当前位置: 仪器信息网 > 行业主题 > >

托美丁甘氨酰胺

仪器信息网托美丁甘氨酰胺专题为您提供2024年最新托美丁甘氨酰胺价格报价、厂家品牌的相关信息, 包括托美丁甘氨酰胺参数、型号等,不管是国产,还是进口品牌的托美丁甘氨酰胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合托美丁甘氨酰胺相关的耗材配件、试剂标物,还有托美丁甘氨酰胺相关的最新资讯、资料,以及托美丁甘氨酰胺相关的解决方案。

托美丁甘氨酰胺相关的论坛

  • 【讨论】牛乳中β-内酰胺酶检测方法——高效液相色谱法

    我收集了一点资料,希望大家来评价此方法[font=Verdana][color=#f10b00][size=4]1、间接法[/size][/color][color=#fd1289]方法原理:[/color]  利用β-内酰胺酶能够酶解青霉素的原理,向牛奶中添加一定量的青霉素,如果牛奶中存在一定浓度的β-内酰胺酶,那么青霉素经β-内酰胺酶酶解后浓度会减少,从而判断牛奶中是否存在β-内酰胺酶。[color=#fd1289]实验步骤:[/color]  称取20 g试样,在4℃、16000rpm条件下离心10 min。取下层清液10 g于50 mL塑离心管,并将塑料离心管置于37℃水浴锅中振荡孵育30 min。向孵育后的离心管中加入无水乙醇15mL。振荡提取30 min后离心,将上层清液过滤纸后收集于梨形瓶中。减压浓缩蒸发掉乙醇。向旋蒸后的梨形瓶中加入10 mL磷酸盐缓冲液(pH=8.5),涡旋1 min后调节pH为8.5。以1 L/min的速度将提取液通过经过预处理的Oasis HLB固相萃取柱,用2 mL磷酸缓冲液(pH=8.5)淋洗萃取柱,再用2 mL水淋洗。最后用3 mL乙腈洗脱。将洗脱液在40℃下氮气吹干,用0.025 M磷酸盐缓冲液(pH=7.0)定容残渣至1 mL,待上机测定。色谱条件:色谱柱 Agilent Zorbax SB C18,4.6mm×150mm×5μm;流动相 甲醇/0.004 M磷酸二氢钾(pH=4.5)=40/60;检测波长 268 nm[color=#fd1289]讨论:[/color]  该方法只能给出定性结论即牛奶中是否含有β-内酰胺酶,而无法给出确切定量结果即牛奶中含有β-内酰胺酶的量(U/ml);前处理方法相对复杂、费时。[/font]

  • 【资料】牛乳中非法添加β-内酰胺酶检测方法

    附件牛乳中非法添加β-内酰胺酶检测方法随着国家对食品安全问题的关注和部分乳制品企业2010年无抗奶目标的提出,抗生素残留问题成为影响乳制品安全的重要因素之一。目前,青霉素作为β- 内酰胺类药物是治疗牛乳腺炎的首选药物,是牛奶中最常见的残留抗生素。由于国内多数乳品企业对抗生素残留超标的牛乳采取降价收购的原则,出于经济利益的驱动,一些不法奶站为了谋求自己的经济利益,人为的使用一些生物制剂去降解牛乳中残留的抗生素,生产人造“无抗奶”。2005年至今,已有数家公司公开宣称出售分解牛乳中残留抗生素的解抗剂。迄今为止,还没有针对这种人造“无抗奶”的相应检测方法、检测标准,无法从源头上监测、把控原奶质量。奶制品中三聚氰胺问题出现后,检科院按照国家局科技司的安排,对奶制品中可能的添加物进行了调查。经过前期的调研工作,初步判断市售解抗剂的主要成分是β-内酰胺酶,它是由革兰氏阳性细菌产生和分泌的,可选择性分解牛奶中残留的β- 内酰胺类抗生素。β-内酰胺酶为我国不允许使用的食品添加剂,该酶的使用掩盖了牛奶中实际含有的抗生素。β-内酰胺酶能够使青霉素内酰胺结构破坏而失去活性,导致青霉素、头孢菌素等抗生素类药物耐药性增高,从而大大降低了人们抵抗传染病的能力,给消费者的身体健康带来危害。微生物方法和理化方法均利用β-内酰胺酶能够裂解青霉素的β-内酰胺环形成青霉噻唑酸的原理检测乳制品中是否添加解抗剂。一、理化方法(一)高效液相色谱法1、间接法方法原理:利用β-内酰胺酶能够酶解青霉素的原理,向牛奶中添加一定量的青霉素,如果牛奶中存在一定浓度的β-内酰胺酶,那么青霉素经β-内酰胺酶酶解后浓度会减少,从而判断牛奶中是否存在β-内酰胺酶。实验步骤:称取20 g试样,在4℃、16000rpm条件下离心10 min。取下层清液10 g于50 mL塑料离心管,并将塑料离心管置于37℃水浴锅中振荡孵育30 min。向孵育后的离心管中加入无水乙醇15 mL。振荡提取30 min后离心,将上层清液过滤纸后收集于梨形瓶中。减压浓缩蒸发掉乙醇。向旋蒸后的梨形瓶中加入10 mL磷酸盐缓冲液(pH=8.5),涡旋1 min后调节pH为8.5。以1 mL/min的速度将提取液通过经过预处理的Oasis HLB固相萃取柱,用2 mL磷酸缓冲液(pH=8.5)淋洗萃取柱,再用2 mL水淋洗。最后用3 mL乙腈洗脱。将洗脱液在40℃下氮气吹干,用0.025 M磷酸盐缓冲液(pH=7.0)定容残渣至1 mL,待上机测定。色谱条件:色谱柱 Agilent Zorbax SB C18,4.6mm×150mm×5μm;流动相 甲醇/0.004 M磷酸二氢钾(pH=4.5)=40/60;检测波长 268 nm讨论:该方法只能给出定性结论即牛奶中是否含有β-内酰胺酶,而无法给出确切定量结果即牛奶中含有β-内酰胺酶的量(U/ml);前处理方法相对复杂、费时。2、直接法方法原理:牛乳中的青霉素钾在β-内酰胺酶的作用下,主要生成青霉噻唑酸钾,并伴随生成少量的青霉胺、青霉醛等物质。经去脂肪、蛋白等前处理后,可以将青霉噻唑酸钾提取出来,经高效液相色谱仪检测确认其是否存在,从而判定该牛乳是否为人造“无抗奶”。实验步骤:称取20 g试样,在4 ℃、16000 rpm条件下离心10 min。取下层清液10 g于50 mL塑料离心管,加入无水乙醇15 mL,振荡提取30 min后离心,取清液经0.45 μm的滤膜过滤,用高效液相色谱仪检测。标准溶液配制:称取0.01 g(精确至0.001 g)青霉素钾于100 ml容量瓶中,加入1ml市售抗生素分解剂,室温放置2h使青霉素钾酶解完全后用去离子水定容,得到青霉噻唑酸钾标准溶液,浓度100 μg/mL。根据实际情况稀释后使用。色谱条件:色谱柱 Agilent Zorbax SB C18,4.6mm×150mm×5μm;流动相 甲醇/0.004 M磷酸二氢钾(pH=4.5)=40/60;检测波长 230 nm讨论:该方法通过检测酶解产物青霉噻唑酸,只能给出定性结论即牛奶中是否含有β-内酰胺酶,而无法给出确切定量结果即牛奶中含有β-内酰胺酶的量(U/ml);青霉噻唑酸钾稳定性尚需进一步考察;实验成本较生物学方法高。

  • 聚丙烯酰胺对氨氮的测定有多大影响?

    很多工业废水采用聚丙烯酰胺进行絮凝沉淀处理,处理后的废水用纳氏试剂法测得的氨氮浓度往往较高,这是聚丙烯酰胺造成的正干扰吧?蒸馏能排除聚丙烯酰胺的干扰吗?还是要用电极法之类的其他方法测定?

  • 谷氨酰胺转氨酶(TG酶)的功效特点和使用方法

    [font=SimSun, STSong, &]谷氨酰胺转氨酶(TG酶)的功效特点和使用方法[/font][font=SimSun, STSong, &]一、TG酶简介[/font][font=SimSun, STSong, &]谷氨酰胺转胺酶(Transglutaminase,简称TGase或TG),又称转谷氨酰胺酶,是一种由331个氨基组成的分子量约38000的具有活性中心的单体蛋白质酰基转移酶。[/font][font=SimSun, STSong, &]这种酶广泛存在于人体、高级动物、植物和微生物中。该酶可通过分子插入、交联反应、脱氨作用,使蛋白质分子之间或之内的交联、蛋白质和氨基酸之间的连接以及蛋白质分子内谷氨酰胺残基的水解。通过这些反应,使蛋白质分子结构发生变化,可使蛋白质分子由小变大,从而改善蛋白质的结构和功能,如提高蛋白质的发泡性、粘接性、乳化性、凝胶性、增稠性和乳化稳定特性等,进而改善富含蛋白质食品的外观、风味、口感和质构等,改善各种蛋白质的功能性质,如营养价值、质地结构、口感和贮存期等。经TG改性后,蛋白质的胶凝性、塑性、持水性、水溶性、稳定性等均会得到改善。[/font][font=SimSun, STSong, &]二、TG酶的特点[/font][font=SimSun, STSong, &]1、粘合力极强:[/font][font=SimSun, STSong, &]TG催化蛋白质之间形成的共价键在一般的非酶催化条件下很难断裂,所以用该酶处理食品组分粘合力极强。用该酶处理碎肉成形后,经冷冻、切片、烹饪处理均不会散开。[/font][font=SimSun, STSong, &]2、PH值稳定性好:[/font][font=SimSun, STSong, &]TG粗酶的最适作用pH为6-7,但在pH5.0~8.0的范围内都有较高的活性。当pH低于5时,酶活迅速降低,当pH高于8小于9时,酶活缓慢下降。这与一般蛋白质食品体系的pH值是一致的,有利于在食品生产中应用。[/font][font=SimSun, STSong, &]3、热稳定性强:[/font][font=SimSun, STSong, &]经研究发现TG粗酶的最适温度在52℃左右,在42~57℃范围内都有较高的活性。特别是在蛋白质食品体系中,该酶的热稳定性会显著提高,这一特性使其在一般的食品加工过程中,不会因为热处理而迅速失活。[/font][font=SimSun, STSong, &]4、使用安全:[/font][font=SimSun, STSong, &]由于TG广泛存在于动物组织中,人们一直食用含有TG催化形成的赖氨酸异肽键的食物,因此TG用TG生产的新型食品不仅对人体是安全的,还有利于人体的健康。[/font][font=SimSun, STSong, &]三、功效与用途[/font][font=SimSun, STSong, &]TG的主要功能因子是谷氨酰胺转胺酶,用于生产新型蛋白食品。广泛应用于肉制品、乳制品、鱼制品、豆制品和面制品中。[/font][font=SimSun, STSong, &]1、改善食品质构。[/font][font=SimSun, STSong, &]它可以通过催化蛋白质分子之间发生的交联,改善蛋白质的许多重要性能。如用该酶生产重组肉时,它不仅可将碎肉粘结在一起,还可以将各种非肉蛋白交联到肉蛋白上,明显改善肉制品的口感、风味、组织结构和营养。[/font][font=SimSun, STSong, &]2、提高蛋白质的营养价值。[/font][font=SimSun, STSong, &]它可将某些人体必需氨基酸(如赖氨酸)共价交联到蛋白质上,以防止美拉德反应对氨基酸的破坏,从而提高蛋白质的营养价值。谷氨酰胺转胺酶还可以向氨基酸组成不理想的蛋白质中引入所缺乏的氨基酸,发展中国家的人们对这一点特别感兴趣。[/font][font=SimSun, STSong, &]3、形成耐热、耐水性的膜。[/font][font=SimSun, STSong, &]经该酶交联过的酪蛋白脱水后便可得到不溶于水的薄膜,这种薄膜能够被胰凝乳蛋白酶分解,因而是一种可食用的膜,能够用作食品包装材料。用于包埋脂类或脂溶性物质。提高食品的弹性和持水能力[/font][font=SimSun, STSong, &]4、TG还具有一些独特的性质,它可以通过赖氨酸分子交联到蛋白质大分子上,保护食品中的赖氨酸免受各种加工过程的破坏;TG可用于包埋脂类和脂溶性物质,可使蛋白质形成耐热性、耐水性的膜;采用TG处理后,在蛋白质形成凝胶过程中不需要热处理。[/font][font=SimSun, STSong, &]四、TG酶的使用[/font][font=SimSun, STSong, &]1.TG的最适pH为6~7,所以使用时应尽量使TG使用的环境在pH6~7之间,最好不要超过5~8的范围。[/font][font=SimSun, STSong, &]2.TG的活性在40℃保持稳定,在超过40℃之后逐渐减弱,对于反应时间10分钟的最适温度是50~55℃,随着反应时间的延长,最适反应温度也会降低,而温度高时由于食品尤其是鱼、肉、乳制品等食品容易发生变质,所以反应温度的确定,是所有因素中最为关键也最难确定的因素,在保证产品品质的前提下,它直接影响到TG的添加量及其催化反应所需时间长短,一般地,对于鱼肉等低油易变质的产品所选反应温度都较低(1~10℃),而相应反应时间较长(2~12小时以上),一般来说,反应温度不高于40℃。[/font][font=SimSun, STSong, &]3.作用对象。首先TG的作用对象是蛋白质,催化的是其中“可反应”的谷氨酰胺残基发生反应,所以蛋白质的含量及其中“可反应”的谷氨酰胺残基含量对TG的作用效果都有很大影响,也就是说并不是所有的蛋白质或含蛋白质的食品都是TG的良好底物。[/font][font=SimSun, STSong, &]其次,要发生反应还需有赖氨酸残基的存在(否则TG的作用只能是改变蛋白质的溶解性及与之相关的性质),即“可反应”的赖氨酸残基的含量对TG的交联反应也有很大影响。[/font][font=SimSun, STSong, &]4、常见的TG的良好底物有牛奶中的酪蛋白及其钠盐,肉中的明胶及肌球蛋白、大豆蛋白中的11s球蛋白及7s球蛋白,所以为了取得很好的交联效果,可在作用对象中适当加入TG的良好底物,其中最常用的酪蛋白酸钠及明胶以及廉价的大豆蛋白,这里需要特别提出的是:[/font][font=SimSun, STSong, &](1)有些蛋白质可通过采取适当的方法乳酶解加热变形却是本身含谷氨酰残基和/或赖氨酸残基比较多,只是由于空间结构等关系,它们不能被TG所催化反应,通过酶解或加热变性后这些残基就会暴露出来,变成“可反应”的残基,如小麦中的面盘蛋白、乳清蛋白等。[/font][font=SimSun, STSong, &](2)可由选择地加富含可反应的谷氨酰残基或赖氨酰残基的蛋白质残多肽,如谷氨酰或赖氨肽,以补充作用对象中相关氨基酸残基的不足。[/font]

  • 用PITC衍生化测定甘氨酸、谷氨酸、谷氨酰胺的含量

    用PITC衍生化测定甘氨酸、谷氨酸、谷氨酰胺的含量测定步骤:1. 用纯水配制甘氨酸、谷氨酸、谷氨酰胺的混合液,其浓度都大约为0.05mg/mL,得到甘氨酸、谷氨酸、谷氨酰胺的混合标准溶液。2. 配制1.2%PITC乙腈溶液和14%TEA乙腈溶液。3. 衍生化过程:取200uL氨基酸混合标准溶液于1.5mL离心管中,然后加入100uL1.2%PITC乙腈溶液和100uL14%TEA乙腈溶液,摇震使其混合均匀,然后于水浴锅中水浴加热1小时,然后加入500uL正己烷萃取两次,最后取下层液200uL于HPLC瓶中,然后再加入400uL水稀释,用HPLC分析。 色谱条件:柱子:Agilent SB-Aq 250mm*4.6mm, 5um流动相A:50mM NaAC (pH=6.5)流动相B:50mM NaAC (pH=6.5):ACN=1:1Time:0-10-25-40minB%:5%-5%-95%-95%进样量10uL 出现问题:1. 甘氨酸和谷氨酰胺衍生化峰会分叉。2. 会出现很多杂峰,尤其是在强洗脱部分。

  • 【资料】乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法

    乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法指定检验方法4.乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法杯碟法1、范围本标准规定了乳及乳制品中舒巴坦敏感β-内酰胺酶类药物的检验方法。本标准适用于乳及乳制品中舒巴坦敏感β-内酰胺酶类物质的检验。本方法的检出限为4U/mL。2、原理该方法采用对青霉素类药物绝对敏感的标准菌株,利用舒巴坦特异性抑制β-内酰胺酶的活性,并加入青霉素作为对照,通过比对加入β-内酰胺酶抑制剂与未加入抑制剂的样品所产生的抑制圈的大小来间接测定样品是否含有β-内酰胺酶类药物。3、设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1 抑菌圈测量仪或测量尺。3.2恒温培养箱:36℃±1℃。3.3 高压灭菌器。3.4 无菌培养皿:内径90 mm,底部平整光滑的玻璃皿,具陶瓦盖。3.5 无菌牛津杯:外径(8.0士0.1) mm,内径(6.0士0.1) mm,高度(10.0士0.1) mm。3.6 麦氏比浊仪或标准比浊管。3.7 pH计。3.8 无菌吸管:1mL(0.01mL刻度值),10mL(0.1mL刻度值)。3.9 加样器:5μL~20μL,20μL -200μL及配套吸头。4、培养基和试剂 除另有规定外,所用试剂均为分析纯,水为GB/T6682中规定的三级水。4.1 试验菌种:藤黄微球菌(Micrococcus luteus) CMCC(B) 28001,传代次数不得超过14次。4.2 磷酸盐缓冲溶液:按附录A中A.1规定。4.3生理盐水(8.5 g/L):按附录A中A.2规定。4.4 青霉素标准溶液:按附录A中A.3规定。4.5 β-内酰胺酶标准溶液:按附录A中A.4规定。4.6 舒巴坦标准溶液按附录A中A.5规定。。4.7 营养琼脂培养基:按附录A中A.6规定。4.8 抗生素检测用培养基Ⅱ:按附录A中A.7规定。5、操作步骤5.1 菌悬液的制备将藤黄微球菌接种于营养琼脂斜面上,经36士1℃培养18h-24 h,用生理盐水洗下菌苔即为菌悬液,测定菌悬液浓度,终浓度应大于1×1010 CFU/mL,4 ℃保存,贮存期限2周。5.2 样品的制备将待检样品充分混匀,取1 mL待检样品于1.5 mL离心管中共4管,分别标为:A、B、C、D,每个样品做三个平行,共12 管,同时每次检验应取纯水1 mL加入到1.5 mL离心管中作为对照。如样品为乳粉,则将乳粉按1:10的比例稀释。如样品为酸性乳制品,应调节pH值至6-7。5.3 检验用平板的制备取90mm灭菌玻璃培养皿,底层加10 mL灭菌的抗生素检测用培养基Ⅱ,凝固后上层加入5 mL含有浓度为1×108 CFU/mL藤黄微球菌的抗生素检测用培养基Ⅱ,凝固后备用。5.4 样品的测定按照下列顺序分别将青霉素标准溶液、β-内酰胺酶标准溶液、舒巴坦标准溶液加入到样品及纯水中:A 青霉素5 μL。B 舒巴坦25 μL、青霉素5 μL。C β-内酰胺酶25 μL、青霉素G5 μL。D β-内酰胺酶25 μL、舒巴坦25 μL、青霉素5 μL。混匀后,将上述A~D 试样各200 μL 加入放置于检验用平板上的4个无菌牛津杯中,36士1℃培养培养18~22 h ,测量抑菌圈直径。每个样品,取三次平行试验平均值。5.5 结果报告纯水样品结果应为:(A)、(B)、(D)均应产生抑菌圈;(A)的抑菌圈与(B)的抑菌圈相比,差异在3 mm以内(含3 mm),且重复性良好;(C)的抑菌圈小于(D)的抑菌圈,差异在3 mm以上(含3 mm),且重复性良好。如为此结果,则系统成立,可对样品结果进行如下判定:7.1 如果样品结果中(B)和、(D)均产生抑菌圈,且(C)与(D)抑菌圈差异在3 mm以上(含3 mm)时,可按7.1.1、7.1.2 判定结果。7.1.1(A)的抑菌圈小于(B)的抑菌圈差异在3 mm以上(含3 mm),且重复性良好,应判定该试样添加有β- 内酰胺酶,报告β- 内酰胺酶类药物检验结果阳性。7.1.2(A)的抑菌圈同(B)的抑菌圈差异小于3 mm,且重复性良好,应判定该试样未添加有β- 内酰胺酶,报告β- 内酰胺酶类药物检验结果阴性。7.2 如果(A)和(B)均不产生抑菌圈,应将样品稀释后再进行检测。附 录 A(规范性附录)培 养 基A.1 磷酸盐缓冲溶液(pH6.0)无水磷酸二氢钾8.0 g无水磷酸氢二钾2.0 g蒸馏水加至1000 mLA.2 生理盐水(8.5 g/L)氯化钠8.5 g蒸馏水1000 mL121℃高压灭菌15 min。A.3 青霉素标准溶液准确称取适量青霉素标准物质,用磷酸盐缓冲溶液溶解并定容为0.1mg/mL的标准溶液。当天配制,当天使用。A.4 β-内酰胺酶标准溶液准确量取或称取适量β-内酰胺酶标准物质,用磷酸盐缓冲溶液溶解并定容为16000 U/mL的标准溶液。当天配制,当天使用。A.5 舒巴坦标准溶液准确称取适量舒巴坦标准物质,用磷酸盐缓冲溶液溶解并定容为1 mg/mL的标准溶液,分装后-20 ℃保存备用,不可反复冻融使用。A.6 营养琼脂蛋白胨10 g牛肉膏3 g氯化钠5 g琼脂15-20 g蒸馏水1000 mL将上述成分加入蒸馏水中,搅混均匀,分装试管每管约5~8 mL,120℃高压灭菌15 min,灭菌后摆放斜面。A.7 抗生素检测培养基Ⅱ蛋白胨10 g牛肉浸膏3 g氯化钠5 g酵母膏3 g葡萄糖1 g琼脂14 g蒸馏水1000mL将上述成分加入蒸馏水中,搅混均匀,120 ℃高压灭菌15 min,其最终pH 值约为6.6。

  • 【原创大赛】【扫尾篇】脱霉剂是否会成为下一个B-内酰胺酶(黄曲霉事件持续解读)

    中国人真的很聪明,实在是太聪明了,但有的聪明没有用在正地方,正应验了一句话,不怕贼偷,就怕贼有文化,这不,有文化的某些人又来祸害人了。先说早期比较火热的抗生素,给牛打了药,奶里就残留抗生素。于是奶站拒收,奶被倒掉。后来聪明人发明了B-内酰胺酶,加入奶中,再去检测,就检测不出来抗生素了,聪明吧,正所谓道高一尺魔高一丈。后来研究发现,B-内酰胺酶及其分解抗生素的产物,其对人的危害比抗生素本身还大。这不,现在检出黄曲霉毒素了,又有人搞出脱霉剂,对黄曲霉进行一些处理,奶里面就检测不出黄曲霉了。但这种脱霉剂本身是否会残留在奶中,而这些残留对人又有多大危害呢?或脱霉剂与黄曲霉毒素反应后生成的产物,其毒性会更大呢?这一点只是我个人观点,但这个问题确实存在,不知道有没有搞这方面研究,一起聊聊。首先说说脱霉剂,一般市售的脱霉剂,大致可分为矿物质吸附剂类、酵母细胞壁类、微生物类、酶制剂类、混合类等很多种。据有关报道,在国内,矿物质吸附剂类的脱霉剂使用率最高。例如:水合铝硅酸盐类,膨润土,蒙脱石等。这类的脱霉剂主要我觉得是吸附性的,没学过兽医,但我感觉这个对牛不好,改天我咨询一下我们单位兽医方面的专家。这种脱霉剂成本较低,掺杂在饲料中,让牛给吃了,估计在牛的肠胃里也不能消化,对牛的寿命也有影响,估计在奶里的残留应该也不少。吸附性的脱霉剂是在饲料中添加可以吸附霉菌毒素的物质,使毒素在经动物肠道时不被动物所吸收,直接排出体外。厂家的人肯定会这么宣传,矿物质吸附剂类脱霉剂,不会被牛吸收,不产生有害物质,也不会对饮奶人造成伤害。但我个人不太相信,除非拿出科学数据来。吸附性脱霉剂的缺点:在吸附饲料中霉菌毒素的同时,也吸附了饲料中的部分维生素和微量元素。同时,其吸附作用有限。还有另一类脱霉剂,说白了就是防腐剂。我个人觉得这些东西,添加在食品中就是食品防腐剂,添加在饲料中就是脱霉剂。其作用都是一样的,就是防止饲料或食品发霉,产生霉菌,进而产生真菌毒素。我猜测可能这类脱霉剂会使用在食品中淘汰的一些防腐剂,但其成本比较低的,添加在饲料中,防止饲料的霉变。不管添加哪种脱霉剂在饲料中,我的观点:要先验证这种脱霉剂在奶中的残留,残留后对人体的影响,要多很多毒理学的实验,而且这个过程要持续好几年,要做小白鼠实验,最后灵长类的,最后才能确认其毒性。而现在在国内,说句难听的,人都代替小白鼠直接实验了,没问题长期使用,吃出问题来禁止,然后大搞检测运动,三聚氰胺就是例子。所以,这次,期望中国最强大的有关部门防患未然,提前将脱霉剂扼杀在萌芽状态,在做好黄曲霉毒素检测的同时,将脱霉剂一起纳入监管范围,谢谢!!!

  • 【资料】β-内酰胺酶各检测方法优缺点比较

    【资料】β-内酰胺酶各检测方法优缺点比较

    β-内酰胺酶各检测方法优缺点比较[img]http://ng1.17img.cn/bbsfiles/images/2009/08/200908111906_165045_1641058_3.jpg[/img]目前已有的检测β-内酰胺酶方法大体可以分为两类:一类是测定底物分解产物的方法,如碘量法、pH 测定法、产色头孢菌素法;另一类是测定未分解底物的方法,如UV法、羟肟酸测定法、生物测定法等。但是上述检测方法都存在一定的缺陷。测定底物分解产物的方法目前来说还不能做到定量化,而通过未分解底物的方法又存在时间长、成本高的缺陷。

  • 丙烯酰胺三个主要来源途径,食品安全法规中规定了吗?

    1、直接从氨基酸生成丙烯酰胺。比如,天门冬酰胺(Asn)在受热之后,脱掉一个CO2和一个NH3,即可转化为丙烯酰胺。凡是富含天门冬酰胺的食物,都非常容易产生丙烯酰胺。比如土豆、麦类、玉米等都是富含天门冬酰胺的食品。 2、氨基酸和淀粉类食物中的微量小分子糖在加热条件下发生美拉德反应,生成丙烯酰胺。在食品中,只要是含淀粉的食品,一般都会同时含有一些蛋白质,比如所有的主食、所有的薯类、所有的淀粉豆类。不过,各种氨基酸合成丙烯酰胺的“能力”有所不同。其中还是以天门冬酰胺独占鳌头,其次是谷氨酰胺(Gln),再次是蛋氨酸(Met)和丙氨酸(Ala)等。淀粉倒是不产生丙烯酰胺,但淀粉分解产生的糖会产生丙烯酰胺,葡萄糖最有效,后面依次是果糖、乳糖和蔗糖。  3、脂肪和糖降解形成丙烯醛,然后和氨基酸分解产生的氨结合,形成丙烯酰胺。凡是油炸的食品,都会发生油脂热氧化反应,而反应产物之一就是丙烯醛,它是一种挥发性小分子物质和油烟的味道有密切关系。油炸食品特别容易产生丙烯酰胺,这是理由之一。此外,蛋白质氨基酸分解也能产生少量的醛类,其中包括丙烯醛。

  • 乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法

    乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法杯碟法1、范围本标准规定了乳及乳制品中舒巴坦敏感β-内酰胺酶类药物的检验方法。本标准适用于乳及乳制品中舒巴坦敏感β-内酰胺酶类物质的检验。本方法的检出限为4U/mL。2、原理该方法采用对青霉素类药物绝对敏感的标准菌株,利用舒巴坦特异性抑制β-内酰胺酶的活性,并加入青霉素作为对照,通过比对加入β-内酰胺酶抑制剂与未加入抑制剂的样品所产生的抑制圈的大小来间接测定样品是否含有β-内酰胺酶类药物。3、设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1 抑菌圈测量仪或测量尺。3.2恒温培养箱:36℃±1℃。3.3 高压灭菌器。3.4 无菌培养皿:内径90 mm,底部平整光滑的玻璃皿,具陶瓦盖。3.5 无菌牛津杯:外径(8.0士0.1) mm,内径(6.0士0.1) mm,高度(10.0士0.1) mm。3.6 麦氏比浊仪或标准比浊管。3.7 pH计。3.8 无菌吸管:1mL(0.01mL刻度值),10mL(0.1mL刻度值)。3.9 加样器:5μL~20μL,20μL -200μL及配套吸头。4、培养基和试剂 除另有规定外,所用试剂均为分析纯,水为GB/T6682中规定的三级水。4.1 试验菌种:藤黄微球菌(Micrococcus luteus) CMCC(B) 28001,传代次数不得超过14次。4.2 磷酸盐缓冲溶液:按附录A中A.1规定。4.3生理盐水(8.5 g/L):按附录A中A.2规定。4.4 青霉素标准溶液:按附录A中A.3规定。[size=1

  • 【分享】β-内酰胺酶定量检测试剂盒 使用说明书

    β-内酰胺酶是指能催化水解β-内酰胺环酰胺键的灭活酶,可分为青霉素酶、头孢菌素酶、 金属酶和超广谱酶四种。其对青霉素的分解效率非常高,因此,添加在牛奶中确实可以完全水解青霉素, 使之不被检测出来。但是同样其风险也是存在的:第一,β-内酰胺酶的安全性以及是否可以在食品中添加 尚未有定论;第二,在分解β-内酰胺药物后,可能引进其他有害物质;第三,这种做法纵容了奶牛饲养过 程中抗生素的滥用。【反应原理】根据碘量法快速高效重复性好的特点,能快速测定β-内酰胺酶的残留量。根据青霉素经β-内酰胺酶作用而产生的裂解酸与碘结合,可使蓝色的碘淀粉复合物褪色的原理:青霉素+β-内酰胺酶 → 青霉素裂解酸青霉素裂解酸 + 淀粉碘(蓝色)→ 褪色【试剂盒组成】试剂盒组份数量规格试剂A(棕色瓶)16ml试剂B (本色瓶)16ml样品处理液130ml稀释液(本色瓶)125ml样品管(蓝色离心管)24/4848孔板/96孔板1说明书1样品处理管24/48【注意事项】1. 本试剂盒仅供体外诊断用,不要将不同批号的试剂混合用,并请在有效期内使用。2. 如试剂盒不能一次用完,请使用灭菌的移液头进行取样。3. 本试剂盒适用于生乳中β-内酰胺酶检测,线性范围0~10U/ml,如有必要请用稀释液将样 品稀释后在进行试验。4. 含大量脂质或变质的标本可能影响检测结果;如有需要可在实验前对样品进行离心(4000rpm,10min)后取中间清液待测。【试验方法】1. 将试剂盒于室温回温30min 以上。2. 取1000ul 待测样品加入样品管中。

  • 求各位大神,boc-L-脯氨酰胺的高效液相测定方法

    [color=#444444]我做了一个中间体,boc-L-脯氨酰胺,BOC-L-氰基吡咯烷需要用液相测定他的含量,求有经验的大神给予赐教。[/color][color=#444444]样品的配置,如浓度、溶剂等[/color][color=#444444]液相色谱的设置条件、流动相的选择等[/color]

  • 【原创大赛】生鲜乳中违法添加非食用物质之“β-内酰胺酶”

    文/ 华测检测[b]引言[/b]随着人们生活水平的不断改善,人们越来越注重食品的营养和健康,对乳品的需求也越来越大。但近几年来,乳品质量安全的事故时有发生,给我国乳品市场造成了很大的冲击,乳及其乳制品的食品安全问题也越来越备受关注,然而奶源质量不高成为阻碍我国奶业健康发展的一个重要因素,其中最突出的问题就是鲜奶抗生素的残留。世界各国对鲜奶抗生素的残留都有严格的管控,并有明确的法令禁止抗生素残留超标的牛奶上市销售,我国于2002年颁布的农业部235号公告《动物性食品中兽药最高残留限量》对生鲜乳中的抗生素残留限量做出明确要求和规定。然而,目前仍有一些不法奶站和牧场出于经济利益的驱动,人为的向生鲜乳中添加一些生物制剂去降解生鲜乳中残留的抗生素,制造“无抗奶”,逃避乳品企业对抗生素的筛查及政府监管,造成严重的食品安全危害。本文针对生鲜乳中β-内酰胺酶的来源、危害、目前的管控及主要检测方法做一下阐述。[b]1 β-内酰胺酶简介[/b]β-内酰胺类药物主要是指青霉素类药物和头孢菌素类药物,是目前牧场使用的主要兽药种类,主要用于治疗奶牛乳房炎疾病和产后疾病,由于使用频率高,使用量大,导致β-内酰胺类兽药成为目前生鲜乳中最常见的残留抗生素。β-内酰胺酶俗称抗生素分解剂,又名解抗剂或者金玉兰酶制剂,以青霉素为底物的称为青霉素酶,以头孢菌素作为底物的称为头孢菌素酶。研究表明,有多种细菌能产生β-内酰胺酶,细菌菌体内产生的β-内酰胺酶能够裂解青霉素和头孢菌素等β-内酰胺类抗生素化学结构中的β-内酰胺环,从而灭活该类抗生素使其变成无抗菌活性的物质,从而表现出产酶细菌对β-内酰胺类抗生素产生耐药性。生鲜乳中的β-内酰胺酶分为内源性和外源性。内源性β-内酰胺酶较为复杂,种类较多,有200多种,主要为革兰氏阴性菌产生。内源性β-内酰胺酶来源有两种途径:一是牛本身感染了某些有抗性的细菌,而这些细菌在体内不断表达分泌β-内酰胺酶,这些β-内酰胺酶随奶牛挤奶进入生鲜乳中;二是生鲜乳在放置过程中,由于放置时间和存放温度的原因,在某些细菌的作用下产生内源性β-内酰胺酶。外源性β-内酰胺酶主要为革兰氏阳性菌产生,包括青霉素酶和头孢菌素酶,外源性β-内酰胺酶是不允许在食品中使用的化学物质。生鲜乳中违法添加的抗生素分解剂是革兰氏阳性菌产生的β-内酰胺酶,是人为添加的,而不是内源性β-内酰胺酶。[b]2 生鲜乳中添加β-内酰胺酶的危害[/b]尽管β-内酰胺酶对人体造成的直接损伤和危害目前没有确切的研究能够证明,但是生鲜乳中β-内酰胺酶残留对人体健康和奶业健康产生了一定的安全风险。目前对青霉素药物产生过敏反应的人群普遍存在,通过研究发现主要机理为两个方面:一方面是β-内酰胺酶可催化分解青霉素化学结构中的β-内酰胺四元环,使四元环开环,从而使青霉素失去杀菌能力,同时青霉素降解产物青霉素噻唑酸可与人体内蛋白质结合形成大分子抗原而导致过敏反应;另一方面,β-内酰胺酶催化青霉素化学结构中的β-内酰胺环开放,开环后的β-内酰胺环极易交联在一起,高度聚合形成高度聚合物,该高聚物有很强的致敏能力,很容易导致人体的过敏反应。另外,β-内酰胺酶分解其他β-内酰胺类抗生素后会产生大量的降解产物,这些降解产物中有许多是抗生素的类似物,而降解产物对人体是否存在危害,目前仍是个未知数,这些都是潜在的危害风险。若长期饮用含有β-内酰胺酶处理的牛奶,会使人体内的致病菌产生耐药性,当人体被感染需要使用抗生素药物治疗时,会使抗生素药物失去作用。此外,长期饮用含有β-内酰胺酶的牛奶还可能会引入其他的致病菌、致癌物质。另一方面,β-内酰胺酶的添加纵容了奶牛饲养过程中抗生素的滥用,扰乱市场,不利于我国奶业的健康可持续发展。[b]3 生鲜乳中β-内酰胺酶的管控[/b]2008年婴幼儿奶粉三聚氰胺事件发生后,乳与乳制品的质量安全问题越发的引人关注,国家也相继出台了针对食品中非法添加物质的各项管控政策。β-内酰胺酶可能添加到乳与乳制品中,起到分解抗生素的作用,由于乳与乳制品中添加β-内酰胺酶存在很大的食品安全风险,有可能对人体健康造成严重危害,因此国家出台相关的法律法规明令禁止在生鲜乳中添加此类物质,但是仍有部分国内的奶站和牧场为了追求经济利益,为了使被抗生素污染的生鲜乳达到“无抗”的标准, 在牛奶中人为添加β-内酰胺酶分解剂,给我国奶制品市场造成了混乱,损害了消费者的利益。为进一步保障乳与乳制品的质量和食品安全,打击食品中的各种违法添加,2008年11月28日国家发布“关于开展全国打击违法添加非食用物质和滥用食品添加剂专项整治的紧急通知”(卫监督发〔2008〕60号),该通知由卫生部、商务部、公安部、监察部、工商总局、工业和信息化部、农业部、质检总局和食品药品监管局联合发布,形成统一执法,通知指出:“当前在食品中违法添加非食用物质和滥用食品添加剂问题十分严重,对人民群众身体健康和生命安全造成极大威胁,严重损害了我国食品产品的声誉。”2009年2月4日,全国食品安全整顿工作办公室印发《食品中可能违法添加的非食用物质名单(第二批)》的通知(食品整治办〔2009〕5号),明确将β-内酰胺酶列入乳与乳制品中违法添加的非食用物质,进行全国性监控。2009年3月6日,卫生部印发《卫监督发〔2009〕21号》文件,该文件在《全国打击违法添加非食用物质和滥用食品添加剂专项整治近期工作重点及要求》中明确指出在乳及乳制品生产中添加β-内酰胺酶的违法行为是专项整治近期工作的重点。近几年,在农村农业部的牵头带领下,各省市自治区相继开展针对生鲜乳违法添加专项整治行动,同时国家监督抽查和风险监测等食品安全监控工作均把β-内酰胺酶作为重点监控项目进行抽检监控,并针对发现的少数违禁添加行为及时进行了处置。[b]4 生鲜乳中β-内酰胺酶的主要检测方法[/b]目前常用的β-内酰胺酶检测方法有微生物检测方法、免疫检测方法、液相/[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]/质谱联用检测方法,他们各有优缺点。微生物法是在规定条件下选用适当微生物测定某种物质含量的方法,微生物法中经典的检测β-内酰胺酶的方法为杯碟法,这种方法优点是成本低廉、准确性好,缺点是检测时间较长,不能做到生鲜乳的快速检测放行。目前微生物法仍作为β-内酰胺酶的主要检测方法,国家和地方标准仍以微生物检测方法为主要检测方法,涉及到的主要标准检测方法有DB13/T 1080-2009 乳及乳制品中β-内酰胺酶的测定(2009年5月27日由河北省质量技术监督局颁发的地方标准);乳及乳制品中舒巴坦敏感β-内酰胺酶类药物检验方法-杯碟法(2009年3月23日由卫生部在“关于印发全国打击违法添加非食用物质和滥用食品添加剂专项整治抽检工作指导原则和方案的通知(食品整治办〔2009〕29号)”中发布);SN/T 3979-2014 乳及乳制品中β-内酰胺酶的测定方法-杯碟法(2014年7月14日由国家质量监督检验检疫总局颁发的进出口行业标准);NY/T 3313-2018 生乳中β-内酰胺酶的测定第一法(2018年12月19日由农业农村部颁发的农业标准)。免疫检测法是根据抗原抗体特异性反应的基本特性而设计的检测方法,优点是操作简单、速度快、特异性强,缺点是费用较高,容易出现“假阳性”。免疫检测法目前是在生鲜乳β-内酰胺酶快检方面应用比较广泛的检测方法,主要应用于乳品企业在生鲜乳收购时快速检测放行,目前最主要的技术是胶体金免疫层析技术,现主要以商品化试剂盒为主。目前胶体金免疫层析技术涉及到的主要标准检测方法有SN/T 4533.1-2016 商品化试剂盒检测方法β-内酰胺酶方法一(2016年6月28日由国家质量监督检验检疫总局颁发的进出口行业标准);NY/T 3313-2018 生乳中β-内酰胺酶的测定第二法(2018年12月19日由农业农村部颁发的农业标准)。液相/[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]/质谱联用检测方法为近几年新兴的β-内酰胺酶检测方法,该方法准确性好、敏感性强、重现性好,但检测程序较为复杂,对于样品前处理具有较高的要求,检测费用较高。目前,利用高效液相色谱法测定乳制品中β-内酰胺酶残留的方法已经较为成熟,但仍没有形成相应的国标方法。对于生鲜乳中β-内酰胺酶的液相检测方法主要有两种:直接法和间接法。直接法的主要原理是在含有β-内酰胺酶的条件下或者碱性条件下,青霉素钾盐(钠盐)才能分解为青霉噻唑酸钾(钠),通过测定青霉噻唑酸钾(钠)含量来测定β-内酰胺酶含量;;间接法则是向生鲜乳中添加已知量的青霉素,经过一段时间孵育后,测定青霉素的含量,通过青霉素含量的变化来判断生鲜乳中是否含有β-内酰胺酶,如果含有β-内酰胺酶,青霉素的含量则会下降。液相/[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]/质谱联用检测方法可对β-内酰胺酶进行高通量定量检测,故常可用于实验室定量分析,但是因为需要专门人员进行操作、前处理比较复杂、所需设备比较昂贵等原因,在一些小实验室使用频率不高,且不适用于现场检测。[b]小结[/b]食品安全问题事关人的健康和生命,已经成为全社会关注的热点,生鲜乳质量安全是乳品质量安全最重要的因素。如何确保生鲜乳质量安全,杜绝各种违法现象的发生:一方面,需要政府部门建立健全奶业法规、标准,同时加强政府监管和监督抽检,严厉打击食品中的各种违法添加行为;另一方面,需要政府相关部门、乳品加工企业加大生鲜乳检测力度,投资配备先进生鲜乳检测设备,优化和研发对应的检测方法,引进先进的质量管理体系,落实各个关键控制点质量控制,同时开展第三方检测。通过以上措施,确保收购质量安全的生鲜牛奶,才能保证乳品加工厂生产出高质量安全的乳制品,确保消费者的健康安全。

  • 饼干致癌物质丙烯酰胺?我有检测好助手!

    饼干致癌物质丙烯酰胺?我有检测好助手!

    [align=center][img=,600,363]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445071091_6921_932_3.jpg!w516x313.jpg[/img][/align]最近有关饼干中检测出致癌物质的事件甚嚣尘上,其中不乏无印良品这种大品牌,甚至连某明星的自有品牌也深陷其中。其中检测出的最主要的致癌物就是丙烯酰胺,含碳水化合物的食物在煎、炸、烘烤等高温加热过程中容易产生丙烯酰胺,目前国际上仅欧盟对食品中丙烯酰胺含量进行限定。但是作为一种存在致癌风险的物质,被检测出来的产品还是做了下架处理。作为当下热点检测,我们为大家推出检测丙烯酰胺的解决方案。我们先来看一下实验效果如何![b]适用范围[/b]食品中丙烯酰胺的测定方法(本实验采用饼干为样品)。[b]SPE净化步骤[/b]SPE柱:月旭Welchrom C18E规格:500 mg/6mL。活化:5mL甲醇,5mL水;上样:待净化液,收集;洗脱:2mL30%甲醇分次润洗烧瓶,再上样,收集,抽干;合并上样液和洗脱液,并用30%甲醇水定容至5mL,并过0.22 μm有机滤膜,上HPLC检测。[b]色谱条件[/b]色谱柱:月旭Ultimate XB-C18 4.6×150mm,3μm。流动相:甲醇:水(20:80);柱温:35℃;进样量:10μL;检测波长:210nm;流速:0.5mL/min。[b]色谱图或者加标回收率结果[/b][align=center][b][img=,600,334]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445149921_7077_932_3.png!w690x385.jpg[/img][/b][/align][color=#333333][/color][align=center]图1.丙烯酰胺对照品2mg/L[/align][align=center][/align][align=center][img=,600,333]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445213123_2604_932_3.png!w690x383.jpg[/img][/align][color=#333333][/color][align=center]图2.样品过C18E图谱[/align][color=#333333][/color][align=center][img=,600,340]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445239721_2227_932_3.png!w690x391.jpg[/img][/align][align=center]图3.样品加标10mg/kg 过C18E图谱[/align][align=center][img=,600,98]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445318583_7026_932_3.png!w690x113.jpg[/img][/align][align=center]表1:加标回收率[/align][b]相关产品信息[/b][align=center][b][img=,600,446]https://ng1.17img.cn/bbsfiles/images/2019/09/201909121445375923_513_932_3.jpg!w690x514.jpg[/img][/b][/align]

  • 丙烯酰胺简介

    丙烯酰胺简介

    丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。 丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。 丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。⒈ 业性接触者要通过改革工艺、采取工程技术措施等手段,降低工作场所空气中丙烯酰胺的浓度;同时通过加强个人防护,如戴口罩、手套,穿防护服和鞋等,以防止或减少丙烯酰胺进入体内。 ⒉ 日常生活中尽量避免过度烹饪食品,如温度过高或加热时间太长。提倡平衡膳食,减少油炸和高脂肪食品的摄入,多吃水果和蔬菜,不要吸烟。 ⒊ 由于煎炸食品是我国居民常吃的食物,国家应加强膳食中丙烯酰胺的监测与控制,开展我国人群丙烯酰胺的暴露评估,并研究探索减少加工食品中丙烯酰胺含量的方法。(引自中国CDC网站)附迪马丙烯酰胺检测方案链接:http://www.dikma.com.cn/search.html?keyword=丙烯酰胺http://ng1.17img.cn/bbsfiles/images/2016/05/201605111724_592991_1610895_3.jpg

  • 【讨论】-丙烯酰胺大讨论

    开始关注丙烯酰胺:2002年4月24日,瑞典国家食品管理局(Swedish National Food Administration)举行记者招待会宣布,一些富含淀粉类的食品在进行高温加工处理后都含有一种有毒的、存在潜在致癌性的化学物质——丙烯酰胺,并向全世界公布了他们的研究结果,立即引起WHO、FAO以及世界各国食品业的广泛关注。随后,挪威、瑞士、英国、美国等各国的科学家均分别进行了试验,取得了与瑞典科学家相同的实验结果,丙烯酰胺的问题进一步引起世界范围的重视。丙烯酰胺的基本性质及其应用: 丙烯酰胺(Acrylamide),CAS的登记号为79-06-1,其分子量71.09,化学分子式CH2CHCONH2。丙烯酰胺是一种不饱和酰胺,其单体为无色透明片状结晶,沸点125℃,熔点84~85℃。能溶于水、乙醇、乙醚、丙酮、氯仿,不溶于苯及庚烷中。丙烯酰胺单体在室温下很稳定,但当处于熔点或以上温度、氧化条件以及在紫外线的作用下很容易发生聚合反应。当加热使其溶解时,丙烯酰胺释放出强烈的腐蚀性气体和氮的氧化物类化合物。丙烯酰胺的来源:食品中的丙烯酰胺主要源于高温烹调,饮用水中的丙烯酰胺主要源于污水净化等工业用的聚丙烯酰胺的降解。丙烯酰胺的毒性:1 丙烯酰胺的神经毒性研究丙烯酰胺是一种中等毒性的亲神经毒物,可通过未破损的皮肤、粘膜、肺和消化道吸收入人体,分布于体液中[4]。  丙烯酰胺的神经毒性已经为许多学者所公认,大量的中毒事件也多是围绕其神经毒性方面,但丙烯酰胺导致周围神经和中枢神经系统损伤的机制还不十分清楚。现场劳动卫生学研究和体格检查发现长期职业接触丙烯酰胺的工人主要表现为四肢麻木、乏力、手足多汗、头痛头晕、远端触觉减退等,累及小脑时还会出现步履蹒跚、四肢震颤觉、深反射减退等,并发现外周神经损害多表现为通向胞体的长纤维末端首先受损,逐渐向胞体方向发展,呈“返死现象”[5]。  韩漫夫等[6]发现丙烯酰胺能使脑能量代谢受到影响,脑组织供能代偿潜能损伤,并认为这种对脑能量代谢的影响是丙烯酰胺产生神经元损伤的生化基础。丙烯酰胺中毒致周围神经病时轴突首先受累,当轴突变性时,神经元胞浆中呈持续的逆行改变,故其神经元多可恢复,神经末梢可再生。周梅荣、施建俐、秦小梅等报道了职业性丙烯酰胺中毒致小脑萎缩的案例[8];褚学斌、马佩琛、任冰等报道了丙烯酰胺中毒致视野缺损的案例[9]等。  从现已报道关于丙烯酰胺中毒的案例中可以看出,丙烯酰胺的中毒不仅仅能带来一些神经性伤害,甚至还会导致人体某些脏器发生实质性病变,从而造成严重的后遗症。我国在70年代开始报道丙烯酰胺中毒的病例,并开展了对丙烯酰胺中毒的防治研究,目前已经基本明确了丙烯酰胺毒理及临床表现,并于1996年提出丙烯酰胺中毒诊断标准(GB16370-1996)。  2. 丙烯酰胺的致癌性研究  2.1 丙烯酰胺致癌性的评估状况  大量的实验动物数据证实了丙烯酰胺具有一定的致癌作用,在实验动物的饮用水中每天加入2.0mg/kg体重的丙烯酰胺的剂量,一段时间后就可以在脑部、脊髓或其他组织中发现肿瘤细胞。Bull和Robinson等以6.25,12.5,25mg/kg的丙烯酰胺剂量经口染毒A/J小鼠,发现丙烯酰胺可诱发小鼠皮肤肿瘤,促进肺腺瘤的发展[9]。Damjanov和Friedman在饮水中加丙烯酰胺,以每天0.1、0.5、2.0mg/kg的剂量对大鼠进行104周慢性染毒,发现大鼠睾丸鞘膜肿瘤发生增加,从而认为丙烯酰胺具有一定的多巴胺拮抗作用,该机制可能是导致多种组织细胞异常增生,从而引发癌症的原因之一[10]。  Richard [11]认为,虽然各国对丙烯酰胺进行了大量的研究,并对其毒性、病理变化及毒理学特性有了较好了解,并通过实验动物模型,确认了丙烯酰胺的潜在致癌性和对生殖、神经系统的损伤作用,但是应该强调的是,虽然对丙烯酰胺职业病的流行病学研究发现了它的神经毒理作用,但是并没有说明丙烯酰胺暴露的量与癌症发生之间的联系。所以我们现在应该尽可能的获得更多的关于丙烯酰胺的资料,而不是单单强调丙烯酰胺致癌这一个方面上。  2.2 食品中丙烯酰胺的致癌性研究  食品中存在的丙烯酰胺是否存在致癌作用、多大的剂量会引起癌症,各国的科学家和研究人员存在不同的看法。  评估丙烯酰胺对人体的危险是很重要的。基于一些动物实验的结果,对丙烯酰胺的NOAEL,即最大无作用剂量水平为0.1mg/kg 体重[12]。根据新西兰国家营养机构对具有代表性的西方饮食的调查,出版了关于食品中丙烯酰胺浓度的文章[13]。通过以上文献,Ian等计算了消费者食用热的油炸薯条或油炸薯片,即经常食用的可能产生丙烯酰胺最多的食品,其中每日平均食用的丙烯酰胺的剂量在0.3μg/kg体重,这一数量是NOAEL所规定0.1mg/kg 体的三分之一,这样的话,即使消费者每天食用薯条、薯片等食品致癌的危险也是很低的[14]。虽然现在对丙烯酰胺已经进行了大量的研究,但是关于它的致癌性仍然是各国争论的焦点之一,现有数据并不足以说明食品中的丙烯酰胺可以导致某种癌症,这就需要我们通过多种实验手段、先进的科学技术来进一步深入研究食品中丙烯酰胺的问题,希望在不久的将来能够彻底的解决食品中的丙烯酰胺的问题。  3.丙烯酰胺的其他不良影响  3.1 丙烯酰胺对小鼠抗氧化能力和免疫功能的影响  小鼠经口给予不同剂量(50、100、150 mg/kg)的丙烯酰胺, 5次/7d,42d后断头取血检测指标。结果显示,染毒小鼠体重明显下降,血清脂质过氧化代谢产物(MDA)含量增高(P0 01),超氧化物歧化酶(SOD)及全血谷胱甘肽氧化酶活性于150 mg/kg染毒组降低非常明显(P0 01),150 mg/kg染毒组小鼠血中胶体炭粒清除速度明显降低,胸腺相对质量明显增加[15]。说明丙烯酰胺有抑制机体抗氧化能力和降低机体网状内皮系统吞噬功能的作用。  3.2 丙烯酰胺的基因毒性及DNA损伤作用  丙烯酰胺不能诱导细菌的基因突变,但是丙烯酰胺代谢的环氧化物——环氧丙酰胺在代谢停滞时却能诱导基因突变现象。在诱导哺乳动物细胞基因突变试验中,丙烯酰胺能表现一种很不确定的、很弱的基因突变作用。丙烯酰胺在哺乳动物细胞中可以诱导染色体失常、姊妹染色体互换、染色体倍增现象、染色体非整倍体形成以及其他有丝分裂异常现象。丙烯酰胺不能在小鼠肝细胞中诱导非常规的DNA合成,环氧丙酰胺却能诱导人体乳腺细胞的非常规的DNA合成,但环氧丙酰胺在小鼠肝细胞中的作用却不明显。  关景芳,贾文英,程林等进行了丙烯酰胺单体的细胞染色体实验观察,目的是通过对不同梯度丙烯酰胺进行诱变性实验,观察丙烯酰胺对哺乳类动物细胞遗传毒性的影响。采用细胞培养染色体畸变技术进行实验观察,结果表明,丙烯酰胺单体即诱导染色体结构畸变,又能诱导非整倍体形成。这一研究结果与WHO提出的关于丙烯酰胺的基因毒性一致,同时丙烯酰胺致畸作用有剂量反应关系,高浓度诱发大量非整倍体形成及结构变异,低浓度无诱发CHL细胞染色体畸变的作用[16]。  3.3 丙烯酰胺的生殖毒性[17]  Sickes等研究认为,丙烯酰胺的生殖毒性机制与其神经毒性的机制相似。丙烯酰胺可抑制驱动蛋白样物质的活性,导致细胞有丝分裂和减数分裂障碍,从而引起生殖损伤。  有研究证据表明[18],丙烯酰胺可以影响雄性动物的生育能力。给予雄性大鼠15mg/kg体重的丙烯酰胺,连续5天,或者给予小鼠12mg/kg体重,连续28d,均可发现其生育能力受到损害,具体表现为精子计数减少和精子活动能力减弱。说明丙烯酰胺对动物的生殖系统有一定的损伤作用,但在人类却未发现有此危害

  • 【实验】有机实验之磺胺药物对氨基苯磺酰胺的合成

    磺胺药物对氨基苯磺酰胺的合成目的原理Ar-NHCOCH3 + 2HOSO2Cl → p-ClO2S-Ar-NHCOCH3+ HClp-ClO2S-Ar-NHCOCH3 + NH3 → p-CH3CONH-Ar-SO2NH2 + HClp-CH3CONH-Ar-SO2NH2 + H2O → p-H2N-Ar-SO2NH2 + CH2CO2H仪器药品乙酰苯胺(自制) 5g(0.037mol);氯磺酸(d=1.77) 22.5g(12.5ml,0.19mol);浓氨水(28%,d=0.9) 35ml 浓盐酸,碳酸钠。过程步骤(1)对乙酰氨基苯碘酰氯在100ml干燥的锥形瓶中,加入5g干燥的乙酰苯胺,在石棉网上用小火加热熔化。瓶壁上若有少量水气凝结,应用干净的滤纸吸去。冷却使熔化物凝结成块。将锥形瓶置于冰浴中冷却后,迅速倒入12.5ml氯磺酸,立即塞上带有氯化氢导气管的塞子。反应很快发生,若反应过于激烈,可用冰水浴冷却。待反应缓和后,旋摇锥形瓶使固体全溶,然后再在温水浴中加热10~15min使反应完全。将反应瓶在冷水中充分冷却后,于通风中在充分搅拌下,将反应液慢慢倒入盛75g碎冰的烧杯,用少量冷水洗涤反应瓶,洗涤液倒入烧杯中。搅拌数分钟,并尽量将大块固体粉碎,使成颗粒小而均匀的白色固体。抽滤收集,用少量冷水洗涤,压干,立即进行下一步反应。(2)对乙酰氨基苯磺酰胺将上述粗产物移入烧杯中,在不断搅拌中慢慢加入17.5ml浓氨水(在通风橱内),立即发生放热反应并产生白色糊状物。加完后,继续搅拌15min,使反应完全。然后加入19ml水,在石棉网上用小火加热10~15min,并不断搅拌,以除去多余的氨,得到的混合物可直接用于下一步合成。(3)对氨基苯磺酰胺(磺胺)将上述反应物放入圆底烧瓶中,加入3.5ml浓盐酸,在石棉网上用小火加热回流0.5h。冷却后,应得一几乎澄清的溶液,若有固体析出,应继续加热,使反应完全。如溶液呈黄色,并有极少量固体存在时,需加入少量活性炭煮沸10min,过滤。将滤液转入大烧杯中,在搅拌下小心加入粉状碳酸钠至恰呈碱性(约4g)。在冰水浴中冷却,抽滤收集固体,用少量冰水洗涤,压干。粗产物用水重结晶(每克产物约须12ml水),产量3~4g。熔点161~162℃。纯品对氨基苯磺酰胺为白色针状结晶,熔点163~164℃。注意事项1.氯磺酸对皮肤和衣服有强烈的腐蚀性,暴露在空气中会冒出大量氯化氢气体,遇水会发生猛烈的放热反应,甚至爆炸,故取用时需加小心。反应中所用仪器及药品皆需十分干燥,含有氯磺酸的废液不可倒入水槽,而应倒入废液缸中。工业氯磺酸常呈棕黑色,使用前宜用磨口仪器蒸馏纯化,收集148~150℃的馏分。2.酰磺酸于乙酰苯胺的反应非常剧烈,将乙酰苯胺凝结成快状,可使反应缓和进行,当反应过于激烈时,应适当冷却。3.在氯磺化过程中,将有大量氯化氢气体放出。为避免污染室内空气,装置应严密,导气管的末端要与接受器内的水面接近,但不能插入水中,否则可能倒吸而引严重事故!4.加入速度必须缓慢,必须充分搅拌,以免局部过热而使对乙酰胺基苯磺酰胺水解。这是实验成功的关键。5.尽量洗去固体所夹杂和吸附的盐酸,否则产物在酸性介质中放置过久,会很快水解,因此在洗涤后,应尽量压干,且在1~2h内将它转变为磺胺类化合物。6.粗制的对氨基苯磺酰氯久置容易分解,甚至干燥后也不可避免。若要得到纯品,可将粗产物溶于温热的氯仿中,然后迅速转移到事先温热的分液漏斗中,分出氯仿层,在冰水浴中冷却后即可析出晶体。纯品对氨基苯磺酰氯的熔点为149℃。7.为了节省时间,这一步的粗产物可不必分出。若要得到产品,可在冰水浴中冷却,抽滤,用冰水洗涤,干燥即可。粗品用水重结晶,纯品熔点为219~220℃。8.对乙酰胺基苯磺酰胺在稀酸中水解成磺胺,后者又与过量的盐酸形成水溶性的盐酸盐,所以水解完成后,反应液冷却时应无晶体析出。由于水解前溶液中氨的含量不同,加3.5ml盐酸有时不够,因此,在回流至固体全部消失前,应测一下溶液的酸碱性,若酸性不够,应补加盐酸回流一段时间。9.用碳酸钠中和滤液中的盐酸时,有二氧化碳产生,故应控制加热速度并不断搅拌使其逸出。磺胺是一两性化合物,在过量的碱溶液中也易变成盐类而溶解。故中和操作必须仔细进行,以免降低产量。分析思考 1.为什么在氯磺化反应完成以后处理反应混合物时,必须移到通风橱中,且在充分搅拌下缓缓倒入碎冰中?若在未倒完前冰就化完了,是否应补加冰块?为什么?2.为什么苯胺要乙酰化后在氯磺化?直接氯磺化行吗?3 .如何理解对氨基苯磺酰氨是两性物质?试用反应式表示磺胺与稀酸和稀碱的作用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制