当前位置: 仪器信息网 > 行业主题 > >

激子手性法用试剂

仪器信息网激子手性法用试剂专题为您提供2024年最新激子手性法用试剂价格报价、厂家品牌的相关信息, 包括激子手性法用试剂参数、型号等,不管是国产,还是进口品牌的激子手性法用试剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激子手性法用试剂相关的耗材配件、试剂标物,还有激子手性法用试剂相关的最新资讯、资料,以及激子手性法用试剂相关的解决方案。

激子手性法用试剂相关的资讯

  • 半导体所在激子-声子的量子干涉研究中获进展
    近日,中国科学院半导体研究所半导体超晶格国家重点实验室报道了二维半导体WS2中暗激子与布里渊区边界声学声子之间量子干涉导致的法诺(Fano)共振行为,并揭示了对称性在其中的重要作用。相关研究成果以《少数层WS2中暗激子与边界声学声子的量子干涉》(Quantum interference between dark-excitons and zone-edged acoustic phonons in few-layer WS2)为题,在线发表在《自然-通讯》(Nature Communications)上。由于库伦屏蔽作用减弱,激子效应在二维层状半导体中变得更加显著。偶极跃迁允许的亮激子可通过光致发光直接进行观测,而暗激子因偶极跃迁禁介却难以被直接观测。暗激子的复合往往需要其他元激发如声子等的协助,因而共振拉曼散射是比较理想的研究暗激子的实验手段。二维半导体过渡金属硫族化物如MoS2、WS2等具有丰富的能谷结构,在布里渊区的不同位置同时具有Γ、K、Q等能谷且能量接近,并可以发生强的光-物质相互作用,是探究暗激子与声子相互作用的优异平台。研究通过不同数值孔径下的光致发光(PL)谱确认了少数层WS2中亮态A激子与自旋禁戒的暗态A激子的存在。对于多层WS2,其导带底位于Q谷,价带顶位于K谷,而Q-K之间跃迁的动量正好可由布里渊边界M点声子的波矢来补偿。因此,布里渊区边界M点的一阶声子有可能通过拉曼光谱直接进行测量,在这个过程中预期观察到由导带Q谷的电子和价带K谷的空穴形成的暗激子参与的共振散射过程。研究团队选择了与暗态A激子能量共振的激发光,进行了低温拉曼光谱的测量。如先前预期,研究在共振激发下可以观测到布里渊区边界M点的一阶声学声子的拉曼模式【TA(M), ZA(M)和LA(M)】,并发现这些拉曼模式表现为不对称的Fano线型,且与平面内剪切声子的Fano线型呈现出镜像分布的现象。特别是在双层WS2中,暗激子-声子的强耦合导致ZA(M)声学模式表现为Fano凹陷(对应相消干涉行为)而非Fano峰(对应相涨干涉行为)。一般而言,Fano共振来源于连续态和分立态之间的量子干涉。通过理论分析和系列实验佐证,研究确定了连续态来源于K谷空穴和Q谷电子所形成的暗激子态,而分立态来源于M点声子。由于暗激子的长寿命以及二维激子低的态密度,在较弱光激发下暗激子态会形成准连续态。进一步,研究通过改变激发光波长(改变激子的驰豫通道以及参与声子的模式从而破坏共振条件)和变温拉曼光谱(改变激子能量从而破坏共振条件)对上述研究进行验证。最后,研究从对称性的角度分析了平面内剪切模声子、边界声学声子和暗激子耦合的物理机制,揭示了声子振动方向以及激子对称性对激子-声子耦合的重要影响。研究工作得到国家重点研发计划、中科院创新交叉团队、国家自然科学基金等的支持。厦门大学、新加坡南洋理工大学、法国图卢兹大学等的科研人员参与研究。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 大连化物所发现六光子激发自陷态激子发光的无铅钙钛矿晶体
    近日,大连化物所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队发现了一种具有多光子激发自陷态激子发光的全无机Cs2TeCl6无铅钙钛矿晶体。多光子吸收是一种非线性效应,是指材料可以同时吸收多个单色红外光子,并将电子从基态激发到激发态,然后上转换为高能光子。无铅钙钛矿作为一种“明星”材料,具有较高的稳定性和低毒性,已经成为铅基钙钛矿的替代品。但与铅基钙钛矿相比,对于无铅钙钛矿高阶多光子吸收效应的研究还比较匮乏。本工作发现了一种在800至2000nm波长范围内,具有3至6光子吸收的全无机Cs2TeCl6无铅钙钛矿晶体。稳态和瞬态光学实验结果表明,Cs2TeCl6晶体中单光子和多光子激发的宽带橙色发射归因于自陷态激子的复合。此外,研究人员通过飞秒激光激发的多光子荧光吸收饱和法,量化了Cs2TeCl6晶体的多光子吸收截面,其中六光子吸收截面为1.87×10-174cm12s5photon-5(1980 nm)。该工作为无铅钙钛矿家族在非线性光电领域的应用和发展提供了一个有潜力的候选材料。相关研究成果以“Six-Photon Excited Self-Trapped Excitons Photoluminescence in Lead-Free Halide Perovskite”为题,于近日发表在《先进光学材料》(Advanced Optical Materials)上。该工作的第一作者是大连化物所2507组博士研究生蒋举涛。该工作得到国家自然科学基金、辽宁省兴辽英才计划等项目的资助。
  • 宁波材料所等在热激子-深红光OLED材料领域取得进展
    凭借轻巧、灵活和自发光等优点,有机发光二极管(OLED)被广泛认为是主流的第三代显示技术。而有机电致发光材料是OLED的关键组分之一。能够通过高能级通道迅速发生逆系统间跃迁(RISC)过程的“热激子”材料在OLED界备受关注。有研究显示,通过热激子路径可以获得理论上的100%内部量子效率(IQE)和低滚降速率。然而,红色热激子材料在聚集态和团簇态下仍不可避免地遭受聚集引起的淬灭(ACQ),导致相对较低的光致发光量子产率(PLQYs)。同时,迄今为止缺乏明确的分子设计策略来提高PLQYs。聚集诱导发光(AIE)是重要的光物理现象。然而,由于缺乏有效的三重激子利用策略,多数基于AIE的OLEDs效率较低。   近日,中国科学院宁波材料技术与工程研究所研究员葛子义和副研究员李伟,联合华南理工大学教授苏仕健等,提出了新颖的分子设计策略,将热激子机制和AIE特性融合到单个分子。在新开发的分子T-IPD和DT-IPD中(图1),通过调节受体单元的共轭长度,单重激发(S1)态的能量显著提高至第二三重激发(T2)态,从而增强了高能态的逆系间窜越过程(hRISC)(图2)。通过引入TPA和DP-TPA给体基团,T-IPD和DT-IPD可以形成刚性和扭曲的三维几何结构,具有适当的二面角,有效抑制了分子间π-π堆积和分子内运动,使其在固体或聚集态下呈现强烈的发光。同时,它们的AIE特性可以通过在聚集态下形成J-聚集体结构进一步增强。由于热激子机制和AIE特性,研究获得了最高12.2%的外量子效率,这是基于热激子机制和AIE特性的深红色OLEDs中性能最高的(图3)。   为了进一步阐明通过hRISC过程和三重-三重湮灭(TTA)部分在电致发光器件中的热激子松弛过程,研究使用100微秒的电脉冲宽度对基于T-IPD和DP-IPD的非掺杂器件进行瞬态电致发光(TREL)测量。TREL衰减呈现出两个明显的成分——快速EL衰减和延迟EL衰减。在电压脉冲停止后,快速EL衰减源于几纳秒内的单激子发射,而延迟EL衰减则是长寿命三重子激子参与发射过程的结果。然而,实验结果表明,在HLCT系统中,hRISC过程在几纳秒内迅速发生,导致快速EL衰减而非延迟EL衰减。   此外,科研人员观察到延迟EL衰减(Idelayed)很好地符合TTA模型,这是由于T-IPD和DP-IPD的低T1能级所致,遵循双分子上转换发射公式,即基于T-IPD和DP-IPD的非掺杂OLEDs的延迟衰减成分的比例仅为4.0%和5.6%,表明TTA上转换受限,主要是由于低T1激子密度。这种延迟衰减成分的低比例不足以解释其显著的高效率,进一步验证了T-IPD和DP-IPD的热激子机制。   相关研究成果以Hot Exciton Mechanism and AIE Effect Boost the Performance of Deep-Red Emitters in Non-doped OLEDs为题,发表在《先进材料》(Advanced Materials)上。研究工作得到国家杰出青年科学基金、国家自然科学基金、宁波市重点科技项目等的支持。
  • 中科院揭示量子点激子精细能级裂分及量子拍频新机制
    近日,中科院大连化学物理研究所研究员吴凯丰团队等在胶体量子点超快光物理研究中取得新进展。团队观测到CsPbI3钙钛矿量子点中激子精细结构裂分导致的系综量子拍频,并提出了一种通过温度诱导晶格畸变进而调控裂分能的新机制。相关成果发表于《自然—材料》。在半导体量子点中,形貌或晶格对称破缺导致的电子—空穴各向异性交换作用使激子能级发生精细结构裂分(FSS)。FSS亮激子态可用于量子态相干操控或偏振纠缠光子对发射,观测和调控FSS对这些应用至关重要。由于FSS能量对量子点的尺寸、形貌非常敏感,通常需要在液氦温度下测定单个或少数量子点的发射谱来测定FSS。因此,在系综水平观测FSS极具挑战,尤其是定量调控FSS尚未有报道。本工作中,研究团队利用圆偏振飞秒瞬态吸收光谱(即瞬态圆二色谱),在液氮到室温区间测定了溶液合成、成本低廉的CsPbI3钙钛矿量子点系综的亮激子FSS。研究发现,FSS能量可通过量子点尺寸进行调控,在液氮温度下最高可达1.6meV。更有趣的是,同一样品的FSS能量展现出强烈的温度依赖性,温度越低,裂分越大,这在以往的外延生长或胶体量子点体系都未有观测到。通过变温的晶格结构表征,结合美国能源部能源前沿研究中心Peter Sercel博士的有效质量模型理论计算,研究团队发现这种温度依赖的FSS源于CsPbI3钙钛矿高度动态的晶格结构:降温能加剧Pb-I八面体扭曲,降低晶格对称性,进而增大FSS。此外,这些晶格扭曲的正交相量子点却仍然拥有准立方相晶面,该特性使亮激子之间产生避免交叉的精细结构能量间隙,实验上观测到的系综层面量子拍频正是对应于该能量间隙。该工作精准测定了胶体量子点系综的亮激子精细结构裂分,提出了通过温度诱导CsPbI3量子点晶格畸变进而调控亮激子裂分能的新原理,展示了其在量子信息科学领域的重要应用潜力。文章链接:https://doi.org/10.1038/s41563-022-01349-4
  • 科研人员首次在拓扑绝缘体中制造出激子
    德国“维尔茨堡-德累斯顿卓越集群—量子物质复杂性和拓扑结构”(ct.qmat)的科研人员在拓扑绝缘体中制造出了激子,有助于新一代光控电脑芯片和量子技术研究。相关研究已发表在《自然通讯》杂志。   科研人员通过短脉冲光作用在单个原子层组成的材料层(铋),从而产生了激子。激子在拓扑绝缘体中被激活,为拓扑绝缘体研究开辟了全新方向。光与激子的相互作用预示了这种材料能够产生新现象,如量子比特。量子比特是量子芯片的计算单元,使用光而不是电压能够让量子芯片具有更快的时钟速率,为未来量子技术和微电子领域开发新一代光控元件铺平了道路。
  • 观测到胶体量子点的激子型布洛赫—西格特位移
    近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队在胶体量子点超快光物理研究中再获新进展。团队观测到CsPbI3量子点在红外飞秒脉冲作用下的布洛赫—西格特位移,并揭示了激子效应对相干光学位移的调制作用。上述工作发表在《自然—通讯》上。  强光场能够对物质的光学跃迁产生调制,例如旋波近似下的光学斯塔克效应和反旋波近似下的布洛赫—西格特位移。由于二者通常同时出现,且前者往往远强于后者,在实验中观测较为纯净的布洛赫—西格特位移颇具挑战。近期,有研究人员报道了单层过渡金属硫化物二维材料中的谷极化布洛赫—西格特位移。然而,低维材料中一般存在着较强的多体相互作用,带来显著的激子效应,这些效应如何影响布洛赫—西格特位移仍然未知。  研究团队选定铅卤钙钛矿量子点作为观测布洛赫—西格特位移,并研究其中激子效应的模型体系。一方面,旋轨耦合和量子限域效应的结合使得该体系可被近似为具有自旋极化选律的二能级系统;另一方面,相比于衬底敏感的二维材料,胶体量子点能够均匀地分散在低折射率的溶剂中,从而避免了介电无序对激子效应造成的干扰。  基于此,研究团队以CsPbI3量子点为研究对象,利用圆偏振飞秒瞬态吸收光谱,在室温下成功观测到了其布洛赫—西格特位移。在红外飞秒脉冲作用下,该位移可以高达4毫电子伏特。布洛赫—西格特位移与光学斯塔克位移的比值随着失谐量的增大而增大,定性符合(反)旋波近似的图像。然而,该比值总是大于忽略多体相互作用的准粒子模型所预测的数值。  为了解释实验和理论值的偏离,研究团队在激子图像下建立了描述布洛赫—西格特位移的新模型,精确再现了实验测量结果。该模型还深刻指出,光学斯塔克效应、双激子光学斯塔克效应以及布洛赫—西格特位移在激子图像下是彼此混合和相互影响的。考虑到量子限域材料普遍具有较强的激子效应,该模型对于正确处理其中的相干光学现象,以及将这些现象应用于光学调制、信息处理和量子材料Floquet工程具有重要启示意义。
  • 我国科研用试剂研发取得阶段性成果
    记者从会上获悉,从2006年国家推进国产科研试剂研发工作8年来,国产科研用试剂的品种和数量有了很大提高。以化学试剂为例,国产试剂数量从2006年仅有的3000种左右跃升至目前的3万多种,与外国公司生产的试剂数量的比例也从3∶100左右提高到了目前的15∶100左右。国产原创试剂领域,2006年的品种数量几乎为零,但经过8年的研发,截至目前我国已能生产出3000种左右的原创试剂。 科技部条财司副司长吴学梯介绍,科研用试剂具有品种多、批量小、高附加值的特点,对质量要求很高,但市场需求不大,长期以来我国高端科研用试剂市场一直为外国公司所垄断。为了更好聚集资源,促进我国科研用试剂的产业化发展,科技部在“十一五”和“十二五”期间,分三期通过国家科技支撑项目支持国产科研用试剂的研发,取得了阶段性的成果,不仅在数量上得到了很大提高,而且在试剂的水平上也得到了很大提升。其中,国产抗生素奶检测试剂及疫苗杂蛋白检测试剂达到了国际水平,而我国自主研发的全新癌症定量检测试剂盒更是处于国际领先水平。 “科研用试剂产业技术创新战略联盟”是由北京牛牛基因技术有限公司会同各高等院校、科研机构及其他组织机构,自愿组成的联合开发、优势互补、利益共享、风险共担的全国性行业合作组织,于2013年10月经科技部批准成为国家产业技术创新战略试点联盟。目前,该联盟已建立起一个有效的UAR(联合应用试剂)流通平台。
  • 新型高效液相色谱手性固定相可高效分离手性分子
    p style="line-height: 1.5em "  化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。/pp style="line-height: 1.5em "  一些药物中的手性分子在生物活性、代谢过程和毒性等方面存在显著差别,有的差异甚至如“治病”和“致病”这样,是天壤之别。因此,如何更为经济、高效、便捷地将手性分子的“左右手”分开,获取其中有益部分,成为化学界竞相攻关的课题。/pp style="text-align: center line-height: 1.5em "img src="https://img1.17img.cn/17img/images/201812/uepic/e33f45e4-27e0-4e3c-ae08-784ed71a581e.jpg" title="20181119203959326.jpg" alt="20181119203959326.jpg"//pp style="text-align: center line-height: 1.5em "生物分子COF 1作为手性固定相用于手性拆分(南开大学供图)/pp style="line-height: 1.5em "  南开大学药学院研究员陈瑶课题组与该校化学学院教授张振杰、美国南佛罗利达大学教授马胜前合作,利用生物分子诱导的策略设计合成了一类手性共价有机框架材料,并将其成功应用于多种药物、氨基酸等小分子的手性分离。该材料具有造价低、效率高、普适性强等特点,具有完全自主知识产权,作为新型“分手”利器,它将大幅降低手性药物的生产成本。相关研究结果日前在线发表于《德国应用化学》。/pp style="line-height: 1.5em "  液相色谱技术是获取手性分子单一构型对映体的重要手段之一,具有高手性分离性能的手性固定相是这一技术的关键。含有手性分子的混合物流经分离柱时,由于作用力大小不同,不同的异构体分别在不同的时间流出,进而实现手性分离的目标。/pp style="line-height: 1.5em "  “简单来说,液相色谱仪中的分离柱就像一个隧道。外观、型号看起来完全一样的汽车一起驶入,交警允许有牌照的汽车可以顺利地快速通过,没有牌照的就会因为被交警调查而落后通过。这样,隧道出口先出现的都是有牌照的汽车,后出现的都是没有牌照的汽车。”陈瑶说,这其中最关键的部分就是“交警”,也就是“手性固定相”,需要识别能力强、稳定且高效。/pp style="line-height: 1.5em "  为创造高效的新型手性固定相,陈瑶课题组将一系列生物分子(溶菌酶、三肽、氨基酸)引入到共价有机框架材料(COFs)材料中,非手性COFs通过继承生物分子的手性特征从而变成手性COFs,进而可应用于手性分子的拆分。/pp style="line-height: 1.5em "  陈瑶表示,研究结果发现,通过新策略得到的BiomoleculeÌ COF 1手性固定相性能明显优于传统吸附法固定生物分子得到的手性固定相性能。“隧道中,高效、敬业的‘交警’—— 一种新型的高效液相色谱手性固定相被我们合成出来了。”/pp style="line-height: 1.5em "  进一步研究发现,COF1材料作为手性固定相具有优异的手性分离效果,可用于正相和反相等多种分离模式,分离度Rs均达到1.3以上。连续使用2个月,反复进样120余次后,该材料仍具有和初始状态一样的分离效果。/pp style="line-height: 1.5em "  “这一研究为发展高效、耐用型的手性固定相,及拓宽共价有机框架材料在手性分离、手性催化方面的应用提供了巨大的潜力。”陈瑶介绍,新材料具有完全自主知识产权,它的应用可大幅降低分离柱的造价,打破进口依赖,也将大大降低手性药物的生产成本。/pp style="line-height: 1.5em "  论文链接:https://doi.org/10.1002/anie.201810571/ppbr//p
  • 锁相放大器OE1022应用在黑磷中激子Mott金属绝缘体转变的量子临界现象测量
    关键词:量子相变 锁相放大器 超导超流态 说明:本篇文章使用赛恩科学仪器OE1022锁相放大器测量【概述】 2022年,南京大学王肖沐教授和施毅教授团队在nature communications发表了一篇题为《Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus》文章,报道了黑磷中激子Mott金属-绝缘体转变的光谱学和传输现象。通过光激发来不断调控电子-空穴对的相互作用,并利用傅里叶变换光电流谱学作为探针,测量了在不同温度和电子-空穴对密度参数空间下的电子-空穴态的综合相图。 【样品 & 测试】 文章使用锁相放大器OE1022对材料的传输特性进行测量,研究中使用了带有双栅结构(TG,BG)的BP器件,如图1(a)所示,约10纳米厚的BP薄膜被封装在两片六角形硼氮化物(hBN)薄片之间,为了保持整个结构的平整度,使用了少层石墨烯薄片来形成源极、漏极和顶栅接触,以便在传输特性测量中施加恒定的电位移场。图一 (a)典型双栅BP晶体管的示意图。顶栅电压(VTG)和底栅电压(VBG)被施加用于控制样品(DBP)中的载流子密度和电位移场。(b) 干涉仪设置的示意图,其中M1,M2和BS分别代表可移动镜子,静止镜子和分束器。 在实验中,迈克耳孙干涉仪的光程被固定在零。直流光电流直接通过半导体分析仪(PDA FSpro)读取。光电导则采用标准的低频锁相方案测量,即通过Keithley 6221源施加带有直流偏置的11Hz微弱交流激励电压(1毫伏)至样品,然后通过锁相放大器(SSI OE1022)测量对应流经样品的电流。图二(a)在不同激发功率下,综合光电流随温度的变化。100% P = 160 W/cm² 。(b) 在每个激发功率下归一化到最大值的光电流。(c)从传输特性测量中提取的与温度T相关的电阻率指数为函数的相图,作为T和电子-空穴对密度的函数。(d)不同电子-空穴对密度在过渡边界附近的电阻率与温度的关系 【总结】 该文设计了一种带有双栅结构的BP器件,通过测量器件的傅里叶光电流谱和传输特性,观测到从具有明显激子跃迁的光学绝缘体到具有宽吸收带和粒子数反转的金属电子-空穴等离子体相的转变,并且还观察到在Mott相变边界附近,电阻率随温度呈线性关系的奇特金属行为。文章的结果为研究半导体中的强相关物理提供了理想平台,例如研究超导与激子凝聚之间的交叉现象。【文献】 ✽ Binjie Zheng,Yi Shi & Xiaomu Wang et al. " Quantum criticality of excitonic Mott metal-insulator transitions in black phosphorus." nature communications (2022) 【推荐产品】
  • 手性印迹表面增强拉曼散射检测技术获进展
    a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理 课题组供图近日,中国科学院烟台海岸带研究所研究员陈令新团队在手性印迹表面增强拉曼散射(SERS)检测技术领域取得重要进展,研究成果“基于手性分子印迹的表面增强拉曼散射检测策略用于绝对对映体区分”发表在最新一期的《自然—通讯》。手性是自然界中普遍存在的现象。手性分子是与其镜像不能重合的分子,对映异构体间很多理化性质相同,但生理活性往往有很大的差别,因而,对单个对映体的选择性识别与检测在生命科学、环境监测和食品安全等领域至关重要。然而,单个对映体的识别存在很多挑战。首先,理想的手性区分策略需要外消旋体中的绝对对映体识别方法和高灵敏度的传感器件,并且保证对多种手性分子广泛适用,如何抑制对映体在手性区分传感器上的非特异性结合是关键。其次,对映体间具有相同的分子大小和官能团,仅结构呈现镜像对称,因此,不能根据一般传感器上的主-客体相互作用结果一概而论。此外,大多数手性识别策略高度依赖手性分子的细微结构特征,无法适用于复杂多样的手性化合物。海岸带是关乎人类社会发展的地球关键带。人类活动通过多种途径影响海岸带生态,使其被开发利用的同时,也造成了生态脆弱、灾害较多等问题,发展海洋生态固碳、保护生态环境是海岸带可持续发展的关键之一。氨基酸是海洋有机碳和有机氮的重要组成部分,氨基酸的手性转化是海洋微生物固碳的重要过程,了解手性氨基酸的结构和功能对于海洋固碳机制研究非常重要。然而,海岸带区域环境中的手性氨基酸含量很低、赋存介质复杂,因此亟需发展能够进行分离富集、降低和消除基质干扰的高灵敏手性分子检测技术。基于上述挑战,陈令新团队创新性发展了基于手性分子印迹的表面增强拉曼散射(SERS-CIP)检测策略,成功实现了对海水中精氨酸、组氨酸、天冬氨酸等8种氨基酸手性对映体的高选择性和高灵敏分析检测。手性分子印迹聚合物(CIP)具有在形状、大小和官能团三方面与目标氨基酸分子互补的空腔,能够高特异性结合目标手性分子,在手性氨基酸识别方面表现出了独特的优势。由于聚合物框架和手性分子的官能团之间的相互作用,不可避免的非特异性结合参与手性识别问题一直是挑战。研究发现,可以通过发展先进的CIP识别机制并通过抑制非特异性结合提高CIP对映体识别特异性。在利用SERS对CIP非特异性结合来源进行详细研究后,团队开发了一种检测识别机制来探索CIP的空间状态,并借此区分特异性结合和非特异性结合的氨基酸对映体分子。通过对映选择性测试、外消旋混合物分析以及在复杂实际样品中的手性识别表明,这种机制能够满足理想的手性识别策略的要求,并具有良好的实用性。该研究成果得到了国家自然科学基金和中科院国际博士后项目等项目的支持。文章的第一作者为助理研究员Maryam Arabi,文章通讯作者为研究员王运庆和陈令新。
  • 毛细管电泳-质谱技术在手性化合物分离分析中的研究进展
    手性是自然界和生命体的基本属性之一,诸如生物结构中的核酸、蛋白质及糖类等都具有手性。目前绝大多数药物都是以手性形式存在,这些药物在生命体内的药理活性、代谢作用和速率及毒性等方面均存在显著差异,比如一种对映体有活性,而另一种无显著的药理活性,甚至有毒副作用或可发生拮抗作用。除了旋光性上的差异,手性药物具有相同的物理和化学性质,故对其分离分析一直都是药物分析、分离纯化领域研究的重点和难点。新药的研发和应用亦需要研究人员继续开发新的高效手性分析方法,以实现高选择性和高灵敏度的手性化合物定量和定性分析。高效液相色谱-质谱(HPLC-MS)具有较高的灵敏度和重现性,是目前手性药物分离分析的主要方法。然而,HPLC-MS需要昂贵的手性柱和与MS兼容的色谱柱流动相,而且手性色谱填料的柱效和拆分能力仍有待提高。毛细管电泳(CE)技术凭借其高效、低样品消耗、分析快速、分离模式多样化等诸多优势,已经发展成为手性分离研究领域极具吸引力和应用前景的分析方法之一。紫外可见检测器(UV-Vis)是CE最常用的检测器,但是毛细管的光程长度较短,导致灵敏度较低,因此难以满足生物样品中痕量手性化合物的分析要求。激光诱导荧光检测器(LIF)可以提高检测的灵敏度,但是只适用于本身带有荧光或被荧光标记的物质。而毛细管电泳-质谱联用技术结合了CE的分离效率高、分析速度快、样品消耗低以及MS的高灵敏度和强结构解析能力,近些年来在蛋白质组学和代谢组学等领域发挥了重要作用。CE杰出的手性拆分能力与MS优势的结合,亦使CE-MS成为实现手性化合物高效分离分析的完美组合,尤其是在复杂生物基质中手性化合物分析的灵敏度和分辨率方面,为药物、医学以及食品科学等领域重要手性分子分析提供了新视角。手性CE-MS联用技术,在一次分析中能同时得到样品的迁移时间、相对分子质量和离子碎片等定性信息,解决了实际样品中未知手性化合物(包括无紫外吸收基团或荧光基团的手性化合物)的识别问题,在减少生物样品基质效应的同时,可以对多组手性对映体实现高通量分析。在过去的十几年里,基于不同CE-MS分离模式的高性能手性分析体系层出不穷,并成功应用于医药、生物、食品和环境科学等领域的手性化合物分析中。这篇综述着重评述了电动色谱-质谱(EKC-MS)、胶束电动色谱(MEKC-MS)和毛细管电色谱-质谱(CEC-MS)手性分离模式从2011年到2021年的最新发展和应用。综述介绍了CE-MS各种手性分析模式下的分离原理、手性选择剂以及在医药等领域中重要手性化合物的分析应用,并讨论了不同手性分析模式的局限性。最后总结了CE-MS联用模式在手性化合物分离分析中的应用前景。相比于广泛应用的HPLC-MS, CE-MS凭借其高效率、低消耗、高选择性、分离模式多样化等诸多优势,已发展成为手性分析领域应用前景广阔的分析方法之一,并且已成为HPLC-MS等其他经典手性分离方法的一个强有力补充技术。目前CE-MS手性分析的研究挑战之一是实现快速和超灵敏的手性分析。采用基于短毛细管的快速毛细管电泳(HPCE)结合在线样品富集有望解决这个难题。此外,CE-MS的不同手性分析模式大多数采用的是三管设计的鞘状流动界面,灵敏度较低。新进研发的新型界面技术,如通过微瓶辅助的界面流动、无套多孔尖端的设计以及CE-MS离子源的引入等,在提高手性化合物分析灵敏度方面显示出巨大应用前景。另一方面,开发同时对多种手性药物进行对映体分离、检测和定量的CE-MS手性分析方法,也是目前研究的重点和难点。这些研究将对开发制药工业中的通用方法和高通量分析生物样品中的手性药物及其手性代谢物具有重要意义,对手性药物和代谢物的药物-药物相互作用和毒性研究也具有指导价值。EKC-MS和MEKC-MS应用中的手性选择剂具有多样性,使其在新药开发和药物质量控制、药代动力学以及药效学研究中具有巨大的潜力。进一步开发MS友好、绿色和高选择性的手性选择将拓宽待分离手性化合物的应用范围。目前,CEC-MS手性分析研究中,研究者更多致力于开发用于整体柱或填充柱的新型毛细管手性固定相。使用功能化纳米颗粒增加CEC手性柱表面积以及CE-MS的微型化微芯片设备的研发,目前仍是尚未充分探索的领域,尤其在实际应用方面与相对更加通用的手性分离模式相比仍有较大差距。文章信息:色谱, 2022, 40(6): 509-519DOI: 10.3724/SP.J.1123.2021.11006迟忠美1, 杨丽2*1. 渤海大学化学与材料工程学院, 辽宁 锦州 1210132. 东北师范大学化学学院, 吉林 长春 130024
  • 华洋科仪手性光谱中心开幕庆典暨手性科学前沿学术报告会第二轮通知
    手性光谱中心开幕庆典暨手性科学前沿学术报告会详细日程安排及报告内容安排如下:  时间:2013年4月1日上午  地点:厦门大学化学化工学院报告厅  日程安排  8:30-9:00 注册报到  9:00-9:30 手性光谱中心开幕庆典  1)挂牌剪彩仪式  2)参观中心  9:30-9:55 厦大领导致辞、华洋科仪董事长致辞、美国BioTools董事长手性光谱中心简介  4月1日上午 报告主持人:厦门大学赵玉芬院士  10:00-10:35 大会报告“表面分子手性结构和形成机理研究”  报告人:万立骏院士(中科院北京化学所)  10:35-11:10 大会报告“Frontiers of Vibrational Optical Activity: From Absolute Configuration to Supramolecular Chirality in Protein Fibrils”  报告人:Laurence A. Nafie教授(美国雪城大学)  11:10-11:45 大会报告“Asymmetric Reduction for Efficient Drug Synthesis”  报告人:孙勇奎博士(美国默克公司)  11:45-12:00 合影留念  12:00-13:30 午餐(厦大餐厅)  时间:2013年4月1日下午  地点:厦门大学克立楼三楼会议室  日程安排 4月1日下午 上半场主持人:刘维屏教授 下半场主持人:何裕建教授  13:30-14:05 大会报告“手性金属配合物对DNA复制过程的调控”  报告人:何裕建教授(中国科学院大学)  14:05-14:40 大会报告“圆二色谱在蛋白质结构与功能方面的应用”  报告人:吕平江教授 (台湾清华大学)  14:40-15:00 茶歇  15:00-15:35 大会报告“手性POPs环境安全的对映体差异”  报告人:刘维屏教授(浙江大学)  15:35-16:10 大会报告“血清蛋白的手性识别盲点与反转现象”  报告人:章伟光教授(华南师范大学)  16:10-18:00 鸡尾酒会 主持人:华洋科仪齐爱华董事长  时间:2013年4月2日全天  地点:厦门大学化学化工学院报告厅  日程安排 4月2日上午 上半场主持人:车顺爱教授 下半场主持人:宛新华教授  9:00-9:35 大会报告“乙烯基芳香族单体的螺旋选择性聚合反应”  报告人:宛新华教授(北京大学)  9:35-10:10 大会报告“不对称硅氢化反应中不同理论方法的运用”  报告人:朱华结教授(河北大学)  10:10-10:25 茶歇  10:25-11:00 大会报告“非手性分子的手性聚集和手性放大”  报告人:江云宝(厦门大学)  11:00-11:35 大会报告“手性无机纳米材料的光学性质”  报告人:车顺爱教授(上海交通大学)  11:35-13:00 午餐(厦大餐厅)  4月2日下午 上半场主持人:吕平江教授 下半场主持人:江云宝教授  13:00-13:35 大会报告“二肽组装体及二氧化钛的手性”  报告人:杨永刚教授(苏州大学)  13:35-14:10 大会报告“手性分子与螺旋结构”  报告人:张健研究院(福建物构所)  14:10-14:45 大会报告“圆二色谱的理论解析方法和应用简介”  报告人:王越奎教授(山西大学)  14: 45-15:00 茶歇  15:00-15:35 大会报告 “ Theoretical predictions of VCD and ROA spectra of biomolecules”  报告人 Dr. James Cheeseman(美国高斯公司)  15:35-16:10 大会报告“磁圆二色谱(MCD)在非手性有机分子体系中的应用”  报告人:沈珍教授、游效曾院士(南京大学)  16:10-16:20 厦大领导致闭幕词  【大会报告嘉宾简介】  (按姓氏拼音顺序)  车顺爱 教授  (上海交通大学化学化工学院教授,博士生导师)  1964年生于吉林省安图县,毕业于吉林化工学院化学工程系,先后在吉林化工学院和吉林工学院从事化学工程教学和科研工作。在日本横滨国立大学获取材料工学博士学位。2003年到上海交通大学任教 2004年得到了国家自然科学杰出青年基金的资助 2005年被评为教育部长江特聘教授 2008被聘为瑞典斯德哥尔摩大学客座教授。任国际介孔材料协会理事。目前主持和承担国家自然科学基金和国家重大基础研究计划等多项课题研究。  车顺爱教授多年来从事介孔材料的研究,在科研实践中积累了较丰富的经验,取得了重要的研究成果。对介孔材料特别是对手性介孔二氧化硅材料的研究受到国内外著名专家和学者的认可,在世界高水平学术刊物上发表了多篇具有独创性和国际领先水平、并具有重要科学意义的学术论文, 对此领域做出了较突出的贡献。(i) 开辟了阴离子表面活性剂结构导向合成新型介孔材料的方法(Nature Materials, 2003, 2, 801-805.) (ii) 首次合成出手性介孔材料,提出了手性孔道概念(Nature 2004, 429, 281-284.),并证明了孔道中超分子螺旋印记的存在(Chem. Soc. Rev., 2011, 40, 1259-1268 Angew. Chem. Int. Ed. 2009, 48, 3069-3072) (iii) 合成出具有二维四方DNA-二氧化硅螺旋介观结构并解析了其形成机理(Angew. Chem. Int. Ed. 2012, 51, 923-927. VIP) (iv) 首次合成出螺旋TiO2,并提出基于电子跃迁引起的无机物光学活性概念(Nature Communication, 3:1215, DOI: 10.1038/ncomms2215, www.nature.com/naturecommunications)。  何裕建 教授  (中国科学院大学,化学与化学工程学院副院长、教授、博士生导师)  1963年4月生,湖南永州人,瑶族。2000年美国科学促进会(AAAS)年会会议出席奖(Travel Award)和2005/2006年度美国李氏基金会杰出成就奖获得者。  现为中国化学会理事(2010.11--),中国空间科学学会常务理事(2011.8--),中国化学会有机分析专业委员会副主任委员,中国空间科学学会生命起源与化学进化专业委员会副主任委员,国际多个学术刊物审稿人等。  何裕建先后分别获湖南师范大学、北京大学和美国华盛顿美利坚大学的化学学士(1983)、硕士(1992)和博士(2001)学位。先后任湖南省江永县职业技术学校教师(1983.6-1989.8)、中国科学院生物物理所助理研究员(1992.6-1994.11)、美国加州大学旧金山分校(UCSF)访问学者(1994.11-1997.8)和美国国家卫生研究院(NIH)博士后、访问研究员(2001.5-2004.12)。2004年12月回中国科学院任职创并建化学生物学实验室,2006年被批准成为中国科学院内的第一个“化学生物学”专业硕士和博士学位培养点。  提出和建立了“地球轨道手性”力学概念,可合理解释地球生命的分子手性起源与生物节律起源等难题 在生理条件下用实验确证了可能与人类衰老密切相关的染色体端粒DNA四螺旋结构的天然构象选择方式。至今发表学术论文百余篇。  目前主要研究兴趣为:1) 生物与有机分析化学、2)分子手性力学与组装、3) 生命起源与化学进化。  江云宝 教授  (厦门大学化学化工学院院长,教授,博士生导师)  1963年11月出生于安徽。1990年获得厦门大学理学博士学位(导师:陈国珍教授)后留校任教 2004年获得国家杰出青年基金,2006年被聘为“闽江学者”特聘教授。1994年5月至1995年5月受国家教委资助在德国马普生物物理化学研究所高访 1996年4月至1997年4月在香港大学支志明院士实验室从事大学博士后研究 1997年4月至1998年9月获德国洪堡基金,在马克斯普朗克生物物理化学研究所开展合作研究 2000年11月至2001年1月和2004年7 月至9月分别受德国国家科学基金会(DFG)和大众基金会(Volkswagen Foundation)资助在马普生物物化所合作研究 2006年7月和2007年2月分别于中研院原分所和英国Southampton大学学术访问2周 2008年5月任法国卡尚高师(ENS Cachan)邀请教授、2008年8-11月任国立新加坡大学化学系访问教授。  曾获中国化学会青年化学奖、第五届中国青年科技奖、国家教委科技进步三等奖、霍英东基金会高校青年教师奖、福建“运盛”青年科技奖、国务院政府特殊津贴、教育部高校青年教师奖和德国大众基金会研究基金。先后主持德国Humboldt基金、Volkswagen基金,国家科技部973课题,国家基金重点项目、重大研究计划、面上/青年基金、国际合作项目等,研究工作集中于质子电子转移光物理化学、超分子光化学荧光传感与分子识别、生物分子相互作用等。先后于“Chem. Soc. Rev.”、“Chem. Sci.”、“Org. Lett.”、“Chem. Comm.”、“J. Org. Chem.”、“J. Phys. Chem.”, “Langmuir”、“中国科学”等重要学术期刊发表论文140多篇,被他引2000多篇次。2001年起任《光谱学与光谱分析》、《分析测试学报》、《岩矿测试》、《分析化学》、《分析科学学报》、《高等学校化学学报》、“Photochem. Photobiol. Sci.”、《厦门大学学报》、《分析化学手册》等编委。担任国际荧光光谱学方法和应用大会(Method and application of fluorescence spectroscopy, MAF)程序委员会委员和Wiley出版之超分子化学大型丛书 “Supramolecular Chemistry: From Molecules to Nanomaterials” 国际顾问委员会委员。2002/2006年当选为中国化学会第26/27届理事、获聘中国化学会分析化学委员会委员、中国化学会光化学专业委员会委员 国家自然科学基金委员会第13届化学科学部专家评审组成员、国家留学基金委员会评审专家。  James Cheeseman 博士(美国)  (美国高斯公司资深应用专家)  毕业于美国威斯康星大学生物化学专业,加拿大McMaster大学获理论化学博士。1992年开始成为高斯公司研究科学家,主要研究不同电磁分子特性的发展与实现,包括NMR屏蔽张量,自旋偶极常数以及手性光学方法:VCD、ECD、OR、ROA.  Laurence A. Nafie 教授 (美国)  (《Journal of Raman Spectroscopy》杂志主编、美国雪城大学教授,博士生导师)  国际分子光谱领域著名的科学家,手性振动光谱的研究先驱和奠基人之一,担任多种国际学术刊物的编委。Nafie教授与国际企业进行广泛的合作,与Rina Dukor博士共同创建了美国Biotools公司,拥有丰富的产业化应用研究经验。  1973年在俄勒冈大学获博士学位,研究共振拉曼散射,自1973年至1975年在南加州大学做博士后,研究发明和证实红外振动圆二色性,1975年加入雪城大学化学系建立了VCD 和拉曼旋光性(ROA)研究项目,1978年被指定为Alfred P. Sloan基金会成员,1982年晋升为教授 1978年Nafie教授提议并实现了目前所有商业化VCD仪器基本原理的傅里叶变换VCD首次测量。1988年Nafie教授应用ROA首次测量了散射圆偏振(SCP),这就是目前唯一商品化的ROA光谱仪。1989年Nafie教授在理论上预言了ROA的一个新形态,称为双圆形偏振(DCP)ROA,并于1991年在他的实验室得到实验验证。  1995年Nafie教授成为由John Wiley & Sons 出版社旗下BioSpectroscopy杂志创始主编,随后成为BioPolymers副主编 Nafie教授先后获得Coblentz奖(1981)、Bomem Michelson奖(2001)、William F. Meggers奖(2001)、以及应用光谱领域杰出贡献奖(2007)等,今年3月荣获2013 Pittcon光谱学大奖。Nafie教授曾任Coblentz协会理事长,应用光谱协会理事长,2010年成为Journal of Raman Spectroscopy 杂志总编,2011年出版发行了题为Vibrational Optical Activity: Principles and Applications科学书籍,发表论文近300篇,发明专利数项。  刘维屏 教授  (浙江大学环境与资源学院院长、教授、博士生导师)  1958年生,江苏常州人,现任浙江大学环境与资源学院院长,浙江大学“求是学者”特聘教授,环境科学与工程学科负责人。2002年国家杰出青年基金获得者,浙江省高校“钱江学者”特聘教授、“151人才工程”第一层次人才,教育部创新团队带头人。  1978年9月至1982年7月 浙江大学化学系本科。  1986年9月至1989年5月 浙江大学环境化学硕士学位。  2006年7月日本东京农业大学应用生物化学论文博士学位。  刘维屏教授主要从事手性化学、有机环境污染化学与污染控制化学方面的科学研究。在国际上率先开展了手性农药环境安全研究。有关研究成果发表在《美国科学院院刊》等核心期刊上,被《科学》、美国《科技日报》、《环境科学与技术》、《科学时报》等国内外学术期刊与科技媒体作为科学新闻介绍与评述。现已发表SCI论文收录200余篇,先后赴德国、意大利、美国、日本等国家参加国际学术会议10余次,在国际会议上发表论文30余篇,出版著作3部。  吕平江 教授 (台湾)  (台湾清华大学学务长、台湾台湾清华大学生物信息与结构生物研究所教授、博士生导师)  1991年毕业于美国纽约大学化学系,获得生物物理博士学位,后进入美国加州大学柏克莱分校进行博士后研究。自1994年起任教于台湾清华大学生命科学系,曾任生科系系主任,生科院副院長,现任台湾清华大学学务长,並擔任台灣磁共振學會及台灣生物資訊學會理事長 授课领域包括结构生物、生物信息、蛋白质工程等 实验室主要研究方向有蛋白质结构及生物资讯学 脂质传送蛋白结构、折叠和功能性研究 葡聚糖之结合性肽设计 胃幽门杆菌结构基因体设计 生物资讯在结构生物上的应用等。吕平江教授在Science、Biopolymers、Biochemistry、Proteins、J Biol Chem、Acta Crystallogr Sect F Struct Biol Cryst Commun 等世界著名期刊杂志上发表各种高水平学术文章一百余篇。  Rina Dukor博士(美国)  (美国BioTools公司执行董事长)  1991年在芝加哥伊利诺伊大学获物理化学博士学位。主要研究生物分子的振动圆二色性,之后加入Amoco公司创立了一个光谱实验室,研究蛋白质与核酸。Dukor博士是将水溶性红外光谱引入生物制药工业判定蛋白二级结构的先驱,其所发明的方法商品化为PROTA,已被六十余家国际一流生物制药业公司采用。她还开发了用以癌症诊断的红外显微光谱。Dukor博士发表了50多篇综述性论文和数本综述性书籍,拥有四个发明专利,荣获各种奖励。现担任多个理事职务,如UIC LAS学院监事会理事,Scripps Florida的IBC监事会理事以及科学组织和公司的咨询委员会理事等。  沈珍 教授  (南京大学配位化学研究所、教授、博士生导师)  1969年3月出生。2000年获南京大学理学博士学位,2000年至2001年在德国雷根斯堡大学从事博士后研究,2001年至2003年在日本爱媛大学作JSPS长期特别研究员。2003年11月回国,任南京大学配位化学国家重点实验室副教授,2007 年12月起任教授,2008 年3月被评为博士生导师。主要研究方向为功能配位化学,特别是具有特殊光,电,磁性质的材料化学:包括新型高度共轭的卟啉化合物的合成及其电化学和光物理性质的研究 设计合成在近红外区域发光的多功能分子荧光开关、荧光传感器 用于染料敏化太阳能电池的有机D-π-A型染料的设计合成。2010年获国际卟啉与酞菁学会的“Young Investigator Award”,2008年 入选教育部“新世纪人才”,2004年获得中国化学会“青年化学奖”。在J. Am. Chem. Soc.、Angew. Chem. Int. Ed.等SCI刊物上发表论文80余篇。申请PCT专利一项以及中国发明专利11项。  孙勇奎 博士  (美国默克公司对外合作研发技术转让及并购大中华区副总裁)  1982年1月毕业于厦门大学化学系,获得化学学士学位,后就读于美国加利福尼亚理工学院,获得化学博士学位。毕业后,先后在美国华盛顿大学以及埃克森公司从事博士后研究工作。1993年孙博士在默克(Merck)公司开始其职业生涯。他拥有丰富的从业经验,管理过默克公司两个分支机构和五个部门,从过程扩展到过程化学,从默克公司中国战略发展部,到中国DPS的运营,近期则更多从事海外科学事务以及全球许可申请,担任美国默克公司对外合作研发技术转让及并购大中华区副总裁。  孙勇奎博士在默克公司主要致力于药物不对称氢化和交叉偶联反应的高效催化、反应工程以及为提升工艺研发速度而进行的高通量实验和通过原位动态监测有机反应进行反应机理研究,著有或合著74篇论文,包括JACS、PNAS和 Science。他是美国科学基金会(NSF)资助的默克与密西根州立大学合作的GOALI项目的默克方主要研究人员,也是美国科学基金会(NSF)资助的关于立体选择性碳-氢键功能化中心的顾问委员会成员。由于其杰出的研究成就,他获得的荣誉与奖项有:2005 年英国化学工程师协会阿斯利康绿色化学与工程优秀奖、2005 年和2006 年的美国总统绿色化学挑战奖(美国环境保护局,华盛顿),2009 年托马斯-爱迪生专利奖(新泽西研发委员会)。由于对于默克公司的贡献及领导能力,于2006 年获默克实验室最高奖“The Presidential Fellows Award”。  万立骏 院士  (中国科学院化学研究所研究员、博士生导师、中国科学院院士、第三世界科学院院士)  长期从事扫描隧道显微学、电化学和表面科学的交叉科学研究,将实验、仪器改造和理论研究相结合,发展了化学环境下的扫描探针技术,开展了电化学反应、电极材料、分子组装和调控等研究,提出了基于不同相互作用的表面分子吸附和组装规律,并应用于原子分子迁移、表面纳米图案化、表面手性、分子组装结构转化和调控等科学技术问题研究。同时,探索了电化学和纳米科学交叉研究新方向,致力于新型能源转化和存储器件的表界面化学、纳米电极材料制备方法学和材料结构性能的研究,设计制备了系列高性能铂基电极材料、金属氧化物材料和锂离子电池正负极材料等,并推动了该类材料在能源、环境保护和水处理中的应用研究。在包括Nature Comm.、Acc. Chem. Res.、PNAS、Angew. Chem.、JACS等学术刊物发表学术论文300余篇,科学出版社出版专著“电化学扫描隧道显微术及其应用”。获得过国家自然科学基金委员会“杰出青年基金”资助。应邀担任Acc. Chem. Res.、JACS、Adv. Mater.、Chem. Mater.、Chem. Comm.、PCCP、NANO、物理化学学报、高等学校化学学报等10余种学术期刊的编委或顾问编委,中国科学化学卷主编。担任大连理工大学、北京大学、日本东北大学、东京大学等大学兼职教授和访问教授。曾获第三世界科学院化学奖、国家自然科学奖二等奖、北京市科学技术一等奖、中国分析测试协会科学技术一等奖以及中国化学会-巴斯夫青年知识创新奖等奖项。获得中央国家机关五一劳动奖章、全国先进工作者等荣誉称号。被选为英国皇家化学会“Fellow”、中国电化学委员会主任、中国化学会副理事长、环太平洋国际化学大会国家代表、SPM系列国际会议组委会委员等。  宛新华 教授  (北京大学化学学院高分子科学与工程系系主任、教授、博士生导师)  安徽寿县人,1964年出生,1981.9-1985.7年合肥工业大学化学工程系学士学位 1985.9-1988.2年中国纺织大学化学纤维工程系硕士学位 1988.3-1991.8年中国纺织大学化学纤维工程系博士学位 1993年8月北京大学化学系博士后。曾获得1997年国家自然科学三等奖,1998年国务院政府特殊津贴,1999年教育部跨世纪优秀人才培养计划,1999年高等学校优秀青年教师教学与科研奖励计划基金暨首届“高校青年教师奖”,2003年获国家杰出青年基金,2004年入选首批新世纪百千万人才工程国家级人选2007年获中国化学会高分子科学创新论文奖,入选2009年度长江学者特聘教授。  宛新华教授现任北京大学化学学院高分子科学与工程系系主任。主要研究方向为:可控自由基聚合反应,液晶高分子,光学活性高分子,刚柔嵌段共聚物/低聚物的多层次自组装,具有控制结构、确定形状的高分子的合成及功能化。  王越奎 教授  (山西大学分子科学研究所、教授、博士生导师)  中国化学会会员,山西大学化学生物学与分子工程教育部重点实验室结构与理论化学平台负责人。  1982年1月于山西大学化学系物理化学专业毕业,获理学学士学位。1984年8月研究生毕业,获南京大学理学硕士学位。此后在山西大学分子科学研究所任教。1999年10月赴德国留学,2003年1月于德国Aachen工业大学理论化学专业毕业,获理学博士学位。  主要研究领域为理论无机化学、结构化学和配合物化学。曾主持完成国家自然科学基金和山西省自然科学基金等项目。有关研究获山西省科技进步理论一等奖和二等奖各一项,技术转让成果一项。先后发表论文60余篇。1993年10月经国务院批准获“政府特殊津贴”。2003年2月至2005年底,先后在德国Aachen工业大学和Dresden工业大学工作,从事低k介电材料的理论研究。有关研究获Aachen工业大学著名的Borchers-Plakette奖。2005年底回国。期间出版专著《Application of the Time-Dependent Density Functional Theory to the Study of Chiroptical Properties of Organic and Inorganic Compounds》,德国Shaker Verlag出版社,Aachen 2003, ISBN 3-8322-2171-9。  现主要从事圆二色谱的理论解析和纳米材料力学性质的理论研究。  杨永刚 教授  (苏州大学化学化工学院教授、苏州大学手性化学实验室负责人、博士生导师)  1971年出生。1993年吉林大学化学系高分子化学与物理专业本科毕业,1996年吉林大学理论化学研究所物理化学硕士研究生毕业,获硕士学位,1999年中科院上海有机化学研究所博士研究生毕业,获博士学位,1999年7月至2001年11月中科院上海有机化学研究所,助研,2001年12月至2006年8月相继在法国Laboratoire Hétérochimie Moléculaire et Macromoléculaire(UMR-CNRS5076),ENSCM,日本奈良先端科技大学院大学和日本信州大学作博士后。2006年9月至现在,为苏州大学化学化工学院高分子化学与物理专业博士生导师。主要研究方向为:分子自组装和单手螺旋纳米结构的控制与应用。2004年至今发表J. Am. Chem. Soc.2篇、Angew. Chem. 1 篇、Chem. Commun. 11篇、Chem. Mater. 2篇、Macromolecules2篇、J. Mater. Chem. 2篇和Nanotechnology 4篇。获国家自然科学基金面上基金二项、江苏省自然科学基金一项。并荣获教育部2008年度“新世纪人才”和苏州大学周氏科研教育奖。  张健 研究员  (中科院福建物质结构研究所研究员、博士生导师)  1978年生于湖南,博士生导师。2001年7月在厦门大学化学系本科毕业。2001年9月至2006年7月硕博连读于中国科学院福建物质结构研究所,获博士学位。2006年10月至2009年9月在美国加州州立大学长滩分校化学与生物化学系和Prof. Xianhui Bu(卜贤辉)课题组开展手性与微孔材料方面的博士后研究工作。2009年9月获聘福建物质结构研究所“百人计划”回国工作,现任结构化学国家重点实验室研究员,课题组长。已在系列国际知名期刊上发表第一/通讯作者论文80多篇,其中30篇发表在J. Am. Chem. Soc.和Angew. Chem. Int. Ed.等期刊上,多篇论文被选为期刊封面或热点论文,论文被他人引用超过2000次。2011年先后获得第十一届福建青年科技奖、中国化学会青年化学奖和Scopus青年科学之星铜奖 2012年入选福建省引进高层次创业创新人才、第三届“中科院上海分院系统杰出青年科技创新人才”和中组部首批“青年拔尖人才支持计划”,以及获得第十九届运盛青年科技奖。主要研究方向为类分子筛功能材料和手性多孔催化材料。  章伟光 教授  (华南师范大学化学与环境学院教授、特种材料研究所所长、博士生导师)  1963年11月出生,汉族,江西省南昌市人,兰州大学理学博士,现任华南师范大学特种材料研究所所长、教授、博士生导师,华南师范大学教学名师。广东省精品课程--“无机化学”负责人。中国稀土学会理事,广东省化工学会常务理事。曾任加利福尼亚大学伯克利分校(UC Berkeley)劳伦斯国家实验室客座科学家、新加坡国立大学化学系研究科学家, 兰州大学兼职教授。  主持完成和在研项目,包括科技部、国家自然科学基金、省、部、厅级达三十余项,在“Biosensors and Bioelectronics”,“ ACS Appl. Mater. Interfaces,”,“Journal of Chromatography A”, “Crystal Growth and Design”,等学术杂志上发表论文130余篇。独立出版学术专著《稀土精细化工产品生产技术》。主编《无机化学》、《综合化学实验》等教材。获国家发明专利5项、申请5项。获省部级二等奖两项。  目前主要研究方向:手性分子识别与分离材料的研究 手性晶体工程,新型高分子防护材料的研制。其中手性分离产品与技术和相关企业合作实现产业化,在多家上市制药企业、高校和研究单位推广应用。  朱华结 教授  (河北大学药物化学与分子诊断教育部重点实验室副主任、教授、博士生导师)  1983-1990:武汉大学本科、硕士。  1993-1996:中科院昆明植物所博士,期间到香港科技大学化学系戴伟民课题组学习。  1999-2002:美国密西西比州立大学博士后,助理研究教授(Assistant research professor)。  2003-2011:中科院昆明植物所,“百人计划”。  主要从事天然药物化学分子的发现、结构鉴定与改造,手性药物分子合成与手性催化剂的设计与合成研究。主要应用不同的理论方法解决天然药物化学研究中的的关键科学问题。例如,对于天然复杂化合物的手性鉴定,采用旋光(OR),圆二色谱(ECD),以及振动圆二色(VCD)等方法探讨不同的立体构型。同时,对于部分非环的手性分子,由于其众多稳定构象引起以上三种方法的计算困难,建立了适合于非环手性分子的矩阵模型,并应用于不同的非环手性分子的鉴定,到目前为止,计算的120余个非环手性分子的结果均正确。设计并合成出了新型的手性催化剂,并应用于不同的不对称加成与应用,通过理论计算不同的过渡态结构与能量等,解释并纠正以前出现的错误结论。朱华结教授对于生命起源中的手性起源有着非常浓厚的兴趣,并进行了相关的有机合成方面的探究,发现了一些有价值的结果。回国以来分别获得云南省自然科学二、三等奖各一项,云南省政府津贴,科学院“王宽城西部突出人才奖”等,发表SCI论文70余篇,著有《现代有机立体化学》,将理论结合实验的工作体会,一并介绍在书中。该书被列为科学出版社的重点图书,亦是我国研究生创新教育丛书,得到了广大读者的喜爱与支持。
  • 中科院上海有机化学所游书力团队在手性分子精准合成领域取得新突破
    仪器信息网讯 中国科学院上海有机化学研究所游书力团队利用金属铱催化剂的反应特点,从易得的Z—烯丙基酯原料出发,实现了含有Z—烯烃手性化合物的精准合成。该研究揭示了全新的不对称烯丙基取代反应模式,为含有Z—烯烃结构单元的手性分子提供了一个通用的合成策略,有望应用于药物化学、天然产物合成等领域。该研究成果以“铱催化Z式保留不对称烯丙基取代反应(Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions)”为题,于2021年1月22日在《科学》(Science)上在线发表。论文链接:https://science.sciencemag.org/content/371/6527/380#login-pane图1 (A) 含有Z-烯烃的手性天然产物和生物活性分子 (B) 过渡金属催化不对称烯丙基取代反应  过渡金属催化的不对称烯丙基取代反应可以便捷地实现含有烯烃结构的手性分子合成。在过渡金属催化的烯丙基取代反应中,Z-烯烃底物与金属发生氧化加成可先形成热力学不稳定的anti-π-烯丙基金属络合物,随后该物种通过“π-σ-π”异构化实现烯丙基构型翻转生成热力学稳定的syn-π-烯丙基金属络合物。一般情况下,亲核试剂进攻syn-π-烯丙基金属络合物,会得到以E-烯烃直链或末端烯烃支链为主的产物,因此高选择性地得到含有Z-烯烃的手性产物十分挑战(下图1B)。  游书力团队基于金属铱催化的烯丙基取代反应机理研究,发现π-烯丙基铱络合物的构型翻转较慢,Z-烯烃底物形成的anti-π-烯丙基铱络合物在发生异构化之前可以被亲核试剂捕获,从而实现了铱催化Z式保留的不对称烯丙基取代反应。他们使用Z-烯丙基底物,N-甲基保护的色醇衍生物为前手性亲核试剂,探究了铱催化Z式保留的不对称烯丙基取代反应。经过一系列条件筛选,反应能以20/1的Z/E比,83%的分离收率以及93% ee的对映选择性获得含有Z-烯丙基片段的目标化合物。值得一提的是,不同的色醇,色胺以及带有亲核碳边链的吲哚衍生物均可以参与反应,并以优秀的Z/E比和对映选择性控制得到目标化合物(图2,底物拓展大于50个例子)。  图2 铱催化吲哚衍生物的Z式保留不对称烯丙基取代反应  在进一步的机理研究中,他们通过核磁共振磷谱(31P NMR)和质谱实验观察到在三氟甲磺酸的促进下,一价铱物种可以与Z-烯丙基前体发生氧化加成生成anti-π-烯丙基铱络合物,并且该络合物在室温下可以逐渐异构化为热力学稳定的syn-π-烯丙基铱络合物(图3)。此外,若向含有anti-π-烯丙基铱络合物的反应体系中加入亲核试剂,该物种的磷谱和质谱信号均会立即消失,同时质谱上可以监测到产物信号。这进一步证实了π-烯丙基铱络合物接受亲核试剂进攻的速率远大于其异构化速率,即anti-π-烯丙基铱络合物异构化为syn-π-烯丙基铱络合物之前便可被亲核试剂捕获,生成含有Z-烯烃的手性产物。  图3 anti-π-烯丙基铱络合物的生成及异构化过程的表征  这种Z式保留不对称烯丙基取代反应模式具有很好的普适性。通过对催化剂和反应条件的调控,醛亚胺酯也可以作为前手性亲核试剂用于铱催化Z式保留不对称烯丙基取代反应,为含有Z-烯烃的手性氨基酸衍生物提供了一种高效合成方法(图4)。  图4 铱催化α-氨基酸衍生物的Z式保留不对称烯丙基取代反应
  • 国产科研用试剂:想说爱你不容易
    作为一家三甲医院实验中心的科研人员,多年来,与各种科研试剂打交道是龙洋的&ldquo 家常便饭&rdquo 。然而这样的&ldquo 家常便饭&rdquo 有时候吃起来却并不是那么轻松。  &ldquo 为了订购一个进口试剂,有时候一等就是十天半个月,最长的一次,等着试剂调剂等了足足一个月,实验都没办法按预期完成。&rdquo 说起这些心酸往事,龙洋忍不住跟记者抱怨,&ldquo 要是国产的试剂能赶上外国公司的质量,我才不会既花高价又费时间等着用外国的呢!&rdquo   &ldquo 一般的常用试剂我们会用国产的,但是高端的试剂还是会选择国外大公司的,一方面是因为国内还没有哪家试剂公司能够生产高端试剂,另一方面,即使有,我们为了保险起见,一般也会选择国外的,它有质量保证,做出来的科研成果才更有说服力,发表论文时,国外的学术期刊也才会考虑。&rdquo 被科技日报记者问及&ldquo 实验室里国产试剂与外国试剂哪个用得更多&rdquo 时,北大某教授实言相告,并且一语中的。  龙洋和北大教授的一致选择反映了一个不争的事实:多年来,我国科研用试剂品种少、质量不稳定、市场认可度低,高端科研用试剂主要依赖进口的局面一直没有得到有效改观。  8年努力促质与量齐升  &ldquo 事实上,从2006年国家推进国产科研试剂研发工作8年来,国产科研用试剂的品种和数量已有了很大提高。以化学试剂为例,国产试剂数量从2006年仅有的3000种左右跃升至目前的3万多种。国产原创试剂领域,2006年的品种数量几乎为零,但经过8年的研发,截至目前我国已能生产出3000种左右。&rdquo 在日前召开的科技部国家产业技术创新战略试点联盟&mdash &mdash &ldquo 科研用试剂产业技术创新战略联盟&rdquo 协同创新推进会上,北京牛牛基因技术有限公司董事长牛刚透露了上述信息。  科技部条财司副司长吴学梯介绍说,科研用试剂具有品种多、批量小、高附加值的特点,对质量要求很高。为了更好聚集资源,促进我国科研用试剂的产业化发展,从&ldquo 八五&rdquo 开始,科技部就积极探索支持国产科研用试剂的研发。尤其是&ldquo 十一五&rdquo 以来,科技部通过科技支撑计划等渠道,启动支持科研用试剂的研发与市场化工作,希望通过国家的持续支持与引导,从根本上解决我国科研用试剂依赖进口、品种少、质量不稳定、市场认可度低的突出问题。  吴学梯透露,&ldquo 在&lsquo 十一五&rsquo 和&lsquo 十二五&rsquo 期间,科技部分三期通过国家科技支撑项目支持国产科研用试剂的研发,取得了阶段性的成果,不仅在数量上得到了很大提高,而且在试剂的水平上也得到了很大提升。其中,国产无抗生素奶检测试剂及疫苗杂蛋白检测试剂达到了国际水平,而我国自主研发的全新癌症定量检测试剂盒更是处于国际领先水平。&rdquo   整体提升质量势在必行  尽管8年努力,促进国产科研用试剂质与量齐升,吴学梯认为,必须客观科学地分析我国科研用试剂发展的现状与存在的问题:一方面,一些国产科研用试剂缺乏完备的质量控制和质量保证体系,产品质量良莠不齐,导致科研结果的可靠性常常得不到很好的保证,因而缺乏市场竞争力 另一方面,高端试剂依然被外国公司所垄断。  &ldquo 进口试剂在一定程度上满足了我国科研用试剂的迫切需求,节省了时间和人力资源,对促进我国科学技术、医疗卫生、检验检测等领域较快发展,起到了一定的积极作用。但随着我国科研投入的加大,以及人们对食品、健康、环境等民生问题的重视,对试剂的需求也越来越大,如果继续依赖进口,相关领域的科研和生产活动必然受到制约。&rdquo 吴学梯认为,加快国产科研用试剂的发展,整体提升国产科研用试剂的质量势在必行。  为了推动国产科研用试剂的产业化发展,2005年,科技部组织相关专家开始了科研用试剂的调研工作, 2006年开始正式推动该工作 2011年10月,科研用试剂产业技术创新战略联盟成立 2013年11月,科技部批准该联盟为国家产业技术创新战略试点联盟之一。  构建联合试剂物联网大有可为  &ldquo 科技部863、973、科技支撑计划,以及国家自然科学基金等都对科研用试剂的发展提供了良好的发展平台。&rdquo 牛刚告诉科技日报记者,在这些平台的支持下,该联盟构建了科研用试剂产业链创新体系,初步完成了联盟标准体系建设,建立了面对市场平台的联合应用试剂物联网(UAR),同时还培养了一支专业人员队伍,建立了包括有机化合物和中间体试剂 、分离材料和柱填料、高纯溶剂等12个研发、检测与技术服务平台,而这些平台又通过UAR联合应用试剂物联网向社会提供服务。  吴学梯说,推动国产科研用试剂的产业化发展,一方面需要尊重科研用试剂发展的自身规律,以企业为主体,围绕产业技术创新链,运用市场机制集聚创新资源,实现企业、大学和科研机构等在战略层面有效结合,共同突破产业发展的技术瓶颈,提升产业整体竞争力。另一方面,要充分利用联盟这种组织形式,加快科研成果迅速向现实生产力转化 以质量保障体系建设为抓手,创新研发机制,提高服务意识,开展品牌建设工作,使UAR成为公认的高品质试剂的代表,为我国创新驱动发展战略的实施提供有效支撑。
  • 国产科研用试剂:未来的路怎么走
    “十三五”期间,科研用试剂领域哪些工作需要重点跟踪?哪些方面需要站在国家的高度进行布局?又有哪些技术应该放手交给企业去做?是以高端引领研发为主还是与牵制、替代工程齐头并进?   9月7日,在北京举办的科研用试剂领域“十三五”国家科技计划专家研讨会上,来自科技部、国内知名高校、科研院所以及相关企业等的70余名专家,就“十三五”期间我国科研用试剂的发展规划展开了热烈讨论。  国产试剂难占高端领域“一席之地”  近年来,中国作为全球经济快速发展的引擎之一,带来了一个巨大的科研用试剂市场:试剂及相关产品的需求年增长率达到了10%—15%,成为名副其实的“朝阳产业”。  然而,高端科研用试剂领域却难觅国产试剂踪影,成为制约国产试剂发展的最大“瓶颈”之一。  解放军总医院检验中心主任颜光涛透露,其所在医院临床所用的科研用试剂几乎被罗氏等四大国际巨头公司所垄断。以其所在的检验中心为例,每年都会花费近3亿元人民币向这四大国际巨头订购试剂。除了该中心,医院里还有其他五六个科室也需要订购这些试剂。  由此看来,试剂市场的需求不容小觑。但面对如此巨大的市场需求,国内企业为何难占一席之地?颜光涛认为,这与国内试剂质量不够稳定、缺乏相应的检测标准导致市场认可度较低有关,尤其是高端科研用试剂领域的研发,国内企业几乎鲜有涉足,因而依赖进口的局面一直没有得到有效改观。  对此,上海第六人民医院研究员汪泱告诉记者,她们在科研中用到的干细胞培养试剂几乎都需要依赖进口。然而随着干细胞应用的逐步广泛推进,越来越多培养试剂的问题制约着干细胞的发展。汪泱认为,国产培养试剂只有实现标准化、体系化,建立起一套统一的培养体系和鉴定标准,才能推动这个领域的国产化发展。  但在中国计量科学研究院国家标准物质研究中心主任张庆合研究员看来,有很多试剂并不是国内做的不好,而是缺乏一套令人信服的检测技术和标准体系。对此,北京医院老年病研究所副所长郭建也有着同样的观点。他认为,在目前经常用到的几千种检测试剂中,很难找到国内标准品的踪迹,需要在研发的同时建立一套包括原材料的标准体系,才能在试剂市场中具备一定竞争力,取得一席之地。  整体提升国产试剂质量势在必行  “科研用试剂具有品种多、批量小、高附加值的特点,对质量要求很高。”科技部国家科技基础条件平台中心卢凡处长透露,为了更好聚集资源,促进我国科研用试剂的产业化发展,从“八五”开始,科技部就积极探索支持国产科研用试剂的研发。尤其是“十一五”以来,科技部通过科技支撑计划等渠道,启动支持科研用试剂的研发与市场化工作,希望通过国家的持续支持与引导,从根本上解决我国科研用试剂依赖进口、品种少、质量不稳定、市场认可度低的突出问题。  卢凡客观分析了我国科研用试剂领域的发展现状:一方面,一些国产科研用试剂缺乏完备的质量控制和质量保证体系,产品质量良莠不齐,导致科研结果的可靠性常常得不到很好的保证,因而缺乏市场竞争力 另一方面,高端试剂依然被外国公司所垄断。  进口试剂在一定程度上满足了我国科研用试剂的迫切需求,节省了时间和人力资源,对促进我国科学技术、医疗卫生、检验检测等领域较快发展,起到了一定的积极作用。但卢凡认为,随着我国科研投入的加大,以及人们对食品、健康、环境等民生问题的重视,对试剂的需求也越来越大,如果继续依赖进口,相关领域的科研和生产活动必然受到制约。  未来的路该怎么走?在卢凡看来,今后,加快国产科研用试剂的发展,整体提升国产科研用试剂的质量势在必行。  卢凡介绍说,为了推动国产科研用试剂的产业化发展,2005年,科技部组织相关专家开始了科研用试剂的调研工作,2006年开始正式推动该工作 2011年10月,成立科研用试剂产业技术创新战略联盟 2013年11月,批准该联盟成为国家产业技术创新战略试点联盟之一。  数据显示,从2006年国家推进国产科研用试剂研发工作9年来,国产科研用试剂的品种和数量都有了很大提高。以化学试剂为例,国产试剂数量已从2006年仅有的3000种左右跃升至目前的3万多种,而国产原创试剂领域经过多年的研发,已能生产出3000种左右。  “现在,我们已经对科研用试剂产业的前中后端发展有了一些思考,对于这个领域‘十三五’的发展重点也有了一定思路,但我们还需要搞清楚哪些工作需要重点跟踪,哪些领域需要国家战略布局,切实做好政产学研的有机结合。”卢凡说。
  • HORIBA 用户动态 | 基于电子拉曼散射谱的金属性单壁碳纳米管手性结构测定
    撰者:张达奇拉曼光谱是探测单壁碳纳米管性质的重要手段。通过G模的峰型判定碳管的导电性(金属或半导体)和通过RBM模的拉曼频移计算碳管管径,是碳管拉曼光谱的两大主要应用。但是要通过分析拉曼光谱精确获得碳管的手性指数(n,m)仍然具有挑战,尤其是在仅有少波长激发的情况下。北京大学化学与分子工程学院李彦教授-杨娟副教授团队利用实验中观察到的金属管两个电子拉曼散射峰(ERS),发展了一种便捷、精确的金属管(n,m)指认方法。利用此方法,研究者可以只通过单一波长激发的拉曼光谱精确指认出金属管的(n,m),从而进一步建立起金属管光学、电学性质的手性结构依赖性。两个ERS峰的发现实验中作者首先对悬空的单根金属管进行了透射光谱测试以确定其电子跃迁能(Mii)的数值。在同一根碳管的拉曼光谱中可以分辨出分别位于M11+和M11-的两个ERS峰(图1a),这是对单根金属管两个ERS峰的报道。该峰源于金属管费米能级附件的电子对光生激子的非弹性散射作用,并在Mii处发生共振增强(图1b)。图1. (a)单根(13,7)碳管的拉曼光谱(红线:激发波长633 nm;绿线:激发波长532 nm)和透射光谱(黑线)。(b)碳管的声子拉曼散射(紫色箭头)和电子拉曼散射(蓝色与红色箭头)过程示意图。18种不同手性碳管Mii数值的获得基于以上发现,作者对不同(n,m)的碳管进行了测试。利用HORIBA Aramis拉曼光谱仪自动线mapping功能可以对悬挂于镂空沟槽上的碳管进行有效的定位和光谱测试。实验中一共得到了18种不同(n,m)的Mii数值,并拟合得到了定量关系式,为今后金属管指认提供了重要参考数据。此外,作者收集了11个(12,9)碳管的数据,发现管束、积碳等因素对碳管拉曼光谱有较为显著的影响。统计获得的ωRBM和M11波动差标示在图2b中。虽然M11受环境影响较大,但是M11的裂分值(即M11+- M11-)受环境影响的变化仅有±4meV。图2 (a)2n+m=33金属管的拉曼光谱,激发波长633 nm。蓝色虚线表示对ERS峰的拟合。(b)通过ERS指认的18个金属管(红色数据点)。基于ERS的拉曼光谱的优势相比于现有的瑞利散射光谱、偏振吸收光谱、可调激光拉曼等适用于单根碳管测试的谱学方法,基于ERS的拉曼光谱拥有以下三大优势:1仪器需求简单,测试便捷在该工作中,作者使用了HORIBA Aramis拉曼光谱仪,配备532nm、633nm、785nm三个常见的激发波长,通过仪器全自动切换,即可测试得到1.4-2.3 eV范围内的跃迁能数值。类似的显微拉曼光谱仪还有HORIBA XploRA, LabRAMHR Evolution型光谱仪,均可以满足相关研究者的需求,测试不再依赖于复杂的仪器搭建和调试。2测试精度高得益于HORIBA拉曼光谱仪的高分辨率和良好的噪声抑制水平,通过ERS测定Mii的误差仅为±1meV,远优于常见的瑞利散射光谱等电子光谱学手段~10 meV的误差。 3样品适用范围广针对硅基底上、表面活性剂包裹的、管束中的碳管作者在实验中均能测试得到ERS峰。图3 (a)单根(12,9)碳管(黑线)及含有(12,9)碳管的管束(绿线)的拉曼光谱,激发波长633 nm。(b)同一根金属管在悬空部分(黑线)和硅基底上部分(红线)的拉曼光谱,激发波长633 nm。此项研究工作得到了国家自然科学基金会和科技部的支持。相关工作发表在《Physical Review B》和《ACS Nano》上:Daqi Zhang, Juan Yang, EddwiHasdeo, Can Liu, Kaihui Liu, Riichiro Saito, Yan Li, Multiple electronic Raman scatterings in a single metallic carbon nanotube. Phys. Rev. B, 93, 245428 (2016).Daqi Zhang, Juan Yang, Meihui Li, Yan Li, (n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 10, 10789–10797 (2016). HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 二维液相色谱丨含碘造影剂,你的微量手性杂质我来查
    导读最近看到一则新闻,某患者因为肺部感染、哮喘,到医院放射科做了CT平扫,发现有一肺部肿块,医生建议再做个增强CT来进一步确定疾病的性质。那么,新闻中所说的增强CT究竟是什么呢?其实,增强CT就是指在CT平扫基础上,对发现的可疑部位,在经静脉注入含碘造影剂后,进行有重点的检查。也许您有疑问,为什么要注入含碘造影剂呢?它的安全性又如何控制呢? 为什么要注入含碘造影剂呢?含碘造影剂具有密度大的特点,经静脉注射进入体内后,因为病变组织内或血管丰富或血流缓慢而在病理组织中停滞、积蓄,使病变组织与邻近正常组织间的密度对比增加(即影像上黑白对比增加),CT图像能够更加清楚地显示组织血流和病变情况,以帮助鉴别疾病的良、恶性,提高病灶的定性能力,从而提高诊断准确率。 含碘造影剂小科普l 含碘造影剂的变迁自20世纪50年代被发现后,含碘造影剂经历了第一代的离子型造影剂飞跃到非离子型单体造影剂,再次飞跃到非离子型二聚体造影剂的过程。 图1 4种碘化CT造影剂的化学结构:离子单体、离子二聚体、非离子单体和非离子二聚体 目前被广泛用于临床的非离子型造影剂,如碘帕醇、碘海醇、碘普罗胺、碘曲轮、碘克沙醇等,具有毒性低、性能稳定、低渗等渗、耐受性好等优点。 l 碘帕醇的手性构型碘帕醇是一种非离子型水溶性碘造影剂,具有良好的显影作用,对血管壁及神经组织毒性低,化学性质稳定,不良反应较少,适应范围广。 碘帕醇(CAS号:66166-93-0)有1个手性中心,两个异构体(S-构型、R-构型),结构式见图2。碘帕醇中的R-碘帕醇含量增加会使碘帕醇注射液黏度升高,进而导致碘帕醇注射液的不良反应增加。因此控制不良构型的含量是碘帕醇及其他含碘造影剂质量控制的关键步骤。 图2 碘帕醇的S构型(左)和R构型(右) l 碘帕醇的一维手性分离探索利用色谱柱中手性固定相对异构体的吸附速度不同实现的色谱分离是常用手段。以Chiralpak MA(+)色谱柱和硫酸铜溶液为流动相建立碘帕醇的分离,R/S-碘帕醇分离结果如图3所示。 图3 250 mg/L浓度的R-碘帕醇样品溶液 (1)和S-碘帕醇样品溶液(2) 的1stD LC色谱图 通过分离结果可以看到,该手性分离体系能在20 min内实现碘帕醇两种构型的手性分离,但和多数液相手性分离的色谱行为相似,存在柱效较低的问题,因此在定量分析中对于含量较低的待测物的检出存在不足。 岛津解决方案对于类似碘帕醇这样的分子结构提示其可在反相色谱上有良好保留,因此考虑构建手性色谱体系和反相色谱体系的二维液相色谱系统,对已获分离的异构体杂质再次进行反相色谱分离以提高检测的灵敏度。 l 手性构型的二维分离 l 分离结果解析R-碘帕醇溶液(0.5 mg/L)2D LC 分析色谱图 5-10min间为R碘帕醇在1维液相上的保留,可以看到该浓度下无明显色谱峰,无法进行定量分析。经过阀切换将R碘帕醇在1维液相上的组分切入二维后,通过反相色谱作用,可以在16.5min左右发现明显的色谱峰同手性分离的 1 stD LC 结果相比,经过二维液相色谱分离的 R-碘帕醇灵敏度较之有 10 倍的提升。 结语药物杂质的高灵敏检查是控制药物纯度,提高药品质量的一个非常重要的环节。为了让含碘造影剂更加安全的为患者服务,岛津的二维液相色谱系统可发挥作用,弥补手性色谱柱效不足的缺点,既获得两种异构体的有效分离,又在经过反相色谱分离中获得良好响应。 撰稿人:李月琪 本文内容非商业广告,仅供专业人士参考。
  • 研究提出利用拉曼光谱区分不同手性虾青素分子的新方法
    来源: 合肥物质科学研究院近期,中国科学院合肥物质科学研究院研究员黄青课题组与中科院海洋研究所合作,提供了一种利用拉曼光谱区分虾青素这种具有多晶型的手性生物大分子的简便方法。相关研究成果以《全反式虾青素光学异构体的DFT和拉曼研究》为题,发表在Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。  有研究表明,不同手性的虾青素具有不同的生物活性和功能。例如,左旋虾青素比右旋和内消旋虾青素具有更高的抗氧化性和抗衰老活性,可见识别虾青素的手性十分重要。目前,区分手性的技术较少,一般采用高效液相色谱来识别,但其分析耗时长,所需样品量较多。因此,探索识别虾青素手性的新技术十分必要。不同手性虾青素分子的结构和拉曼光谱  科研人员利用拉曼光谱技术,提出一种区分左旋、右旋和内消旋的全反式虾青素的方法。研究发现,利用拉曼光谱观察到不同手性虾青素在1190cm-1和1215 cm-1谱带的相对强度有区别,对此强度分析可以快速鉴别三种手性同分异构体的虾青素。结合计算分析,研究推测这三种手性虾青素由于分子间相互作用不同处于不同的晶型,由于三种分子的构象之间不再保持镜面对称,从而导致拉曼光谱有所区别。  研究工作得到国家自然科学基金和安徽省自然科学基金的资助。国家标准《拉曼光谱仪》起草单位——奥谱天成提供最全的拉曼光谱仪系列,无论是从小到火柴盒的“掌上拉曼”到大至4激发波长的“共聚焦显微拉曼”,还是从应用于毒 品、药品检测的“手持拉曼”到实验室100个样品全自动检测的“高通量拉曼”,都能实现用国产拉曼技术满足您的应用定制需求!
  • 数亿元D+轮融资!微远基因将建分子诊断试剂仪器基地,持续发力病原精准诊断赛道
    近日,微远基因宣布成功完成数亿元人民币D+轮融资,由科泉基金领投,天心基金跟投。本轮募集资金将主要用于推动病原分子精准诊断产品的研发与IVD化,加速整体解决方案在全国顶级医疗机构的落地开展。同时,微远基因将新建先进的分子诊断试剂和仪器生产基地。微远基因成立于2018年,专注于基因诊断领域与感染精准医疗,着力构建基于基因组学,影像组学与EMR大数据的感染性疾病AI诊断体系,为临床提供感染精准诊断综合解决方案。公司目前已建成超过10,000㎡的研发中心、医学检验实验室和体外诊断产品GMP生产基地,并在北京、上海、广州、郑州、成都等多地设有检测中心和分支机构。公司已累积了超过40万例的病原宏基因组学大样本数据,并参与了如新冠病毒等重大病原的早期发现鉴定工作。微远在多个分子诊断技术平台上砥砺创新,拥有多款自主研发的仪器和试剂。在病原精准诊断领域,根据不同临床场景与需求推出适宜产品:基于随机测序的病原宏基因组技术(mNGS)检测产品IDseq Prime,基于随机测序和探针靶向测序(mNGS+tNGS)的产品IDseq Ultra和基于探针捕获靶向测序(tNGS)的产品 IDseq Focus。2022年来,公司接连获批国家药品监督管理局三类医疗器械注册证,实现了从“检测试剂-测序仪-分析软件”的全流程资质认证。微远基因具有丰硕的研究转化成果与完整的知识产权布局,已累计发表高分 SCI 文章超70篇,已获发明专利和实用新型专利授权近50项,及软件著作30项。凭借过硬的技术实力和卓越的质量管理水平,微远连续三年满分通过国家卫健委临检中心组织的mNGS室间质评考核,并于2024年3月顺利通过美国病理学家协会(CAP)病原宏基因组学检测(mNGS)项目复评审。微远基因先后与中国医学科学院、北京协和医院、解放军总医院、上海瑞金医院、武汉同济医院、中山大学附属第一医院、浙江大学医学院附属第一医院、上海儿童医学中心、复旦大学儿科医院等顶级临床院所建立了深入的产学研合作关系,进行医学转化研究与宏基因组学平台共建。同时,公司积极参与多项国家十四五重点研发计划,及行业标准的制定,并联合多学科知名专家成立中国病原宏基因组解读联盟,推动该技术的规范化应用。作为国家级高新技术企业,微远基因先后获评专精特新企业、中国潜在独角兽企业、粤港澳大湾区新经济先锋企业50强等,并连续五度荣登中国未来医疗100强。微远基因作为参与单位,荣获2023年中华预防医学会科学技术奖一等奖。近期由科技部发布的2023年度国家科技奖中,微远基因作为项目参与单位,获得科技进步二等奖。在本轮融资助力下,微远将进一步布局前沿分子诊断技术在各类感染场景中的应用,把研发重点放在产品上,把服务重心放在医院内,串联起感染诊断的前哨监测与大众检测,加速推进病原宏基因组检测整体解决方案在医院内实现本地化运行,从病原、药物、宿主三个维度持续推进mNGS 2.0时代。“我们深深明了,每一份珍贵样本的背后,都有一位亟待救治的病患。”微远基因将秉持长期主义,为行业可持续良性发展,为感染精准诊疗水平不断提高,尽到应有的企业责任与产业担当。关于科泉基金科泉基金成立于2022年,该基金由地方国控建设集团创建,由南京中益仁投资担任基金管理人,优先投资方向为当地政府鼓励引进的新兴产业,包括但不限于:半导体、生命健康、电子信息等相关产业。关于天心基金天心基金成立于2023年,由园区融发集团天环公司发起设立,是园区践行“投出去、引进来”战略的重要抓手,通过财务投资与产业投资相结合的方式赋能本地产业发展,重点关注生物医药、大数据等新兴产业。基金管理人弘卓资本拥有人民币和美元双币管理经验,资产管理规模累计达到近200亿元人民币,投资范围涵盖集成电路、人工智能、新能源等新兴产业。IDseqTM for ID doctors。微远专注于病原NGS感染诊断,为临床提供三种病原NGS检测产品:基于随机测序的病原宏基因组技术(mNGS)检测产品 IDseq Prime、基于随机测序和探针靶向测序(mNGS+tNGS)的产品 IDseq Ultra、基于探针捕获靶向测序(tNGS)的产品 IDseq Focus。同时致力于提供三种检测产品的本地化方案,助力感染精准医学诊断。
  • 手性光谱中心开幕庆典暨手性科学前沿学术报告会邀请函
    化学、医药、材料、环境、生命科学等多个关系到国计民生的重要学科均涉及手性研究。近年来,手性物质的结构表征和检测技术不仅在上述领域中发挥了举足轻重的支撑作用,其本身也衍生出了具有极大挑战性的诸多前沿课题, 其中,手性光谱学研究倍受关注,主要包括电子圆二色(Electronic Circular Dichroism,ECD)谱、振动圆二色(Vibrational CD,VCD)谱、手性拉曼(Raman optical activity,ROA)谱、旋光色散(Optical Rotatory Dispersion,ORD)谱等。 以毕生精力全身心投入于手性领域研究的美国著名科学家Laurence A. Nafie教授,是VCD技术先驱,为使VCD光谱技术得到全球范围的推广和应用,作为BioTools公司的共同创始人之一Nafie教授与Rina博士一起带领BioTools 精英团队在美国和欧洲先后成功创建了手性中心C1和C2,为该领域的专家学者提供着最前沿的手性光谱技术和学术上的帮助;我们非常兴奋地看到,此次BioTools精英团队联手华洋科仪和厦门大学成功在中国植入其在欧美的手性中心服务模式,期望这一中心的诞生,能为我国手性领域科学工作者提供一个国际一流的手性检测与分析平台,推动我国手性科学研究水平的进一步提升。 手性光谱中心已邀请香港科技大学唐本忠院士、厦门大学田中群院士、中科院北京化学所万立骏院士、北京大学严纯华院士、南京大学游效曾院士、厦门大学赵玉芬院士、厦门大学郑兰荪院士、Nafie教授伉俪和美国默克对外合作研究及并购大中华副总裁孙勇奎博士为学术顾问。届时,报告会特邀嘉宾南京大学游效曾院士、中科院大连化物所李灿院士、化学所万立骏院士、美国Nafie教授、台湾清华大学学务长、台湾磁共振学会理事长吕平江教授、默克公司孙勇奎博士、美国高斯公司资深应用专家James Cheeseman博士、中国科学院大学何裕建教授、上海交通大学车顺爱教授、浙江大学刘维屏教授、北京大学宛新华教授、山西大学王越奎教授、华南师范大学章伟光教授、河北大学朱华结教授、厦门大学江云宝教授、厦门大学Eric Meggers教授、南京大学沈珍教授、苏州大学杨永刚教授、中科院福建物构所张健研究员等将出席庆典并带来精彩报告。机不可失,热诚欢迎来自与手性科学研究相关领域的科研工作者和实验技术人员踊跃参加此次盛会。 报告时间地点:2013年4月1日-2日,厦门(详细日程安排及地点见第二轮通知)。参会注册费:800元/人,随同家属400元/人。研究生(凭有效学生证)400元/人,差旅费自理。 主办单位:厦门大学化学化工学院 华洋科仪 美国BioTools 2013年2月6日联系人:齐爱华 刘彭军 E-mail: jenny@dhsi.com.cn leon@dhsi.net.cn电话:13504090879,0411-82364123 传真:0411-82364006Http://www.dhsi.com.cn欲参会人员请于2013年2月28日前填写以下回执单,传真至我司或发送至leon@dhsi.net.cn,谢谢。应广大用户的要求,参会报名截止时间延至3月8日。 回 执 单姓名单位名称地址性别职务电话E-mail
  • 泰坦科技拟募资10.5亿元,以提升自主品牌仪器和试剂产研能力
    日前,泰坦科技发布《2021年度向特定对象发行A股股票募集说明书(申报稿)》(2021年11月)。内容显示,泰坦科技拟向特定对象发行A股股票总金额不超过105,434.59 万元(含本数),均为现金认购,募集资金总额在扣除发行费用后的净额将用于以下方向:1、泰坦科技生命科学总部园项目;2、补充流动资金。募集资金投向(单位:万元)项目情况1、泰坦科技生命科学总部园项目该项目聚焦生物医药、新材料、大健康、基础研究等产业领域的研发升级,实现从生物高端试剂、高端仪器的研发、生产、检测、储备以及进出口一体化业务的开展,形成以生命科学方向为主,集研发制造、进出口以及物资储备于一体的综合保税区生命科学产业基地。该项目实施主体为泰坦科技及子公司上海泰坦聚源生物科技有限公司,具体资金使用计划如下:该项目的具体建设内容如下:(1)科学服务研发转化功能型平台。该平台包含精密加工技术综合平台、关键核心部件研发制造平台、高洁净等级实验室/制造平台、先进反应制备平台、科研动物体外平台、分析检测综合技术平台等6大子功能服务平台集合:(2)科研物资战略储备基地。该储备基地的建设目标是力争储备6个月以上应急重点科研物资,涉及生物仪器、生物试剂、生物耗材,和分析仪器、分析耗材、分析试剂、常备耗材等,以及其他部分核心物料多品类产品,用以满足上海及长三角生物医药、新材料、大健康、基础研究等产业等应急需求。(3)科研物资进出口通报关平台。泰坦科技依托“科研物资战略储备基地”等国际供应链必备基础设施,开发专用“进出口信息平台”,以缩短进出口周期,向供应链上下游提供全链条、一站式、高性价比的进出口通报关服务。通过在保税区内进行项目建设,推进泰坦科技等国产自主品牌的科研试剂、仪器设备、实验耗材的出口,并有效保障产业链重点原材料、试剂、设备的供应稳定,带动国内相关产业的联动发展。2、补充流动资金为满足公司日益增长的业务发展需要,泰坦科技拟将本次募集资金中的28,000.00万元用于补充流动资金,用于满足日常生产经营、未来研发投入等需求。募资意义科学服务行业作为服务国家创新驱动、转型升级战略,为产业升级和企业创新提供助力和保障的关键行业,涉及产品种类众多,涵盖科研试剂、仪器仪表、分析检测设备、各类实验耗材、实验室专业设计建设、科研信息化系统等多个领域。目前国内在一些基础领域和低端产品上已实现了部分国产替代,但整体上仍以赛默飞、默克等国外品牌为主。作为我国科学服务行业内企业,泰坦科技建设新的产业化研发平台,研发内容涵盖质谱仪、色谱仪、数字PCR等高端仪器设备和部件,以及特种血清、培养基等高端生物试剂,公司自主研发能力将进一步增强;通过在新建生产基地购置相关生产及检测设备、引进生产及管理人员,公司生产管控及产业化能力将进一步升级。此外,通过科研物资战略储备基地和科研物资进出口通报关平台的建设,泰坦科技的战略储备及客户服务能力将进一步提高。通过本次募资,泰坦科技自身发展的同时,也将助力我国科研物资的供应保障,以及国产替代的早日实现。泰坦科技泰坦科技(股票代码:688133)成立于2007年10月,专注于为科研工作者和质量控制人员提供一站式实验室产品与配套服务,已形成高端试剂、通用试剂、分析试剂、特种化学品、安防耗材、仪器仪表、实验室建设、科研软件等八大产品线,创立并运营了Adamas-Beta(阿达玛斯试剂)、General-Reagent(通用试剂)、TICHEM(特种化学品)、Titan(泰坦耗材)、Titan Scientific LAB(泰坦实验建设/泰坦仪器)、Titan SRM(泰坦科研软件)等自主品牌。泰坦科技2021上半年营收9.2亿元,同比上年增长77.9%。
  • 中国化学会第二届分子手性学术研讨会
    2008年10月18-19日在京成功召开了中国化学会&ldquo 2008年分子手性起源与识别学术研讨会&rdquo ,与会专家学者一致认为国内手性研究必须得到应有的重视,为加快手性研究在中国的发展并由此提升手性研究的水平,经申请与讨论程序,大家同意&ldquo 第二届分子手性学术研讨会&rdquo 由华南师范大学具体承办。经过申请, 中国化学会已批复同意委托华南师范大学化学与环境学院和中国化学会有机分析专业委员会于2009年月11月14-15日在广州大学城承办&ldquo 中国化学会第二届分子手性学术研讨会&rdquo 我公司将设立标准展位,届时欢迎光临指导!
  • 中国化学会第二届分子手性学术研讨会闭幕!
    11月14日9点整中国化学会第二届分子手性学术研讨会在广州大学城华师国际会议厅开幕。会议主要专题有: 1. 手性配合物与手性材料 2. 不对称合成与手性分离 3. 生命中的手性现象 随着组合化学在手性药物合成和新材料方面的应用,大量的新型手性化合物与材料被合成出来,这些材料与化合物的识别与分离显得非常重要和关键,制约着这一领域的发展。由华南师范大学章伟光教授进行的新型手性探针与分离材料的制备这一课题组合成了环糊精类衍生物作为新型手性探针与分离材料,可以分离和识别上百种手性化合物,取得了重大进展与突破。芬兰KSV公司的QCM-Z500石英晶体微天平是章老师进行手性分析的重要工具。
  • 华裔创业家为分子鉴别诊断试剂开发平台及全新商业模式寻战略投资
    生物技术的麦加:JP摩尔根医疗大会&mdash &mdash 韩健  上个星期,我去参加了JP摩尔根医疗大会(JP Morgan Healthcare Conference)。这个会我去过几次了,这回是头一次全程参加,还是在外围,没有正式注册听讲。我是趁开会大家都在一个城市的机会去见人的,而会议的本意则是一些上市公司跟股票分析师介绍新一年的展望的。  这是一个有着三十多年历史的会议已经成为健康医疗行业的一个盛会,有如人们到麦加朝圣一样,似乎成了生物技术和药物开发公司产业化的必经之路。这篇文章介绍了一些有关这个会议背景:今年的会至少有5000人参加,代表投资方,药厂,生物技术公司等所有和医疗卫生产业化有关的几百家公司。  会议每年都是一月份在旧金山举行,市区会场附近的酒店每年都因此大赚一笔,每晚费用高达七八百美金!酒店和会场附近咖啡馆,公园到处是谈生意的公司高管们,当然还有我们这样的创业者:  参加这个会,让我亲身体会到美国医疗行是一个共生体,许许多多不同行业的人,为了一个目的来到一起。他们分工很细,个有各自的能耐,赚自己该赚的钱。  就拿我们来说,这次去参会主要是两个目的:(1)为iCubate公司市场推广和FDA报批集资 (2)为iCubate寻找战略合作伙伴。可是如果我们单枪匹马自己上阵,很可能空手而归。我们这次是和一家对口生物医药的, 位于纽约的投资银行(EVP)合作,由他们出面为我们联系风险投资公司和潜在的战略合作伙伴。而这家投资银行之前又找到另外一家在分子诊断行业很有影响的咨询公司合作,由这家公司帮助寻找像我们这样的生物技术小公司。  EVP负责在主会场附近租了一间会议室(下图),便于风投公司和合作公司的人来面谈,我们也出门去别人租用的会议室或者酒店交谈。四天会议一共约谈了十八次,效率极高。  每次会谈,多是投行的伙伴开头:介绍一下在座的人,介绍一下他们投行的背景,包括通过那些关系联系上了对方。然后由咨询公司的Jorge大概介绍一下iCubate公司的卖点。这个Jorge在分子诊断领域是神通广大的一个人,他先前是美国最大的分子诊断服务公司Quest的资深副总裁,负责在Quest引进分子诊断技术和平台。所以他在任十三年下来积累了很多经验和人脉,也成为他做咨询公司的资本。有他作为第三方来推荐我们iCubate技术平台,可信度一下子就提高了很多。他也是一个极有个人魅力的人,美国有一个很有名气的啤酒广告,叫做 &ldquo The most interesting man in the world", 他和那个演员在长相和神态上都很像。  广告里面有总是这么结尾:&ldquo I do not usually drink beers, but when I do, I drink Dos Equis" ;Jorge在介绍我们公司的时候总是说:&ldquo 我不随便推荐绍公司的,每年我都只选一个公司,iCubate是我今年的选择。&rdquo 他的可信度很高,因为很多经他推荐的公司都得到很好的市场认可,包括BioFire,Fundation Medicine等。BioFire去年四亿五千万美金卖给了法国的生物莫里埃公司;Foundation Medicine去年上市获得极大成功。  有了Jorge和John的铺垫,接下来就是我主讲技术和市场了。我先简要介绍一下我的创业经历(包括创办Genaco和Diatherix公司),介绍我的特长是做多重PCR,然后介绍iCubate的技术原理,产品目录,竞争优势,最后介绍iCubate2.0开放平台。总结的时候重点讲我们的特点是多重PCR和开放的商业模式:有了好用的多重PCR技术,不仅我们可以快速开发产品,其他人也可以借助这个开放平台开发出很多很多优质产品来的。大家都说&ldquo 内容为王&rdquo ,iCubate正是一个能迅速累积无数内容(诊断试剂)的技术平台。  三四天的JPM会议,我们一共有18个&ldquo 会外会&rdquo ,拜会的潜在战略合作伙伴包括罗氏,雅培,BD,Beckman Coulter,Qiagen,Bioneer,Promega等,另外还有许多风投,PE等投资公司。绝大多数会谈对我们的技术和商业模式都很欣赏,我有充分信心随访后会后很好的结果。这是一个很成功的会,即使花费不菲,也非常值得,没有投行和咨询公司的合作,我们iCubate市场化的进程至少要慢两年。  这样的合作共赢的机会在国内就很难得到。这里面当然也有许多巧遇:Jorge是过去两年曾经帮助一个投资公司看项目,接触到Diatherix公司,才发现我是他们使用的多重PCR技术的发明人。后来他刚巧在华盛顿举办的一个分子诊断会议上听到了我的演讲,演讲后和我有短暂交流,交换了名片。后来我们就成为他的&ldquo the pick of the year",推荐给了和他合作的投行公司。如 果我不去参加那个会议,如果他不是主动接触小公司,就可能失去这个合作的机会。而EVP公司也很精明,知道自己在体外诊断领域缺少人脉和相关知识,能够和Leomics建立起战略合作伙伴关系,给他们提供下游(小公司)和上游(大公司)客户。这样他们才能专心致志地做他们的deal,他们的特长是熟悉投资公司管钱的。  而JPM大会更是一个医疗市场的大熔炉:生物技术公司,新药开发公司,国际大药厂,风险投资公司,信息技术公司,律师事务所,会计师事务所,医疗保险公司,医院集团,政府部门,科研院所,各色人等统统到会。会上会下各种生意都有,大家都忙得不亦乐乎。每个平常一个小时的会,几乎都是提前十几分钟结束,因为大家要赶场跑到下一个聚会地点。注:iCubate开放平台的特点:没有技术转让费,产品上的技术使用费,多重PCR试剂设计软件免费,卡盒便宜,网上商店,开发者定价,销售完成后开发者得70%, iCubate 30%.
  • Solvias手性膦配体及催化剂
    手性制药是医药行业的前沿l域,在手性药物获得的诸多方法中,z理想的是催化不对称合成,它具有手性增殖、高对映选择性,易于实现工业化的优点,选择y种好的手性催化剂及配体可使手性增殖10万倍。百灵威精心为您挑选Solvias系列产品,在不对称氢化,消旋体拆分,生物催化,偶联反应中应用广泛,并且供货稳定,可提供公斤j大包装定制以及高通量筛选(HTS)设计合理的实验(DOE),加速您的实验进程,满足科研和生产的不同需求。■ Solvias 系列产品百灵威与美g有名工厂STREM合作,引进113种具有*权的Solvias手性膦配体及催化剂系列产品,在高校有机合成实验室、医药研发中心及药物研究所中有着广泛的应用。产品优势您的收获创新性好,90%以上配体为*产品更多选择,创新研发,优化反应条件及工艺选择性高(ee90%以上),收率z高可达99%纯化更简单,成本更低,项目进程更快产品纯度高,底物适用广应用在多种基团功能化■ 特色系列介绍Josiphos 配体产品(二茂铁基双膦配体,七大优势配体类别之y),通过实验验证:活性高、用量更少应用在多种催化反应、适用底物广对映选择性高、纯化更简单Josiphos 配体96-3650 Solvias Josiphos Ligand KitReferences:1. Chimia 53, 1999, 275. 5. Angew. Chem. Int. Ed., 39, 2000, 1992.2. Solvias AG, unpublished. 6. Chimia 51, 1997, 300.3. J. Am. Chem. Soc., 116, 1994, 4062. 7. EP 744401, 1995.4. Org. Lett. 2, 2000, 1677 8. Adv. Synth. Catal. 343, 2000, 68. J. Am. Chem. Soc.,122, 2000, 5650. 9. J. Organomet. Chem. 621, 2001, 34.Solvias 产品列表:■ 手性膦配体15-0038395116-70-815-0042352655-61-915-0043910134-30-415-0044192138-05-915-0045167709-31-115-0074552829-96-615-0108505092-86-415-01091044553-58-315-0112145214-57-915-0113145214-59-115-01171133149-41-315-0156133545-24-115-0157133545-25-215-0158256390-47-315-0159256235-61-715-0162868851-47-215-0164868851-50-715-0178133545-16-115-0179133545-17-215-0483321921-71-5■ 二茂铁类膦配体26-0240494227-35-926-0244494227-36-026-0245847997-73-326-0246793718-16-826-0248494227-37-126-0252210842-74-326-0253831226-39-226-0650246231-79-826-0955914089-00-226-09561016985-24-226-0960292638-88-126-0965166172-63-026-0975158923-11-626-1000167416-28-626-1001158923-07-026-1101162291-01-226-1120494227-32-626-1130494227-30-426-1150360048-63-126-1153851308-47-926-1310388079-60-526-1315388079-58-126-1320494227-31-526-1555494227-33-7■ 手性金属催化剂44-0442849921-25-144-0443212133-11-445-0172511543-00-345-0173507224-99-945-017445-017645-017745-017899143-48-345-041545-0750908128-78-945-0752908128-76-745-076645-077046-0270359803-53-546-0272614753-51-446-0290172418-32-577-5009880262-14-677-5010583844-38-677-5019880262-16-877-5020405235-55-4■ 套包装96-3650Solvias Josiphos Ligand Kit96-3651Solvias Walphos Ligand Kit96-3652Solvias MandyPhosTM Ligand Kit96-3655Solvias (R)-MeO-BIPHEP Ligand Kit96-3656Solvias (S)-MeO-BIPHEP Ligand Kit96-6651Solvias cataCXium Ligand Kit for C-X coupling reactions更多产品信息请点击查询
  • 上海发布2018年度“科技创新行动计划”战略科研试剂领域项目指南
    p style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201801/insimg/a3c03ccb-174c-4662-b3f8-8574f220b008.jpg"//pp  各有关单位:/pp  为推进实施创新驱动发展战略,加快建设具有全球影响力的科技创新中心,根据《上海市科技创新“十三五”规划》,上海市科学技术委员会特发布2018年度项目指南。/ppstrong  一、征集范围/strong/ppstrong  战略科研试剂研究与开发/strong/ppstrong  方向1、新药开发领域科研试剂/strong/pp  研究目标:面向新药开发产业发展需要,开发新型药用手性化合物试剂,实现高分离度、高纯度的产品化开发和稳定供应。/pp  研究内容:通过不对称合成和天然产物提取等手段,制备出高分离度、高纯度的萜类化合物、生物碱、氨基酸、手性彻块化合物等,建立相关配套的分析方法。/pp  执行期限:2020年6月30日前完成。/pp  申报主体要求:企业/pp strong 方向2、医用仿生材料领域科研试剂/strong/pp  研究目标:针对医用仿生膜的研究和合成,开发一系列关键试剂,实现稳定供应。/pp  研究内容:制备一系列具有生物相容性、合适泡孔结构、细胞相亲性和低生物排斥性的医用仿生膜材料用科研试剂,建立相关配套的分析方法和质量标准。/pp  执行期限:2020年6月30日前完成。/pp  申报主体要求:企业/pp  strong方向3、生命科学领域科研试剂/strong/pp  研究目标:面向生命健康产业发展需要,开发一系列成本低、生物活性高、无游离活性成分的血清类生物生化试剂,实现稳定供应。/pp  研究内容:利用蛋白分离、抗体制备、免疫纯化等技术手段,解决传统血清产品中部分杂质难以清除的问题,提高血清的纯度与活性,开发高品质血清产品的制备工艺,建立高级别血清产品的质量标准。/pp  执行期限:2020年6月30日前完成。/pp  申报主体要求:企业/ppstrong  二、申报要求/strong/pp  1、项目申报单位应当是注册在本市的独立法人单位,具有组织项目实施的相应能力。/pp  2、已作为项目责任人承担市科委科技计划在研项目2项及以上者,不得作为项目责任人申报。/pp  3、项目责任人应承诺所提交材料真实性,不含涉密内容 申报单位应当对申请材料的真实性进行审核。/pp  4、申报项目若提出回避专家申请的,须在提交项目可行性方案等书面材料的同时,由申报单位出具公函提出回避专家名单与理由。每个项目申请回避专家人数不超过3人。/pp  5、申请承接全部研发方向的企业,必须有较强的研究团队和前期研究基础,优先支持拥有市场影响力的试剂品牌与电商平台的企业或机构。/pp  6、申请单个研究方向的企业,必须有较强的研究团队和前期研究基础,项目成果必须要形成实物产品与品牌以对接市场,无品牌及相关市场能力的,可以与有相应条件的企业或机构联合申报。/pp  7、要求企业自筹专项经费与市级财政资助经费之比不低于1:1。/ppstrong  三、申报方式/strong/pp  1、本指南公开发布。申请人通过“中国上海”门户网站(www.shanghai.gov.cn)进入“上海市财政科技投入信息管理平台”,网上填报项目可行性方案,并在线打印书面材料(非由申报系统在线打印的书面材料,或书面材料与网上填报材料不一致的,不予受理)。/pp  2、项目网上填报起始时间为2018年1月9日9:00,截止时间为2018年1月26日16:30。市科委办事大厅集中接收书面材料时间为2018年1月23日至1月29日,每个工作日9:00-16:30。逾期送达的,不予受理。/pp  所有书面材料采用A4纸双面打印,一式一份,须签字盖章齐全。使用普通纸质材料作封面,不采用胶圈、文件夹等带有突出棱边的装订方式。/pp  市科委办事大厅地址:徐汇区钦州路100号1号楼。/pp  办事大厅不接收以邮寄或快递方式送达的书面材料。/pp  3、网上填报备注:/pp  (1)登陆“中国上海”网站(www.shanghai.gov.cn) /pp  (2)网上政务大厅—审批事项—点击“上海市财政科技投入信息管理平台”图片链接进入申报页面:/pp  -【账户注册】转入注册页面进行单位注册,然后再进行申报账号注册(单位注册需使用“法人一证通”进行校验) /pp  -【初次填写】使用申报账号登录系统,转入申报指南页面,点击相应的指南专题后开始申报项目 /pp  -【继续填写】登录已注册申报账号、密码后继续该项目的填报。/pp  (3)有关操作可参阅在线帮助。/ppstrong  四、其它说明/strong/pp  本指南经评审立项的项目承担单位,须在项目验收时一并提交《科技报告》和《科技报告收录证书》。/pp strong 五、咨询电话/strong/pp  服务热线:8008205114(座机)、4008205114(手机)/pp  技术支持:62129099-2257/pp style="text-align: right "  上海市科学技术委员会/pp style="text-align: right "  2017年12月29日/pp/p
  • 大昌华嘉携美国鲁道夫系列产品亮相中国化学会第四届分子手性学术研讨会
    浙江江大学环境与资源学院和中国化学会有机分析专业委员会于2011年11月10日-13日在浙江大学环境与资源学院主办&ldquo 中国化学会第四届全国分子手性学术研讨会&rdquo 。 会议期间同时召开&ldquo 2011绿色手性论坛&rdquo 。这次研讨会聚焦手性研究的前沿领域以及最新研究成果,为国内外手性研究以及相关领域工作者打造优质的学术交流平台。 会议的议题包括:手性的起源、合成、拆分与表征;手性环境污染物环境行为与生态毒理;手性分子与生物大分子的相互作用;生物酶的立体选择性催化;手性材料及手性分子自组装。 大昌华嘉携美国鲁道夫全系列产品赞助本次研讨会,在会议现场展出了美国鲁道夫公司的旋光仪、折光仪、密度计,为用户提供最全面的药品食品质量控制方案。大昌华嘉架产品专家在现场为到会老师及专家详细讲解了产品特性,受到了广泛的欢迎。 大昌华嘉商业(中国)有限公司(DKSH China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 大昌华嘉仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。大昌华嘉商业(中国)有限公司具有200年历史的瑞士国际贸易公司,作为美国鲁道夫产品在国内的总代理,负责其所有产品、技术的推广销售和服务。 大昌华嘉科学仪器部 咨询电话:4008210778
  • Nature Communications | 杜平武与杨上峰两课题组合作,成功研发聚集可调双发射手性碳纳米环
    作者:王敏 来源:中国科学报中国科学技术大学杜平武教授课题组与杨上峰教授课题组合作,合成了首个具有聚集可调双发射性质的手性双环分子。研究成果近日发表于《自然-通讯》。a)传统AIE发光体示例;b) 具有聚集可调双发射性质的手性双环分子(SCPP[8]) 中国科大供图“这种新型手性分子在聚集态和溶液态可以发射不同波长的荧光,通过控制聚集程度,调节两个发射峰的比例,获得多种颜色的荧光发射。”化学与材料科学学院材料科学与工程系博士生张新宇说,该分子可以应用在光传感器、3D电影及视频、数据存储以及探针领域。在传统系统中,聚集诱导猝灭发光体通常在溶液状态强烈发光,但在聚集时,荧光会显著减弱甚至完全消失。另一种独特的发光体具有与之相反的光物理现象,其在溶液中几乎不发光,而在聚集时可以发射出强荧光,这种发光体称为聚集诱导发光分子。这也意味着目前绝大多数的发光体具有单一的发射性质,只在溶液中发光,或只在聚集态发光。而同时具有聚集诱导发光和聚集诱导猝灭效应的双发射有机材料在文献中很少报道。基于前期研究工作,合作研究团队通过将具有聚集诱导发射活性的1,2,4,5-四苯基苯用对苯撑单元固定,成功合成了首个具有聚集可调双发射性质的手性有机双环分子,称之为SCPP[8]。此外,团队在含有不同水体积的四氢呋喃和水混合物中研究了SCPP[8]的荧光现象。SCPP[8]展现了出乎意料的多色荧光发射、单分子近白光发射,稳定的固有手性和增强的圆偏振发光性质,将在聚集诱导发射传感器、白光发射器件和手性材料中具有潜在应用。审稿人认为,新型纳米环同时展现了令人意外的光物理现象和出色的圆偏振发光性质。这是一个有趣且不寻常的发现,优异的光物理性质使其拥有技术应用的潜在价值。相关论文链接:https://doi.org/10.1038/s41467-022-31281-9
  • 手性世界拆分的创新之路
    手性世界手性一词来源于希腊语“手”(cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。也就是说,生命最基本的东西也有左右之分。为什么自然界选择左旋氨基酸而不是右旋氨基酸作为生命的基本结构单元一直是个迷。而更加复杂的蛋白质和dna的螺旋构象都是右旋的。海螺的螺纹和缠绕植物也都是右旋的。因此生物体内存在着手性的环境,使得生物体可以识别常规化学和物理性能完全一样的手性异构体分子。作用于生物体内的手性药物及农药,其药效作用多与它们和体内靶分子间的手性匹配和手性相关。因此,手性药物的不同对映异构体,在生理过程中会显示出不同的药效。甚至会出现一种对映异构体对治疗有效,而另一种对映异构体表现为有害性质这种现象。自然界中的手性表现形式(图片来自于网络)在手性药物未被人们认识以前,二十世纪六十年代的“反应停(thalidomide)悲剧”就是一个突出的例子。当时欧洲一些医生曾给孕妇服用没有经过拆分的消旋体药物(由一对等量对映异构体分子组成)对作为镇痛药或止咳药,很多孕妇服用后,生出了无头或缺腿的先天畸形儿。仅仅四年时间,导致世界范围内诞生了1.2万多名畸形的“海豹婴儿”。这就是被称为“反应停”的惨剧。后来经过德国波恩大学研究人员发现,反应停的r-构型的单一对映体有镇静作用,而s-构型对胚胎有严重的致畸作用。惨痛的教训使人们认识到,手性药物必须对它的两个异构体进行分别考察,都要经过严格的生物活性和毒性试验,以避免其中所含的另一种手性分子对人体的危害,慎重对待一些药物的另一对映异构体。所以手性拆分技术越来越多用于手性药物开发和生产。自然界生物体本身具有手性环境,因此对手性药物的不同对映异构体,会显示出不同的疗效。美国食品与药品管理局(fda)早在1992年就明确规定:对含有手性因素的药物倾向于开发单一的对映体产品;对于外消旋的药物(一对等量对映异构体组成),则要求提供立体异构体的详细生物活性和毒理学研究数据。近二三十年,世界上手性药物的销售以及占据药物总数的比例也呈逐年上升趋势。手性化合物既可以通过不对称合成来获得,也可以通过天然手性化合物的提取,还可以通过手性拆分获得单一对映体。手性化合物的拆分是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到由一对等量对映异构体组成的消旋体。手性色谱分离纯化是获得单一对映体最常用的方法,其自身具有分离效果好、速度快、灵敏度好、操作方便等优点。已成为手性化合物分离分析和制备的重要手段之一,也是不对称合成方法得到单一对映体的辅助方法之一。手性化合物的分离被认为是最有挑战性的色谱分离技术之一。因为色谱分离技术往往是利用混合样品各组份在固定相(色谱填料)和流动相中的分配系数不同,当流动相推动样品中的各组份在色谱填料填充的柱中迁移时,由于各组份在两相中进行连续反复吸附和脱附或其他亲和能力作用的差异,从而形成差速移动,达到分离的目的。分子之间的物理和化学性质相差越大,越容易建立色谱分离方法。但手性分子就像左右手一样,看起来似乎一模一样,其分子组成、分子量一样,物理和化学性质也相同,只是它们在空间结构上却无法完全重合,因此分离难度最大。在精细化工、生物工程及制药工业中制备高纯度的单一对应体手性分子将具有巨大的商业价值和应用前景,因此建立对映体的手性分离方法显得日益重要。因为许多手性药物真正起作用的是其中的一种单一对映体,而另一种对映体可能不仅无药理作用,还会有副作用。二十世纪六十年代以来,色谱技术作为一种分析技术在生命科学、环境科学、药物分析等领域的应用日益普遍。应用在手性色谱分离方面得到很快的发展,而其中色谱填料可谓是色谱技术的核心,它不仅是色谱方法建立的基础,而且是一种重要的消耗品。色谱柱作为色谱填料的载体,当之无愧被称为色谱仪器的“心脏”。高性能的色谱填料一直是色谱研究中最丰富、最有活力、最富于创造性的研究方向之一。手性化合物可通过物理吸附或化学键合的方式固定到多孔固相载体表面,对应体由于与固定化的手性分子形成非对映异构体络合物的结合能力差异而达到拆分,这样的固定相称手性固定相又称手性色谱填料。一个有效的手性填料应当具有能够快速分离对映体,测定对映体的纯度,尽可能适应多种类型的对映体的分离;应当具有较高的对映体分离选择性和柱容量。目前手性色谱填料主要是在多孔二氧化硅基球上涂覆或键合带有手性结构的生物材料如功能化纤维素,直链淀粉,大环抗生素,环糊精等制备的。所有这些手性材料中,纤维素和直链淀粉型色谱填料使用最为普遍。手性化合物的色谱分离技术已被广泛地用于手性分子的分离和检测。手性色谱填料基本上是由日本的d公司一家独霸,当其它常规色谱柱每根只卖几千元人民币时,而一根装有2.5克的手性填料的色谱柱价格超过1万元人民币,因此每公斤的手性色谱填料装成柱子可以卖到几百万人民币的价格。手性色谱填料寿命短、价格贵,让手性药物研发工作者尽可能地寻找其它解决方案,不对称合成生产手性药物分子就是为了避免昂贵的手性分离工艺。手性色谱填料的高额利润让世界许多色谱公司和精英前仆后继去挑战这些技术,却无法撼动日本d公司的垄断地位,说明手性色谱分离技术壁垒之高及产品产业化难度之大。手性色谱填料国产化创新之路手性色谱填料主要是通过在多孔二氧化硅基球上涂覆或键合带有手性识别位点的生物材料如纤维素,直链淀粉。如要做手性色谱填料,首先要解决的就是合成超大孔硅胶基球作为手性色谱填料的固定相载体。在纳微科技做出超大孔硅胶基球之前,全世界上只能从日本公司才能买到这种超大孔的硅胶基球,价格昂贵,每公斤高达10万元人民币。虽然中国拥有全世界最多的色谱科研究员,发表色谱领域文章数量也于2011年就超过美国稳居世界首位,但遗憾的是中国色谱填料尤其是球形硅胶色谱填料一直未能实现产业化。主要原因就是色谱填料制备技术壁垒高,产业化周期长,投资大,世界上可以大规模生产球形硅胶色谱填料的也就只有四家公司,日本就占了三家。可见日本对色谱填料技术掌控能力的强大。绝大多数商业化的硅胶色谱填料的孔径一般都在10-30纳米,而用于手性硅胶色谱填料的孔径要求达到100纳米,手性色谱用的大孔硅胶比小孔硅胶制备技术难度更大。为了实现球形硅胶色谱填料产业化,纳微投资近5000万元人民币,坚持了十多年跨领域技术研发,最后突破了单分散球形硅胶色谱填料精准制造的世界难题,纳微也因此成为全球首个具备大规模生产单分散球形硅胶色谱填料的公司。纳微不仅填补中国在高性能球形硅胶色谱的空白,而且为世界硅胶色谱填料精准制备技术的进步做出贡献。在此基础上,纳微又研发出超大孔硅胶色谱填料以满足手性色谱填料的要求。电子扫描电镜图对比图及孔径分布对比图可以明显看出纳微大孔硅胶无论是粒径的精确性,粒径均匀性,孔径均匀性,还是球的完整性及机械强度都超过日本产品。超大孔硅胶色谱填料对比图(左-纳微产品,右-国外某公司产品)纳微unisil硅胶填料与国际三大硅胶色谱填料品牌粒径分布对比图纳微unisil大孔硅胶填料与日本大孔硅胶色谱填料孔径分布对比图手性色谱填料是通过在大孔球形硅胶中涂敷或键合带有手性识别位点的材料,主要包括衍生化的纤维素和直链淀粉两大类。为了达到光学异构体拆分的目的,涂覆或键合后的纤维素和直链淀粉必须保持手性结构环境,使得对映异构体间呈现物理特征的差异。纤维素和直链淀粉手性结构容易在涂覆或键合过程中受到破坏,因此制备手性色谱填料不仅对硅胶要求高,对涂覆或键合工艺要求也高,还对纤维素和直链淀粉的本身的结构、分子量、及衍生功能基团都有极高的要求,因此手性色谱填料的制备技术壁垒极高。纤维素和直链淀粉涂覆大孔硅胶制备的unichiral手性色谱填料突破手性色谱填料的制造壁垒,不仅要解决大孔硅胶基球生产问题,还要解决纤维素和直链淀粉生产及其衍生化工艺问题;有了硅胶基球及手性材料后,还要解决涂覆和偶联工艺问题。纤维素和淀粉通常是极为常见而丰富的物质,但能够满足手性色谱填料制备要求的纤维素和淀粉却极难获得,尤其是直链淀粉。全世界上只有日本的一家公司可以买到,但其价格超乎一般人的想象,每公斤直链淀粉的价格高达60万人民币。为了开发手性色谱填料,我们在项目开发期间以这种天价买了日本的直链淀粉,遗憾的是即使用这么昂贵的直链淀粉,做出的手性色谱填料,其性能还是达不到日本公司的水平,因此最好的东西即使我们花天价也不一定能买到。从手性分离填料开发的过程中我们可以发现日本d公司对上下游产业链及其关键材料的掌控程度达到惊人的地步,日本上下游厂家的紧密配合也值得我们学习。这也是为什么这么多年全世界其它公司都无法撼动日本d公司在手性材料的垄断地位的又一原因。过去的二十年,日本被很多国人认为是失落的二十年,但从这件事上可以看出日本并没有失落而是在深耕科技,从原来掌控生产消费端的产品转变成为上游的关键材料,进而掌控产业链源头的技术。去年闹得沸沸扬扬的日本对韩国贸易制裁事件,日本就是通过限制“氟聚酰亚胺”、“光刻胶”和“高纯度氟化氢”等关键材料出口到韩国,就让强大的韩国半导体和显示产业短时间内陷入困境。日本之所以会控制很多产业的关键材料和技术不是因为日本人比别国人聪明,而是日本人有足够的耐心及其精益求精的工匠精神让他们可以把先进材料做到极致,这也是我们中国最该向日本人学习的地方。世界上可以掌握纤维素和直链淀粉的涂覆或偶联技术制备出手性色谱填料的公司屈指可数,但能大规模生产大孔硅胶的公司全世界不到4家,而能大规模生产直链淀粉的公司更是凤毛麟角。纳微是一个专业做微球的公司,制备出能满足手性色谱填料的大孔球形硅胶并不是那么难,但直链淀粉生产技术完全超出纳微的研究领域,因此纳微要突破直接淀粉生产技术,其难度是可以想象。为了解决直链淀粉生产技术问题,纳微一开始是希望与科研院所及专业淀粉公司合作,但合作伙伴最后都没有坚持到成功。为了解决直链淀粉供应问题,纳微不得不自己组建团队边学边做,经过多年的努力和坚持,纳微成功突破直链淀粉生产技术难题并实现规模化生产。从专业来说,纳微科技团队对直链淀粉知识的理解远远不如国内外的专家,但最后能实现产业化,最主要的是保持着耐心和恒心。直链淀粉的生产问题解决之后,纳微接着又解决了涂覆工艺技术问题,最后生产出系列unichiral?手性色谱填料及产品,其分离性能达到国外公司同类材料的水平,而且由于纳微科技自主研发生产的基球粒径均匀,孔径分布窄,使得纳微科技生产的手性色谱填料具有更高柱效,更低的柱压,和更长的寿命。纳微unichiral产品涂覆工艺及产品类型纳微unichiral产品与国外手性色谱填料在分离手性分子效率的对比图纳微unichiral产品实物图例及相关产品订货信息纳微突破手性色谱填料的生产技术这一难题,可以说明耐心和坚持的重要性,只要有足够的付出和努力,足够的坚持,即使一开始看去遥不可及的目标也总有一天可以完成。纳微就是凭借这种坚韧不拔的精神突破了单分散硅胶色谱填料精确制造的世界难题,解决了直链淀粉供应问题,并解决了涂覆工艺问题,最后生产出高性能的手性色谱填料。目前纳微不仅可以提供系列手性色谱填料,而且可以为手性分离纯化方面为客户提供分离纯化整体解决方案,具备生产毫克级到到公斤级甚至百公斤级的手性原料拆分能力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制