新型药物筛选等多个研究项目。从患者身上进行很小的皮肤成纤维细胞样本采样,从这些皮肤细胞可以进一步研究这些患者特异的基因突变或者可以通过干细胞技术将这些细胞重编程为神经细胞或其他的神经支持细胞,研究神经性疾病中神经系统病变。这些研究中研发的技术可以更广泛的用于阿尔茨海默症、神经硬化症以及相应的药物筛选从而帮助学界加深对这些疾病过程的了解或探索新的治疗靶点。还有一些课题组使用该成像系统进行斑马鱼成像。这些实验中,想保证每一条斑马鱼样本的成像方向一致是件非常有挑战性的工作,通过使用Opera Phenix 成像系统配置的特殊成像功能,研究者们在自动寻找目标神经细胞群这块取得了很大的进展。斑马鱼是可以进行基因编辑的很好的疾病模型,为在体药物筛选提供了理想的方案。比如,在运动神经元疾病中起神经保护作用药物以及在多发性硬化症促进髓鞘形成药物。这些患者来源的细胞和斑马鱼可以帮助科学家们探索运动神经元疾病、帕金森病,多发性硬化症以及其他神经系统疾病:这正是nihr 谢菲尔德大学医学研究中心的使命。于此同时,Opera Phenix 高内涵成像筛选系统也凭借其优越的性能已成为该药筛平台最受欢迎的筛选设备。参赛作品除了以上几个选项,这次竞赛还收集到一些非常有意思的Opera Phenix的参选图像,一并列出供大家欣赏。图片作者信息: aurelie schwarzentruber, ruby macdonald, mohammed karami, chris hastings and camilla boschian are all part of dr heather mortiboy’s team. noemi gatto, chloe allen and monika myszczynska are part of dr laura ferraiuolo’s team. dr alex mcgown is a member of dr tennore ramesh’s team.如您想了解更多微信搜索关注珀金埃尔默生命科学
  • 空间代谢组学高分辨率质谱成像揭示鞘脂控制真皮成纤维细胞异质性
    人类真皮成纤维细胞是皮肤的细胞成分,由于它们的动态细胞特性而表现出细胞间表型异质性。因此,单个真皮成纤维细胞可以有不同的细胞特性,负责伤口修复、纤维化或细胞外基质的重塑。脂质代谢在具有不同表型的成纤维细胞中是否存在不同的形态,以及脂质成分是否参与成纤维细胞亚型的建立尚不清楚。  2022年4月,洛桑联邦理工学院的Laura Capolupo等人在Science上发表了题为“Sphingolipids control dermal fibroblast heterogeneity”的研究成果,通过空间分辨代谢组学和单细胞转录组学研究方法,通过研究单个细胞的脂质组成,揭示了鞘脂在成纤维细胞状态确定中的驱动作用。研究背景  外部信号(例如激素、细胞因子和生长因子)和细胞自主特性(例如单个细胞的转录和代谢状态)共同决定细胞命运的决定。尽管在数十年的深入研究中,外部信号的作用方式已经得到了广泛的详细说明,但细胞自主对命运决定的分子基础仍难以捉摸。脂质参与能量代谢,负责生物膜的组装,充当信号分子,并与蛋白质相互作用以影响其功能和细胞内分布。脂质组成因细胞类型而异,并在分化事件中重新编程。然而,脂质组重塑是否以及如何帮助改变细胞特性尚不清楚。  研究思路  研究结果  1. 通过空间代谢组学揭示脂质异质性的组织原理,单细胞分析显示脂质协同调节  图1和图2展示了研究人员首先对原代真皮人成纤维细胞 (dHF) 进行了空间代谢组学解析,结合电喷雾电离液相色谱-质谱(ESI-LC/MS)和基于多反应监测(MRM)的脂质组学分析,发现dHF 中存在两个共存的脂质变异轴。一个轴与细胞内组织有关,另一个轴与脂质相关的细胞间异质性有关,其中鞘脂途径受到高细胞间变异性的影响。随后的单细胞脂质组根据脂质组成对细胞进行分组,产生了不同的细胞簇。当考虑鞘脂的水平时,某些鞘脂在特定的细胞簇中富集,表明 dHF 以不同的鞘脂代谢状态存在。  研究人员随后用可识别不同鞘脂头部基团的荧光标记的细菌毒素对细胞进行染色,验证了这一结果,发现dHF 以亚稳态鞘脂代谢配置存在,与给定的表型状态相对应,并在细胞世代中持续存在,研究人员将这些脂质代谢状态称为lipotypes。  图1 | dHFs的单离子空间代谢组学分析  (A)空间代谢组学检测方法示意图  (B)正离子模式检测的部分脂质成像图  (C)每个像素的PCA坐标显示  (D)前10种脂质的贡献度展示  图2 | 单细胞脂质组学分析  (A)空间代谢组数据单细胞分析方法示意图  (B)显示通过257个细胞计算的脂质CV的条形图  (C)脂质协变网络  (D)单细胞脂质组学数据的t-SNE图  (E)鞘脂染色t-SNE分布图  (F)鞘脂前体和负责鞘脂的成像图  2. 单细胞转录组测序对细胞类型进行分类并对应不同脂型结合分析  研究人员接着对dHF 进行了单细胞 RNA 测序 (scRNA-seq),并将转录组定义的亚型与鞘脂定义的亚型联系起来,发现特定的lipotypes与普遍的细胞状态有关,表明lipotypes是 dHF 细胞状态的标志物。此外,dHF lipotypes还反映在不同真皮区域的成纤维细胞亚型上,如真皮较深区域的网状成纤维细胞与较浅区域的乳头状成纤维细胞会呈现差异化的lipotypes,且与皮肤癌的相关性不同。由此,lipotypes可以在体内标记特定的 dHF 群体。  图3 | 脂肪类型映射到转录细胞的状态  (A)通过指定聚类对5652个单独DHF的scRNA序列进行UMAP嵌入分析  (B)聚类标记基因的基因表达点图  (C)A中单个dHF细胞的扩散图,突出了不同细胞状态之间转录变异轴  (D)DHF的sRNA序列数据PAGA轨迹分析图  (E)每个FACS分类的脂肪型群体的富集基因的平均基因表达热图  (F)不同的脂型基因特征分数UMAP图  (G)不同簇细胞的平均脂型z分数点图  (H)ShTxB2e+、ShTxB1a/2e+、ChTxB+和triple+的PAGA轨迹分析图  (I)成纤维细胞(ACTA2)和基底细胞(LMNA)的两种典型标记物的UMAP图  (J)几种染色细胞的共焦显微照片  3. 鞘脂扰动对细胞状态的影响  研究人员最后探究了鞘脂扰动对细胞状态的影响,发现lipotypes异质性通过使原本相同的细胞对细胞外刺激的反应多样化来影响细胞特性,并且操纵鞘脂组成足以将细胞重新编程为不同的表型状态。此外,鞘脂还能整合到参与细胞状态确定的调节回路中,这些回路解释了代谢和转录成纤维细胞的异质性。具体来说,研究人员观察到鞘脂调节成纤维细胞生长因子2 (FGF2) 的信号传导,其中globo系列鞘脂Gb3/Gb4 充当正调节剂,而神经节苷脂GM1 充当负调节剂。反过来,FGF2 信号通过维持导致Gb3/Gb4 产生的替代代谢途径来抵消 GM1 的产生。  图4 | 鞘脂扰动对FGF信号的影响  相关讨论  该研究通过将高分辨率质谱成像与单细胞转录组学相结合,测量了单个人类真皮成纤维细胞的脂质组和转录组,发现特定脂质代谢途径的细胞间变化有助于建立参与皮肤结构组织的细胞状态如图5所示。这为细胞间异质脂质代谢在多细胞系统的自组织中发挥指导作用提供了证据。图5 |鞘脂控制真皮成纤维细胞异质性
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制