当前位置: 仪器信息网 > 行业主题 > >

二正丙基胺乙基

仪器信息网二正丙基胺乙基专题为您提供2024年最新二正丙基胺乙基价格报价、厂家品牌的相关信息, 包括二正丙基胺乙基参数、型号等,不管是国产,还是进口品牌的二正丙基胺乙基您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二正丙基胺乙基相关的耗材配件、试剂标物,还有二正丙基胺乙基相关的最新资讯、资料,以及二正丙基胺乙基相关的解决方案。

二正丙基胺乙基相关的资讯

  • 博纳艾杰尔推出丙基酰胺键合硅胶色谱柱
    Venusil HILIC亲水作用色谱柱  亲水作用色谱(Hydrophilic Interaction Chromatography,HILIC)是近年来色谱领域研究的热点,博纳艾杰尔科技推出丙基酰胺键合硅胶为基质的HILIC色谱柱, 对极性化合物,如极性代谢物,碳水化合物或肽具有极佳的分离效果。  丙基酰胺键合硅胶克服了传统正相色谱柱在水相条件下不稳定的缺点,其常使用流动相是和反相色谱相同的水相缓冲液( 40%)及有机溶剂,但是其梯度条件通常是初始为高比例有机相,逐步加大水相含量 极性丙基酰胺键合硅胶的HILIC色谱柱在反相条件下,可以有效的保留极性化合物,是一种崭新的极性化合物HPLC分离解决方式.     图1. Venusil HILIC 比传统正相色谱柱更稳定  样 品:VB1, VB6, VC, VB2  老化条件:甲醇:20 mM NaH2PO4 (pH=7.0) = 40 : 60 1.0mL/min 温度:40℃   分析条件:0.1%TFA:ACN = 90:10 流速: 1.0mL/min 温度:30℃ ,UV280nm     色谱柱: Atlantis C18 4.6×250mm,5μm  流动相:98%的0.005M的磷酸 钠 (pH=7):2% 甲醇  流 速: 1ml/min  柱 温: 25℃  检 测: UV 210nm     色谱柱:Venusil HILIC 4.6×250mm,5μm  流动相: A: 0.1%TFA水溶液,  B: 乙腈,  A:B=75:25  流 速: 1 mL/min  温 度: 25℃  检 测: UV 210 nm  图2. Venusil HILIC与C18分离井冈霉素对比色谱图  图2. 结果显示,反相C18在98%的水相条件下,几乎没有保留的强极性化合物井冈霉素,在25%的乙腈条件下,使用丙基酰胺键合硅胶的Venusil HILIC得到了很好的分离。所以,Venusil HILIC色谱柱是强极性化合物分离的有力工具。  丙基酰胺键合硅胶的HILIC色谱柱用于低聚糖的分析,显示出比氨基柱更好的稳定性,更好的分离效果,尤其在使用ELSD检测器的时候,丙基酰胺键合硅胶比氨基键合硅胶具有更低的背景噪音,图3。     图3. 丙基酰胺键合硅胶HILIC色谱柱与氨基键合硅胶柱分离葡萄糖对比  样品:葡萄糖标准品(购至Sigma)  检测:ELSD  色谱柱:4.6×250mm,5μm  色谱条件:乙腈/水(80:20),1mL/min,30℃  图3显示,丙基酰胺键合硅胶填充的HILIC色谱柱可以将葡萄糖在水溶液中存在的两个端基异构体(即α-D-葡萄糖和β-D-葡萄糖)区分开,而用氨基柱则只能得到一个相对较宽的色谱峰,结果表明了丙基酰胺键合硅胶HILIC柱在分析糖类成分方面的独特优势。  腺苷类强极性抗肿瘤药物地西他滨(Decitabine)在普通的反相C18色谱柱上检测有关物质存在杂质分离度不够或检测不出的问题,使用丙基酰胺键合硅胶的Venusil HILIC色谱柱获得了极佳的分离效果,图4。     图4. 地西他滨有关物质分析色谱图  Venusil HILIC(丙基酰胺键合硅胶),4.6×150mm,5μm,乙腈:水=96∶4,1ml/min,  UV@244nm,室温Venusil HILIC 丙基酰胺键合硅胶.pdf
  • 上海有机所金属铱催化的烯丙基取代反应研究取得新进展
    过渡金属催化惰性碳氢键的直接官能团化反应在近年来受到化学研究工作者的极大关注,并取得了重要进展,但在这类反应中,剧烈的反应条件,当量氧化剂的使用,以及选择性难以控制等依旧是其应用中的主要制约因素。此外,从烯烃出发实现烯烃碳氢键活化的工作也非常少见。铱催化剂催化烯丙基取代反应 2009年,中国科学院上海有机化学研究所金属有机国家重点实验室的研究人员发现金属铱催化的基于自由胺基协助双键末端碳氢键活化,在[Ir(COD)Cl]2和Feringa配体的催化体系作用下,邻胺基苯乙烯类化合物与烯丙基碳酸酯可以发生直接的烯丙基烯基化反应,立体选择性地得到顺式双键产物(J. Am. Chem. Soc. 2009, 131, 8346-8346),反应条件温和,原料简单易得。这一方法为构建顺式双键提供了新的策略和思路。结果发表以后被Synfacts积极评述(Synfacts, 2009, 9, 0987)。这也是金属铱催化直接烯丙基烯基化反应的首例报道。 铱催化剂催化合成苯并氮杂七元环化合物 最近,研究人员在这一研究发现的基础上,通过巧妙的设计,在[Ir(COD)Cl]2和Feringa配体的催化下,邻胺基苯乙烯类化合物和烯丙基双碳酸甲酯反应,可以实现串联的烯丙基烯基化与分子内不对称烯丙基胺化反应,高收率、高对映选择性地合成苯并氮杂七元环类化合物。所得具有光学活性的苯并氮杂七元环类化合物,可以方便地转化为结构复杂多环化合物,为合成苯并氮杂七元环这一在许多天然产物和药物分子中都广泛存在的一类骨架提供了有效的方法。这一部分工作已发表在Angew. Chem. Int. Ed., 2010, 49, 1496-1499上。结果发表以后被Synfacts积极评述(Synfacts, 2010, 4, 0446)。这些研究工作获得国家自然科学基金委面上项目和科技部973项目的资助。(摘自有机化学网)
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 大连化物所铜催化不对称炔丙基转化研究取得新进展
    p  近日,中国科学院大连化学物理研究所研究员胡向平领导的研究团队在铜催化不对称炔丙基转化研究中取得新进展,通过运用一种脱硅活化的新策略,成功实现了Cu-催化的炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应,相关研究结果以通讯形式发表在最新一期的《德国应用化学》(Angew. Chem. Int. Ed. 2016, 55, 5014-5018)上。/pp  在炔丙基转化反应中,有效形成亚丙二烯基铜活性中间体是实现反应的关键。针对传统的由端基炔丙基化合物形成亚丙二烯基铜活性中间体能力不足的缺点,该研究利用铜能高效促进Csp-Si键开裂的特点,提出以三甲基硅基保护的炔丙醇酯为底物,通过脱硅活化的策略,实现亚丙二烯基铜活性中间体的不可逆形成。基于这一反应策略,研究组利用自主发展的高位阻手性P,N,N-配体,成功实现了炔丙醇酯与β-萘酚及富电子苯酚间的不对称[3+2]环加成反应。这是该研究组继2014年提出脱羧活化的炔丙基转化策略(Angew. Chem. Int. Ed. 2014, 53, 1410-1414)后,在炔丙基转化反应中实现的又一催化活化策略。这些反应策略的提出与实现有效拓展了催化不对称炔丙基转化反应研究的思路。/pp  上述研究工作得到国家自然科学基金委的资助。/pp style="text-align: center "img style="width: 500px height: 216px " title="W020160419304595129181.jpg" border="0" hspace="0" vspace="0" src="http://img1.17img.cn/17img/images/201604/insimg/dc0e2990-2b81-4183-b6ca-5d3434096321.jpg" width="500" height="216"//pp style="text-align: center "  span style="font-size: 14px "大连化物所铜催化不对称炔丙基转化研究取得新进展/span/pp style="text-align: center " /p
  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 应用速递:药物安全—缬沙坦制剂中亚硝胺杂质的测定
    背景介绍缬沙坦是血管紧张素II受体阻滞剂(ARB)、联苯四氮唑结构的沙坦类化合物,用于各类轻中度高血压的治疗,尤其适用于ACE抑制剂不耐受的患者。2018年7月,药品监管部门首次在含有缬沙坦的产品中发现亚硝胺杂质——N二甲基亚硝胺(NDMA)。随后在沙坦类其他药物和雷尼替丁中都检测到各类亚硝胺杂质,例如N-二乙基亚硝胺(NDEA)、N-二异丙基亚硝胺(NDIPA)、N-乙基异丙基亚硝胺(NEIPA)和N-亚硝基二丁胺 (NDBA)。因此,对使用缬沙坦原料药的药品进行了全球召回,导致缬沙坦药品暂时短缺。 图1 N-亚硝胺的分子结构 根据世界卫生组织 (WHO) 的国际癌症研究机构 (IARC)的研究,大多数亚硝胺会对动物和人类具有致癌和遗传毒性。沙坦类药物大多含有四唑环,四唑环的形成需要亚硝酸钠;药物的生产设备、生产用试剂和溶剂(例如普通溶剂DMF中的二甲胺)也可能会带来污染,都有可能形成亚硝胺。欧洲药典 (Ph. Eur.) 委员会将 API 中亚硝胺的临时限值设定为低于 1 ppm,且于2020年底降至30 ppb。 低限值设定就需要使用灵敏度高和选择性好的分析方法。本应用参照美国FDA指南的方法进行优化,通过GC/MS/MS在EI源 MRM模式下痕量检测缬沙坦药品中的5种亚硝胺杂质 (NDMA、NDEA、NEIPA、NDIPA 和 NDBA),并根据USP要求进行方法学验证。 实验条件GC-MS/MS 方法检测不同的亚硝胺化合物,使用液体直接进样方式。与FDA方法相比,选择了膜厚更薄(0.5µm而不是1µm)的Supelcowax柱,符合USP通则中621色谱法的规定。色谱条件以及质谱条件见表1-3。 表1 色谱条件色谱柱SUPELCOWAX 10, 30 m x 0.25 mm I.D., 0.5µm (24284)检测器MS/MS进样口温度250℃柱温箱程序40℃保持0.5min,20℃/min至200℃, 60℃/min 至250℃保持3min载气及流速氦气,1.0mL/min衬管4 mm单径锥衬管带玻璃棉进样量2 µL进样模式脉冲不分流样品稀释剂二氯甲烷样品制备使用切片工具,取药片的四分之一放入15mL离心管,加入5mL二氯甲烷。将样品涡旋1分钟,并置于离心机中以4000 rpm离心2.5min。取二氯甲烷层上清液2mL,用0.45µm PVDF膜过滤。取续滤液0.5mL到2mL样品小瓶中并加盖。标准溶液二氯甲烷作为溶剂,配制得到浓度分别2.5、5.0、10、20、40、80、100ng/mL的5种亚硝胺(NDMA/NDEA/NEIPA/NDIPA/NDBA)校准溶液。 表2 质谱条件调谐自动调谐离子源及采集模式EI源,MRM碰撞气体氮气 @ 1.5mL/min淬灭气体氦气 @ 4.0mL/min 溶剂延迟7 min离子源温度230°C四极杆温度150°C电离电压70 eV驻留时间50 ms 表3 MRM 离子对参数列表峰化合物Transition保留时间1N二甲基亚硝胺MRM274→426.952N二甲基亚硝胺MRM174→446.9522N-二乙基亚硝胺MRM 1102→857.533N-二乙基亚硝胺MRM2102→567.5283N-乙基异丙基亚硝胺MRM1116→997.784N-乙基异丙基亚硝胺MRM271→567.7874N-二异丙基亚硝胺MRM1130→427.971N-二异丙基亚硝胺MRM2130→887.9765N-亚硝基二丁胺MRM1158→999.497N-亚硝基二丁胺MRM284→569.494 五种亚硝胺化合物在10分钟内完全分离,且目标峰与溶剂和基质杂质得到了很好的分离(图 2)。由于使用了0.5µm膜厚的色谱柱,与 FDA 方法相比,分离时间更短。图2:40 ng/mL系统适用性溶液色谱图,峰表见表3.实验得出:N-二乙基亚硝胺(NDEA)和N-二异丙基亚硝胺(NDIPA)的多反应监测MRM Transition最低检测限浓度为2.5ppb,如图3所示。图3 NDEA(上图)和 NDIPA(下图)最低检测限谱图 方法适用性经验证的 FDA-OTR 方法要求 40 ng/mL 标准品六次重复进样的 RSD%≤ 5%。 使用我们的方法,连续6次进样 40 ng/mL 的5种亚硝胺杂质,在两种 MRM 下的 RSD%远小于 5,如表4所示。化合物MRM1 RSD%MRM2 RSD% N二甲基亚硝胺1.81.3N-二乙基亚硝胺1.11.1N-乙基异丙基亚硝胺4.21.5N-二异丙基亚硝胺0.92.2N-亚硝基二丁胺4.33.0表4 40ng/mL 亚硝胺标准品连续六次进样的精密度此外,线性校准曲线的相关系数R2应≥ 0.998。本方法中五种亚硝胺杂质的两个 MRM都超过了这一标准(表 5)。杂质MRM 1MRM 2N二甲基亚硝胺0.99940.9995N-二乙基亚硝胺0.99910.9995N-乙基异丙基亚硝胺0.99950.9995N-二异丙基亚硝胺0.99960.9994N-亚硝基二丁胺0.99830.9981表5 两种MRM定量中两种亚硝胺的相关系数 (R2)缬沙坦制剂中亚硝酸胺的检测在药店购买的缬沙坦药品中加入亚硝胺杂质,浓度为10 ppb(NDBA为40 ppb),5种亚硝胺的回收率在94.5%~105.7%之间。(表6)。杂质10ppb回收率NDMA99 %NDEA103.5 %NEIPA94.5 %NDIPA103.9 %NDBA105.7 %表6缬沙坦药品中5种亚硝胺的加标回收率对于缬沙坦药品中5种亚硝胺的检测,OTR 方法的定量限 (LOQ) 范围是 8 – 40 ppb,本实验方法的 LOQ见表 7。 LOQ 是根据每种化合物校准曲线信噪比 (S/N) 为 10 浓度计算得出的,并且通过缬沙坦片剂的标准添加实验进行了验证。 检出限LOD是信噪比 (S/N) 为 3 的浓度计算得到 。杂质FDA方法 LOQ [ppb]本实验方法LOQ [ppb]NDMA133NDEA85NEIPA83NDIPA85NDBA4032表7 OTR和实验方法LOQ结果结论综上,参考FDA 建议方法,使用 SUPELCOWAX 色谱柱通过 GC-MS/MS在 MRM 模式下可以轻松实现亚硝胺杂质的测定。所有亚硝胺化合物之间以及与溶剂和基质峰的分离良好,满足所有系统适用性要求。 该方法已成功应用于缬沙坦药物中亚硝胺类杂质的分析。 相关产品描述货号链接SUPELCOWAX 10 气相毛细管柱30 m × 0.25 mm,0.50 μm24284 https://www.sigmaaldrich.cn/CN/zh/product/supelco/24284 SupraSolv GC-MS二氯甲烷 1.00668 https://www.sigmaaldrich.cn/CN/zh/product/mm/100668 N二甲基亚硝胺NDMA认证参考物质 5000 µg/mL甲醇溶液CRM40059 https://www.sigmaaldrich.cn/CN/zh/product/supelco/crm40059N-二乙基亚硝胺NDEA 认证参考物质 5000 µg/mL甲醇溶液40334 https://www.sigmaaldrich.cn/CN/zh/product/supelco/40334N-亚硝基二丁胺NDBA 分析标准品442685 https://www.sigmaaldrich.cn/CN/zh/product/supelco/442685 N-乙基异丙基亚硝胺NEIPA EP标准品Y0002262 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002262N-二异丙基亚硝胺NDIPA EP 标准品Y0002263 https://www.sigmaaldrich.cn/CN/zh/product/supelco/y0002263
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
  • 传赛百味添加偶氮二甲酰胺或为偶氮甲酰胺
    网上疯传的&ldquo 赛百味:食物中含鞋底成分&rdquo ,让正在赛百味啃三明治的张先生有点食不知味。  美国一个知名美食博客的博主曝光了赛百味的三明治面包中有Azodicarbonamide(国内媒体将其翻译为偶氮二甲酰胺)这一成分,在被CNN(美国有线电视新闻网)曝光后,赛百味承认在北美出售的食物中的确含有这种化学物质。CNN还称,市面上大部分连锁,包括麦当劳、星巴克出售的面包都含有此成分。  赛百味中国总部马上联系了第三方检测机构,就供应商提供的面包做了检测。赛百味中国官网发布信息显示,此次检测并未发现偶氮二甲酰胺。接着赛百味也在中国区官网上公布了供应商的名单。  昨天记者向多位食品工业专家咨询,他们纷纷表示头一次听说&ldquo 偶氮二甲酰胺&rdquo 这个化学式。  偶氮二甲酰胺,这个听起来有点拗口的化学名词到底是什么?为什么要将它添加到面包中?  网传赛百味添加的偶氮二甲酰胺 原始报道实指偶氮甲酰胺  偶氮二甲酰胺,是一种工业泡沫塑料发泡剂,通常用作瑜伽垫、橡胶鞋底或者人工皮革等,以增加产品的弹性。它是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。  偶氮二甲酰胺既然不溶于水,如何添加到面包中呢?  记者在查看了CNN的原始报道后发现,CNN报道中提到的Azodicarbonamide,缩写为ADA,实为偶氮甲酰胺。这是一种面粉增筋剂,具有漂白和氧化双重作用,其自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧。在欧盟和澳大利亚,偶氮甲酰胺被禁止使用在食品工业,也有部分国家(包括中国)是允许将其作为添加剂用在食品工业中的。  面包配方对口感影响很大  张先生回忆这些年吃赛百味的经历,发现面包的确有在悄悄变化。&ldquo 前几年,面包坯很扎实,很有嚼劲,现在感觉越来越蓬松了,有时服务员在切面包,如果刀子不够锋利,面包还会被压成一团,是不是就是因为添加了东西啊?&rdquo 张先生好奇。  赛百味浙江地区总代理虞予说:&ldquo 我们的面包全部由总部委托国内一家基层供应商生产,面包的成分、配比也严格按照总部要求执行,之所以顾客会觉得面包口感变了,是因为我们的配方变了。&rdquo 在美国,由于肥胖的人群较多,面包中的小麦粉、植物性原料的比例时常在变,于是国内面包的大小、克数、口感也就跟着变了。有时吃起来偏甜,有时吃起来口感更蓬松。  添加剂是面包配方的一部分  CNN原始报道中,美国面包协会称,在过去美国FDA(食品药品监督管理局)曾指出,少量且恰当地使用ADA作为面团的改良剂,可以使面包更好地成型,能改善面包的质量。  在我国,卫生部公布的《食品添加剂使用标准》(GB2760-2011)中明文指出,偶氮甲酰胺可用于小麦粉,最大使用量为0.045g/kg。  在面粉熟化处理的过程中,添加偶氮甲酰胺能氧化小麦粉中的半胱氨酸,从而使面粉筋度增加,提高面包气体保留量,增加烘焙制品的弹性和韧性。  简单来说,被作为面粉改良剂添加的偶氮甲酰胺主要是让面粉的延展性、加工性能变得更好。&ldquo 加强面筋蛋白的组织结构,使其形成更好的网络结构,改良形态的同时,也能增加面包的嚼劲和延长面包的保质期。&rdquo 中国计量学院标准化学院食品安全标准化研究所的杨勇教授说。自己在家制作的面包放置一段时间以后就容易变塌,也更容易掉渣,跟没有添加偶氮甲酰胺有一定的关系。  关于发泡剂的说法,杨教授表示,发泡并不是我们直接联想到的蓬松。&ldquo 一般在遇到蛋液的时候,才需要添加发泡剂。&rdquo 偶氮甲酰胺与面粉作用,主要是让面粉完成了快速氧化的过程。  食品工业少不了添加剂  本报曾对白吐司用到的添加剂做过调查,发现其中一个样本使用了12种食品添加剂。  面包粉中常见的添加剂有磷酸氢二钠、单硬脂酸甘油酯、羟丙基淀粉、羟丙基二淀粉磷酸酯、磷酸酯双淀粉等,以及食用香精。  面包改良剂中常见的添加剂有醋酸酯淀粉、单、双甘油脂肪酸酯、双乙酰酒石酸单双甘油酯、维生素C、谷朊粉等。  此外还有&alpha -淀粉酶、半纤维素酶等各种酶制剂。  它们中的有一些可以锁住吐司中的水分,有一些使面包变大变蓬变松软,有一些使吐司内部的质地更均匀,烤制后表皮的色泽更好看,还有一些能防止面包老化。它们中的许多都是被复合使用的,才能达到最理想的效果。  为什么外面买的面包总比自家做的面包保鲜度更持久,口感更好,这都是添加剂在起作用。使用几种以及使用哪些种类,各厂家会有自己的做法。但不管来自哪种原料,前提条件是种类和用量都要符合国标规定。  杨教授说,如果把面包中添加的盐写成氯化钠,而恰巧你对氯化钠又不熟悉,是不是也会认为这是一种不好的添加剂?&ldquo 只要没有超标,在国家规定的使用范围内,使用添加剂都是合法、正常的。&rdquo 食品企业有自律性,质检部门也会定期检查、抽查,完全没有必要对食品添加剂过度恐慌。  偶氮甲酰胺,英文简称ADA,是一种黄色至橘红色结晶性粉末。ADA具有漂白和氧化双重作用,是一种速效面粉增筋剂。本品自身与面粉不起作用,当将其添加于面粉中加水搅拌成面团时,能快速释放出活性氧,此时面粉蛋白质中氨基酸的硫氢基被氧化成二硫键,使蛋白质链相互联结而构成立体网状结构,改善面团的弹性、韧性、均匀性,使生产出的面制品具有较大的体积和较好的组织结构。  偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。  偶氮甲酰胺是对面粉增白增筋和促进成熟作用以提高烘焙制品品质的一类食品添加剂。过去人们大量使用溴酸钾,目前已被世界卫生组织和FDA认定具有较强致癌性,欧美早已禁用。ADA是当今国际上风行和公认的可安全用于食品的面粉改良剂。是溴酸钾的理想替代品。  偶氮二甲酰胺,英文简称ADC,是一种黄色粉末,无毒,无嗅,不易燃烧,溶于碱,不溶于汽油、醇、苯、吡啶和水 受热分解后生成由氮气、一氧化碳、二氧化碳和一些氨气组成的气体。广泛用作聚氯乙烯、聚乙烯、聚苯乙烯、聚丙烯,ABS树脂等的发孔剂。
  • 重磅:生态环境部《土壤和沉积物 甲基汞和乙基汞的测定》 (HJ 1269—2022) 标准发布
    生态环境部办公厅2023年1月29日正式发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022),该标准为我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准,标准将于2023年6月16日正式实施。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 1269—2022)内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞与四丙基硼化钠发生衍生化反应,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱法测定。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,提取液体积为 30 ml 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1000 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置20 min实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液,最后迅速加入实验用水至瓶满,盖紧盖子静置20 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.002ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过350家,用户的普遍选择来源:《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》编制说明第65页MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。 谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:每次分析样品前均应建立不少于 6 个点的校准曲线,采用线性回归法计算结果,曲线的相关系数≥0.995;采用校准系数法计算结果,校准系数 CFi的相对标准偏差≤15%。每20 个样品测定一个校准曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内,否则应重新建立校准曲线平行样:每 20 个或每批次样品(少于 20 个样品)应至少测定 1 个平行双样,平行双样测定结果的相对偏差应在±30%以内基体加标:每 20 个样品或每批次样品(少于 20 个样品)应至少测定 1 个基体加标样品或1 个有证标准物质。甲基汞加标回收率控制在 75%~130%之间;乙基汞加标回收率控制在 65%~120%之间 展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,该标准会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的手段。 参考文献:1. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)(链接:https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202301/t20230128_1014026.shtml);2. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)及编制说明(链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);3. 土壤环境质量 建设用地土壤污染风险管控标准(试行)(GB36600—2018)。
  • 麦当劳肯德基薯条被检出致癌物丙烯酰胺
    &ldquo 麦叔叔&rdquo 和&ldquo 肯爷爷&rdquo 的洋快餐形象可谓风靡全球。做为洋快餐的两大代表,其在中国消费者心目中的地位多年来互有高低,在仲伯之间。  不过,近几年来国内外层出不穷的&ldquo 洋快餐薯条含大量致癌物、反式脂肪酸&rdquo 的消息,也让不少消费者心有余悸。  究竟洋快餐的健康风险有多高?反式脂肪酸可怕吗?麦当劳、肯德基谁的薯条、可乐、汉堡的热量、脂肪含量更健康?  2014年6月,《消费者报道》送检了麦当劳、肯德基、汉堡王三大洋快餐的经典套餐至第三方权威机构进行检测,以期告诉消费者如何安全选食洋快餐。  在本刊此次关于三大洋快餐薯条的检测中,安全性指标选择了可能致癌物丙烯酰胺和反式脂肪酸两项指标,检测结果显示,肯德基和麦当劳的薯条均检出丙烯酰胺,其中肯德基为280&mu g/100g,麦当劳为240&mu g/100g。而两大洋快餐薯条均未检出反式脂肪酸(检出限0.05g/100g)。  丙烯酰胺含量肯德基高于麦当劳  外酥内嫩的薯条,沾上酸甜可口的番茄酱,征服了不少男女老少的胃。  不过,薯条中含有可能致癌物丙烯酰胺一直颇受诟病。2013年,台湾媒体报道,常吃薯条除了发胖,恐怕还有罹癌风险。因为马铃薯一旦碰上120℃以上的高温,就会产生毒性化学物丙烯酰胺。  《消费者报道》此次送检权威检测机构的检测结果显示,肯德基和麦当劳薯条均未检出反式脂肪酸(检出限0.05g/100g),但均含有丙烯酰胺,    肯德基薯条中丙烯酰胺含量比麦当劳高40&mu g/100g的结果,是不是因为用于油炸的油反复使用导致的呢?  复旦大学公共卫生学院营养学教授厉曙光告诉本刊记者,丙烯酰胺含量的高低主要取决于薯条的油炸温度、油炸时间、原料马铃薯的种类以及油的种类。另外,现在没有规定油在使用了多少次后就该倒掉,如果不倒掉,在里面再加点新鲜油都有可能使丙烯酰胺的含量偏高。  为此,本刊记者就薯条的油炸温度、时间以及换油次数联系肯德基、麦当劳两大洋快餐企业,但两家企业均未对该问题作出正面回应。  致癌风险有多高?  2005年,中国卫生部颁布的《食品中丙烯酰胺的危险性评估》报告指出,丙烯酰胺具有潜在的神经毒性、遗传毒性和致癌性。该报告还指出,职业接触人群的流行病学观察表明,长期低剂量接触丙烯酰胺会出现嗜睡、情绪和记忆改变、幻觉和震颤等症状,伴随末梢神经病如手套样感觉、出汗和肌肉无力。  目前,丙烯酰胺已在动物实验中被证明可以致癌,但对人体是否能致癌尚不明确。国际肿瘤研究机构(IARC)将丙烯酰胺认定为2A类致癌物即人类可能致癌物,位列砒霜、槟榔等1类致癌物之后。  经本刊记者查阅,中国暂无规定食品中丙烯酰胺的安全限值,而在生活饮用水中,中国限值定为0.5&mu g/L,世界卫生组织(WHO)则限定1&mu g/L。  2009年,国际权威学术期刊《食品和化学毒物学期刊》发表的一篇《食品中丙烯酰胺在人体中的安全摄入水平评估结果》论文指出,当丙烯酰胺的耐受摄入量(TDI)为2.6&mu g/公斤体重每日时,不会引发癌症风险,这相当于一个70公斤重的人,每日TDI为182&mu g 当TDI为40&mu g/公斤体重每日,即一个70公斤重的人每天摄入2800微克时,不会引起神经毒害。  该研究结果的安全性临界值都远超过各国以及其他研究报告中评估的成人正常接触水平。例如,加拿大卫生部认为成人对食品中丙烯酰胺的平均接触水平应为每天0.3-0.4&mu g/公斤体重 瑞典的研究结果为每天约0.5&mu g/公斤体重 美国FDA的估计摄入量为每天约0.4&mu g/公斤体重。  肯德基所属百胜餐饮集团中国事业部回应本刊指,丙烯酰胺普遍存在各种常见食品中。世界卫生组织和联合国粮农组织的报告指出目前还未有科学证据显示丙烯酰胺对人体健康的危害。肯德基所有食品均符合国家相关食品卫生和安全规定。  应减少食用  近几年,国外规避丙烯酰胺致癌风险的举措一直未曾消停。美国食品药品管理局(FDA)2013年11月发布减少食品中丙烯酰胺的行业指导草案 欧洲食品安全局基于食品中的丙烯酰胺可能增加各年龄段消费者的患癌风险,日前发布一份丙烯酰胺研究草案。  那么,面对洋快餐薯条的诱惑,消费者该如何选择?  中国《食品中丙烯酰胺的危险性评估》指出,中国居民食用油炸食品较多,暴露量较大,存在着潜在危害,因此提醒居民改变以吃油炸和高脂肪食品为主的饮食习惯,以减少因丙烯酰胺可能导致的健康危害。  中山大学营养和食品安全教授蒋卓勤评价,所有油炸、烧烤食品的丙烯酰胺含量都会偏高,且温度越高、油炸时间越长,含量越高。丙烯酰胺是公认的致癌物,建议消费者尽量少吃含有该物质的食物。  中国营养协会理事焦通在接受本刊记者采访时也表示,目前对于丙烯酰胺的毒理测试,并没有推广到人体,所以没有一个权威的说法说丙烯酰胺人吃多少会致死。虽然不会立即致死,但是煎炸食品要少吃,根据食品安全理论中的一律原则,具有潜在风险的食物都要尽量减少或者杜绝食用。  而对于这两个品牌的薯条中检测出的丙烯酰胺含量,首都保健营养美食学会执行会长王旭峰表示,一次性摄入不会出现急性毒性症状,但是长期大量的摄入可能就会对身体健康造成影响。  基于本次检测结果,本刊记者粗算出一包肯德基中份薯条含丙烯酰胺310&mu g,而同分量的麦当劳薯条含228&mu g。(如图)如果实在难以抵挡美味,偶尔吃下,消费者可选择份量小、丙烯酰胺含量低的薯条以满足嘴瘾。
  • 成果:可拉伸离子二极管
    p  随着对软性和柔性器件需求的稳步增长,凝胶材料演示的离子应用受到了人们的关注。本文介绍了由聚电解质水凝胶制成的可拉伸可穿戴式离子二极管(SIDs)。采用甲基丙烯酸酯化多糖对聚电解质水凝胶进行了机械改性,同时保留了聚(磺丙基丙烯酸酯)钾盐(PSPA)和聚([丙烯酰胺丙基]氯化三甲铵(PDMAPAA‐Q)的离子选择性,形成了离子共聚物。然后将聚电解质共聚物水凝胶组成的小岛屿发展中国家在VHB基板上制作成可拉伸的透明绝缘层,用激光刻蚀而成。sid在水凝胶与弹性体基体之间的良好粘附作用下,在拉伸超过3倍的范围内表现出整流行为,并在数百个周期内保持整流状态。可穿戴式离子电路在手指运动过程中对离子电流进行整流,并在正向偏压下点亮LED灯,从而实现SID的操作可视化。/pp原文链接:/ppa href="https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201806909" target="_blank"A Stretchable Ionic Diode from Copolyelectrolyte Hydrogels with Methacrylated Polysaccharides/a/pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="10.1002@adfm.201806909.pdf" style="color: rgb(0, 102, 204) font-size: 12px " href="https://img1.17img.cn/17img/files/201812/attachment/bbee6195-d2c0-439f-81d4-023f7d38927d.pdf"10.1002@adfm.201806909.pdf/a/pp/p
  • 毛发中毒品检测“手把手”第二弹——了解样品预处理流程
    司法部:《毛发中Δ9 -四氢大麻酚、大麻二酚、大麻酚的液相色谱-串联质谱检验方法》SF/Z JD0107022-2018为例:目标物:Δ9 -四氢大麻酚、大麻二酚、大麻酚内标:甲氧那明/或近似物操作流程:司法部:毛发中二甲基色胺等16种色胺类新精神活性物质及其代谢物的液相色谱-串联质谱检验方法 SF/T 0065-2020 内标1mg/mL赛洛西宾D4/赛洛新D10/或近似物 目标物:色胺类:5-甲氧-N,N-二异丙基色胺(5-Me0-DiPT)5-甲氧基-N-甲基-N-异丙基色胺(5-Me0-MiPT)5-甲氧-N,N-二烯丙基色胺(5-Me0-DALT)5-甲氧基-N,N-二甲基色胺(5-Me0-DMT)5-羟基-N,N-二异丙基色胺(5-0H-DiPT)4-羟基-N,N-二异丙基色胺(4-0H-DiPT)N,N-二甲基色胺(DMT)N,N-二丙基色胺(DPT)5-甲氧基-N-异丙基色胺(5-Me0-NiPT)4-羟基-N-甲基-N-乙基色胺(4-0H-MET)赛洛新(Psilocin)赛洛西宾(Psilocybin)4-羟基-N-甲基-N-异丙基色胺(4-0H-MiPT)4-乙酰氧基-N,N-二异丙基色胺(4-Acetoxy-DiPT)5-甲氧基-2-甲基色胺(5-Me0-AMT)N-异丙基色胺(NiPT)规范SF/Z JD0107022-2018中建议采用先研磨后称量的方案取样,而SF/T 0065-2020中采用准确称量后研磨的方案,哪种更适用? 2个方案均可! 1. 规范中采用毛发清洗,晾干,剪碎,研磨后称取的方案优势:1mm毛发小段容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,所以先采用干式冷冻研磨后再称取相对容易操作。劣势:干式冷冻研磨后样品中容易混入研磨球中的碎屑造成重量不准,检测结果的浓度偏低。为避免该现象发生需要选用金属研磨球,但造价较贵一次性使用会增加成本。 2. 标准中采用毛发清洗,晾干,剪碎,称取,加内标溶液后研磨的方案优势:研磨后毛发的精准重量不会变化,数据结论更为精准。劣势:毛发容易产生静电,剪碎后称取会造成毛发粘贴在试管内壁不容易转移和称取,要解决该问题的出现需要精准记录1mm毛发小段称取的质量信息用于计算,并采用精度更好的天平称量。此外针对样品预处理除毛发清洗、研磨需要手工操作外,全流程可以采用ATLAS-LEXT 系列产品自动化样品预处理:相对于手工样品分析,自动化方案更加简便快捷。 操作流程:ATLAS-LEXTATLAS-LEXT NHD 产品特点: 1.Compact Design 集成化设计体积小巧可以在通风橱内存放及使用. ((W) 600 mm×(D)585 mm×(H) 592 mm) 2.Ensure Safety 保障操作者安全防污染设计,防止生物样品疾病、病毒污染操作者,减少手工操作误差。 3.Extraction System 自动化萃取流程配备离心机 (maximum 2000×g) 可用于蛋白质去除等处理流程,更快速的离心机设置可有效实现样品基质的有效去除。 4.Evaporation Device 自带样品浓缩单元可选GHD (顶吹氮气加热浓缩系统)或VHD(减压加热浓缩系统)可供选择。 5.Simple Operation 样品操作样品制备流程程序化,样品制备方案多样化,可实现差异化批处理流程的编辑模式。 本文内容非商业广告,仅供专业人士参考。
  • CEM Discover 2.0:微波技术下的惰性反应环境
    01 引言 微波加热技术在众多合成转化中得到了应用,这些转化包括纳米材料组装、聚合反应以及小分子合成。1-3几乎任何传统的加热转化都可以适应微波辐射,包括那些使用敏感的合成单元和过渡金属催化剂的反应。4微波加热的好处包括减少废物产生、提高产品纯度以及缩短反应时间。图1:从二苄基取代的醛亚胺(或二苯甲酮取代的酮亚胺)生成2-氮杂烯丙基阴离子微波辐射所带来的提高的反应速率使得快速反应优化和化合物库筛选成为可能。当与自动进样器配件配合使用时,如 CEM 的 Discover 2.0 配备 12 位或 48 位自动进样器,可以同时准备多个实验并排队依次运行,从而进一步提高了生产效率。然而,对于使用敏感试剂的实验来说,自动进样器的成功应用依赖于反应容器在排队等待和反应后保持惰性气氛的能力。为了证明 Discover 2.0 的 10 毫升和 35 毫升容器保持惰性气氛的能力,进行了一项使用2-氮杂烯丙基阴离子的研究。2-氮杂烯丙基阴离子是通过二苄基取代的醛亚胺(和二苯甲酮取代的酮亚胺)去质子化生成的(图1),由于其在胺组装中的实用性而受到了广泛关注。5-8 形成后,2-氮杂烯丙基阴离子呈现出鲜艳的颜色(通常是紫色),并且在淬灭后变为无色透明(图2)。这种显著的颜色变化使得可以方便地观察容器的气氛条件。图2:2-氮杂烯丙基阴离子溶液在形成时呈现鲜艳的颜色(通常为紫色),在淬灭后变为无色透明 02 材料与方法 试剂双(三甲基硅基)氨基钾(KHMDS)和无水四氢呋喃(THF)均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。α-苯基-N-(亚苄基)苯甲胺(醛亚胺)根据已建立的文献步骤制备5,所用到的二苄胺、苯甲醛、硫酸钠、二氯甲烷和己烷均购自西格玛奥德里奇(Sigma Aldrich,密苏里州圣路易斯)。程序5暴露于大气中在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。穿刺硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺的硅胶帽在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。将溶液在室温下搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。带穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子,并通过注射器(20G)向反应容器中加入无水四氢呋喃(THF, 2.0毫升)。然后将容器放入Discover 2.0微波腔体中,将溶液加热至 100°C。加热 20分 钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用 35 毫升反应容器的实验操作相同,但反应规模加倍)。未穿刺硅胶帽的微波加热在预热至 180°C 的干燥 10 毫升反应容器中,配备搅拌磁子,加入α-苯基-N-(亚苄基)苯甲胺(亚胺,27.1毫克,0.100毫摩尔,1.00等量)和双(三甲基硅基)氨基钾(KHMDS, 21.9毫克,0.110毫摩尔,1.10等量)。然后,用一个带有聚四氟乙烯衬垫的硅胶帽密封小瓶,并用氮气冲洗。在氮气冲洗的同时,通过注射器向反应容器中加入无水四氢呋喃(THF, 2.0毫升),并迅速用一个新的、未被针刺的聚四氟乙烯衬垫硅胶帽替换原来的帽子。然后将容器放入 Discover 2.0 微波腔体中,将溶液加热至 100°C。加热 20 分钟后,让溶液冷却至室温并继续搅拌,直至深紫色溶液变为无色(使用35毫升反应容器的实验操作相同,但反应规模加倍)。03 结果2-氮杂烯丙基阴离子溶液在形成后 4-6 分钟内暴露于大气中搅拌时会被淬灭。正如所预期的,当2-氮杂烯丙基阴离子溶液在惰性气氛(无水无氧)下搅拌时,2-氮杂烯丙基阴离子的寿命大大延长(表1)。虽然使用了穿刺硅胶帽,但在室温下,35 毫升容器中的2-氮杂烯丙基阴离子持续了 1 小时,而在 10 毫升容器中则持续了 4 小时。在 100°C 加热 20 分钟后,使用穿刺硅胶帽的两个容器都能够使2-氮杂烯丙基阴离子溶液维持更长时间:35 毫升容器为 1.5 小时,而 10 毫升容器则超过 6 小时。当使用未穿刺的硅胶帽时,尤其成功,无论加热程序和容器大小如何,2-氮杂烯丙基阴离子都被维持了 6 小时以上。表1:不同大气和温度条件下2-氮杂烯丙基阴离子的寿命实验微波加热时间阴离子猝灭:10 ml 容器阴离子猝灭:35 ml 容器暴露于大气中N/A6 min4 min穿刺硅胶盖N/A4 h1 h未穿刺硅胶盖N/A6+ h6+ h穿刺硅胶盖+微波20 min,100℃6+ h1.5 h未穿刺硅胶盖+微波20 min,100℃6+ h6+ h04 结论Discover 2.0 10 毫升和 35 毫升容器能够维持惰性气氛超过 6 小时。虽然使用穿刺硅胶帽的容器在室温下静置和/或搅拌时可能会降低效果,但在微波辐射后,这种影响被抵消了。然而,使用未穿刺硅胶帽的容器能够保持敏感合成子和试剂的寿命,无论加热程序如何。这种能力促进了敏感反应条件与自动进样技术的配合使用,从而提高了工作流程效率和生产力。参考文献(1)Zhu, Y.-J. Chen, F. Chem. Rev. 2014, 114, 6462–6555.(2)Kempe, K. Becer, C. R. Schubert, U. S. Macromolecules 2011, 44, 5825–5842.(3)Hayes, B. L. Aldrichimica ACTA 2004, 37, 66–76.(4)Lahred, M. Moberg, C. Hallberg, A. Acc. Chem. Res. 2002,35, 717–727.(5)Li, K. Weber, A. E. Malcolmson, S. J. Org. Lett. 2017, 19,4239–4242.(6)Wu, Y. Hu, L. Li, Z. Deng, L. Nature 2015, 523, 445–450.(7)Zhu, Y. Buchwald, S. L. J. Am. Chem. Soc. 2014, 136,4500–4503.(8)Chen, Y.-J. Seki, K. Yamashita, Y. Kobayashi, S. J. Am.Chem. Soc. 2010, 132, 3244–3245.
  • 三部委联合印发《优先控制化学品名录(第二批)(征求意见稿)》
    p  为落实《中共中央 国务院 关于全面加强生态环境保护 坚决打好污染防治攻坚战的意见》关于“评估有毒有害化学品在生态环境中的风险状况,严格限制高风险化学品生产、使用、进出口,并逐步淘汰、替代”的要求,在《优先控制化学品名录(第一批)》的基础上,生态环境部会同工业和信息化部、卫生健康委组织编制了《优先控制化学品名录(第二批)(征求意见稿)》。/pp  《优先控制化学品名录(第二批)(征求意见稿)》 共计2,4,6-三叔丁基苯酚、异丙基化磷酸三苯酯、五氯苯硫酚、苯并[a]芘等7种类多环芳烃类物质、五氯苯等3种氯苯类物质、氰化物、苯、甲苯、磷酸三(2-氯乙基)酯、邻苯二甲酸二(α-乙基己基)酯等4种邻苯类物质、1,2-二氯丙烷、1,1-二氯乙烯、2,4-二硝基甲苯、邻甲苯胺、铊及其化合物、多氯二苯并对二噁英和多氯二苯并呋喃、全氟辛酸及其盐类和相关化合物、六氯丁二烯、五氯苯酚及其盐类和酯类等19种类化学物质, 涉及石化、塑料、橡胶、制药、纺织、染料、皮革、电镀、有色金属冶炼、 采矿等行业。/pp  详情如下:/pp  附件:a href="https://www.instrument.com.cn/download/shtml/949508.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "1.优先控制化学品名录(第二批)(征求意见稿)/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949509.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "2.各化学物质环境风险分析说明/span/a/ppspan style="color: rgb(0, 112, 192) "  /spana href="https://www.instrument.com.cn/download/shtml/949510.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "3.《优先控制化学品名录(第二批)(征求意见稿)》编制说明/span/a/p
  • 乳品中双氰胺检测沃特世完整解决方案
    近日,新西兰牛奶及奶制品被检测出含有低含量的有毒物质双氰胺,新西兰政府已经下令禁售含有双氰氨的奶类产品。国内的奶制品生产企业和政府监管部门也已开始着手建立相应的分析方法。双氰胺的检测方法主要难点在于:前处理:三聚氰胺的方法完全不适用,双氰胺极性很大,一般的小柱无法保留;LCMS方法:C18无保留,HILIC方法开发困难;基质干扰严重,干扰定量和定性。沃特世(Waters)公司现推出对应的完整解决方案,包括样品前处理和LCMS方法,可快速实现乳品中残留双氰胺的检测。仪器: Waters ACQUITY UPLC,Xevo TQ-S MS质谱条件:目标物电离模式MRM碰撞能量(eV)锥孔电压(v)双氰胺ESI+8543202285681222色谱柱: BEH Amide色谱柱,2.1*150mm流动相A: 0.05%乙酸水溶液 流动相B: 0.05%乙酸乙腈流速: 0.3mL/min 梯度洗脱柱温: 30℃标准品5ppb质谱图固相萃取条件:取1g奶粉加10mL 1%三氯乙酸溶解并沉淀蛋白,12,000转高速离心10min;取2mL上清液上样到Sep-Pak AC2小柱上(Sep-Pak AC2上接30mL储液器,wat011390),方法回收率91%。 基质加标(8ppb)过柱后质谱图 结论:乳制品基质较复杂,通过Sep-Pak AC2固相萃取柱可以净化、富集样品;双氰胺极性分子极性很大,传统的C18柱无法保留,沃特世公司的BEH Amide色谱柱为丙基酰胺固定相,在亲水作用色谱HILIC模式下可以使得双氰胺具有很好的保留和峰形;同时ACQUITY UPLC结合Xevo TQ-S MS可实现快速、高灵敏度的分析结果。 订货信息:方法包订货号描述乳品中双氰胺UPLC方法包,包括:186004802BEH Amide,1.7&mu m, 2.1*150mmJJAN20229Sep-Pak AC2WAT01139030mL储液器乳品中双氰胺HPLC方法包,包括:186006724XBridge&trade Amide XP,2.5&mu m, 2.1*150mmJJAN20229Sep-Pak AC2WAT01139030mL储液器过滤膜和样品瓶:WAT097962GHP过滤膜186000307CLCMS 认证样品瓶点击此处下载PDF版解决方案欲了解更多信息,请联系沃特世公司应用技术专员:纪英华021-61562612Yinghua_ji@waters.com丁娟娟021-61562604Juanjuan_ding@waters.com关于沃特世公司(www.waters.com)50多年来,沃特世公司(纽约证券交易所代码:WAT)通过提供实用、可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2012年沃特世公司拥有18.4亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。###Waters、ACQUITY UPLC、Xevo和Sep-Pak是沃特世公司商标。
  • 日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了
    日日更新 月月不同 | 更多的全氟和阻燃剂筛查方案它来了原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼牛夏梦由于新污染物本身具有的生物毒性、环境持久性、生物累积性以及对人体健康存在的潜在风险引起大家的广泛关注。目前国际上广泛关注的新污染物包括全氟化合物(per-and polyfluoroalkyl substances,PFAS)、抗生素(Antibiotic)、阻燃剂(Flame Retardant,FR)、持久性有机污染物(Persistent Organic Pollutants,POPs)、内分泌干扰物(Endocrine-Disrupting Chemicals,EDCs)、微塑料(Microplastics),药物与个人护理品(Pharmaceuticals and personal care products,PPCP)等。健康风险有毒物质和疾病登记局(ATSDR)显示根据全氟化合物的动物试验研究发现PFAS 会对肝脏和免疫系统造成损害,还会导致实验动物出生体重低、出生缺陷、发育迟缓以及新生儿死亡;复旦大学医学研究院比较了全球范围内不同人群经呼吸道和胃肠道暴露于OPFRs的水平以及其在体内的负荷水平;归纳和总结了长期低水平的OPFRs暴露对儿童神经发育、成年人的生殖系统以及甲状腺功能等方面的潜在危害;抗生素的耐药性则是全球需要面对的公共卫生挑战,抗菌素耐药性增加是导致严重感染、并发症、住院时间延长和死亡率增加的原因。赛默飞新污染物解决方案新污染物覆盖种类较为广泛,目前除了主要关注的新污染物除了抗生素以外,热度比较高的新污染物还有全氟化合物PFAS以及阻燃剂,其中阻燃剂中添加型阻燃剂中的有机磷阻燃剂则是目前使用较多的一种,也是目前污染较为广泛的一类。赛默飞为了满足客户检测筛查更多种类的全氟化合物以及更广泛新型有机污染物的需求,进行了新污染物种类的扩项。本次方案更新亮点:更多的全氟化合物,赛默飞推出市面覆盖最多的全氟化合物的谱图库(Library)以及数据库(Database),100多种全氟化合物可供筛选,其中包括磺酸类、羧酸类、酰胺类及醇类;新类别的有机磷阻燃剂的筛查方案,增加了40多种有机磷阻燃剂,扩大大家对于新污染物的发现范畴,覆盖更广更全面;同一个的方法,有效数据级别up,新添加的化合物均存在出峰时间、分子式以及碎片的全部信息,方便大家实现更高级别的鉴定;当前最新方法包的新污染物类别组成如下:图1 数据库中新污染物类别分布(点击查看大图)有机磷阻燃剂存在较多的异构体,该方法包可以实现异构体的有效分离:图2 磷酸三(1-氯-2-丙基)酯和三(3-氯丙基)磷酸酯(上)、磷酸三丙酯和磷酸三异丙基酯(下)(点击查看大图)该方案基于赛默飞高分辨仪器平台Orbitrap Exploris系列静电场轨道阱质谱,Orbitrap超高的分辨率(12W以上)尽可能的实现分子量相近化合物的分离分析;精确的质量精度,在标配的Easy-IC功能下,可以做到小于1ppm的质量偏差,最大程度的解析未知物的元素组成;正负切换,得到的更多方向的二级碎片以及更多种类的化合物,更有利于目标物质的高通量筛查。赛默飞高分辨新污染物筛查数据库目前已更新400多种,之后也会进一步持续更新,助力更广度的新污染物筛查工作持续有效进行。赛默飞依托完整的产品线以及优异的质谱性能,助力新污染筛查分析,致力于世界更健康、更清洁、更安全。赛默飞推出的全新高分辨新污染物筛查方法包已上线,该方法包种包括仪器进样方法、数据处理方法、报告模板以及新污染物的具体信息,如需该方案致电联系相关销售即可免费获得。推荐阅读:● 重磅来袭|赛默飞新污染监测高通量方案再升级 ► 点击阅读 ● 磨砺以须 倍道而进|新污染物高分辨液质筛查方案就现在! ► 点击阅读 ● 简单上手 快速落地 | 新污染物液质解决方案看这里 ► 点击阅读 如需合作转载本文,请文末留言。
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 老板再也不用担心我的多肽合成 ---来阿拉丁一站式购齐所需试剂和容器
    ALADDIN的优势多肽在基础生理学、生物化学和医药研究,尤其是医药行业新药筛选中起关键作用,新的短链肽和模拟肽在新药研发中为新药提供了较强的生物活性和蛋白酶水解抗性。短肽还可以作为分子探针,更好的阐述生物系统的功能。因此肽合成在化学生物学领域所占份额越来越大。阿拉丁为你提供高质固相和液相肽合成的一站式服务,包括带有Fmoc、Boc和Cbz保护基团的天然或非天然氨基酸合成砌块、偶联试剂、预装树脂、Linker、N-保护试剂。产品列表多肽固相合成管固相多肽合成预装树脂N-保护试剂耦合试剂Fmoc修饰的氨基酸及氨基酸衍生物列表Boc修饰的氨基酸及氨基酸衍生物列表更多相关产品耗材产品列表多肽固相合成管货号品名包装容量外径螺纹口砂板孔隙度P3597-01-1EAP3597-01 多肽固相合成管1个25ml25mm25G2P3597-02-1EAP3597-02 多肽固相合成管1个25ml25mm25G3 试剂产品列表固相多肽合成预装树脂货号品名规格包装 A116077Fmoc-Arg(Pbf)-Wang resin100-200 mesh, 1%DVB1g,5g,25g A116080Fmoc-Asn(Trt)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.41g,5g,25g A116082Fmoc-Asp(OtBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.1g,5g,25g A118255Fmoc-氨基酸-王树脂100-200 mesh, 1%DVB,Substitution 0.3-0.8mmol/g5g,25g A118270AminoMethyl Polystyrene Resin0.5~1.5mmol/g, 100~200 mesh5g,25g,100g C110262氯甲基化聚苯乙烯树脂1% DVB交联 1.0~1.24mmol/g , 100~200 mesh, 1% DVB5g,25g,100g C1182692-Chlorotrityl Chloride Resin0.8-1.5mmol/g, 100~200 mesh5g,25g,100g G116092Fmoc-Glu(OtBu)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.1g,5g G116094Fmoc-Gly-Wang resin100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116104Fmoc-Leu-王氏树脂100-200 mesh, Substitution 0.3-0.8mmol/g5g,25g L116107Fmoc-Lys(Boc)-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-1g,5g,25g M118256Fmoc-Met-王氏树脂100-200 mesh, 1%DVB,Substitution 0.3-0.1g,5g,25g M118275MBHA Resin0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g P118257Fmoc-D-Phe-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.5g,25g P118258Fmoc-Phe(4-Cl)-Wang resin100-200 mesh, 1%DVB1g,5g,25g P118261Fmoc-Pro-王氏树脂 100-200 mesh, 1%DVB,Substitution 0.3-0.8m5g,25g R118279Rink Amide-AM Resin 0.3~0.8mmol/g, 100~200 mesh, 1% DVB1g,5g,25g R118280聚合物键合型 Rink 酰胺 4-甲基二苯甲胺0.3~0.8mmol/g, 100~2001g,5g,25g S118282Sieber 酰胺树脂0.3~0.8mmol/g, 100~200 mesh, 1% DVB5g,25g,100g T118264Fmoc-Thr(tBu)-王氏树脂100-200 mesh, 1%DVB,Substitution 0.31g,5g,25g T118267Fmoc-Tyr(tBu)-Wang resin100-200 mesh, 1%DVB,Substitution 0.5g,25g T118281Fmoc-Threoninol(tBu) DHP HM Resin 0.3~0.8mmol/g, 100~200 mes5g,25g V118268Fmoc-Val-Wang resin100-200 mesh, 1%DVB,Substitution 0.3-0.85g,25gN-保护试剂氨基保护是合成化学和肽合成中必须部分,有效的保护基团可以从合成的化合物易于添加和除去。货号品名规格cas号包装 B105737氯甲酸苄酯 96%,含约 0.1% 碳酸钠稳定剂501-53-125g,100g,500g,2.5kg D106158二碳酸二叔丁酯 98%24424-99-525g,100g,500g,1kg D106159二碳酸二叔丁酯 99%24424-99-525g,100g,1kg D106160二碳酸二叔丁酯 96%24424-99-5100g,500g F1061739-芴甲基-N-琥珀酰亚胺基碳酸酯 98%82911-69-15g,25g,100g F113338芴甲氧羰酰胺 99%84418-43-95g,25g,100g I105738氯甲酸异丁酯 98%543-27-125g,100g,500g耦合试剂由于肽合成中较低的消旋化是固相肽合成的一个关键指标,阿拉丁为你提供各种高质量偶联试剂,包括碳化二亚胺、脲类和磷型的偶联试剂,可以快速、有效和无消旋的缩合货号品名规格cas号包装 A1133452-(7-氮杂苯并三氮唑)-N,N,N' ,N' -四甲基脲四氟硼酸盐 98%873798-09-55g,25g,100g B106161卡特缩合剂 98%56602-33-65g,25g,100g,500g B1093122-溴-1-乙基吡啶四氟硼酸盐 98%878-23-95g,25g B113336溴代三(二甲基氨基)磷鎓六氟磷酸盐 98%50296-37-21g,5g,25g B113343三吡咯烷基溴化鏻六氟磷酸盐 98%132705-51-21g C109314N,N' -羰基二咪唑 &ge 97.0% (T)530-62-12.5kg,25g,100g,500g C109315N,N' -羰基二咪唑 99%530-62-11kg C113337N,N' -羰基二(1,2,4-三氮唑) 96%41864-22-65g,25g,100g H1061761-羟基苯并三唑一水合物 &ge 97.0%123333-53-925g,100g,250g,500g H1061773-羟基-1,2,3-苯并三嗪-4(3H)-酮 98%28230-32-25g,25g,100g H106354N-羟基邻苯二甲酰亚胺 98%524-38-92.5kg,25g,100g,500g H1093281-羟基-7-偶氮苯并三氮唑 99%39968-33-75g,25g,100g,500g H109329N-羟基-5-降冰片稀-2,3-二酰亚胺 99%21715-90-210g,50g,250g H109330N-羟基琥珀酰亚胺 98%6066-82-62.5kg,25g,100g,500g H109337N-羟基硫代琥珀酰亚胺 钠盐 98%106627-54-71g,5g,25g N102772N-琥珀酰亚胺基-N-甲基氨基甲酸酯 97%18342-66-05g,25g N113351TNTU 98%125700-73-41g,5g,25g,100g C113347多肽试剂TCTU 98%330641-16-25g,25g,100g C1171602-氯-1,3-二甲基咪唑六氟磷酸盐 98%101385-69-71g,5g,25g D1028482-(2-吡啶酮-1-基)-1,1,3,3-四甲基脲四氟硼酸盐 99%125700-71-21g,5g,25g D106162N,N' -二异丙基碳二酰亚胺(DIC) 98%693-13-010ml,25ml,100ml,500ml D106171N,N' -琥珀酰亚胺基碳酸酯 98%74124-79-15g,25g,100g D106284N,N-二甲基丙烯基脲(DMPU) 99%7226-23-525g,100g,500g D109331二吡咯烷基(N-琥珀酰亚氨氧基)碳六氟磷酸盐 98%207683-26-91g,5g,25g O113352TOTT 98%255825-38-85g,25g,100g P1091051-苯基-3-甲基-5-吡唑啉酮 99%89-25-82.5kg,100g,500g W111795伍德沃德氏试剂K 98%4156-16-51gFmoc修饰的氨基酸及氨基酸衍生物列表货号品名规格cas号包装 A107817Fmoc-L-天冬氨酸 4-烯丙酯 98%146982-24-31g,5g,25g A140203N-Fmoc-8-氨基辛酸 &ge 98.0%(HPLC)126631-93-41g,5g B116715N-Boc-N' -Fmoc-D-赖氨酸 97%115186-31-75g,25g B121679N-Boc-顺式-4-Fmoc-氨基-L-脯氨酸 97%174148-03-91g,5g C115874FMOC-&beta -环己基-L-丙氨酸 98%135673-97-11g,5g,25g C115932Fmoc-Cys(Mbzl)-OH 98%136050-67-41g,5g,25g D115880N&alpha -Fmoc-L-2,3-二氨基丙酸 97%181954-34-71g,5g,25g F100409Fmoc-S-三苯甲基-L-半胱氨酸 98%103213-32-75g,25g F100413Fmoc-O-叔丁基-L-谷氨酸 98%71989-18-95g,25g F100419Fmoc-L-谷氨酸 98%121343-82-65g,25g F100746N-Fmoc-N' -Boc-L-鸟氨酸 96%109425-55-01g,5g,25g F100759Fmoc-Val-OSu 97%130878-68-15g,25g F100801Fmoc-L-天冬氨酸 98%119062-05-41g,5g,25g,100g F100805Fmoc-L-缬氨酸 98%68858-20-85g,25g,100g F100808Fmoc-L-亮氨酸 98%35661-60-05g,25g,100g F101115FMOC-L-炔丙基甘氨酸 98%198561-07-81g,5g,250mg F101121FMOC-D-炔丙基甘氨酸 96%220497-98-31g,250mg F101195Fmoc-D-烯丙基甘氨酸 96%170642-28-11g,250mg F101202FMOC-D-3-(4-吡啶基)-丙氨酸 98%205528-30-91g,5g F101214Fmoc-3-(3-吡啶基)-L-丙氨酸 98%175453-07-31g,5g,250mg F101220FMOC-L-3-(2-吡啶基)-丙氨酸 97%185379-40-21g,250mg F101223FMOC-D-3-(2-吡啶基)-丙氨酸 98%185379-39-91g,5g F101459Fmoc-2-氨基异丁酸 97%94744-50-05g,25g F101574FMOC-L-4-甲基苯丙氨酸 98%199006-54-71g,250mg F101598FMOC-L-3-甲基苯丙氨酸 98%211637-74-01g,250mg F101600FMOC-D-3-甲基苯丙氨酸 98%352351-64-51gBoc修饰的氨基酸及氨基酸衍生物列表td style="padding-left: 12px "98%货号品名规格cas号包装 B100726BOC-O-苄基-L-酪氨酸 98%2130-96-35g,25g,100g B100799Boc-L-谷氨酰胺 98%13726-85-75g,25g B101207BOC-D-3-(3-吡啶基)-丙氨酸 98%98266-33-21g,5g,250mg B101451BOC-D-丙氨酸 98%7764-95-65g,25g B101478Boc-D-酪氨酸 70642-86-31g,5g,25g,100g B101548BOC-L-4-甲基苯丙氨酸 98%80102-26-71g,5g,250mg B101595BOC-L-3-甲基苯丙氨酸 98%114873-06-21g,5g B101597BOC-D-3-甲基苯丙氨酸 98%114873-14-21g,5g B101616BOC-L-2-甲基苯丙氨酸 98%114873-05-11g B101623BOC-D-2-甲基苯丙氨酸 98%80102-29-01g B101627BOC-D-4-溴苯丙氨酸 98%79561-82-31g B101633BOC-L-2-溴苯丙氨酸 98%261165-02-0500mg B101661BOC-L-3,4-二氯苯丙氨酸 98%80741-39-51g,5g,250mg B101686BOC-L-2-氯苯丙氨酸 98%114873-02-81g,5g B101696BOC-D-2-氯苯丙氨酸 98%80102-23-45g B102424Boc-L-脯氨酸酰胺 97%35150-07-31g,5g B102427N-BOC-L-苯丙氨醛 97%72155-45-41g,250mg B102428Boc-L-脯氨醛 97%69610-41-91g,5g B1024361-(Boc-氨基)环戊烷羧酸 98%35264-09-61g,5g B102447N(&alpha )-Boc-L-2,3-二氨丙酸 97%73259-81-11g,5g B102996BOC-L-异亮氨酸 99%13139-16-75g,25g,100g B103072N-Boc-N' -Cbz-L-赖氨酸 98%2389-45-95g,25g,100g B103084N-Boc-4-氧-L-脯氨酸甲酯 97%102195-80-21g,5g,250mg B103160(S)-N-BOC-4-溴苯丙氨酸 98%62129-39-91g,5g,25g更多产品请访问阿拉丁官网
  • 食品药监局就化妆品用乙醇等9种原料征求意见
    关于征求有关化妆品用乙醇等9种原料要求意见的函  食药监许函[2011]21号有关单位:  为规范化妆品原料技术要求,我司组织编制了化妆品用乙醇等9种原料要求(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年2月10日前反馈我司。  联 系 人:陈志蓉  电子邮件:chenzr@sfda.gov.cn  传  真:010-88373268  附件:  1.《化妆品用乙醇原料要求》(征求意见稿)和编制说明  2.《化妆品用滑石粉原料要求》(征求意见稿)和编制说明  3.《化妆品用甘油原料要求》(征求意见稿)和编制说明  4.《化妆品用DMDM乙内酰脲原料要求》(征求意见稿)和编制说明  5.《化妆品用月桂醇聚醚硫酸酯钠原料要求》(征求意见稿)和编制说明  6.《化妆品用合成熊果苷原料要求》(征求意见稿)和编制说明  7.《化妆品用聚丙烯酰胺原料要求》(征求意见稿)和编制说明  8.《化妆品用乙醇胺原料要求》(征求意见稿)和编制说明  9.《化妆品用椰油酰胺丙基甜菜碱原料要求》(征求意见稿)和编制说明  10.反馈意见表  国家食品药品监督管理局食品许可司  二〇一一年一月二十日
  • 卫生部:53项食安标准征求意见
    12月21日,卫生部发布消息,征求《食品用香料通则》等53项食品安全国家标准及2项食品安全国家标准修改单意见的函,并要求于2013年2月20日前将相关意见反馈至卫生部。原文如下:卫生部办公厅关于征求《食品用香料通则》等53项食品安全国家标准(征求意见稿)及2项食品安全国家标准修改单意见的函卫办监督函〔2012〕1145号  各有关单位:  根据《食品安全法》及其实施条例的规定,我部组织制定了《食品用香料通则》等53项食品安全国家标准(征求意见稿)和《食品添加剂 二丁基羟基甲苯(BHT)》等2项食品安全国家标准修改单。现向社会公开征求意见,请于2013年2月20日前将意见反馈表(附件56)以传真或电子邮件形式反馈我部。  传 真:010-52165424  电子信箱:zqyj@cfsa.net.cn  附件:  《食品用香料通则》征求意见稿及编制说明.zip  《食品添加剂 琥珀酸二钠》征求意见稿及编制说明.zip  《食品添加剂 1-辛烯-3-醇》征求意见稿及编制说明.zip  《食品添加剂 2,5-二甲基吡嗪》征求意见稿及编制说明.zip  《食品添加剂 2-己烯醛(叶醛)》征求意见稿及编制说明.zip  《食品添加剂 2-巯基-3-丁醇》征求意见稿及编制说明.zip  《食品添加剂 2-乙酰基吡咯》征求意见稿及编制说明..zip  《食品添加剂 2-异丙基-4-甲基噻唑》征求意见稿及编制说明.zip  《食品添加剂 3-巯基-2-丁酮(3-巯基-丁-2-酮)》征求意见稿及编制说明.zip  《食品添加剂 4,5-二氢-3(2H)噻吩酮(四氢噻吩-3-酮)》征求意见稿及编制说明.zip  《食品添加剂 6-甲基-5-庚烯-2-酮》征求意见稿及编制说明.zip  《食品添加剂 d,l-薄荷酮甘油缩酮》征求意见稿及编制说明.zip  《食品添加剂 l-薄荷醇丙二醇碳酸酯》征求意见稿及编制说明.zip  《食品添加剂 N-[N-(3,3-二甲基丁基)]-L-α-天门冬氨-L-苯丙氨酸1-甲酯(纽甜)》征求意见稿及编.zip  《食品添加剂 N-乙基-2-异丙基-5-甲基-环己烷甲酰胺》征求意见稿及编制说明.zip  《食品添加剂 γ-辛内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-己内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-壬内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-十四内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-十一内酯》征求意见稿及编制说明.zip  《食品添加剂 δ-突厥酮》征求意见稿及编制说明.zip  《食品添加剂 δ-辛内酯》征求意见稿及编制说明.zip  《食品添加剂 阿拉伯胶》征求意见稿及编制说明.zip  《食品添加剂 苯甲醛丙二醇缩醛》征求意见稿及编制说明.zip  《食品添加剂 丁苯橡胶》征求意见稿及编制说明.zip  《食品添加剂 二丙基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二甲基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二丁基羟基甲苯(BHT)》修改单.doc  《食品添加剂 二糠基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 二氢-β-紫罗兰酮》征求意见稿及编制说明.zip  《食品添加剂 二烯丙基硫醚》征求意见稿及编制说明.zip  《食品添加剂 甘油》征求意见稿及编制说明..zip  《食品添加剂 海藻酸钾(褐藻酸钾)》征求意见稿及编制说明.zip  《食品添加剂 槐豆胶(刺槐豆胶)》征求意见稿及编制说明..zip  《食品添加剂 聚丙烯酸钠》征求意见稿及编制说明.zip  《食品添加剂 糠基硫醇(咖啡醛)》征求意见稿及编制说明.zip  《食品添加剂 离子交换树脂》征求意见稿及编制说明.zip   《食品添加剂 吗啉脂肪酸盐果蜡》修改单.doc  《食品添加剂 明胶》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸三乙酯》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸亚锡二钠》征求意见稿及编制说明.zip  《食品添加剂 柠檬酸脂肪酸甘油酯》征求意见稿及编制说明.zip  《食品添加剂 肉桂酸苄酯》征求意见稿及编制说明..zip  《食品添加剂 肉桂酸肉桂酯》征求意见稿及编制说明.zip  《食品添加剂 四氢芳樟醇》征求意见稿及编制说明.zip  《食品添加剂 萜烯树脂》征求意见稿及编制说明.zip  《食品添加剂 脱乙酰甲壳素(壳聚糖)》征求意见稿及编制说明.zip  《食品添加剂 维生素E(dl-α-生育酚)》征求意见稿及编制说明.zip  《食品添加剂 烯丙基二硫醚》征求意见稿及编制说明.zip  《食品添加剂 纤维素》征求意见稿及编制说明..zip  《食品添加剂 氧化芳樟醇》征求意见稿及编制说明.zip  《食品添加剂 叶醇(顺式-3-己烯-1-醇)》征求意见稿及编制说明.zip  《食品添加剂 乙醛二乙缩醛》征求意见稿及编制说明.zip  《食品添加剂 异硫氰酸烯丙酯》征求意见稿及编制说明.zip  《食品添加剂 棕榈酸视黄酯(棕榈酸维生素A)》征求意见稿及编制说明.zip  卫生部办公厅  2012年12月18日
  • 岛津推出Nexera UC在线SFE-SFC-MS系统用色谱柱
    岛津一直在努力开发新的消耗品以满足用户的应用需求。即日起,推出Nexera UC在线SFE-SFC-MS 系统配套使用的Shim-pack UCX系列SFC色谱柱。该系列色谱柱包括8个产品线,分别是UCX-RP,UCX-GIS,UCX-Diol,UCX-Diol,UCX-Amide,UCX-NH2,UCX-Phenyl和UCX-CN。在销售Nexera UC仪器时,Shim-pack UCX 系列色谱柱将作为专属色谱柱推荐。 产品特点 Shim-pack UCX 系列1) Shim-pack UCX-RP 系列Shim-pack UCX-RP系列是在硅胶表面和C18基团之间嵌入极性基团的极性C18柱。嵌入的极性基团可以使C18色谱柱与水的兼容性更高,可以避免使用纯水流动相造成固定相疏水塌陷的问题。该色谱柱固定相经过独特的“碱去活”技术使得色谱柱的惰性极高,因此即使在SFE-SFC-MS系统常用酸性流动相条件下,分析酸性或者碱性化合物也能得到尖锐的峰型。 独特选择性Shim-pack UCX-RP 系列由于嵌入极性基团而具有氢键作用力,因此能够提供独特的选择性,在单独依靠疏水性作用力或者π-π电子作用力无法达到分离要求的情况下可以选择该系列。 分析酸性或者碱性化合物都能得到尖锐的峰型市场上多数极性嵌入式色谱柱,由于极性基团中含N碱基,在使用酸性流动相条件下分析酸性化合物时,往往会因为酸性吸附而导致峰劣化。而Shim-pack UCX-RP色谱柱由于导入的是去活基团,因此无论是酸性还是碱性化合物分析都能够得到优异的对称的峰型。 高比例水相条件下保留稳定由于嵌入极性基团,有效避免了疏水性固定相易疏水塌陷的问题,能够实现稳定的保留,因此Shim-pack UCX-RP系列和水相的兼容性更高,可以耐受100%纯水相。2) Shim-pack UCX-GIS II 系列Shim-pack UCX-GIS II采用超高惰性基质填料,无论是针对酸性,碱性或者金属配位性化合物都能够得到理想的峰型,此款色谱柱含碳量低,可以耐受100%纯水相,并且能够提供和其他ODS色谱柱不同的选择性。 高惰性Shim-pack UCX-GIS II系列ODS色谱柱填料采用更先进的端基封尾技术,而且彻底清除了硅胶表面残留的金属杂质,因此酸性或者碱性以及金属配位性化合物的吸附都降到了最低限度。 可耐受100%纯水相Shim-pack UCX-GIS II 系列载碳量相对较低,填料表面极性相对较大,与水的兼容性更好,有效避免输水塌陷问题,在高比例水相条件下依然能够实现稳定的保留和优异的重现性。3) Shim-pack UCX-Phenyl 系列Shim-pack UCX-Phenyl 系列是在硅胶表面直接键合苯基的色谱柱,通常在药物分析中应对一些极性稍大的酸性或者碱性样品的分析。 填料表面被苯基完美的覆盖,在分析极性样品时即使只是用简单的乙腈水或者甲醇水流动相也可以得到对称的峰型。 对含有芳香环物质具有独特的选择性在分析芳香性物质时,在苯基和分析物之间π-π电子作用力是最重要的作用力,在疏水性作用力不能满足分离需求的条件下,Shim-pack UCX-Phenyl 系列色谱柱是非常理想的选择。4) Shim-pack UCX-CN 系列Shim-pack UCX-CN 系列是在硅胶表面键合氰丙基的色谱柱,由于含有C≡N,能够提供π-π电子作用力,因此在某些直链烷烃色谱柱无法满足分离条件的情况下,可以采用氰基柱尝试分离。Shim-pack UCX-CN 既可以用于正相分离,也可以用于反相分离,该系列色谱柱保存溶液为正己烷/乙醇的混合溶液,所以如果采用反相分析条件之前,请采用过渡溶剂,例如异丙醇充分过渡色谱柱。 反相条件下与ODS色谱柱有不同的选择性 在反相条件下,Shim-pack UCX-CN由于含有C≡N,能够提供π-π电子作用力和氢键作用力,而与直链烷烃例如ODS柱有不同的选择性,某些情况下可以用用于分离一些结构类似的化合物。 正相条件下高选择性和长寿命与市场上其他品牌氰基柱相比,Shim-pack UCX-CN键合相密度更高,所以即使无端基封尾,此系列色谱柱色谱柱也有着较长的寿命,由于清除了填料表面水相的活性吸附位点,所以这款色谱柱可以采用100%水相洗脱液洗脱。5) Shim-pack UCX-Diol 系列Shim-pack UCX-Diol 键合相为二羟丙基,在正相条件下可以提供独特的选择性。二羟丙基的分离机理为二醇基团和极性化合物的氢键作用力。 正相模式条件下和硅胶柱的选择性相同Shim-pack UCX-Diol 的分离机理以二醇基团和极性化合物的氢键作用力为显著特征,正相模式分离下可以提供与硅胶柱相似的选择性,但是保留会更强。6) Shim-pack UCX-Sil 系列Shim-pack UCX-Sil 系列是单纯的硅胶色谱柱,在正相条件下分离,因为采用高纯硅胶,因此UCX-Sil 能够实现尖锐的峰型和高重现性。 高纯硅胶拥有高度光滑而且坚固的表面 对碱性化合物保留能力强硅胶表面的硅醇基和碱性化合物的作用力非常强,Shim-pack UCX-Sil 色谱柱对碱性化合物的保留能力强,而对酸性化合物的保留能力弱。7) Shim-pack UCX-Amide系列Shim-pack UCX-Amide 系列键合相为烷基酰胺基,为亲水性作用模式(HILIC模式)色谱柱,对极性化合物的保留能力强,适用于ODS色谱柱难以保留的极性化合物的分析。 对极性化合物保留能力强相比一般的HILIC模式色谱柱,Shim-pack UCX-Amide 系列对极性化合物的保留能力更强一些,而且对酸性,碱性或者中性的化合物的保留能力很强。 与高比例有机溶剂兼容亲水性作用模式条件下,流动相条件为高比例有机溶剂,MS作为检测器时,脱溶剂更容易,离子化的效率更高,因此Shim-pack UCX-Amide 系列非常适用于LC/MS/MS。8) Shim-pack UCX-NH2 系列Shim-pack UCX-NH2 系列为硅胶键合氨丙基色谱柱,硅胶的比表面积非常高,因此该系列色谱柱也有着非常高的保留。 可以在反相条件下分离糖类市场上有些厂家为提高氨基柱的寿命而键合仲胺和叔胺,但是这样可能会造成还原糖的吸附或者糖的差向异构体分离,Shim-pack UCX-NH2键合相为单纯的伯胺,因此不会有还原糖吸附或者差向异构体分离的问题。 正相条件下独特的选择性Shim-pack UCX-NH2 由于键合相为伯胺,因此能够提供其他厂家色谱柱不同的选择性。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 聚丙烯酰胺(PAM)特性粘度及相对分子量的测定方法
    聚丙烯酰胺(PAM)是指由丙烯酰胺单体均聚或与其他单体共聚而成的一类聚合物,通常是由丙烯酰胺单体头尾键接而成,工业也把聚丙烯酰胺分子链中丙烯酰胺单体的含量高于50%的聚合物统称为聚丙烯酰胺。聚丙烯酰胺在常温下为坚硬的玻璃态固体,由于制法不同,产品有白色粉末、半透明珠粒和片状等,具有良好热稳定性。由于聚丙烯酰胺分子侧链存在有酰胺基团,它能以任意比例溶于水,且有很高的反应活性。可以对其进行交联、接枝、改性等,使得聚丙烯酰胺成为水溶性高分子中应用最广泛的聚合物之一,目前广泛应用于石油开采、污水处理、食品加工、农业等领域,被誉为“百业助剂”。石油开采和污水处理是聚丙烯酰胺应用的主要领域:聚丙烯酰胺作为润滑剂、悬浮剂、粘土稳定剂、驱油剂、降失水剂和增稠剂,在钻井、酸化、压裂、堵水、固井及二次采油、三次采油中都有广泛应用,同时聚丙烯酰胺在水处理中也常用于生活污水处理,化工废水,有机化学污水的解决。国标GB/T 17514-2017和GB/T 31246-2014中规定了水处理剂领域中聚丙烯酰胺的质量标准,使用乌氏粘度法测量聚丙烯酰胺的特性黏度及黏均分子量是其中的关键检测内容。这一点在石油的行业标准中也有体现。乌氏粘度法由于它独有的优势被应用于聚丙烯酰胺等材料的质量控制中,但传统的手动黏度测定方法仍存在诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,全自动乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV8000系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗/干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 美调查:50%以上受检婴儿床垫含TRIS阻燃剂
    原标题:美国调查发现半数以上受检婴儿床垫含TRIS阻燃剂  美国知名媒体《芝加哥论坛报》于日前发布一份针对婴儿床垫产品中磷酸三脂(TRIS)阻燃剂含量情况调查报告。来自民间调查的这批受检产品来自于Angeles,Babies R Us以及Foundations三家企业于2011年和2012年在售的27款婴儿床软垫,对当中的磷酸三(1,3-二氯丙基)酯(TDCPP,CAS:78-43-3)和磷酸三(β-氯乙基)酯(TCEP,CAS:115-96-8)以及磷酸三(2-氯丙基)酯(TCPP,cas号13674-84-5)含量进行统计分析。经检测,几乎在半数以上受检产品中发现上述阻燃剂的情况。  TDCPP、TCEP、TCPP三种物质因其对健康具威胁性,在婴儿床垫中的使用受限。TDCPP被世界卫生组织(W.H.O.)以及消费者安全协会(CPSC)鉴定为潜在致癌物质。美国国家毒理计划、欧盟委员会以及其他相关组织也认定TCEP具有潜在致癌性。对于TCPP的相关研究则较少,但因其结构与TCEP和TDCPP类似,也被怀疑具有相似的致癌特性。在产品适用过程和适用该产品的区域周围的空气粉尘皆可产生有毒化学品暴露。  20世界70年代的美国,TDCPP仅被用于儿童睡衣,目前该物质位列加州65致癌物清单以及华盛顿州儿童产品需高度关注物质(CHCC)清单之列 TCEP也在加州65致癌物清单中,同样也被华盛顿州和纽约州限制适用。加拿大已经禁止TCEP用于供三岁以下儿童适用的产品中。  仅仅在刚过去的2012年,美国民间和政府对化学阻燃剂的相关活动就不少:  2012年3月,美国最大儿童汽车座椅Britax向密歇根州儿童环境健康和生态中心承诺将逐步淘汰儿童产品中的溴化阻燃剂、氯化阻燃剂使用   2012年5月,美国参议院致信环境保护署(EPA)要求EPA全面调查阻燃剂安全性,限制有毒化学阻燃剂使用   2012年7月,美国儿童产品行业巨头Graco children's products Inc. 宣布在所有的产品系列中禁用有毒化学阻燃剂  2012年10月,美国华盛顿州引入《无毒儿童法案》(Toxic Free Kids Act),对使用对象为12岁以下儿童的产品中的磷酸酯类阻燃剂:TDCPP和TCEP颁布禁令。该法案预计于2014年7月1日生效。  化学阻燃剂的安全问题更多的为各界所关注,对环保阻燃剂和物理阻燃方式的呼声越来越热烈。这样的形势下,对企业的产品生产就提出了更多的要求,相关企业应重点关注法规变化,调整产品生产环节,保证产品顺利行销。
  • 英国多种食品致癌物质丙烯酰胺超标 赛智科技正积极研究检测方案
    据英国媒体报道称,英国食物标准局对国内百余件食品样品检测发现,部分食品中致癌物质丙烯酰胺含量有上升趋势,问题食品涉及亨氏、雀巢等知名食品品牌的薯片、速溶咖啡和薄脆饼干、婴幼儿专用饼干等。昨天,亨氏、雀巢中国公司表示,上述食品在国内正规渠道没有销售。不过,记者在网购市场发现有疑似产品销售。  赛智科技(杭州)有限公司获悉后,已经安排质检部工作人员加紧研究食品中丙烯酰胺含量的检测方案。谨请关注!                       赛智科技(杭州)有限公司                         市场部 宣                         2012.04.24
  • 婴幼儿奶粉中双氰胺的检测方法(HPLC-UV和HPLC-MS/MS法)
    北京时间1月25日凌晨消息,新西兰牛奶中发现了有害物质&mdash &mdash 双氰胺。双氰胺又名二氰二胺,缩写DICY或DCD。虽然国际标准未对食品中的双氰胺限量,但高剂量的双氰胺对人体是有毒的。针对婴幼儿奶粉中基质复杂的特点,本方法加大了净化材料的用量,以获得了更好的净化效果。采用天津博纳艾杰尔科技的新一代的Cleanert MAS-QuChERS-双氰胺净化管(500mg/15mL,货号:MS-SQA02)和Venusil HILIC液相色谱柱,建立了奶粉中双氰胺的MAS-QuEChERS快速前处理方法和LC-UV以及LC-MS/MS检测方法。 1 实验部分1.1 仪器、试剂与材料高效液相色谱仪,涡旋振荡器,超声波清洗机,氮吹仪。双氰胺标准品(CAS: 461-58-5;FW=84.08),新一代Cleanert MAS-QuChERS-双氰胺净化管,Venusil HILIC液相色谱柱,微孔滤膜,乙酸铵、乙酸、乙腈为色谱纯,实验用水为超纯水。 1.2 实验步骤称取1g试样于50mL具塞离心管中,加2mL水,涡旋30s,加2ml乙腈涡旋30s。再往现有的提取液中加2mL乙腈,重复上述提取步骤。再将该提取步骤重复2次,得到共计约10mL的提取液。以4000r/min离心5min,将全部上清液加入新一代Cleanert MAS-QuChERS管中(500mg/15mL),将MAS管上下晃动30s,然后涡旋30s后,8000r/min离心5min,取全部上清液(约10ml)于玻璃试管中,50℃下氮气吹干,加入1ml乙腈复溶,过0.22&mu m微孔滤膜,待测。注:1.做基质加标实验时的标准溶液建议选择以水为溶剂,防止加标瞬间发生蛋白沉淀; 2.乙腈提取分4次,为防止乙腈体积过多时沉淀蛋白速度过快,影响提取效果。 1.3 实验条件1.3.1高效液相色谱法(HPLC法):色谱柱:Venusil HILIC(5&mu m,100Å ,4.6*250mm);流动相: 10mmol/L乙酸铵(pH=4.0):乙腈=15: 85;波长:220nm;进样量:10µ l;柱温:30℃;流速:0.8mL/min。1.3.2 LC-MS/MS法:(1)色谱条件:色谱柱:Venusil HILIC( 5&mu m,100Å ,2.1*150mm);流动相:A:0.5mmol/L乙酸铵(pH=4.0)B:乙腈;进样量:10µ L;柱温:30℃;流速:0.3 mL/min。表2 流动相梯度程序时间,minA%B%010900.450501.850501.9109071090 *备注:本文曾尝试过多种C18色谱柱,对双氰胺没有保留,需要使用离子对试剂,但是无法用于LC-MS/MS;也曾尝试过MERCK ZIC-HILIC柱,但是得到双氰胺的峰面积偏差较大,分析原因是其具有阳离子交换基团,对双氰胺有不稳定的死吸附。最后确定使用键合丙基酰胺的Venusil HILIC柱,以亲水作用色谱机理对双氰胺进行保留。 (2)质谱条件:质谱仪:API 4000+;离子源:电喷雾离子源;扫描方式:正离子扫描;检测方式:多反应监测;CAD:8.00;CUR:20.00;GS1:60.00;GS2:50.00;IS:5500.00;TEM:600.00。表3双氰胺质谱信息药物名称监测离子对DPEPCECXP双氰胺85.1/68.17110416 85.1/43.17110416 注:带&ldquo ____&rdquo 的监测离子对为定量离子对。 2.结果与讨论2.1 高效液相色谱法:2.1.1双氰胺的液相色谱图 2.1.2实际样品基质加标的线性关系和检出限准确称取双氰胺标准品50mg于50mL容量瓶中,加水溶解并稀释至刻度,作为标准贮备液;分别称取1g奶粉试样,添加一定量标准溶液,配制成含双氰胺为0.5µ g/g,1µ g/g,2µ g/g,5.0µ g/mL和10µ g/g的添加样品,按照上述提取、净化方法操作,所得净化液按照上述色谱条件,依次进样检测。以双氰胺含量为横坐标,峰面积为纵坐标,拟合线性方程,结果见表4:表4 双氰胺线性方程和定量限(HPLC法)名称保留时间线性方程相关系数最低定量限(S/N=10)双氰胺5.57minY=108.16X+27.8270.99710.5µ g/g2.1.3准确度和精密度选取市售某品牌婴幼儿奶粉试样,进行添加回收实验,结果见表5表5 0.5µ g/g添加回收实验结果(HPLC法)平行1平行2平行3平均值RSD82.3%85.5%89.1%85.63%3.97% 2.2 LC-MS/MS法2.2.1双氰胺的LC-MS/MS图 2.2.2实际样品基质加标的线性关系和检出限准确称取双氰胺标准品50mg于50mL容量瓶中,加水溶液并稀释至刻度,作为标准贮备液;分别称取1g奶粉试样,添加一定量标准溶液,配制成含双氰胺为5ng/mL,10ng/mL,50ng/mL,100ng/mL和200ng/mL的添加样品,按照上述提取、净化方法操作,所得净化液按照上述液质条件,依次进样检测。以双氰胺含量为横坐标,峰面积为纵坐标,拟合线性方程,结果见表6:表6 双氰胺线性方程和定量限(LC-MS/MS法)名称保留时间线性方程相关系数最低定量限(S/N=10)双氰胺2.25minY=3859.1X+236940.99002ng/g 2.2.3准确度和精密度选取市售某婴幼儿奶粉试样,进行添加回收实验,结果见表7。采用空白样品稀释法判断检测方法的基质效应影响。空白净化液稀释和乙腈稀释的标准溶液,双氰胺峰面积和相对丰度比无明显变化,故判断该方法无基质效应的影响。表7 10ng/g添加回收实验结果平行1平行2平行3平均值RSD82.5%83.5%89.3%85.2%4.31% 3.产品订货信息 产品名称规格型号货号新一代MAS-QuChERS-双氰胺净化管(填料量加大,更适合婴幼儿奶粉等复杂样品)500mg/15mL,50支/包 MS-SQA02MAS-QuChERS-双氰胺净化管100mg/2mL,50支/包 MS-SQA01Venusil HILIC液相色谱柱4.6*250mm,5&mu m,100Å VH952505-02.1*150mm,5&mu m,100Å VH951502-0Clarinert微孔滤膜Nylon(通用)尼龙0.22&mu m,直径50mm, 100/PkAM025020Clarinert 针式过滤器Nylon(通用)尼龙0.22um, 直径13mm,200/pkAS021320双氰胺对照品500mg /瓶,含量&ge 99.0% DCD-00011g /瓶,含量&ge 99.0% DCD-0002离心管50mL,带螺纹盖,25个/包LXG0050一次性注射器5mL,100/pk ZSQ-5ML
  • 赛默飞LCMS和GCMS法测定烘焙食物中的丙烯酰胺
    陈冰、秦玉荣 事件回顾:距离3月31日“星巴克致癌”刷屏事件已经过去一个大半个月了,朋友圈消停了,网友们也似乎忘记这件事了。然而赛默飞对待食品安全问题向来严谨。追本溯源,事件的起因是一种叫做丙烯酰胺的物质。那么,丙烯酰胺到底是什么? 丙烯酰胺是食物发生“美拉德反应”时的一个副产物。 咖啡里的丙烯酰胺是在烘焙的过程中产生的。美国癌症学会(ACS)指出,只要一个食物里有淀粉,有氨基酸,经过了高温烹饪,那就会产生微量丙烯酰胺,在油炸和烘焙的食品里尤其容易产生。国际癌症研究机构(IARC)把丙烯酰胺列在了致癌名单里,但没有把那些含丙烯酰胺的食物也一起列上。美国癌症学会的原话是:“目前没有任何一种癌症类型的风险增加,是明确和摄入丙烯酰胺相关的。”所以说,抛开剂量谈毒性就是 不(shua) 靠(liu) 谱(mang)。 可是,由于丙烯酰胺分子量较低,极性较高,且缺乏明显的发色团(共轭双键、三键、苯环)等性质,使得定量分析丙烯酰胺很困难。传统上用于测定丙烯酰胺含量的方法有酶联免疫法、溴化法、紫外分光光度法、气相色谱法等。但这些方法检测线高而且操作复杂。那么,有没有一种方法既简单高效又有很高的灵敏度及准确性?且看赛默飞的液质+气质完美解决方案:LCMSMS篇:TSQ Altis/Quantis 赛默飞最新一代三重四极杆液质系统1.检测条件:色谱柱:Syncronis C18 (100x2.1mm,3μm ) 流动相:水 甲醇;梯度洗脱流速:300 μL/min;进样量:20 μL质谱条件(ESI+): 表1.离子源设置的参数喷雾电压/V4000气化温度/℃350鞘气/arb30辅助气/arb5反吹气/arb0离子传输管温度/℃350碰撞气体(Ar)/mTorr1.5扫描模式SRM表2. SRM模式中的离子对信息化合物母离子(Parent)子离子(Product )碰撞能量(CE)S-Lens 电压 丙烯酰胺72.255.3*117544.55427.455*标记为定量离子 2检测结果在所建立方法下,丙烯酰胺仪器检出限为0.05ppb,线性范围为:0.1ppb-1000ppb。分别如图1、图2所示:图1:0.05ppb丙烯酰胺提取离子质谱图图2:0.1-1000ppb浓度范围内丙烯酰胺线性关系图图3:低浓度0.1-5ppb范围放大图(丙烯酰胺线性关系图)选择高于检出限5倍检出限和20倍检出限,即0.25ppb和1ppb重复进样6针计算RSD值,分别为3.5%和1.9%,重复性很好,结果如图4和图5所示。图4:丙烯酰胺0.25ppb进样6针重复性(3.5%)图5:丙烯酰胺1ppb进样6针重复性(1.9%)接下来请看GCMS篇: Thermo Scientific ISQ 7000单四极杆GC-MS系统1)依据《GB 5009.204-2014》标准,前处理衍生化方法,GCMS采用EI SIM监测模式,监测离子见下表:衍生后化合物EI SIM监测模式2-bromo-propenamide106,133, 150,1522-bromo-13C3-propenamide108,136, 153,155色谱图如下:2)拓展标准,前处理依然采用衍生化方法,由于食品样品基质复杂,干扰严重,采用CI源能消除干扰,提高灵敏度,因此GCMS采用PCI SIM监测模式,监测离子见下表,5ppb标准品提取色谱图见下图:衍生后化合物PCI SIM监测模式2-bromo-propenamide167,1692-bromo-13C3-propenamide170,172已经颁布的食品中丙烯酰胺的检测范围为10-50ppb, 而在PCI SIM模式下,方法检出限为2ppb,线性范围为5-1000ppb,如figure 6:3)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用EI SIM监测模式,监测离子见下表:化合物EI SIM监测模式Acrylamide71,55, 443C3-acrylamide74,58 方法检出限为5ppb,线性范围为5-500ppb,如figure 3: 4)拓展标准,由于前处理采用衍生化方法,步骤繁琐,引入误差大,尝试非衍生的前处理方法,GCMS采用NCI SIM监测模式,监测离子见下表:化合物NCI SIM监测模式Acrylamide703C3-acrylamide73 方法检出限为2ppb,线性范围为2-500ppb,如figure 4:另外,由于CI源具有高度选择性,可以降低基质干扰提高灵敏度,下图为未衍生化的薯条样品EI SIM和NCI SIM的谱图比对,图中可见,NCI模式下,基线噪音很低,化合物的响应很高,大大提高了灵敏度。针对食品中丙烯酰胺分析,Thermo Scientific ISQ 7000单四极杆GC-MS系统提供各完美解决方案。Thermo Scientific ISQ 7000 优势:1. 具有NeverVent技术,真空锁(VPI)和V-Lock技术可以同时实现不泄真空换离子源(以及EI/CI的切换)和不泄真空换色谱柱功能,业界唯一技术2. 专利的PPINICI技术,单次进样实现不同保留时间和不同扫描时间内正负离子切换,业界唯一技术3. 电子流量同时控制 两种 CI 反应气,分析过程中反应气流速可调 ,业界唯一技术4. “S”型离子通道设计,有效消除中性噪音,提高信噪比和灵敏度,业界唯一技术5. 独一无二的双灯丝设计,灯丝朝向相同的方向以提高性能并受到电子透镜的保护6. ExtractaBrite 离子源和高性能AEI源具备高效的分析物电离能力和高聚焦的离子束,降低了仪器检出限,并确保更高的稳定性以防止可能的污染。
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺(一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。(二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。(三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。二、1,8-二-4-甲苯氨基-9,10-蒽二酮(一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。(二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。(三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。三、甲醛和2-甲酚的聚合物(一)背景资料。甲醛和2-甲酚的聚合物常温下为液态,沸点118℃,不溶于水,可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。四、甲醛和苯酚,对叔丁基苯酚的聚合物(一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态,沸点118℃,不溶于水,易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。(二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。来源:仪器信息网
  • 卫计委新批准的4种食品相关添加剂
    一、N,N,N' ,N' -四(2-羟丙基)己二酰胺   (一)背景资料。N,N,N' ,N' -四(2-羟丙基)己二酰胺常温下为白色固态,密度为1.24 g/cm3,熔点为110℃。本次批准该物质作为食品接触材料及制品用添加剂新品种用于涂料中。美国食品药品管理局、荷兰卫生福利和运动部均批准该物质用于食品接触用涂料。   (二)工艺必要性。在涂料体系中,该物质作为交联剂,其羟基与悬浮剂的羧基基团发生酯化反应,产生交联作用。   (三)使用注意事项。利用该物质生产的涂层厚度不超过15微米,仅限于在室温下使用,不得重复使用,不得用于接触婴幼儿配方食品和母乳,不得用于辐照。   二、1,8-二-4-甲苯氨基-9,10-蒽二酮   (一)背景资料。1,8-二-4-甲苯氨基-9,10-蒽二酮为紫色固体粉末,无气味,不溶于水和醇类,熔点为210℃,性质稳定。我国GB 9685-2008已批准该物质作为着色剂用于聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中,本次批准其使用范围扩大至聚碳酸酯(PC)。法国卫生部将其列于允许用于食品接触材料及制品的着色剂名单中。日本卫生烯烃与苯乙烯塑料协会将其列为生产食品器具、包装容器用添加剂,可作为着色剂应用于PC中。   (二)工艺必要性。该物质是一种紫色染料,能使PC呈现出一种特殊的紫色,并赋予其透明的效果,目前已批准的其他着色剂无法达到此效果。   (三)使用注意事项。添加了该物质的PC材料及制品使用温度不得高于121℃。   三、甲醛和2-甲酚的聚合物   (一)背景资料。甲醛和2-甲酚的聚合物常温下为液态, 沸点118℃,不溶于水, 可溶于醇类、酮类溶剂。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。   四、甲醛和苯酚,对叔丁基苯酚的聚合物   (一)背景资料。甲醛和苯酚,对叔丁基苯酚的聚合物常温下为液态, 沸点118℃,不溶于水, 易溶于乙醇、丙酮。本次批准该聚合物作为食品接触材料及制品用树脂新品种用于涂料中。美国食品药品管理局批准该物质用于食品接触用涂料,欧洲委员会将其所有单体列入食品接触用涂料使用物质清单中。   (二)工艺必要性。该物质作为涂料的主要成膜物质,是涂料体系的基本组成部分。
  • 国家标准草案征集:《食品中铅污染控制规范》《食品中丙烯酰胺污染控制规范》
    各有关单位:   《食品中铅污染控制规范》《食品中丙烯酰胺污染控制规范》2项食品安全国家标准起草组已初步完成标准起草,现就制定的标准文本草案公开征求意见,请于9月23日前扫码填写意见。   感谢您的支持!   附件:征求意见表二维码   中国食品科学技术学会   2021年9月16日   附件: 附件2-《食品安全国家标准 食品中丙烯酰胺控制规范(草案)》.pdf附件1-《食品安全国家标准 食品中铅污染控制规范(草案)》.pdf征求意见表二维码
  • 科学认识食品中的丙烯酰胺
    导读 据中新网报道,近日,香港消委会在5款饼干中检出致癌物丙烯酰胺,其中就包括大家耳熟能详的大品牌“奥**原味迷你饼干”,这5款饼干均为马来西亚生产,香港消委会称长期摄入饼干中的丙烯酰胺会导致人的生殖出现问题,而马来西亚卫生部则回应,这些饼干含有的致癌物丙烯酰胺含量没有超过欧盟标准,他们检测出这5款饼干中丙烯酰胺含量为每公斤246微克,而欧盟标准为每公斤350微克,对人的健康威胁不大。关于食品中含有可能致癌物丙烯酰胺的报道层出不穷。那么,食品中丙烯酰胺的成因是什么?它的致癌性究竟如何?我们又该怎样快速准确测定食品中丙烯酰胺的含量呢?下面我们将——梳理。 美拉德反应与丙烯酰胺 在烹饪界,美拉德反应一直普遍存在。每次你做烤面包、烤牛排、烘焙咖啡豆… … 的时候,当温度达到140-160°C,它都可能快速发生。美拉德反应的真正魅力,并不仅仅在于颜色的变化,而是风味和香气,所以,它也被称为“风味反应”。 在高温下,氨基酸(来自蛋白质)和还原糖(葡萄糖、果糖、乳糖等),激烈地碰撞和重组,产生数百种化合物,从而使这些食物散发出了诱人的香味。美拉德反应原理 然而,美拉德反应中也会生成醛、杂环胺等有害副产物,其中最让人心有余悸的就是丙烯酰胺。 由于谷物类和马铃薯含有较高浓度的天冬酰胺和还原糖,以它们为原料的饼干、薯片等食品在加工过程中往往会有丙烯酰胺生成,是人体摄入丙烯酰胺的主要来源。 管控要求 2017年欧盟发布法规(EU)2017/2158,制定减少食品中丙烯酰胺含量的缓解措施和基准水平,并于附件IV中规定了各类食品的丙烯酰胺基准值,如下表所示。国内目前没有食品中丙烯酰胺相关限量标准。 检测标准 现有的丙烯酰胺检测标准如下表所示。岛津对应方案 利用硅烷化衍生法处理样品,建立了GCMS和GC-MS/MS两种快速测试方法,并对数据进行了比较分析。【方案一 GCMS检测方案】样品中加乙腈后超声提取,离心后取上清液加入丙烯酰胺-13C3内标和MSTFA+1%TMCS衍生试剂,然后在烘箱中衍生,冷却至室温后用GCMS分析。内标法定量。丙烯酰胺色谱图和校准曲线如下所示。某面包样品未检出丙烯酰胺 面包样品色谱图 【方案二 GC-MS/MS检测方案】样品中加乙腈后超声提取,离心后取上清液加入MSTFA+1%TMCS衍生试剂于烘箱中衍生,冷却至室温后用GC-MS/MS分析。外标法定量。丙烯酰胺色谱图和校准曲线如下所示。 对某品牌饼干样品进行处理并检测,样品中检出极微量的丙烯酰胺,浓度为3.98μg/kg,远低于欧盟设定的饼干中350μg/kg基准水平值。 饼干样品色谱图 【两种测试方案对比】GCMS方法的加标量为25 μg/kg,GC-MS/MS的加标量为5 μg/kg,都低于欧盟(EU)2017/2158法规的最小基准值40 μg/kg(婴幼儿食品),两种测试方案的回收率和重复性结果良好,如下表所示。 GCMS和GC-MS/MS方法结果对比结束语 本着“为了人类和地球的健康”的愿景,岛津公司向您推荐食品中丙烯酰胺的两种测试方法-GCMS和GC-MS/MS法,以便帮助企业快速准确测定食品中丙烯酰胺含量,为食品安全和消费者健康保驾护航。

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制