当前位置: 仪器信息网 > 行业主题 > >

掺杂铕的氯磷酸锶

仪器信息网掺杂铕的氯磷酸锶专题为您提供2024年最新掺杂铕的氯磷酸锶价格报价、厂家品牌的相关信息, 包括掺杂铕的氯磷酸锶参数、型号等,不管是国产,还是进口品牌的掺杂铕的氯磷酸锶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合掺杂铕的氯磷酸锶相关的耗材配件、试剂标物,还有掺杂铕的氯磷酸锶相关的最新资讯、资料,以及掺杂铕的氯磷酸锶相关的解决方案。

掺杂铕的氯磷酸锶相关的资讯

  • Hf 掺杂BiSbTe3 结构与热电性能研究
    Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.2.2 电学性能样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值,具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Hf 掺杂BiSbTe3 结构与热电性能研究刘福生,敖伟琴,罗锐敏,冯学文,张文华,李均钦(深圳大学材料学院,深圳市特种功能材料重点实验室,深圳518060)摘要:以高纯町、Bi 、Sb 和Te 为原料,在1000ce 下,经10 h 氧气保护熔融状态下反应,冷却球磨制粉,再在氮气保护下进行热压(450ce , 20 MPa) ,成功制备出一系列不同Hf 掺杂量的Hf2x ( Bi ,Sb) 2 -2xTe3化合物.X 射线粉末衍射Rietveld 分析说明, Hf 在结构中占据6c 品位,以替代(Bi , Sb) 的形式进入品格.Hf 掺杂引起BiSbTe3 的Seebeck 系数增大,电导率降低.功率因子在375 K 时达最大值526&mu W/mK2 &bull 关键词:热电性能 给 Bi2Te3 Seebeck 系数 功率因子中图分类号: TB 39 文献标识码:ABi2Te 3 及其固溶体合金是研究最早,也是目前发展最为成熟的热电材料之一. 目前使用的大多数热电制冷元件均采用这类材料.研究表明Bi 2 Te 3 能分别与Bi2 Se 3 和Sb2 Te3 在整个组分范围内形成连续固溶体,通过这种方式能使材料的热电优值得到明显提高[1J 另一种提高Bi2 Te 3 基热电性能的方式是对Bi 位原子进行掺杂,以提高声子散射,降低热导率.已有学者分别对Sn[2 J 、Pb[3 J 、Ga[4 J 和CU[5 J 等掺杂的Bi2 Te3 基化合物的性能与微结构进行研究,其热电性能有不同程度的提高. Hf 是稀土元素后的第一个元素,也是一种非常重要的热电元素,其原子量大,且其原子、离子及共价半径比稀土元素小,有利于掺杂提高声子散射,对Hf 掺杂的Bil凶b3 结构与性能进行研究有重要意义.1 实验方法采用纯度为99.99 £ 3毛给( Hf) 、锦(Sb) 、铭( Bi) 及纯度为99.999 £ 3毛的暗(Te) 为原料,按Hi&mu Bi ,Sb ) 2 -2xTe3 (x =0 -- o. 05 )化学计算比进行称量,每个试样重6 g. 将配备好的试样装入石英管并抽真空(真空度低于6 X 10 -3 Pa) 后,充入高纯氧气(约0.2 MPa) 封管,然后置入装有Si02 粉末的增塌中,得石英管竖立,置于箱式高温炉中,在1000ce下,经10 h 氧气保护熔融状态下反应,再经96 h 缓慢冷却至室温.理后的样品再经过球磨,热压烧结(450ce , 20 MPa). 样品结构分析采用Br此er - Axs D8 Advance 18kW 转靶X 线粉末衍射仪(CuK&alpha ) 进行.样品的Seebeck 系数与电导率的测量在ZEM -2 型热电性能测试仪上进行.2 结果与讨论2.1 X 射线粉未衍射分析热压后样品的X 射线粉末衍射(XRD) 图谱如图1 所示.从图中可以看出,不同掺杂量的样品具有相同的衍射峰分布,为Bi2 Te3 型(空间群:R-3m) 结构的单相样品,未发现与Hf 有关的杂相衍射峰,说明Hf 成功地掺入了BiSbTe 3 的结构中.对样品的衍射图谱Rietveld 精修结果如表1 所示.Bi2Te 3 基化合物晶体结构沿C 轴方向看,可视为六方层状结构,同一层上具有相同的原子,按六方排列,各层按:&hellip Tel - Bi - Te2- Bi - Tel · · · Tel- Bi - Te2- Bi - Tel ...顺序排列,二个邻近的Tel原子层间以范德华力结合,层间距约为0.25 nm ,上下二层各3 个Tel 原子形成空的八面体空隙,可为填充掺杂提供条件.其他层之间以共价键结合[6 J &bull Bi 原子填充在由Tel 和Te2 二层原子组成的八面体空隙中.根据该结构特征,掺杂原子在结构中的占位有两种方式:一是占据Tel 原子组成的八面体空隙(3b 晶位) ,二是替代Bi 原子的位置(6c 晶位) .一般倾向于认为两种位置均可占有.根据精修的晶体结构结果,若Hf 填充在3b 晶位,其与Tel 原子的间距约为0.284 nm , Hf 与Te 的原子半径分别为0.216 nm 与0.146 nm ,且该位置的结合力为范德华力, Hf 在该位置的填充必将使晶体结构发生明显畸变,随着Hf 掺杂量的增加, Hf2x( Bi ,Sb) 2 -2x Te3 的晶胞参数将会产生明显且急剧的增加.但Rietveld 精修结果表明,晶胞参数随Hf 掺杂量的增加仅产生微小变化.由于Hf 与Bi、饨的共价半径差别较小,本文认为Hf 在结构中主要替代(Bi , Sb) ,对晶胞参数的影响较小.2.2 电学性能样品的Seebeck 系数(&alpha ) 测量结果如图2 ,从图中可以看出,所有样品的Seebeck 系数均为负值,具有电子导电的特征,这说明样品为n 型半导体.Hf 掺杂后,其绝对值有明显增加,特别是在300 -Rietveld 分析的可靠性因子Rwp 在3% -5% 之间,而且GOF 因子也在2 左右,这说明Rietveld 精修的结果是可靠的.500 K 间, Seebeck 系数随温度的升高先升后降,这种变化关系与Bi2 Te3 基合金的常规变化规律一致:在o -lOOce 范围内,随温度升高,载流子的浓度增加,但是载流子间的散射作用显著增强,并起主导作用, &alpha 出现增大趋势 在温度大于100ce 后,进入本征激发范围,载流子浓度迅速增加,引起Seebeck系数急剧降低.对于(Bi , Sb ) 2 Te 3 单晶,由于Te 的少量挥发,引起结构中Bi 或者Sb 占据Te 的空位[6] ,产生空穴,因此( Bi ,Sb ) 2 Te3 单晶表现为P型半导体.对于热压合成的( Bi , Sb ) 2 Te3 多晶体,由于在熔融制备及球磨及热压过程中的表面氧化,氧的溶入会在结构中产生施主能级[叫 而且在球磨的形变作用下,将会产生更多的Te 空穴, Te 空穴也起施主的作用[8] ,因此热压制备的(Bi ,Sb) 2Te 3 多晶体比( Bi ,Sb ) 2Te3 单晶有高浓度的施主,从而呈现n 型半导体的特征. Hf 是一种变价元素,可以为+2 、+3 及+4 价,在( Bi , Sb ) 2Te 3 中Hf 可能以低价形式存在,产生空穴,降低了电子浓度.可能由于氧及Te 空位浓度差异的共同影响,不同的掺杂量间不呈现规律性.电导率(&sigma ) 的测量结果如图3 所示,电导率的变化规律与Seebeck 系数正好相反, Hf 掺杂降低了样品的电导率,电导率随着温度的升高而增加.这也体现了电导率与Seebeck 系数之间的本质联系.2.3功率因子功率因子用&alpha 2&sigma ( 功率因子)衡量热电性能,其计算结果如图4. 结果表明, Hf2x ( Bi , Sb ) 2 -2xTe3 的功率因子在375 K 时有一个最大值,当x = 0.02 时,为526&mu W/mK2 ,是未掺杂BiSbTe3 功率因子(为316&mu W/mK 2 ) 的1.66 倍.该数值略低于赵新兵等[9J采用溶剂热方法制备的纳米Bi 2 Te 3 的功率因子(为620&mu W/mK 2 , 393 K).采用气氛熔炼加热压的方法,成功制备出纯相Hf认Bi , Sb) 2 -2x Te3 热电材料. Hf 在结构中占据6c晶位,即以替代(Bi , Sb) 的形式进入晶格.由于表面氧化及球磨效应的共同作用,Hf 掺杂的BiSbTe3为n 型半导体, Hf 掺杂引起BiSbTe3 的Seebeck系数增大,电导率略有降低.功率因子在375K 时有一个最大值为526&mu W/mK2 &bull
  • 阿胶被曝原料掺杂 检测仪器需创新
    寒意猛烈,也正是冬令进补的时节。阿胶是由驴的皮,经煎煮、浓缩制成的固体胶,原产自山东省东阿县,至今已有近三千年历史。阿胶是传统的滋补上品、补血圣药,因此,虽然“名贵”,却深受欢迎。可是,近日阿胶原料被爆混入骡皮马皮。    新闻报道称,这是一组耐人寻味却不耐推敲的数字:山东阿胶行业协会根据100多家阿胶生产企业的年生产量报表推算,阿胶年总产量至少在5000吨以上。来自阿胶行业龙头企业东阿阿胶股份有限公司的市场监测数据显示,目前按中国市场阿胶销售量估算,需要驴皮400万张左右,而国内供应总量不足180万张。据国家畜牧统计年鉴显示,我国驴存栏量已由上世纪90年代的1100万头,下滑到目前600万头,并且还在以每年约30万头的数量下降。阿胶行业专业人士董书光介绍,按照每年正常出栏120万头计算,再加上驴皮进口因素,全年可生产的阿胶总数量也就在3000多吨。全年可供制胶的驴皮,只够实现当前产量的六成左右。  这些数据意味着,可能有近四成假冒原料混入了生产环节,化身为形形色色的“阿胶”产品,堂而皇之地在市场售卖。  有人会说,食品检验检疫部门应该积极地选用相关检测仪器,对每一批上市阿胶进行抽检。  但是,业内人士指出,当前阿胶行业面临两个“鉴定难”,一是原料鉴定难,皮张混入骡子、马、牛、工业皮、屠宰场的下脚料皮等,传统鉴定方法受到挑战;二是产品鉴定难,掺假阿胶产品繁多,药典方法滞后,跟不上造假技术。  对此,也就要求强化食品检测仪器的研发创新能力,摆脱传统鉴定方法的束缚,争取可以更加详细具体地分辨食品的真伪。  技术创新一直是产业进步的核心。食品安全的重要性不断提高,满足社会要求,对于食品安全的检测仪器也在更新换代。不同食品、不同要求,都会有不同的分析仪。现在针对阿胶掺杂问题,希望可以尽快研发出对于检测仪器。
  • 上海光机所在超短脉冲掺Yb大模场磷酸盐光纤放大器方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究团队在超短脉冲大模场多组分玻璃光纤放大器方面取得重要进展。相关研究成果于5月在线发表于《中国激光》。   大能量、高峰值功率超短脉冲激光在远距离激光雷达、地震探测、主动照明等领域具有重要应用价值。主振荡脉冲放大系统(MOPA)是超短脉冲激光的主要运行方式,其中有源增益光纤是关键核心部件。目前,传统有源石英光纤存在稀土离子溶解度有限、难以保证低数值孔径(NA)纤芯制备的均匀性等问题,导致其使用长度较长(数米),纤芯直径通常小于40μm,具有较低的非线性阈值,进而限制其输出的脉冲能量。相比之下,多组分氧化物玻璃具有稀土掺杂浓度高、光学均匀性好等优势,能够获得模场面积大、吸收系数高的大模场增益光纤,从而大幅提升大能量脉冲放大的非线性阈值。   然而,大模场光纤的制备难点在于降低数值孔径的同时保持极高的均匀性。例如,要实现NA为0.03的单模掺Yb光纤,则需要纤芯与包层玻璃的折射率差值小于3×10-4,这要求玻璃本身的光学均匀性达到10-5量级。   研究团队从大尺寸、高光学均匀性磷酸盐激光玻璃的制备工艺出发,采用光学均匀性约为1×10-6的高掺Yb磷酸盐玻璃作为光纤基质,在自研高掺Yb大模场磷酸盐光纤中实现了平均功率27.3W的脉冲激光放大输出。该系统采用掺Yb大模场磷酸盐双包层光纤(30/135/280μm)与匹配无源石英光纤(20/130μm)异质熔接的全光纤方案(熔点损耗为0.3 dB),结构如图1所示。其中,信号光波长为1030nm、脉宽为30ps、重复频率为27MHz,掺Yb磷酸盐光纤的纤芯和内包层的NA分别为0.03和0.41,纤芯中Yb2O3质量分数为6%,背景损耗为0.61300nm,使用长度为30cm;采用976 nm包层泵浦,获得放大后脉冲激光的平均功率如图2所示,最大输出平均功率为27.3W,斜率效率为71.4%,同时未观察到受激布里渊散射等非线性效应。该结果体现出了磷酸盐玻璃在高掺杂能力、高光学均匀性以及高非线性阈值的优势。图 1. 掺Yb磷酸盐大模场光纤脉冲激光放大器结构图   Fig. 1. Structural diagram of pulsed laser amplifier using Yb-doped large-mode-area phosphate fiber图 2. 放大的脉冲激光的平均功率随泵浦功率的变化,插图是输出激光的光斑和光谱   Fig. 2. Average power of amplified pulsed laser versus pump power with spot and spectrum of output laser shown in inset
  • 清华大学环境学院李淼副教授团队开发磷掺杂单原子钴催化剂实现水中硝酸盐污染高效还原去除与能源利用
    全球活性氮增加引起的氮循环失衡使硝酸盐成为水中最普遍的污染物之一。硝酸盐污染威胁着生态安全和人类健康。通过硝酸盐还原方式合成氨,不仅有助于水中硝态氮污染物的去除,而且有助于缓解社会对氨能源的需求,减少污染,降低能耗。电化学反应过程对条件要求适中,易于运行并且高效,可将硝酸盐直接转化为氨。但通常,在硝酸盐的电化学还原过程中,在纳米及更大尺寸电极的活性位点上易于发生氮-氮偶联反应生成氮气,制约氨的高效生成。因此,开发具有高活性、低成本和高选择性优势的电极材料是该领域研究的核心之一。李淼团队针对钴(Co)金属电极活性差、易钝化导致难以实用的瓶颈,通过缺陷碳的稳定固化作用,开发了一种磷(P)掺杂的单原子钴催化剂材料(如图1所示),可有效避免偶联反应发生,使最终产物具有更高的氨选择性和还原活性。这种磷掺杂单原子钴催化剂具有更高的硝酸盐还原去除性能,以其作为催化剂的最高氨生成法拉第效率为92.0%、最高氨产率为433.3μgNH4+h−1cm−2。图1 单原子催化剂结构形貌分析结果研究团队采用自然界极少的15NO3−作为氮源,以同位素标记法进一步证明了氨生成的唯一氮来源为硝酸盐。利用1H核磁共振(NMR)仪对产生的氨进行检测,14NH4+和15NH4+的核磁谱图分别具有典型的三峰和双峰结构。研究采用多种实验分析手段对载体结构进行了分析。结果表明,磷的掺杂进一步提高了碳氮载体的缺陷程度,提供了更多的固定位点负载单原子钴,并且缺陷位点会对相邻金属钴活性位点的电子结构和性能产生影响,提高了电极导电性。图2 电极性能结果研究团队根据密度泛函理论计算,创新强化污染物净化的单原子尺度结构调控理论与方法,从分子水平上对硝酸根在模型单原子钴催化剂活性位点的转化反应机理进行了探究,分析反应路径和能量变化。结果表明,硝酸根在单原子位点上逐步发生脱氧加氢的基元反应,N*物种可以在外部提供能量时进一步偶联形成氮气,也可以自发与氢逐步反应形成铵盐。磷掺杂后形成的缺陷位点可以促进临近CoP1N3位点对硝酸盐的催化转化,硝酸盐还原过程发生8电子数转移生成铵盐。此外,研究还发现,金属活性位点临近的缺陷结构有助于进一步提高单原子催化剂活性,在理论上为设计高活性位点的催化剂提供指导并揭示硝酸反应转化和产物分布规律。图3 反应机理示意图该研究成果于7月12日以《高法拉第效率钴单原子催化剂显著促进氨生成》(Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies)为题在线发表在《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上。论文第一作者为清华大学环境学院博士后李佳澄,论文通讯作者为清华大学环境学院李淼副教授,环境学院刘翔教授等人对实验提供了重要指导和帮助。研究项目得到国家自然科学基金面上项目和重点研发计划的资助。
  • 福建物构所等调控局域电子结构实现稀土掺杂双钙钛矿高效近红外发
    近年来,无铅金属卤化物双钙钛矿Cs2Na(Ag)InCl6材料因组份易调控、合成简便及毒性低等特性,而备受关注,在照明显示、光电探测及光伏等领域表现出广阔的应用潜力。目前,该材料的研究主要局限在可见光波段,近红外(NIR)波段存在发光效率低的瓶颈,制约进一步的应用开发。   针对此问题,中国科学院福建物质结构研究所和闽都创新实验室研究员陈学元课题组,通过在Cs2NaInCl6中引入稀土离子Yb3+和Er3+作为近红外发光中心,实现高效近红外发光(图1)。   Cs2NaInCl6:Yb3+的最佳量子产率为39.4%,相比Cs2AgInCl6:Yb3+ 材料提升了142.2倍。科研团队通过第一性原理计算和Bader电荷分析,对比研究了Cs2NaInCl6:Yb3+和Cs2AgInCl6:Yb3+两种材料的局域电子结构(图2)。Bader电荷分析是一种通过将材料的总电荷分解到原子电荷,得到原子周围电子数,进而计算出原子化合价的方法。该方法应用于材料的电荷特性分析,判断材料内电荷传输过程。研究表明,Cs2NaInCl6:Yb3+中Na+离子的强离子性使其几乎完全电离,导致相邻的[YbCl6]八面体电荷显著局域化,促进了Cl--Yb3+的荷移跃迁。而Cs2AgInCl6:Yb3+中的Ag+由于强共价性形成Ag-Cl共价键,使相邻的[YbCl6]八面体中Cl-的电子波函数向Ag+离域,导致Cl-与Yb3+波函数交叠减小,从而抑制了Cl--Yb3+荷移跃迁过程。   该研究利用温度依赖的稳态和瞬态荧光光谱等手段,观察到Cs2NaInCl6:Yb3+中Yb3+的激发峰相对于基质自限激子的激发峰存在明显偏移(图3)。在低温下,Cs2NaInCl6:Yb3+通过紫外激发,在近紫外-可见光区观察到两个发射峰,波数差约为9766 cm-1,对应于荷移跃迁带(CTB)→ 2F7/2和2F5/2跃迁。以上证据证实了在Cs2NaInCl6:Yb3+中的高效近红外发射来源于其独特的Cl--Yb3+荷移跃迁敏化过程。   科研团队通过共掺其他近红外发光离子如Er3+,实现了Cl--Yb3+荷移跃迁敏化的Er3+离子1540 nm处的近红外发射(图4)。相比于Cs2NaInCl6:Yb3+/Er3+中常规的自限激子敏化,其发射强度增强了1510.2倍,最佳量子产率为7.9%。   该研究为实现高效的稀土掺杂近红外发光无铅金属卤化物双钙钛矿开辟了新途径,有望应用于近红外光通讯、发光二极管和夜视成像等领域。相关研究成果发表在《先进科学》(Advanced Science)上。研究工作得到中科院创新团队国际合作伙伴计划和国家自然科学基金等的支持。图1.Cs2NaInCl6:Ln3+ (Ln = Yb和Er)双钙钛矿高效近红外发光及发光机理示意图。图2.(a)Cs2AgInCl6:Yb3+的Bader电荷分析,(b)电子局域密度和(c)结构示意图;(d) Cs2NaInCl6:Yb3+的Bader电荷分析,(e)电子局域密度和(f)结构示意图。图3.温度依赖的Cs2NaInCl6基质的(a)激发光谱和(b)发射光谱;温度依赖的Cs2NaInCl6:Yb3+的(c)激发光谱和(d)发射光谱;(e)10 K下,Cs2NaInCl6:Yb3+的发射光谱;(f)在Cs2NaInCl6材料中,Yb3+离子的电子跃迁示意图。图4.不同浓度Yb3+和Er3+掺杂的Cs2NaInCl6 的(a)激发谱和(b)发射谱;Cs2NaInCl6:6.9%Yb3+/Er3+在不同Er3+掺杂浓度下,(c)Yb3+和Er3+的积分发射强度,以及(d)994 nm和(e)1540 nm发射处的荧光寿命;(f)Cs2NaInCl6:Yb3+/Er3+中的能量传递示意图。
  • 蜂蜜造假花样百出:掺杂糖分 捏造蜜种
    “冠有阁”的6种蜂蜜因“果糖和葡萄糖”含量不足而被要求下架停售,我国香港消委会从55款蜂蜜样本中检出14款掺糖蜂蜜……近日曝光的蜂蜜掺假问题再度引发业界关注。记者在采访中进一步发现,由于蜂蜜市场供不应求,消费者鉴别能力低,以及市场存在监管空白等原因,蜂蜜掺假已经成为屡禁不止的老问题。勾兑蜂蜜、捏造蜜种,勾兑蜜充当“土蜂蜜”等乱象混迹于市场。而今,随着天气恶劣导致蜂蜜严重减产,原料价格飙升,蜂蜜造假的问题或将更加突出。  现象:蜂蜜掺假接连曝光  日前,北京市食品办责令11种不合格食品全市下架停售。其中6种是“冠有阁”蜂蜜,不合格原因是“果糖和葡萄糖”含量不足,也就是喝起来很甜,却没有蜂蜜特有的香醇味儿。  按照规定,蜂蜜中的果糖和葡萄糖含量应≥60%,但这6种不合格产品实测值最高35.6%,最低只有25.4%。对此专家表示,“果糖和葡萄糖”指标虽然不涉及食品安全,但却是蜂蜜的重要质量指标。果糖和葡萄糖含量过低,表明产品可能掺入了其他糖类物质,也会造成蜂蜜产品口感和营养价值的降低。  事实上,蜂蜜掺假现象长期存在,每年都有质量抽查曝光相关问题产品。日前,中国香港消委会的一项蜂蜜检测发现:55款蜂蜜样本中有14款掺杂了糖分。被检出掺杂糖分的产品中有12款竟然还声称是天然或纯正蜂蜜,当中7款甚至声称100%天然或100%纯正。  上个月,还有报道称,“市场上的蜂蜜六七成是假货”。不仅农贸市场出售有假蜂蜜,在许多大型超市也会出现假蜂蜜的身影。假蜂蜜多为糖浆勾兑而成。  趋势:今年减产严重或现更多假货  被曝光出来的蜂蜜问题已经如此之多,而今后,或许有更多蜂蜜质量问题被曝光。全国蜂产龙头企业广州宝生园公司相关负责人对记者透露,由于近年的气候不稳定,“靠天吃饭”的蜂蜜也出现了连连失收的情况。“今年一反常态的持续雨季对荔枝产量造成了严重影响,广东从化荔枝大幅减产,从化钱岗糯米糍减产近90%,几近绝收。果树歉收也严重影响了蜂农,而作为夏日主要保健饮品的荔枝蜂蜜和龙眼蜂蜜产量大幅减少,导致终端出现产品抢购热潮及零售价上涨等一连串的市场反应。今年北方大面积的洪涝灾害,更促成了蜂蜜产品价格的新一轮上涨。”  数据显示,今年蜂产品原料价格上浮不少。升幅最高的是冬蜜原料,比去年上浮幅度达到40%。荔枝蜜比去年上浮幅度达到25%。今年孕育花蕾期受冻,致使花期流蜜量不多,洋槐蜜比去年上浮幅度达到30%。  河南省养蜂业协会副会长何昕则分析,从目前情况看,今年蜂蜜产量比去年下降25%左右,这是今年蜂蜜收购价格一路上涨的主要因素。此外,蜂农老龄化严重,养蜂者逐年减少,也是造成蜂蜜价格走高的一个原因。在原料短缺加剧的背景下,蜂蜜消费却持续旺盛。中国养蜂历史悠久、养蜂数量众多、蜜源植物最丰富,紫云英、槐花、荆花、椴树、枣花、荔枝等植物都是较好的蜜源。据国家统计部门公布的数字,目前,中国养殖蜜蜂约850万群,全国每年的蜂蜜产量基本维持在约40万吨左右,占到全世界的四分之一,每年出口蜂蜜10万吨左右,主要出口到美国、欧洲、日本和韩国等。  供应与需求的此消彼长之间,巨大的供需缺口无疑会招来制假者觊觎,市面或出现更多假货。  成因:检测有难度 监管有空白  “利益的诱惑,是假蜂蜜出现的根本原因。而通过勾兑的假蜂蜜成本大概只是真蜂蜜的30%左右。”宝生园相关负责人称。王长庚 摄  而蜂蜜造假屡禁不止,在业内人士看来,很大原因也是因为监管留下了空子。  据知情人士透露,目前对于蜂蜜的监管,暂时还无解,比如对于养蜂散户私自兜售假蜂蜜的行为,还没有明确的部门来管。其实工商部门以前对济南的蜂蜜市场都进行过检查,没有发现不合格产品。这是因为蜂蜜在流通环节的现行国家标准检测中,检测项目仅有几项,而在这几项检测项目,假蜂蜜的检测结果完全可以以假乱真。  而一家知名的内地蜂蜜企业负责人则表示,蜂蜜主要是由果糖和葡萄糖组成的。除此之外,内地的标准还允许有少量蔗糖,“国外一般强调无添加、无提取”。  根据蜂蜜的新国标《食品安全国家标准 蜂蜜GB14963-2011》的规定,蜂蜜只能是“蜜蜂采集植物的花蜜、分泌物或蜜露,与自身分泌物混合后,经充分酿造而成的天然甜物质”,其中,果糖和葡萄糖含量至少要达到60%,蔗糖含量不得超过10%。尽管量少,这一规定却无疑承认了加糖的合法性,形成了一种负面的效应。  ■乱象大揭秘  1.平的、贵的都可能有假  记者在某农产品商务平台上看到,山东槐花蜜和广西纯天然蜂蜜的批发价格为45元/kg,湖南衡阳的纯天然蜂蜜和贵州的有机蜂蜜批发价格为60元/kg,而广东江门的纯天然蜂蜜和山西临汾的原始森林土蜂蜜价格均为100元/kg。“加上运输费用、商品包装、中间渠道等,一瓶500克的纯蜂蜜到卖场销售,一般不太会低于30元。”一位业内人士表示。  “我在超市里看到一些便宜得根本不可能是真蜂蜜的产品,”一位蜂蜜产业资深从业者对记者说,“像那些20来块钱一罐的蜂蜜,我可以说,都已经低过了成本价,怎么可能是真的?”  据知情人透露,市场上假货确实不少,且同一品牌中也分真假,像三四十元一斤相对廉价的蜂蜜假货的可能性较多,五六十元一斤的蜂蜜品质相对就会好些。  上述负责人表示,大部分的消费者近年来消费更趋于理性,更加关注的是产品的质量,从价格引导型转向品质引导型消费,对优质优价接受度明显提高。  可是,不法分子也很快盯上高端蜂蜜,价格已不再是衡量蜂蜜真假的单一“硬指标”。前不久在香港被曝光的“麦芦卡”(新西兰独有的桃金娘科灌木)蜂蜜的身价就相当高昂。此前,在珠江新城的一家友谊商超,记者看到了至少3家新西兰公司生产的“麦芦卡”蜂蜜,售价最贵的一小瓶突破600元。据了解,这种蜂蜜在香港的售价约为每100克39.6港元至151.2港元不等,价格明显高于一般蜜种。  2.很多蜜种系捏造  另外,一些明目张胆的虚假宣传在市面欺骗消费者。一位不愿透露姓名的业内人士告诉记者,部分蜜种产量极少,根本不能支持网店和超市大量销售,市面上买到的多为假货 而有些蜜种压根就是不存在的,这些植物产花粉,但是不产蜂蜜,或者植物生长环境不在蜜蜂的采蜜活动范围 此外,还有一些蜜种事实上并不名贵,但经过稀奇古怪的产品名称包装,就摇身一变成为了高档货,其中不乏进口蜂蜜。  “选蜂蜜选常见的种类就行,比如百花蜜、洋槐蜜、荆条蜜、椴树蜜等等,枣花蜜容易有农药残留,最好别喝,别相信那些稀奇古怪的蜜种。每个人身体素质不一样,最好听下医生怎么说”,该业内人士提醒,很多消费者对蜂蜜生产的过程并不了解,造假者利用这种信息不对等,随便换个名称就把原本收购价很低的蜂蜜卖成个天价。因此,消费者买蜂蜜的时候要擦亮眼。  比如,金银花蜜,金银花的花冠又长又细,蜜蜂的嘴很短,很难深入到花蕊,只有在花倒挂时流出来的花蜜,蜜蜂才能采到 苹果花花蜜非常非常少,蜂蜜采的还喂不饱自己,蜂农很难收集到这类单品种蜂蜜 野菊花蜂蜜的产量极少,有时得天气极好的时候才采到,不可能稳定地供给商家 益母草是一种辅助蜜源,能形成蜜的量很少,不可能有纯的益母草蜜大量出售,市场上益母草蜜却因为标榜对女性健康有益很受追捧。  有些蜂蜜蜜种压根是不存在的,如桃花只有花粉,没有花蜜。天山雪莲蜂蜜也不可能成为现实中的产品,因为雪莲通常生长在高山雪峰之中,蜜蜂活动的温度要高于13℃左右,雪莲花和蜜蜂的采蜜活动压根就“不搭界”。此外,真正的玫瑰是没花有蜜的,只有一种叫野玫瑰的,这种花的花蜜也是极少的。“目前市场还流行一种叫雪莲脂蜜的,养蜂人都知道,其实就是一种俗称野豌豆的苕子的花蜜,品相还比紫云英蜜差点,换个名字就卖了个好价钱。”该业内人士称。  3.“土蜂蜜”未必真“土”  不少消费者还发现,通过网络渠道经常能购买到“土蜂蜜”,店家往往声称,“土蜂蜜”比普通蜂蜜营养价值更高、保健效果更好。  然而,专家指出,农家蜂蜜不等于“土蜂蜜”,将两者混淆等同是偷换概念的行为,“土蜂蜜”特指土蜂(即中华蜜蜂)产的蜜,而且因为中华蜜蜂的习性使然,擅长采集零散蜜源,很难产出单品种蜂蜜,往往以“百花蜜”居多 意大利蜂擅长出产单一花种的蜂蜜,市面上大部分的单一蜜种都是意蜂生产的,像槐花蜜、荆条蜜、荔枝蜜、龙眼蜜等等。蜂王浆和蜂胶也多是这种蜜蜂生产。凡是单品种蜂蜜还声称是“土蜂蜜”的,多半是用意大利蜂产的蜜来冒充“土蜂蜜”。  那么农家蜂蜜能不能买呢?“前段时间跟朋友去农村玩,看到国道边上有蜂农摆了几个蜂箱,在卖蜂蜜,说是农家土蜂蜜,绝对纯正新鲜,价格还不便宜”,广州市民周小姐说,出于好奇尝了一下蜂蜜,“看到有结晶,口感也还行,不过我的朋友提醒,怎么蜂箱里一个蜜蜂都没有呢”,她说,卖蜂蜜的蜂农解释,蜜蜂采蜜去了,所以蜂箱是空的,因为有所怀疑,周小姐最终也没有买蜂蜜。  对此,广州从化市一位多年养蜂的蜂农老齐告诉记者,蜜蜂采蜜不可能几个小时都不回巢一次,“很多路边卖蜂蜜的自己都不是养蜂的,只是收购来的而已,放个蜂箱只是招揽生意的,如果你要求看蜜蜂,多半会被吓唬蜜蜂蜇人。”他说,买蜂蜜也不是越新鲜越好,即使是新鲜摇下来的蜂蜜,立即吃的功效其实远不如放了一段时间的蜂蜜。专家提醒,蜂蜜被分离了以后,里面的蔗糖还要在酶的作用下继续分解成果糖和葡萄糖,到一个月左右,各种成分才能真正稳定下来。而且蜂蜜天然抗菌,所以不用担心放久了会有细菌。  4.造假方法网上随手可学  记者还发现,网络上流传着各种各样自制“蜂蜜”的方法,部分还图文并茂。例如有一种流传颇广的“10分钟熬出‘蜂蜜’”的方法,原料仅需白砂糖、明矾、酱油、清水。蜂蜜造假方法简单,一看就会,毫无技术门槛。而这种“蜂蜜”的成本已经直观可见。曾有人实践过这一系列实验,用白糖、明矾和水为原料,仅仅花了8元钱就制作出了一碗“蜂蜜”。  假蜂蜜的成本低廉,而在超市销售的、与用此方法调制的“蜂蜜”颜色接近的枣花蜜,最便宜的一瓶价格在31元左右(均是500g装,大约314ml),至于普通的蜂蜜,价格一般也在25元左右。  还有更狡猾的造假者。曾被曝光的慈溪怡康蜂业有限公司掺假更加隐蔽,他们在洋槐蜂蜜中至少掺油菜花蜂蜜60%,价格就下来了。公司负责人得意地说:“(这样的蜜)吃也吃不出来的,无论工商、质监也都检测不出来。”  广东省质监局一位内部人士透露,现在市场上蜂蜜的监管几乎是空白领域。“以前有蜂蜜掺假的判定方法,新的食品安全标准颁布后,删除了这个项目。之前的方法也在用,但是不能作为处罚的依据,只能作为案件的线索。监管上就要看商家的道德约束了”。  简单四招选蜂蜜  ■小贴士  1.看色泽。纯正的优质蜂蜜透光性强,颜色为白色、淡黄色至琥珀色,且均匀一致 而劣质蜂蜜颜色黑红或暗褐色、无光泽、蜜液混浊而有杂质。  2.晃气泡。如果蜂蜜发酵变质,会因含水量增多而导致表面产生大量气泡,而纯正的蜂蜜表面则无大量气泡。  3.闻香气。品质好的蜂蜜香味浓而持久,开瓶后便能嗅到,用手掌搓揉会有粘腻感,而劣质的蜂蜜往往因掺入香精而过于浓郁。  4.拉细丝。用筷子挑蜂蜜,优质的蜂蜜弹性佳,可拉成丝状,且不易拉断,而劣质的蜂蜜浓度较低,黏性小,难以拉成细丝。
  • 兰州化物所开发出氮掺杂多孔石墨烯制备新方法并用于稀土分离
    近日,中国科学院兰州化学物理研究所手性分离与微纳分析课题组开发出一种多重限域的一步可控合成掺杂方法,制备出对稀土离子具有高分离选择性的氮掺杂纳孔石墨烯膜(专利申请号:CN 202010861481.0)。该研究在吸附了苯丙氨酸的氧化石墨烯膜的二维层间空间限域生长层状锌类水滑石,从而构建类水滑石/苯丙氨酸/氧化石墨烯三明治型复合材料。由于锌类水滑石层间夹层可作为密闭反应器,通过限域燃烧,可将苯丙氨酸中的氮原子掺杂到石墨烯晶格中。同时,形成的多孔锌类水滑石可作为模板,通过孔区域内限域燃烧在氧化石墨烯上蚀刻出孔径可控的纳米孔(图1)。  科研人员将获得的氮掺杂纳孔石墨烯(图2)制备成膜用于稀土元素的分离,获得了良好的分离选择性,最高膜分离因子达到3.7。理论模拟表明,氮掺杂纳孔石墨烯中的吡咯氮原子,在稀土离子的选择性分离过程中起到主要作用。该制备方法简单高效、膜分离稳定性优异。该研究不仅为杂原子掺杂纳孔石墨烯材料的制备开辟了新途径,而且为实现稀土离子的高选择性膜分离提供了新思路,具有潜在的工业应用前景。相关研究成果发表在Cell Press旗下综合类子刊iScience上,博士生谭洪鑫为论文第一作者,研究员李湛和邱洪灯为论文共同通讯作者。  此外,研究人员在自主研发的纳孔石墨烯/氧化锌纳米复合材料的基础上,利用固相合成策略,使均苯三甲酸与纳孔石墨烯表面的氧化锌纳米颗粒直接反应,原位绿色合成出纳孔石墨烯/MOF复合纳米材料,并发现该材料适合于水溶液中稀土离子的选择性固相吸附分离,该研究成果发表在Analytical Chemistry上。  研究工作得到国家重点研发计划、国家自然科学基金、中科院和甘肃省人才计划项目的支持。 图1.多重限域策略可控合成氮掺杂纳孔石墨烯示意图 图2.氮掺杂纳孔石墨烯表征图
  • PerkinElmer推出首个奶粉中未知掺杂成分筛查仪器
    PerkinElmer今日推出了DairyGuard&trade 奶粉分析仪,它是一台专门为食品供应商和生产商所开发的近红外(NIR)光谱仪。DairyGuard是目前可用于检测未知掺杂成分和已知化合物(如蛋白质 、水分和脂肪含量)的唯一系统。DairyGuard结合更快的制备和采样时间,可获得实时结果,从供应链风险直至奶粉的安全和质量整个过程提供高度保护。  随着供应链复杂性及潜在次品收回可能性的增加,食品生产商需要一套现成解决方案,可准确且经济地筛查出奶粉中已知和未知污染物。DairyGuard分析仪所预先设定的奶粉具体分析谱数学模型类似于&ldquo 指纹&rdquo ,无需进行前期仪器配置。DairyGuard在不足1分钟的时间内即可准确地判断出某一批次产品是否可安全地用于后续生产,或是否仍需要进一步的分析。  PerkinElmer食品总监Sharon Palmer指出:&ldquo 许多机构已确认奶粉成分具有掺杂高风险性,因而所有食品生产商亟需采用一套可靠的筛查方法。为了避免食品安全问题,如2008年的三聚氰胺事件,食品生产商必须进行筛查,不仅要筛查已知污染物(如农药和药物残留成分),而且还要筛查可能会成为不安全替代成分的未知污染物。DairyGuard将使食品供应商对其产品成分更具信心,而且,它还有助于确保为消费者提供安全最终产品。&rdquo   Flora研究实验室主任James Neal-Kababick说:&ldquo 红外技术已成为我们工作中的一项重要工具,用以检测营养保健品中隐秘且低成本的掺杂成分。就我们所采用的诸多方法而言,红外分析速度是任何其他方法所无法比拟的,而且,在我们的植物取证工作中,特别是在可用样品极为有限的情况下,其进行非破坏性测试的能力至关重要。我认为,在实验室中配备红外系统就像天平一样,是基础工具。我很难想象实验室没有红外系统。PerkinElmer技术,如DairyGuard中的红外系统,帮助我们解决了所遇到的一些最复杂的食品及营养品污染实例。&rdquo   为食品杂货制造商协会(Grocery Manufacturers Association, GMA)进行的2010 A.T. Kearney研究表明,一件掺假事件的花费平均占到公司年收入的2%-5%。在人力及技术方面进行投资以确保简化筛查方法,这可使加工商和生产商避免污染物对客户及公司声誉所构成的威胁。
  • HORIBA海外用户简讯|太阳能电池元素掺杂研究,美国CSM大学用这招儿
    作者:小武老师编辑:Joanna关键词CdTe, As doping, Atom probe tomography, Scanning transmission electron microscopy, Molecular beam epitaxy, Single crystalline薄膜电池(图片来源于网络)近年来,太阳能电池因其高转换效率、低成本和高稳定性特点倍受关注。其中碲化镉(CdTe)薄膜太阳能电池被认为是太阳能电池中容易制造的,因而它向商品化进展快,许多国家碲化镉电池已开始走向规模工业化生产。如今碲化镉(CdTe)薄膜太阳能电池的转化效率已经高于20%,若要进一步提高效率,就面临着提高效率的同时保持开路电压不变的挑战。碲化镉薄膜太阳能电池结构示意图(图片转自网络)基于碲化镉(CdTe)薄膜太阳能电池的结构和工作原理,人们目前实现的途径是确保载流子寿命不损失的情况下,在其P-N结构中添加掺杂元素,即P型掺杂。在大规模生产中砷元素As更安全,扩散更慢,因而被选为新型掺杂元素。但掺杂砷元素又会引发新问题。基于此背景,美国科罗拉多矿业大学(CSM)冶金和材料工程系的研究人员,在P-N结构中掺杂砷元素As后,对P-N结构进行原子尺度的微观深度分析,重点观察砷元素的掺入限制、簇状构造、溶解限和活化,研究其掺杂影响,以期实现增加P型掺杂的同时不损失载流子寿命,进而改善开路电压稳定性,提高太阳能电池的性能。美国科罗拉多矿业大学(图片来源于网络)观察过程中,研究人员应用了多种表面分析技术。其中低温阴荧光光谱仪(H-CLUE)对缺陷、掺杂等变化非常灵敏,因此在观测材料发光能量变化的环节中,研究人员用其表征和验证砷元素的掺杂效果,这对实验起到了重要作用。该工作以《Understanding arsenic incorporation in cdte with atom probe tomography》为题,发表于《Solar Energy Materials and Solar Cells》2018年,Volume 182(扫描二维码可直达英文原文)。 扫描识别查看左方二维码阅读英文原文如需了解该研究中的测试方法,扫描下方二维码留言,我们的应用专家将乐于为您提供解答服务。 扫描识别查看左方二维码寻找技术支持免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。horiba科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 天美公司参加第八届全国掺杂纳米材料发光性质学术会议
    7月22-24日,由中国物理学会发光分会、中国稀土学会发光专业委员会主办,吉林大学电子科学与工程学院、集成光电子学国家重点实验室承办的“第八届全国掺杂纳米材料发光性质学术会议”在长春举办。开幕式于7月23日上午举行,大会主席、吉林大学电子科学与工程学院宋宏伟教授主持开幕式。 天美仪拓实验室设备(上海)有限公司(以下简称天美公司)应邀作为赞助商之一,全程参加了此次会议。会议期间,天美公司对于用户提出的需求进行相关的解答,也会进一步急用户之所急,进一步的开发出符合用户需求的产品。通过为期两天的会议,天美公司与客户进行了深入的交流,更加深了彼此的相互了解。天美公司作为知名供应商,将在掺杂纳米材料,作出进一步的技术升级,服务广大客户,让广大客户得到满意的科研结果,助力其科研发展。
  • 网爆羊肉串造假掺杂 DNA检测核实
    原标题:街头买来羊肉串,DNA验真身  有的压根没羊肉 有的掺杂猪鸭肉图为:羊肉串让人吃得不放心 记者王永胜摄  楚天都市报讯 在武汉街头,经常可闻到羊肉串的诱人香味 而在寒冷的冬天,一些火锅店的涮羊肉销售也十分火爆。  近日,不少网友微博报料称,现在市面上卖的很多羊肉串、涮羊肉都不是真的羊肉做的,而是猫肉、老鼠肉做的。  对这种说法,多数市民并不相信:哪来这么多的猫肉、老鼠肉?  记者通过走访羊肉烧烤摊、美食城一条街以及羊肉串批发市场,并请专业机构鉴定求证发现,其实现在市面上的羊肉串、涮羊肉确实有猫腻。  网友报料  “羊肉串”是猫肉鼠肉  近日,武汉一名网友张先生报料:他在浏览微博时,发现不少网友称,街头诱人的羊肉串、火锅店里的涮羊肉,都不是真正的羊肉做的,而是猫肉、老鼠肉做的。  昨日,记者通过新浪、腾讯微博,以及百度搜索发现,网络上讨论羊肉是流浪猫、老鼠等做的帖子铺天盖地。  其中,网友“豆包kiroro小鱼钓猫”说:冬季多吃羊肉可御寒。可据说现在街上卖的羊肉串有些用的是猫肉。  网友“厦门人士”则表示:猫肉可能被制成“羊肉”,已经误入你的口中。  网友“不努力”奉劝大家:5元以下的羊肉串,尽量不要去吃,一般是猫肉、老鼠肉之类的。  此外,还有不少网友揭露,为让人们觉得吃的猫肉、老鼠肉有膻味,一些烧烤摊老板往往以很低的价格买回猫肉,放在盛有羊尿的盆里浸泡几个小时,再用嫩肉粉、各种调料腌制二三十分钟,加点羊油和羊肉香精,羊肉串就诞生了!  街头探访  烧烤摊老板闪烁其词  诱人的羊肉串,到底是不是羊肉?  近日,记者到武昌民主路户部巷、汉口吉庆街一带进行了走访。  在户部巷一家烧烤摊前,等着吃烧烤的市民排起六七米的长队。  “老板,你这个羊肉是真的吗?”记者问。“这都是刚刚串好的羊肉,当然是真的。”一名女店主称。  在另一家烧摊点前,店主则表示,他不仅卖的是真羊肉,还是产自新疆的羊肉。  不过,不少老板对记者的询问显得有些不耐烦。“你问这个干什么?”  此外,有几名老板则直白地说,一串羊肉卖一两元钱,若都是真羊肉,大家可能喝西北风去了。  冷冻市场  羊肉串仅带羊肉风味  有的烧烤摊老板说羊肉是真的,有的老板则说是假的,真相到底如何?  据了解,羊肉串大多来源于冷冻食品批发市场。昨日,记者来到一家市场调查了解到,现在的羊肉串每斤售价在19元至20元不等。批发商专门指出,这种羊肉串是有羊肉风味的。  只有羊肉风味,那有没有纯的羊肉呢?批发商表示,现在几乎不存在纯的羊肉。记者调查还发现,不少羊肉串的包装袋上的文字注明:烧烤肉串,羊肉风味。本产品精选鲁西南羊肉,配料为精选精鲜肉、白砂糖、味精等。一边号称鲁西南羊肉,一边配料却是精鲜肉,明显前后矛盾。  既然没有正宗羊肉串卖,有的都只是羊肉风味的烧烤肉串,那什么叫羊肉风味的烧烤肉串?经再三追问下,批发商这样解释:它说白了就不是羊肉,而是一种带有羊肉风味的肉。  实验求证  羊肉串掺有猪肉鸭肉  街头的羊肉串,只是一种带有羊肉风味的肉。那么,里面的肉,到底是不是老鼠肉和猫肉呢?  近日,记者从市场购买了6份羊肉样品,一号、二号来自冷冻食品批发市场 三号、四号来自美食街 五号、六号分别来自餐馆和流动烧烤摊。记者带着这些样品,找到武汉摩尔生物科技公司,并对6个样品的DNA成分进行检测。  检测发现,6份样品中,仅仅是一、二、四号样品检测出了羊肉成分,三、五、六号样品完全不是羊肉。此外,一、二、四号样品仅是含有羊肉,并不是纯羊肉。  经对一、二、四号样品的进一步检测,检测人员发现,3份样品中,除了有羊肉的成分,还有猪肉和鸭肉的成分。  一名肉制品经销商称,目前每斤羊肉的价格是20多元,而猪肉和鸭肉的价格则分别在10元和8元左右,为了省钱,一些商贩就在羊肉里掺一些别的肉。  那么三、五、六号样品完全不是羊肉,到底是什么肉?检测人员分别对它们猪肉和鸭肉的源性成分检测,结果都不是。这就奇怪了,不是羊肉,不是猪肉,也不是鸭肉,难道真的是传说中的猫肉、老鼠肉?检测人员表示,这还有待进一步的检测。  特别鸣谢:本次采访得到湖北卫视《生活帮》栏目(播出时间,每周三22:00-23:00 周六、周日11:50-13:00)大力支持。
  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。/pp style="text-indent: 2em "碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。/pp style="text-indent: 2em "有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。/pp style="text-indent: 2em "针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。/p
  • PerkinElmer发布适用于食品掺杂快速检测的最新软件
    Adulterant Screen软件与PerkinElmer高端红外光谱仪的配合使用实现了食品掺杂掺伪筛查与营养成分检测的一步化操作 2014年2月24日,美国,马萨诸塞州,沃尔瑟姆 —— PerkinElmer,专注于提升人类健康和环境安全的全球领导企业,今日对外发布Adulterant Screen软件系统。这一自动化的解决方案能够协助食品从业人员辨别食品原料的真伪,以杜绝正在发生的、以及潜在的食品掺伪威胁。 Adulterant Screen软件与PerkinElmer傅利叶变换红外光谱仪(FT-IR)或近红外光谱仪(NIR)的配合使用创建了一个独特的、硬件与软件相互融合的系统,仅需通过一个步骤就能够实现确认食品真伪和进行营养成分分析的双重目标。 “食品质量专家们必须妥善应对不断上升的风险,持续检测食品原料,筛查可能成为不安全因素的、已知或未知的食品添加成分。”PerkinElmer环境事业部总裁 Jon DiVincenzo说,“我们的使命就是不断研发先进的检测解决方案,协助我们全球范围内的用户从容不迫地应对愈发复杂的、涉及食品供应链中质量控制和安全的行业监管法规。” 工作原理:Adulterant Screen软件能够同时对多种掺伪物质进行快速的、针对目标检测物和非目标检测物的筛查。个性化的设计,快速、有效,无需冗长的校正过程。简单直观的“红灯/绿灯”、“Pass/Pail”结果显示系统确保了简便的操作,使得各类知识背景的使用者都能轻而易举地使用。 了解更多:欲了解更多关于Adulterant Screen软件的信息,可访问此连接。 PerkinElmer同时提供Dairy Guard TM奶粉分析仪,一个基于近红外(NIR)平台的、面向食品供应商和生产商的光谱仪。Dairy Guard奶粉分析仪是目前唯一一款能够同时对已知和未知掺伪物质进行检测的系统。 关于PerkinElmer:珀金埃尔默是专注于人类和环境健康的全球领军企业。2013年,公司收入约为22亿美元,在150个国家拥有超过7700名员工。同时,珀金埃尔默也是标准普尔500指数公司,欲了解更多信息,可访问:www.perkinelmer.com.cn。 媒体联系: 薛萍:021-60645888
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率
    Nature:突破障碍 - 何祝兵团队在甲胺掺杂的倒钙钛矿太阳能电池中达成25.86%的效率分子掺杂工艺: 研究人员引入了一种使用二甲基胺基掺杂剂的分子掺杂工艺,该工艺能够创建一个与p-钙钛矿/ITO接触良好且能够完全钝化晶界的结构。这种创新工艺提高了钙钛矿太阳能电池的功率转换效率(PCE),实现了经认证的25.39%的PCE,这是对钙钛矿太阳能电池现有标准的改进。分子挤压技术: 该工艺采用了一种独特的“分子挤压”方法,在甲苯淬灭结晶过程中将分子从前驱体溶液排出到晶界和薄膜底部。这种独特的技术导致了钙钛矿薄膜的p-掺杂,有助于提高器件的效率。长寿命和高效率: 器件在逆向扫描时实现了25.86%的效率,并表现出卓越的稳定性,即使经过1000小时的光老化,仍能保持96.6%的初始效率。这表明钙钛矿太阳能电池在性能和可靠性方面取得了显著的进步。在不断发展的光伏领域中,更有效、可持续地利用太阳能的追求是一项不懈的努力。科学家已经探索了许多途径来提高太阳能电池的效率,其中钙钛矿太阳能电池因其性能潜力和经济制造能力的结合而一直脱颖而出。今天,我们将聚焦于一支南方科技大学何祝兵团队率领杰出的研究团队所取得的重大突破,他们实现了钙钛矿太阳能电池效率的深度提高,这标志着我们共同追求更可持续和能效的未来的重要一步。这项开创性的研究提出了一种与传统方法有着根本不同的新型分子掺杂工艺,使用了一种二甲基氨基基团的掺杂剂。这种掺杂剂巧妙地用于形成和谐的p-钙钛矿/ITO接触,并精确地去除晶界缺陷,推动了钙钛矿太阳能电池功率转换效率(PCE)的大幅提升。研究团队创造出了一个惊人的世界纪录,即25.39%的认证PCE,为该行业设定了新的标准和潜力。为了达到这个非凡的成就,研究人员提出了一种被称为“分子挤压”的巧妙技术。这种创新策略迫使前体溶液中的分子在甲苯淬火晶化过程中重新分布到晶界和薄膜底部。因此,这导致了钙钛矿薄膜的p型掺杂,这是实现设备效率显著提高的关键。这种独特的工艺因此标志着一种基础性的突破,从根本上改变了可再生能源范式。然而,这项研究的胜利不仅仅局限于效率领域。该团队的冠军设备不仅在反向扫描中展示了25.86%的PCE,超越了以往的阈值,而且表现出了卓越的稳定性,在经过1000小时的光老化后仍保持了96.6%的初始效率。这项成就解决了钙钛矿太阳能电池技术中的一个主要挑战——效率和稳定性之间的平衡,并为未来旨在优化这两个重要方面的研究提供了有价值的基础。在这项开创性研究的核心是Enlitech的QE-R精密测量设备的精确利用。这种先进的设备为团队提供了准确的读数,使他们能够仔细评估他们的新方法的结果。选择Enlitech的QE-R设备,这种以精度和可靠性闻名的设备,强调了顶级资源在实现突破性成果中的重要性。此外,研究人员深入探究了p-钙钛矿/ITO界面的复杂能带对齐。通过应用紫外光电子能谱(UPS),他们阐明了促进空穴提取的带弯曲现象,这是实现高性能太阳能电池的关键过程。实验揭示了二甲基氨基基团掺杂剂以及与铅离子形成的分子复合物修改ITO基板的功函数,从而获得了有利于高效空穴提取的能带对齐。除了提高效率和稳定性外,研究团队还解决了钙钛矿太阳能电池中常见的滞后效应挑战。通过采用分子挤压技术和精确的掺杂工程,他们显著降低了滞后效应,从而使设备性能更加可靠和可重复。这一突破为实际应用和商业化钙钛矿太阳能电池提供了巨大的潜力,因为它解决了阻碍其广泛应用的主要障碍之一。此外,研究团队对电荷载流子动力学的详尽研究揭示了他们的钙钛矿太阳能电池性能异常出色的机制。通过各种分析技术,包括电荷密度差和Bader电荷分析,他们揭示了钙钛矿薄膜内电荷的重新分布,这归功于有效的分子掺杂策略。这种重新分布导致了提高空穴提取效率和提高整体设备性能的效果。总之,这项开创性的研究代表了钙钛矿太阳能电池领域的重大进展,实现了25.39%的创纪录效率和卓越的稳定性。分子掺杂工艺结合创新的分子挤压技术为实现对设备性能和稳定性的前所未有的控制铺平了道路。Enlitech的QE-R精密测量设备的利用对于准确评估制造的设备的光电性质起到了至关重要的作用。这一非凡成就将我们更接近实现钙钛矿太阳能电池的全部潜力,推动我们迈向由清洁、可再生能源驱动的未来。分离ITO表面的Pb 4f(a),I 3d (b)和P 2p (c)的XPS光谱来自ITO/DMAcPA/钙钛矿(蓝色)和ITO/钙钛矿(DMAcPA)(红色)样品两种钙钛矿薄膜埋底面XPS图 S26.Pb 4f(a)、I 3d (b)和调查(c)的XPS光谱,在底部检测到原始(红色)和DMAcPA掺杂(蓝色)钙钛矿薄膜的表面,与正文中报导了制造过程。 Pb结合能的红移在钙钛矿的埋藏底面检测到(图。S26a)也可以表示O–Pb与键削弱了主流Pb-I共价键的结合能和这里解释了Pb的红移。 S26b),它可以是归因于P-O-H–I的氢键,这已经得到了很好的讨论和通过上述H NMR信号的下场化学位移进行检查(图3A)。
  • 天美(中国)科学仪器有限公司赞助参加第七届全国掺杂纳米材料发光性质学术会议
    2018年7月21日至24日,在美丽的滨城大连,天美(中国)科学仪器有限公司应邀参加并赞助了第七届全国掺杂纳米材料发光性质学术会议。此次会议由中国物理学会发光分会、中国稀土学会发光专业委员会主办,大连民族大学承办。会议旨在通过大会报道、专题研讨等活动,总结和交流近年来在掺杂纳米发光材料,能源材料及相关应用领域所取得的研究成果,凝练科学目标,共同探讨和谋划未来学科发展方向,推动我国发光科技和应用的发展,提升我国在掺杂发光材料及相关领域的国际竞争力。   会议期间,天美(中国)科学仪器公司还受邀进行了会议报告。天美分子光谱工程师刘冉进行了题为“爱丁堡光谱仪在先进发光材料检测中的应用”的报告,介绍了爱丁堡公司最新推出FLS1000光谱仪的主要特点及其在发光材料中的重要应用。本次报告,不但加深了新老用户对仪器的了解与应用,同时了也吸引了很多感兴趣的参会老师前来咨询讨论。关于天美:  天美集团从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销;为科研、教育、检测及生产提供完整可靠的解决方案。近年来天美集团积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,以及上海精科公司天平产品线, 三科等国内制造企业、加强了公司产品的多样化。
  • Adv. Funct. Mater. 北理工张加涛课题组:首次实现了近红外掺杂荧光的高效多模防伪和保密应用 | 前沿用户报道
    供稿:白冰成果简介2021年4月,北京理工大学张加涛教授课题组在国际顶级材料学期刊 Advanced Functional Materials (DOI: 10.1002/adfm.202100286,IF=16.836) 发表了题为Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption 的论文,利用杂质扩散平衡策略首次实现了近红外掺杂荧光的高效多模防伪和保密应用。半导体之所以能被广泛应用在光电产品世界中,凭借的就是在其晶格中植入杂质改变其电性,调控半导体纳米晶体的光、电、磁性质,实现高效率发光器件、太阳能电池、自旋电子器件等新型光电子器件的应用。Cu+作为一种通用的掺杂杂质,可以用来调控半导体纳米晶的光电性质。但是在掺杂纳米晶高温外延生长钝化层的过程中,Cu+杂质容易向外扩散,容易造成掺杂失效,阻碍了掺杂纳米晶的进一步应用。要实现半导体纳米晶的广泛应用,必须解决掺杂问题。北京理工大学张加涛教授课题组发展了一种新型的杂质扩散平衡策略,向Cu+掺杂CdSe纳米晶溶液中引入额外的Cu+,在纳米晶内外部杂质离子扩散平衡的条件下进行表面钝化层的高温外延生长。该策略成功制备出Cu 掺杂CdSe@CdS(CdSe:Cu@CdS)核壳纳米晶。只具有本征荧光的CdSe@CdS和同时具有微弱本征荧光和强近红外荧光的CdSe:Cu@CdS纳米晶分别记录了干扰信息和关键信息,且这两种信息在肉眼下无法被明显分辨;而关键信息的近红外荧光则可以通过普通商业手机摄像头和滤光片(截止边800 nm)的组合轻松获取,首次实现了近红外掺杂荧光的高效多模防伪和保密应用。图文导读通常直接在Cu+掺杂CdSe纳米晶表面外延生长钝化壳层容易造成杂质Cu+向外部扩散,导致掺杂失效,阻碍了掺杂纳米晶的进一步应用。北京理工大学张加涛课题组向溶液中引入额外的Cu+,溶液中的Cu+与纳米晶内部的杂质Cu+形成扩散平衡,该扩散平衡在高温下阻碍了纳米晶内部的Cu+向外扩散,最终在CdSe@CdS核壳纳米晶内部形成了有效的Cu+掺杂,保持了Cu+掺杂核壳纳米晶的近红外掺杂荧光。图1 杂质扩散平衡策略示意图和防伪/保密应用图2 CdSe:Cu和CdSe:Cu@CdS纳米晶的形貌、光学和结构表征图3 近红外荧光防伪和保密图案在多种商业手机中的成像效果Cu+掺杂CdSe纳米晶拥有一个较宽的掺杂荧光发射峰,该峰覆盖了可见光区和近红外光区(700 nm-1100 nm),在此范围内使用常规的荧光光谱仪无法获得连续且完整的荧光光谱数据。HORIBA Duetta 荧光光谱仪装备了CCD检测器,可以连续地获取从250 nm 到1100 nm 范围内的荧光光谱信息,为探索材料的新结构、新性能和新应用提供了有力的帮助。Duetta 荧光及吸收光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。总结展望现阶段基于可见荧光的防伪手段面临着易被破解的风险。基于不可见近红外荧光的防伪/保密应用明显地提高了破解的难度,拥有更高的信息安全性。常用的手机摄像头可以有效地捕获近红外荧光,降低了这种基于不可见近红外荧光防伪/保密应用的门槛,有望取代现有的可见荧光防伪/保密模式,实现大规模应用。文献信息Dopant Diffusion Equilibrium Overcoming Impurity Loss of Doped QDs for Multimode Anti-Counterfeiting and Encryption文章署名作者:Bing Bai, Meng Xu, Jianzhong Li, Shuping Zhang, Chen Qiao, Jiajia Liu, Jiatao Zhang扫码查看文献张加涛教授简介张加涛教授现任北京理工大学化学与化工学院院长、北京理工大学首位徐特立特聘教授,英国皇家化学会会士、国家自然科学基金委优秀青年基金获得者、国际纯粹与应用化学联合会(IUPAC)杰出奖 获得者。以第一作者或通讯作者在 Nature、Science、Nature Nanotech、Angew. Chem. Int. Ed、Adv. Mater. 等期刊发表 SCI 论文 50 余篇,他引 2800 余次。
  • 山东大学冯金奎教授AEM:一锅法蚀刻策略制备具有可调配位化学的分级多孔N掺杂碳包覆无氟MXene
    二维过渡金属碳化物和氮化物(MXenes)在层间距扩展、表面终止改性和成分结构构建方面的持续和大量探索引起了储能领域的极大兴趣。然而,由于对MXenes的配位化学缺乏基本的理解,它们的使用仍然受到严重阻碍。近日,山东大学冯金奎教授通过一种新的单点蚀刻策略,制备了具有可调控配位化学的分级多孔N-掺杂碳包覆的无氟Ti3C2Tx。通过高角度环形暗场扫描透射电子显微镜和X射线光电子能谱,作者确定了通过相位重建操纵的与N配位的Ti。此外,此外,明显观察到分级多孔氮掺杂碳(HPNC),其导致材料表面积的成倍增加,这源于微孔和中孔的显著增加。结果,Ti与N配合的结构协同效应和HPNC提高了结合能,减少了加速氧化还原动力学的能量障碍,并促进了多硫化锂的物理固定化。上述MXenes改性的隔膜赋予锂硫电池0.5 A g-1下889.5 mA h g-1的可逆容量,循环100次后容量保持率为79.5%。总的来说,这项工作提供了一种新的和通用的蚀刻策略,即直接合成具有可调谐配位化学的无氟MXene,以探索结构和电化学特性之间的相关性。文章要点:1. 这项工作通过基于新型室温熔融盐(1-Butyl-3-methyl-1H-imidazol-3-ium tetrachloroferrate (III), RTMS)的一锅蚀刻策略,操纵了具有可调谐配位化学的分级多孔N型碳包覆的Ti3C2TxMXene(Ti-N-Ti3C2Cl-C)。2. 通过粉末X射线衍射(PXRD)、高角度环形暗场扫描透射电子显微镜(HAADF-STEM)和X射线光电子能谱(XPS)鉴定了这种通过相位重构实现的Ti和N之间的独特协调结构。同时,在其表面明显观察到层次分明的多孔氮掺杂碳(HPNC),由于微孔和中孔的大量增加,使材料表面积增加了数倍。3. 通过实验和密度泛函理论(DFT)验证,Ti与N的配位结构提高了结合能并降低了能垒,加速了多硫化锂(LiPSs)的氧化还原动力学,而HPNC以及柔性屏蔽不仅缓解了Ti3C2TxMXene层的重新堆积,还提高了LiPSs的物理固定性。4. 此外,Ti-N-Ti3C2Cl-C修饰的隔膜使锂硫电池(LSBs)实现了优异的电化学性能,这确保了这种有前景的材料在能源转换和存储领域的应用。图1 材料制备示意图2 材料表征图3 对多硫化物的吸附与催化图4 锂硫电池性能
  • 北京大学雷霆研究员Science:使用QSense E-QCMD技术研究半导体水凝胶电化学掺杂过程
    编者按:作者通过QSense E-QCMD技术研究了半导体水凝胶电化学掺杂过程中的质量变化和稳定性。相比于传统的有机混合离子电子导体,骨架为阳离子的半导体聚合物呈现出独特的质量下降的行为。这是由于还原过程中部分阴离子离去以维持体系电中性,剩余的阴离子保证交连体系的稳定性。体系去掺杂后,质量得以恢复。雷霆研究员出生于1987年,目前为北京大学工学院材料科学与工程系特聘研究员,为国家青年学科项目的带头人,长期致力于发展新型有机高分子电子材料和柔性电子器件。近年在Nat. Energy , Nat. Comm. , PNAS , Sci. Adv. , Acc. Chem. Res. , J. Am. Chem. Soc. , Adv. Mater.等顶级学术期刊发表论文超过60篇,总引用超过7000次。研究成果被国内外多家媒体报道,被多篇综述评论为该领域的重要进展。目前申请中国和国际专利10项,已获授权5项。部分专利成果已实现规模化生产,并与国内外多家公司开展了合作和产业化研究。最新Science:N型半导体水凝胶水凝胶由三维交联的亲水聚合物网络构成,具备保留大量水分的能力。相较于刚性无机材料和干燥聚合物,水凝胶的机械性能可以广泛调整,适用于模仿软骨、皮肤、肌肉及大脑等多种生物组织。其结构多样且易于改性,在生物功能工程中展现出杰出的多功能性,包括刺激响应性和优异的界面特性,应用广泛于传感器、致动器、涂层、声探测器、光学和电子学领域。尽管具有这些优点,但由于缺乏半导体特性,它们在电子学中的应用一直受到限制,传统上只能用作绝缘体或导体。在此,北京大学雷霆研究员团队开发了基于水溶性 n 型半导体聚合物的单网络和多网络水凝胶,赋予传统水凝胶以半导体功能。这些水凝胶显示出良好的电子迁移率和高导通/关断比,可用于制造低功耗、高增益的互补逻辑电路和信号放大器。作者证明,具有良好生物粘附性和生物相容性界面的水凝胶电子器件可以感应和放大电生理信号,并提高信噪比。相关成果以“N-type semiconducting hydrogel”为题发表在《Science》上,第一作者为李佩雲,Wenxi Sun为共同一作。单网络半导体水凝胶的设计与制备作者设计了一种 n 型水溶性半导体聚合物 P(PyV),它的阳离子骨架含有氯化物反离子,没有任何侧链(图 1B)。作者认为,无侧链聚合物设计可实现较高的电子性能,而离子骨架则为静电交联提供了可能性。通过密度泛函理论计算,发现苯磺酸离子与聚合物骨架的结合能优于氯离子,使热力学交换过程更为有利。作者选用1,3-苯二磺酸钠(DBS)作为体积小且对电子特性影响最小的交联剂。将P(PyV)和DBS混合后,形成不溶于水的亲水网络,显示出通过双离子静电交联形成的水凝胶结构。(图 1C,F)。利用旋涂和正交溶剂处理方法制备P(PyV)水凝胶薄膜,X射线光电子能谱(XPS)和紫外-可见-近红外光谱(UV-vis-NIR)结果证实了阴离子的完全交换和水凝胶的稳定性(图 1D )。掠入射广角X射线散射(GIWAXS)和扫描电子显微镜(SEM)分析显示,交联后的P(PyV)-H形成了稳定的三维多孔网络结构,适于储水及离子和分子的高效运输(图1E)。通过喷涂和水洗的方法实现了P(PyV)-H的图案化,此技术分辨率约200微米,简化了大尺寸水凝胶基器件的制造。这种半导体水凝胶的开发为构建与传统半导体类似的电路提供了新的可能性,并与生物组织保持良好的界面兼容性。图1.基于P(PyV)的单网络半导体水凝胶P(PyV)-H的半导体特性为探索水凝胶的电化学特性,作者进行了光谱电化学研究。在电化学还原过程中,阴离子离开P(PyV)-H,形成n掺杂水凝胶,其吸收带发生显著变化,得到DFT计算和化学掺杂实验的验证。作者利用有机电化学晶体管(OECTs)评估P(PyV)-H的半导体特性(图 2),发现其电子迁移率和体积电容的乘积μC*值非常高,表明其优异的离子存储和传输能力。通过电化学阻抗谱测量了电容,进一步证实了水凝胶的高电容性能。作者还利用P(PyV)-H制作了互补逆变器和逻辑电路(图2A),展示了其在低电压下的高增益和低功耗性能,验证了其构建集成电路的潜力(图2F-H)。此外,该水凝胶逆变器可用于生物电信号的有效放大,显示出在可穿戴式监测设备中的应用前景。这些结果突显了半导体水凝胶在高性能电子设备中的应用潜力(图2J,K)。图2. P(PyV)-H的半导体特性多网络半导体水凝胶的制备及性能P(PyV)-H可以与其他开发成熟水凝胶混合,形成多网络水凝胶(MNH),这些MNH展示了增强的机械性能和良好的生物粘附性(图 3A,B)。这些MNH包括三种聚合物网络:长链聚合物(如聚丙烯酰胺或聚丙烯酸)、生物聚合物(如聚乙烯醇或明胶)和半导体聚合物(P(PyV))。例如,MNH-1包含聚丙烯酰胺和聚乙烯醇,具有高拉伸强度和吸湿性;而MNH-2则包含聚丙烯酸和明胶,展现出良好的生物粘附性。MNH的含水量高达60%至70%,拉伸试验表明,MNHs 具有很高的拉伸性,断裂应变大于 100%。添加少量 P(PyV) 后,断裂应力急剧增加,因为 P(PyV) 比传统水凝胶更硬。随着 P(PyV) 的进一步增加,断裂应力基本保持不变,但断裂应变逐渐减小(图 3,C 和 D)。实验还表明,MNH在猪皮肤上显示出优异的界面韧性和剪切强度(图3E)。这些MNH在保持半导体性能的同时,能够与各种生物组织展示出更好的粘附(图3G,H),适合于制造电化学晶体管和逆变器,显示出稳定的电子性能和良好的信号放大功能,即使在受到物理应力的环境中也能保持性能稳定(图 3I,J)。图3.多重网络水凝胶的制备和性能用于生物信号扩增的半导体水凝胶半导体水凝胶的出色半导体性能促使作者探索其生物电子学应用。使用人类角质细胞进行的细胞活力测试表明,与传统聚合物相比,此水凝胶显示出较低的细胞毒性和出色的生物相容性(图4A),这可能得益于其高含水量和水可加工性。因此,这些水凝胶适合体内应用。利用P(PyV)-H的高容积容量,我们能够有效降低金电极的阻抗。作者还使用基于P(PyV)-H和MNH-2的放大器放大眼电图和心电图信号(图4B),与商用凝胶电极相比,基于水凝胶的放大器产生的信号强度高出40倍,显示出优异的信噪比。此外,此放大器在现场记录低电平生物信号如脑电图时(图4C),受到的噪声干扰极小,信噪比高。这些放大器被用于记录体内的皮层电图信号,展示了其在测量低频生物信号方面的巨大潜力,而P(PyV)-H则在测量较高频信号方面表现更佳(图4E-G)。研究表明,半导体水凝胶能够有效放大生物电子学中的各种电生理信号,具备优异的半导体特性、生物相容性、机械性能和生物粘附性,可用于构建逻辑电路和放大器。图 4. 半导体水凝胶放大器的应用原文链接: https://www.science.org/doi/10.1126/science.adj4397更多QSense E-QCMD技术详情请点击链接登录百欧林官网 查看。
  • 铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?
    -----铝蚀刻液成分分析—磷酸、硝酸、醋酸有多少?一、背景介绍蚀刻是将材料使用化学反应或物理撞击作用而移除的技术。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于仪器镶板,铭牌等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。铝是半导体工艺中最主要的导体材料。它具有低电阻、易于淀积和刻蚀等优点。铝蚀刻液主要成分是磷酸、硝酸、醋酸及水,其中磷酸、硝酸、醋酸及水的组成比例会影响到蚀刻的速率,故需要对这种混酸溶液的成分进行分析。 二、测试原理1、硝酸:在样品中加入适量乙醇做溶剂,用四丁基氢氧化铵(TBAOH)滴定至终点,即可计算硝酸的含量。TBAOH+HNO3 → NO3-+TBN++H2O2、醋酸和磷酸:在样品中加入适量饱和氯化钠溶液做溶剂,用氢氧化钠溶液做滴定剂,出现两个滴定终点。第|一个终点是H3PO4和HNO3被耗尽时的终点,第二个终点是H2PO4-和HAc被耗尽时的终点,根据已知的硝酸含量,即可计算出磷酸及醋酸的含量。H3PO4+HNO3+2OH- → NO3-+ H2PO4-+ 2H2OH2PO4-+HAc+2 OH- → Ac-+ HPO42-+ 2H2O 三、混酸分析方法(1)硝酸含量测试:在滴定杯内加入50mL无水乙醇,准确称取一定质量的样品置于滴定杯内,用 0.01mol/L TBAOH溶液做滴定剂进行电位滴定,终点电位突跃设置为20mV/mL。图1 硝酸含量滴定曲线图2 醋酸和磷酸含量滴定曲线 (2)醋酸和磷酸含量测试:在滴定杯内加入50mL饱和氯化钠溶液。准确称取一定质量的样品置于滴定杯内,用0.5mol/L氢氧化钠溶液做滴定剂进行电位滴定,终点电位突跃设置为100mV/mL。 四、注意事项1、TBAOH标定时需要使用纯水做邻苯二钾酸氢钾的溶剂,而使用TBAOH测定硝酸时必须使用无水乙醇做溶剂,不要在滴定杯内加入水,否则不会出现显著的滴定终点。2、使用氢氧化钠测定醋酸和磷酸时,需使用饱和氯化钠溶液做溶剂,若使用纯水做溶剂会出现假终点。 五、仪器推荐ZDJ-5B型自动滴定仪 ● 7寸彩色触摸电容屏,导航式操作● 支持电位滴定● 实时显示测试方法、滴定曲线和测量结果● 可定义计算公式,直接显示计算结果● 支持滴定剂管理功能● 支持pH的标定、测量功能● 支持USB、RS232连接PC,双向通讯● 可直接连接自动进样器实现批量样品的自动测量
  • 赛恩思碳硫仪助力紫金锂元磷酸铁锂项目
    近日,赛恩思HCS-808型高频红外碳硫仪在紫金锂元磷酸铁锂项目投入使用。紫金锂元是紫金矿业投产的磷酸铁锂生产线,项目一期规划产能为2万吨/年,建成后产品将主要用于新能源汽车和储能利电子电池的正极材料。磷酸铁锂中碳、硫含量的差异会对材料本身的性能造成巨大的影响。例如,当磷酸铁锂材料中碳含量低时,材料中Fe2+被氧化的比例大,会造成样品纯度降低,而且电子导电率低导致充电电阻过大;但当磷酸铁锂材料中碳含量太高时,影响材料的振实密度,致使材料的克容量低;当硫含量达到一定程度时,对磷酸铁锂的颗粒形貌、放电容量和循环性能的影响逐渐明显。因此磷酸铁锂中的碳、硫含量的测试是必须进行的。当前对磷酸铁锂材料碳硫含量测试的主要的方法就是采用碳硫分析仪。四川赛恩思高频红外碳硫分析仪能够准确、快速、简便地检测出磷酸铁锂材料中的碳、硫含量。公司设备在多家锂电材料企业服役,产品获得客户的好评。
  • 上海光机所在研究铝磷酸盐玻璃的结构和性质方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究员团队采用了一种将实验、分子动力学模拟和定量结构性质关系分析(QSPR)相结合的方法研究磷酸铝玻璃,相关研究成果发表于《美国陶瓷》(Journal of the American Ceramic Society)。目前,磷酸铝玻璃在许多领域都有广泛的应用,包括生物医学材料、光学元件、密封材料和核废料固化等。通过实验技术手段对磷酸铝玻璃的短程结构已有较多的研究,但其性质与中程结构之间的关系尚不清楚。而分子动力学模拟已成为了研究的有效工具,在揭示玻璃性质的结构起源方面发挥着越来越重要的作用。   在本项研究中,研究人员结合了实验、分子动力学模拟方法研究Al2O3对磷酸铝玻璃的短程及中程结构的影响,并通过QSPR方法建立其结构性质模型。通过拉曼、同步辐射等实验结果验证了模拟的准确性。模拟结果表明,玻璃网络中存在的P-O-P键随Al2O3含量变化逐渐被P-O-Al键替代,对玻璃的性能变化起着重要的作用。同时,磷酸铝玻璃中的长链易形成环状结构,并集中在4~20元环。此外,利用三个不同的结构描述符来建立QSPR模型,并成功地将实验数据与模拟结果相关联,表现出良好的模型预测性。这一方法为预测玻璃性质及设计玻璃组分提供新思路。图1以磷酸铝玻璃的(a)配位数(CN)、(b) Qn、(c)环尺寸作为结构输入所建立的定量结构-性能关系模型。从左到右列为结构描述符Fnet分别与实验密度、硬度、玻璃化转变温度和热膨胀系数的关系。
  • 赛恩思与国轩系携手,共筑磷酸铁锂高品质未来
    随着新能源领域的持续繁荣,磷酸铁锂——这一核心产品的质量监测变得尤为重要。近日,赛恩思工程师在国轩新能源(庐江)有限公司成功完成了高频红外碳硫仪的安装与调试工作,值得注意的是,这已是继宜春国轩电池有限公司之后,赛恩思为国轩系新能源公司提供的第二台碳硫仪。国轩新能源(庐江)有限公司为合肥国轩高科动力能源有限公司全资子公司,主营产品为磷酸铁锂、镍钴锰三元正极材料,位于新能源汽车产业基地(集群)产业链的上游(为新能源汽车关键零部件-动力电池的关键组成部分),是国家级高新技术企业。赛恩思与国轩系能源的再次合作,不仅仅是一次技术与产业的结合,更是对新能源未来的共同追求与期许。两者携手,一方面彰显了赛恩思在碳硫检测领域的技术实力,另一方面也展示了国轩系能源对于产品质量的坚持与不懈追求。期待这次合作能够为新能源产业质量把关,共同打造一个绿色、高效、可持续的未来。
  • 稀土检测杂质干扰多?iCAP TQ系列ICP-MS/MS来攻克
    稀土检测杂质干扰多?iCAP TQ系列ICP-MS/MS来攻克关注我们,更多干货和惊喜好礼 赛默飞iCAP TQ系列赛默飞iCAP TQ系列的ICP-MS/MS能很好的满足环境客户的需求,对于研究人员,iCAP TQ系列ICP-MS/MS可轻松联用,拥有超强抗干扰能力及保证准确的结果,为您的实验室提供了无限的研究能力——探索发展中的市场,拓宽研究领域。对于环境企业客户及三方检测客户,iCAP TQ系列ICP-MS/MS以其操作简单、低维护等特性将常规分析提高到一个新的水平,轻松应对z具挑战的基质样品,让iCAP TQ ICP-MS/MS不再是科研人员的专属。iCAP TQ系列ICP-MS/MS将会让我们的客户充分享受高性能仪器带来的极jia体验。 iCAP™ TQ ICP-MS/MS 随着工业的发展,越来越多的稀土元素应用在不同领域,像电子,医疗等,稀土元素越来越多地出现在河流等地表水中,尤其是医院周围,有相关报道证实,稀土元素为人体非必需微量元素,且长期低剂量暴露或摄入可能会对人体健康或体内代谢产生不良后果。在一些稀土矿区,村民的癌症比例也异常偏高。所以我们需要检测出环境中稀土元素的含量。现有的方法有很多用的是ICP或者单杆的ICP-MS。但是由于方法干扰,无法保证测定结果的准确。 在新出的拟立项国家标准项目公开征求意见稿中,“稀土金属及其氧化物中稀土杂质化学分析法 第6部分:铕中镧、铈、镨、钕、钐、钆、铽、镝、钬、铒、铥、镱、镥和钇的测定”中新增了ICP-MS/MS的方法,电感耦合等离子体串联质谱(ICP-MS/MS)的问世使铕及氧化铕中的铥元素的检测更加快速、简便。不需要预分离铕基体,直接进行ICP-MS/MS测定,稀土元素的检测下限达到0.1μg/g。ICP-MS/MS这项新技术应用于稀土铕产品中分析检测,解决高纯铕稀土中痕量稀土铥杂质元素的直接分析的技术难点。 稀土元素检测时可能遇到的干扰 以稀土中Er元素含量的检测为例166Er 是含量z高的同位素 (33.60%)虽然 150Nd 和 150Sm 不是这两种元素中含量z高的同位素,但使用KED模式时可以观察到明显的干扰 iCAP TQe进行样品分析使用iCAP TQe进行样品分析,对水样进行酸化和过滤,采用的条件 iCAP TQe ICP-MS/MS 结果哥伦比亚河玄武岩中的稀土元素检测结果 针对稀土元素,都得到了高回收率,REE检测限达到sub ppt,可在超痕量水平下进行灵敏可靠的分析。 除了稀土元素这些容易干扰的元素可以给出准确结果外,其它元素使用iCAP TQ ICP-MS/MS 也可一起得出结果。 所测的所有元素都得到了非常好的回收率,样品覆盖了广泛的浓度范围(~20 mgL-1至200 mgL-1)! 除了干扰消除,iCAP TQ的优异表现会超出您的想象:N.1高效率高通量iCAP TQ还能提高实验室效率,提高分析通量 NO.2无以伦比的稳健性内标回收率在80-120%之间,连续10小时,样本偏差为±3% NO.3更高检出限对于低含量污染物,可以直接进样进行准确检测。 O 对等或者检出限稍微高一点+ 检出限改进系数 2 ++ 检出限改进系数 5 +++ 检出限改进系数 10 iCAP TQ 系列 ICP-MS/MS将会成为环境科研及环境常规检测的有利工具。 “码”上下载 填写表单即刻获取【赛默飞iCAP™ TQ ICP-MS样本】 如需合作转载本文,请文末留言。 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 赛恩思碳硫仪牵手磷酸铁锂企业七星光电
    近年来新能源产业发展迅猛,四川赛恩思仪器已与多家新能源企业开展合作。近日,又一台HCS-801型碳硫仪在一家磷酸铁锂厂家---攀枝花七星光电科技正式投入使用。我公司HCS-878和HCS-801两代产品服务于同一公司。攀枝花七星光电科技有限公司现已建成并投产5000吨/年磷酸铁锂生产线,为国内规模前列的磷酸铁锂生产线,占全国40%的市场份额,可向全球客户提供多规格碳酸锂、氢氧化锂、氯化锂、金属锂、锂辉石及相关衍生产品。赛恩思HCS-801高频红外碳硫仪可检测产品的原料及成品的碳、硫含量,协助客户把关其产品质量。 碳、硫含量的差异会对磷酸铁锂材料本身的性能造成巨大的影响。利用高频红外碳硫仪对其进行碳、硫含量的测定是一种高效、便捷的方法。四川赛恩思HCS-801型高频红外碳硫仪测试数据准确,操作便捷,每小时可测量60个以上样品。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • ​整合结构质谱法和计算模拟法探究糖原磷酸化酶中磷酸化介导的蛋白变构调控和构象动态性
    大家好,本周为大家介绍一篇本课题组发表在ACS Chem. Biol.上的文章,Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling1。变构调节在自然界中广泛存在,可以用于调控细胞过程。糖原磷酸化酶(GP)是第一个被鉴定出的与变构调节相关的磷酸化蛋白。GP是一个分子量约196kD的同源二聚体蛋白,是糖代谢中重要的组分,也是2型糖尿病及癌症的靶点。AMP结合以及Ser14的磷酸化介导了GP的变构调节,使其构象从非活化的T-state GPb(未磷酸化状态)转变为活化的R-state GPa(磷酸化状态)。即使目前X-射线晶体学法解析出了GP的原子级蛋白结构,但受限于较大分子量,其结构动态性的检测较为困难,因此与GP变构调节相关的结构动态变化过程仍较为模糊。核磁共振(NMR)谱及分子动力学(MD)模拟等是探究蛋白质结构动态性的常用方法,但NMR分析存在分子量上限,且样品消耗量大,MD模拟的时间尺度和力场准确度有限。质谱(MS)法具有快速、灵敏的特点,是蛋白质结构、动态性以及构象变化分析中强有力的一款技术。氢氘交换质谱(HDX-MS)通过监测蛋白骨架酰胺氢原子与溶液中氘的交换来反映蛋白质构象动态性,因此适用于探究由配体、蛋白结合或共价修饰引起的蛋白质构象变化。同时,多个软件实现了由HDX-MS数据计算保护因子(PFs)和吉布斯自由能,从而提取残基水平的蛋白动态性信息。此外,在先前的工作中2, 3,我们整合了native MS和top-down方法(native top-down,nTD-MS技术),成功实现了多个蛋白复合物的一级序列到高阶结构等多方面信息的检测(包括测序、翻译后修饰、配体结合、结构稳定性、朝向等)。整合多种结构质谱法(整合结构质谱法)可以有效填补传统生物物理法中结构到动态性联系中的空缺,更好地表征变构调控现象。本文整合了HDX-MS、nTD-MS、PF分析、MD模拟以及变构信号分析检测了磷酸化介导的GP变构调控的结构和动态性基础,为GP的变构调控过程提供了见解。根据X-射线晶体学结构报道(图1a),T-state GPb转变为R-state GPa时,二聚体界面中N-末端尾部、α2、cap’(图1b)以及tower-tower helices区(图1c)发生了明显的结构重排,导致催化位点开放,从而底物磷酸吡哆醛(PLP)可以结合。尽管有晶体学报道,但与变构调控关联的构象动态性仍有待探寻。图1.(a)磷酸化介导T-state GPb(PDB:8GPB)向R-state GPa(PDB:1GPA)的构象转变;亚基相互作用界面:(b)C端区域和(c)tower-tower helices,GPb为蓝色,GPa为绿色。首先我们通过nTD-MS进行了检测。如图2a、b,谱图中观察到了GPb的单体和二聚体信号,其中二聚体为主要形式;GPa除了单体和二聚体外,谱图中还存在少量四聚体,但仍以二聚体为主要形式。当增加sampling cone(SC)电压时,GPb、GPa保留了其二聚体形式(图2c、d)。随后我们选择离子(29+)并在trap池中进行了碎裂(图2e、f、g、h),谱图低质荷比区GPa的碎片相对峰强度较GPb高,说明GP的二聚体互作界面较为稳定,且GPb亚基结构较GPa稳定。nTD-MS不仅能够探究GPb、GPa的结构差异,也能够为接下来的HDX-MS实验做好前期样品质量检查工作。图2.不同活化条件下GPb、GPa的nTD-MS谱图。(a、b)SC=40V;(c、d)SC=150V;(e、f)SC=150V、trap=100eV;(g,h)SC=150V、trap=200eV。左侧为GPb,右侧为GPa。随后我们进行了HDX-MS实验。图3a中展示了五个时间点的HDX heat map。图3b为通过PyHDX软件计算产生的PF值。其中N-端(1-22)以及tower helix前的loop区域(256-261)的氘代值较高、PF值较低,说明这些区域较为柔性或是结构较为无序。此外我们发现,tower-tower helices(262-276)区域的氘代值较低、PF值较高,表明helices的旋转可能是由前端可塑性铰链区触发的,而非helices本身的变形和重塑引起的,这些发现在晶体结构数据中均有吻合之处。除这两个区域外,GPa和GPb基本保持了稳定的整体结构。而从1μs原子级MD模拟计算得到的均方根波动(RMSF)和溶剂可及表面(SASA)中我们也发现(图3c),这两个区域数据与HDX-MS信息有所吻合,但MD模拟中部分区域未和HDX-MS相吻合的区域可能跟序列覆盖不足相关。图3. (a、d)GPb和GPa在不同标记时间下的氘代热图并映射到结构中(PDB: 1GPA)。(b、e)基于HDX-MS数据计算得到的PF值并映射到晶体结构中。(c、f)MD模拟中RMSF和SASA值并映射到结构中。从氘代差异图(图4a)中可以看出,4个区域呈氘代降低趋势(红色方框),多个区域呈氘代上升趋势(蓝色方框)(GPa-GPb)。而PF差的变化趋势与氘代变化趋势基本一致(图4b)。由数据可知,N-端和tower-tower helices的变化说明磷酸化介导的变构稳定了这两个区域,α1-cap-α2区域的动态性轻微下降。除此之外多个区域(尤其是tower-tower helices序列后的区域)均表现为PF值下降,说明相比于GPb,GPa催化位点附近的区域动态性增强了。接下来我们根据HDX kinetic plot特征将其进行了分类,并详细讨论了所属区域的变化。图4.(a)GPa-GPb HDX-MS的氘代差异图。(b)GPb到GPa PF的变化。 首先是N-端和C-端的变化(图5)。N-端残基1-22表现氘代下降,这说明N-端具有一定可塑性。受N-端区域磷酸化和结构变化影响,C-端区域也产生了一定的变化。此外,残基30-50(cap区)和残基111-117(α4back-loop)区表现氘代下降,而103-109(α4front)表现氘代上升。根据晶体结构推测,cap区和α4back-loop的氘代变化受N-末端变化影响,原有的残基相互作用被打破,形成新的残基间相互作用,同时这两个区域也经历了结构重排,因此表现出较明显的氘代变化。残基88-99(β2-α3)和残基125-141(β3-L-α6)氘代上升。总的来说,磷酸化使得cap′/α2界面互作增强了,同时磷酸化基团和精氨酸残基的静电相互作用是cap区产生变化的主要原因,而α1和α2起到锚定作用,其相对位置基本保持不变。图5.GPb(a)和GPa(b)的N-端和C-端区域的局部结构和HDX动力学曲线(c)。 此外,tower-tower helices(α7,残基262-278)区的变化同样值得关注(图6)。250s loop是表面暴露区域,未与其他区域发生接触,其氘代下降可能是因为自身结构的收缩。而肽段262-267和268-274氘代下降提示该区域可能发生了低周转率或强互作的结合反应。280s loop区氘代值上升。这些变化均说明,tower-tower helix的角度的改变不仅影响了二聚体界面结构,而且还影响了其靠近催化位点的周围区域。因此我们结合晶体结构推测,磷酸化和N-端相对位置的改变,使250s loop自身结构收缩,从而打破了Tyr262' -Pro281和Tyr262-Tyr280′之间的相互作用,导致两个亚基的tower helices发生相对滑动,倾斜角度增加。图6.GPb(a)和GPa(b)tower helix区域的局部结构和HDX动力学曲线(c)。 最后是催化位点、PLP结合位点和糖原存储位点的变化情况(图7)。催化位点周围多数区域均表现氘代上升趋势。我们推测,随着Pro281、Ile165和Asn133间的相互作用被打破,Arg569与Ile165、Pro281、Asn133间的互作也随之打破,因此催化位点和PLP结合位点周围的残基溶剂可及性上升,局部区域结构变得更为灵活,催化位点开放并转变为活化构象。糖原储存位点位于GP表面,距离催化位点30Å,除了α23(残基699−708)外,HDX-MS在糖原存储区没有观察到明显的变化。图7.GPb(a)和GPa(b)的催化位点和PLP(橙色)结合位点的局部结构和HDX动力学曲线(c)。结合以上所有数据,我们对磷酸化调节的动态机制进行了推测(流程图1)。磷酸化后,N-端尾部残基与acidic patch的互作被打破,也导致N-端尾部的有序化以及C-端尾部的无序化以及伴随的其他结构变化。通过在pSer14和Arg69和Arg43′之间形成新的盐桥,N-端残基被重定位,随之带来的是Asp838和His36′间的盐桥断裂。随着三级和四级结构的转变,250s loop收缩并发挥类似“门环”的作用,当其收缩时,Tyr262′-Pro281与Tyr262-Tyr280′之间的相互作用、276-279区与162-164区之间的氢键也被打破,导致tower helix发生相对滑动,tower-tower helices之间的作用被打破,同时将结构变化传递到催化位点。最后,280s loop和催化位点以及PLP结合位点附近的残基松动,通往催化位点和底物磷酸盐识别位点的通道打开,酶得以活化。流程图1.GP变构调节过程中,被打破(蓝色)或新形成的(红色)关键残基相互作用。 本文整合nTD-MS、HDX-MS、PF分析和MD模拟检测了GP磷酸化变构调节过程的结构和动态基础,通过该整合结构手段揭示了GP构象柔性、局部动态性以及长程变构调控构象变化中值得关注的信息。各个方法具有各自的优势,但也在一定层面存在局限,我们期待将HDX-MS信息与计算模拟信息进行更深度的整合以实现二者对蛋白质结构更精确的分析。撰稿:罗宇翔编辑:李惠琳原文:Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling李惠琳课题组网址:https://www.x-mol.com/groups/li_huilin参考文献1.Huang, J. Chu, X. Luo, Y. Wang, Y. Zhang, Y. Zhang, Y. Li, H., Insights into Phosphorylation-Induced Protein Allostery and Conformational Dynamics of Glycogen Phosphorylase via Integrative Structural Mass Spectrometry and In Silico Modeling. ACS Chem. Biol. 2022.2.Li, H. Nguyen, H. H. Ogorzalek Loo, R. R. Campuzano, I. D. G. Loo, J. A., An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10 (2), 139-148.3.Li, H. Wongkongkathep, P. Van Orden, S. L. Ogorzalek Loo, R. R. Loo, J. A., Revealing ligand binding sites and quantifying subunit variants of noncovalent protein complexes in a single native top-down FTICR MS experiment. J. Am. Soc. Mass Spectrom. 2014, 25 (12), 2060-8.
  • 磷酸铁锂迎发展“第二春”,欧美克高性能激光粒度仪需求强劲
    近日,在北京召开的第七届中国电动汽车百人会论坛(2021)上,比亚迪股份有限公司董事长王传福表示,“按照规划,到2025年,我国新能源汽车新车销售量将达到汽车新车销售总量的20%左右。”这意味着接下来5年,新能源汽车行业年复合增长率将达37%以上。结合前期“特斯拉Model Y低价发售”、“宁德时代逼近万亿股价”、“蔚来包下宁德时代磷酸铁锂电池生产线!”等新闻发酵,不难发现随着磷酸铁锂电池以其低成本高安全性的优势在中低端市场不断渗透,特别是相关技术的进步也助推磷酸铁锂电池自2020年起重新扩展市场空间,其需求快速反转向上。中国汽车动力电池产业创新联盟日前发布的数据显示,2020年我国动力电池累计销量达65.9GWh,同比累计下降12.9%。其中,三元锂电池累计销售34.8GWh,同比累计下降34.4%;磷酸铁锂电池累计销售30.8GWh,同比累计增长49.2%,是唯一实现同比正增长产品。中信证券指出,目前,特斯拉、戴姆勒等海外新能源汽车主流企业均明确了磷酸铁锂电池技术路线,预计宝马、大众等其他海外车企也将在其动力电池技术路线中选择磷酸铁锂方案。而国内无论是宁德时代的CTP电池管理控制技术还是比亚迪的“刀片电池”,磷酸铁锂的高安全性助力了其在乘用车领域的回暖,都让磷酸铁锂电池开始经历第二春!伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂第二春的帷幕已然拉开,大规模的量产也必将刺激高性能激光粒度仪的市场需求。众所周知,激光粒度分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、导电剂、隔膜涂覆用氧化铝等材料的粒度测试。从大量的制浆经验以及行业交流反馈来看,诸如钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、镍酸锂(LiNiO2)、镍钴锰酸锂(LiNiCoMnO2)和磷酸铁锂(LiFePO4)等多种不同的正极材料,通常采用中值粒径D50、代表大颗粒的D90作为关键质控指标。不同材料不同工艺的产品对原材料的粒径要求也不尽相同,以分布在1-20μm范围内居多。负极材料以石墨为例,当其平均粒径为16-18μm,且粒度分布较为集中时,电池有较好的初放容量及首次效率。此外,随着电池隔膜的厚度要求不断提高,对其中添加阻燃材料的粒径要求也随之不断提高,常使用的隔膜氧化铝粒径从微米级逐渐发展到亚微米甚至是纳米级。随着电池性能提高对原材料的粒度要求不断提高,激光粒度仪发挥着不可替代的作用,同时对粒度测量仪器的重复性、重现性、分辨能力提出了更高的要求。锂离子电池正、负极材料标准中的粒度分布要求激光粒度仪的高分辨能力在电池材料的检验中,对测试样本中少量的大颗粒或小颗粒的准确识别有着重要的意义。比如说在电池材料活性物质中如果存在少量的大颗粒,可能会对涂布、滚压造成负面影响。如果在原材料检测时就发现,则可以避免后续不良品的产生。另一个典型的例子是粒径过小的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外颗粒直径太小,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行粒度测试,在一定程度上有助于预判后续产品性能、防范风险… … 可见,电池性能的诸多方面都与正负极材料和隔膜材料等的粒径息息相关。欧美克Topsizer激光粒度分析仪对少量的大/小颗粒及样品各个粒径组分的准确识别,需要仪器制造商在无盲区光学设计、高品质高精度元器件、装配工艺、算法及软件智能控制上不断优化,提高产品分辨能力。例如早先的激光粒度仪将多个光电转换元件探测通道放置在一块或两块平面上,然而傅立叶透镜的聚焦面通常呈弧形分布,平面布置的探测器很难将所有角度的散射光信号都精确地聚焦获取,通过精准的独立探测器焦点曲面排布设计和一致性定位工装提高粒度仪分辨能力和仪器之间的重现性。欧美克Topsizer激光粒度分析仪和Topsizer Plus激光粒分析仪是在锂离子电池行业被广泛应用的高性能激光粒度分析仪。量程宽、重现性好、分辨能力强、自动化程度高、故障率低等优异性能保证了测试结果和分析能力,而且与国内外、行业上下游黄金标准保持一致,不仅为用户节省了方法开发和方法转移上的时间和成本,更重要的是可以避免粒径检测不准带来的经济损失和风险,无论在产品研发、过程控制还是质量控制上,都能够为用户带来真正的价值。欧美克LS-609激光粒度分析仪而欧美克LS-609激光粒度分析仪就采用了先进的激光粒度仪散射光能探测的设计,将常见的失焦影响较大的多个大角探测器通道以分个独立的方式精确放置于与其散射角相对应的傅立叶透镜焦点位置,以保证所有散射光角度的信号都是无混杂的,提高了散射光分布角度分辨能力。与此同时,各个独立的探测器有利于在探测器上布置杂散光屏蔽装置,同时也防止了散射光在不同探测器上的相互干扰,进一步降低系统的噪声,提高细微差异的分辨能力。我们以具体的电池材料样品来看欧美克激光粒度分析仪的测试性能对材料准确表征的案例。1. 欧美克Topsizer激光粒度仪测试含有少量大颗粒的石墨原材料的粒度分布图和粒度分布表如下图所示,可以看到对于体积含量在0.5%以下的极少量60-100μm的颗粒,以及体积含量在1%左右的2μm以下颗粒,均能够灵敏的检测出来其详尽的粒度分布。显示了Topsizer对粉体材料的大、小颗粒具有高超的分辨能力,对于最终下游应用中电池产品的安全性能和容量性能有更准确的指导意义。如果对于对少量小颗粒特别关注,在软件上,甚至可以采用数量分布替代体积分布的计算方法,进一步放大小颗粒的权重,对小颗粒数量上的变化进行更易识别的测试和生产质控。但需要注意的是,对于分布较宽的样品,由于大小颗粒在尺寸上差异本身就很大,同样体积的大小颗粒的数量相差将会异常巨大,取样和分散测量上的少许波动会导致测试结果数量分布上较大的偏差。2. 下图是欧美克LS-609激光粒度仪对磷酸亚铁锂3次取样分散测试粒度分布的叠加图,及特征粒径的统计结果,显示该仪器对磷酸亚铁锂的测试拥有优良的重现性。由此可见高分辨能力和重现性的激光粒度分析仪在电池原材料粒度检测领域能带来更好的质控效益。正如中国科学院院士、中国电动汽车百人会副理事长欧阳明高所说,中国动力电池技术创新模式已经从政府主导向市场驱动转型,目前中国电池材料研究处于国际先进行列。而在中国动力电池的快速创新发展必然也离不开高分辨能力和重现性的激光粒度分析仪作为质控的好帮手。通过给动力电池行业提供更专业优化的粒度检测方案,欧美克激光粒度仪的行业销售也在持续高速增长。欧美克必将一如既往不断探索,与中国动力电池行业并行快速发展,携手创造中国奇迹,助力新能源引领世界美好未来!参考资料:1. 沈兴志,珠海欧美克仪器有限公司,《高性能激光粒度分析仪在电池材料测试中的应用》2. 经济日报,《第七届中国电动汽车百人会论坛举办》3. 腾讯网,《磷酸铁锂厂家齐涨价,2021年将回潮迎来“第二春”?》4. 中国证券报,《磷酸铁锂电池迎来发展“第二春” 2020年累计销售同比增长近
  • 上海铕芯半导体有限公司在上海自贸区成立
    p style="padding: 0px text-size-adjust: 100% font-family: " Microsoft Yahei" , 微软雅黑, " STHeiti Light" , 华文细黑, SimSun, 宋体, Arial, sans-serif font-size: 18px letter-spacing: 1px white-space: normal margin-top: 5px margin-bottom: 5px line-height: normal text-indent: 2em "span style="font-size: 16px "据天眼查数据显示,8月28日,上海铕芯半导体有限公司成立。法定代表人为贡鸾鸾,注册资本13亿人民币,注册地址在中国(上海)自由贸易试验区。公司经营范围包括半导体技术领域内的技术开发、技术转让、技术咨询、技术服务等。该公司第一大股东为上海半导体装备材料产业投资基金合伙企业(有限合伙),持股比例为90%;第二大股东为A股上市公司上海万业企业股份有限公司,持股比例10%。/spanbr//pimg id="0" img-size="998,888" src="https://n.sinaimg.cn/spider2020831/286/w998h888/20200831/fc84-iypetiu8937333.png" style="border: 0px none vertical-align: middle display: block margin: 0px auto max-width: 640px "/p style="text-align: center font-family: " Microsoft Yahei" , 微软雅黑, " STHeiti Light" , 华文细黑, SimSun, 宋体, Arial, sans-serif font-size: 18px letter-spacing: 1px white-space: normal margin-top: 5px margin-bottom: 5px line-height: normal "/pp style="padding: 0px text-size-adjust: 100% font-size: 18px font-family: " Microsoft Yahei" , 微软雅黑, " STHeiti Light" , 华文细黑, SimSun, 宋体, Arial, sans-serif letter-spacing: 1px white-space: normal margin-top: 5px margin-bottom: 5px line-height: normal text-indent: 2em "span style="font-size: 16px "天眼查APP显示,上海半导体装备材料产业投资基金合伙企业(有限合伙)的股东之一,为国家集成电路产业投资基金股份有限公司;上海万业企业股份有限公司的十大股东信息显示,国家集成电路产业投资基金股份有限公司持有该公司7%的股份。/span/pdiv class="img_wrapper" style="text-align: center font-family: " Microsoft Yahei" , 微软雅黑, " STHeiti Light" , 华文细黑, SimSun, 宋体, Arial, sans-serif font-size: 18px letter-spacing: 1px white-space: normal "img id="1" img-size="1245,559" src="https://n.sinaimg.cn/spider2020831/204/w1245h559/20200831/6cc7-iypetiu8937334.png" style="border: 0px none vertical-align: middle display: block margin: 0px auto max-width: 640px "//div
  • 日本团队利用中子射线开发全息成像技术成功获得轻元素的超精密原子三维图像
    p  日本熊本大学近日发布消息称,该大学与多家日本大学和研究机构组成的联合团队利用包含各类波长中子射线的“白色”中子束(所谓“白色”的比喻,是因为白色可见光是由各种不同波长的光波所构成)开发出新型全息显微镜,可用于在原子水平对半导体、传感器等高性能材料中添加的微量轻元素进行精密结构分析。其中子束来自位于茨城县东海村的“大强度质子加速器”(J-PARC)。这项成果的突破点在于:/pp  一是能够分析微量轻元素掺杂物。以往采用的X射线及电子束,对于氢、锂、氧等轻元素的敏感度很低,无法用于成像。而上述轻元素在今后开发新能源材料时,将有重要用途。 br/  二是对破解功能性材料的作用机理具有重大意义。在研发过程中,团队成功对萤石结晶中掺入稀土元素铕(Eu)的情况进行了验证,通过超精密成像,对稀土元素周边的特殊结构成功进行了解析。萤石是放射线传感器中的核心材料。这是世界上首次对这种结构进行解析,这一技术将有望大幅度提高放射线传感器的性能。/pp  此外,由于利用这种“白色”中子射线对掺杂物进行研究时,只需进行一次拍照即可对100种波长形成全息图,从而极大地缩短了研究周期。今后,通过对各类功能材料调整掺杂物成份,进行成像分析,将可能带来众多其它材料性能的重大突破。br/  参加这一工作的有熊本大学、名古屋工业大学、茨城大学、广岛市立大学、高辉度光科学研究中心等九个单位的研究人员。/p
  • 赛恩思助力长春一汽弗迪,高频红外碳硫仪成为磷酸铁锂样品检测的明星选择
    在新能源汽车领域的快速发展过程中,长春一汽弗迪选择赛恩思高频红外碳硫仪检测磷酸铁锂样品,把控产品质量,赛恩思再次获得新能源企业的青睐。随着电动汽车产业的迅猛发展,长春一汽弗迪作为该领域的重要参与者,一直致力于提升新能源电池技术的研发水平。为了更准确地了解磷酸铁锂电池样品的碳硫含量,弗迪汽车选择了赛恩思高频红外碳硫仪,这是一项集先进技术与卓越性能于一身的检测工具。赛恩思高频红外碳硫仪是一款专为碳硫分析而设计的先进仪器。其高频红外技术不仅能够高效迅速地完成样品检测,而且在保证准确性的同时具有出色的稳定性。这使得该仪器成为磷酸铁锂电池样品检测的理想选择,为新能源电池技术的发展提供了有力支持。赛恩思高频红外碳硫仪再次受到行业认可,成为长春一汽弗迪磷酸铁锂样品检测的得力助手。赛恩思将继续致力产品质量和服务的提升,为新能源汽车和绿色能源领域的发展贡献更多力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制