当前位置: 仪器信息网 > 行业主题 > >

泊沙康唑中间体

仪器信息网泊沙康唑中间体专题为您提供2024年最新泊沙康唑中间体价格报价、厂家品牌的相关信息, 包括泊沙康唑中间体参数、型号等,不管是国产,还是进口品牌的泊沙康唑中间体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合泊沙康唑中间体相关的耗材配件、试剂标物,还有泊沙康唑中间体相关的最新资讯、资料,以及泊沙康唑中间体相关的解决方案。

泊沙康唑中间体相关的资讯

  • 拉曼光谱新应用:原位光谱观测多种关键反应中间体
    在 BBC 纪录片《蓝色星球》第二季中,担任解说员的“世界自然纪录片之父”大卫爱登堡(David Attenborough)为了探究二氧化碳对海洋的危害,拜访了一位科学家。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)后者把稀释的酸倒向水中,结果贝壳开始“消失”。贝壳由碳酸钙构成,而酸会溶解它们。构成珊瑚礁的材质,和贝壳是一样的。科学家认为,在 21 世纪之前,珊瑚礁有可能会消失。背后的“罪魁祸首”便是二氧化碳,它们溶解在海水中会变成碳酸。空气中的二氧化碳越多,海水酸性就越强,“死去”的珊瑚礁就越多。有证据显示,燃烧矿物燃料是造成二氧化碳浓度上升的主要原因。因此,全球许多国家都在致力于碳中和。实现“双碳”目标(2030 年前碳达峰、2060 年前碳中和)是中国为应对全球气候变化做出的重大战略决策和庄严承诺,也是构建人类命运共同体和促进人与自然和谐共生的必然选择。其中的战略路径选择之一,是实现碳化工与碳利用产业结构重构,比如利用风能、水能、太阳能等可再生能源,将CO2电催化成为高附加值的化工产品和化学燃料。目前,在用于CO2还原反应的各类催化剂中,铜(Cu)基材料是最具潜力的催化剂,因为其能直接将CO2电催化还原为多种高碳氧和碳氢化合物。此外,人们还可通过调整铜催化剂的形貌、晶面、孔径、颗粒间距离、次表面原子和晶界等参数,来实现特定的催化反应活性和选择性。因此,在实际的电化学反应条件下,原位研究铜表面上CO2的电催化反应、及其反应中间体是非常重要的,这有助于我们更深入地了解 CO2电催化反应机理,并借此设计出更合理、高效的催化剂。尽管目前许多原位表征测试技术,比如表面增强拉曼光谱(SERS,Surface-Enhanced Raman Scattering)、表面增强红外吸收光谱(SEIRAS,Surface-enhanced infrared absorption spectroscopy)、衰减全反射傅里叶变换红外光谱(ATR-FTIR,Attenuated total reflectance-Fourier transform infrared)、X射线吸收光谱、和X射线光电子光谱等,在研究CO2电催化还原反应中取得了快速的发展。但是,如何全面识别其众多表面反应中间体、理解其表面吸附物种之间的相互作用,仍然是一个巨大的挑战。基于此,南京工业大学材料化学工程国家重点实验室邵锋团队及其合作者针对上述挑战,结合运用电化学-壳层隔绝纳米粒子增强拉曼光谱 (EC-SHINERS,electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy)技术、以及从头算分子动力学(ab initio molecular dynamics,AIMD)模拟,对铜表面的一氧化碳电催化反应过程进行系统而深入的研究,首次用全光谱(40-4000cm-1)观测了多种关键反应中间体,指认了中间体的特征拉曼峰,提出了表面吸附物种相互作用机理,并通过同位素标记实验进一步获得证实。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)概括来说,本研究主要关注CO2电催化还原反应中间体和机理的基础研究,以期指导新型高效铜催化剂的设计与制备。▲图 | EC-SHINERS 技术示意图、(FDTD,Finite-difference Time-domain)以及 AIMD 模拟示意图(来源:PNAS)近日,相关论文以《原位光谱电化学探测铜单晶表面一氧化碳氧化还原过程》(In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces)为题,发表在 PNAS 上[1]。邵锋教授(南京工业大学)担任第一兼通讯作者,李景国博士(瑞典乌普萨拉大学)和兰晶岗博士(瑞士洛桑联邦理工大学)担任共同通讯作者。▲图 | 相关论文(来源:PNAS)邵锋表示:“(投稿期间)印象最深的一个插曲,是在我们的返回第一轮审稿意见大概两个月后,编辑给我发来邮件说其中的一个审稿人失去联系了,准备再重新找一个新的审稿人开启新一轮的审稿。”而当时正是俄乌冲突发生最激烈的时候,并且欧美也开始了各类制裁和限制俄国和俄裔人士的风潮。课题组担心其中之一的审稿人可能是俄国或俄裔科学家,因此,或多或少会受到了一点影响,也耽误了审稿的进程。“因此我们的论文从投稿到接收,确实经历耗时很久。虽然虚惊一场,好在最后还是得到了编辑的肯定,最终论文被接收了!”邵锋说。同时审稿人表示,论文的光谱实验部分非常令人兴奋,包含大量有价值的信息,对研究反应机理非常有帮助。此外,理论计算部分质量也很高,预测了各种可能中间体的特征振动图谱,并能与实验结果很好地吻合。其还称,这是一项非常扎实的工作,进行了大量的控制实验和对比实验,同时结合了 AIMD 计算,故论文的论证路线和数据分析令人信服。此外,审稿人也提出了非常重要的建议:即对于特征拉曼峰的归属指认,如何排除其他接近的拉曼峰的重叠与干扰?例如,课题组首次观测并指认了 1220 和 1370cm-1 处的拉曼峰,为 CO-CO 耦合后迅速夺取表面水分子的质子而形成的*HOCCOH 中间体的特征峰。然而,这些峰的位置与反应过程中共存的 *HCO3–/*COOH /*CO32–/*CO2– 等表面中间体的拉曼峰十分接近。因此,该团队需要进行严格的对比实验,来排除可能的重叠与干扰。通过控制实验和理论计算相结合,课题组对这些中间体的特征拉曼峰进行了明确归属,并由此提出了相应的电催化反应机理和路径。研究中的第一步是对原位检测技术的选择。鉴于其具有明确的表面状态以及光电性质,铜单晶表面被用作电催化反应基底。常用的 SERS 技术很难应用于单晶界面研究,而基于红外的光谱技术又难以提供低波数范围(800cm-1 )的电化学界面研究。而改进的 SHINERS 技术突破了这些瓶颈,可应用于铜单晶表面的全光谱电化学研究(40-4000cm-1 ),并表现出极高的表面检测灵敏度和重现性。该技术的主要特色在于利用的超薄、致密、惰性的壳层(2~3nm 厚的 SiO2 或 Al2O3)来隔绝金属纳米颗粒(Au 或 Ag 等)与被检测基底,由此避免纳米粒子上吸附的杂质分子、以及纳米粒子与基底间的电荷转移带来的干扰,从而提供更加真实、准确的拉曼检测信号。▲图 | 不同条件下的原位 EC-SHINERS 光谱图(来源:PNAS)第二步是理论模拟方法的选择。一般而言,基于密度泛函理论 (DFT,density functional theory) 的静态计算,并不适合电化学表面吸附物的振动谱图分析,这是因为溶剂和反应中间体之间的动态相互作用(如氢键),会强烈影响相关界面吸附物的振动模式。值得注意的是,基于 DFT 的 AIMD 计算可以顾及整个电化学界面,并以量子力学的形式来模拟每个时间步长下的界面电子结构和动力学,使得研究者们可以将理论模拟与真实电化学反应联系起来。在本研究中,该团队的 AIMD 计算明确考虑了非简谐振动模式、分子内/分子间的耦合以及溶剂的动力学,最终成功预测了表面反应中间体的振动态密度(VDOS,Vibrational Density of State),为模拟反应动力学提供了一个非常有前景的工具。▲图 | AIMD 模拟的不同反应中间体的振动图谱(来源:PNAS)第三步是反应中间体的识别。为深入了解一氧化碳在铜单晶表面的氧化还原反应过程,课题组将电化学 SHINES 技术与 AIMD 计算相结合,识别了众多共存的中间体及其竞争反应途径。例如,一氧化碳吸附、CO-CO 耦合、一氧化碳氧化和氢化反应,以及界面处的 Cu-Oad/Cu-OHad 等表面吸附物种,并通过对照实验和同位素标记实验进一步证实。期间,为获得准确的反应中间体指认,该团队尽可能以更广泛的角度,来考虑不同的反应路径的复杂性,其中包括:1. 不同反应电压(+0.2 至-0.8 V);2. 不同反应氛围(CO 与 Ar 饱和溶液);3. 不同反应阳离子(CsOH、KOH 与 LiOH);4. 不同反应晶面(Cu(100)、(111)与(110)晶面5. 不同反应 pH 值(CsOH、CsHCO3 与 CsCl 溶液);6. 不同同位素标记(13CO 与 D2O 溶液);7. 不同中间体的稳定性(*OCCO、 *HOCCO, 和*HOCCOH物种)。8. 不同特征峰的重叠(*HCO3–/*COOH /*CO32–/*CO2– )等。值得注意的是,课题组的 AIMD 的计算还表明,溶剂水分子不太可能与铜表面吸附的一氧化碳形成氢键,这意味着 *CO 在较低的过电位下,难以直接从溶剂水分子里得到质子进而形成 *COH/*CHO。与此同时,之前文献报道的 *OCCO 和 *HOCCO 作为 C-C 耦合的关键中间体,它们在铜表面依旧拥有较高的反应活性而发生进一步的反应,最终形成 *HOCCOH 中间体。其中,吸附于铜表面的水分子可以作为质子源参与反应,同时还能留下 Cu-OHad 这一表面吸附物种。下一步,该团队计划开展基于新材料的 CO2捕获富集、催化转化与产物分离耦合的过程研究,以提高传统反应过程的资源和能源利用率为目标,助力“双碳”目标的高质量实现。参考资料:1.Shao, F., Wong, J. K., Low, Q. H., Iannuzzi, M., Li, J., & Lan, J. (2022). In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences, 119(29), e2118166119.
  • 注射剂中间体质量标准制定策略
    药物成品之前的都是中间体。根据产品特点及工艺情况,综合确定关键中间体,关键中间体需要制定质量标准,并检验控制。对于注射剂而言,关键中间体一般是指在配液罐中完成调配的药液。对于注射剂产品,一般会将性状、含量、pH值列为中间体检查项,参考成品的质量标准,将含量和pH值的限度收一收。但光是这样做就有些粗糙了,我们应该根据剂型的特点,产品的特点,有目的地设定中间体检查项,更好地做好产品的质量控制。一、性状对于无色溶液,一般简单地规定“无色澄明液体”即可。但对于有色溶液,特别是灭菌后颜色会加深的产品,建议中间体增加溶液颜色检查项。这样一旦成品颜色比正常情况要深,便于分析是配液工序还是灭菌工序发生的异常。有些冻干产品,随着药液储存时间的延长,溶液颜色也逐渐加深,而一旦冻干开始,颜色即不再变化。这类产品更应建立溶液颜色检查项,并以此检查项确定配液灌装工序的储存时限。基于中间体检查需要简单、快速的特点,一般对比色号即可,不建议使用溶液颜色测定仪。二、含量可以认为,制剂成品的含量控制限度即是药物可以在人体内起效的限度,低于这个限度,药效降低。而制定中间体含量标准的目的就是要保证含量在药品有效期内符合其质量标准。对于非常稳定的品种而言,假如成品的含量限度是90.0%-110.0%,那么中间体含量限度定在95.0%-105.0%即可;假如成品的含量限度是95.0%-105.0%,中间体含量限度可定在97.0%-103.0%。由于含量在效期内基本不会发生变化,中控范围只需能够包容检测方法产生的系统误差。对于储存期间含量逐渐下降的品种,中控含量限度除了要包容方法的误差外,还要包容含量降低的幅度。假如成品的含量限度是90.0%-110.0%,含量在效期内预期降低6%,检测误差不会超过2%,则中控限度应定为98.0%-102.0%。对于冻干产品,由于其标示量和水针不同,影响产品含量的还包括装量。灌装机总是有精度误差的,因此在制定中控含量标准时,还应考虑这一因素。下面用一张图表示某冻干产品制定中控含量限度的思路。 对于其他特殊情况,如采用半透性包材包装的注射剂,也应根据其特点制定做相应的调整。此外,由于尚未灌装的药液不存在标示量这一概念,注射剂的中控含量采用浓度表示(如4.8-5.2mg/ml)较为规范。为了方便理解,企业可以在内部文件中注明浓度对应的百分比。如4.8-5.2mg/ml(96.0-104.0%)。三、pH值大多数的注射剂都对pH值非常敏感,一般不能将成品的pH值标准简单收紧作为中控pH值范围。如硫酸阿托品注射液,中国药典规定pH3.5-5.5,但pH低于4时水解速度明显下降;又如氨茶碱注射液,USP规定pH8.0-9.0,但事实上pH低于8.5原料根本无法溶解。因此,一般以药物最适的pH值范围作为中控范围,同时注意不要触及成品pH值的上下限。四、渗透压摩尔浓度因为渗透压的检测方法非常简单快捷,所以建议成品有渗透压检测项的也在中间体制定,有时投料出现偏差能及时发现。所有的输液产品都会规定渗透压检查项,水针品种用法中包含有静脉推注给药方式的要进行渗透压检测。需要注意的是,有的产品,虽然给药方式是静脉推注,但并不等渗。如地西泮注射液和托拉塞米注射液,限于API溶解性或稳定性的原因,处方中加入了较大量的有机溶剂,形成高渗溶液。这类产品建议也增加渗透压检查项,对产品质量形成更有效的控制。五、有关物质一般终端灭菌的注射剂不需在中间体进行有关物质检测。对于极不稳定的某些产品,如易水解的冻干制剂,可在中控中加有关物质项。并以此验证配液和灌装的试产。六、抗氧剂按照要求,制剂产品放行标准应包括所含的抗氧剂的含量测试,以保证有足够的抗氧剂保留在制剂中,能在整个货架期和所拟的使用期间一直对制剂起到保护作用。 依据上述理念,亚硫酸盐这类属于还原剂的抗氧剂的含量还是非常有必要定在中控标准中的,因为配液及药液在配液罐放置过程中,亚硫酸盐即在被消耗。而依地酸二钠的含量不会发生变化,因此无需进行控制。EMA在《药品注册上市许可申请材料中对辅料的要求》(Guideline on Excipients in the dossier for application for marketing authorisation of a medicinal product)中也指出抗氧剂应提供药品生产过程中的控制方法,但不适用于增效剂,如依地酸二钠。七、微生物负载对于注射剂的微生物负载,国内的GMP有很明确的规定,即:对于除菌过滤前非最终灭菌产品微生物的限度标准一般为:10CFU/100ml对于最终灭菌的无菌产品微生物的限度标准一般为:100CFU/100ml但对于微生物负载的取样位置,各企业却有不同的做法。有的企业会在配液罐中取,有的企业会在药液过0.45μm滤芯后取。后一种做法的依据是:GMP中规定最后一步除菌过滤前,料液的微生物含量应不大于 10CFU/100ml。但其实这样做是有些违背GMP理念的。在欧盟《药品、活性物质、辅料和内包材灭菌指南》中,有如下描述:In most situations, a limit of NMT 10 CFU/100 ml (TAMC) would be acceptable for bioburden testing. If a pre-filter is added as a precaution only and not because the unfiltered bulk solution has a higher bioburden, this limit is applicable also before the pre-filter and is strongly recommended from a GMP point of view. A bioburden limit of higher than 10CFU/100 ml before pre-filtration may be acceptable if this is due to starting material known to have inherent microbial contamination. In such cases, it should be demonstrated that the first filter is capable of achieving a bioburden of NMT 10 CFU/100 ml prior to the last filtration. Bioburden should be tested in a bulk sample of 100 ml in order to ensure the sensitivity of the method. Other testing regimes to control bioburden at the defined level should be justified.翻译如下:大多数情况下不超过10 CFU/100 ml(TAMC)的限度对于生物负载测试是可接受的。如果仅作为预防措施添加预过滤器而不是因为未过滤溶液具有更高的生物负载,则此限度也适用于预过滤器,并且从GMP的角度强烈推荐。如果由于已知具有固有微生物污染的起始物料,则预过滤前的生物负载限度高10CFU/ 100ml是可接受的。在这种情况下,应该证明第一个过滤器能够在最后一次过滤之前达到不超过10CFU/100ml的生物负载。生物负载应在100ml的样品中进行测试,以确保该方法的灵敏度。其他在特定浓度控制生物负载的测试方案应该是合理的。 显然,欧盟是建议在配液罐中取样进行微生物负载检测的。GMP的一个核心理念即是“可控”。要知道即使药液微生物负载很大了,经过预过滤滤芯后也会有几个数量级的下降。数据虽然好看了,但焉知预过滤前未知的微生物负载会不会导致细菌内毒素的失控?有的营养性药物,浓度大,确实适合微生物生长,但如果确知微生物的种类,在可控的前提下进行预过滤,是可以接受的。八、细菌内毒素建议在配液罐中取药液进行检测,与中控含量检测同步进行。九、可见异物、不溶性微粒这两个检查项可以取药液过滤后的样品,取滤芯后或灌装初始样品,各企业可以按照自己的习惯进行管理。不溶性微粒的中控标准制定必然是1ml药液含有多少微粒,而制剂成品的标准是每支样品中含有多少微粒。应注意换算关系,确保中控标准严于成品标准。
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 重要科研用试剂核心中间体研发 申报指南
    关于发布“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南的通知各有关单位:  为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,满足我国科学研究对试剂需求日益增长的需要,科技部在认真总结前期工作的经验、成果并广泛征求各有关部门(单位)、地方对科研用试剂提出的需求的基础上,决定启动“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”。通过本项目的实施,将进一步完善产学研相结合的机制,在政府的引导下构建更加完善的科研用试剂产学研用联盟 发挥和提升我国科研用试剂的自主创新及产业化的能力,进一步推动我国科研用试剂行业的稳步发展,为科研提供更有力的支撑。  为充分调动各方的积极性,促进科技资源优化配置,公平、公开、公正地选择课题承担单位,科技部对本项目的课题采取公开申报,择优委托的方式选择课题承担单位,现将项目课题申报指南发给你们,请按照指南要求,做好组织申报工作。  联系人:王建伦 010-58881698      wangjl@most.cn  附件:“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南  科技部科研条件与财务司  二〇〇九年六月二十三日
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028 Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • 创新通恒参展2012中国国际医药原料药、中间体、包装、设备交易会
    第69届中国国际医药原料药、中间体、包装、设备交易会于2012年11月7日至9日在厦门国际会展中心隆重举行。本届展览交易会的主题是“药品安全之源,品牌优质之选”,旨在关注药品安全,打造创新制药品牌,引领中国制药工业发展大势。 本次交易会吸引了大批国内外众多知名厂商参与。 北京创新通恒科技有限公司作为国内能提供工业化核酸药物合成仪及大型工业级制备纯化系统的企业,组织了公司精干技术人员和市场人员参加了本次交易会。创新通恒十多年来一直专注色谱产品领域的研发及生产,不断攻坚克难,满足客户不同需求。本届展览交易会上我公司展出的产品受到了广大参观者的关注和好评。 “因为专注,所以专业”创新通恒一定能为广大客户提供优质的产品和服务,为用户创造价值。 交易会开幕式 客商正在参观创新通恒展品 创新通恒市场人员与客商进行交流 创新通恒技术人员解答客商的问题
  • 德祥顺利参展第10届中国(长春)国际医药原料、中间体、包装设备展览会
    2017年3月23日到25日,第10届中国(长春)国际医药原料、中间体、包装设备展览会在长春国际会展中心顺利举办,德祥携手众多进口实验室仪器供应商在展会上亮相。 作为制药行业的展会,我司代理的德国Hettich离心机,德国Heidoph旋蒸、美国SP scientific、冻干机、德国Pharmatest等仪器作为代表参展,在展会期间,我们产品的质量和性能受到客户的高度认可,客户也对他们目前遇到的技术问题与我们工作人员进行沟通,我们的技术人员也一一给予了满意的答复。 德祥,作为进口实验室仪器的代理商,将一如既往为广大新老客户提供*的产品和完善的服务,欢迎来电咨询,了解更多资讯和产品详情! 电话:4009-000-900
  • 德国新帕泰克将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会!
    德国新帕泰克公司将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会(62nd API)! 德国新帕泰克公司将参加于2009年05月12-14日在西安曲江国际会展中心(西安市雁展路1号)举办的&ldquo 第62届中国国际医药原料药、中间体、包装、设备春季交易会&rdquo ,The 62nd API China 2009 Xi&rsquo an。 公司展位号B1309,届时公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS 和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展!期待与大家进行专业的现场技术交流,并可以在现场提供样品粒度检测。 热忱欢迎各界人士光临公司展位!
  • 德国新帕泰克公司将参加第61届中国国际医药原料药、中间体、包装、设备秋季交易会!
    公司将参加于2008年11月05-07日在苏州国际博览中心(苏州工业园区现代大道博览广场.)举办的“第61届中国国际医药原料药、中间体、包装、设备秋季交易会 The 61st API CHINA&INTERPHEX CHINA”。 公司展位号3A522,公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展! 随着对原料药出口要求的不断提高,粒径分布已经成为原料药出口过程中一个很关键的参数指标。德国新帕泰克专注于医药行业的粒度检测需要,在全球尤其欧美拥有大量的医药客户,专利的干法激光粒度仪HELOS/RODOS能为您提供快速、方便的原料药粒度检测技术,功能强大,完全符合FDA的各项要求! 届时中国区首席代表耿建芳博士等将与大家进行专业的现场技术交流,并可以在现场测试样品。 热忱欢迎各界人士光临公司展位!
  • 定位中国制药新未来——第82届中国国际医药原料药/中间体/包装/设备交易会在杭州召开
    p  strong仪器信息网讯/strong 2019年5月8-10日,制药及制药设备行业盛会——第82届中国国际医药原料药/中间体/包装/设备交易会(以下简称“API China”)在杭州国际博览中心盛大召开。1200余家医药原料、辅料配料、医药包装、制药设备及检测仪器企业参展,超过5万名全球药品、保健品与化妆品领域专注研发与生产的精英人士汇聚于此,共同分享大健康产业蓬勃发展带来的巨大市场机遇,探讨中国制药行业未来的发展,为观众打造一场规模盛大、产业链齐全的制药工业展会。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/698835a3-34ce-4bb4-8460-709d2db1275e.jpg" title="观众入场.JPG" alt="观众入场.JPG"//pp style="text-align: center "观众入场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/2c545a59-36c3-426c-b0df-73dbb1c52986.jpg" title="现场.JPG" alt="现场.JPG"//pp style="text-align: center "展馆内景/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/9decb2af-c7d2-4017-af58-cef6551293c9.jpg" title="现场3.JPG" alt="现场3.JPG"//pp style="text-align: center "展馆外景/pp  API China是中国制药领域规模较大、历史悠久的展会,也是海内外数万家药品与保健品生产企业采购原料药、中间体、药用辅料、医药包材、制药设备的“一站式”的平台。展会当天,穿梭于各展馆之中,可以看到现场人头攒动,展商和参展观众热情高涨,气氛十分热烈。/pp  除了展览之外,本次展会还给展商以及参展观众提供了一个与前沿技术接触、和专家学者交流的机会。当一致性评价、两票制、智能化、信息化、自动化等政策和趋势向制药工业袭来时,很多企业或许无法采取及时有效的应对措施。本次展会特针对于国内各种制药“新政”举办了三十余场高质量会议论坛,邀请了来自NMPA、CDE、核查中心、中检院、药典委、省市药检所等相关政府部门领导及国内外优秀的制药企业、CRO公司、原辅料企业的百余位嘉宾,为制药行业同仁带来最务实的分析、指导和建议。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/0578332c-f636-4dea-9904-fa05e4eea44c.jpg" title="高峰论坛.JPG" alt="高峰论坛.JPG"//pp style="text-align: center "2019中欧医药产业发展论坛/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/1d8d1384-9206-4814-933b-a12bdf29abec.jpg" title="仪器论坛.JPG" alt="仪器论坛.JPG"//pp style="text-align: center "“工欲善其事,必先利其器——论现代仪器技术在药品研发与质控中的应用”论坛/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201905/uepic/9d0fe1b5-8f42-471c-b061-58bc2cb1a55e.jpg" title="一致性.JPG" alt="一致性.JPG"//pp style="text-align: center "API China 巡回交流会(杭州)注射剂一致性评价技术和法规研讨会/pp  span style="color: rgb(0, 112, 192) "strong部分实验室仪器设备参展商:/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/909e4ccd-dc69-4316-8f16-ecff5fd194b3.jpg" title="永合创新.JPG" alt="永合创新.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong永合创信/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/5699fd34-8a39-4c8e-81af-46217216bedf.jpg" title="永岐实验.JPG" alt="永岐实验.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong永生仪器/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/3a5e374c-939a-438e-a34e-dd221ea99dbe.jpg" title="苏盈仪器.JPG" alt="苏盈仪器.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong苏盈仪器/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/d1685a44-34c3-4c55-ae7f-ce4241547797.jpg" title="真理光学.JPG" alt="真理光学.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong真理光学/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/799f973d-70ba-472e-a4b9-dc1404612bc7.jpg" title="长城.JPG" alt="长城.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong郑州长城/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/83938542-3488-4bf2-a322-ed06e4bf6966.jpg" title="岩征仪器.JPG" alt="岩征仪器.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong岩征仪器/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/26c575da-30bd-4fde-8bb4-c9015961288f.jpg" title="马尔文.JPG" alt="马尔文.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong马尔文帕纳科/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/586bb406-01bb-4eb8-bbe5-e22b1d368003.jpg" title="庚yu .JPG" alt="庚yu .JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong庚雨仪器/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/aa61d815-7eea-43ce-a924-b7253669736f.jpg" title="欧世盛.JPG" alt="欧世盛.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong欧世盛/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/9a4de8d0-be36-4822-8d7b-65df63b0dea2.jpg" title="上海雅称.JPG" alt="上海雅称.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong上海雅程/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongimg src="https://img1.17img.cn/17img/images/201905/uepic/7c223040-8f13-45a6-8af4-f80178701006.jpg" title="仪器信息网.JPG" alt="仪器信息网.JPG"//strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong仪器信息网/strong/span/ppbr//p
  • 丹东百特精密仪器亮相第86届中国国际医药原料药中间体包装设备交易会
    在初夏的美丽羊城-广州,丹东百特携百特激光粒度仪Bettersizer 2600,纳米粒度电位仪BeNano 90 Zeta,智能粉体特性仪 BT-1001,图像颗粒分析仪BT-1600参加了为期三天的第86届中国国际医药原料药中间体包装设备交易会。此次展会吸引了生物制药行业上下游众多企业,同时丹东百特也为制药行业提供了全方位的颗粒检测解决方案。会议开展于广交会展馆,拥有9.2、9.3、10.2、10.3、11.2五个展区,分别展示了制药设备、干燥设备、包装设备、检测设备及原料药和辅药材料,吸引了数以万计的观众前来交流学习。期间,到访百特展位的观众络绎不绝,对于粒度检测比较陌生的观众,百特销售经理从激光粒度仪的原理、测试方法、报告解读以及售后保养等方面为每位观众进行详细全面的介绍。对于前来交流的的老客户,百特销售经理更是细心的询问仪器目前的使用状态是否良好,若出现疑问,销售经理和工程师在现场立刻解决问题,保证每位客户在百特展台的交流都有所收获。耐心的仪器讲解、一丝不苟的做事态度赢得了每一位观众的好评。针对生物制药行业,丹东百特深入研究行业标准,产品均符合ISO13320-2016,21CFR Part 11等制药标准及审计追踪。对于药物颗粒检测,Bettersizer 2600 同时可以具备干湿法分散器及微量耐腐蚀样品池进样方式。正反傅里叶光路设计使得粒度检测范围达到0.02μm-2600μm,重复性和准确性都能达到国际水平。对于纳米颗粒检测,例如蛋白质、脂质体、纳米悬浮液,丹东百特研发的第四代纳米粒度电位仪BeNano 90 Zeta,采用高性能APD和准确的温控系统能够准确测量颗粒的粒度和电位变化。BT-1600图像颗粒分析仪是颗粒检测的眼睛,它能够拍摄到清晰的颗粒照片并通过百特自主研发的高速率分析软件进行颗粒的多项指标分析,例如:长径比、圆形度、单体颗粒和颗粒群等。智能粉体特性仪能够测量粉末的14项粉体特性指标,能够充分表征粉末的物理特性。丹东百特仪器有限公司秉着“诚信经营,以客户为本”的经营方针,为广大制药用户提供全方位的颗粒检测方案,展会还在进行中,百特团队在广交会展馆9.2A06展位期待着您的光临。
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • 健康元承认地沟油制药已卖800吨并负全责
    地沟油入药?昨日媒体曝光,上市公司健康元全资子公司,河南焦作健康元生物制品有限公司(以下简称“焦作健康元”)涉嫌采购地沟油制药,并“用于生产制药原料”一事,引发关注。  在持续长达一年半的时间里,焦作健康元采购1.45亿元地沟油用于生产7-ACA,而这批产品作为抗生素的中间体,已广泛流向医药市场。  健康元董秘邱庆丰昨日上午回应新快报记者表示:“国家目前尚未有地沟油的检测方法,我们也没有办法检测。”  昨日下午,健康元紧急召开媒体电话会议,公司董事长朱保国强调,焦作健康元所产的7-ACA仅是化工原料,不是药品。他表示,国家并没规定化工原料中不能用地沟油,“甚至很多业内专家认为健康元为地沟油的再利用找到了很好的出路”。  朱保国承诺:“对于本公司因使用惠康油脂公司提供的大豆油所生产的7-ACA产品,如出现质量问题,本公司将承担一切责任。”  媒体曝光  一年半购买1.62余万吨地沟油  日前,这起全国最大的“地沟油销售环节案件”正式开庭审理,公诉机关指控河南省惠康油脂公司将地沟油掺入正常豆油中,销售给食品、饲料和药品生产企业,从中谋取巨大的利益。 而焦作健康元则是惠康油脂勾兑地沟油的最大客户。公诉机关指控,惠康油脂近一半的地沟油流向了焦作健康元,其均价甚至比地沟油的均价还低2000元/吨。据了解,焦作健康元主要生产抗生素中间体7-ACA,而豆油是其最重要的原料之一。  根据指控,焦作健康元在一年半时间内购买了高达1.62余万吨的地沟油,用于生产抗生素中间体。  这些地沟油的源头是山东济南格林生物能源有限公司。格林生物最初以地沟油加工生物柴油,但后来因产品销路无门,逐渐变为地沟油“黑加工厂”,向河南多家食用油加工企业销售地沟油。其中向惠康油脂销售获利6618万元。  2009年12月至2011年6月,惠康油脂从格林生物购买地沟油后,掺入正常豆油,以正常豆油的名义对外出售。  健康元2011年年报显示,焦作健康元注册资金5亿元,其投入亿元的7-A-CA生产线扩产在2011年完成,成为健康元酶法生产7-ACA的生产基地,同时为“重要利润贡献来源之一”与“重要的利润增长点”。  据悉,7-ACA作为头孢菌素关键性中间体,已被国际抗生素市场广泛使用。  昨日,记者从另外一家大型的抗生素上市公司负责人处了解到:“豆油主要用作7-ACA生产中细菌发酵的培养基,细菌在豆油中获得营养成分,再进行裂解,产生头孢菌素,进一步产生7-ACA,在经过一些提纯等等加工后制成药品。”  健康元回应  化学原料不是药  昨日,健康元全日停牌。15时30分,健康元召开了媒体电话沟通会议,朱保国在媒体电话会议上表示:“由于公司疏于管理带来问题的负面影响,我代表公司道歉。但由于对方是将地沟油掺入正常豆油,我们没有办法检测。”  已卖出800吨左右  在健康元电话会议上,朱保国一再强调,焦作健康元生产的是化学原料并不是药物。不过,朱保国只承认这些原料已经卖给多家企业,国内和出口均有,共有800吨左右,但拒绝透露详细内容。  朱保国表示,焦作健康元的财务总监在事发后的2011年8月已被开除。对于开除的原因,朱保国只表示“因为其不负责任”。矛盾的是,朱保国否认公司提前获知采购地沟油一事,并称“到现在也不知道被开除的财务总监与惠康油脂是否有私下联系”。  去年卖给丽珠集团200多吨  朱保国强调:“我们需要采购的是像中粮油这样大企业的油脂,不是小公司的油脂。”昨日,朱保国告诉记者,丽珠集团2011年向健康元采购了200多吨的化学原料。据权威渠道消息,丽珠集团所产的头孢类产品关键原料7-ACA主要就是从焦作健康元公司采购。  根据丽珠集团年报,2010年、2011年分别向焦作健康元采购达到2.27亿元、0.75亿元的化学原料,是健康元7-ACA的第二大客户,丽珠集团原料药2011年营业收入7.77亿元。  健康元事件拖累,医药股暴跌  13只新进基金踩雷  丽珠集团昨日午后临停  昨日处于事件漩涡中心的健康元临时停牌,此前一个交易日收盘价为4.15元。有分析人士称公司复牌后很可能跌停。  但事件仍在发酵,健康元子公司丽珠集团昨日股价大跌,截至午间收盘,丽珠集团A股跌6.56%,报26.35元,丽珠B跌5.09%,报19.40港元,其中A股半日成交量接近近期日均成交量。深交所昨日午间发布公告,因丽珠医药集团股份有限公司发生对股价可能产生较大影响、没有公开披露的重大事项,根据有关规定,公司股票丽珠集团、丽珠B自今日13:00起停牌。  生物制药板块跌2.61%  而受此负面消息影响,昨日整个医药板块也受到拖累,截至昨日收盘,生物制药板块周四整体跌幅2.61%,丽珠集团跌6.67%,信邦制药跌停,广州药业、白云山A、天方药业跌幅均超9%;医疗器械重挫3.38%,板块内无一只个股飘红。  13只新进基金被误伤  健康元一直备受机构青睐,在其前20大流动股东中,基金公司占到13家,根据半年报披露,招商、鹏华、金鹰、华夏、东吴、南方等12家基金公司均最新持有该股。  根据健康元半年报显示,招商先锋以322.02万股的持股量,占据该股的第4流通股东的位置,而鹏华、金鹰、长信、南方、东吴、华夏等基金公司紧随其后。  而在持有健康元公司的股票的12个基金公司中,他们旗下新进的基金达到13只,总计持有健康元1593.32万股。  健康元公告:否认采购价格偏低  健康元昨晚发布澄清公告,称惠康油脂公司系焦作健康元若干个大豆油供应商之一,公司向惠康油脂公司所购原料系大豆油。惠康油脂公司向包含本公司在内的大豆油用户销售大豆油时掺杂包含地沟油在内的劣质成品油进行勾兑后销售,本公司对此情况毫不知情。  在澄清公告中,健康元也否认2010年的业绩优良与使用地沟油有关,表示焦作健康元利润下降,主要系产品价格的下降。  查询健康元相关公告显示,焦作健康元在2010年采用地沟油的时候,其实现销售收入9.41亿元,净利润3.39亿元。  2011年,焦作健康元实现销售收入降至6.98亿元,亏损4300万元,健康元对此解释是7-ACA价格下滑并且年末出现7-ACA历史上近10年来的最低价位,7-ACA营业利润率大降至5.18%。2012年上半年,焦作健康元更是巨亏5100万元。  健康元公告称,焦作健康元的利润下滑和7-ACA价格波动有关。2010年3月15日,7-ACA价格就达到100万元/吨,并全年维持高位。但从2011年初开始,价格一路下滑,至2011年12月26日已降至44万元/吨,降至十年来的最低水平。今年上半年,焦作健康元的7-ACA的销量也同比下滑了49.6%。  根据公诉机关的指控,惠康油脂采购的地沟油较普通豆油每吨便宜约1000元左右,有分析质疑健康元采购低价油脂以压缩成本。对此,朱保国表示:“我们从惠康油脂的采购价并不比市场价低多少,每吨最多差个几十块钱。如果价格低很多,我们反而能提早警觉了。”健康元出示的公司购销记录显示,2011年4月13日,公司从惠康油脂购油的价格为10240元/吨,4月10日从新海粮油公司采购的油脂价格为10280元/吨,而在4月8日从焦作市粮食局储备库购油的价格为10180元/吨。  健康元公告称,公司向包括惠康油脂公司在内的多个原料供应商采购大豆油,均逐批次检验入库。但经过公司多种检验,均没有检出惠康油脂公司所供大豆油中含劣质成品油情况。  声音  7-ACA生产过程有两种方法  酶法比化学方法便宜几十元  据广东某抗生素厂商负责人介绍:“一般在7-ACA的生产过程中有两种方法,一个是化学的一个是酶法的之所以有两种方法,酶法化学式合成的微生物的杂质比酶法处理容易控制,酶法是需要油的,化学不需要。”  据介绍,之所以会用到油,是企业考虑到成本差异,为了压缩成本,用了酶法,但是其实酶法也就是比化学方法便宜几十元。去年下半年,出台了“史上最严抗生素条例”,抗生素企业都在想办法压低成本,所以企业用成本相对来说较低的酶法制作7-ACA。  Merck总部前任资深全球采购许雷博士:  “工业废料来作为发酵原料,在国外知名企业中都是通用做法”  电话会议上,健康元请来的常州奥森药物有限公司董事长,曾在Merck(默沙东)总部任资深全球采购的许雷博士表示:将地沟油做原料用于发酵,就像在合成药物中使用剧毒原料是一个道理。生产厂家和监管单位所需要做的就是制定一个残留标准,使得杂质或是未明杂质低于某个检测度。这个在ICH中已经有简述。用廉价的或是工业废料来作为发酵原料,这个在国外知名企业中都是通用的做法。“我在Merck做采购时,我们发酵用的原料,有些实际就是食品工业的废料。”许雷如是说。
  • 博医康Pilot-E系列冻干机带来新突破
    作为药品生产中一道不可或缺的工序,干燥环节对药品质量有着至关重要的影响。随着医药行业的产业升级,有着诸多优势的真空冷冻干燥技术渐渐成为了行业首选。在这种情况下,众多冻干机生产厂家也展开了一场设备升级的市场竞争。在这场激烈的竞争中,成立于2002年,有着多年专业冻干机生产经验的北京博医康,渐渐成为了国产冻干机厂商中的领跑者。  真空冷冻干燥的优点是可以降低物料被氧化变质的可能性、消灭物料中的细菌、保证品质、物料原本的外形能得到很好的保留。可广泛适用于高档原料药、中药饮片、生物、脱水蔬菜、化工、药物中间体等物料的干燥。当然,冻干效果究竟如何,还取决于冻干设备的设计、操作条件以及被干燥物料的特征等等条件。特别是冻干机设备的选择,对整个药品生产有着很大影响。  制药领域对冻干机设备的需求,带动了冻干机厂家的市场发展。部分冻干机厂家摸清市场脉搏,研发生产了一些针对药品生产的冻干机设备。博医康最近推出的Pilot-E系列冻干机,正是这种针对食品药品生产的冻干机系列产品,经过特殊的设计与功能性选择,该系列产品特别适合中小型食品药品生产厂家快速开展生产。  准确地把握市场的发展趋势,这让博医康Pilot-E系列冻干机一经推出,就成为了市场的宠儿。也正是这种对市场的了解,以及企业本身雄厚的研发生产实力,使得博医康在企业发展之路上,可以闪转腾挪,实现了竞争中的突破性发展。
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 东京大学化学家首次原子分辨透射电镜制作化学合成分子视频
    p  strong仪器信息网讯/strong 8月23日,东京大学中村荣一(化学系特聘教授/东京大学名誉教授)、原野幸治(化学系特任副教授)合作在Nature Communications刊发文章《Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses》(/ppbr//ppDOI:10.1038/s41467-019-11564-4 ),首次以原子分辨率透射电镜制作出化学合成视频。/pp  span style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "strong发表者点评/strong/span/pp  strong中村荣一/strong教授表示:“自2007年以来,物理学家已经实现了超过200年的梦想, 能够看到单个原子的能力。但这并没有就此结束。我们的研究小组已经超越了这个梦想,创造了分子视频,以前所未有的细节观察化学反应。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 338px " src="https://img1.17img.cn/17img/images/201908/uepic/72b8ccad-2767-4e1a-8cdd-e5abaf43c6a6.jpg" title="00.jpeg" alt="00.jpeg" width="450" height="338" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "东京大学化学系教授中村荣一/span/pp  strong原野幸治/strong解释道:“这是一个两部分的问题。在宏观上,将独特的高分辨率电子显微镜与快速灵敏的成像传感器结合起来进行连续视频成像存在工程挑战 而在微观层面上,我们必须设计一种方法来捕获感兴趣的分子,把它们固定到位,这样相机就能捕捉起运动作用。”/pp  “让我们感到惊讶的是我们的计划确实有效。这是一项复杂的挑战,但我们首先在2013年对这些分子视频进行了视觉化。从那时到现在,我们努力将这个概念变成一个有用的工具。我们的首个成功是成像和描述一个立方体形状的分子,这是金属-有机骨架合成过程中发生的一种重要的中间形式。我们用了一年时间来说服我们的论文审稿人我们发现的是真实的。”/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 270px " src="https://img1.17img.cn/17img/images/201908/uepic/13ff28e1-e633-48ec-a361-42e4f3160e29.jpg" title="0.jpeg" alt="0.jpeg" width="450" height="270" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "原野幸治与研究中使用的原子分辨率透射电子显微镜/span/pp  strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "发表要点/span/strong/pp  在溶液中捕捉化学反应中一个接一个地产生和消失的中间产物(反应中间体)的每一个分子,并且用电子显微镜观察到并确定了迄今为止未知的反应中间体的结构。/pp  用以往的分析方法,只能对溶液中发生的各种化学反应中间体的混合物的平均分子图像,或极少一部分的分子图像进行分析。本次提取了每一个分子,并成功确定了结构。/pp  此次研究表明,此研究方法可以确定以往常规方法无法观察到的化学反应中间体的每一个分子的结构,从材料科学到生物化学有望得到广泛的学术和工业应用。/pp  span style="color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) "strong发表概要/strong/span/pp  东京大学化学系教授中村荣一和副教授原野幸治等研究小组开发了中间产物(反应中间体),它们在化学反应中一个接一个地产生和消失。在溶液中捕获并且通过原子分辨率电子显微镜(电子显微镜,注释1)观察,成功地确定了迄今未知的反应中间体的结构。/pp  (span style="color: rgb(165, 165, 165) "注释1:像差校正技术的最新进展使得即使使用适于观察有机材料的低加速电压的电子显微镜也能够以原子分辨率捕获图像。 2015年在东京大学分子生命创新大楼新建立的最先进的透射电子显微镜实现了超高速连续拍摄,空间分辨率为0.08纳米,每秒1600幅图像。/span)/pp  化学反应一般在从反应物到生成物的过程中,通过不断形成系列反应中间体推动进行。这些中间体的结构各不相同,而且由于在反应溶液中保持平衡,结构不断变化,所以很难通过实验捕获结构。中村教授等,将对反应中间体具有很强亲和力的“分子鱼钩”装在碳纳米管上,再将纳米管放入反应溶液中进行反应。然后,开发了一种新技术,通过快速冷却和过滤快速停止反应,将在反应进行的各阶段发生的一系列的中间体“抓住在鱼钩”上,一网打尽地依次进行结构分析(图1)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 338px " src="https://img1.17img.cn/17img/images/201908/uepic/f4f19cfd-7e1b-4012-b0a0-6a10f0e90416.jpg" title="1.jpg" alt="1.jpg" width="450" height="338" border="0" vspace="0"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图1.本研究中使用的“分子钩”技术的概念图/span/pp  本次研究中采用的反应是气体储存材料和催化剂形成金属-有机骨架(MOF)的反应,反应中间具有一维至三维结构(簇),并且从原子水平,统计信息阐明了微小分子聚集体生长成晶体的反应机理。/pp  除人工化学合成反应外,本方法还可应用于对天然矿物、骨矿等矿物质生成等材料形成的反应分析,有望开发出高效化学反应、阐明生命现象。/pp  strongspan style="background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) "发表的内容/span/strong/pp  strong研究背景/strong/pp  “像观看分子模型一样观察分子的反应情况”是科学家长期以来的梦想,也是极其困难的课题。在化学反应中,在将一种物质转换为另一种物质的过程中,存在大量的中间生成物(反应中间体),并且作为混合物形式存在。/pp  在现有化学反应的分析中,反应总体情况的一般的描述方法是:这些众多反应中间体的平均值,或者主要反应中间体被分离后的结构分析。而每个中间体有各自的形状和大小,关于它们的每种形状和大小的信息并无从获得。特别是,当许多物质参与化学反应时,分析更加困难。为了阐明化学反应机理的细节,有必要建立一种澄清由分子之间的微小反应产生的每个纳米级中间体的结构的方法。/pp  中村教授等人的研究小组在2007年以来,“它单分子原子分辨率实时间电子显微镜(smart-em)映射”的独立开发的分子运用电子显微镜技术,小分子一个一个的动态视频拍摄记录的研究正在进行。2012年,有机分子的结晶化过程中产生的分子集合体的分子结构及出现频率决定成功,视频拍摄,但单分子不仅分子集合体的研究中也史无前例的最尖端的测量法和报告(nat . mater . 2012, 11, 877)。/pp  自2007年以来,中村教授等的研究小组充分利用了独立开发的分子电子显微镜技术“原子分辨率单分子实时电子显微镜(SMART-EM)成像”(注4),“小分子一个一个的动态视频拍摄记录的研究正在进行”。2012年,研究小组成功地拍摄确定了有机分子结晶过程中分子组装的分子结构和出现频率,视频拍摄在分子组装和单分子研究中前所未有。相关报道称这是一种最尖端的测量方法(Nat.Mater.2012,11,877)。/pp strong 具体的研究内容/strong/pp  这次,中村教授研究小组, 在碳纳米管尖端引入了化学亲和力,并用它作为“分子钩”从反应混合物中拾取反应中间体,然后使用原子分辨率进行结构解析。通过显微观察成功地以惊人的方式分析了结构(图1)。此外,表明可以基于所获得的数百种反应中间体的结构的统计信息来研究反应机理。/pp  在这项研究中,主要专注于一组称为金属有机框架(MOF)的物质。MOF内部具有规则的纳米孔,其在储气剂和催化剂中的应用已得到广泛研究,但MOF形成过程的实验信息极为有限。尤其是MOF形成初期发生的纳米尺寸的反应中间体的结构信息,目前尚未获得。因此,这次,由对苯二甲酸(PET瓶的原料)和硝酸锌(图2)合成的两种MOF(称为MOF-2和MOF-5)用于制备具有对苯二甲酸作为分子钓鱼钩的碳纳米管。通过与尖端结合来拾取反应中间体,并进行结构分析(图3)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 338px " src="https://img1.17img.cn/17img/images/201908/uepic/80fb40ca-4192-4136-a008-9153d11fc727.jpg" title="harano_2.jpg" alt="harano_2.jpg" width="450" height="338" border="0" vspace="0"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图2.通过在溶液中加热对苯二甲酸和六水合硝酸锌而生产的两种MOF(MOF-2和MOF-5)。 MOF-2具有通过溶剂层叠网状平面网络的结构,而MOF-5具有像丛林健身房那样的三维网状结构,并且两种结构都具有纳米尺寸的孔。 下部显示晶体结构。 浅蓝色,红色和灰色球体分别代表锌,氧和碳原子。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 247px " src="https://img1.17img.cn/17img/images/201908/uepic/fd333a83-18cf-45e3-9623-ba98d8c16f4e.jpg" title="harano_3.jpg" alt="harano_3.jpg" width="450" height="247" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图3.使用附着在碳纳米管尖端上的“分子钓鱼钩”来升高MOF形成反应中间体的反应示意图。/span/pp  在反应的每个阶段通过在每个MOF产生、反应、猝灭然后停止反应的温度条件下将碳纳米管与分子钩一起添加到反应混合物中而产生的一系列中间体被鱼钩抓住。然后,将提取的碳纳米管置于电子显微镜中真空条件下观察,以原子分辨率获得MOF形成的反应中间体而产生的1-2纳米尺寸的聚集体(簇)。松散耦合的簇在电子显微镜拍摄的实时尺度上是自发旋转的,因此,可以不倾斜样品而从各种角度观察其三维结构,并在原子水平上揭示了其三维结构。在MOF的形成过程中,产生了由锌离子和对苯二甲酸构成的无数中间体,但是通过取出一个这样的未知分子来确定结构,对于分子结构分析具有重要意义。/pp  作为MOF-2的反应中间体,除了许多一维链簇之外,还观察到具有作为MOF-2的部分结构的正方形结构的簇(图4)。另一方面,从MOF-5反应溶液中拾取具有立方三维结构的中间体(图5)。通过使用含有碘的对苯二甲酸作为重元素,可以使用碘作为标记物来确定三维结构,并且含有12个有机分子的立方中间体小于1埃,可以精度确定结构(图6)。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 230px " src="https://img1.17img.cn/17img/images/201908/uepic/3f5be26a-4141-464f-9cd4-9e741caaf74b.jpg" title="harano_4.jpg" alt="harano_4.jpg" width="600" height="230" border="0" vspace="0"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "图4.从MOF-2反应溶液收集的碳纳米管尖端拾取的反应中间体的电子显微镜图像。 (左)许多一维链簇(箭头)和二维方阵(包围虚线)。 (右)从触摸钟摆的方形簇的电子显微镜电影中提取的每个帧。顶部是真实图像,底部是相应的分子模型。图中的数字是从视频录制开始经过的时间(单位:秒)。原子着色与图1中的相同。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 241px " src="https://img1.17img.cn/17img/images/201908/uepic/5a962d8f-8b0c-4018-8eaa-b8c9dfb958cd.jpg" title="harano_5.jpg" alt="harano_5.jpg" width="600" height="241" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图5.用碘原子标记的MOF-5立方反应中间体的原子分辨率电子显微镜电影。图中的数字是从视频录制开始经过的时间(单位:秒)。图中的比例尺为1纳米。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 424px " src="https://img1.17img.cn/17img/images/201908/uepic/2bb411ce-c5d7-4a49-a86d-5a1a4caaebac.jpg" title="harano_6.jpg" alt="harano_6.jpg" width="600" height="424" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "  图6示出了从图5所示的运动图像中提取的电子显微镜图像的帧(左),与每个图像对应的分子模型(右),以及电子显微镜模拟图像(中心)。图中的数字是从视频录制开始经过的时间(单位:秒)。图中的比例尺为1纳米。/span/pp  这只是能够以精确和可控的方式控制化学合成的第一步,研究人员称之为“示构合成”。随着合成反应的进步,观察反应的细节非常重要,这样才能有效地进行逆向工程。/pp  化学家200年前的梦想是看到一个原子,现在的梦想是控制分子,以便建筑创造出合成矿物质,甚至是拯救生命的新药。/pp  strong附:/strong/pp  本研究的电子显微镜的部分图像分析是在日本科学技术厅(JST)研究成果展开事业尖端测量技术和设备开发计划(课题编号:JPMJSN16B1)的支援下实施的。/pp  在这项研究中,使用原子分辨率透射电子显微镜(JEM-ARM200F,由JEOL Ltd.制造),这是由国际科学创新中心开发项目引入并由东京大学分子生命创新组织运营的共享仪器。透射电子显微镜观察的一部分是在教育,文化,体育,科学和技术部纳米技术平台的支持下进行的(发行编号:12024046)/pp  strong论文链接:/stronga href="https://www.nature.com/articles/s41467-019-11564-4" target="_blank" style="color: rgb(0, 176, 240) text-decoration: underline "span style="color: rgb(0, 176, 240) "https://www.nature.com/articles/s41467-019-11564-4/span/a/p
  • 智能制造助力中药发展—访天津红日康仁堂药业
    p  “智能制造助力中药产业发展” 国家软课题是中国仪器仪表学会承接的中国科协学会“创新助力产业发展”政策建议研究项目,北京中医药大学、中国仪器仪表学会药物质量分析与过程控制分会为承办单位。该项目旨在通过调研中药智能制造技术成果、需求和建议,为中国科协,科技部和工信部等国家部委下一轮科技课题立项提供数据支撑。为了解中药智能制造智能化改造的经验及带来的效益、成果和存在问题,掌握中药产业对于智能化改造和转型升级过程中技术和人才的需求,鉴于天津红日康仁堂药业有限公司在制药行业的影响力,工作组于2019年3月8日邀请行业专家共同走访调研该公司北京武清区中药配方颗粒智能制造生产基地。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/c0ec0b69-cf6c-4626-9923-740f1028bf70.jpg" title="图片1.png" alt="图片1.png"//pp  经北京康仁堂药业有限公司张志强总监引荐,调研专家组来到天津红日康仁堂位于天津市武清开发区的中药配方颗粒生产基地。工厂总用地面积约20.4万平方米,规划总建筑面积约19.9万平方米 2017年通过GSP、GMP有关认证后正式开始投产,年产精制中药饮片3000吨、配方颗粒2500吨,年产值超5亿元。依托智能化、信息化,天津红日康仁堂中药配方颗粒生产基地整体达到工业3.0水平,关键核心环节达工业4.0水平。工厂采用新工艺、新技术和新装备,构建集智能装备、仓储物流管理、自动化控制、过程分析、信息化管理、企业资源管理等技术为一体的中药配方颗粒智能工厂。/pp  为保障原药材来源可控,红日康仁堂药业公司不断在药材道地产区寻找规模化、规范化种植基地,通过订单农业、基地共建等不同模式,与供应商合作建设药源基地。在药材入库前,通过自身企业标准,对含量、农残、重金属、黄曲霉等严格检测,以确保原料药质量合格与稳定。厂区装备有自动化炮制、智能投料、篮式和搅拌提取、浓缩和干燥设备,不同设备间物料依靠工厂重力设计和rgv轨道车实现自动化运输。自动化炮制针对中药大品种原药材物理属性,采用不同炮制加工线路进行处理,实现炮制过程的封闭式无烟操作。基于“标准汤剂”指纹图谱,浸膏得率上下限等多种质量控制指标,对中药配方颗粒的质量进行控制,并建立配方颗粒指纹图谱数据库。通过企业资源管理系统(ERP)、生产制造执行系统(MES)、集散控制系统(DCS)、智能仓储、数据采集与视频监控,实现各系统间数据的智能抽取,有效解决各业务系统间数据分散造成的数据一致性、准确性、时效性等问题。构建了中药制造信息化管理平台和智能物流配送中心,首创自动补货和挑拣系统,满足用户的小批量定制和个性化订单。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/174496bd-7f26-4c92-8727-6b7a34727f51.jpg" title="图片2.png" alt="图片2.png"//pp  参观完成后,调研组专家和工厂负责人就中药配方颗粒的智能制造开展了座谈会。北京中医药大学吴志生教授代表调研组专家向天津红日康仁堂药业有限公司对本次调研的支持表示感谢,并表明来意,希望了解中药配方颗粒智能制造生产过程中的问题与需求。张志强总监首先向调研组介绍了在线检测技术在制药过程中的实际应用情况,就自身工作经验介绍了在线检测技术在中药提取和制粒混合质量控制中的应用优势。但其表示,在线检测技术目前在中药生产过程中的应用仍属于数据收集和经验总结阶段,还无法在制药过程中大量推广。并指出,在线检测技术的选择应针对检测对象选择合适的方法,NIR对于物料混合均匀度的测定具有良好的适用性 但对于中药提取过程,水分对NIR分析的影响较大而导致难以准确定量,此时应用在线紫外能更有效的监测提取过程。/pp  针对当前中药市场混乱的现实情况,张志强总监表示,天津红日康仁堂中药配方颗粒质量保证的关键点在于对提取、浓缩等不同过程中中间体质量变化进行分析,理解生产过程,制定并严格执行企业标准对中药全过程质量进行管控。中国仪器仪表学会标准委员会郭哓维秘书长表示,标准是引领行业发展最重要的内容,对于优秀企业的技术成果,应以标准的形式向外公开。国家标准审核较为复杂,可以选择申请为行业标准或团体标准以促进行业的整体进步。对于中药配方颗粒智能制造现阶段的需求,天津红日康仁堂厂区负责人表示,MES操作系统的重要支撑点在于设备中传感器对制药中间体信息的收集,但目前国内中药配方颗粒生产规模较小,针对制药中间体的传感器设备供应商较少。同时由于中药中间体成分复杂,导致传感器的质量较不稳定,难以完全信赖MES系统对生产过程进行控制。/pp  针对中药配方颗粒的智能制造,郭哓维秘书长强调,智能制造不是仅依靠先进制造设备实现制药过程的高度自动化,更重要的是企业需结合自身产品特点,发展成为行业内的智能制造标杆。中国仪器仪表学会燕泽程主任也指出,智能制造是一个需要长期发展的过程,需要依靠大数据的累计与监控,在制药过程自动化的基础上,逐步实现信息的数字化、智能化和网络化。并以北京以岭药业有限公司一体化仓库的管理模型为例,强调了原药材质量控制在中药智能制造中的重要性。/pp  仪器信息网编辑参加了本次调研活动。在红日药业的大力支持下,本次调研活动圆满结束。/p
  • 雷尼替丁啊,雷尼替丁,都是NDMA惹得祸
    Breaking News美国FDA继2019年9月13日发出警示在雷尼替丁样品中检出NDMA后,于2020年4月1日发布公告要求制药商立即从市场上撤回所有处方和非处方(OTC)雷尼替丁产品。这是正在进行对雷尼替丁(商品名 Zantac,善胃得)中N-亚硝基二甲胺(NDMA)污染物管控的最新举措。FDA已经确定,某些雷尼替丁产品中的杂质会随着时间的推移以及在高于室温条件下存储而增加,并可能导致消费者暴露于不可接受的杂质水平中。NDMA是个什么鬼?NDMA全名N-二甲基亚硝胺又称二甲基亚硝基胺,分子式C2H6N2O,分子量74.08,黄色液体,可溶于水、乙醇、乙醚、二氯甲烷,属于亚硝胺类化合物。NDMA的合成通常由二甲胺与亚硝酸盐在酸性条件下反应生成。根据ICH M7通则对基因毒性杂质的分类原则,NDMA应属于第一类已知诱变性和致癌性的物质。在世界卫生组织国际癌症研究机构公布的致癌物清单中NDMA被列为2A类致癌物。 NDMA大事记12018年7月5日欧盟医药管理局(EMA)公告宣布,中国某药企原料药缬沙坦含有杂质NDMA。 22018年7月13日FDA发布通告,提醒医生和患者关于几种含有缬沙坦活性成分的高血压和心力衰竭治疗药的自愿召回。召回原因是缬沙坦原料药中含有基因毒性杂质NDMA。 32018年9月28日FDA对中国某药企部分产品发布进口禁令,意大利官方要求欧盟国家停止进口该公司缬沙坦原料药及中间体。欧盟官方也在其官方网站发布类似公告。42019年9月13日FDA警示在雷尼替丁样品中检出亚硝基二甲胺(NDMA)。 52019年12月5日美国FDA宣布开始检测一线降糖药二甲双胍的样品是否含有超过限度的致癌物NDMA,如果发现二甲双胍药品中存在高含量的NDMA,将酌情建议召回。 NDMA从哪来?遗传毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。此外,药物在合成、储存或者制剂生产过程中也可能会降解产生遗传毒性杂质。药物中NDMA的可能来源包含以下方面: 1. 硝酸环境下与体系中的二甲胺发生反应得到 2. 药物本身发生降解产生二甲胺,然后继续与硝酸盐反应得到 3. 生产工艺过程中使用了二甲胺前体试剂,由其发生降解得到 4. 药物含有二甲胺或者类似结构,通过氯胺化或者氧化等途径降解产生NDMA,如雷尼替丁、二甲双胍等 5. 药物合成过程中使用了叠氮试剂或亚硝酸盐,在有二甲胺供体的情况下反应生成NDMA,如四氮唑类药物缬沙坦、厄贝沙坦、氯沙坦等 6. 其他途径引入,如制药用水、辅料等 NDMA限度值?根据WHO的数据,NDMA的可接受限度AI值为0.005~0.016 μg/kg,换算后为0.375~1.2 μg/天。根据不同药物的用药特点,对NDMA的限度做了不同要求。2018年12月FDA发布了血管紧张素II受体拮抗剂(ARB)药物中NDMA的可接受摄入量为96 ng/天。NMPA对缬沙坦的生产要求中规定了NDMA的限度不得过千万分之三(相当于EMA的暂定参考限定值0.3 ppm)。此外,在FDA的公告信中也提到二甲双胍中NDMA的可接受日摄入水平为96 ng/天,根据该值及最大日剂量则可计算出二甲双胍药品中NDMA的限度控制水平。如盐酸二甲双胍片最大日剂量为2 g,则该产品中NDMA的可接受摄入水平是0.048 ppm。 对于雷尼替丁,FDA在公告信中提到,建议制药公司如检测发现NDMA超出可接受日摄入水平(雷尼替丁96 ng/天或0.32 ppm)则因召回其产品。此次全面撤回是发现杂质NDMA会随着时间的推移以及在高于室温条件下存储而增加,从而导致严重的用药安全问题。 NDMA如何测?药品中遗传毒性杂质NDMA的含量极微,控制限度比较低,对检测方法灵敏度提出了很高的要求。目前中国NMPA、美国FDA、欧洲药典委员会EDQM及加拿大卫生部等机构公布的NDMA检测方法主要有GCMS、GC-MS/MS、LC、LC-HRMS、LC-MS/MS法等。随着美国雷尼替丁的退市,今后雷尼替丁中的NDMA测定需求尚未可知,但其他药品如沙坦类药物、替丁类药物、二甲双胍等这些药物中的基因毒性杂质地测定仍将继续。LCMS-8050同时测定沙坦类药物中NDMA、NDEA和NMBA5.0 ng/mL标准样品MRM色谱图 岛津版完整解决方案在经历全球范围内对基因毒性杂质致癌的恐慌之后,药品监管机构越来越警惕其他药物可能受到污染的风险。从缬沙坦到雷尼替丁,再到二甲双胍,由遗传毒性杂质NDMA引起的风波接连不断,NDMA控制的重要性不言而喻。为规范和指导化学药物中亚硝胺类杂质研究和审评,2020年1月6日国家药品监督管理局组织起草了《化学药物中亚硝胺类杂质研究技术指导原则(征求意见稿)》,面向社会公开征求意见。为了更好地对该类药物中的遗传毒性杂质进行质量控制,岛津公司开发了基于GCMS、GCMS/MS、LC、LCMS/MS以及Q-TOF平台的相关药物中NDMA检测方法,精心汇编了《化学药中遗传毒性杂质NDMA的检测方案》。此外,为了应对制药行业相关用户的需求,岛津分析中心还编写了《药品中基因毒性杂质检测整体解决方案》,收入了药品中磺酸酯类、亚硝胺类、残留溶剂等基因毒性杂质的应用方案。希望我们的工作能够为您带来帮助。
  • 必达泰克公司成功参加API China厦门展会
    第69届中国国际医药原料药、中间体、包装、设备交易会(API China)已经于2012年11月7日-9日在厦门国际会展中心隆重举行。必达泰克公司携带专用于药厂原辅料检测的手持式拉曼光谱仪NanoRam参加了本次盛会。 NanoRam是必达泰克公司针对&le 中国药典2010&ge 和&le 药品生产质量管理规范(2010年修订)&ge 要求而设计,通过了3Q认证,FDA&CDRH认证,符合USP&EP规范,CFR 21 Part 11&1040.10兼容。同时,NanoRam在药厂原辅料入场检测应用中还有着以下几个显著的优势:1、每次检测时间短,只有10-30s。2、无需样品预处理,且可以隔着玻璃、塑料袋检测,无污染又方便。3、可以检测含水样品,固体、液体、粉末均可测量。4、检测结果客观准确。图为必达泰克公司展台一角,公司人员正向客户详解NanoRam 展会同期,必达泰克公司在A馆百家讲堂会场举行了会议讲座,主要内容为NanoRam是如何符合各种规范及在药厂原辅料检测中的优势。图为必达泰克公司同期讲座现场
  • ​卡宾化学印记法结合质谱技术揭示抗体药物结合表位
    大家好,本周为大家分享一篇最近发表在Analytical Chemistry上的文章,Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting 1。该文章的通讯作者是美国百时美施贵宝的Jason M. Hogan研究员。抗体药物结合表位的测定是药物开发的重要环节。抗体的结合位点决定了它的药理学和药代动力学特性。本文采用化学印迹法结合质谱技术对MICA蛋白上的抗体结合表位进行了测定,单残基水平的分辨率能够展现更精细的结构信息。作者选择了两种包含有双吖丙啶基团的光催化标记试剂TDBA和3-azibutanol(如图1AB中的化学结构式)。在紫外光照射下,双吖丙啶基团会形成较高反应活性的卡宾中间体插入到氨基酸的X-H键中(X=C, O, N, S)中,进而实现较高水平的标记序列覆盖和结构分辨率。值得注意的是,TDBA和3-azibutanol在分子尺寸、极性以及对不同氨基酸的反应活性上都存在差异,因此两种试剂获得标记结果往往能展现一些互补的结构信息。作者首先对MICA与Fab-1的互作表位进行了测定。由于同一条肽段存在多个标记位点,每个位点的标记比例变化也不一样,所以肽段水平的标记往往反映是该肽段连带区域结构平均化的结果。图1AB为MICA与Fab-1结合后标记比例的变化。在MICA α3结构域中,共有34个残基被TDBA试剂修饰(图1A)。在这些残基中,发现18个位点的标记量在与Fab-1形成复合物后显著性地下降,3个位点的标记量显示出增加。如果按照肽段标记水平的变化来看,其中5个位点的结构变化信息则会被掩盖。相较于肽段标记量变化,计算单个残基的标记量变化能将抗体结合表位锁定到更精确的位置。将标记量下降的残基映射到MICA蛋白晶体结构上(图1C),可以观测到大多数受保护的残基在α3结构域上形成了一个连续的表面。其中一个残基Q278显示出标记量增加,并且靠近TDBA定位的表位,表明它可能位于表位边缘或附近。其余差异标记残基位于远离表位的区域,可能是Fab-1结合时蛋白质结构构象变化导致的结果。在3-azibutanol的实验中,复合物形成后仅显示5个标记量显著性下降的残基和2个增加的残基(图1B)。四个标记量下降的残基R279、Y283、E285和H290在TDBA标记实验也观察到。两种标记试剂的测定结果可以相互验证,同时互相补充。3-azibutanol定位的表位覆盖了TDBA表位中的两个不连续区域(图1D)。整合两种标记试剂定位的表位区(图1E),对比X-射线晶体学测定的表位(图1F)发现大多数通过卡宾化学标记鉴定的表位残基被晶体结构证实,其余残基则位于晶体学表位外围的8 Å范围内。以上结果均说明卡宾化学印记法在测定抗体结合表位上具有较高的准确性。图1 MICA与Fab-1的互作表位测定:A)TDBA, B) 3-azibutanol实验标记量的变化;使用C) TDBA, D) 3-azibutanol 定位的表位;E)整合标记试剂测定的表位;F) X-射线晶体学测定的表位。鉴于此,作者将卡宾化学印记法应用到了其他候选Fab与MICA结合表位的测定上。在实验开始之前,作者首先用生物膜层干涉(BLI)技术对几个Fab在MICA上的竞争结合关系进行了考察。如图2A所示,Fab3、Fab4、Fab5存在着竞争结合,表明它们结合的表位一致或表位之间存在重叠。而Fab1、Fab2与MICA结合相对独立,不受其他Fab的干扰,说明Fab1和Fab2都具有各自单独的结合表位。尽管生物膜干涉能够展现各个Fab结合表位的位置关系,但却无法实现更高分辨的定位。表面标记法则能很好地解决此问题。如图2B-G,通过卡宾化学印迹法的测定6个Fab的结合表位都实现了准确定位,位置接近或重叠的表位则会产生竞争结合,因此更精准地解释了Fab间的竞争关系。此外,作者还将卡宾化学印记法应用到了完整抗体Ipilimumab与CTLA-4结合表位的测定(图3),卡宾化学印迹法依旧展现出较高的分辨率,准确描绘出了Ipilimumab与CTLA-4结合表位轮廓。图2 A)通过生物膜层干涉测定6个Fab的竞争结合关系;B-G)卡宾化学印记法测定6个Fab的表位图3 卡宾化学印记法测定全长抗体Ipilimumab与CTLA-4互作表位总之,使用卡宾化学印迹可以快速定位抗体结合表位,以支持抗体药物的开发。两种标记试剂的使用增加了蛋白复合物表面标记残基的覆盖率,可提供互补结构信息。残基水平的标记细化了相互作用表面并且能够区分与结合表位不相关的远端调控。撰稿:刘蕊洁编辑:李惠琳原文:Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting参考文献1. Hogan JM, Lee PS, Wong SC, et al. Residue-Level Characterization of Antibody Binding Epitopes Using Carbene Chemical Footprinting. Anal Chem. 2023 95(8):3922-3931.
  • 重拳再出击——必达泰克公司参加API CHINA 2012厦门展
    2012年11月7日~9日,第69届中国国际医药原料药、中间体、包装、设备交易会将于厦门国际会展中心举行。届时,必达泰克公司将会在展会期间,向广大制药行业的客户演示公司的明星产品&mdash &mdash NanoRamTM手持式拉曼鉴定系统的新功能&mdash &mdash 防水功能展示。NanoRamTM是一款针对制药工业专门设计的智能网络仪器,可为制药行业提供全方位解决方案。针对《中国药典 2010》和《药品生产质量管理规范(2010年修订)》要求设计,完全符合GMP,USP,EP规范要求,兼容CFR 21 Part 11,是原料药入场检测和药品质量控制的最佳选择。 NanoRamTM采用设计尖端,高度集成,小巧便携,一只手即可轻便完成全部操作。它拥有必达泰克专有的NanoID物料识别软件、界面友好、一键式操作,非技术人员即可轻松使用。它性能优异,检测准确、快速、稳定,这得益于它完美的配置:先进的TE制冷检测系统、专业的拉曼分析软件。 NanoRamTM无需样品制备、无需待检隔离区和洁净室,可以轻松方便的在任何需要的现场实时进行物料鉴定。它定量定性分析的高度分子选择性使其能够在很宽的光谱范围内分析有机、无机化合物。以上这些优异特征,使得NanoRamTM非常适用于原料药来料、中间产品和产成品的快速、便捷、准确的鉴定,同时它也能有效识别假冒伪劣药品。得到了广大客户的关注。 全身水洗,滴水不漏 展会地址:厦门国际会展中心公司展台:A906
  • 溶解有机物影响抗生素光降解机理研究获进展
    近岸海域中,常常会产生抗生素的残留,这些残留对海洋生物甚至人类健康产生了威胁。光降解是抗生素在海洋环境中重要的非生物降解途径,包括直接光降解和间接光降解,其中,间接光降解是表层水体中抗生素的重要转化途径。溶解有机物可通过光照作用产生活性中间体参与间接光降解反应,是影响抗生素间接光降解的关键性因素。由于溶解有机物结构组成的复杂性,目前国际上关于溶解有机物对抗生素间接光降解的影响机制尚不明确。多年来,中国水产科学研究院黄海水产研究所渔业环境优化与循环水处理技术创新团队针对这一科学问题展开了深入研究,揭示了溶解有机物结构组成在磺胺类抗生素间接光降解过程中的关键作用,阐明了海水中关键环境因子对间接光降解的影响机理。近日,相关研究成果发表在环境科学与生态学领域期刊《整体环境科学》和《环境污染》上。溶解有机物的结构组成对磺胺类抗生素间接光降解的影响机制 黄海水产研究所供图据了解,该研究以溶解有机物的结构、性质以及环境中pH、盐度、硝酸根、碳酸氢根等关键因子为影响因素,首次系统阐明了近海海水中溶解有机物对磺胺类抗生素光降解的影响机制。研究发现,溶解有机物通过产生活性中间体,有效促进了磺胺类抗生素的间接光降解;溶解有机物中陆源类腐殖质组分对磺胺类抗生素间接光降解的影响要显著强于海源类腐殖质组分;pH、盐度、硝酸根和碳酸氢根均可通过改变活性中间体的稳态浓度影响磺胺类抗生素的间接光降解。团队进一步研究表明,由于具有高的芳香性,陆源类腐殖质组分能够较好促进磺胺类抗生素的间接光降解;低分子量的溶解有机物比高分子量的溶解有机物对磺胺类抗生素间接光降解的促进作用更显著;由于具有较高的芳香性和陆源类腐殖质物质,亲水性酸、亲水性碱和疏水性酸是影响磺胺类抗生素间接光降解的主要组分。这些研究结果揭示了磺胺类抗生素在我国近岸渔业水域光降解过程的反应动力学及降解机理,为准确掌握近岸海域环境中抗生素的归趋和评估其生态环境风险提供了理论依据。相关研究得到国家自然科学基金、山东省自然科学基金、崂山实验室项目和中国水产科学研究院创新团队等项目的支持。
  • 由《我不是药神》引出,从粉体看我国仿制药的质量控制
    p style="text-indent: 2em "如果你有看过《我不是药神》,那势必会被片中患者渴望生存的眼神所触动,以及被高昂的正版药价所震惊。/pp style="text-indent: 2em "这部特别的电影,引发了观众许多思考:为什么正版药会这么贵?印度仿制药价格为何如此低廉?/pp style="text-indent: 2em "仿制药vs原研药/pp style="text-indent: 2em "事实上,正版药贵的主要原因,1是研制费用高、专利价格贵;2是经手渠道多。而仿制药,是药厂在专利药保护期过后模仿专利药成分制作的药物,只需要通过各国部门的药监部门批准就能上市,不需要冒着巨大的风险进行漫长的研发,成本大幅度降低。/pp style="text-indent: 2em "但仿制药制作看似容易,其实不然。根据规定,仿制药在剂量、安全性、效力、作用、质量及适应症上,需与专利药完全相同。/pp style="text-indent: 2em "换句话说,仅模仿成分是不足以成为合格的仿制药的,从寻找合适替代物到临床试验,整个流程对研发能力来说都是极大的考验,只有当药效的重要指标也与原研药达成一致时,才算是合格的仿制药。/pp style="text-indent: 2em "而对于医药粉体来说,其活性成分的生物利用度与其粒径、形貌等性质都有着密切的关系。即使是同一种药物,若粒径等性质有所不同,不仅会对物理性质造成影响,还会使生物活性有着明显差异,干扰药物的临床使用。因此这些指标无论是在新药开发还是一致性评价及仿制药开发过程中,都是API、辅料和制剂中间体的粉体学研究及控制的重点对象。/pp style="text-indent: 2em "仿制药的质量要求/pp style="text-indent: 2em "影片中印度仿制药价格低廉有许多原因,其中最主要便是印度过于宽松的专利条款。但这种做法并不利于知识产权的保护。再者,打开仿制药限制就无法避免“假药”涌入,药品质量的参差不齐,对药品市场的安全稳定和病人的服药安全都是巨大的隐患。/pp style="text-indent: 2em "在我国,为使药品市场健康良性发展,保障患者服用安全,国家食品药品监督总局已全面启动了仿制药一致性评价工作,从源头去控制仿制药质量,淘汰与原研药相比内在质量和临床疗效达不到要求的品种。因此可预见,在未来对医药行业的质量要求将越来越严格。/pp style="text-indent: 2em "但作为与人类生命与健康最为密切相关的特殊领域,严格的质量要求并不为过,且制备过程的难度意味着产品的附加价值将增大。医药粉体作为原料药、制剂中间体、成品的主要载体之一,更是浓缩着最为先进的粉体技术。span style="text-indent: 2em "所谓条条大路通罗马,无论是什么行业,只要涉及到了粉体,所应用的粉体工艺其实是可相通的。/span/p
  • 康宁反应器技术系列线上讲座开播啦!
    【2020康宁反应器技术年会延期通知】 期待着的2020康宁反应器技术年会,因为新冠肺炎的爆发将延期到2020年6月21日在上海举行。考虑到6月22-24日2020 CPhI& P-MEC China将在上海开幕,康宁反应器技术交流年会地点变更为上海浦东,时间定为6月21日,CPhI展会前一天。康宁真诚地为客户着想,一次出行,两场活动,让您满载而归。具体会议通知,请关注康宁反应器技术微信公众号,后续将陆续推出。 【康宁反应器技术线上讲座开播啦】 年会延期,复工延期,但化学人学习连续流新技术的热情不减。康宁反应器技术将陆续推出系列连续流技术线上讲座。实验室中的智能化-带您进入连续流的世界康宁G1反应器连续流流工艺开发案例分享康宁反应器技术工业化案例分享Zaiput连续分离技术在线核磁技术连续过滤技术连续流技术在药物研发中的应用连续流技术在农药研发及生产中的应用连续流技术在光化学中的应用连续流技术在硝化反应中的应用连续流技术在加氢反应中的应用连续流设备的安全和腐蚀 会议免费,将以微信群的形式进行。早日报名入群,即使错过会议,也可进群学习。具体会议内容以实际安排为准。敬请关注康宁反应器技术微信平台的信息发布。公众号:corningAFR 【线上讲座第一期】实验室中的智能化–Lab Reactor带您进入连续流世界 微化学工程与技术是当前化工行业科技创新的热点和重点之一,将开启医药和精细化工安全生产的新时代。微化工技术具可强化传热和传质能力,可平行放大、安全性高、易于控制等优点。在医药和精细化工领域可以大大提升研发及工业生产的效能,以自动化控制,微型化和绿色化满足化工过程的连续和高度集成的生产要求。 康宁自动化连续流化学反应快速筛选平台,自动化程度高,可对工艺条件进行快速筛选,反应结果瞬间可知。可在短时间内建立强大的化合物库,并可无缝放大,能在实验室条件下为供临床提供公斤级产品。 主办单位:康宁反应器技术有限公司 会议时间:2020年3月3日20:00-21:00 会议形式:网络微信会议 演讲嘉宾:伍辛军博士 康宁反应器技术中心主任 伍辛军,男,理学博士,2010年毕业于中国科学院成都有机化学研究所,获有机化学博士学位。2010-2013年在龙沙公司( Lonza )从事药物合成工艺研发与放大生产工作。2013年加入美国康宁公司,现任康宁反应器技术中心(中国)主任,从事康宁反应器技术在中国区应用与推广业务,主要负责带领康宁反应器技术团队为中国东亚太区客户提供技术培训、应用开发、工业化生产等技术支持与服务。 伍辛军博士曾在Chem. -Eur. J.等期刊发表论文10余篇,并申请多项发明专利。伍博士从事医药中间体、精细化工中间体、先进材料等合成工艺开发及工业生产工作多年,先后领导过数十个基于康宁微通道反应器技术的连续流工艺开发、工业生产项目,在康宁微通道反应器技术应用方面有丰富的经验。 【如何报名】1.请关注微信公众号:康宁反应器技术2.点击下方“产品介绍”,选择活动报名3.识别报名二维码,选择第一场:实验室中的智能化——带您进入连续流的世界4.填写完您的个人信息,即可成功报名参加我们的会议请记住3月3日,让我们相聚微信群,共享连续流技术饕餮盛宴。
  • 解决反应中的固体,可放大的端到端三步反应全合成!
    个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度摘要莫达非尼是一种抗发作性睡病药物,用于治疗与睡眠呼吸暂停和轮班工作障碍相关的白天过度嗜睡并且无副作用或成瘾性。本文将向您介绍如何通过康宁Lab Reactor反应器无需中间纯化步骤,三步串联合成USP级莫达非尼。该工艺可以在单个串联工艺中进行,是构建端到端药物连续生产的一次非常有意义的尝试。[1]图1. 报道的典型的莫达非尼合成路线Bicherov[3]在Maurya的基础上做了改进的三步反应研究:利用硫代硫酸钠和2-氯乙酰胺制备氨甲酰甲基硫酸钠(SCS,图2)SCS与二苯甲醇反应生成 2-(苯甲酰硫代)乙酰胺中间体6中间体6氧化合成莫达非尼(图1)该合成路线,虽然避免使用昂贵的Nafion催化剂和含有巯基的试剂(有强刺激性气味)。但是产率和产能的问题依然没有很好的解决。图2. 适用于连续流技术三步合成莫达非尼研究者受到Bicherov的启发,通过仔细选择低毒性试剂和FDA3级溶剂,研究连续流反应条件。研究过程:一、初步连续流工艺研究图3. 3步连续合成流程图研究者尝试了3步连续合成莫达非尼。该工艺系统在不到6分钟内获得标准剂量莫达非尼(100毫克)。可运行1.5小时以上,产能为23克/天。经过研究3步串联基本反应条件和关键点如下:第一步:为了避免硫代硫酸钠与步骤二中甲酸反应堵塞通道,使用略微过量的2-氯乙酰胺。第二步:反应需保持中间产物6(熔点为110℃)为液体状态,实验选择115℃为反应温度。反应结束后,向反应液加入甲基丙酮(简称MEK)作为溶剂溶解反应物避免管道堵塞。在此步骤中随着反应时间变长选择性降低。第三步:在20℃使用钨酸钠作为催化剂(4 mol%),加入苯基膦酸作为稳定剂,背压7巴,反应时间大大缩短。【编者】作者利用自制微反应器可以做一些连续流反应的初步研究。为了进行更好的工艺条件优化和得到可放大的连续流工艺条件,作者使用康宁Lab反应器进行了实验。康宁反应器可以实现从实验室工艺到大生产的无缝放大,有利于迅速实现工业化生产。二、康宁Lab Reactor 三步连续合成莫达非尼利用康宁Lab反应器,研究者将第一步和第二步的停留时间减少到1分钟。在第二步反应温度调整到150°C,相较于自制微反应器,转化率从78%升高到97%,选择性也从86%增加到88%,纯度99%。采用高温进料方式,可以解决反应过程中的固体析出的难题。康宁反应器可以精确控制反应条件,如物料比和温度,最大程度上减少副产物的生成。图4. 康宁Lab Reactor连续流工艺流程图最终三步合成工艺:第一步:将2-氯乙酰胺和硫代硫酸钠溶液注入康宁Lab Reactor第一个模块,停留时间为1分钟。反应液与二苯甲醇甲酸溶液在第二单元模块混合,反应物流经第三单元模块保持温度150℃,停留时间为1 分钟。第二步:第一步输出溶液连接到Y型混合器与甲基丙酮混合。输出溶液进入第四个Lab Reactor模块。泵入钨酸钠(4 mol%)、苯基膦酸(4.5 mol%)和1.5当量的15%过氧化氢溶液,反应温度20℃,停留时间1.25分钟。Zaiput背压阀背压7巴。冰浴收集粗品,搅拌后通过饱和碳酸钠水溶液来溶解羧酸副产物,用甲基叔丁基醚(MTBE)清洗固体,去除剩余的中间体6,通过HPLC-DAD分析。获得77%的总收率,纯度99 %,符合USP要求。同时,研究者在选用溶剂的时候考虑了毒性问题,选择的都是符合FDA要求的低毒性溶剂。还从经济可行性考虑测算了成本,最后测算结果每片莫达非尼的成本为0.03欧元(每片100毫克)。较Maurya合成法成本7.30欧元相比降低了200多倍。结果与讨论本文报告的工艺展示了流动化学在合成领域的优势:反应时间短,可以精确地控制反应量,以减少杂质的形成,提高再现性;应用康宁AFR反应器串联在3分钟内即可完成整个3步反应,中间产物6的输出量为17.8克/小时,莫达非尼的输出量为5.3克/小时,纯度99%;该三步连续流工艺比目前任何工业化工艺E因子都低。不仅选用的溶剂环保而且产生副产物也是无害的(例如NaCl、NaHSO4);康宁反应器无缝放大的特性有助于未来实现连续工业化生产;药物端到端的多步合成的连续化,为药物的智能制造打开了大门。参考文献:[1]Green Chem., 2022,24, 2094-2103[2]Green Chem.,2017, 19, 629–633.[3]Chem. Bull., 2010, 59, 91–101.
  • 您知道微反应技术在农药合成中有哪些应用吗?
    微反应技术作为二十一世纪的一项颠覆性合成技术,在农药原药合成中的应用越来越广泛,今天就给大家介绍几个实用的案例。案例一:异丁草胺的连续合成异丁草胺(24353-58-0)的适用作物:玉米、马铃薯、甜菜、花生、大豆等。防治对象:一年生禾本科杂草和多种阔叶杂草,对稗草、马唐、狗尾草、稷属效果好。 使用传统反应釜合成异丁草胺,反应的时间比较长,而且物料的投加的摩尔当量比较大,工艺不环保,而采用微通道反应器,可以有效地避免这些缺陷,得到很好的结果。反应方程式:反应示意图:反应结果及对比:使用连续流反应器之后,可以采用一锅法对该反应进行反应,中间体不需要进行后处理就可以进行下一步,有效降低了后处理的难度;传统釜式需要使用6倍当量的碱,极大增加了废水和废盐的量,不利于环境保护,而使用微通道反应器,只需要2.2当量,极大减少了废碱的量;收率大幅度提升,两步总收率达到95%,含量达到96%; 使用微通道停留时间短、混合好、无反混,在反应中氯乙酰氯分解的比较少。分解少了之后,产生的盐酸少了,碱的用量可以大幅度减低。原料的摩尔当量,包括碱和氯乙酰氯都可以降低,极大提升了反应的竞争力; 参考文献:CN104262188 A案例二:噁霉灵连续化合成 噁霉灵,是新一代新型农药杀菌剂,内吸性杀菌剂、土壤消毒剂。绿色、环保、低毒、无公害产品,适合作物果树、蔬菜、小麦、棉花、水稻、豆类、瓜类等。属新型抗重茬产品。反应方程式:反应示意图:反应结果及对比:相较于传统的反应釜,连续流反应器依靠精准的控温、良好的换热和混合效率,不仅可以提高反应的效率,还能减少废液的排放,最重要的是可以保证安全。改成全连续合成后,产品收率由68%提高到86%,而主要副产物由22%减低到4%,且连续流工艺容易进行工业放大。参考文献:DOI10.1021 / acs.oprd.9b00047案例三:唑草胺关键中间体唑草胺是一个禾本科杂草除草剂,对稗草、异性莎草和其他一年生杂草药效尤佳。它可以与其他除草剂复配,作为一次性除草剂用于水稻田;其单剂主要用于草坪除草。反应方程式:反应示意图:反应结果及对比:研究结果显示,在两步连续的情况下,总反应停留时间为50秒,反应温度分别为10°C和25°C,反应收率可达85%,产物纯度98%。连续流工艺和釜式工艺相比,不仅提高了转化率、缩短了反应时间和产品的纯度也有所提高,而且很好地避免了副反应的产生,更重要的是大大提高了工艺的安全性。参考文献:DOI 10.1021/acs.oprd.8b00362案例四:杀虫剂和杀菌剂苯并噁唑-3-酮杀虫剂和杀菌剂苯并噁唑-3-酮化合物是结构新颖的杂环化合物,具有抗真菌活性,近年来开始受到了人们的广泛关注,在医药方面得到了广泛的应用。反应方程式:反应示意图:反应结果及对比硝化结果:氢化结果:环化结果:使用连续流反应器收率得到大幅度的提升,三步的总收率从67%提升至83%,具有极大的经济效益。该工艺可以做成全连续,不仅反应可以连续,而且后处理也可以连续,极大节省了人工成本;康宁经销的Zaiput高效液液分离器不但可以用来连续萃取,还可以用来置换溶剂进行下一步的反应。该工艺过程中涉及有危险的硝化工艺、催化加氢工艺,尤其是硝化反应会生成不稳定的二硝基化合物,在传统间歇生产工艺中,存在较大的安全隐患。使用连续流技术之后,从根本上降低了安全风险,使整个过程连续化。连续流工艺中,原料现制现用,解决了不稳定中间体储存和运输问题。工艺中可以降低原料消耗,并提高产品质量。参考文献:DOI:10.1021 / acs. oprd. 6b00409
  • 投资1千万欧元 勃林格殷格翰中国中心实验室落户上海
    全球最大的家族制药企业勃林格殷格翰集团8月26日宣布,公司将于9月正式启用其位于上海浦东的中国中心实验室。该实验室共投入1000万欧元,将专注于在中国生产的化学中间体和原料药的分析方法和工艺过程开发。  据介绍,中心实验室坐落于浦东外高桥保税区,占地约2000平方米,由工艺优化实验室和分析实验室组成。工艺优化实验室的主要任务是对中国供应商的生产过程进行优化,并且进行相应的技术转让,从而提高原料药的生产效率 分析实验室则为工艺优化部门提供全面的分析支持,负责对源自中国供应商的化学品进行最终分析测试,保障供应化学品的质量达到勃林格殷格翰原料药的制造标准。  勃林格殷格翰中国区总裁潘大为表示,通过对合作伙伴的生产工艺进行完善、保证中间体的供应安全,中国在勃林格殷格翰全球采购中的地位将得到进一步加强。  "中国中心实验室是勃林格殷格翰的一个战略投资,我们会继续加大对中国的投资,包括技术投入。我们会将更多技术转移到中国,以推进中国工艺优化以及创新能力," 勃林格殷格翰公司高级副总裁Andreas Winterfeldt博士说。  据介绍,建立中国中心实验室是勃林格殷格翰去年10月宣布的在华1亿欧元投资计划重要组成部分。该项投资计划还包括将位于上海张江高科技园区生产基地的产能翻倍计划和进一步拓展在华的动物保健业务。  勃林格殷格翰集团是全球排名前20位的医药企业,创立于1885年,总部位于德国的殷格翰。公司于1994年正式进入中国市场,1995年5月勃林格殷格翰国际贸易(上海)有限公司在浦东外高桥注册成立
  • 【抗疫药】羟氯喹连续合成和连续分离
    一、背景介绍新冠疫情蔓延全球,急需寻找有效药物。除了瑞德西韦,氯喹与羟氯喹同时被WHO和美国总统点名加入海外抗疫候选药物单用或组合应用的多国多中心临床试验(Solidarity Clinical Trial)。美国选用氯喹/羟氯喹作为新冠治疗候选药物的原因在于这是一种上市多年的老药,因此安全性有保障。如果选用一种全新的(未上市)的药物,其安全性是未知的,也需要花费更多的时间去验证。抛开羟氯喹是否能成为治疗新冠病毒的特效药,世界卫生组织已将羟氯喹(HCQ)确定为基本医疗保健系统的必需抗疟药,但API的高制造成本阻碍了HCQ的全球普及。因此,开发具有成本效益的合成工艺来增加该药物的普及显得至关重要。如今,采用先进技术,开发低成本广谱药物和小批量孤独药是FDA一直致力推动的目标。微反应连续流技术的兴起不光给低成本药物的合成带来可能,还可以快速应对市场的需求。2018年,弗吉尼亚联邦大学化学系和化学与生命科学工程系研究小组,在Beilstein J. Org. Chem. 期刊上发表了抗疟药羟氯喹的高效连续合成报告。小编就带大家来解读,连续流技术如何来助力这场没有硝烟的病毒战! 二、羟氯喹的逆合成分析从羟氯喹的逆合成分析中可以发现化合物(6)是关键中间体。在传统工艺中化合物(6)通常有以下两种合成路径(图2)。反应路径1a中,使用氯酮(3)进行保护-去保护反应是优化工艺的一个关键点。虽然改进路径1b去掉了此步骤,但它使用了一个复杂的过渡金属-催化剂系统 。考虑到这些问题,研究小组通过逆合成分析,发现可以通过α-乙酰基丁内酯(8)的脱羧开环一步生成(10),然后化合物(10)可以不经分离制备化合物(6)。 三、连续流合成研究研究小组首先开发并优化了一条快速连续合成化合物10的方法(表1)。该路线的收率显著高于之前报道的合成路线 。使用55%的氢碘酸,反应温度80°C,转化率可达98%,分离收率为89%。?四、Zaiput在线连续分离由于使用了过量的氢碘酸,在进行下一步反应之前,必须将过量的氢碘酸从反应流中除去。将含有粗品(10)的产物与甲基叔丁基醚(MTBE)和饱和NaHCO3在线混合,然后使用Zaiput连续流分离器进行在线分离。在有机相中,可以得到纯化后的化合物(10)。连续分离简化了后处理步骤,大大节省了人力和时间。Zaiput高效液液分离技术是由美国MIT孵化的一项新技术。以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。 五、中间体(6)(11)的合成化合物(10)与化合物(7)反应可生成化合物(6),化合物(6)无需分离与羟胺反应,通过K2CO3的填充床生成肟(11)。从生成(11)的两步反应中可以看出,反应物的浓度对肟的形成有显著影响。使用1 M浓度的反应物,结果显示温度100°C,停留时间 20 min,转化率为85%,分离收率为78%。六、连续搅拌釜反应器(CSTR)工艺作者选择了连续搅拌釜反应器(CSTR)工艺进行化合物(11)的加氢还原合成化合物(12)。用HPLC泵输送至CSTR中,并通入氢气使其反应。作者优化了化合物(12)的各个步骤后,将各个步骤合为一个连续的反应过程。该过程将化合物(10)转化为化合物(6),再继续转化为化合物(12)(图4)。最终产物化合物(12)的收率达到68%。七、羟氯喹的连续釜式合成为了整个工艺流程的连续化,作者选择使用CSTR 研究最后一步羟氯喹的合成。作者考察了溶剂和碱对HCQ(1)收率的影响。实验总结:• 连续合成工艺大大缩短了反应时间• 减少了步骤并提高了单个反应的收率• 使用了更具成本效益的起始原料和试剂• 连续合成与连续分离技术的完美结合,促使了整个过程的连续化• 具有成本效益的合成工艺来增加该药物在未来的普及新工艺与目前传统的商业工艺相比,总收率提高了52%。连续方法采用连续流反应器、在线连续分离及连续搅拌釜反应器的组合,过程更加安全可靠。参考文献:Beilstein J. Org. Chem. 2018, 14, 583–592. doi:10.3762/bjoc.14.45康宁在中国独家代理:Zaiput 高效液液分离器以专利技术液液分离膜为基础,提供不互溶流体连续在线分离。分离器有一个混合流体入口和两个出口,分别为有机相出口和水相出口,分离器使用过程中不需要任何准备或校准。分离器利用多孔膜与水相和有机相间润湿性的差异来分离油水两相,该设备设计有压力系统可以自动调节两相间的压力恒定,确保分离的稳定性,流线型的设计也提供了即插即用的快捷功能。产品特性:• 分离液体不依赖密度差,可分离乳液• 在连续流动过程中,分离器可实现连续在线分离• 非常低的死体积,优异的化学耐受性,可在压力下运行• 可实现实验室规模放大至工业化生产规模• 高效分离降低萃取溶剂消耗• 非常适合活性或不稳定中间体的分离
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制